Sample records for glomerular immune complex

  1. Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. I. Studies on nature of glomerular-bound antibody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis.

    PubMed

    Strauss, J; Pardo, V; Koss, M N; Griswold, W; McIntosh, R M

    1975-03-01

    The nature of the glomerular-bound antibody and the putative antigen was investigated in one of the patients with sickle cell disease and immune deposit membranoproliferative glomerulonephritis by immunohistologic and glomerular antibody elution. Renal proximal tubular epithelial antigen was localized in association with immunoglobulins G (IgG), M (IgM), Clq fraction of the first component of complement (Clq) and the third component of complement (C3) in a granular pattern along the glomerular basement membrane of the patient's kidney. IgG and IgM were eluted from glomeruli. These immunoglobulins fixed to the proximal tubules of normal human kidney by direct immunofluorescence. This localization was abolished by absorption of the eluted immunoglobulins with renal tubular epithelial (RTE) antigen. The IgG eluted from the glomeruli blocked the fixation of rabbit anti-RTE antigen to normal proximal tubular brush border. These studies suggest that the nephritis in this patient was due to deposition of complexes or RTE antigen and specific antibody. An autologous immune complex nephritis may develop in some patients with sickle cell anemia secondary to RTE antigen released possibly after renal ischemia or some other phenomenon causing renal tubular damage.

  2. [Mechanisms of immune deposit formation in glomerulonephritis].

    PubMed

    Bussolati, B; Camussi, G

    1996-03-01

    Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.

  3. Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes

    PubMed Central

    Trouw, Leendert A.; Groeneveld, Tom W.L.; Seelen, Marc A.; Duijs, Jacques M.G.J.; Bajema, Ingeborg M.; Prins, Frans A.; Kishore, Uday; Salant, David J.; Verbeek, J. Sjef; Kooten, Cees van; Daha, Mohamed R.

    2004-01-01

    Anti-C1q autoantibodies are present in sera of patients with several autoimmune diseases, including systemic lupus erythematosus (SLE). Strikingly, in SLE the presence of anti-C1q is associated with the occurrence of nephritis. We have generated mouse anti–mouse C1q mAb’s and used murine models to investigate whether anti-C1q autoantibodies actually contribute to renal pathology in glomerular immune complex disease. Administration of anti-C1q mAb JL-1, which recognizes the collagen-like region of C1q, resulted in glomerular deposition of C1q and anti-C1q autoantibodies and mild granulocyte influx, but no overt renal damage. However, combination of JL-1 with a subnephritogenic dose of C1q-fixing anti–glomerular basement membrane (anti-GBM) antibodies enhanced renal damage characterized by persistently increased levels of infiltrating granulocytes, major histological changes, and increased albuminuria. This was not observed when a non–C1q-fixing anti-GBM preparation was used. Experiments with different knockout mice showed that renal damage was dependent not only on glomerular C1q and complement activation but also on Fcγ receptors. In conclusion, anti-C1q autoantibodies deposit in glomeruli together with C1q but induce overt renal disease only in the context of glomerular immune complex disease. This provides an explanation why anti-C1q antibodies are especially pathogenic in patients with SLE. PMID:15343386

  4. Experimental autologous immune deposit nephritis in rats associated with mercuric chloride administration.

    PubMed

    Kelchner, J; McIntosh, J R; Boedecker, E; Guggenheim, S; McIntosh, R M

    1976-09-15

    Serial administration of mercuric chloride to rats was followed by development of antibodies to tubular basement membrane and renal tubular epithelial antigen (RTE) and glomerulonephritis characterized by granular deposits of hosts IgG, C3 and RTE along the glomerular capillary walls. The glomerular fixed antibody was directed against RTE. These studies suggest that tubular injury by mercury may lead to release of RTE and autosensitization and subsequent antibody production to this antigen result in formation of and glomerular deposition of circulating immunopathogenic complexes (RTE-anti-RTE) and glomerular morphologic alterations.

  5. World Small Animal Veterinary Association Renal Pathology Initiative: Classification of Glomerular Diseases in Dogs.

    PubMed

    Cianciolo, R E; Mohr, F C; Aresu, L; Brown, C A; James, C; Jansen, J H; Spangler, W L; van der Lugt, J J; Kass, P H; Brovida, C; Cowgill, L D; Heiene, R; Polzin, D J; Syme, H; Vaden, S L; van Dongen, A M; Lees, G E

    2016-01-01

    Evaluation of canine renal biopsy tissue has generally relied on light microscopic (LM) evaluation of hematoxylin and eosin-stained sections ranging in thickness from 3 to 5 µm. Advanced modalities, such as transmission electron microscopy (TEM) and immunofluorescence (IF), have been used sporadically or retrospectively. Diagnostic algorithms of glomerular diseases have been extrapolated from the World Health Organization classification scheme for human glomerular disease. With the recent establishment of 2 veterinary nephropathology services that evaluate 3-µm sections with a panel of histochemical stains and routinely perform TEM and IF, a standardized objective species-specific approach for the diagnosis of canine glomerular disease was needed. Eight veterinary pathologists evaluated 114 parameters (lesions) in renal biopsy specimens from 89 dogs. Hierarchical cluster analysis of the data revealed 2 large categories of glomerular disease based on the presence or absence of immune complex deposition: The immune complex-mediated glomerulonephritis (ICGN) category included cases with histologic lesions of membranoproliferative or membranous patterns. The second category included control dogs and dogs with non-ICGN (glomerular amyloidosis or focal segmental glomerulosclerosis). Cluster analysis performed on only the LM parameters led to misdiagnosis of 22 of the 89 cases-that is, ICGN cases moved to the non-ICGN branch of the dendrogram or vice versa, thereby emphasizing the importance of advanced diagnostic modalities in the evaluation of canine glomerular disease. Salient LM, TEM, and IF features for each pattern of disease were identified, and a preliminary investigation of related clinicopathologic data was performed. © The Author(s) 2015.

  6. Antibody localization in the glomerular basement membrane may precede in situ immune deposit formation in rat glomeruli.

    PubMed

    Agodoa, L Y; Gauthier, V J; Mannik, M

    1985-02-01

    The administration of cationized antibodies, specific to human serum albumin, into the renal artery of rats caused transient presence of IgG in glomeruli by immunofluorescence microscopy. Intravenous infusion of appropriate doses of antigen after the injection of cationized antibodies resulted in immune deposit formation in glomeruli that persisted through 96 hr. By electron microscopy, these deposits were located in the subepithelial area. The injection of large doses of antigen produced immune deposits which were present in glomeruli for only a few hours, presumably due to formation of only small-latticed immune complexes. The presented data indicate that cationic antibodies bound to the fixed negative charges of the glomerular basement membrane can interact with circulating antigen to form immune deposits in glomeruli. This mechanism may be important because anionic antigens have been shown to induce the synthesis of cationic antibodies.

  7. COMPLEMENT FIXATION IN DISEASED TISSUES

    PubMed Central

    Burkholder, Peter M.

    1961-01-01

    An immunohistologic complement fixation test has been used in an effort to detect immune complexes in sections of kidney from rats injected with rabbit anti-rat kidney serum and in sections of biopsied kidneys from four humans with membranous glomerulonephritis. Sections of the rat and human kidneys were treated with fluorescein-conjugated anti-rabbit globulin or antihuman globulin respectively. Adjacent sections in each case were incubated first with fresh guinea pig serum and then in a second step were treated with fluorescein-conjugated antibodies against fixed guinea pig complement to detect sites of fixation of the complement. It was demonstrated that the sites of rabbit globulin in glomerular capillary walls of the rat kidneys and the sites of localized human globulin in thickened glomerular capillary walls and swollen glomerular endothelial cells of the human kidneys were the same sites in which guinea pig complement was fixed in vitro. It was concluded from these studies that rabbit nephrotoxic antibodies localize in rat glomeruli in complement-fixing antigen-antibody complexes. Furthermore, it was concluded that the deposits of human globulin in the glomeruli of the human kidneys behaved like antibody globulin in complement-fixing antigen-antibody complexes. The significance of demonstrating complement-fixing immune complexes in certain diseased tissues is discussed in regard to determination of the causative role of allergic reactions in disease. PMID:19867205

  8. Antigen size and charge in immune complex glomerulonephritis. II. Passive induction of immune deposits with dextran-anti-dextran immune complexes.

    PubMed Central

    Isaacs, K. L.; Miller, F.

    1983-01-01

    Utilizing dextrans of restricted sizes (10,000, 70,000, 500,000 daltons), modified with regard to charge (neutral, polycationic, polyanionic) and an anti-dextran murine IgA myeloma, W3129, the authors have examined a model that may be used in the study of the combined effect of size and charge on renal deposition of immune complexes. Polycationic DEAE dextran complexes, using the 10,000 dalton antigen, showed a mesangiocapillary pattern of deposition. The other antigens showed focal to diffuse mesangial localization of varying degree. This indicates the potential usefulness of this system in examining the factors important in glomerular immune injury. The relevance to other observations, importance of polysaccharide antigens, and role in circulating versus in situ or "planted" immune complex models are considered. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:6190406

  9. Membranous glomerulonephritis associated with enterococcal endocarditis.

    PubMed

    Iida, H; Mizumura, Y; Uraoka, T; Takata, M; Sugimoto, T; Miwa, A; Yamagishi, T

    1985-01-01

    An autopsy case of membranous glomerulonephritis associated with enterococcal endocarditis was reported. Although enterococcal antigen was not identified in glomerular deposits, the eluate from the patient's renal tissue was shown to specifically recombine with cells of the enterococcus isolated from his own ante mortem blood. Hypocomplementemia, circulating immune complexes and antienterococcal antibodies were also observed. These findings suggest that enterococcus-related immune complexes played a role in the pathogenesis of glomerulonephritis associated with enterococcal endocarditis in this patient.

  10. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    PubMed Central

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  11. Mechanism of formation of subepithelial electron-dense deposits in active in situ immune complex glomerulonephritis.

    PubMed Central

    Kagami, S.; Kawakami, K.; Okada, K.; Kuroda, Y.; Morioka, T.; Shimizu, F.; Oite, T.

    1990-01-01

    The influences of the epitope density on cationic antigens on the fate of immune reactants and the formation of subepithelial electron dense deposits (EDD) were studied in a model of active in situ immune complex glomerulonephritis (ICGN), using a hapten-carrier system. Three weeks after immunization with trinitrophenol conjugated bovine serum albumin (TNP17.3-BSA), the left kidneys of rats were perfused with 500 micrograms of TNP6.2-cationized human immunoglobulin G (C-HIgG) or TNP31.3-C-HIgG. The renal tissues were then examined at intervals by light, immunofluorescence, and electron microscopies. The perfused kidneys of rats given high-valency antigens (TNP31.3) showed marked subepithelial EDDs with foot process retraction associated with proteinuria. In contrast, those of rats given low-valency antigens (TNP6.2) showed only small subepithelial EDDs beneath the slit membrane, which consisted of apparently normal epithelial cells, and did not develop proteinuria. Kinetic studies on immunofluorescence showed that glomerular depositions of immune reactants (TNP-carrier conjugate, rat IgG, and C3) were present longer in rats treated with high-valency antigens than in those treated with low-valency antigens. We conclude that the epitope density on cationic antigens strongly influences the retention of immune reactants and the formation of subepithelial EDDs, as well as development of glomerular injury. Images Figure 4 Figure 2 Figure 3 Figure 4 PMID:1690511

  12. Treatment with proteolytic enzymes decreases glomerular immune complex deposits in passive serum sickness in rats and mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emancipator, S.N.; Nakazawa, M.; Lamm, M.E.

    1986-03-05

    This study assessed the effect of protease treatment on glomerular immune complex (IC) deposition in passive serum sickness. IC containing 2.2 mg of specific rabbit antibovine gammaglobulin (Ab) and cationic bovine gammaglobulin (CBGG) at 5-fold antigen excess were given via tail vein to 140 g Sprague-Dawley rats; some rats received IC containing /sup 125/I-Ab. After maximal glomerular IC deposition (1h) a single intravenous dose of either 4 mg chymopapain plus 2 mg subtilisin (T), or saline (C) was given. By immunofluorescence (IF) 1 h later, 1/13 T rats had bright capillary wall deposits of CBGG vs 10/11 C rats (x/supmore » 2/ = 13.4, p < .001); 6/13 T rats had Ab vs. 10/11 C rats (x/sup 2/ = 4.05, p < .05). Isolated glomeruli from T rats given /sup 125/I-IC had 25% less Ab (3267 +/- 293 cpm/mg glomerular protein) than C rats (4327 +/- 530, p < .005). 20 g BALB/c mice given IC with CBGG and 0.3 mg Ab, or IC with native BGG (nBGG) and 1 mg Ab via tail vein received 0.5 mg chymopapain and 0.25 mg subtilisin in 5 divided intraperitoneal doses q 10 min beginning 1 h later. 20 min after the last dose, 2/15 T mice given CBGG-IC had capillary wall Ab deposits by IF vs 13/16 C mice (x/sup 2/ = 11.7, p < .001). 1/16 T mice given nBGG-IC had mesangial Ab deposits vs. 11/15 C mice (x/sup 2/ = 10.8, p < .001). The authors conclude that protease treatment can remove glomerular IC deposits.« less

  13. Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells

    PubMed Central

    Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André

    2013-01-01

    Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760

  14. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury.

    PubMed

    Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1996-06-01

    To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.

  15. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  16. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway

    PubMed Central

    Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.

    2009-01-01

    Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158

  17. "Kill" the messenger: Targeting of cell-derived microparticles in lupus nephritis.

    PubMed

    Nielsen, Christoffer T; Rasmussen, Niclas S; Heegaard, Niels H H; Jacobsen, Søren

    2016-07-01

    Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. De novo immune complex deposition in kidney allografts: a series of 32 patients.

    PubMed

    Lloyd, Isaac E; Ahmed, Faris; Revelo, Monica P; Khalighi, Mazdak A

    2018-01-01

    Immune complex deposition in kidney allografts can include both recurrent and de novo processes. Recurrent glomerulonephritis is a well-recognized phenomenon and has been shown to be a common cause of allograft failure. De novo immune complex-mediated disease remains relatively poorly characterized, likely owing to the less frequent use of immunofluorescence and electron microscopy in the transplant setting. We performed a retrospective review of kidney allograft biopsies showing glomerular immune complex deposition. Cases with de novo deposits were identified and further organized into two groups depending on whether the immune complex deposition could be clinically and/or histologically classified. Thirty-two patients with de novo immune complex deposition were identified over a 7-year period. A broad range of immune complex-mediated injuries were observed, the majority (63%) of which could be readily classified either clinically or histologically. These included cases of membranous glomerulonephropathy, IgA nephropathy, infection-related glomerulonephritis and glomerulonephritis related to an underlying autoimmune process. A smaller subset of patients (37%) demonstrated immune complex deposition that was difficult to histologically or clinically classify. These patients typically showed mild mesangial immune complex deposition with co-dominant IgG and IgM staining by immunofluorescence microscopy. The presence of concurrent antibody-mediated rejection and donor-specific antibody positivity was significantly higher in the unclassifiable group. The significance of these deposits and their possible relationship to allograft rejection deserves further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Acute renal pain as an adverse reaction of the rabies immunization].

    PubMed

    Lalosević, Dusan

    2009-01-01

    HRIG is the best preparate in rabies prophylaxis, and it's considered that optimal dose is 20 international units per kilogram and must not been reduced or overdosed. HRIG have to be injected infiltrative around bite wounds, and if after that remains a part of the dose, it has to be given in gluteal muscle. Application only in gluteus is vitium artis. At one patient immunized against rabies has occured acute bilateral renal pain and fever at time of immunization against rabies, and because of that vaccination must been stopped after the 3rd dose of vaccine. Patient was a 26-year-old female without significant pre-existing disease, bitten by stray dog. After the start of immunization, because the wrong direction, she received about 2.5 more amount of human rabies immunoglobuline (HRIG) then is recommended on declaration at etiquette of ampoule, and only in gluteus in quantity of 10.5 ml. Glomerulonephritis after rabies vaccination until now was described just once by Singhal et al. in 1981. year. Acute renal pain, after rabies vaccine, which aggravated after repeated vaccine doses in our patient who received overdosed HRIG, may be explained by immunopathological mechanism, rather with formation of circulating immune complexes, their precipitation on the glomerular basement membrane and developing glomerulonephritis. Low weight soluble molecular immune complexes formed when antigen is in excess, as in case after repeated doses of rabies vaccine, circulate and precipitate on glomerular membrane and causes glomerulonephritis. As contribution to this explanation, is that symptoms as renal pain disappeared after interrupting vaccination protocol in our patient.

  20. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea.

    PubMed

    Lee, Sung Woo; Yu, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. During a median (interquartile) 5.0 (2.8-5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031-98.579, P = 0.047). Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed.

  1. Glomerulonephritis in a ferret with feline coronavirus infection.

    PubMed

    Fujii, Yuta; Tochitani, Tomoaki; Kouchi, Mami; Matsumoto, Izumi; Yamada, Toru; Funabashi, Hitoshi

    2015-09-01

    A male domestic ferret (Mustela putorius furo), which was purchased from outside of Japan at 13 weeks of age, was euthanized at 18 months of age because of poor health. At autopsy, the liver, spleen, and mesenteric lymph node were enlarged, and white foci were observed on the outer surface of the liver. The outer surface of the mesenteric lymph node was dark red. Histologically, granulomas were observed in the liver, spleen, bone marrow, and lymph nodes, composed mainly of aggregated epithelioid macrophages, some of which were positive to an anti-feline coronavirus (FCoV; Alphacoronavirus 1) antibody in immunohistochemistry. Mesangioproliferative glomerulonephritis was observed, and periodic acid-Schiff-positive deposits were observed along glomerular capillary walls. These deposits stained pale red with periodic acid-methenamine silver stain and red with Masson trichrome stain, and were also observed in the mesangial matrix. In affected glomeruli, glomerular capillary walls and mesangial areas were positive for anti-ferret immunoglobulin G. By electron microscopy, subepithelial and mesangial electron-dense deposits were observed consistent with immune complex deposition. The deposition of immune complexes may have been associated with FCoV infection. © 2015 The Author(s).

  2. Different Pathological Roles of Toll-Like Receptor 9 on Mucosal B Cells and Dendritic Cells in Murine IgA Nephropathy

    PubMed Central

    Kajiyama, Tadahiro; Suzuki, Yusuke; Kihara, Masao; Suzuki, Hitoshi; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-01-01

    Although pathogenesis of IgA nephropathy (IgAN) is still obscure, pathological contribution of mucosal immunity including production of nephritogenic IgA and IgA immune complex (IC) has been discussed. We have reported that mucosal toll-like receptor (TLR)-9 is involved in the pathogenesis of human and murine IgAN. However, cell-type expressing TLR9 in mucosa remains unclear. To address this, we nasally challenged cell-specific CpG DNA ((i): dendritic cell: (DC), (ii): B cell, (iii): both), known as ligand for TLR9, to IgAN prone mice and analyzed disease phenotype of each group. After 8 times of the weekly administration, every group showed deterioration of glomerular damage. However, CpG-A-group showed clear extension of mesangial proliferative lesions with increase of serum IgA-IgG2a IC and its glomerular depositions, while CpG-B-group showed extent of glomerular sclerotic lesions with increase of serum and glomerular IgA and M2 macrophage infiltration. Present results indicate that mucosal TLR9 on B cells and DC may differently contribute to the progression of this disease via induction of nephritogenic IgA or IgA-IgG IC, respectively. This picture is suggestive for the pathological difference between child and adult IgAN. PMID:21765852

  3. Immune complexes with cationic antibodies deposit in glomeruli more effectively than cationic antibodies alone.

    PubMed

    Mannik, M; Gauthier, V J; Stapleton, S A; Agodoa, L Y

    1987-06-15

    In previously published studies, highly cationized antibodies alone and in immune complexes bound to glomeruli by charge-charge interaction, but only immune complexes persisted in glomeruli. Because normal IgG does not deposit in glomeruli, studies were conducted to determine whether cationized antibodies can be prepared which deposit in glomeruli when bound to antigen but not when free in circulation. A series of cationized rabbit antiHSA was prepared with the number of added amino groups ranging from 13.3 to 60.2 per antibody molecule. Antibodies alone or in preformed soluble immune complexes, prepared at fivefold or 50-fold antigen excess, were administered to mice. With the injection of a fixed dose of 100 micrograms per mouse, antibodies alone did not deposit in glomeruli with less than 29.6 added amino groups by immunofluorescence microscopy. In contrast, 100 micrograms of antibodies with 23.5 added amino groups in immune complexes, made at fivefold antigen excess, formed immune deposits in glomeruli. With selected preparations of cationized, radiolabeled antibodies, deposition in glomeruli was quantified by isolation of mouse glomeruli. These quantitative data were in good agreement with the results of immunofluorescence microscopy. Immune complexes made at 50-fold antigen excess, containing only small-latticed immune complexes with no more than two antibody molecules per complex, deposited in glomeruli similar to antibodies alone. Selected cationized antibodies alone or in immune complexes were administered to mice in varying doses. In these experiments, glomerular deposition of immune complexes, made at fivefold antigen excess, was detected with five- to 10-fold smaller doses than the deposition of the same antibodies alone. These studies demonstrate that antibody molecules in immune complexes are more likely to deposit in glomeruli by charge-charge interactions than antibodies alone.

  4. Viral-Associated GN: Hepatitis C and HIV.

    PubMed

    Kupin, Warren L

    2017-08-07

    Viruses are capable of inducing a wide spectrum of glomerular disorders that can be categorized on the basis of the duration of active viremia: acute, subacute, or chronic. The variable responses of the adaptive immune system to each time period of viral infection results mechanistically in different histologic forms of glomerular injury. The unique presence of a chronic viremic carrier state with either hepatitis C (HCV) or HIV has led to the opportunity to study in detail various pathogenic mechanisms of viral-induced glomerular injury, including direct viral infection of renal tissue and the development of circulating immune complexes composed of viral antigens that deposit along the glomerular basement membrane. Epidemiologic data show that approximately 25%-30% of all HIV patients are coinfected with HCV and 5%-10% of all HCV patients are coinfected with HIV. This situation can often lead to a challenging differential diagnosis when glomerular disease occurs in this dual-infected population and requires the clinician to be familiar with the clinical presentation, laboratory workup, and pathophysiology behind the development of renal disease for both HCV and HIV. Both of these viruses can be categorized under the new classification of infection-associated GN as opposed to being listed as causes of postinfectious GN as has previously been applied to them. Neither of these viruses lead to renal injury after a latent period of controlled and inactive viremia. The geneses of HCV- and HIV-associated glomerular diseases share a total dependence on the presence of active viral replication to sustain renal injury so the renal disease cannot be listed under "postinfectious" GN. With the new availability of direct-acting antivirals for HCV and more effective combined antiretroviral therapy for HIV, successful remission and even regression of glomerular lesions can be achieved if initiated at an early stage. Copyright © 2017 by the American Society of Nephrology.

  5. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea

    PubMed Central

    Lee, Sung Woo; YU, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    Background and Objectives There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Methods Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. Results During a median (interquartile) 5.0 (2.8–5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031–98.579, P = 0.047). Conclusion Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed. PMID:26799663

  6. The transition of renal histopathology after immunosuppressive therapy in a woman with renal limited ANCA-associated vasculitis: a case report and literature review.

    PubMed

    Li, Xiang-Yang; Liang, Ying-Shan; Pai, Pearl

    2016-01-01

    The kidneys are frequently involved in antineutrophil cytoplasmic autoantibody (ANCA) associated small-vessel vasculitis (AASVV). The pathological hallmark of ANCA-associated glomerulonephritis (AAGN) is a pauci-immune necrotising crescentic glomerulonephritis. The histopathology of AAGN may change during the course of the disease as a consequence of immunosuppressive therapy. Herein, we report the pathological evolution of a case of AAGN. We report a female presented with renal-limited AASVV, hypocomplementemia and nephrotic syndrome. The first renal biopsy revealed "crescentic" changes at presentation, but after treatment with immunosuppressive treatment, a second renal biopsy four years later showed "mixed" changes of AAGN and immune complex deposition mimicking a mesangial proliferative glomerulonephritis. A literature review was undertaken in order to understand these transformations and factors which determine the pathological transitions. AAGN is commonly described as a pauci-immune necrotising crescentic glomerulonephritis, but immune complex depositions have been frequently identified under electronic microscopy and is associated with greater levels of proteinuria. Acute lesions such as fibrinoid necrosis or glomerular crescent may completely disappear or reduce significantly after immunosuppressive therapy, but chronic changes may increase over time. Based on our review and the illustration of this case, the initial histopathology of an AAGN and its active fibrinoid necrosis and cellular glomerular crescent may disappear or resolve after immunosuppressive therapy with resulting non-distinctive feature. Understanding the transition may facilitate the clinical diagnosis and provide further insight into this disease.

  7. Membranous glomerulonephritis in a child asymptomatic for hepatitis B virus. Concomitant seropositivity for HBsAG and anti-HBs.

    PubMed

    Hirsch, H Z; Ainsworth, S K; DeBeukelaer, M; Brissie, R M; Hennigar, G R

    1981-04-01

    The presence of hepatitis B surface antigen (HBsAg) in association with immunoglobulins and complement components within the glomerular basement membranes of adults having chronic active hepatitis has been well documented. In addition, investigators in Poland have demonstrated HBsAg immune complexes in glomeruli of children who did not have clinical evidence of hepatitis. More recently, a single case of childhood membranous glomerulonephritis in an asymptomatic carrier of hepatitis B virus was cited by observers in Canada. Reported here is the deposition of HBsAg immune complexes in the glomerular basement membranes of a 13-year-old black boy who had membranous glomerulopathy but not clinical evidence of hepatitis. This may be the first reported case in the United States of HbsAg-associated membranous glomerulonephritis in a child asymptomatic for hepatitis B virus, and only the second such case in North America. However, unlike previous studies of childhood glomerulopathy in association with hepatitis B virus, this patient is seropositive for both HBsAg and anti-HBs (antibody for hepatitis B surface antigen). Similar "rare" serologic findings were found for the patient's eldest male sib.

  8. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    PubMed

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  9. Detection of IgA-class circulating immune complexes (CIC) in sera from patients with IgA nephropathy using a solid-phase anti-C3 Facb enzyme immunoassay (EIA).

    PubMed Central

    Yagame, M; Tomino, Y; Miura, M; Tanigaki, T; Suga, T; Nomoto, Y; Sakai, H

    1987-01-01

    The detection of circulating immune complexes (CIC) in sera from patients with IgA nephropathy is described. A solid-phase anti-C3 Facb enzyme immunoassay (EIA) was employed for detection of IgA-, IgG- and IgM-CIC in sera. The C1q-binding enzyme assay was also used for the detection of CIC in sera from these patients and healthy adults. Twenty-two patients with IgA nephropathy, 14 patients with other glomerular diseases and 19 healthy adults were examined by anti-C3 Facb EIA. The levels of IgA-CIC in sera from patients with IgA nephropathy were significantly higher than those in sera from patients with other glomerular diseases and healthy adults. CIC measured by the C1q-binding enzyme assay was detected in some patients with IgA nephropathy. The levels of serum IgA in patients with IgA nephropathy were significantly higher than those in patients with other glomerular diseases and healthy adults. However, there was no significant correlation between the levels of IgA-CIC in sera and those of serum IgA in patients with IgA nephropathy. There was also no significant correlation between the levels of IgA-CIC in sera and the degree of histopathological injuries in the patients. It is concluded that the solid-phase anti-C3 Facb EIA is useful for the detection of IgA-CIC in sera from patients with IgA nephropathy. PMID:3301093

  10. Role of lipids in the progression of renal disease in systemic lupus erythematosus patients.

    PubMed

    Luzar, B; Ferluga, D

    2000-08-25

    Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease marked by immune-complex mediated lesions in small blood vessels of various organs, especially the kidneys, although other factors may also be implicated in the pathogenesis of the disease. This article focuses on the role of lipids in the progression of glomerular, vascular and tubulo-interstitial lesions in two patients with lupus nephritis associated with pronounced hyper- and dyslipidemia. The pathogenesis of progressive glomerulosclerosis in both patients appears to be multifactorial. In addition to immune complex mediated lupus glomerulonephritis, progressively active in the first patient, severe nephrotic-range persistent proteinuria, arterial hypertension associated with hyperfiltration and hyperperfusion injuries and, to a minor extent, hyper- and dyslipidemia were observed. Immunological and non-immunological factors were shown to contribute to the development of tubulo-interstitial lesions. In both patients, in addition to local immune deposits, prominent tubulo-interstitial lipid deposits were probably causally related to both hyperlipidemia and the increased permeability of the glomerular filtration barrier. Tubular lesions were highlighted by intracytoplasmic lipid droplets as well as small cleft-like spaces found to be impacted in the tubular lumina. They were seen to penetrate tubular epithelial cells and eventually lodge in the interstitium, surrounded by mononuclear cell infiltrates and foam cells. In both patients, hypertensive angiopathy and extraglomerular vascular immune deposits were demonstrated. In addition, in the second patient, arteriolar and small arterial hyaline was found at the age of 28 years to be full of lipids and calcium precipitates, suggesting a peripheral atherosclerosis-like process which never occurs as a natural age-related condition. In conclusion, all parts of the nephron may be involved in the pathogenetic process causally related or influenced by hyper- or dyslipidemia. Associated either with endothelial cell injury and consequent insudation of lipids in the vascular walls, glomerular filtration barrier injury with hyperfiltration, or tubulo-interstitial lipid deposition, the mechanism of tissue damage by lipids in all parts of the nephron shares similarities with the pathogenesis of systemic atherosclerosis.

  11. Serum under-O-glycosylated IgA1 level is not correlated with glomerular IgA deposition based upon heterogeneity in the composition of immune complexes in IgA nephropathy.

    PubMed

    Satake, Kenji; Shimizu, Yoshio; Sasaki, Yohei; Yanagawa, Hiroyuki; Suzuki, Hitoshi; Suzuki, Yusuke; Horikoshi, Satoshi; Honda, Shinichiro; Shibuya, Kazuko; Shibuya, Akira; Tomino, Yasuhiko

    2014-06-13

    Although serum under-O-glycosylated IgA1 in IgA nephropathy (IgAN) patients may deposit more preferentially in glomeruli than heavily-O-glycosylated IgA1, the relationship between the glomerular IgA deposition level and the O-glycan profiles of serum IgA1 remains obscure. Serum total under-O-glycosylated IgA1 levels were quantified in 32 IgAN patients by an enzyme-linked immunosorbent assay (ELISA) with Helix aspersa (HAA) lectin. Serum under-O-glycosylated polymeric IgA1 (pIgA1) was selectively measured by an original method using mouse Fcα/μ receptor (mFcα/μR) transfectant and flow cytometry (pIgA1 trap). The percentage area of IgA deposition in the whole glomeruli (Area-IgA) was quantified by image analysis on the immunofluorescence of biopsy specimens. Correlations were assessed between the Area-IgA and data from HAA-ELISA or pIgA1 trap. The relationships between clinical parameters and data from HAA-ELISA or pIgA1 trap were analyzed by data mining approach. While the under-O-glycosylated IgA1 levels in IgAN patients were significantly higher than those in healthy controls when measured (p<0.05), there was no significant difference in under-O-glycosylated pIgA1. There was neither a correlation observed between the data from HAA-ELISA and pIgA1 trap (r2=0.09) in the IgAN patients (r2=0.005) nor was there a linear correlation between Area-IgA and data from HAA-ELISA or the pIgA1 trap (r2=0.005, 0.03, respectively). Contour plots of clinical parameters versus data from HAA-ELISA and the pIgA1 trap revealed that patients with a high score in each clinical parameter concentrated in specific areas, showing that patients with specific O-glycan profiles of IgA1 have similar clinical parameters. A decision tree analysis suggested that dominant immune complexes in glomeruli were consisted of: 1) IgA1-IgG and complements, 2) pIgA1 and complements, and 3) monomeric IgA1-IgA or aggregated monomeric IgA1. Serum under-O-glycosylated IgA1 levels are not correlated with glomerular IgA deposition based upon heterogeneity in the composition of glomerular immune complexes in IgAN patients.

  12. Platelet-activating factor mediates monocyte chemoattractant protein-1 expression in glomerular immune injury.

    PubMed

    Jocks, T; Freudenberg, J; Zahner, G; Stahl, R A

    1998-01-01

    These studies were designed to determine the possible role of platelet-activating factor (PAF) in the production of monocyte chemoattractant protein-1 (MCP-1) in glomerular immune injury. The glomerular lesion was induced in isolated perfused rat kidneys by a rabbit anti-rat-thymocyte serum (ATS) and rat serum (RS) as a complement source. Perfusion of kidneys with ATS and RS results in the selective binding of the antiserum to the glomerular mesangium with consecutive intraglomerular activation of complement. Antibody binding and complement activation induced a significant increase in glomerular MCP-1 mRNA levels when assessed by Northern blotting or RT-PCR. Decomplemented RS or non antibody rabbit IgG had only moderate effects on glomerular MCP-1 mRNA levels. The PAF receptor antagonist WEB 2170 almost completely blocked the ATS and RS induced MCP-1 mRNA levels. Perfusion of control kidneys with PAF increased MCP-1 mRNA expression, an effect which was blocked by WEB 2170. Glomerular MCP-1 protein formation, assessed by Western blotting, was stimulated following ATS and RS and PAF, respectively, was blocked by WEB 2170. These data show that PAF, derived from glomerular resident cells following antibody and complement induced injury, stimulates MCP-1 expression. In addition to the direct effects on leukocyte adhesion and activation PAF may mediate inflammatory cell influx in glomerular injuries due to the release of MCP-1.

  13. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    PubMed

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P < 0.01) increased in SLE patients by LC-MS/MS. Three G3BP-exposing microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major autoantigen source and provides a new understanding of the origin of immune complexes occurring in lupus nephritis. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    PubMed

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.

  15. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury

    PubMed Central

    Duann, Pu; Lianos, Elias A.

    2009-01-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-β1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury. PMID:19587144

  16. Diagnosis and classification of Goodpasture's disease (anti-GBM).

    PubMed

    Hellmark, Thomas; Segelmark, Mårten

    2014-01-01

    Goodpasture's disease or anti-glomerular basement membrane disease (anti-GBM-disease) is included among immune complex small vessel vasculitides. The definition of anti-GBM disease is a vasculitis affecting glomerular capillaries, pulmonary capillaries, or both, with GBM deposition of anti-GBM autoantibodies. The disease is a prototype of autoimmune disease, where the patients develop autoantibodies that bind to the basement membranes and activate the classical pathway of the complement system, which start a neutrophil dependent inflammation. The diagnosis of anti-GBM disease relies on the detection of anti-GBM antibodies in conjunction with glomerulonephritis and/or alveolitis. Overt clinical symptoms are most prominent in the glomeruli where the inflammation usually results in a severe rapidly progressive glomerulonephritis. Despite modern treatment less than one third of the patients survive with a preserved kidney function after 6 months follow-up. Frequencies vary from 0.5 to 1 cases per million inhabitants per year and there is a strong genetic linkage to HLA-DRB1(∗)1501 and DRB1(∗)1502. Essentially, anti-GBM disease is now a preferred term for what was earlier called Goodpasture's syndrome or Goodpasture's disease; anti-GBM disease is now classified as small vessel vasculitis caused by in situ immune complex formation; the diagnosis relies on the detection of anti-GBM in tissues or circulation in conjunction with alveolar or glomerular disease; therapy is effective only when detected at an early stage, making a high degree of awareness necessary to find these rare cases; 20-35% have anti-GBM and MPO-ANCA simultaneously, which necessitates testing for anti-GBM whenever acute test for ANCA is ordered in patients with renal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    PubMed

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  18. Ultrastructural Study of Electron Dense Deposits in Renal Tubular Basement Membrane: Prevalence and Relationship to Epithelial Atrophy

    PubMed Central

    Killingsworth, Murray C.

    2014-01-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition. PMID:24933115

  19. Therapeutic Blockade of Immune Complex-Mediated Glomerulonephritis by Highly Selective Inhibition of Bruton’s Tyrosine Kinase

    PubMed Central

    Chalmers, Samantha A.; Doerner, Jessica; Bosanac, Todd; Khalil, Sara; Smith, Dustin; Harcken, Christian; Dimock, Janice; Der, Evan; Herlitz, Leal; Webb, Deborah; Seccareccia, Elise; Feng, Di; Fine, Jay S.; Ramanujam, Meera; Klein, Elliott; Putterman, Chaim

    2016-01-01

    Lupus nephritis (LN) is a potentially dangerous end organ pathology that affects upwards of 60% of lupus patients. Bruton’s tyrosine kinase (BTK) is important for B cell development, Fc receptor signaling, and macrophage polarization. In this study, we investigated the effects of a novel, highly selective and potent BTK inhibitor, BI-BTK-1, in an inducible model of LN in which mice receive nephrotoxic serum (NTS) containing anti-glomerular antibodies. Mice were treated once daily with vehicle alone or BI-BTK-1, either prophylactically or therapeutically. When compared with control treated mice, NTS-challenged mice treated prophylactically with BI-BTK-1 exhibited significantly attenuated kidney disease, which was dose dependent. BI-BTK-1 treatment resulted in decreased infiltrating IBA-1+ cells, as well as C3 deposition within the kidney. RT-PCR on whole kidney RNA and serum profiling indicated that BTK inhibition significantly decreased levels of LN-relevant inflammatory cytokines and chemokines. Renal RNA expression profiling by RNA-seq revealed that BI-BTK-1 dramatically modulated pathways related to inflammation and glomerular injury. Importantly, when administered therapeutically, BI-BTK-1 reversed established proteinuria and improved renal histopathology. Our results highlight the important role for BTK in the pathogenesis of immune complex-mediated nephritis, and BTK inhibition as a promising therapeutic target for LN. PMID:27192942

  20. Deletion of the Fcγ Receptor IIb in Thymic Stromal Lymphopoietin Transgenic Mice Aggravates Membranoproliferative Glomerulonephritis

    PubMed Central

    Mühlfeld, Anja S.; Segerer, Stephan; Hudkins, Kelly; Carling, Matthew D.; Wen, Min; Farr, Andrew G.; Ravetch, Jeffrey V.; Alpers, Charles E.

    2003-01-01

    Engagement of immunoglobulin-binding receptors (FcγR) on leukocytes and other cell types is one means by which immunoglobulins and immune complexes activate effector cells. One of these FcγRs, FcγRIIb, is thought to contribute to protection from autoimmune disease by down-regulation of B-cell responsiveness and myeloid cell activation. We assessed the role of FcγRIIb in a mouse model of cryoglobulin-associated membranoproliferative glomerulonephritis induced by overexpression of thymic stromal lymphopoietin (TSLP). TSLP transgenic mice were crossbred with animals deficient for FcγRIIb on the same genetic background (C57BL/6). Renal pathology was assessed in female and male animals (wild-type, FcγRIIb−/−, TSLP transgenic, and combined TSLP transgenic/FcγRIIb−/− mice) after 50 and 120 days, respectively. FcγRIIb−/− mice had no significant renal pathology, whereas overexpression of TSLP induced a membranoproliferative glomerulonephritis, as previously established. TSLP transgenic FcγRIIb−/− mice appeared sick with increased mortality. Kidney function was significantly impaired in male mice corresponding to aggravated glomerular pathology with increases in glomerular matrix and cellularity. This resulted from both a large influx of infiltrating macrophages and increased cellular proliferation. These results emphasize the important role of FcγRIIb in regulating immune responses and suggest that modulation of Fcγ receptor activation or expression may be a useful therapeutic approach for treating glomerular diseases. PMID:12937154

  1. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendlovic, S.; Brocke, S.; Meshorer, A.

    1988-04-01

    Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens (Sm, SS-A (Ro),more » and SS-B (La)), and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE.« less

  2. The Players: Cells Involved in Glomerular Disease.

    PubMed

    Kitching, A Richard; Hutton, Holly L

    2016-09-07

    Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others. In addition to those cells intrinsic to the glomerulus, leukocytes patrol the glomerulus in health and mediate injury in disease. Distinct leukocyte types and subsets are present, with some being involved in different ways in an individual glomerular disease. Cells of the innate and adaptive immune systems are important, directing systemic immune and inflammatory responses, locally mediating injury, and potentially dampening inflammation and facilitating repair. The advent of new genetic and molecular techniques, and new disease models means that we better understand both the basic biology of the glomerulus and the pathogenesis of glomerular disease. This understanding should lead to better diagnostic techniques, biomarkers, and predictors of prognosis, disease severity, and relapse. With this knowledge comes the promise of better therapies in the future, directed toward halting pathways of injury and fibrosis, or interrupting the underlying pathophysiology of the individual diseases that lead to significant and progressive glomerular disease. Copyright © 2016 by the American Society of Nephrology.

  3. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide.

    PubMed

    Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie

    2014-07-01

    Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy. © 2014 by The Author(s).

  4. Coexistence of Anti-Glomerular Basement Membrane Glomerulonephritis and Membranous Nephropathy in a Female Patient with Preserved Renal Function.

    PubMed

    Ogawara, Aoi; Harada, Makoto; Ichikawa, Tohru; Fujii, Kazuaki; Ehara, Takashi; Kobayashi, Mamoru

    2017-12-01

    Renal prognosis for anti-glomerular basement membrane (GBM) glomerulonephritis is poor. The greater the amount of anti-GBM antibody binding the antigen (type IV collagen of the glomerular basement membrane), the greater the number of crescents that develop in glomeruli, resulting in progression of renal impairment. Immunofluorescence staining reveals linear IgG depositions on glomerular capillary walls. Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in middle-aged to elderly patients. Immune complex is deposited in the sub-epithelial space of the glomerulus resulting in the development of a membranous lesion. Immunofluorescence staining reveals granular IgG depositions on glomerular capillary walls. Coexisting anti-GBM glomerulonephritis and MN are rare and, here we report a case of coexisting anti-GBM glomerulonephritis and MN with preserved renal function. There are some cases of coexisting anti-GBM glomerulonephritis and MN do not show severely decreased renal function. A 76-year-old Japanese woman presented with nephrotic syndrome, microscopic hematuria, and was positive for anti-GBM antibody. Kidney biopsy revealed linear and granular IgG depositions in glomerular capillary walls, crescent formations, and electron-dense deposits in the sub-epithelial space. She was diagnosed with anti-GBM glomerulonephritis and MN. Steroid and cyclosporine therapy achieved complete remission, and kidney function was preserved. In conclusion, coexisting anti-GBM glomerulonephritis and MN can have preserved renal function. IgG subclass of deposited anti-GBM antibody may be associated with the severity of anti-GBM glomerulonephritis. In addition, in the case of nephrotic syndrome with hematuria, we should consider the possibility of coexisting anti-GBM glomerulonephritis and MN.

  5. Induction of passive Heymann nephritis in complement component 6-deficient PVG rats.

    PubMed

    Spicer, S Timothy; Tran, Giang T; Killingsworth, Murray C; Carter, Nicole; Power, David A; Paizis, Kathy; Boyd, Rochelle; Hodgkinson, Suzanne J; Hall, Bruce M

    2007-07-01

    Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.

  6. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organmore » uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.« less

  7. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline: mechanisms of renal protection in mouse model of systemic lupus erythematosus

    PubMed Central

    Liao, Tang-Dong; Nakagawa, Pablo; Janic, Branislava; D'Ambrosio, Martin; Worou, Morel E.; Peterson, Edward L.; Rhaleb, Nour-Eddine; Yang, Xiao-Ping

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system. PMID:25740596

  8. De novo glomerular diseases after renal transplantation: How is it different from recurrent glomerular diseases?

    PubMed Central

    Abbas, Fedaey; El Kossi, Mohsen; Jin, Jon Kim; Sharma, Ajay; Halawa, Ahmed

    2017-01-01

    The glomerular diseases after renal transplantation can occur de novo, i.e., with no relation to the native kidney disease, or more frequently occur as a recurrence of the original disease in the native kidney. There may not be any difference in clinical features and histological pattern between de novo glomerular disease and recurrence of original glomerular disease. However, structural alterations in transplanted kidney add to dilemma in diagnosis. These changes in architecture of histopathology can happen due to: (1) exposure to the immunosuppression specifically the calcineurin inhibitors (CNI); (2) in vascular and tubulointerstitial alterations as a result of antibody mediated or cell-mediated immunological onslaught; (3) post-transplant viral infections; (4) ischemia-reperfusion injury; and (5) hyperfiltration injury. The pathogenesis of the de novo glomerular diseases differs with each type. Stimulation of B-cell clones with subsequent production of the monoclonal IgG, particularly IgG3 subtype that has higher affinity to the negatively charged glomerular tissue, is suggested to be included in PGNMID pathogenesis. De novo membranous nephropathy can be seen after exposure to the cryptogenic podocyte antigens. The role of the toxic effects of CNI including tissue fibrosis and the hemodynamic alterations may be involved in the de novo FSGS pathophysiology. The well-known deleterious effects of HCV infection and its relation to MPGN disease are frequently reported. The new concepts have emerged that demonstrate the role of dysregulation of alternative complement pathway in evolution of MPGN that led to classifying into two subgroups, immune complex mediated MPGN and complement-mediated MPGN. The latter comprises of the dense deposit disease and the C3 GN disease. De novo C3 disease is rather rare. Prognosis of de novo diseases varies with each type and their management continues to be empirical to a large extent. PMID:29312858

  9. Investigation of repeated vaccination as a possible cause of glomerular disease in mink.

    PubMed

    Newman, Shelley Joy; Johnson, Roger; Sears, William; Wilcock, Brian

    2002-07-01

    The search for antigens capable of causing immune-complex-mediated glomerulonephritis continues. Modified live-virus vaccines commercially available for veterinary use are a possible source. In this study, repeated vaccination of mink with live-virus vaccines was investigated as a model for vaccine-induced glomerular injury. Three groups of 10-wk-old mink, 15 per group, were vaccinated once with 4-way vaccine against distemper, Pseudomonas aeruginosa infection, botulism and mink viral enteritis. Subsequently, all mink in each group each were vaccinated either with the 4-way vaccine, a monovalent canine distemper vaccine, or saline. Glomerular function was assessed at 2-wk intervals by determining the urinary protein:creatinine (P:C) ratio. Kidney sections taken at necropsy, 20 wk after the 1st vaccination, were examined by light and immunofluorescent microscopy for deposition of immunoglobulin and complement. There was no statistically significant difference between the treated and control groups based on average urinary P:C ratio medians. Light microscopic changes were detected in glomeruli, but Fisher's exact test showed no significant differences between any of the treatment groups. Deposition of immunoglobulin but not complement was significantly more frequent (P < 0.05) in the glomeruli of animals that received multiple injections of the 4-way vaccine than in the glomeruli of those given only the monovalent canine distemper vaccine or saline. These findings suggest that repeated vaccination may increase the glomerular deposition of immunoglobulin. Further studies are required to determine if the increased deposition of immunoglobulin contributes to the development of glomerular damage and to identify the antigens driving production of the deposited immunoglobulin.

  10. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response.

    PubMed

    Kirsch, A H; Riegelbauer, V; Tagwerker, A; Rudnicki, M; Rosenkranz, A R; Eller, K

    2012-08-15

    Rapamycin (Rapa) is an immunosuppressant used to prevent rejection in recipients of renal transplants. Its clinical use is limited by de novo onset or exacerbation of preexisting proteinuria. In the present study, Rapa administration was started 14 days after induction of murine nephrotoxic serum nephritis (NTS) to study glomerular effects of this mammalian target of rapamycin (mTOR) inhibitor. Glomeruli were laser-microdissected, and real-time PCR was performed to assess effects on glomerular cells and the expression of inflammatory cytokines. Immunohistochemical stainings were performed to confirm mRNA data on the protein level. Compared with nephritic control animals, Rapa-treated mice developed significantly increased albuminuria. This was accompanied by a more prominent glomerular infiltration by CD4(+) T cells and macrophages. Glomerular mRNA expression profiling revealed increased levels of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, and the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1β and their cognate macrophage-associated receptors CCR2 and CCR5 in the Rapa-treated animals. Furthermore, there were elevated glomerular transcription levels of the regulatory T cell phenotype transcription factor Foxp3. No differences in the glomerular expression of the podocyte marker nephrin or the endothelial cell marker CD31 were observed on the mRNA or protein level. In conclusion, our data indicate that Rapa-induced proteinuria in NTS is a result of the activation of the innate immune system rather than a direct toxicity to podocytes or glomerular endothelial cells.

  11. [Toxic nephropathy secondary to occupational exposure to metallic mercury].

    PubMed

    Voitzuk, Ana; Greco, Vanina; Caputo, Daniel; Alvarez, Estela

    2014-01-01

    Toxic nephrophaties secondary to occupational exposure to metals have been widely studied, including membranous nephropathy by mercury, which is rare. Occupational poisoning by mercury is frequent, neurological symptoms are the main form of clinical presentation. Secondary renal involvement in chronic exposure to metallic mercury can cause glomerular disease by deposit of immune-complexes. Membranous glomerulopathy and minimal change disease are the most frequently reported forms. Here we describe the case of a patient with occupational exposure to metallic mercury, where nephrotic syndrome due to membranous glomerulonephritis responded favorably to both chelation and immunosuppressive therapy.

  12. Prostaglandin E1 inhibits collagen expression in anti-thymocyte antibody-induced glomerulonephritis: possible role of TGF beta.

    PubMed

    Schneider, A; Thaiss, F; Rau, H P; Wolf, G; Zahner, G; Jocks, T; Helmchen, U; Stahl, R A

    1996-07-01

    To test whether or not prostaglandins mediate extracellular matrix formation in immune-mediated glomerular disease, rats with anti-thymocyte antibody-induced glomerulonephritis were treated with prostaglandin E1 (PGE1) (250 micrograms/twice daily/s.c.). Glomerular expression of collagen types III and IV was assessed by Northern blotting, immunohistology and Western blotting. Proliferation of glomerular cells was evaluated by staining for the proliferating cell nuclear antigen (PCNA) and consecutive cell counting. At day five after induction of the disease, glomerular mRNA levels of collagen types III and IV were three- to fivefold higher compared with non-nephritic controls. Similarly glomerular deposition of these collagens was markedly increased when assessed by immunohistology. The treatment of nephritic rats with PGE1 reduced the increased glomerular mRNA levels as well as the protein concentration and the deposition of extracellular collagens. The number of PCNA positive cells which was significantly higher in nephritic rats when compared with control animals (24 hr, nephritis 2.53 +/- 0.33 and Control 0.26 +/- 0.06, P = 0.011; 5 days, nephritis 5.10 +/- 1.13 and Control 0.75 +/- 0.08, cells per glomerular cross section, P = 0.03) was reduced by PGE1 (24 hr, nephritis+PGE1 0.44 +/- 0.30, P = 0.0001; 5 days, nephritis +/- PGE1 1.91 +/- 1.84 cells per glomerular cross section, P = 0.001). Prostaglandin E1 also ameliorated the glomerular infiltration of monocytes at 24 hours (nephritis 4.36 +/- 2.82, nephritis + PGE1 2.20 +/- 1.82, cells per glomerular cross section) and five days (nephritis 1.51 +/- 0.58, nephritis+PGE1 1.12 +/- 0.61, cells per glomerular cross section). To further characterize possible mechanisms by which PGE1 reduces extracellular matrix deposition, the glomerular expression of transforming growth factor (TGF-beta), and interleukin 1 beta (IL-1 beta) was assessed by Northern blotting. Nephritic glomeruli showed increased mRNA levels of TGF-beta at day 5 and IL-1 beta at 24 hours when compared with control kidneys. Treatment of the animals with PGE1 inhibited the mRNA expression of TGF-beta and IL-1 beta. These data demonstrate that PGE1 reduces the glomerular expression of extracellular matrix proteins in anti-thymocyte antibody-induced glomerulonephritis, suggesting a beneficial role of prostaglandins in this proliferative glomerular immune injury. The effects of PGE1 might be mediated by inhibition of TGF-beta and IL-1 beta production.

  13. An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum).

    PubMed

    Lumsden, J S; Russell, S; Huber, P; Wybourne, B A; Ostland, V E; Minamikawa, M; Ferguson, H W

    2008-12-01

    Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.

  14. The role of the immune system in kidney disease.

    PubMed

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  15. T cell cytokine polarity as a determinant of immunoglobulin A (IgA) glycosylation and the severity of experimental IgA nephropathy.

    PubMed

    Chintalacharuvu, S R; Yamashita, M; Bagheri, N; Blanchard, T G; Nedrud, J G; Lamm, M E; Tomino, Y; Emancipator, S N

    2008-09-01

    Immunoglobulin A (IgA) glycosylation, recognized as an important pathogenic factor in IgA nephropathy (IgAN), is apparently controlled by the polarity of T helper (Th) cytokine responses. To examine the role of cytokine polarity in IgAN, inbred mice were immunized by intraperitoneal priming with inactivated Sendai virus (SeV) emulsified in either complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), which promote Th1- or Th2-immune response, respectively, and then boosted identically twice orally with aqueous suspensions of inactivated virus. Next, some mice were challenged intranasally with infectious SeV. Mice primed with CFA or IFA had equal reductions in nasal viral titre relative to non-immune controls, and equally increased serum levels of SeV-specific IgA antibody. Mice primed with CFA showed higher SeV-specific IgG than those with IFA. Splenocytes from mice primed with IFA produced copious amounts of interleukin (IL)-4 and IL-5, but little interferon-gamma and IL-2; those primed with CFA had reciprocal cytokine recall responses. Total serum IgA and especially SeV-specific IgA from mice primed with IFA showed a selective defect in sialylation and galactosylation. Although the frequency and intensity of glomerular deposits and haematuria did not differ, glomerulonephritis in mice primed with IFA and challenged with infectious virus was more severe than in those given CFA, as judged by serum creatinine level. We conclude that the polarity of T cell cytokines controls the pattern of IgA glycosylation and exerts direct or indirect effects on functional glomerular responses to immune complex deposition.

  16. Clinicopathological features of progressive renal involvement in TAFRO syndrome: A case report and literature review.

    PubMed

    Tanaka, Mari; Tsujimoto, Hiraku; Yamamoto, Kojiro; Shimoda, Saeko; Oka, Kazumasa; Takeoka, Hiroya

    2017-10-01

    TAFRO syndrome is a systemic inflammatory disease characterized by a constellation of symptoms: Thrombocytopenia, Anasarca, MyeloFibrosis, Renal dysfunction, and Organomegaly. Progressive renal insufficiency is a predominant symptom; however, the mechanism of acute kidney injury (AKI) remains unclear, probably because severe thrombocytopenia prevents kidney biopsy. We report a rare case of TAFRO syndrome with histologically confirmed renal involvement. A 70-year-old man developed fever, anasarca, AKI, thrombocytopenia, and hepatosplenomegaly. Plasma vascular endothelial growth factor and serum interleukin-6 levels were significantly elevated. The diagnosis of TAFRO syndrome was made based on his clinical and laboratory findings. Kidney biopsy was performed for the evaluation of AKI and provided a diagnosis of membranoproliferative glomerulonephritis-like lesions due to endothelial injury. Glomerular capillary lumens were extremely narrowed or occluded by endothelial swelling, and marked widening of the subendothelial space by electron-lucent material resulted in mesangiolysis and a double-contoured glomerular basement membrane with no immune complex deposits. The patient required temporary hemodialysis due to oliguric AKI, but steroid therapy rapidly improved renal function. Typically, patients with progressive renal involvement in TAFRO syndrome rapidly develop oliguric or anuric AKI. This report suggests that the reduction of glomerular perfusion by glomerular endothelial injury might be a primary factor in the progressive AKI of TAFRO syndrome. Our case and the literature review indicate that steroid and/or biological therapies result in highly favorable renal outcomes in patients with progressive AKI in TAFRO syndrome.

  17. Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.

    PubMed

    Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K

    2002-11-01

    Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.

  18. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis.

    PubMed

    Suzuki, Hitoshi

    2018-05-08

    IgA nephropathy (IgAN) is the most prevalent glomerular disease worldwide and is associated with a poor prognosis. Development of curative treatment strategies and approaches for early diagnosis is necessary. Renal biopsy is the gold standard for the diagnosis and assessment of disease activity. However, reliable biomarkers are needed for the noninvasive diagnosis of this disease and to more fully delineate the risk of progression. With regard to the pathogenesis of IgAN, the multi-hit hypothesis, including production of galactose-deficient IgA1 (Gd-IgA1; Hit 1), IgG or IgA autoantibodies that recognize Gd-IgA1 (Hit 2), and their subsequent immune complexes formation (Hit 3) and glomerular deposition (Hit 4), has been widely supported by many studies. Although the prognostic values of several biomarkers have been discussed, we recently developed a highly sensitive and specific diagnostic method by measuring serum levels of Gd-IgA1 and Gd-IgA1-containing immune complexes. In addition, urinary Gd-IgA1 may represent a disease-specific biomarker for IgAN. We also confirmed that there is a significant correlation between serum levels of these effector molecules and disease activity, suggesting that each can be considered a practical surrogate marker of therapeutic response. Thus, these disease-oriented specific serum and urine biomarkers may be useful for screening of potential IgAN with isolated hematuria, earlier diagnosis, disease activity, and eventually, response to treatment. In this review, we discuss these concepts, with a focus on potential clinical applications of these biomarkers.

  19. Development of immune-complex glomerulonephritis in athymic mice: T cells are not required for the genesis of glomerular injury.

    PubMed

    Bagheri, Nayer; Pepple, Douglas A; Hassan, Medhat O; Harding, Clifford V; Emancipator, Steven N

    2005-03-01

    Chronic injection of dextran into normal mice elicits a glomerulonephritis (GN) that models IgA nephropathy (IgAN) in humans. Since athymic mice lack T cells but nonetheless develop antibodies to polysaccharide antigens such as dextran (DEX), we used athymic mice to study the role of T lymphocytes in the induction of this form of GN, independent of the role of T cells in antibody synthesis. Both mice given injections of diethylaminoethyl (DEAE)-DEX and uninjected mice had circulating IgM and IgA anti-DEX antibodies, which apparently arise as 'natural antibodies', but immune complex GN was observed only in the injected mice. All of 15 injected mice exhibited capillary staining for IgA and IgM; none of 12 control mice contained such IgA deposits and only one had capillary staining for IgM (both P<0.001). In addition, IgG and C3 were detected in injected but not control animals. By light microscopy, injected mice exhibited marked expansion of mesangial matrix relative to controls. Electron microscopy showed no glomerular abnormalities in control mice, whereas injected mice showed large organized fibrillar deposits principally in the mesangium. Hematuria and proteinuria were present in all 15 injected mice, but only one of 11 control mice showed hematuria or proteinuria (both P<0.001). These results indicate that chronic injection of DEAE-DEX into athymic mice generates the same clinical and histologic features of GN as in euthymic mice, suggesting that T cells are not necessary to promote GN in this model.

  20. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix

    PubMed Central

    Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.

    2014-01-01

    The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468

  1. Requirement for Class II Phosphoinositide 3-Kinase C2α in Maintenance of Glomerular Structure and Function▿

    PubMed Central

    Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas

    2011-01-01

    An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805

  2. Deposition of idiotype-anti-idiotype immune complexes in renal glomeruli after polyclonal B cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.; Rose, L.M.; Hochmann, A.

    1982-05-01

    We investigated the possible role of idiotypic interactions in the pathogenesis of the glomerular lesions observed in mice undergoing polyclonal B cell activation. BALB/c mice were studied for the presence of renal deposits of T15 idiotype-anti-T15 idiotype-immune complexes (IC) after injection of bacterial lipopolysaccharides (LPS). The T15 idiotype is the major idiotype of BALB/c mice anti-phosphorylcholine (PC) antibodies, which are cross-reactive with the idiotype of the TEPC-15 myeloma protein. This model was used because T15 idiotype-anti-T15 idiotype IC have been detected in the circulation of BALB/c mice after polyclonal B cell activation. First, an idiotype-specific immunofluorescence technique allowed us tomore » detect T15 idiotype-bearing immunoglobulins in glomeruli from day 6 to day 28 after LPS injection. Second, fluorescein isothiocyanate-conjugated TEPC-15 myeloma protein was found to localize in the glomeruli after in vivo injection 18 d after LPS administration. This renal localization was shown to be idiotype-specific and could be quantified in a trace-labeling experiment. Third, kidney-deposited immunoglobulins of mice injected with LPS were eluted, radiolabeled, and analyzed by radioimmunoassay. Both T15 idiotype-bearing immunoglobulins and anti-T15 idiotype antibodies were detected in the eluates, providing further evidence for a renal deposition of T15 idiotype-anti-T15 idiotype IC. Polyclonal B cell activation is likely to result in a simultaneous triggering of many idiotypic clones and of corresponding anti-idiotypic clones represented in the B cell repertoire. This could lead to the formation of a variety of idiotype-anti-idiotype IC that could participate in the development of glomerular lesions.« less

  3. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  4. Relationship between renal pathology and the size of circulating immune complexes in patients with systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wener, M.H.; Mannik, M.; Schwartz, M.M.

    1987-03-01

    Sera from 35 patients with biopsy-proven diffuse proliferative (WHO class IV) or membranous (WHO class V) lupus nephritis were analyzed for the presence and size of circulating immune complexes. Elevations of the C1q solid-phase assay (C1qSP) for immune complexes were found in sera from all patients with diffuse proliferative nephritis, with a mean +/- 1 SEM of 166.8 +/- 42.0 micrograms/AHG-equivalents/ml serum, and in 71.4% of the patients with membranous nephritis (83.1 +/- 26.7, p = 0.06). Using the WHO criteria for subclasses of membranous lupus nephritis, we also designated renal biopsies as nonproliferative (WHO classes Va and Vb) ormore » proliferative (WHO classes IV and Vc). Employing the latter groupings, we observed significant differences between C1qSP results of patients with nonproliferative (30.3 +/- 8.8) and proliferative (172.8 +/- 36.8, p less than 0.001) lupus nephritis. These data suggest that the presence of C1q-binding material in serum is pathophysiologically related to proliferative glomerular lesions, and that levels of C1qSP binding reflect renal lesions in SLE patients. Sucrose density gradient ultracentrifugation was performed on each serum, and gradient fractions analyzed for C1qSP-binding and total IgG, using techniques to minimize losses of immune complexes. The predominant peak of C1qSP activity sedimented with the 6.6S monomeric IgG. The 6.6S C1q-binding IgG was increased only in 1 of 10 patients with membranous lupus nephritis without proliferative changes, and was elevated in 16 of 25 patients with proliferative lesions (WHO classes IV and Vc).« less

  5. THE GLOMERULAR MESANGIUM

    PubMed Central

    Mauer, S. Michael; Sutherland, David E. R.; Howard, Richard J.; Fish, Alfred J.; Najarian, John S.; Michael, Alfred F.

    1973-01-01

    A mechanism of immune glomerular injury is described based on the fixation of antibody (Ab) to an antigen (Ag) that has localized in the glomerular mesangium. Rabbits were given, intravenously (i.v.), aggregated human IgG (AHIgG) or albumin (AHSA) and 10 h later, when the Ag by immunofluorescent microscopy was present in the mesangium, a kidney was removed and transplanted into a normal rabbit. The recipient then received, i.v., rabbit anti-HIgG or anti-HSA. Within minutes of Ab infusion, glomeruli of the donor kidney had polymorphonuclear (PMN) infiltration that over the next few hours became marked and was associated with glomerular cell swelling. At 24 h a decrease in PMN's and early mesangial proliferation was seen. By 3 days there was marked mesangial hypercellularity and increased mesangial matrix. Within minutes after Ab administration rabbit IgG, C3, and fibrin were seen in the glomerular mesangium. There was a fall in complement titer by 1 min after Ab infusion that was due to complement consumption by the donor kidney. Complement then returned to normal levels by 48 h. Significant glomerular injury did not occur (a) in the recipient's own kidney, (b) from Ag administration and transplantation without recipient Ab administration, or (c) from transplantation and Ab administration without prior Ag administration. These studies demonstrated that Ag localized in the glomerular mesangium can react with circulating Ab and complement resulting in severe glomerular injury. PMID:4570015

  6. Modulation of interferon-induced genes by lipoxin analogue in anti-glomerular basement membrane nephritis.

    PubMed

    Ohse, Takamoto; Ota, Tatsuru; Kieran, Niamh; Godson, Catherine; Yamada, Koei; Tanaka, Tetsuhiro; Fujita, Toshiro; Nangaku, Masaomi

    2004-04-01

    Immune complex deposition is associated with the accumulation of neutrophils, which play an important role in the various immune-mediated diseases. A novel anti-inflammatory agent, the lipoxin A (LXA) analogue (15-epi-16-(FPhO)-LXA-Me)), a stable synthetic analogue of aspirin-triggered 15-epi-lipoxin A4 (ATLa), was used in experimental anti-glomerular basement membrane (GBM) antibody nephritis in mice. ATLa was administered before the induction of the disease, and 2 h later, the animals were killed. ATLa reduced the infiltrating neutrophils and nitrotyrosine staining in glomeruli. Subsequent changes of gene expression in the early phase were evaluated, and 5674 genes were present under the basal conditions in kidneys from normal mice; 54 upregulated genes and 25 downregulated genes were detected in anti-GBM nephritis. Eighteen of these upregulated genes were those induced by IFN-gamma. Real-time quantitative PCR analysis confirmed the results of the microarrays. To investigate a role of IFN-gamma in neutrophil infiltration, anti-GBM nephritis was induced in IFN-gamma knockout mice. The number of infiltrating neutrophils in these mice did not differ from those in wild-type mice. Also examined were CD11b expression on neutrophils from mice treated with ATLa by flow cytometry, but suppression of this adhesion molecule was not observed. Neutrophil infiltration was successfully inhibited by ATLa in the early phase of murine anti-GBM nephritis. Microarray analysis detected the change of mRNA expression in anti-GBM nephritis and demonstrated amelioration of various genes by ATLa, which may provide a clue to the development of novel therapeutic approaches in immune renal injury.

  7. PubMed Central

    Caron, C.; Luneau, C.; Gervais, M. H.; Plante, G. E.; Sanchez, G.; Blain, G.

    1979-01-01

    In patients with cerebrospinal fluid internal shunts, immune complex glomerulonephritis sometimes develops. Of two new cases the first was classic, while the second was in an adult who had had a ventriculoatril shunt for 8 years; furthermore, the patient had acute renal failure and is the first to have been reported to have Peptococcus septicemia. Shunt glomerulonephritis is characterized by the following: (a) its occurrence following, most often, Staphylococcus albus infection in a patient who usually has a ventriculoatrial shunt; (b) transitory improvement of the symptoms by antibiotherapy only; and (c) full recovery if the prosthesis is removed. Laboratory studies show a low serum concentration of the C3 component of complement, the presence of cryoglobulins and a positive rheumatoid factor test. These abnormalities are reversible with removal of the prosthesis. Optical microscopy of a renal biopsy specimen in the two cases showed cellular proliferation of the glomerular tuft, electron microscopy demonstrated subepithelial deposits and immunofluorescent studies revealed intramembranous and intramesangial immune complexes. These features are similar to those observed in experimental nephritis induced in animals by foreign protein. Images FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:436034

  8. [Extramembranous glomerulonephritis of acquired syphilis in a patient recently infected by the hepatitis B virus. Demonstration of the treponemal antigen in the kidney by indirect immunofluorescence].

    PubMed

    Schillinger, F; Montagnac, R; Goclowski, C; Dine, G; Alessandri, E; Hopfner, C; Birembaut, P

    1983-01-22

    A 38 years old male homosexual with active secondary syphilis presented with pure nephrotic syndrome while HBs and HBe tests were positive without clinical hepatitis. He had circulating immune complexes, IgG--IgM cryoglobulinemia and high IgA, IgM and IgE levels; the C3 and C4 complement constituents were normal. Examination of renal biopsy sections under light, fluorescent and electronic microscopy showed stage I membranous glomerulonephritis the syphilitic origin of which was confirmed by indirect immunofluorescence and by rapid cure under penicillin treatment. This case calls for the following comments: (1) glomerular deposits are extramembranous rather than subendothelial in syphilitic nephrosis, a disease now classified among circulating immune complexes diseases; (2) in the kidney, the treponema antigen can be demonstrated by indirect immunofluorescence and the anti-treponema antibody, by elution; (3) the outcome of the nephrotic syndrome is always favourable, either spontaneously or after penicillin treatment; (4) syphilis and HBs antigens are frequently associated, particularly in homosexual patients; one should be looked for when the other is discovered.

  9. Extracellular adenosine triphosphate affects systemic and kidney immune cell populations in pregnant rats.

    PubMed

    Spaans, Floor; Melgert, Barbro N; Borghuis, Theo; Klok, Pieter A; de Vos, Paul; Bakker, Winston W; van Goor, Harry; Faas, Marijke M

    2014-09-01

    Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation and subpopulations. Here, we investigated ATP-induced changes in other immune cell populations in pregnant rats, systemically and in the kidney, an affected organ in preeclampsia. Using flow cytometry or immunohistochemistry, blood and kidney leukocytes were studied in pregnant and non-pregnant rats at different intervals after ATP or saline infusion. Adenosine triphosphate (ATP) infusion induced increased peripheral blood non-classical monocytes and decreased T lymphocyte subsets in pregnant rats only, higher glomerular macrophage and T lymphocyte numbers in non-pregnant animals 1 day after infusion, and higher glomerular macrophage numbers in pregnant rats 6 days after infusion. Adenosine triphosphate (ATP) infusion in pregnant rats induced a pregnancy-specific inflammatory response. Increased ATP levels could potentially contribute to development of the inflammatory response of preeclampsia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Lupus Nephritis: An Overview of Recent Findings

    PubMed Central

    de Zubiria Salgado, Alberto; Herrera-Diaz, Catalina

    2012-01-01

    Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) since it is the major predictor of poor prognosis. In susceptible individuals suffering of SLE, in situ formation and deposit of immune complexes (ICs) from apoptotic bodies occur in the kidneys as a result of an amplified epitope immunological response. IC glomerular deposits generate release of proinflammatory cytokines and cell adhesion molecules causing inflammation. This leads to monocytes and polymorphonuclear cells chemotaxis. Subsequent release of proteases generates endothelial injury and mesangial proliferation. Presence of ICs promotes adaptive immune response and causes dendritic cells to release type I interferon. This induces maturation and activation of infiltrating T cells, and amplification of Th2, Th1 and Th17 lymphocytes. Each of them, amplify B cells and activates macrophages to release more proinflammatory molecules, generating effector cells that cannot be modulated promoting kidney epithelial proliferation and fibrosis. Herein immunopathological findings of LN are reviewed. PMID:22536486

  11. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice

    PubMed Central

    Gödel, Markus; Hartleben, Björn; Herbach, Nadja; Liu, Shuya; Zschiedrich, Stefan; Lu, Shun; Debreczeni-Mór, Andrea; Lindenmeyer, Maja T.; Rastaldi, Maria-Pia; Hartleben, Götz; Wiech, Thorsten; Fornoni, Alessia; Nelson, Robert G.; Kretzler, Matthias; Wanke, Rüdiger; Pavenstädt, Hermann; Kerjaschki, Dontscho; Cohen, Clemens D.; Hall, Michael N.; Rüegg, Markus A.; Inoki, Ken; Walz, Gerd; Huber, Tobias B.

    2011-01-01

    Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy. PMID:21606591

  12. aPKCλ/ι and aPKCζ Contribute to Podocyte Differentiation and Glomerular Maturation

    PubMed Central

    Hartleben, Björn; Widmeier, Eugen; Suhm, Martina; Worthmann, Kirstin; Schell, Christoph; Helmstädter, Martin; Wiech, Thorsten; Walz, Gerd; Leitges, Michael; Schiffer, Mario

    2013-01-01

    Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)—a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins—may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death. PMID:23334392

  13. Glomerular common gamma chain confers B- and T-cell-independent protection against glomerulonephritis.

    PubMed

    Luque, Yosu; Cathelin, Dominique; Vandermeersch, Sophie; Xu, Xiaoli; Sohier, Julie; Placier, Sandrine; Xu-Dubois, Yi-Chun; Louis, Kevin; Hertig, Alexandre; Bories, Jean-Christophe; Vasseur, Florence; Campagne, Fabien; Di Santo, James P; Vosshenrich, Christian; Rondeau, Eric; Mesnard, Laurent

    2017-05-01

    Crescentic glomerulonephritis is a life-threatening renal disease that has been extensively studied by the experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM-GN) model. Although T cells have a significant role in this model, athymic/nude mice and rats still develop severe renal disease. Here we further explored the contribution of intrinsic renal cells in the development of T-cell-independent GN lesions. Anti-GBM-GN was induced in three strains of immune-deficient mice (Rag2 -/- , Rag2 -/- Il2rg -/- , and Rag2 -/- Il2rb -/- ) that are devoid of either T/B cells or T/B/NK cells. The Rag2 -/- Il2rg -/- or Rag2 -/- Il2rb -/- mice harbor an additional deletion of either the common gamma chain (γC) or the interleukin-2 receptor β subunit (IL-2Rβ), respectively, impairing IL-15 signaling in particular. As expected, all these strains developed severe anti-GBM-GN. Additionally, bone marrow replenishment experiments allowed us to deduce a protective role for the glomerular-expressed γC during anti-GBM-GN. Given that IL-15 has been found highly expressed in nephritic kidneys despite the absence of lymphocytes, we then studied this cytokine in vitro on primary cultured podocytes from immune-deficient mice (Rag2 -/- Il2rg -/- and Rag2 -/- Il2rb -/- ) compared to controls. IL-15 induced downstream activation of JAK1/3 and SYK in primary cultured podocytes. IL-15-dependent JAK/SYK induction was impaired in the absence of γC or IL-2Rβ. We found γC largely induced on podocytes during human glomerulonephritis. Thus, renal lesions are indeed modulated by intrinsic glomerular cells through the γC/IL-2Rβ receptor response, to date classically described only in immune cells. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Vascular Hyperactivity in the Rat Renal Aorta Participates in the Association between Immune Complex-Mediated Glomerulonephritis and Systemic Hypertension.

    PubMed

    Pérez-Torres, Israel; Moguel-González, Bernardo; Soria-Castro, Elizabeth; Guarner-Lans, Verónica; Avila-Casado, María Del Carmen; Goes, Teresa Imelda Fortoul Vander

    2018-06-03

    Introduction : systemic hypertension (SH) involving endothelial dysfunction contributes to immune complex-mediated glomerulonephritis (ICGN). Objective, we demonstrate a relationship between ICGN and SH by analyzing vascular reactivity in renal aortic rings. Methods : 48 male Wistar rats were divided into four groups: (a) control (C); (b) injected with bovine serum albumin (BSA); (c) receiving 200 mg/L NAME (an analog of arginine that inhibits NO production) in drinking water; and (d) receiving BSA and 200 mg/L NAME. Rats were pre-immunized subcutaneously with BSA and Freund's adjuvant. After 10 days, groups (b) and (c) received 1 mg/mL of BSA in saline intravenous (IV) daily for 35 days. The urine of 24 h was measured at days 0, 15, 30 and 45. Results : vascular reactivity to norepinephrine (NE), acetylcholine (Ach) and NAME were tested. Creatinine clearance, vasodilatation, eNOS and elastic fibers were diminished ( p ≤ 0.001). Blood pressure, vasoconstriction, iNOS were increased, and glomerular alterations were observed in groups (b), (c) and (d) when compared to group (a) ( p ≤ 0.001). Conclusions: SH contributes to the development of progressive renal disease in ICGN. Alterations of the vascular reactivity are mediated by the endothelium in the renal aorta. Thus, the endothelium plays a determinant role in the production of vasoactive substances such as NO during this process.

  15. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study.

    PubMed Central

    Bradford, W. D.; Croker, B. P.; Tisher, C. C.

    1979-01-01

    The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676

  16. Kidney lesions in baboons infected with Schistosoma mansoni.

    PubMed Central

    Houba, V; Sturrock, R F; Butterworth, A E

    1977-01-01

    Glomerular lesions in baboons (Papio anubis) infected with different dosage regimes of Schistosoma mansoni were studied by immunofluorescence and light microscopy on kidney sections and by countercurrent immunoelectrophoresis on kidney homogenates and tissue eluates. Mild lesions, characterized by focal and segmental deposits of immune complexes, developed in sixty-two out of 103 baboons, irrespective of the intensity and duration of the infection. Severe, diffuse lesions developed in six baboons after prolonged and heavy infections. Adult worm and soluble egg antigens, together with IgM, IgG and C3, were detected in most of the severe lesions and in some of the mild lesions. In some animals, antigens were detected in most of the severe lesions and in some of the mild lesions. In some animals, antigens were detected in acid homogenates and eluates of kidneys which showed no deposits of immunoglobulins or complement. These observations indicate that renal lesions in S. mansoni infections may be attributable to the deposition of immune complexes pre-formed in the circulation. However, the demonstration of antigens alone in some animals may suggest an alternative possibility, namely that antigens are deposited first with a subsequent binding of antibody and complement. PMID:414868

  17. Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice

    PubMed Central

    Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R

    2002-01-01

    The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury. PMID:12067297

  18. Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice.

    PubMed

    Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R

    2002-06-01

    The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury.

  19. Outcome of the acute glomerular injury in proliferative lupus nephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chagnac, A.; Kiberd, B.A.; Farinas, M.C.

    1989-09-01

    Treatment with total lymphoid irradiation (TLI) and corticosteroids markedly reduced activity of systemic lupus erythematosis in 10 patients with diffuse proliferative lupus nephritis (DPLN) complicated by a nephrotic syndrome. Physiologic and morphometric techniques were used serially before, and 12 and 36 mo post-TLI to characterize the course of glomerular injury. Judged by a progressive reduction in the density of glomerular cells and immune deposits, glomerular inflammation subsided. A sustained reduction in the fractional clearance of albumin, IgG and uncharged dextrans of radius greater than 50 A, pointed to a parallel improvement in glomerular barrier size-selectivity. Corresponding changes in GFR weremore » modest, however. A trend towards higher GFR at 12 mo was associated with a marked increase in the fraction of glomerular tuft area occupied by patent capillary loops as inflammatory changes receded. A late trend toward declining GFR beyond 12 mo was associated with progressive glomerulosclerosis, which affected 57% of all glomeruli globally by 36 mo post-TLI. Judged by a parallel increase in volume by 59%, remaining, patent glomeruli had undergone a process of adaptive enlargement. We propose that an increasing fraction of glomeruli continues to undergo progressive sclerosis after DPLN has become quiescent, and that the prevailing GFR depends on the extent to which hypertrophied remnant glomeruli can compensate for the ensuing loss of filtration surface area.« less

  20. WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease.

    PubMed

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0.05% WY14,643 or control food and immunized with the non-collagenous domain of the alpha3 chain of Type IV collagen [alpha3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARalpha ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80(+) macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARalpha ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-gamma mRNA expression in the WY14,643-fed mice, suggesting that the PPARalpha ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARalpha ligands may be a novel treatment for inflammatory renal disease.

  1. WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease

    PubMed Central

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0·05% WY14,643 or control food and immunized with the non-collagenous domain of the α3 chain of Type IV collagen [α3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARα ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80+ macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARα ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-γ mRNA expression in the WY14,643-fed mice, suggesting that the PPARα ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARα ligands may be a novel treatment for inflammatory renal disease. PMID:17888025

  2. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM).

    PubMed

    Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny

    2017-09-15

    The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.

  3. Nuclear Factor-κB Inhibitors as Potential Novel Anti-Inflammatory Agents for the Treatment of Immune Glomerulonephritis

    PubMed Central

    López-Franco, Oscar; Suzuki, Yusuke; Sanjuán, Guillermo; Blanco, Julia; Hernández-Vargas, Purificación; Yo, Yoshikage; Kopp, Jeffrey; Egido, Jesús; Gómez-Guerrero, Carmen

    2002-01-01

    Nuclear factor (NF)-κB regulates several genes implicated in the inflammatory response and represents an interesting therapeutic target. We examined the effects of gliotoxin (a fungal metabolite) and parthenolide (a plant extract), which possess anti-inflammatory activities in vitro, on the progression of experimental glomerulonephritis. In the anti-Thy 1.1 rat model, gliotoxin (75 μg/rat/day, 10 days, n = 18 rats) markedly reduced proteinuria, glomerular lesions, and monocyte infiltration. In anti-mesangial cell nephritis in mice, parthenolide (70 μg/mouse/day, 7 days, n = 17 mice) significantly decreased proteinuria, hematuria, and glomerular proliferation. NF-κB activity, localized in glomerular and tubular cells, was attenuated by either gliotoxin or parthenolide, in association with diminished renal expression of monocyte chemoattractant protein-1 and inducible nitric oxide synthase. In cultured mesangial cells and monocytes, gliotoxin and parthenolide inhibited NF-κB activation and expression of inflammatory genes induced by lipopolysaccharide and cytokines, by blocking the phosphorylation/degradation of the IκBα subunit. In summary, gliotoxin and parthenolide prevent proteinuria and renal lesions by inhibiting NF-κB activation and expression of regulated genes. This may represent a novel approach for the treatment of immune and inflammatory renal diseases. PMID:12368222

  4. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis.

    PubMed

    Tian, Guang; Qiu, Yefeng; Qi, Zhizhen; Wu, Xiaohong; Zhang, Qingwen; Bi, Yujing; Yang, Yonghai; Li, Yuchuan; Yang, Xiaoyan; Xin, Youquan; Li, Cunxiang; Cui, Baizhong; Wang, Zuyun; Wang, Hu; Yang, Ruifu; Wang, Xiaoyi

    2011-04-29

    In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 µg F1 and 10 µg rV270) and SV2 (200 µg F1 and 100 µg rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6×10(6) CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague.

  5. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS

    PubMed Central

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability. PMID:29155846

  6. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    PubMed

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  7. A Review of Podocyte Biology.

    PubMed

    Garg, Puneet

    2018-05-31

    Podocyte biology is a developing science that promises to help improve understanding of the mechanistic nature of multiple diseases associated with proteinuria. Proteinuria in nephrotic syndrome has been linked to mechanistic dysfunctions in the renal glomerulus involving the function of podocyte epithelial cells, including podocyte foot process effacement. Developments in imaging technology are improving knowledge of the detailed structure of the human renal glomerulus and cortex. Podocyte foot processes attach themselves to the glomerular capillaries at the glomerular basement membrane (GBM) forming intercellular junctions that form slit diaphragm filtration barriers that help maintain normal renal function. Damage in this area has been implicated in glomerular disease. Injured podocytes undergo effacement whereby they lose their structure and spread out, leading to a reduction in filtration barrier function. Effacement is typically associated with the presence of proteinuria in focal segmental glomerulosclerosis, minimal change disease, and diabetes. It is thought to be due to a breakdown in the actin cytoskeleton of the foot processes, complex contractile apparatuses that allow podocytes to dynamically reorganize according to changes in filtration requirements. The process of podocyte depletion correlates with the development of glomerular sclerosis and chronic kidney disease. Focal adhesion complexes that interact with the underlying GBM bind the podocytes within the glomerular structure and prevent their detachment. Key Messages: Knowledge of glomerular podocyte biology is helping to advance our understanding of the science and mechanics of the glomerular filtering process, opening the way to a variety of new potential applications for clinical targeting. © 2018 S. Karger AG, Basel.

  8. Mycobacteria, an environmental enhancer of lupus nephritis in a mouse model of systemic lupus erythematosus

    PubMed Central

    Hawke, Christine G; Painter, Dorothy M; Kirwan, Paul D; Van Driel, Rosemary R; Baxter, Alan G

    2003-01-01

    Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by the production of antibodies directed against self antigens. Immune complex glomerulonephritis (GN) is one of the most serious complications of this disorder and can lead to potentially fatal renal failure. The aetiology of SLE is complex and multifactorial, characterized by interacting environmental and genetic factors. Here we examine the nature of the renal pathology in mycobacteria-treated non-obese diabetic (NOD) mice, in order to assess its suitability as a model for studying the aetiopathogenesis of, and possible treatment options for, lupus nephritis (LN) in humans. Both global and segmental proliferative lesions, characterized by increased mesangial matrix and cellularity, were demonstrated on light microscopy, and lesions varied in severity from very mild mesangiopathic GN through to obliteration of capillary lumina and glomerular sclerosis. Mixed isotype immune complexes (IC) consisting of immunoglobulin G (IgG), IgM, IgA and complement C3c were detected using direct immunofluorescence. They were deposited in multiple sites within the glomeruli, as confirmed by electron microscopy. The GN seen in mycobacteria-treated NOD mice therefore strongly resembles the pathology seen in human LN, including mesangiopathic, mesangiocapillary and membranous subclasses of LN. The development of spontaneous mixed isotype IC in the glomeruli of some senescent NOD mice suggests that mycobacterial exposure is accelerating, rather than inducing, the development of GN in this model. PMID:12519305

  9. Toll-Like Receptor 3 Signaling Contributes to Regional Neutrophil Recruitment in Cultured Human Glomerular Endothelial Cells.

    PubMed

    Liu, Qiang; Imaizumi, Tadaatsu; Kawaguchi, Shogo; Aizawa, Tomomi; Matsumiya, Tomoh; Watanabe, Shojiro; Tsugawa, Koji; Yoshida, Hidemi; Tsuruga, Kazushi; Joh, Kensuke; Kijima, Hiroshi; Tanaka, Hiroshi

    2018-05-23

    Given the importance of neutrophil recruitment in the pathogenesis of glomerulonephritis (GN), the representative neutrophil chemoattractant C-X-C motif chemokine 1 (CXCL1)/GROα and the adhesion molecule E-selectin in glomerular endothelial cells (GECs) play a pivotal role in the development of GN. Endothelial Toll-like receptor 3 (TLR3) is thought to be involved in the inflammatory response via innate immunity. However, the role of endothelial TLR3 signaling in the expression of neutrophil chemoattractants and adhesion molecules remains to be elucidated. Thus, we aimed to examine this issue. We treated normal human GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expressions of CXCL1 and E-selectin using quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against TLR3, interferon (IFN)-β, nuclear factor (NF)-κB p65, and IFN regulatory factor (IRF) 3. We also used immunofluorescence to examine the endothelial expression of CXCL1 in biopsy specimens from patients with crescentic and non-crescentic purpura nephritis (PN). We found that the activation of TLR3 induced the endothelial expression of CXCL1 and E-selectin, and that this involved TLR3, -NF-κB, IRF3, and IFN-β. Intense endothelial CXCL1 expression was observed in biopsy specimens from patients with crescentic PN. These findings support a role for glomerular antiviral innate immunity in the pathogenesis of GN. Intervention of glomerular TLR3 signaling may therefore be a suitable therapeutic strategy for treating GN in the future. © 2018 S. Karger AG, Basel.

  10. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis.

    PubMed

    Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S

    2011-02-01

    Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.

  11. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74

    PubMed Central

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M.; Zok, Stephanie; Klaener, Ole; Braun, Gerald S.; Lindenmeyer, Maja T.; Cohen, Clemens D.; Bucala, Richard; Tittel, Andre P.; Kurts, Christian; Moeller, Marcus J.; Floege, Juergen; Ostendorf, Tammo

    2016-01-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow–derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  12. Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies.

    PubMed

    Raats, C J; van den Born, J; Bakker, M A; Oppers-Walgreen, B; Pisa, B J; Dijkman, H B; Assmann, K J; Berden, J H

    2000-05-01

    The dystrophin-glycoprotein complex, which comprises alpha- and beta-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against alpha- and beta-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane.

  13. Expression of Agrin, Dystroglycan, and Utrophin in Normal Renal Tissue and in Experimental Glomerulopathies

    PubMed Central

    Raats, C. J. Ilse; van den Born, Jacob; Bakker, Marinka A. H.; Oppers-Walgreen, Birgitte; Pisa, Brenda J. M.; Dijkman, Henry B. P. M.; Assmann, Karel J. M.; Berden, Jo H. M.

    2000-01-01

    The dystrophin-glycoprotein complex, which comprises α- and β-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against α- and β-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane. PMID:10793086

  14. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    PubMed

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.

  15. Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.

    PubMed

    Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E

    2006-06-01

    Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.

  16. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis.

    PubMed

    Katewa, Arna; Wang, Yugang; Hackney, Jason A; Huang, Tao; Suto, Eric; Ramamoorthi, Nandhini; Austin, Cary D; Bremer, Meire; Chen, Jacob Zhi; Crawford, James J; Currie, Kevin S; Blomgren, Peter; DeVoss, Jason; DiPaolo, Julie A; Hau, Jonathan; Johnson, Adam; Lesch, Justin; DeForge, Laura E; Lin, Zhonghua; Liimatta, Marya; Lubach, Joseph W; McVay, Sami; Modrusan, Zora; Nguyen, Allen; Poon, Chungkee; Wang, Jianyong; Liu, Lichuan; Lee, Wyne P; Wong, Harvey; Young, Wendy B; Townsend, Michael J; Reif, Karin

    2017-04-06

    Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton's tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.

  17. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    PubMed

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Excess Podocyte Semaphorin-3A Leads to Glomerular Disease Involving PlexinA1–Nephrin Interaction

    PubMed Central

    Reidy, Kimberly J.; Aggarwal, Pardeep K.; Jimenez, Juan J.; Thomas, David B.; Veron, Delma; Tufro, Alda

    2014-01-01

    Semaphorin-3A (Sema3a), a guidance protein secreted by podocytes, is essential for normal kidney patterning and glomerular filtration barrier development. Here, we report that podocyte-specific Sema3a gain-of-function in adult mice leads to proteinuric glomerular disease involving the three layers of the glomerular filtration barrier. Reversibility of the glomerular phenotype upon removal of the transgene induction provided proof-of-principle of the cause-and-effect relationship between podocyte Sema3a excess and glomerular disease. Mechanistically, excess Sema3a induces dysregulation of nephrin, matrix metalloproteinase 9, and αvβ3 integrin in vivo. Sema3a cell-autonomously disrupts podocyte shape. We identified a novel direct interaction between the Sema3a signaling receptor plexinA1 and nephrin, linking extracellular Sema3a signals to the slit-diaphragm signaling complex. We conclude that Sema3a functions as an extracellular negative regulator of the structure and function of the glomerular filtration barrier in the adult kidney. Our findings demonstrate a crosstalk between Sema3a and nephrin signaling pathways that is functionally relevant both in vivo and in vitro. PMID:23954273

  19. Glomerular Epithelial Cells-Targeted Heme Oxygenase-1 Over Expression in the Rat: Attenuation of Proteinuria in Secondary But Not Primary Injury.

    PubMed

    Atsaves, Vassilios; Makri, Panagiota; Detsika, Maria G; Tsirogianni, Alexandra; Lianos, Elias A

    2016-01-01

    Induction of heme oxygenase 1 (HO-1) in glomerular epithelial cells (GEC) in response to injury is poor and this may be a disadvantage. We, therefore, explored whether HO-1 overexpression in GEC can reduce proteinuria induced by puromycin aminonucleoside (PAN) or in anti-glomerular basement membrane (GBM) antibody (Ab)-mediated glomerulonephritis (GN). HO-1 overexpression in GEC (GECHO-1) of Sprague-Dawley rats was achieved by targeting a FLAG-human (h) HO-1 using transposon-mediated transgenesis. Direct GEC injury was induced by a single injection of PAN. GN was induced by administration of an anti-rat GBM Ab and macrophage infiltration in glomeruli was assessed by immunohistochemistry and western blot analysis, which was also used to assess glomerular nephrin expression. In GECHO-1 rats, FLAG-hHO-1 transprotein was co-immunolocalized with nephrin. Baseline glomerular HO-1 protein levels were higher in GECHO-1 compared to wild type (WT) rats. Administration of either PAN or anti-GBM Ab to WT rats increased glomerular HO-1 levels. Nephrin expression markedly decreased in glomeruli of WT or GECHO-1 rats treated with PAN. In anti-GBM Ab-treated WT rats, nephrin expression also decreased. In contrast, it was preserved in anti-GBM Ab-treated GECHO-1 rats. In these, macrophage infiltration in glomeruli and the ratio of urine albumin to urine creatinine (Ualb/Ucreat) were markedly reduced. There was no difference in Ualb/Ucreat between WT and GECHO-1 rats treated with PAN. Depending on the type of injury, HO-1 overexpression in GEC may or may not reduce proteinuria. Reduced macrophage infiltration and preservation of nephrin expression are putative mechanisms underlying the protective effect of HO-1 overexpression following immune injury. © 2016 S. Karger AG, Basel.

  20. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization

    PubMed Central

    Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.

    2015-01-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609

  1. Pathogenesis diagnosis and management of paraneoplastic glomerulonephritis

    PubMed Central

    Lien, Yeong-Hau H.; Lai, Li-Wen

    2011-01-01

    Paraneoplastic glomerulonephritis is a rare complication of malignancy that is frequently mistaken for idiopathic glomerulonephritis. Failure to recognize paraneoplastic glomerulonephritis can subject patients to ineffective and potentially harmful therapy. Pathology of paraneoplastic glomerulonephritis varies between different types of malignancies. This Review describes the association of glomerulonephritis with both solid tumors and hematological malignancies The pathogenetic mechanisms of many glomerular lesions seem to relate to altered immune responses in the presence of a malignancy Studies in the Buffalo/Mna rat model of spontaneous thymoma and nephrotic syndrome indicate that polarization of the immune response toward a T-helper-2 (TH2) profile has an important role in the development of thymoma-associated glomerular lesions. Furthermore, overexpression of the TH2 cytokine interleukin 13 in transgenic rats induces minimal change disease. Such findings from experimental studies might facilitate the identification of biomarkers that can distinguish paraneoplastic glomerulonephritis from idiopathic and other secondary glomerulonephritides. This Review describes potential pathogenetic mechanisms for paraneoplastic glomerulonephritides associated with different malignancies and highlights the need for a multidisciplinary approach to the management of patients with paraneoplastic glomerulonephritis. PMID:21151207

  2. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell–associated damage in IFNα-driven lupus nephritis

    PubMed Central

    Katewa, Arna; Wang, Yugang; Hackney, Jason A.; Huang, Tao; Suto, Eric; Ramamoorthi, Nandhini; Bremer, Meire; Chen, Jacob Zhi; Crawford, James J.; Currie, Kevin S.; Blomgren, Peter; DeVoss, Jason; DiPaolo, Julie A.; Hau, Jonathan; Lesch, Justin; DeForge, Laura E.; Lin, Zhonghua; Liimatta, Marya; Lubach, Joseph W.; McVay, Sami; Modrusan, Zora; Nguyen, Allen; Poon, Chungkee; Wang, Jianyong; Liu, Lichuan; Lee, Wyne P.; Wong, Harvey; Young, Wendy B.; Townsend, Michael J.

    2017-01-01

    Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton’s tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and — similar to cyclophosphamide — improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell–mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE. PMID:28405610

  3. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization.

    PubMed

    Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel

    2015-12-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.

  4. Complement in Non-Antibody-Mediated Kidney Diseases

    PubMed Central

    Angeletti, Andrea; Reyes-Bahamonde, Joselyn; Cravedi, Paolo; Campbell, Kirk N.

    2017-01-01

    The complement system is part of the innate immune response that plays important roles in protecting the host from foreign pathogens. The complement components and relative fragment deposition have long been recognized to be strongly involved also in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct glomerular injury and recruitment of infiltrating inflammation pathways. More recently, unregulated complement activation has been shown to be associated with progression of non-antibody-mediated kidney diseases, including focal segmental glomerulosclerosis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation in progressive chronic kidney diseases. Some of the specific mechanisms associated with complement activation in these diseases were recently clarified, showing a dominant role of alternative activation pathway. Over the last decade, a growing number of anticomplement agents have been developed, and some of them are being approved for clinical use or already in use. Therefore, anticomplement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Herein, we review the complement system activation, regulatory mechanisms, their involvement in non-antibody-mediated glomerular diseases, and the recent advances in complement-targeting agents as potential therapeutic strategies. PMID:28748184

  5. Molecular genetics of familial hematuric diseases.

    PubMed

    Deltas, Constantinos; Pierides, Alkis; Voskarides, Konstantinos

    2013-12-01

    The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.

  6. SCG/Kinjoh mice: a model of ANCA-associated crescentic glomerulonephritis with immune deposits.

    PubMed

    Neumann, Irmgard; Birck, Rainer; Newman, Mark; Schnülle, Peter; Kriz, Wilhelm; Nemoto, Kyuichi; Yard, Benito; Waldherr, Rüdiger; Van Der Woude, Fokko J

    2003-07-01

    Spontaneous crescentic glomerulonephritis-forming/Kinjoh (SCG/Kj) mice spontaneously develop crescentic glomerulonephritis (CGN), systemic vasculitis, and perinuclear ANCA (pANCA), and have been suggested as an animal model for human antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AASV). Since no systematic serologic, immunohistologic, or structural evaluation had been performed thus far, we reinvestigated the development of ANCA and CGN in these mice. SCG/Kj mice were subjected to serologic and urinary analysis, as well as histologic evaluation of the kidneys by standard light, immunofluorescence, and electron microscopy at regular intervals during the course of the disease. Perinuclear ANCA developed as early as the 6th week of life, increasing both in frequency and titer in up to 100% of animals at week 20. Crescent formation began at week 10 and peaked at week 16, maximally affecting 57% of glomeruli. Crescent formation was initiated by "activated" podocytes that formed cell bridges between tuft and Bowman's capsule. The typical picture of a diffuse immune complex nephritis was found in all animals as early as 8 weeks. Fluorescence intensity increased with age and became strongly positive for immunoglobulin (Ig)A, IgM, IgG, and C3 in the mesangium and along the peripheral capillary loops. Although ANCAs were found in the majority of animals, the massive presence of glomerular immune deposits differed from the pauci-immune pattern found in human AASV, making this model not completely representative for human ANCA-associated CGN. However, the spontaneous and concomitant development of pANCA, small vessel vasculitis, and CGN raises the opportunity to analyze pathogenetic links between these disease manifestations in vivo.

  7. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice

    PubMed Central

    Edwards, Michael R; Dai, Rujuan; Heid, Bettina; Cecere, Thomas E; Khan, Deena; Mu, Qinghui; Cowan, Catharine; Luo, Xin M; Ahmed, S Ansar

    2017-01-01

    Abstract The course and severity of lupus in spontaneous murine lupus models varies among laboratories, which may be due to variations in diet, housing and/or local environmental conditions. In this study, we investigated the influence of common rodent diets while keeping other factors constant. Female lupus-prone MRL/lpr (MRL/MpJ-Faslpr/J) mice were subjected to the same housing conditions and given one of the three diets: Teklad 7013 containing isoflavone-rich soy and alfalfa, Harlan 2018 isoflavone-rich soy-based diet or Research Diets Inc. D11112226 (RD) purified-ingredients diet containing casein and no phytoestrogens. While the total caloric intake was similar among all three treatment groups, mice fed on the 2018 diet developed higher levels of proteinuria and mice fed on either 7013 or 2018 developed higher levels of glomerular immune complex deposition. Remarkably, mice fed the RD diet had markedly decreased proteinuria with diminished C3, total IgG, IgG1 and IgG3 immune complex deposition, along with reduced CD11b+ cellular infiltration into the glomeruli. The type of diet intake also influenced cytokine production, fecal microbiota (increased Lachnospiraceae in mice fed on 2018), altered microRNAs (miRNAs; higher levels of lupus-associated miR-148a and miR-183 in mice fed on 7013 and/or 2018) and altered DNA methylation. This is the first study to comprehensively compare the cellular, molecular and epigenetic effects of these commercial diets in murine lupus. PMID:28637300

  8. Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models.

    PubMed

    Saraf, Santosh L; Sysol, Justin R; Susma, Alexandru; Setty, Suman; Zhang, Xu; Gudehithlu, Krishnamurthy P; Arruda, Jose A L; Singh, Ashok K; Machado, Roberto F; Gordeuk, Victor R

    2018-02-02

    Homozygosity for the hemoglobin (Hb) S mutation (HbSS, sickle cell anemia) results in hemoglobin polymerization under hypoxic conditions leading to vaso-occlusion and hemolysis. Sickle cell anemia affects 1:500 African Americans and is a strong risk factor for kidney disease, although the mechanisms are not well understood. Heterozygous inheritance (HbAS; sickle cell trait) affects 1:10 African Americans and is associated with an increased risk for kidney disease in some reports. Using transgenic sickle mice, we investigated the histopathologic, ultrastructural, and gene expression differences with the HbS mutation. Consistent with progressive glomerular damage, we observed progressively greater urine protein concentrations (P = 0.03), glomerular hypertrophy (P = 0.002), and glomerular cellularity (P = 0.01) in HbAA, HbAS, and HbSS mice, respectively. Ultrastructural studies demonstrated progressive podocyte foot process effacement, glomerular basement membrane thickening with reduplication, and tubular villous atrophy with the HbS mutation. Gene expression studies highlighted the differential expression of several genes involved in prostaglandin metabolism (AKR1C18), heme and iron metabolism (HbA-A2, HMOX1, SCL25A37), electrolyte balance (SLC4A1, AQP6), immunity (RSAD2, C3, UBE2O), fatty acid metabolism (FASN), hypoxia hall-mark genes (GCK, SDC3, VEGFA, ETS1, CP, BCL2), as well as genes implicated in other forms of kidney disease (PODXL, ELMO1, FRMD3, MYH9, APOA1). Pathway analysis highlighted increased gene enrichment in focal adhesion, extracellular matrix-receptor interaction, and axon guidance pathways. In summary, using transgenic sickle mice, we observed that inheritance of the HbS mutation is associated with glomerular and tubular damage and identified several candidate genes and pathways for future investigation in sickle cell trait and sickle cell anemia-related kidney disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. NK026680, a novel suppressant of dendritic cell function, prevents the development of rapidly progressive glomerulonephritis and perinuclear antineutrophil cytoplasmic antibody in SCG/Kj mice.

    PubMed

    Saiga, Kan; Tokunaka, Kazuhiro; Ichimura, Eiji; Toyoda, Eriko; Abe, Fuminori; Yoshida, Minako; Furukawa, Hiroshi; Nose, Masato; Ono, Masao

    2006-11-01

    NK026680 is a newly identified type of immunosuppressive agent that inhibits dendritic cell (DC) functions and consequently reduces the mortality of mice with experimental acute graft-versus-host disease. This study was undertaken to evaluate NK026680 suppression of DC functions in preventing development of rapidly progressive glomerulonephritis (RPGN) and perinuclear antineutrophil cytoplasmic antibodies (pANCA) in SCG/Kj mice. Oral administration of NK026680 to SCG/Kj mice began when mice were 8-10 weeks old, before the onset of disease, and continued for 56 days. The efficacy of NK026680 was evaluated using the mortality of mice, the results of urinalysis, histopathologic evaluation for glomerular injury, and immunofluorescence staining for the detection of immune complex (IC) deposition in glomeruli, and by assessing lymphadenopathy and measuring autoantibody titers. Oral administration of NK026680 at a dosage of 25 mg/kg once daily or 50 mg/kg once daily significantly suppressed 1) spontaneous mortality, 2) proteinuria and hematuria, 3) blood urea nitrogen levels, 4) glomerular damage characterized histopathologically, 5) IC deposition in glomeruli, 6) the development of pANCA and anti-DNA antibodies, and 7) lymphadenopathy. The newly identified DC inhibitor, NK026680, prevented the onset of RPGN, autoantibody production, and lymphadenopathy in SCG/Kj mice, suggesting a crucial role for DC function in these autoimmune phenotypes. NK026680 may be a potent immunosuppressive agent for the treatment of ANCA-associated renovascular disorders.

  10. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    PubMed Central

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

  11. GIV/Girdin Links Vascular Endothelial Growth Factor Signaling to Akt Survival Signaling in Podocytes Independent of Nephrin

    PubMed Central

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta

    2015-01-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178

  12. Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb.

    PubMed

    Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele

    2016-01-01

    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.

  13. Fluorescence-enhanced europium complexes for the assessment of renal function

    NASA Astrophysics Data System (ADS)

    Chinen, Lori K.; Galen, Karen P.; Kuan, K. T.; Dyszlewski, Mary E.; Ozaki, Hiroaki; Sawai, Hiroaki; Pandurangi, Raghootama S.; Jacobs, Frederick G.; Dorshow, Richard B.; Rajagopalan, Raghavan

    2008-02-01

    Real-time, non-invasive assessment of glomerular filtration rate (GFR) is essential not only for monitoring critically ill patients at the bedside, but also for staging and monitoring patients with chronic kidney disease. In our pursuit to develop exogenous luminescent probes for dynamic optical monitoring of GFR, we have prepared and evaluated Eu 3+ complexes of several diethylenetriamine pentaacetate (DTPA)-monoamide ligands bearing molecular "antennae" to enhance metal fluorescence via the intramolecular ligand-metal fluorescence resonance energy transfer (FRET) process. The results show that Eu-DTPA-monoamide complex 13a, which contains a quinoxanlinyl antenna, exhibits large (c.a. 2700-fold) Eu 3+ fluorescence enhancement over Eu-DTPA (4c). Indeed, complex 13a exhibits the highest fluorescent enhancement observed thus far in the DTPA-type metal complexes. The renal clearance profile of the corresponding radioactive 111In complex 13c is similar to that of 111In-DTPA, albeit 13c clears slower than 111In-DTPA. The biodistribution data indicates that 13c, and, by inference, 13a clear via a complex mechanism that includes glomerular filtration.

  14. The hamster (Mesocricetus auratus) as an experimental model of toxocariasis: histopathological, immunohistochemical, and immunoelectron microscopic findings.

    PubMed

    da Silva, Ana Maria Gonçalves; Chieffi, Pedro Paulo; da Silva, Wellington Luiz Ferreira; Kanashiro, Edite Hatsumi Yamashiro; Rubinsky-Elefant, Guita; Cunha-Neto, Edécio; Mairena, Eliane Conti; De Brito, Thales

    2015-03-01

    Toxocariasis is a globally distributed parasitic infection caused by the larval stage of Toxocara spp. The typical natural hosts of the parasite are dogs and cats, but humans can be infected by the larval stage of the parasite after ingesting embryonated eggs in soil or from contaminated hands or fomites. The migrating larvae are not adapted to complete their life cycle within accidental or paratenic hosts like humans and laboratory animals, respectively, but they are capable of invading viscera or other tissues where they may survive and induce disease. In order to characterize hamsters (Mesocricetus auratus) as a model for Toxocara canis infection, histopathological and immunohistochemistry procedures were used to detect pathological lesions and the distribution of toxocaral antigens in the liver, lungs, and kidneys of experimentally infected animals. We also attempted to characterize the immunological parameters of the inflammatory response and correlate them with the histopathological findings. In the kidney, a correlation between glomerular changes and antigen deposits was evaluated using immunoelectron microscopy. The hamster is an adequate model of experimental toxocariasis for short-term investigations and has a good immunological and pathological response to the infection. Lung and liver manifestations of toxocariasis in hamsters approximated those in humans and other experimental animal models. A mixed Th2 immunological response to T. canis infection was predominant. The hamster model displayed a progressive rise of anti-toxocaral antibodies with the formation of immune complexes. Circulating antigens, immunoglobulin, and complement deposits were detected in the kidney without the development of a definite immune complex nephropathy.

  15. Clinical characteristics and outcomes of HIV-associated immune complex kidney disease.

    PubMed

    Booth, John W; Hamzah, Lisa; Jose, Sophie; Horsfield, Catherine; O'Donnell, Patrick; McAdoo, Stephen; Kumar, Emil A; Turner-Stokes, Tabitha; Khatib, Nadia; Das, Partha; Naftalin, Claire; Mackie, Nicola; Kingdon, Ed; Williams, Debbie; Hendry, Bruce M; Sabin, Caroline; Jones, Rachael; Levy, Jeremy; Hilton, Rachel; Connolly, John; Post, Frank A

    2016-12-01

    The pathogenesis and natural history of HIV-associated immune complex kidney disease (HIVICK) is not well understood. Key questions remain unanswered, including the role of HIV infection and replication in disease development and the efficacy of antiretroviral therapy (ART) in the prevention and treatment of disease. In this multicentre study, we describe the renal pathology of HIVICK and compare the clinical characteristics of patients with HIVICK with those with IgA nephropathy and HIV-associated nephropathy (HIVAN). Poisson regression models were used to identify risk factors for each of these pathologies. Between 1998 and 2012, 65 patients were diagnosed with HIVICK, 27 with IgA nephropathy and 70 with HIVAN. Black ethnicity and HIV RNA were associated with HIVICK, receipt of ART with IgA nephropathy and black ethnicity and CD4 cell count with HIVAN. HIVICK was associated with lower rates of progression to end-stage kidney disease compared with HIVAN and IgA nephropathy (P < 0.0001). Patients with HIVICK who initiated ART and achieved suppression of HIV RNA experienced improvements in estimated glomerular filtration rate and proteinuria. These findings suggest a pathogenic role for HIV replication in the development of HIVICK and that ART may improve kidney function in patients who have detectable HIV RNA at the time of HIVICK diagnosis. Our data also suggest that IgA nephropathy should be viewed as a separate entity and not included in the HIVICK spectrum. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. Histopathology of humorally mediated anti-glomerular basement membrane (GBM) glomerulonephritis in mice.

    PubMed

    Le Hir, Michel

    2004-07-01

    From a diagnostic point of view it would be important to learn more about the relationship between the immune responses underlying glomerulonephritis and the patterns of glomerular lesions. A murine model of anti-GBM glomerulonephritis in which inflammation is driven by delayed-type hypersensitivity (DTH) has been studied extensively. The aim of this study was to uncover histological features that might be specific for anti-GBM glomerulonephritis driven by a humoral immune response. BALB/c mice were immunized with rabbit IgG in incomplete Freund's adjuvant. Six days later, on day 0, they received rabbit anti-GBM serum intravenously. Proteinuria was assessed with dipsticks. Mice were killed on days 4, 8 or 14. Kidneys from days 4 and 8 were processed for immunofluorescence and histology. On day 14 mice were perfusion-fixed for electron microscopy. Proteinuria started on day 3. Autologous IgG and of C3 were found along the GBM. There was only slight infiltration with macrophages and no measurable infiltration by CD4 T cells, indicating the virtual absence of DTH. Besides infiltration with neutrophils there were little histological alterations on day 4. On day 8 many loops were hyalinized. On day 14, cellular crescents were found in 23% of glomeruli. Subendothelial spaces contained hyaline material, cells and fibrin. Podocytes displayed effacement of foot processes and apical microprotrusions. Podocyte bridges were common. These alterations were identical to those reported in the standard model that produces a DTH-like inflammation. The qualitative pattern of histological damage in a murine model of anti-GBM glomerulonephritis does not depend on the underlying immunological process.

  17. [Effect of Yishen capsule on serum vascular endothelial growth factor and cell immunity in patients with chronic glomerulonephritis].

    PubMed

    Wu, Xi-li; Sun, Wan-sen; Zhang, Wang-gang; Qiao, Cheng-lin; Wang, Zhu; Wang, Juan

    2007-11-01

    To explore the effect of Yishen capsule on the serum vascular endothelial growth factor (VEGF), the cell immunity and the theraphic. Serum VEGF and T cell subsets were studied in 30 normal subjects and 83 patients before and after treatment. Compare with normal subjects, CD3, CD4, CD4/CD8 were decreased, CD8 and serum VEGF were increased obviously (P <0. 05 or P <0. 01). After three months treatment with YiShen capsule, CD4/CD8 was increased, CD8 and serum VEGF were decreased significantly (P <0.05 or P <0.01). Yishen capsule can reduce the proteinuria, increase the function of immunity and improve the clinical symptom of patients with chronic glomerulonephritis, achieved the effects of allevating chronic glomerular sclerosis ultimately.

  18. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis

    PubMed Central

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi

    2011-01-01

    Background. In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Methods. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). Results. The urinary protein level in Tg mice decreased significantly during the acute phase (∼Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice. The glomerular damage in Tg mice was improved by administration of an ARB. Conclusions. The present experimental model suggests that tubular enhancement of L-FABP may protect mice with anti-GBM GN from progression of both tubulointerstitial and glomerular injury. PMID:21525165

  19. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis.

    PubMed

    Kanaguchi, Yasuhiko; Suzuki, Yusuke; Osaki, Ken; Sugaya, Takeshi; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-11-01

    In glomerulonephritis (GN), an overload of free fatty acids (FFA) bound to albumin in urinary protein may induce oxidative stress in the proximal tubules. Human liver-type fatty acid-binding protein (hL-FABP) expressed in human proximal tubules, but not rodents, participates in intracellular FFA metabolism and exerts anti-oxidative effects on the progression of tubulointerstitial damage. We examined whether tubular enhancement of this anti-oxidative action modulates the progression of glomerular damage in immune-mediated GN in hL-FABP chromosomal gene transgenic (Tg) mice. Anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM GN) was induced in Tg and wild-type mice (WT). Proteinuria, histopathology, polymorphonuclear (PMN) influx, expression of tubulointerstitial markers for oxidative stress 4-hydroxy-2-Nonenal (HNE) and fibrosis (α-smooth muscle actin), proximal tubular damage (Kim-1), Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and inflammatory cytokines [Monocyte Chemotactic Protein-1, tumor necrosis factor-alpha (TNF-α) and Transforming growth factor beta (TGF-β)] were analyzed. The mice were also treated with an angiotensin type II receptor blocker (ARB). The urinary protein level in Tg mice decreased significantly during the acute phase (~Day 5). Tg mice survived for a significantly longer time than WT mice, with an attenuation of tubulointerstitial damage score and expression of each tubulointerstitial damage marker observed at Day 7. Expression of inflammatory cytokines on Day 7 was higher in WT mice than Tg mice and correlated strongly with PPARγ expression in WT mice, but not in Tg mice. Interestingly, Tg mice showed insufficient PMN influx at 3 and 6 h, with simultaneous elevation of urinary L-FABP and reduction in HNE expression. The two strains of mice showed different types of glomerular damage, with mild mesangial proliferation in Tg mice and severe endothelial swelling with vascular thrombosis in WT mice. The glomerular damage in Tg mice was improved by administration of an ARB. The present experimental model suggests that tubular enhancement of L-FABP may protect mice with anti-GBM GN from progression of both tubulointerstitial and glomerular injury.

  20. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases.

    PubMed

    Bullich, Gemma; Domingo-Gallego, Andrea; Vargas, Iván; Ruiz, Patricia; Lorente-Grandoso, Laura; Furlano, Mónica; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Borregán, Mar; Piñero-Fernández, Juan Alberto; Rodríguez-Peña, Lidia; Ballesta-Martínez, Maria Juliana; Llano-Rivas, Isabel; Meñica, Mireia Aguirre; Ballarín, José; Torrents, David; Torra, Roser; Ars, Elisabet

    2018-05-22

    Molecular diagnosis of inherited kidney diseases remains a challenge due to their expanding phenotypic spectra as well as the constantly growing list of disease-causing genes. Here we develop a comprehensive approach for genetic diagnosis of inherited cystic and glomerular nephropathies. Targeted next generation sequencing of 140 genes causative of or associated with cystic or glomerular nephropathies was performed in 421 patients, a validation cohort of 116 patients with previously known mutations, and a diagnostic cohort of 207 patients with suspected inherited cystic disease and 98 patients with glomerular disease. In the validation cohort, a sensitivity of 99% was achieved. In the diagnostic cohort, causative mutations were found in 78% of patients with cystic disease and 62% of patients with glomerular disease, mostly familial cases, including copy number variants. Results depict the distribution of different cystic and glomerular inherited diseases showing the most likely diagnosis according to perinatal, pediatric and adult disease onset. Of all the genetically diagnosed patients, 15% were referred with an unspecified clinical diagnosis and in 2% genetic testing changed the clinical diagnosis. Therefore, in 17% of cases our genetic analysis was crucial to establish the correct diagnosis. Complex inheritance patterns in autosomal dominant polycystic kidney disease and Alport syndrome were suspected in seven and six patients, respectively. Thus, our kidney-disease gene panel is a comprehensive, noninvasive, and cost-effective tool for genetic diagnosis of cystic and glomerular inherited kidney diseases. This allows etiologic diagnosis in three-quarters of patients and is especially valuable in patients with unspecific or atypical phenotypes. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    PubMed

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys

    NASA Astrophysics Data System (ADS)

    Barros, George O.; Navarro, Brenda; Duarte, Angelo; Dos-Santos, Washington L. C.

    2017-04-01

    PathoSpotter is a computational system designed to assist pathologists in teaching about and researching kidney diseases. PathoSpotter-K is the version that was developed to detect nephrological lesions in digital images of kidneys. Here, we present the results obtained using the first version of PathoSpotter-K, which uses classical image processing and pattern recognition methods to detect proliferative glomerular lesions with an accuracy of 88.3 ± 3.6%. Such performance is only achieved by similar systems if they use images of cell in contexts that are much less complex than the glomerular structure. The results indicate that the approach can be applied to the development of systems designed to train pathology students and to assist pathologists in determining large-scale clinicopathological correlations in morphological research.

  3. Ischemia-induced glomerular parietal epithelial cells hyperplasia: Commonly misdiagnosed cellular crescent in renal biopsy.

    PubMed

    Zeng, Yeting; Wang, Xinrui; Xie, Feilai; Zheng, Zhiyong

    2017-08-01

    Ischemic pseudo-cellular crescent (IPCC) that is induced by ischemia and composed of hyperplastic glomerular parietal epithelial cells resembles cellular crescent. In this study, we aimed to assess the clinical and pathological features of IPCC in renal biopsy to avoid over-diagnosis and to determine the diagnostic basis. 4 IPCC cases diagnosed over a 4-year period (2012-2015) were evaluated for the study. Meanwhile, 5 cases of ANCA-associated glomerulonephritis and 5 cases of lupus nephritis (LN) were selected as control. Appropriate clinical data, morphology, and immunohistochemical features of all cases were retrieved. Results showed that the basement membrane of glomerulus with IPCC appeared as a concentric twisted ball, and glomerular cells of the lesion were reduced even entirely absent, and the adjacent afferent arterioles showed sclerosis or luminal stenosis. Furthermore, immune globulin deposition, vasculitis, and fibrinous exudate have not been observed in IPCC. While the cellular crescents showed diverse characteristics in both morphology and immunostaining in the control group. Therefore, these results indicated that IPCC is a sort of ischemic reactive hyperplasia and associated with sclerosis, stenosis, or obstruction of adjacent afferent arterioles, which is clearly different from cellular crescents result from glomerulonephritis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. BCL-2 as a Therapeutic Target in Human Tubulointerstitial Inflammation

    PubMed Central

    Ko, Kichul; Wang, Jianing; Perper, Stuart; Jiang, Yulei; Yanez, Denisse; Kaverina, Natalya; Ai, Junting; Liarski, Vladimir M.; Chang, Anthony; Peng, Yahui; Lan, Li; Westmoreland, Susan; Olson, Lisa; Giger, Maryellen L.; Wang, Li Chun; Clark, Marcus R.

    2016-01-01

    Objective In lupus nephritis (LuN), tubulointerstitial inflammation (TII) is associated with in situ adaptive immune cell networks that amplify local tissue damage. As patients with severe TII often fail conventional therapy and develop renal failure, understanding these in situ mechanisms might reveal new therapeutic targets. We hypothesized that in TII, dysregulated apoptotic regulators maintain local adaptive immunity and drive inflammation. Methods We developed novel computational approaches that, when applied to multicolor confocal images, quantified apoptotic regulator protein expression in selected lymphocyte subsets. This approach was validated using laser capture microdissection (LCM) coupled to qPCR. Furthermore, we explored the consequences of dysregulated apoptotic mediator expression in a murine model of LuN. Results Analyses of renal biopsies from LuN and mixed cellular allograft rejection patients revealed that BCL-2 was frequently expressed in infiltrating lymphocytes while expression of MCL-1 was low. In contrast, the reciprocal pattern of expression was observed in tonsil germinal centers. These results were consistent with RNA expression data obtained using LCM and qPCR. BCL-2 was also highly expressed in tubulointerstitial infiltrates of NZB/W F1 mice. Furthermore, treatment of NZB/W F1 mice with ABT-199, a selective oral inhibitor of BCL-2, prolonged survival and prevented proteinuria and development of TII in a prevention model. Interestingly, glomerular immune complexes were partially ameliorated by ABT-199 and serum anti-dsDNA antibody titers were unaffected. Conclusion These data demonstrate BCL-2 as an attractive therapeutic target in LuN manifesting TII. PMID:27159593

  5. IRF4 Deficiency Abrogates Lupus Nephritis Despite Enhancing Systemic Cytokine Production

    PubMed Central

    Lech, Maciej; Weidenbusch, Marc; Kulkarni, Onkar P.; Ryu, Mi; Darisipudi, Murthy Narayana; Susanti, Heni Eka; Mittruecker, Hans-Willi; Mak, Tak W.

    2011-01-01

    The IFN-regulatory factors IRF1, IRF3, IRF5, and IRF7 modulate processes involved in the pathogenesis of systemic lupus and lupus nephritis, but the contribution of IRF4, which has multiple roles in innate and adaptive immunity, is unknown. To determine a putative pathogenic role of IRF4 in lupus, we crossed Irf4-deficient mice with autoimmune C57BL/6-(Fas)lpr mice. IRF4 deficiency associated with increased activation of antigen-presenting cells in C57BL/6-(Fas)lpr mice, resulting in a massive increase in plasma levels of TNF and IL-12p40, suggesting that IRF4 suppresses cytokine release in these mice. Nevertheless, IRF4 deficiency completely protected these mice from glomerulonephritis and lung disease. The mice were hypogammaglobulinemic and lacked antinuclear and anti-dsDNA autoantibodies, revealing the requirement of IRF4 for the maturation of plasma cells. As a consequence, Irf4-deficient C57BL/6-(Fas)lpr mice neither developed immune complex disease nor glomerular activation of complement. In addition, lack of IRF4 impaired the maturation of Th17 effector T cells and reduced plasma levels of IL-17 and IL-21, which are cytokines known to contribute to autoimmune tissue injury. In summary, IRF4 deficiency enhances systemic inflammation and the activation of antigen-presenting cells but also prevents the maturation of plasma cells and effector T cells. Because these adaptive immune effectors are essential for the evolution of lupus nephritis, we conclude that IRF4 promotes the development of lupus nephritis despite suppressing antigen-presenting cells. PMID:21742731

  6. Automatic computational labeling of glomerular textural boundaries

    NASA Astrophysics Data System (ADS)

    Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.

  7. The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin.

    PubMed

    Orlando, R A; Takeda, T; Zak, B; Schmieder, S; Benoit, V M; McQuistan, T; Furthmayr, H; Farquhar, M G

    2001-08-01

    During development, renal glomerular epithelial cells (podocytes) undergo extensive morphologic changes necessary for creation of the glomerular filtration apparatus. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of intercellular urinary spaces. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in maintaining the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. This study examined whether the highly conserved cytoplasmic tail of podocalyxin also contributes to the unique organization of podocytes by interacting with the cytoskeletal network found in their cell bodies and foot processes. By immunocytochemistry, it was shown that podocalyxin and the actin binding protein ezrin are co-expressed in podocytes and co-localize along the apical plasma membrane, where they form a co-immunoprecipitable complex. Selective detergent extraction followed by differential centrifugation revealed that some of the podocalyxin cosediments with actin filaments. Moreover, its sedimentation is dependent on polymerized actin and is mediated by complex formation with ezrin. Once formed, podocalyxin/ezrin complexes are very stable, because they are insensitive to actin depolymerization or inactivation of Rho kinase, which is known to be necessary for regulation of ezrin and to mediate Rho-dependent actin organization. These data indicate that in podocytes, podocalyxin is complexed with ezrin, which mediates its link to the actin cytoskeleton. Thus, in addition to its ectodomain, the cytoplasmic tail of podocalyxin also likely contributes to maintaining the unique podocyte morphology.

  8. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  9. Identification and characterization of kidney transplants with good glomerular filtration rate at 1 year but subsequent progressive loss of renal function.

    PubMed

    Park, Walter D; Larson, Timothy S; Griffin, Matthew D; Stegall, Mark D

    2012-11-15

    After the first year after kidney transplantation, 3% to 5% of grafts fail each year but detailed studies of how grafts progress to failure are lacking. This study aimed to analyze the functional stability of kidney transplants between 1 and 5 years after transplantation and to identify initially well-functioning grafts with progressive decline in allograft function. The study included 788 adult conventional kidney transplants performed at the Mayo Clinic Rochester between January 2000 and December 2005 with a minimum graft survival and follow-up of 2.6 years. The modification of diet in renal disease equation for estimating glomerular filtration rate (eGFR(MDRD)) was used to calculate the slope of renal function over time using all available serum creatinine values between 1 and 5 years after transplantation. Most transplants demonstrated good function (eGFR(MDRD) ≥40 mL/min) at 1 year with positive eGFR(MDRD) slope between 1 and 5 years after transplantation. However, a subset of grafts with 1-year eGFR(MDRD) ≥40 mL/min exhibited strongly negative eGFR(MDRD) slope between 1 and 5 years suggestive of progressive loss of graft function. Forty-one percent of this subset reached graft failure during follow-up, accounting for 69% of allograft failures occurring after 2.5 years after transplantation. This pattern of progressive decline in estimated glomerular filtration rate despite good early function was associated with but not fully attributable to factors suggestive of enhanced antidonor immunity. Longitudinal analysis of serial estimated glomerular filtration ratemeasurements identifies initially well-functioning kidney transplants at high risk for subsequent graft loss. For this subset, further studies are needed to identify modifiable causes of functional decline.

  10. Surrogate markers of subtle renal injury in patients with visceral leishmaniasis.

    PubMed

    Elnojomi, N A A; Musa, A M; Younis, B M; Elfaki, M E E; El-Hassan, A M; Khalil, E A G

    2010-09-01

    Sudanese visceral leishmaniasis (VL) is a disease of children that is characterized by fever, hepatosplenomegaly, lymphadenopathy, pancytopenia, and renal injury. Microalbuminuria (MA) and urinary retinol binding protein (urRBP) are useful markers for glomerular and tubular dysfunctions, respectively. We report the prevalence of subtle renal injury in 88 parasitologically confirmed VL patients in a cross-sectional and hospital-based study. Blood and urine were collected before treatment for hematological, biochemical profiles in addition to MA and urRBP measurement using competitive solid phase, sandwich enzyme-linked immune sorbent assay (ELISA), and immunoturbidometry. All the patients had normal serum urea and creatinine levels and no detectable urRBP. However, 40% of the patients had MA detected by ELISA, and 42% were reactive with turbidometry. The sensitivity, specificity, positive and negative predictive values for MA turbidometric technique were calculated as 100%; 96%; 95% and 100%, respectively. In conclusion; subtle renal injury in VL is mainly glomerular. Turbidometry for MA measurement is a simple, inexpensive, sensitive, and specific technique with high predictive values.

  11. The C3aR promotes macrophage infiltration and regulates ANCA production but does not affect glomerular injury in experimental anti-myeloperoxidase glomerulonephritis

    PubMed Central

    Gan, Poh-Yi; Kitching, A. Richard; Holdsworth, Stephen R.

    2018-01-01

    The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides are autoimmune diseases associated with significant morbidity and mortality. They often affect the kidney causing rapidly progressive glomerulonephritis. While signalling by complement anaphylatoxin C5a though the C5a receptor is important in this disease, the role of the anaphylatoxin C3a signalling via the C3a receptor (C3aR) is not known. Using two different murine models of anti-myeloperoxidase (MPO) glomerulonephritis, one mediated by passive transfer of anti-MPO antibodies, the other by cell-mediated immunity, we found that the C3aR did not alter histological disease severity. However, it promoted macrophage recruitment to the inflamed glomerulus and inhibited the generation of MPO-ANCA whilst not influencing T cell autoimmunity. Thus, whilst the C3aR modulates some elements of disease pathogenesis, overall it is not critical in effector responses and glomerular injury caused by autoimmunity to MPO. PMID:29315316

  12. Inhibition of Macrophage Nuclear Factor-κB Leads to a Dominant Anti-Inflammatory Phenotype that Attenuates Glomerular Inflammation in Vivo

    PubMed Central

    Wilson, Heather M.; Chettibi, Salah; Jobin, Christian; Walbaum, David; Rees, Andrew J.; Kluth, David C.

    2005-01-01

    Infiltrating macrophages (mφ) can cause injury or facilitate repair, depending on how they are activated by the microenvironment. Studies in vitro have defined the roles of individual cytokines and signaling pathways in activation, but little is known about how macrophages integrate the multiple signals they receive in vivo. We inhibited nuclear factor-κB in bone marrow-derived macrophages (BMDMs) by using a recombinant adenovirus expressing dominant-negative IκB (Ad-IκB). This re-orientated macrophage activation so they became profoundly anti-inflammatory in settings where they would normally be classically activated. In vitro, the lipopolysaccharide-induced nitric oxide, interleukin-12, and tumor necrosis factor-α synthesis was abrogated while interleukin-10 synthesis increased. In vivo, fluorescently labeled BMDMs transduced with Ad-IκB and injected into the renal artery significantly reduced inducible nitric oxide synthase and MHC class II expression when activated naturally in glomeruli of rats with nephrotoxic nephritis. Furthermore, although they only comprised 15% of glomerular macrophages, their presence significantly reduced glomerular infiltration and activation of host macrophages. Injury in nephrotoxic nephritis was also decreased when assessed morphologically and by severity of albuminuria. The results demonstrate the power of Ad-IκB-transduced BMDMs to inhibit injury when activated by acute immune-mediated inflammation within the glomerulus. PMID:15972949

  13. The Evolving Complexity of the Podocyte Cytoskeleton.

    PubMed

    Schell, Christoph; Huber, Tobias B

    2017-11-01

    Podocytes exhibit a unique cytoskeletal architecture that is fundamentally linked to their function in maintaining the kidney filtration barrier. The cytoskeleton regulates podocyte shape, structure, stability, slit diaphragm insertion, adhesion, plasticity, and dynamic response to environmental stimuli. Genetic mutations demonstrate that even slight impairment of the podocyte cytoskeletal apparatus results in proteinuria and glomerular disease. Moreover, mechanisms underpinning all acquired glomerular pathologies converge on disruption of the cytoskeleton, suggesting that this subcellular structure could be targeted for therapeutic purposes. This review summarizes our current understanding of the function of the cytoskeleton in podocytes and the associated implications for pathophysiology. Copyright © 2017 by the American Society of Nephrology.

  14. Nanoscale protein architecture of the kidney glomerular basement membrane

    PubMed Central

    Suleiman, Hani; Zhang, Lei; Roth, Robyn; Heuser, John E; Miner, Jeffrey H; Shaw, Andrey S; Dani, Adish

    2013-01-01

    In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI: http://dx.doi.org/10.7554/eLife.01149.001 PMID:24137544

  15. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells

    PubMed Central

    Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2016-01-01

    Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208

  16. Heart failure and kidney dysfunction: epidemiology, mechanisms and management.

    PubMed

    Schefold, Joerg C; Filippatos, Gerasimos; Hasenfuss, Gerd; Anker, Stefan D; von Haehling, Stephan

    2016-10-01

    Heart failure (HF) is a major health-care problem and the prognosis of affected patients is poor. HF often coexists with a number of comorbidities of which declining renal function is of particular importance. A loss of glomerular filtration rate, as in acute kidney injury (AKI) or chronic kidney disease (CKD), independently predicts mortality and accelerates the overall progression of cardiovascular disease and HF. Importantly, cardiac and renal diseases interact in a complex bidirectional and interdependent manner in both acute and chronic settings. From a pathophysiological perspective, cardiac and renal diseases share a number of common pathways, including inflammatory and direct, cellular immune-mediated mechanisms; stress-mediated and (neuro)hormonal responses; metabolic and nutritional changes including bone and mineral disorder, altered haemodynamic and acid-base or fluid status; and the development of anaemia. In an effort to better understand the important crosstalk between the two organs, classifications such as the cardio-renal syndromes were developed. This classification might lead to a more precise understanding of the complex interdependent pathophysiology of cardiac and renal diseases. In light of exceptionally high mortality associated with coexisting HF and kidney disease, this Review describes important crosstalk between the heart and kidney, with a focus on HF and kidney disease in the acute and chronic settings. Underlying molecular and cellular pathomechanisms in HF, AKI and CKD are discussed in addition to current and future therapeutic approaches.

  17. Close relations between podocyte injuries and membranous proliferative glomerulonephritis in autoimmune murine models.

    PubMed

    Kimura, Junpei; Ichii, Osamu; Otsuka, Saori; Sasaki, Hayato; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    Membranous proliferative glomerulonephritis (MPGN) is a major primary cause of chronic kidney disease (CKD). Podocyte injury is crucial in the pathogenesis of glomerular disease with proteinuria, leading to CKD. To assess podocyte injuries in MPGN, the pathological features of spontaneous murine models were analyzed. The autoimmune-prone mice strains BXSB/MpJ-Yaa and B6.MRL-(D1Mit202-D1Mit403) were used as the MPGN models, and BXSB/MpJ-Yaa(+) and C57BL/6 were used as the respective controls. In addition to clinical parameters and glomerular histopathology, the protein and mRNA levels of podocyte functional markers were evaluated as indices for podocyte injuries. The relation between MPGN pathology and podocyte injuries was analyzed by statistical correlation. Both models developed MPGN with albuminuria and elevated serum anti-double-strand DNA (dsDNA) antibody levels. BXSB/MpJ-Yaa and B6.MRL showed severe proliferative lesions with T and B cell infiltrations and membranous lesions with T cell infiltrations, respectively. Foot process effacement and microvillus-like structure formation were observed ultrastructurally in the podocytes of both MPGN models. Furthermore, both MPGN models showed a decrease in immune-positive areas of nephrin, podocin and synaptopodin in the glomerulus, and in the mRNA expression of Nphs1, Nphs2, Synpo, Actn4, Cd2ap, and Podxl in the isolated glomerulus. Significant negative correlations were detected between serum anti-dsDNA antibody levels and glomerular Nphs1 expression, and between urinary albumin-to-creatinine ratio and glomerular expression of Nphs1, Synpo, Actn4, Cd2ap, or Podxl. MPGN models clearly developed podocyte injuries characterized by the decreased expression of podocyte functional markers with altered morphology. These data emphasized the importance of regulation of podocyte injuries in MPGN. Copyright © 2013 S. Karger AG, Basel.

  18. Renoprotective impact of estrogen receptor α and its splice variants in female mice with type 1 diabetes.

    PubMed

    Irsik, Debra L; Romero-Aleshire, Melissa Jill; Chavez, Erin M; Fallet, Rachel W; Brooks, Heddwen L; Carmines, Pamela K; Lane, Pascale H

    2018-04-18

    Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor α (ERα66), its ERα splice variants, and estrogen receptor β (ERβ). Thus, we hypothesized that these splice variants may inhibit glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8-12 wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO, compared with WT and αERKO mice, but was higher in STZ than in WT mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.

  19. Glomerular clusterin is associated with PKC-alpha/beta regulation and good outcome of membranous glomerulonephritis in humans.

    PubMed

    Rastaldi, M P; Candiano, G; Musante, L; Bruschi, M; Armelloni, S; Rimoldi, L; Tardanico, R; Sanna-Cherchi, S; Cherchi, S Sanna; Ferrario, F; Montinaro, V; Haupt, R; Parodi, S; Carnevali, M L; Allegri, L; Camussi, G; Gesualdo, L; Scolari, F; Ghiggeri, G M

    2006-08-01

    Mechanisms for human membranous glomerulonephritis (MGN) remain elusive. Most up-to-date concepts still rely on the rat model of Passive Heymann Nephritis that derives from an autoimmune response to glomerular megalin, with complement activation and membrane attack complex assembly. Clusterin has been reported as a megalin ligand in immunodeposits, although its role has not been clarified. We studied renal biopsies of 60 MGN patients by immunohistochemistry utilizing antibodies against clusterin, C5b-9, and phosphorylated-protien kinase C (PKC) isoforms (pPKC). In vitro experiments were performed to investigate the role of clusterin during podocyte damage by MGN serum and define clusterin binding to human podocytes, where megalin is known to be absent. Clusterin, C5b-9, and pPKC-alpha/beta showed highly variable glomerular staining, where high clusterin profiles were inversely correlated to C5b-9 and PKC-alpha/beta expression (P=0.029), and co-localized with the low-density lipoprotein receptor (LDL-R). Glomerular clusterin emerged as the single factor influencing proteinuria at multivariate analysis and was associated with a reduction of proteinuria after a follow-up of 1.5 years (-88.1%, P=0.027). Incubation of podocytes with MGN sera determined strong upregulation of pPKC-alpha/beta that was reverted by pre-incubation with clusterin, serum de-complementation, or protein-A treatment. Preliminary in vitro experiments showed podocyte binding of biotinilated clusterin, co-localization with LDL-R and specific binding inhibition with anti-LDL-R antibodies and with specific ligands. These data suggest a central role for glomerular clusterin in MGN as a modulator of inflammation that potentially influences the clinical outcome. Binding of clusterin to the LDL-R might offer an interpretative key for the pathogenesis of MGN in humans.

  20. Podocyturia: Potential applications and current limitations

    PubMed Central

    Trimarchi, Hernán

    2017-01-01

    Chronic kidney disease is a prevalent condition that affects millions of people worldwide and is a major risk factor of cardiovascular morbidity and mortality. The main diseases that lead to chronic kidney disease are frequent entities as diabetes mellitus, hypertension and glomerulopathies. One of the clinical markers of kidney disease progression is proteinuria. Moreover, the histological hallmark of kidney disease is sclerosis, located both in the glomerular and in the interstitial compartments. Glomerulosclerosis underscores an irreversible lesion that is clinically accompanied by proteinuria. In this regard, proteinuria and glomerular sclerosis are linked by the cell that has been conserved phylogenetically not only to prevent the loss of proteins in the urine, but also to maintain the health of the glomerular filtration barrier: The podocyte. It can then be concluded that the link between proteinuria, kidney disease progression and chronic kidney disease is mainly related to the podocyte. What is this situation due to? The podocyte is unable to proliferate under normal conditions, and a complex molecular machinery exists to avoid its detachment and eventual loss. When the loss of podocytes in the urine, or podocyturia, is taking place and its glomerular absolute number decreased, glomerulosclerosis is the predominant histological feature in a kidney biopsy. Therefore, tissular podocyte shortage is the cause of proteinuria and chronic kidney disease. In this regard, podocyturia has been demonstrated to precede proteinuria, showing that the clinical management of proteinuria cannot be considered an early intervention. The identification of urinary podocytes could be an additional tool to be considered by nephrologists to assess the activity of glomerulopathies, for follow-up purposes and also to unravel the pathophysiology of podocyte detachment in order to tailor the therapy of glomerular diseases more appropriately. PMID:28948159

  1. Small molecule membrane transporters in the mammalian podocyte: a pathogenic and therapeutic target.

    PubMed

    Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele

    2014-11-18

    The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development.

  2. Small Molecule Membrane Transporters in the Mammalian Podocyte: A Pathogenic and Therapeutic Target

    PubMed Central

    Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele

    2014-01-01

    The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development. PMID:25411800

  3. Isolation of circulating immune complexes using Raji cells. Separation of antigens from immune complexes and production of antiserum.

    PubMed Central

    Theofilopoulos, A N; Eisenberg, R A; Dixon, F J

    1978-01-01

    Raji cells were used for the isolation of complement-fixing antigen-antibody complexes from serum. Immune complexes bound to these cells were radiolabeled at the cell surface with lactoperoxidase. The complexes were then eluted from the cells with isotonic citrate buffer pH 3.2 or recovered by immunoprecipitation of cell lysates. The antigen and antibody moieties of the complexes were isolated by dissociating sucrose density gradient centrifugation or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of preformed immune complexes were successfully isolated from serum with this approach. In addition, these techniques were used to isolate and identify the antigens in immune complexes in the serum of rabbits with chronic serum sickness and rats with Moloney virus-induced sarcomas. Methods were also developed for the production of antisera against the antigenic moiety of immune complexes isolated from serum. Repeated challenge of rabbits with whole Raji cells with bound complexes or eluates from such cells resulted in antibody production against the antigens of the immune complexes, although reactivity against cellular and serum components was also elicited. Monospecific antisera against the antigens in immune complexes were produced by immunizing rabbits with the alum-precipitated antigen isolated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These techniques may be useful in isolating antigens in immune complex-associated diseases of unknown etiology. Images PMID:659616

  4. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease.

    PubMed

    Kim, Ju Han; Ha, Il Soo; Hwang, Chang-Il; Lee, Young-Ju; Kim, Jihoon; Yang, Seung-Hee; Kim, Yon Su; Cao, Yun Anna; Choi, Sangdun; Park, Woong-Yang

    2004-11-01

    Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory renal disease.

  5. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy.

    PubMed

    Tortajada, Agustín; Gutiérrez, Eduardo; Goicoechea de Jorge, Elena; Anter, Jaouad; Segarra, Alfons; Espinosa, Mario; Blasco, Miquel; Roman, Elena; Marco, Helena; Quintana, Luis F; Gutiérrez, Josué; Pinto, Sheila; Lopez-Trascasa, Margarita; Praga, Manuel; Rodriguez de Córdoba, Santiago

    2017-10-01

    IgA nephropathy (IgAN), a frequent cause of chronic kidney disease worldwide, is characterized by mesangial deposition of galactose-deficient IgA1-containing immune complexes. Complement involvement in IgAN pathogenesis is suggested by the glomerular deposition of complement components and the strong protection from IgAN development conferred by the deletion of the CFHR3 and CFHR1 genes (Δ CFHR3-CFHR1 ). Here we searched for correlations between clinical progression and levels of factor H (FH) and FH-related protein 1 (FHR-1) using well-characterized patient cohorts consisting of 112 patients with IgAN, 46 with non-complement-related autosomal dominant polycystic kidney disease (ADPKD), and 76 control individuals. Patients with either IgAN or ADPKD presented normal FH but abnormally elevated FHR-1 levels and FHR-1/FH ratios compared to control individuals. Highest FHR-1 levels and FHR-1/FH ratios are found in patients with IgAN with disease progression and in patients with ADPKD who have reached chronic kidney disease, suggesting that renal function impairment elevates the FHR-1/FH ratio, which may increase FHR-1/FH competition for activated C3 fragments. Interestingly, Δ CFHR3-CFHR1 homozygotes are protected from IgAN, but not from ADPKD, and we found five IgAN patients with low FH carrying CFH or CFI pathogenic variants. These data support a decreased FH activity in IgAN due to increased FHR-1/FH competition or pathogenic CFH variants. They also suggest that alternative pathway complement activation in patients with IgAN, initially triggered by galactose-deficient IgA1-containing immune complexes, may exacerbate in a vicious circle as renal function deterioration increase FHR-1 levels. Thus, a role of FHR-1 in IgAN pathogenesis is to compete with complement regulation by FH. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Blockade of CD354 (TREM-1) Ameliorates Anti-GBM-Induced Nephritis.

    PubMed

    Du, Yong; Wu, Tianfu; Zhou, Xin J; Davis, Laurie S; Mohan, Chandra

    2016-06-01

    CD354, Triggering Receptor of Myeloid Cells-1 (TREM-1), is a potent amplifier of myeloid immune responses. Our goal was to determine the expression and function of TREM-1 in immune-mediated nephritis. An anti-glomerular basement membrane antibody (anti-GBM)-induced nephritis model was employed, where mice were sensitized with rabbit IgG followed by anti-GBM serum to induce disease. Anti-GBM-treated 129x1/svJ mice developed severe nephritis whereas C57BL/6 (B6) mice were resistant to disease. Anti-GBM disease resulted in elevated renal TREM-1 messenger RNA (mRNA) and protein levels and increased urine TREM-1 levels in 129x1/svJ. TREM-1 blockade with an inhibitory peptide, LP17, inhibited proteinuria and renal disease as measured by glomerulonephritis class, severity of tubulointerstitial disease, crescent formation, and inflammatory cell infiltrates. In sum, TREM-1 is upregulated in renal inflammation and plays a vital role in driving disease. Thus, TREM-1 blockade emerges as a potential therapeutic avenue for immune-mediated renal diseases such as lupus nephritis.

  7. A simple method for determining polymeric IgA-containing immune complexes.

    PubMed

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  8. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    PubMed

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  9. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy.

    PubMed

    Yamamoto, Yoshihiko; Maeshima, Yohei; Kitayama, Hiroyuki; Kitamura, Shinji; Takazawa, Yuki; Sugiyama, Hitoshi; Yamasaki, Yasushi; Makino, Hirofumi

    2004-07-01

    In the early stage of diabetic nephropathy (one of the major microvascular complications of diabetes) glomerular hyperfiltration and hypertrophy are observed. It is clinically important to regulate glomerular hypertrophy for preventing glomerulosclerosis. The number of glomerular endothelial cells is known to be increased in diabetic nephropathy associated with enlarged glomerular tufts, suggesting that the mechanism is similar to that of angiogenesis. Tumstatin peptide is an angiogenesis inhibitor derived from type IV collagen and inhibits in vivo neovascularization induced by vascular endothelial growth factor (VEGF), one of the mediators of glomerular hypertrophy in diabetic nephropathy. Here, we show the effect of tumstatin peptide in inhibiting alterations in early diabetic nephropathy. Glomerular hypertrophy, hyperfiltration, and albuminuria were suppressed by tumstatin peptide (1 mg/kg) in streptozotocin-induced diabetic mice. Glomerular matrix expansion, the increase of total glomerular cell number and glomerular endothelial cells (CD31 positive), and monocyte/macrophage accumulation was inhibited by tumstatin peptide. Increase in renal expression of VEGF, flk-1, and angiopoietin-2, an antagonist of angiopoietin-1, was inhibited by tumstatin treatment in diabetic mice. Alteration of glomerular nephrin expression, a podocyte protein crucial for maintaining glomerular filtration barrier, was recovered by tumstatin in diabetic mice. Taken together, these results demonstrate the potential use of antiangiogenic tumstatin peptide as a novel therapeutic agent in early diabetic nephropathy.

  10. The cellular lesion of humoral rejection: predominant recruitment of monocytes to peritubular and glomerular capillaries.

    PubMed

    Fahim, T; Böhmig, G A; Exner, M; Huttary, N; Kerschner, H; Kandutsch, S; Kerjaschki, D; Bramböck, A; Nagy-Bojarszky, K; Regele, H

    2007-02-01

    Accumulation of inflammatory cells within capillaries is a common morphologic feature of humoral renal allograft rejection and is most easily appreciated if it occurs in glomeruli. The aim of our study was to determine the amount and composition of immune cells within glomeruli and peritubular capillaries (PTC) in cellular and humoral allograft rejection. Immunofluorescent double-labeling for CD31 and CD3 or CD68 was used for phenotyping and enumerating immune cells within glomeruli and PTC. The major findings are: (1) accumulation of immune cells in PTC is far more common than it would be anticipated based on the assessment by conventional histology; (2) it is not the absolute number of immune cells accumulating within capillaries, but rather the composition of the intracapillary cell population that distinguishes humoral rejection from cellular rejection and (3) in C4d positive biopsies a predominantly monocytic cell population accumulates not only within glomeruli but also within PTC. The median value of monocyte/T-cell ratio within PTC was 2.3 in C4d positive biopsies but only 1 (p = 0.0008) in C4d negative biopsies. Given their prominent presence within capillaries and their extensive biological versatility monocytes might contribute to the capillary damage observed in acute and chronic allograft rejection.

  11. Functional principal component analysis of glomerular filtration rate curves after kidney transplant.

    PubMed

    Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo

    2017-01-01

    This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.

  12. Alport's syndrome with focal segmental glomerulosclerosis lesion - Pattern to recognize.

    PubMed

    Alsahli, Afnan A; Alshahwan, Sara I; Alotaibi, Amal O; Alsaad, Khaled O; Aloudah, Nourah; Farooqui, Mahfooz; Al Sayyari, Abdullah A

    2018-01-01

    The association between Alport's syndrome (AS) and focal segmental glomerulosclerosis (FSGS) in the same patient is complex and rarely reported. We report a case of a 42-year-old male presenting with proteinuria, microscopic hematuria, elevated serum creatinine and hypertension with unremarkable physical examination apart from obesity. The renal biopsy showed well-established FSGS pattern of injury with mild interstitial fibrosis and tubular atrophy, while the electron microscopic examination demonstrated glomerular basement membranes (GBM) changes compatible with AS. AS can be complicated by segmental glomerular scarring, which can mimic primary FSGS, while familial FSGS can result from mutations in collagen IV network of the GBM. This overlap can complicate histopathological interpretation of renal biopsy, which should be accompanied by mutational analysis for accurate diagnosis and proper therapeutic intervention.

  13. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.

    PubMed

    Kurihara, Hidetake; Sakai, Tatsuo

    2017-03-01

    The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.

  14. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    PubMed Central

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  15. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.

    PubMed

    Schermer, Bernhard; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Braun, Fabian; Schultze, Joachim L; Roodbergen, Marianne; Hoeijmakers, Jan Hj; Schumacher, Björn; Nürnberg, Peter; Dollé, Martijn Et; Benzing, Thomas; Müller, Roman-Ulrich; Kurschat, Christine E

    2013-08-16

    Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.

  16. Regulation and Function of TMEM16F in Renal Podocytes.

    PubMed

    Schenk, Laura K; Ousingsawat, Jiraporn; Skryabin, Boris V; Schreiber, Rainer; Pavenstädt, Hermann; Kunzelmann, Karl

    2018-06-18

    The Ca 2+ -activated phospholipid scramblase and ion channel TMEM16F is expressed in podocytes of renal glomeruli. Podocytes are specialized cells that form interdigitating foot processes as an essential component of the glomerular filter. These cells, which participate in generation of the primary urine, are often affected during primary glomerular diseases, such as glomerulonephritis and secondary hypertensive or diabetic nephropathy, which always leads to proteinuria. Because the function of podocytes is known to be controlled by intracellular Ca 2+ signaling, it is important to know about the role of Ca 2+ -activated TMEM16F in these cells. To that end, we generated an inducible TMEM16F knockdown in the podocyte cell line AB8, and produced a conditional mouse model with knockout of TMEM16F in podocytes and renal epithelial cells of the nephron. We found that knockdown of TMEM16F did not produce proteinuria or any obvious phenotypic changes. Knockdown of TMEM16F affected cell death of tubular epithelial cells but not of glomerular podocytes when analyzed in TUNEL assays. Surprisingly, and in contrast to other cell types, TMEM16F did not control intracellular Ca 2+ signaling and was not responsible for Ca 2+ -activated whole cell currents in podocytes. TMEM16F levels in podocytes were enhanced after inhibition of the endolysosomal pathway and after treatment with angiotensin II. Renal knockout of TMEM16F did not compromise renal morphology and serum electrolytes. Taken together, in contrast to other cell types, such as platelets, bone cells, and immune cells, TMEM16F shows little effect on basal properties of podocytes and does not appear to be essential for renal function.

  17. Autoimmunity to the alpha 3 chain of type IV collagen in glomerulonephritis is triggered by ‘autoantigen complementarity’

    PubMed Central

    Reynolds, John; Preston, Gloria A.; Pressler, Barrak M.; Hewins, Peter; Brown, Michael; Roth, Aleeza; Alderman, Elizabeth; Bunch, Donna; Jennette, J. Charles; Cook, H. Terence; Falk, Ronald J.; Pusey, Charles D.

    2015-01-01

    ‘Autoantigen complementarity’ is a theory proposing that the initiator of an autoimmune response is not necessarily the autoantigen or its molecular mimic, but may instead be a peptide that is ‘antisense/complementary’ to the autoantigen. We investigated whether such complementary proteins play a role in the immunopathogenesis of autoimmune glomerulonephritis. Experimental autoimmune glomerulonephritis, a model of anti-glomerular basement membrane (GBM) disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the α3 chain of type IV collagen. In this study, WKY rats were immunized with a complementary α3 peptide (c-α3-Gly) comprised of amino acids that ‘complement’ the well characterized epitope on α3(IV)NC1, pCol(24–38). Within 8 weeks post-immunization, these animals developed cresentic glomerulonephritis, similar to pCol(24–38)-immunized rats, while animals immunized with scrambled peptide were normal. Anti-idiotypic antibodies to epitopes from c-α3-Gly-immunized animals were shown to be specific for α3 protein, binding in a region containing sense pCol(24–38) sequence. Interestingly, anticomplementary α3 antibodies were identified in sera from patients with anti-GBM disease, suggesting a role for ‘autoantigen complementarity’ in immunopathogenesis of the human disease. This work supports the idea that autoimmune glomerulonephritis can be initiated through an immune response against a peptide that is anti-sense or complementary to the autoantigen. The implications of this discovery may be far reaching, and other autoimmune diseases could be due to responses to these once unsuspected ‘complementary’ antigens. PMID:25841937

  18. Clinicopathological study of glomerular diseases associated with sarcoidosis: a multicenter study

    PubMed Central

    2013-01-01

    Background The association between sarcoidosis and glomerular diseases has not been extensively investigated in a large series and the potential features of this uncommon association remain to be determined. Methods We retrospectively identified 26 patients with biopsy-proven glomerular lesions that occurred in a sarcoidosis context. Potential remission of glomerular disease and sarcoidosis under specific treatment (steroid and/or immunosuppressive agents) was recorded for all patients. Demographic, clinical and biological characteristics were assessed at the time of kidney biopsy for each patient. Therapeutic data were analyzed for all patients. Results Glomerular disease occurred after the diagnosis of sarcoidosis in 11 of 26 cases (42%) (mean delay of 9.7 years). In six patients (23%), the glomerulopathy preceded the sarcoidosis diagnosis (mean delay 8 years). In the last nine patients (35%), both conditions occurred simultaneously. The most frequent glomerular disease occurring in sarcoidosis patients was membranous nephropathy in eleven cases. Other glomerular lesions included IgA nephropathy in six cases, focal segmental glomerulosclerosis in four patients, minimal change nephrotic syndrome for three patients and proliferative lupus nephritis in two patients. Granulomatous interstitial nephritis was associated with glomerular disease in six patients and was exclusively found in patients in whom the both disease occurred simultaneously. In nine patients with simultaneous glomerular and sarcoidosis diseases, we observed a strong dissociation between glomerular disease and sarcoidosis in terms of steroid responsiveness. At the end of the follow-up (mean of 8.4 years), six patients had reached end-stage renal disease and three patients had died. Conclusions A wide spectrum of glomerular lesions is associated with sarcoidosis. The close temporal relationship observed in some patients suggests common causative molecular mechanisms of glomerular injury but complete remission of both diseases in response to exclusive steroid therapy is infrequent. PMID:23631446

  19. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.

  20. Decoy receptor 3 inhibits renal mononuclear leukocyte infiltration and apoptosis and prevents progression of IgA nephropathy in mice.

    PubMed

    Ka, Shuk-Man; Hsieh, Tai-Tzu; Lin, Shih-Hua; Yang, Sung-Sen; Wu, Chin-Chen; Sytwu, Huey-Kang; Chen, Ann

    2011-12-01

    The progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis, is associated with high levels of mononuclear leukocyte infiltration into the kidney. These cells consist mainly of T cells and macrophages. Our previous study showed that a decoy receptor 3 (DCR3) gene therapy can prevent the development of a mouse autoimmune glomerulonephritis model by its potent immune modulating effects (Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. J Am Soc Nephrol 18: 2473-2485, 2007). Here, we tested the hypothesis that DCR3 might prevent the progression of IgAN, an immune complex-mediated primary glomerulonephritis, by inhibiting T cell activation, renal T cell/macrophage infiltration, and protecting the kidney from apoptosis. We used a progressive IgAN (Prg-IgAN) model in B cell-deficient mice, because the mice are characterized by a dramatic proliferation of activated T cells systemically and progressive NF-κB activation in the kidney. We treated the animals with short-term gene therapy with DCR3 plasmids by hydrodynamics-based gene delivery. When the mice were euthanized on day 21, we found that, compared with empty vector-treated (disease control) Prg-IgAN mice, DCR3 gene therapy resulted in 1) systemic inhibition of T cell activation and proliferation; 2) lower serum levels of proinflammatory cytokines; 3) improved proteinuria, renal function, and renal pathology (inhibiting the development of marked glomerular proliferation, crescent formation, glomerulosclerosis, and interstitial inflammation); 5) suppression of T cell and macrophage infiltration into the periglomerular interstitium of the kidney; and 5) a reduction in apoptotic figures in the kidney. On the basis of these findings, DCR3 might be useful therapeutically in preventing the progression of IgAN.

  1. Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice*

    PubMed Central

    Elimam, Hanan; Papillon, Joan; Kaufman, Daniel R.; Guillemette, Julie; Aoudjit, Lamine; Gross, Richard W.; Takano, Tomoko; Cybulsky, Andrey V.

    2016-01-01

    Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria. PMID:27226532

  2. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases.

    PubMed

    Müller-Deile, Janina; Dannenberg, Jan; Schroder, Patricia; Lin, Meei-Hua; Miner, Jeffrey H; Chen, Rongjun; Bräsen, Jan-Hinrich; Thum, Thomas; Nyström, Jenny; Staggs, Lynne Beverly; Haller, Hermann; Fiedler, Jan; Lorenzen, Johan M; Schiffer, Mario

    2017-10-01

    The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease

    PubMed Central

    Orekhov, Alexander N.; Bobryshev, Yuri V.; Sobenin, Igor A.; Melnichenko, Alexandra A.; Chistiakov, Dimitry A.

    2014-01-01

    In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. PMID:25050779

  4. Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis.

    PubMed

    Fu, Yuyang; Du, Yong; Mohan, Chandra

    2007-08-01

    Lupus nephritis is an immune-mediated disease, where antibodies and T cells both play pathogenic roles. Since spontaneous lupus nephritis in mouse models takes 6-12 months to manifest, there is an urgent need for a mouse model that can be used to delineate the pathogenic processes that lead to immune nephritis, over a quicker time frame. We propose that the experimental anti-glomerular basement membrane (GBM) disease model might be a suitable tool for uncovering some of the molecular steps underlying lupus nephritis. This article reviews the current evidence that supports the use of the experimental anti-GBM nephritis model for studying spontaneous lupus nephritis. Importantly, out of about 25 different molecules that have been specifically examined in the experimental anti-GBM model and also spontaneous lupus nephritis, all influence both diseases concordantly, suggesting that the experimental model might be a useful tool for unraveling the molecular basis of spontaneous lupus nephritis. This has important clinical implications, both from the perspective of genetic susceptibility as well as clinical therapeutics.

  5. Experimental anti-GBM nephritis as an analytical tool for studying spontaneous lupus nephritis.

    PubMed

    Du, Yong; Fu, Yuyang; Mohan, Chandra

    2008-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that results in immune-mediated damage to multiple organs. Among these, kidney involvement is the most common and fatal. Spontaneous lupus nephritis (SLN) in mouse models has provided valuable insights into the underlying mechanisms of human lupus nephritis. However, SLN in mouse models takes 6-12 months to manifest; hence there is clearly the need for a mouse model that can be used to unveil the pathogenic processes that lead to immune nephritis over a shorter time frame. In this article more than 25 different molecules are reviewed that have been studied both in the anti-glomerular basement membrane (anti-GBM) model and in SLN and it was found that these molecules influence both diseases in a parallel fashion, suggesting that the two disease settings share common molecular mechanisms. Based on these observations, the authors believe the experimental anti-GBM disease model might be one of the best tools currently available for uncovering the downstream molecular mechanisms leading to SLN.

  6. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    PubMed Central

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  7. Application of the solid phase C1q and Raji cell radioimmune assays for the detection of circulating immune complexes in glomerulonephritis.

    PubMed Central

    Tung, K S; Woodroffe, A J; Ahlin, T D; Williams, R C; Wilson, C B

    1978-01-01

    The C1q solid phase and Raji cell radioimmune assays were used to determine the frequency of detectable circulating immune complexes in patients with glomerulonephritis. In this study, 46% of 56 patients with glomerulonephritis had evidence of circulating immune complexes. More important, circulating immune complexes were associated with some, but not other, types of glomerulonephritis. Thus, immune complexes were detected in lupus glomerulonephritis (9/9 patients), rapidly progressive glomerulonephritis (5/6 patients), and acute nephritis (5/6 patients), but not in IgA-IgG glomerulonephritis (0/7 patients), or membranous glomerulonephritis (0/8 patients). The Raji cell radioimmune assay and the C1q solid phase radioimmune assay showed concordance of 79% in the detection of circulating immune complexes. Serial determinations, in general, showed either persistence of a negative or positive result of conversion of positive to negative. PMID:659639

  8. Glomerular enlargement assessed by paired donor and early protocol renal allograft biopsies.

    PubMed

    Alperovich, Gabriela; Maldonado, Rafael; Moreso, Francesc; Fulladosa, Xavier; Grinyó, Josep M; Serón, Daniel

    2004-04-01

    The aim of the study was to evaluate the evolution of glomerular volume 4 months after transplantation. Mean glomerular volume (Vg) was estimated according to the Weibel and Gomez method in a donor and a protocol biopsy done at 139 +/- 58 d in 41 stable grafts. Biopsies were also evaluated according to the Banff schema. Vg increased after transplantation from 4.1 +/- 1.4 to 5.1 +/- 2.4 x 10(6) micro3 (p=0.02). In patients with chronic allograft nephropathy in the protocol biopsy (n=14), the Vg enlargement was -0.3 +/-x 10(6) micro3 while in patients without chronic allograft nephropathy (n=27), glomerular enlargement was 1.6 +/- 2.1 x 10(6) micro3 (p=0.01). There was a negative association between glomerular volume in the donor biopsy and glomerular enlargement after transplantation (R=- 0.34, p=0.03). Multivariate regression analysis confirmed that Vg in the donor biopsy and chronic allograft nephropathy in the protocol biopsy were independent predictors of glomerular enlargement after transplantation (R=0.48, p=0.01). Moreover, Vg in the protocol biopsy correlated with creatinine clearance at the time of biopsy (R=0.38, p=0.01). Glomeruli enlarge after transplantation and glomerular volume after 4 months correlates with creatinine clearance, suggesting that glomerular enlargement is a necessary condition for renal adaptation to the recipient. Glomerular enlargement is impaired in patients with chronic allograft nephropathy.

  9. Muscarinic Receptors Modulate Dendrodendritic Inhibitory Synapses to Sculpt Glomerular Output

    PubMed Central

    Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus

    2015-01-01

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. PMID:25855181

  10. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    PubMed

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  11. Hemoglobin Decline in Children with Chronic Kidney Disease: Baseline Results from the Chronic Kidney Disease in Children Prospective Cohort Study

    PubMed Central

    Fadrowski, Jeffrey J.; Pierce, Christopher B.; Cole, Stephen R.; Moxey-Mims, Marva; Warady, Bradley A.; Furth, Susan L.

    2008-01-01

    Background and objectives: The level of glomerular filtration rate at which hemoglobin declines in chronic kidney disease is poorly described in the pediatric population. Design, setting, participants, & measurements: This cross-sectional study of North American children with chronic kidney disease examined the association of glomerular filtration rate, determined by the plasma disappearance of iohexol, and hemoglobin concentration. Results: Of the 340 patients studied, the mean age was 11 ± 4 yr, the mean glomerular filtration rate was 42 ± 14 ml/min per 1.73 m2, and the mean hemoglobin was 12.5 ± 1.5. Below a glomerular filtration rate of 43, the hemoglobin declined by 0.3 g/dl (95% confidence interval −0.2 to −0.5) for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Above a glomerular filtration rate of 43 ml/min per 1.73 m2, the hemoglobin showed a nonsignificant decline of 0.1 g/dl for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Conclusions: In pediatric patients with chronic kidney disease, hemoglobin declines as an iohexol-determined glomerular filtration rate decreases below 43 ml/min per 1.73 m2. Because serum creatinine–based estimated glomerular filtration rates may overestimate measured glomerular filtration rate in this population, clinicians need to be mindful of the potential for hemoglobin decline and anemia even at early stages of chronic kidney disease, as determined by current Schwartz formula estimates. Future longitudinal analyses will further characterize the relationship between glomerular filtration rate and hemoglobin, including elucidation of reasons for the heterogeneity of this association among individuals. PMID:18235140

  12. Podocalyxin EBP50 Ezrin Molecular Complex Enhances the Metastatic Potential of Renal Cell Carcinoma Through Recruiting Rac1 Guanine Nucleotide Exchange Factor ARHGEF7

    PubMed Central

    Hsu, Yung-Ho; Lin, Wei-Ling; Hou, Yi-Ting; Pu, Yeong-Shiau; Shun, Chia-Tung; Chen, Chi-Ling; Wu, Yih-Yiing; Chen, Jen-Yau; Chen, Tso-Hsiao; Jou, Tzuu-Shuh

    2010-01-01

    Podocalyxin was initially identified in glomerular podocytes to critically maintain the structural and functional integrity of the glomerular ultrafiltrative apparatus. Lately, it has emerged as a malignant marker in tumors arising from a variety of tissue origins. By immunohistochemistry, we identified that 9.6% of renal cell carcinoma patients overexpress this protein. This subset of patients had significantly shorter disease-specific and overall survivals, and, importantly, we established podocalyxin overexpression as an independent prognostic factor for latent distant metastasis with multivariate analysis. Podocalyxin down-regulation by small interfering RNA led to defective migration in model renal tubular cells, which was corrected by re-expression of podocalyxin. The activity of the small GTPase Rac1, a well-characterized modulator of cell migration, was diminished by podocalyxin knock-down. Conversely, podocalyxin overexpression in human embryonic kidney cells up-regulated Rac1 activity, which depended on a complex formed by podocalyxin, ERM-binding phosphoprotein 50, ezrin, and ARHGEF7, a Rac1 activator. Therefore, podocalyxin can serve as a biomarker to identify renal cell carcinoma patients with higher metastatic potential for more aggressive intervention at earlier clinical stages. PMID:20395446

  13. Glomerulopathy Associated with Parasitic Infections

    PubMed Central

    van Velthuysen, M.-L. F.; Florquin, S.

    2000-01-01

    Although parasitic infections do not usually present with disturbance in renal function, glomerular lesions can be seen in most of these infections. The glomerular lesions observed in parasitic infections cover the whole range of glomerular lesions known, but most of them are proliferative. Little is known of the exact pathogenic mechanisms. In this review, we try to explain the glomerular lesions associated with parasitic infections in terms of the specific immunologic events observed during these diseases against the background of recent developments in the general knowledge of the pathogenesis of glomerular disease. PMID:10627491

  14. Novel roles of complement in renal diseases and their therapeutic consequences.

    PubMed

    Wada, Takehiko; Nangaku, Masaomi

    2013-09-01

    The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.

  15. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease

    PubMed Central

    George, Britta; Verma, Rakesh; Soofi, Abdulsalam A.; Garg, Puneet; Zhang, Jidong; Park, Tae-Ju; Giardino, Laura; Ryzhova, Larisa; Johnstone, Duncan B.; Wong, Hetty; Nihalani, Deepak; Salant, David J.; Hanks, Steven K.; Curran, Tom; Rastaldi, Maria Pia; Holzman, Lawrence B.

    2012-01-01

    The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation — markers of focal adhesion complex–mediated Crk-dependent signaling — was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2–dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases. PMID:22251701

  16. Immune complexes in serum of rats during infection with Plasmodium berghei.

    PubMed

    Alder, J D; Kreier, J P

    1989-01-01

    Large amounts of immune complexes were present in the serum of infected rats early in infection when parasitemias were low. As the infection progressed and parasitemia increased and then decreased, the amounts of immune complexes in the serum also fell. This result suggests that increased efficiency of complex clearance was an important factor in determining the levels of immune complexes in the serum. In high performance liquid chromatography (HPLC), the complexes in the serum migrated as a peak with material of 350 kDa and greater in mass. They sedimented in a sucrose gradient as a band with a sedimentation coefficient of 22 s, which was calculated to yield a mass of approximately 1100 kDa. Immunoelectrophoresis and radial immunodiffusion showed that IgG was the major immunoglobulin in the complexes. As the IgG content of the complexes increased, the levels of complexes in the serum generally decreased. HPLC analysis of precipitated complexes suggested that they contained loosely bound albumin. Serum proteins were affected by the infection. A depletion of free immunoglobulin was observed during the initial period of immune complex formation.

  17. Vitamin B6 status, immune response and inflammation markers in kidney transplant recipients treated with polyclonal anti-thymocyte globulin.

    PubMed

    Jankowska, M; Trzonkowski, P; Dębska-Ślizień, A; Marszałł, M; Rutkowski, B

    2014-10-01

    Vitamin B6 status has an impact on the body's inflammatory and immune responses. Immunosuppressive therapy may influence vitamin B6 metabolism in kidney transplant recipients. Treatment with polyclonal anti-thymocyte globulin (ATG) is associated with long-term changes in inflammatory and immune parameters. It is not known if ATG therapy also may have an impact on vitamin B6 status in kidney transplant recipients. We aimed to analyze the impact of therapy with ATG on vitamin B6 status, immune response, and the profile of inflammatory cytokines. This was a retrospective, observational study that included 44 kidney allograft recipients. Twenty patients received induction therapy with ATG (6 to 24 months before enrollment). Twenty-four patients constituted the control group, matched with respect to time since transplantation. The B6 vitamers, total lymphocyte count, CD3 percentage, interleukin (IL)-6, -7, and -10, transforming growth factor β, interferon γ, and chemokine ligand 21 were analyzed in a study group. All indicators of vitamin B6 status were lower in the ATG group than in the control group. There were also significant differences with respect to immune response (significantly lower total lymphocyte count and CD3 in the ATG group) and inflammatory status (significantly higher IL-6 and IL-10 in the ATG group). Vitamin B6 vitamers and derivatives were not related to lymphocyte count and cytokine levels or to estimated glomerular filtration rate and age of the study population. Vitamin B6 stores and active forms are lower in kidney transplant recipients treated with ATG. ATG therapy promotes CD3 and total lymphocyte depletion and increases indicators of inflammation. We found no associations between vitamers of B6, immune response cells, and inflammatory cytokines in study population.

  18. A Decrease in Glomerular Endothelial Cells and Endothelial-mesenchymal Transition during Glomerulosclerosis in the Tensin2-deficient Mice (ICGN strain).

    PubMed

    Kato, Takashi; Mizuno, Shinya; Ito, Akihiko

    2014-01-01

    The ICR-derived glomerulonephritis (ICGN) mouse is a unique model of nephrotic syndrome, and albuminuria becomes evident in a neonatal stage, due to a genetic mutation of tensin2. We previously provided evidence that an apparent decrease in nephrin, caused by tensin2-deficiencient states, leads to podocytopathy, albuminuria and eventually, chronic renal failure. In general, glomerular endothelial cells (ECs) function as a barrier through tight attachment of glomerular basement membrane to podocytes, while decreased ECs can worsen renal failure. Nevertheless, it is still unknown whether glomerular ECs are altered under the tensin-2-deficient states during the manifestation of chronic renal failure. Herein, we examined the changes of glomerular ECs, with focus on the expression of PECAM-1 and VE-cadherin (EC-specific markers), or of α-SMA (myofibroblast marker) in this mouse model by histological methods. Compared with the non-nephrotic (+/nep) mice, the nephrotic (nep/nep) mice exhibited the reduced expression of PECAM-1, or of VE-cadherin, in glomerular area. Notably, some glomerular ECs showed the positive stainings for both PECAM-1 and α-SMA, suggesting endothelial-to-mesenchymal transition (EndoMT) during progression of glomerular sclerosis. This is the first report showing that a decrease in glomerular ECs, at least in part, via EndoMT is involved in tensin2-deficient pathological conditions.

  19. Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface by antibodies when schizonts mature in the presence of growth inhibitory immune serum.

    PubMed

    Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M

    1986-03-15

    Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havarinasab, S.; Hultman, P.

    Inorganic mercury may aggravate murine systemic autoimmune diseases which are either spontaneous (genetically determined) or induced by non-genetic mechanisms. Organic mercury species, the dominating form of mercury exposure in the human population, have not been examined in this respect. Therefore, ethyl mercury in the form of thimerosal, a preservative recently debated as a possible health hazard when present in vaccines, was administered in a dose of 0.156-5 mg/L drinking water to female (NZB x NZW)F1 (ZBWF1) mice. These mice develop an age-dependent spontaneous systemic autoimmune disease with high mortality primarily due to immune-complex (IC) glomerulonephritis. Five mg thimerosal/L drinking watermore » (295 {mu}g Hg/kg body weight (bw)/day) for 7 weeks induced glomerular, mesangial and systemic vessel wall IC deposits and antinuclear antibodies (ANA) which were not present in the untreated controls. After 22-25 weeks, the higher doses of thimerosal had shifted the localization of the spontaneously developing renal glomerular IC deposits from the capillary wall position seen in controls to the mesangium. The altered localization was associated with less severe histological kidney damage, less proteinuria, and reduced mortality. The effect was dose-dependent, lower doses having no effect compared with the untreated controls. A different effect of thimerosal treatment was induction of renal and splenic vessel walls IC deposits. Renal vessel wall deposits occurred at a dose of 0.313-5 mg thimerosal/L (18-295 {mu}g Hg/kg bw/day), while splenic vessel wall deposits developed also in mice given the lowest dose of thimerosal, 0.156 mg/L (9 {mu}g Hg/kg bw/day). The latter dose is 3- and 15-fold lower than the dose of Hg required to induce vessel wall IC deposits in genetically susceptible H-2 {sup s} mice by HgCl{sub 2} and thimerosal, respectively. Further studies on the exact conditions needed for induction of systemic IC deposits by low-dose organic mercurials in autoimmune-prone individuals, as well as the potential effect of these deposits on the vessel walls, are warranted.« less

  1. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.

  2. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies. PMID:27227331

  3. Formation of infectious dengue virus-antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus.

    PubMed

    Moi, Meng Ling; Ami, Yasushi; Shirai, Kenji; Lim, Chang-Kweng; Suzaki, Yuriko; Saito, Yuka; Kitaura, Kazutaka; Saijo, Masayuki; Suzuki, Ryuji; Kurane, Ichiro; Takasaki, Tomohiko

    2015-02-01

    Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.

  4. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    PubMed

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  5. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index.

    PubMed

    Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F

    2010-11-01

    Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.

  6. Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice

    PubMed Central

    Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker

    2013-01-01

    TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211

  7. Simultaneous assessment of glomerular filtration and barrier function in live zebrafish

    PubMed Central

    Kotb, Ahmed M.; Müller, Tobias; Xie, Jing; Anand-Apte, Bela; Endlich, Nicole

    2014-01-01

    The zebrafish pronephros is a well-established model to study glomerular development, structure, and function. A few methods have been described to evaluate glomerular barrier function in zebrafish larvae so far. However, there is a need to assess glomerular filtration as well. In the present study, we extended the available methods by simultaneously measuring the intravascular clearances of Alexa fluor 647-conjugated 10-kDa dextran and FITC-conjugated 500-kDa dextran as indicators of glomerular filtration and barrier function, respectively. After intravascular injection of the dextrans, mean fluorescence intensities of both dextrans were measured in the cardinal vein of living zebrafish (4 days postfertilization) by confocal microscopy over time. We demonstrated that injected 10-kDa dextran was rapidly cleared from the circulation, became visible in the lumen of the pronephric tubule, quickly accumulated in tubular cells, and was detectably excreted at the cloaca. In contrast, 500-kDa dextran could not be visualized in the tubule at any time point. To check whether alterations in glomerular function can be quantified by our method, we injected morpholino oligonucleotides (MOs) against zebrafish nonmuscle myosin heavy chain IIA (zMyh9) or apolipoprotein L1 (zApol1). While glomerular filtration was reduced in zebrafish nonmuscle myosin heavy chain IIA MO-injected larvae, glomerular barrier function remained intact. In contrast, in zebrafish apolipoprotein L1 MO-injected larvae, glomerular barrier function was compromised as 500-kDa dextran disappeared from the circulation and became visible in tubular cells. In summary, we present a novel method that allows to simultaneously assess glomerular filtration and barrier function in live zebrafish. PMID:25298528

  8. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  9. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

    PubMed Central

    Blattner, Simone M.; Hodgin, Jeffrey B.; Nishio, Masashi; Wylie, Stephanie; Saha, Jharna; Soofi, Abdul; Vining, Courtenay; Randolph, Ann; Herbach, Nadja; Wanke, Ruediger; Atkins, Kevin B.; Kang, Hee Gyung; Henger, Anna; Brakebusch, Cord; Holzman, Lawrence B.; Kretzler, Matthias

    2013-01-01

    Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte-specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed and cofilin was de-phosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiologic steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury. PMID:23677246

  10. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility.

    PubMed

    Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse

    2017-03-01

    The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.

  11. Feed-back between geriatric syndromes: general system theory in geriatrics.

    PubMed

    Musso, Carlos G; Núñez, Juan F Macías

    2006-01-01

    Geriatrics has described three entities: confusional syndrome, incontinente and gait disorders, calling them geriatric giants. Aging process also induces changes in renal physiology such as glomerular filtration rate reduction, and alteration in water and electrolytes handling. These ageing renal changes have been named as nephrogeriatric giants. These two groups of giants, geriatric and nephrogeriatric, can predispose and potentiate each other leading old people to fatal outcomes. These phenomenon of feed-back between these geriatric syndromes has its roots in the loss of complexity that the ageing process has. Complexity means that all the body systems work harmoniously. The process of senescence weakens this coordination among systems undermining complexity and making the old person frail.

  12. Distribution of endogenous albumin in the glomerular wall of proteinuric patients.

    PubMed Central

    Russo, P. A.; Bendayan, M.

    1990-01-01

    Glomerular proteinuria seems to be related, in part, to loss or impairment of the normal barrier function of the glomerular capillary wall. To investigate the functional properties of this barrier, endogenous albumin was revealed in the glomerular wall of proteinuric patients and compared with a nonproteinuric control by immunoelectron microscopy using the protein A-gold method. In the control biopsy, peaks of albumin accumulation were noted in the subendothelial area and in the inner portion of the lamina densa, with gradual tapering of the distribution toward the epithelial side of the basement membrane. The urinary space and epithelial cells were weakly labeled. In tissues from proteinuric patients, albumin was distributed throughout the entire width of the glomerular basement membrane, although the pattern of accumulation varied between patients. The urinary space showed significant labeling associated with some flocculent material. Mesangial areas were heavily labeled in tissues from both control and proteinuric patients. In the latter, lysozomes in glomerular and tubular epithelial cells also accumulated albumin, which is evidence of reabsorption. These results reveal the existence, in normal conditions, of a barrier located in the subendothelial area of the glomerular basement membrane, the loss of which, as in the idiopathic nephrotic syndrome, leads to diffuse distribution of albumin in the glomerular capillary wall. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2260634

  13. Angiotensin-I is Largely Converted to Angiotensin-(1-7) and Angiotensin-(2-10) by Isolated Rat Glomeruli

    PubMed Central

    JC, Velez; KJ, Ryan; CE, Harbeson; AM, Bland; MN, Budisavljevic; JM, Arthur; WR, Fitzgibbon; JR, Raymond; MG, Janech

    2009-01-01

    Intraglomerular renin-angiotensin system (RAS) enzyme activities have been examined previously using glomerular lysates and immune-based assays. However, preparation of glomerular extracts compromises the integrity of their anatomic architecture. In addition, antibody-based assays focus on angiotensin (ANG)-II detection, ignoring the generation of other ANG-I-derived metabolites, some of which may cross-react with ANG-II. Therefore, our aim was to examine the metabolism of ANG-I in freshly isolated intact glomeruli using MALDI-TOF mass spectrometry (MS) as an analytical method. Glomeruli from male Sprague-Dawley rats were isolated by sieving and incubated in Krebs buffer in the presence of 1 μM ANG-I for 15 - 90 minutes, with or without various peptidase inhibitors. Peptide sequences were confirmed by MALDI-TOF MS/MS or linear-trap-quadrupole MS. Peaks were quantified using customized valine-13C.15N-labeled peptides as standards. The most prominent peaks resulting from ANG-I cleavage were 899 and 1181 m/z, corresponding to ANG-1-7 and ANG-2-10, respectively. Smaller peaks for ANG-II, ANG-1-9 and ANG-3-10 also were detected. The disappearance of ANG-I was significantly reduced during inhibition of aminopeptidase-A or neprilysin. In contrast, captopril did not alter ANG-I degradation. Furthermore, during simultaneous inhibition of aminopeptidase-A and neprilysin, the disappearance of ANG-I was markedly attenuated compared to all other conditions. These results suggest that there is prominent intraglomerular conversion of ANG-I to ANG-2-10 and ANG-1-7, mediated by aminopeptidase-A and neprilysin, respectively. Formation of these alternative ANG peptides may be critical to counterbalance the local actions of ANG-II. Enhancement of these enzymatic activities may constitute potential therapeutic targets for ANG-II mediated glomerular diseases. PMID:19289651

  14. Transforming growth factor-beta production in anti-glomerular basement membrane disease in the rabbit.

    PubMed Central

    Coimbra, T.; Wiggins, R.; Noh, J. W.; Merritt, S.; Phan, S. H.

    1991-01-01

    The purpose of this study was to assay for the presence of collagen synthesis stimulatory activity in the kidney during immune-induced renal injury that results in severe fibrosis in both glomerular and interstitial compartments. A model of antiglomerular basement (anti-GBM) disease in the rabbit was induced on day 0 by the injection of anti-GBM antibody and renal cortex tissues were then sampled at various time points. Only conditioned media prepared from diseased renal cortical samples showed collagen synthesis stimulatory activity when tested on rabbit mesangial cells. The activity had an estimated molecular weight range of 16 to 25 kd and was neutralized by antibody to transforming growth factor-beta (TGF-beta). A standard assay for TGF-beta using a mink lung epithelial cell line confirmed the increase in TGF-beta activity in conditioned media of diseased cortex from day 7 and day 14 animals, which was not significantly activated by previous acidification. This suggests that most of the TGF-beta present in renal conditioned media was in the active form. The increase in renal cortical secretion of active TGF-beta was accompanied by increases in renal cortical TGF-beta mRNA content on days 4 and 7 after induction, with subsequent return to control levels. A similar increase in TGF-beta activity was present in nonacidified conditioned media of purified glomeruli from diseased days 7 and 14 animals, which was also accompanied by significant increases in TGF-beta mRNA. However with acidification no significant differences were noted between control and diseased samples, suggesting the presence of substantial latent TGF-beta activity in control glomerular conditioned media. These same control-conditioned media contained inhibitor activity for added exogenous TGF-beta. These results support the conclusion that the association between increased TGF-beta secretion and increased renal cortical collagen synthesis in this model is consistent with a role for this cytokine in directing fibrogenesis in the kidney. Images Figure 6 PMID:1987768

  15. The Macrophage in the Development of Experimental Crescentic Glomerulonephritis

    PubMed Central

    Thomson, Napier M.; Holdsworth, Stephen R.; Glasgow, Eric F.; Atkins, Robert C.

    1979-01-01

    The role played by the macrophage in the development of injury in rabbit nephrotoxic nephritis (NTN) has been assessed by electron microscopy and glomerular culture of renal tissue obtained by several biopsies during the course of the disease. These observations have been correlated with the other immune, cellular, and biochemical events occurring in the glomerulus, ie, deposition of immunoglobulin and complement, proteinuria, polymorphonuclear leukocyte (PMN) exudation, fibrin deposition, crescent formation, and renal failure. A biphasic macrophage accumulation was detected, corresponding to the heterologous and autologous phases of the disease. In the autologous or crescentic phase, macrophages accumulated within the glomerular tuft from Day 5; their appearance coincided with the accumulation of PMN and development of proteinuria. Fibrin deposition in Bowman's space, which commenced on Days 6 and 7, was rapidly followed by the migration of macrophages from the glomeruli into Bowman's space. Within Bowman's space, macrophages were observed to phagocytose fibrin, transform into epithelioid and giant cells, and accumulate to form a substantial proportion of the cells forming the crescent. The inflammatory process of PMN exudation, macrophage accumulation, fibrin deposition, and crescent formation and the degree of renal failure reached a maximum by Days 12 to 14. Thereafter, resolution of the inflammatory process occurred so that by Day 40 macrophages had disappeared from the glomeruli. However, varying degrees of glomerular damage and renal failure persisted, occurring largely as a result of glomerulosclerosis and sclerosis of crescents. The tissue culture studies also demonstrated mesangial cell proliferation during the inflammatory process but did not show any abnormality of epithelial cell activity. This study demonstrates that the macrophages participate in NTN by accumulating in damaged glomeruli then migrating into Bowman's space (probably in response to fibrin deposition) where they undergo granulomatous transformation and accumulate, contributing to crescent formation. ImagesFigure 2Figure 3Figure 4Figure 1 PMID:371409

  16. IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    PubMed Central

    Rigothier, Claire; Auguste, Patrick; Welsh, Gavin I.; Lepreux, Sébastien; Deminière, Colette; Mathieson, Peter W.; Saleem, Moin A.; Ripoche, Jean; Combe, Christian

    2012-01-01

    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties. PMID:22662192

  17. Podocyte cytoskeleton is connected to the integral membrane protein podocalyxin through Na+/H+-exchanger regulatory factor 2 and ezrin.

    PubMed

    Takeda, Tetsuro

    2003-12-01

    During development, glomerular visceral epithelial cells, or podocytes, undergo extensive morphologic changes necessary for the creation of the glomerular filter. These changes include formation of interdigitating foot processes, replacement of tight junctions with slit diaphragms, and the concomitant opening of filtration slits. It was postulated previously and confirmed recently that podocalyxin, a sialomucin, plays a major role in keeping the urinary space open by virtue of the physicochemical properties of its highly negatively charged ectodomain. By a cell aggregation assay, the expression level of podocalyxin correlated closely with the anti-adhesion effect. Treatment of the cells with sialidase reversed the inhibitory effect of podocalyxin, indicating that sialic acid residue is required for inhibition of cell adhesion. In addition to its ectodomain, the highly conserved cytoplasmic tail of podocalyxin may contribute to the unique organization of podocytes. By immunocytochemistry, it was shown that two cytosolic adaptor proteins, Na(+)/H(+)-exchanger regulatory factor 2 (NHERF2) and ezrin, colocalize with podocalyxin along the apical plasma membrane of podocytes, where they form a co-immunoprecipitable complex. Moreover, the podocalyxin/NHERF2 /ezrin complex interacts with the actin cytoskeleton, and this interaction is disrupted in pathologic conditions associated with changes in the foot processes, indicating its importance in maintaining the unique organization of this epithelium. Further studies will be needed to identify the signaling molecules responsible for the regulation of this complex in podocyte damage.

  18. Immune complex-induced human monocyte procoagulant activity. I. a rapid unidirectional lymphocyte-instructed pathway.

    PubMed

    Schwartz, B S; Edgington, T S

    1981-09-01

    It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.

  19. NZB/NZW F1 mouse nephritis and immune response are not changed by treatment with a 15-lipoxygenase derivative.

    PubMed

    Aldigier, J C; Cook, J; Delebassée, S; Guibert, F; Touchard, G; Juzan, M; Gualde, N

    1992-10-01

    15-HETE is an arachidonic acid derivative issued from the 15 lipoxygenase pathway. This fatty acid possesses immunomodulatory capabilities since it was reported that it generates CD8 + suppressor T-cells either in vitro or ex vivo. The aim of the present report was to study if the suppressive capabilities of 15-HETE were able to influence the onset of the NZB/NZW Fl auto-immune disease. For that purpose we produced 15-HETE and injected the eicosanoid twice a week to NZB/WFI mice for 40 weeks. During the 15-HETE treatment of the animals it was observed an augmentation of the proliferative response of lectin-stimulated splenocytes (at weeks 20 and 30) then the thymidine uptake decreased (at week 40). In fact we observed that among 15-HETE treated mice the evolution of the nephropathy was not changed, the 'glomerular activity score' remained the same for the treated animals compared to controls. On the contrary antinuclear antibodies occurred earlier even if in some experiments the generation of CD8 + cells was demonstrated.

  20. The complex field of interplay between vasoactive agents.

    PubMed

    Hansen, Pernille B

    2009-11-01

    Lai et al. provide important new information regarding the interaction between the sympathetic and renin-angiotensin systems in the regulation of glomerular afferent arteriolar contractility. Their study demonstrates a calcium-independent enhanced contractile response to angiotensin II following norepinephrine administration. The interplay between the norepinephrine- and angiotensin II-stimulated pathways could potentially be important in physiological as well as pathophysiological situations with increased sympathetic nervous system activity, such as hypertension.

  1. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  2. IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Dahlin, Joakim S.; Ivarsson, Martin A.; Heyman, Birgitta; Hallgren, Jenny

    2011-01-01

    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma. PMID:21625525

  3. Different methods of hilar clamping during partial nephrectomy: Impact on renal function.

    PubMed

    Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol

    2014-03-01

    To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.

  4. Immunization of complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2002-03-01

    Complex networks such as the sexual partnership web or the Internet often show a high degree of redundancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environment for the spreading of infective agents. Here we show that the random uniform immunization of individuals does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealistically high densities of randomly immunized individuals. The absence of any critical immunization threshold is due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In particular, targeted immunization schemes, based on the nodes' connectivity hierarchy, sharply lower the network's vulnerability to epidemic attacks.

  5. Histopathology of Incidental Findings in Cynomolgus Monkeys (Macaca Fascicularis) Used in Toxicity Studies

    PubMed Central

    Sato, Junko; Doi, Takuya; Kanno, Takeshi; Wako, Yumi; Tsuchitani, Minoru; Narama, Isao

    2012-01-01

    The purpose of our publication is to widely communicate pictures of spontaneous findings occurring in cynomolgus monkeys. Focal lymphoplasmacytic infiltration is commonly seen in the general organs. The frequency and severity of these lesions may be influenced by the administration of drugs with an effect on the immune system. Lymphoplasmacytic infiltration in the lamina propria of the stomach is also frequently seen in cynomolgus monkeys, and it is caused mainly by a Helicobacter pylori infection. Various degrees of brown pigments are observed in various organs, and it is possible to distinguish the material of the pigments by its morphological features and site. A focal/segmental glomerular lesion is occasionally seen in a section of the kidney, and the minimal lesion has no influence on the urinalysis. We showed the common glomerular lesions in HE-stained sections, as well as in PAM- or PAS-stained sections, for understanding the details. Young and pubertal monkeys are usually used in toxicity studies; therefore, understanding various maturation stages of the genital system is important. In particular, the female genital system needs to be understood in the morphology, because their cyclic changes are different from other laboratory animals. Thus, we present the normal features of the cyclic changes of the female genital organs. Furthermore, we provide more information on spontaneous findings in cynomolgus monkeys for exact diagnoses in toxicity studies. PMID:22481861

  6. FTY720 exerts a survival advantage through the prevention of end-stage glomerular inflammation in lupus-prone BXSB mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, Seiichiro, E-mail: andosei78102@biscuit.ocn.ne.jp; Amano, Hirofumi; Amano, Eri

    2010-04-09

    FTY720 is a novel investigational agent targeting the sphingosine 1-phosphate (S1P) receptors with an ability to cause immunosuppression by inducing lymphocyte sequestration in lymphoid organs. Systemic lupus erythematosus (SLE) is refractory autoimmune disease characterized by the production of a wide variety of autoantibodies and immune complex (IC)-mediated lupus nephritis. Among several SLE-prone strains of mice, BXSB is unique in terms of the disease-associated monocytosis in periphery and the reduced frequency of marginal zone B (MZ B) cells in spleen. In the present study, we examined the effect of FTY720 on lupus nephritis of BXSB mice. FTY720 treatment resulted in amore » marked decrease in lymphocytes, but not monocytes, in peripheral blood, and caused relocalization of marginal zone B (MZ B) cells into the follicle in the spleen. These changes did not affect the production of autoantibodies, thus IgG and C3 were deposited in glomeruli in FTY720-treated mice. Despite these IC depositions, FTY720-treated mice showed survival advantage with the improved proteinuria. Histological analysis revealed that FTY720 suppressed mesangial cell proliferation and inflammatory cell infiltration. These results suggest that FTY720 ameliorates lupus nephritis by inhibiting the end-stage inflammatory process following IC deposition in glomeruli.« less

  7. New insights into the pathogenesis of IgA nephropathy.

    PubMed

    Yeo, See Cheng; Cheung, Chee Kay; Barratt, Jonathan

    2018-05-01

    IgA nephropathy is the most common form of glomerulonephritis in many parts of the world and remains an important cause of end-stage renal disease. Current evidence suggests that IgA nephropathy is not due to a single pathogenic insult, but rather the result of multiple sequential pathogenic "hits". An abnormally increased level of circulating poorly O-galactosylated IgA1 and the production of O-glycan-specific antibodies leads to the formation of IgA1-containing immune complexes, and their subsequent mesangial deposition results in inflammation and glomerular injury. While this general framework has formed the foundation of our current understanding of the pathogenesis of IgA nephropathy, much work is ongoing to try to precisely define the genetic, epigenetic, immunological, and molecular basis of IgA nephropathy. In particular, the precise origin of poorly O-galactosylated IgA1 and the inciting factors for the production of O-glycan-specific antibodies continue to be intensely evaluated. The mechanisms responsible for mesangial IgA1 deposition and subsequent renal injury also remain incompletely understood. In this review, we summarize the current understanding of the key steps involved in the pathogenesis of IgA nephropathy. It is hoped that further advances in our understanding of this common glomerulonephritis will lead to novel diagnostic and prognostic biomarkers, and targeted therapies to ameliorate disease progression.

  8. Frequency of familial Mediterranean fever (MEFV) gene mutations in patients with biopsy-proven primary glomerulonephritis.

    PubMed

    Huzmeli, Can; Candan, Ferhan; Bagci, Gokhan; Alaygut, Demet; Yilmaz, Ali; Gedikli, Asim; Bagci, Binnur; Timucin, Meryem; Sezgin, Ilhan; Kayatas, Mansur

    2017-11-01

    Primary glomerulopathies are those disorders that affect glomerular structure, function, or both in the absence of a multisystem disorder. We aimed to evaluate the frequency of MEFV gene mutation to show possible coexistence of FMF in patients diagnosed with biopsy-proven primary glomerulonephritis (GN). A total of 64 patients with biopsy-proven primary GN were included in the study. MEFV gene mutations examined retrospectively. The mean age of patients was 39.6 ± 13.4 (range 18-69), 35 of patients were female and 29 of patients were male. Of the 64 patients, 17 were mesangial proliferative glomerulonephritis (MsPGN), 15 were IgA nephropathy (IgAN), 12 were membranous glomerulonephritis (MGN), 11 were focal segmental glomerulosclerosis (FSGS), three were membranous proliferative glomerulonephritis (MPGN), three were immune complex glomerulonephritis (ICGN), two were minimal change disease (MCD), and one was IgM nephropathy (IgMN). MEFV gene mutation was detected in 35.9% (23) of these patients. The most frequently detected mutations were E148Q and M694V. Twelve cases (18.75% of GN patients) with MEFV gene mutation were diagnosed as FMF phenotype I. The frequency of MEFV gene mutation was detected at a high rate of 35.9%. Further studies with larger populations are needed to clarify the importance of these mutations on clinical progression of glomerulonephritis.

  9. The Dynamics of Glomerular Ultrafiltration in the Rat

    PubMed Central

    Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.

    1971-01-01

    Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578

  10. Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice☆

    PubMed Central

    Basgen, John M.; Sobin, Christina

    2014-01-01

    Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams’ drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals. PMID:24300173

  11. Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.

    PubMed

    Singh, Gaaminepreet; Krishan, Pawan

    2018-06-02

    Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.

  12. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    PubMed Central

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix

    2017-01-01

    Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066

  13. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    PubMed

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  14. The deconvolution of complex spectra by artificial immune system

    NASA Astrophysics Data System (ADS)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  15. Compensatory Structural and Functional Adaptation after Radical Nephrectomy for Renal Cell Carcinoma According to Preoperative Stage of Chronic Kidney Disease.

    PubMed

    Choi, Don Kyoung; Jung, Se Bin; Park, Bong Hee; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2015-10-01

    We investigated structural hypertrophy and functional hyperfiltration as compensatory adaptations after radical nephrectomy in patients with renal cell carcinoma according to the preoperative chronic kidney disease stage. We retrospectively identified 543 patients who underwent radical nephrectomy for renal cell carcinoma between 1997 and 2012. Patients were classified according to preoperative glomerular filtration rate as no chronic kidney disease--glomerular filtration rate 90 ml/minute/1.73 m(2) or greater (230, 42.4%), chronic kidney disease stage II--glomerular filtration rate 60 to less than 90 ml/minute/1.73 m(2) (227, 41.8%) and chronic kidney disease stage III--glomerular filtration rate 30 to less than 60 ml/minute/1.73 m(2) (86, 15.8%). Computerized tomography performed within 2 months before surgery and 1 year after surgery was used to assess functional renal volume for measuring the degree of hypertrophy of the remnant kidney, and the preoperative and postoperative glomerular filtration rate per unit volume of functional renal volume was used to calculate the degree of hyperfiltration. Among all patients (mean age 56.0 years) mean preoperative glomerular filtration rate, functional renal volume and glomerular filtration rate/functional renal volume were 83.2 ml/minute/1.73 m(2), 340.6 cm(3) and 0.25 ml/minute/1.73 m(2)/cm(3), respectively. The percent reduction in glomerular filtration rate was statistically significant according to chronic kidney disease stage (no chronic kidney disease 31.2% vs stage II 26.5% vs stage III 12.8%, p <0.001). However, the degree of hypertrophic functional renal volume in the remnant kidney was not statistically significant (no chronic kidney disease 18.5% vs stage II 17.3% vs stage III 16.5%, p=0.250). The change in glomerular filtration rate/functional renal volume was statistically significant (no chronic kidney disease 18.5% vs stage II 20.1% vs stage III 45.9%, p <0.001). Factors that increased glomerular filtration rate/functional renal volume above the mean value were body mass index (p=0.012), diabetes mellitus (p=0.023), hypertension (p=0.015) and chronic kidney disease stage (p <0.001). Patients with a lower preoperative glomerular filtration rate had a smaller reduction in postoperative renal function than those with a higher preoperative glomerular filtration rate due to greater degrees of functional hyperfiltration. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Heat treatment of normal human sera reveals antibodies to bactericidal permeability-inducing protein (BPI)

    PubMed Central

    BROWNLEE, AA; LOCKWOOD, CM

    1999-01-01

    Heat treatment of normal sera to 56°C for 30 min, a common procedure for the inactivation of viruses, e.g. HIV, reveals the presence of antibodies to neutrophil cytoplasm antigens (ANCA), as detected by indirect immunofluorescence on ethanol-fixed human neutrophils and by antigen-specific ELISA for BPI. Reactivity was not seen to the other common vasculitis-associated antigens proteinase 3 (PR3) or myeloperoxidase (MPO). The effect of temperature was maximal at 56°C, with substantial antibody demonstrable after only 5 min at this temperature. In experiments using polyethylene glycol (PEG)6000 to remove immune complexes, the effect of heating could be abrogated by preincubation with 8% PEG, which suggested that these anti BPI antibodies might be complexed in sera. After passage of normal plasma over a protein G column, the acid-eluted fraction contained elevated levels of antibodies to BPI but not to other vasculitis-associated antigens such as PR3 or MPO, nor to glomerular basement membrane (GBM), the Goodpasture antigen which is recognized by the pathogenically important human antibodies shown to mediate nephritis in transfer experiments. Moreover the levels of anti-BPI in the IgG fraction could be augmented by preincubation with glycine pH 2.5 for 30 min. This anti-BPI activity could be inhibited by addition of the unbound material from the protein G column and this inhibitory material was not heat-labile at 56°C. The molecular specificity of this autoreactivity was confirmed using recombinant BPI in coincubation experiments and the epitope localized to the C or N terminal moieties by the use of recombinant fusion proteins. PMID:10403934

  17. Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins.

    PubMed

    Cohen, Clemens D; Klingenhoff, Andreas; Boucherot, Anissa; Nitsche, Almut; Henger, Anna; Brunner, Bodo; Schmid, Holger; Merkle, Monika; Saleem, Moin A; Koller, Klaus-Peter; Werner, Thomas; Gröne, Hermann-Josef; Nelson, Peter J; Kretzler, Matthias

    2006-04-11

    Shared transcription factor binding sites that are conserved in distance and orientation help control the expression of gene products that act together in the same biological context. New bioinformatics approaches allow the rapid characterization of shared promoter structures and can be used to find novel interacting molecules. Here, these principles are demonstrated by using molecules linked to the unique functional unit of the glomerular slit diaphragm. An evolutionarily conserved promoter model was generated by comparative genomics in the proximal promoter regions of the slit diaphragm-associated molecule nephrin. Phylogenetic promoter fingerprints of known elements of the slit diaphragm complex identified the nephrin model in the promoter region of zonula occludens-1 (ZO-1). Genome-wide scans using this promoter model effectively predicted a previously unrecognized slit diaphragm molecule, cadherin-5. Nephrin, ZO-1, and cadherin-5 mRNA showed stringent coexpression across a diverse set of human glomerular diseases. Comparative promoter analysis can identify regulatory pathways at work in tissue homeostasis and disease processes.

  18. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity.

    PubMed

    Sullivan, L C; Clements, C S; Rossjohn, J; Brooks, A G

    2008-11-01

    The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.

  19. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease

    PubMed Central

    Dufek, Brianna; Meehan, Daniel; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic

    2016-01-01

    Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the sub-capillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of pro-inflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is upregulated in Alport glomeruli, and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan, or under conditions of siRNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and pro-inflammatory cytokines, increased lifespan, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model. PMID:27165837

  20. Signals of monocyte activation in patients with SLE.

    PubMed Central

    Kávai, M; Zsindely, A; Sonkoly, I; Major, M; Demján, I; Szegedi, G

    1983-01-01

    The Fc receptor mediated reaction, the beta-glucuronidase and the lactic dehydrogenase activities of monocytes and the serum lysozyme level were tested together with the circulating immune complex content of patients with systemic lupus erythematosus. Simultaneously with the increasing FC receptor-mediated reaction and the elevated enzyme activities of patient monocytes, the secretion of lysozyme and the immune complex content of the sera were higher than those of the controls. A positive correlation was demonstrated between the Fc receptor-mediated reaction, the beta-glucuronidase activity, the lysozyme secretion and the immune complex content of the sera. Thus, the monocytes of patients appeared to be activated by the circulating immune complexes. PMID:6839541

  1. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of (68)Ga EDTA PET/CT for measuring glomerular filtration rate and split renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. IN VITRO AND IN VIVO ACTIVITY OF A LYMPHOCYTE AND IMMUNE COMPLEX-DEPENDENT CHEMOTACTIC FACTOR FOR EOSINOPHILS

    PubMed Central

    Cohen, Stanley; Ward, Peter A.

    1971-01-01

    When cultured in the presence of specific antigen, lymphocytes from delayed-hypersensitive guinea pigs release a number of biologically active substances into the culture medium. Such active supernatants can react with immune complexes in vitro to generate a factor which is chemotactic for eosinophils. The factor involved is unique, since previously described chemotactic factors for other cell types require for their generation either immune complexes or substances released into lymphocyte culture, but not both. In the case of the eosinophil chemotactic factor, the interaction between the substance elaborated by the lymphocytes and the immune complexes appears to be specific in that the immune complexes must contain the same antigen as that used to activate the lymphocyte cultures. Although this factor was generated in an in vitro system, it has been shown to possess in vivo as well as in vitro activity. It is therefore possible that this factor may be of biological significance in situations where eosinophils are participants in inflammatory or immunologic reactions. PMID:5099667

  3. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    PubMed

    Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi

    2013-01-01

    Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  4. Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb.

    PubMed

    Gómez, C; Briñón, J G; Barbado, M V; Weruaga, E; Valero, J; Alonso, J R

    2005-06-01

    The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.

  5. Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

    PubMed Central

    Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua

    2013-01-01

    Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266

  6. Mechanisms of Acute Kidney Injury Induced by Experimental Lonomia obliqua Envenomation

    PubMed Central

    Berger, Markus; Santi, Lucélia; Beys-da-Silva, Walter O.; Oliveira, Fabrício Marcus Silva; Caliari, Marcelo Vidigal; Yates, John R.; Ribeiro, Maria Aparecida; Guimarães, Jorge Almeida

    2015-01-01

    Background Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. Methods To characterize L. obliqua venom effects we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. Results L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman’s space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increases expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. Conclusions Mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia’s envenomation. PMID:24798088

  7. Novel in vivo techniques to visualize kidney anatomy and function.

    PubMed

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.

  8. Influence of thyroid function on glomerular filtration rate and other estimates of kidney function in two pediatric patients.

    PubMed

    Uemura, Osamu; Iwata, Naoyuki; Nagai, Takuhito; Yamakawa, Satoshi; Hibino, Satoshi; Yamamoto, Masaki; Nakano, Masaru; Tanaka, Kazuki

    2018-05-01

    To determine the optimal method of evaluating kidney function in patients with thyroid dysfunction, this study compared the estimated glomerular filtration rate derived from serum creatinine, cystatin C, or β2-microglobulin with inulin or creatinine clearance in two pediatric patients, one with hypothyroidism and the other with hyperthyroidism. It was observed that the kidney function decreased in a hypothyroid child and enhanced in a hyperthyroid child, with their kidney function becoming normalized by treatment with drugs, which normalized their thyroid function. Kidney function cannot be accurately evaluated using cystatin C-based or β2-microglobulin-based estimated glomerular filtration rate in patients with thyroid dysfunction, as these tests overestimated glomerular filtration rate in a patient with hypothyroidism and underestimated glomerular filtration rate in a patient with hyperthyroidism, perhaps through a metabolic rate-mediated mechanism. In both our patients, 24-h urinary creatinine secretion was identical before and after treatment, suggesting that creatinine production is not altered in patients with thyroid dysfunction. Therefore, kidney function in patients with thyroid dysfunction should be evaluated using creatinine-based estimated glomerular filtration rate.

  9. The effect of a low potassium diet on the glomerular zone of the adrenal cortex of rats.

    PubMed

    Kawai, K; Sugihara, H; Tsuchiyama, H

    1979-05-01

    Rats were fed on low potassium diets in order to observe the effect of dietary low potassium on the adrenal cortex. The authors clarified morphological changes of the hypofunctional glomerular zone and compared these changes with those of the hyperfunctional glomerular zone. Three weeks after or 2 months after the start of a low potassium diet, slight narrowing of the glomerular zone of the adrenal cortex was observed followed by miniaturization of cells, presence of binuclear cells and an increase of lipid with enlarged lipid drops. Electron microscope mainly disclosed changes of mitochondrial cristae consisting of markedly reduced, enlarged and irregularly dilated cristae with shortening or elongation. Granules appeared in mitochondria. Lysosomes or dense bodies were enlarged. The Golgi's apparatus was atrophied but endoplasmic reticulum did not show remarkable changes. These changes were directly opposite to those of the hyperfunctional glomerular zone noted after a pottasium load or seen in sodium deficiency. Consequently, these changes were considered to be the changes of the hypofunctional glomerular zone associated with decrease of aldosterone production.

  10. α1β1 Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome

    PubMed Central

    Zallocchi, Marisa; Johnson, Brianna M.; Meehan, Daniel T.; Delimont, Duane; Cosgrove, Dominic

    2014-01-01

    Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. l-NAME salt–induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2–deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2–null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1–dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. PMID:23911822

  11. Involvement of Renal Corpuscle microRNA Expression on Epithelial-to-Mesenchymal Transition in Maternal Low Protein Diet in Adult Programmed Rats

    PubMed Central

    Sene, Letícia de Barros; Mesquita, Flávia Fernandes; de Moraes, Leonardo Nazário; Santos, Daniela Carvalho; Carvalho, Robson; Gontijo, José Antônio Rocha; Boer, Patrícia Aline

    2013-01-01

    Prior study shows that maternal protein-restricted (LP) 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-β1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1α1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-β1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition. PMID:23977013

  12. Immune evasion by pathogens of bovine respiratory disease complex.

    PubMed

    Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna

    2007-12-01

    Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.

  13. Relationship between dietary protein intake and the changes in creatinine clearance and glomerular cross-sectional area in patients with IgA nephropathy.

    PubMed

    Wada, Toshikazu; Nakao, Toshiyuki; Matsumoto, Hiroshi; Okada, Tomonari; Nagaoka, Yume; Iwasawa, Hideaki; Gondo, Asako; Niwata, Ami; Kanno, Yoshihiko

    2015-08-01

    Dietary protein intake (PI) induces glomerular hyperfiltration and reduced dietary PI can be effective in preserving kidney function. However, there is limited information regarding the relationship between dietary PI and glomerular histological changes in chronic kidney disease. We investigated the relationship between changes in dietary PI and both the changes in creatinine clearance and glomerular histomorphometry in adult patients with IgA nephropathy (IgAN). A total of 24 consecutive adult patients with biopsy-confirmed IgAN were enrolled and glomerular histomorphometric variables and clinical variables were investigated. The main clinical variables were differences in creatinine clearance (Ccr) (dCcr) and in PI (dPI) which were calculated by subtracting PI and Ccr values in patients on a controlled diet during hospitalization for kidney biopsy from the respective values in patients on daily diets as outpatients. These values of PI were estimated from urinary urea excretion measured by 24-h urine collection. The main renal histomorphometric variable was glomerular tuft area (GTA) (μm(2)). dCcr positively correlated with dPI (r = 0.726, P < 0.001). GTA correlated positively with dPI (r = 0.556, P = 0.013). Multiple regression analysis showed that dPI was independently associated with both dCcr and GTA. Additionally, GTA positively correlated with dietary PI as outpatients (r = 0.457, P = 0.043). Changes in dietary PI were associated with the changes in glomerular filtration rate. Furthermore, histomorphometric findings suggested that a greater dietary PI can affect the glomerular size at the time of the initial diagnostic biopsy for IgAN.

  14. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    PubMed Central

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  15. CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney.

    PubMed

    Haege, Sammy; Einer, Claudia; Thiele, Stefanie; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.

  16. Chemokinetic accumulation of human neutrophils on immune complex-coated substrata: analysis at a boundary

    PubMed Central

    1984-01-01

    The locomotory behavior of human blood neutrophil leukocytes was studied at a boundary between two surfaces with different chemokinetic properties. This was achieved by time-lapse cinematography of neutrophils moving on coverslips coated with BSA, then part-coated with immune complexes by adding anti-BSA IgG with a straight-line boundary between the BSA and the immune complexes. Cell locomotion was filmed in microscopic fields bisected by the boundary, and kinetic behavior was assessed by comparing speed (orthokinesis), turning behavior (klinokinesis), and the rate of diffusion of the cells on each side of the boundary, using a recently described mathematical analysis of kinesis. In the absence of serum or complement, the proportion of motile cells and their speed and rate of diffusion were greater on BSA than on antiBSA, but there was no consistent difference in turning behavior between cells on the two surfaces. The immune complexes were therefore negatively chemokinetic in comparison with BSA, and this resulted from a negative orthokinesis with little or no contribution from klinokinesis. As would be predicted theoretically, this resulted in gradual accumulation of cells on the immune complexes even in the absence of a chemotactic factor. In further studies, a parallel plate flow chamber was used to show that, under conditions of flow, neutrophils accumulated much more rapidly on a surface coated with BSA- anti-BSA than on BSA alone. Moreover, neutrophils on immune complex- coated surfaces lost their ability to form rosettes with IgG-coated erythrocytes. This suggests that neutrophils on immune complex-coated surfaces redistribute their Fc receptors (RFc gamma) to the under surface, and that the lowered speed of locomotion is due to tethering of neutrophils by substratum-bound IgG-Fc. PMID:6490719

  17. Identification of a major sialoprotein in the glycocalyx of human visceral glomerular epithelial cells.

    PubMed Central

    Kerjaschki, D; Poczewski, H; Dekan, G; Horvat, R; Balzar, E; Kraft, N; Atkins, R C

    1986-01-01

    Glomerular visceral epithelial cells are endowed with a sialic acid-rich surface coat (the "glomerular epithelial polyanion"), which in rat tissue contains the sialoprotein podocalyxin. We have identified a major membrane sialoprotein in human glomeruli that is similar to rat podocalyxin in its sialic acid-dependent binding of wheat germ agglutinin and in its localization on the surface of glomerular epithelial and endothelial cells, as shown by immunoelectron microscopy, using the monoclonal antibody PHM5. Differences in the sialoproteins of the two species are indicated by the discrepancy of their apparent molecular weights in sodium dodecyl sulfate gels, by the lack of cross reactivity of their specific antibodies, and by the lack of homology of their proteolytic peptide maps. It is therefore possible that the human glomerular sialoprotein and rat podocalyxin are evolutionarily distinct, but have similar functions. Images PMID:3533998

  18. Signaling from the Podocyte Intercellular Junction to the Actin Cytoskeleton

    PubMed Central

    George, Britta; Holzman, Lawrence B.

    2012-01-01

    Observations of hereditary glomerular disease support the contention that podocyte intercellular junction proteins are essential for junction formation and maintenance. Genetic deletion of most of these podocyte intercellular junction proteins results in foot process effacement and proteinuria. This review focuses on the current understanding of molecular mechanisms by which podocyte intercellular junction proteins such as the Nephrin-Neph1-Podocin receptor complex coordinate cytoskeletal dynamics and thus intercellular junction formation, maintenance and injury-dependent remodeling. PMID:22958485

  19. Chronic kidney disease-mineral and bone disorder: Guidelines for diagnosis, treatment, and management.

    PubMed

    Moschella, Carla

    2016-07-01

    Chronic kidney disease affects 23 million Americans and is associated with many complications, one of the most complex of which is mineral and bone disorder. Pathophysiologic mechanisms begin to occur early in CKD but when the glomerular filtration rate declines to <50% of normal, biochemical and bone matrix abnormalities, which vary and are multifactorial, begin to be clinically apparent. Mainstays of treatment remain management of hyperphosphatemia and prevention or treatment of secondary hyperparathyroidism.

  20. Delivery route determines the presence of immune complexes on umbilical cord erythrocytes.

    PubMed

    de Lima, Andrés; Franco, Luis C; Sarmiento, Andrés; González, John M

    2017-11-01

    Umbilical cord blood offers a unique opportunity to study the basal level of immunoglobulin complexes. This study aims to determine the presence of immune complexes and complement deposition on erythrocytes from umbilical cord blood from normal, full-term pregnancies. In vitro pre-formed IgA, IgG, and IgM complexes were used as positive control for flow cytometry detection, and for C3d deposition. Blood samples (34) of umbilical cord blood taken from vaginal and cesarean deliveries were tested for the presence of immunoglobulin complexes. Fourteen samples from vaginal deliveries and 20 samples from cesarean deliveries were assessed. IgG and IgM complexes were detected on erythrocytes, whereas no IgA complexes or complement deposition was observed. Interestingly, the percentage of IgG complexes was higher on erythrocytes from vaginal delivery samples compared to those from cesarean deliveries. No other associations between immune complexes and other maternal or newborn variables were found. IgG and IgM complexes seem to be normally present on umbilical cord erythrocytes. Erythrocytes from vaginal deliveries have a higher percentage of IgG complexes present compared to that from cesarean deliveries. Since no C3d activity was detected, these complexes are non-pathological and should be part of the newborn's initial innate immune response.

  1. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    PubMed

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The non-small cell lung cancer immune landscape: emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy.

    PubMed

    Anichini, Andrea; Tassi, Elena; Grazia, Giulia; Mortarini, Roberta

    2018-06-01

    Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor + T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial-mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.

  3. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  4. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    PubMed Central

    Su, Hua; Chen, Shan; He, Fang-Fang; Wang, Yu-Mei; Bondzie, Philip; Zhang, Chun

    2015-01-01

    The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation. PMID:25866774

  5. Pattern of glomerular diseases in Oman: a study based on light microscopy and immunofluorescence.

    PubMed

    Alwahaibi, Nasar Yousuf; Alhabsi, Taiseer Ahmed; Alrawahi, Samira Abdullah

    2013-03-01

    Light microscopy and immunofluorescence play an important part in the final diagnosis of renal biopsy. The aim of this study was to analyze the pattern of various glomerular diseases in Oman. A total of 424 renal biopsies were retrospectively analyzed at the Sultan Qaboos University Hospital between 1999 and 2010. Focal and segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulopathy (MGN) and IgA nephropathy were the most common primary glomerular diseases encountered, accounting for 21.2%, 17%, 12.3% and 8.3%, respectively, of all cases. Lupus nephritis was the most common secondary glomerular disease and was the most prevalent among all biopsies, accounting for 30.4% of all biopsies. Amyloidosis was seen in only two cases. The presence of fluorescein isothiocyanatefibrin in all renal cases was low when compared with IgG, IgA, IgM, C3 and C1q markers. In conclusion, based on the findings of this study, lupus nephritis was the most common of all glomerular diseases and FSGS was the most common primary glomerular disease. The importance of fluorescein isothiocyanate-fibrin in the diagnosis of renal biopsy needs to be further investigated.

  6. The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat.

    PubMed Central

    Baylis, C

    1980-01-01

    1. Whole kidney and micropuncture techniques were employed to investigate the determinants of glomerular ultrafiltration in virgin and 12-day pregnant rats. 2. A significant increase in whole kidney glomerular filtration rate (g.f.r.) and superficial cortical single nephron g.f.r. was noted in pregnant rats compared to virgins. 3. Increases in whole kidney and glomerular plasma flow rate also occurred in pregnancy which were in proportion to the increase in rate of filtration. No differences were noted in the hydrostatic and oncotic pressures which influence formation of glomerular ultrafiltrate in the superficial nephron population. 4. Reduction in arterial haematocrit and no change in mean red cell volume indicate that a plasma volume expansion has occurred by day 12 of pregnancy in the rat. 5. It is concluded that the increased g.f.r. seen in 12-day pregnant rats is exclusively the result of an increase in renal plasma flow rate (r.p.f.) since the other determinants of glomerular ultrafiltration are unaffected by pregnancy. The plasma volume expansion which also occurs must be, at least in part, responsible for the increase in r.p.f. PMID:7441561

  7. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    PubMed

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.

  8. The Gne M712T mouse as a model for human glomerulopathy.

    PubMed

    Kakani, Sravan; Yardeni, Tal; Poling, Justin; Ciccone, Carla; Niethamer, Terren; Klootwijk, Enriko D; Manoli, Irini; Darvish, Daniel; Hoogstraten-Miller, Shelley; Zerfas, Patricia; Tian, E; Ten Hagen, Kelly G; Kopp, Jeffrey B; Gahl, William A; Huizing, Marjan

    2012-04-01

    Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Glomerular hyperfiltration is strongly correlated with age in Congolese children with sickle cell anaemia.

    PubMed

    Aloni, Michel Ntetani; Ngiyulu, René Makuala; Ekulu, Pépé Mfutu; Mbutiwi, Fiston IkwaNdol; Makulo, Jean Robert; Gini-Ehungu, Jean Lambert; Nseka, Nazaire Mangani; Lepira, François Bompeka

    2017-05-01

    Glomerular hyperfiltration is an early marker of sickle cell nephropathy and can lead to microalbuminuria and renal failure. Our aim was to identify the associated risk factors, as these could be of preventative importance. We recruited 150 children with sickle cell anaemia (SCA), aged two to 18 years and living in Kinshasa, the Democratic Republic of Congo. Hyperfiltration and microalbuminuria were defined as an estimated glomerular filtration rate of less than 140 mL/min/1.73 m² and an albumin creatinine ratio of between 30 and 299 mg/g, respectively. Independent determinants of hyperfiltration were assessed using logistic regression analysis. Glomerular hyperfiltration was observed in 60 (40%) children, who were significantly older (10.2 ± 4.1 versus 7.9 ± 4.3 years, p = 0.001) and had a lower body mass index level (14.7 ± 2.3 versus 15.0 ± 2.3 kg/m 2 ) than the 60% without. A higher proportion had microalbuminuria (25.0 versus 13.3%), but the difference was not statistically significant (p>0.05). Increased age and decreased body mass index were the main independent factors associated with glomerular hyperfiltration in the multivariate analysis. A quarter (25%) of the 60 children with SCA with glomerular hyperfiltration had microalbuminuria. Glomerular hyperfiltration was a common finding in this study and was significantly associated with age. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  10. α1β1 integrin/Rac1-dependent mesangial invasion of glomerular capillaries in Alport syndrome.

    PubMed

    Zallocchi, Marisa; Johnson, Brianna M; Meehan, Daniel T; Delimont, Duane; Cosgrove, Dominic

    2013-10-01

    Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. L-NAME salt-induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2-deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2-null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1-dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Discrepancy between Medical Evidence Form 2728 and Renal Biopsy for Glomerular Diseases

    PubMed Central

    Hogan, Susan L.; Jennette, Caroline E.; Kenderes, Barbara; Krisher, Jenna; Jennette, J. Charles; McClellan, William M.

    2010-01-01

    Background and objectives: The United States Renal Data System (USRDS) is a commonly utilized database for epidemiologic research of ESRD patients. USRDS uses Medical Evidence Form 2728 to collect medical information about ESRD patients. The validity of the Form 2728 “primary cause of renal failure” field for glomerular diseases has not been evaluated, although inconsistencies between Form 2728 information and medical records have been documented previously with respect to comorbidities. Design, setting, participants, & measurements: Form 2728 information was linked with renal biopsy results from the Glomerular Disease Collaborative Network (GDCN) for 217 patients with biopsy-confirmed glomerular diseases who had reached ESRD. Biopsy results were compared with the Form 2728 “primary cause of renal failure” field. Diseases were considered individually, and also categorized into commonly used disease groups. Percentage of agreement and disease-specific measures of validity were calculated. Results: Overall agreement between renal biopsy and Form 2728 was low (14.8% overall, 23.0% when categorized). Agreement was better after Form 2728 was revised in 1995 (10.0% before versus 23.2% after overall). The cause of ESRD field was left blank in 57% of the forms submitted for glomerular disease patients. Individual glomerular diseases had very low specificities, but tended to have high positive predictive values. Conclusions: Form 2728 does not accurately reflect the renal pathology diagnosis as captured by biopsy. The large degree of missing data and misclassification should be of concern to those performing epidemiologic research using Form 2728 information on glomerular diseases. PMID:20688886

  12. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF-β1/Smads Signal Transduction Pathway in IgA Nephropathy

    PubMed Central

    Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming

    2017-01-01

    Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683

  13. Transport of Spherical Particles Through Fibrous Media and a Row of Parallel Cylinders: Applications to Glomerular Filtration.

    PubMed

    Punyaratabandhu, Numpong; Kongoup, Pimkhwan; Dechadilok, Panadda; Katavetin, Pisut; Triampo, Wannapong

    2017-12-01

    Viewed in renal physiology as a refined filtration device, the glomerulus filters large volumes of blood plasma while keeping proteins within blood circulation. Effects of macromolecule size and macromolecule hydrodynamic interaction with the nanostructure of the cellular layers of the glomerular capillary wall on the glomerular size selectivity are investigated through a mathematical simulation based on an ultrastructural model. The epithelial slit, a planar arrangement of fibers connecting the epithelial podocytes, is represented as a row of parallel cylinders with nonuniform spacing between adjacent fibers. The mean and standard deviation of gap half-width between its fibers are based on values recently reported from electron microscopy. The glomerular basement membrane (GBM) is represented as a fibrous medium containing fibers of two different sizes: the size of type IV collagens and that of glycosaminoglycans (GAGs). The endothelial cell layer is modeled as a layer full of fenestrae that are much larger than solute size and filled with GAGs. The calculated total sieving coefficient agrees well with the sieving coefficients of ficolls obtained from in vivo urinalysis in humans, whereas the computed glomerular hydraulic permeability also falls within the range estimated from human glomerular filtration rate (GFR). Our result indicates that the endothelial cell layer and GBM significantly contribute to solute and fluid restriction of the glomerular barrier, whereas, based on the structure of the epithelial slit obtained from electron microscopy, the contribution of the epithelial slit could be smaller than previously believed.

  14. Exploiting the Nephrotoxic Effects of Venom from the Sea Anemone, Phyllodiscus semoni, to Create a Hemolytic Uremic Syndrome Model in the Rat

    PubMed Central

    Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul

    2012-01-01

    In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928

  15. The PAr index, an indicator reflecting altered vitamin B-6 homeostasis, is associated with long-term risk of stroke in the general population: the Hordaland Health Study (HUSK).

    PubMed

    Zuo, Hui; Tell, Grethe S; Ueland, Per M; Nygård, Ottar; Vollset, Stein E; Midttun, Øivind; Meyer, Klaus; Ulvik, Arve

    2018-01-01

    Vitamin B-6 homeostasis is altered during inflammation and immune activation. It is unknown whether altered vitamin B-6 homeostasis is associated with the risk of stroke. We investigated the relation between the ratio plasma 4-pyridoxic acid: (pyridoxal + pyridoxal-5'-phosphate) (PAr) as an indicator of altered vitamin B-6 homeostasis and the risk of stroke in the general population. We conducted a prospective analysis of the community-based Hordaland Health Study (HUSK) in 6891 adults (born during 1925-1927 and 1950-1951) without known stroke at baseline (1998-1999). Participants were followed via linkage to the CVDNOR (Cardiovascular Disease in Norway) project and the Cause of Death Registry. HRs and 95% CIs were calculated using Cox proportional hazards analyses. A total of 390 participants (193 men and 197 women) developed stroke over a median follow-up period of 11 y. Study participants with elevated PAr experienced a higher risk of incident stroke in an essentially linear dose-response fashion. The HR (95% CI) for the highest compared with the lowest quartile of PAr was 1.97 (1.42, 2.73; P-trend <0.001) for total stroke and 2.09 (1.42, 3.09; P-trend <0.001) for ischemic stroke after adjustment for age, sex, body mass index (BMI), smoking, education, physical activity, estimated glomerular filtration rate, hypertension, diabetes, total cholesterol, and statin use. PAr had greater predictive strength than did C-reactive protein, current smoking, diabetes, hypertension, estimated glomerular filtration rate, and physical activity. The associations were similar in subgroups stratified by age group, sex, BMI, current smoking, hypertension, diabetes, and statin use at baseline. Higher plasma PAr was independently associated with increased risk of incident stroke in all participants and across all subgroups stratified by conventional risk predictors. Our novel findings point to and expand the range of inflammation and immune activation processes that may be relevant for the pathogenesis and prevention of stroke. This trial was registered at clinicaltrials.gov as NCT03013725. © 2018 American Society for Nutrition.

  16. Glomerular anionic site distribution in nonproteinuric rats. A computer-assisted morphometric analysis.

    PubMed

    Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K

    1985-12-01

    The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of ultrastructural charge tracer, the method of administering the tracer, and the time selected for analysis of tissue after administration of tracer significantly influences results. Morphometric analysis of the distribution of glomerular anionic sites in nonproteinuric rats provides a method of evaluating quantitative alterations of the glomerular charge barrier in renal disease models.

  17. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis.

    PubMed

    Nitsch, Dorothea; Grams, Morgan; Sang, Yingying; Black, Corri; Cirillo, Massimo; Djurdjev, Ognjenka; Iseki, Kunitoshi; Jassal, Simerjot K; Kimm, Heejin; Kronenberg, Florian; Oien, Cecilia M; Levey, Andrew S; Levin, Adeera; Woodward, Mark; Hemmelgarn, Brenda R

    2013-01-29

    To assess for the presence of a sex interaction in the associations of estimated glomerular filtration rate and albuminuria with all-cause mortality, cardiovascular mortality, and end stage renal disease. Random effects meta-analysis using pooled individual participant data. 46 cohorts from Europe, North and South America, Asia, and Australasia. 2,051,158 participants (54% women) from general population cohorts (n=1,861,052), high risk cohorts (n=151,494), and chronic kidney disease cohorts (n=38,612). Eligible cohorts (except chronic kidney disease cohorts) had at least 1000 participants, outcomes of either mortality or end stage renal disease of ≥ 50 events, and baseline measurements of estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology Collaboration equation (mL/min/1.73 m(2)) and urinary albumin-creatinine ratio (mg/g). Risks of all-cause mortality and cardiovascular mortality were higher in men at all levels of estimated glomerular filtration rate and albumin-creatinine ratio. While higher risk was associated with lower estimated glomerular filtration rate and higher albumin-creatinine ratio in both sexes, the slope of the risk relationship for all-cause mortality and for cardiovascular mortality were steeper in women than in men. Compared with an estimated glomerular filtration rate of 95, the adjusted hazard ratio for all-cause mortality at estimated glomerular filtration rate 45 was 1.32 (95% CI 1.08 to 1.61) in women and 1.22 (1.00 to 1.48) in men (P(interaction)<0.01). Compared with a urinary albumin-creatinine ratio of 5, the adjusted hazard ratio for all-cause mortality at urinary albumin-creatinine ratio 30 was 1.69 (1.54 to 1.84) in women and 1.43 (1.31 to 1.57) in men (P(interaction)<0.01). Conversely, there was no evidence of a sex difference in associations of estimated glomerular filtration rate and urinary albumin-creatinine ratio with end stage renal disease risk. Both sexes face increased risk of all-cause mortality, cardiovascular mortality, and end stage renal disease with lower estimated glomerular filtration rates and higher albuminuria. These findings were robust across a large global consortium.

  18. Temporary renal ischemia during nephron sparing surgery is associated with short-term but not long-term impairment in renal function.

    PubMed

    Yossepowitch, Ofer; Eggener, Scott E; Serio, Angel; Huang, William C; Snyder, Mark E; Vickers, Andrew J; Russo, Paul

    2006-10-01

    The emergence of laparoscopic nephron sparing surgery has rekindled interest in the impact of warm renal ischemia on renal function. To provide data with which warm renal ischemia can be compared we analyzed short-term and long-term changes in the glomerular filtration rate after temporary cold renal ischemia. In patients undergoing open nephron sparing surgery the estimated glomerular filtration rate was assessed preoperatively, early in the postoperative hospital stay, and 1 and 12 months after surgery using the abbreviated Modification of Diet in Renal Disease Study equation. We separately analyzed 70 patients with a solitary kidney and 592 with 2 functioning kidneys. The end point was the percent change from the baseline glomerular filtration rate. A linear regression model was used to test the association between the glomerular filtration rate change, and ischemia time, patient age, tumor size, estimated blood loss and intraoperative fluid administration. Median cold ischemia time was 31 minutes in patients with a solitary kidney and 35 minutes in those with 2 kidneys. Compared to patients with 2 kidneys those with a solitary kidney had a significantly lower preoperative estimated glomerular filtration rate (p < 0.001), which decreased a median of 30% during the early postoperative period, and 15% and 32% 1 and 12 months after surgery, respectively. In patients with 2 kidneys the corresponding glomerular filtration rate decreases were 16%, 13% and 14%, respectively. On multivariate analyses in each group cold ischemia duration and intraoperative blood loss were significantly associated with early glomerular filtration rate changes. However, 12 months after surgery age was the only independent predictor of a glomerular filtration rate decrease in patients with 2 kidneys. Cold renal ischemia during nephron sparing surgery is a significant determinant of the short-term postoperative glomerular filtration rate. Longer clamping time is particularly detrimental in patients with a solitary kidney but it does not appear to influence long-term renal function. Patients of advanced age may be less likely to recover from acute ischemic renal injury.

  19. Dissecting innate immune responses with the tools of systems biology.

    PubMed

    Smith, Kelly D; Bolouri, Hamid

    2005-02-01

    Systems biology strives to derive accurate predictive descriptions of complex systems such as innate immunity. The innate immune system is essential for host defense, yet the resulting inflammatory response must be tightly regulated. Current understanding indicates that this system is controlled by complex regulatory networks, which maintain homoeostasis while accurately distinguishing pathogenic infections from harmless exposures. Recent studies have used high throughput technologies and computational techniques that presage predictive models and will be the foundation of a systems level understanding of innate immunity.

  20. No evidence of a role for mitochondrial complex I in Helicobacter pylori pathogenesis.

    PubMed

    Ng, Garrett Z; Ke, Bi-Xia; Laskowski, Adrienne; Thorburn, David R; Sutton, Philip

    2017-06-01

    Complex I is the first enzyme complex in the mitochondrial respiratory chain, responsible for generating a large fraction of energy during oxidative phosphorylation. Recently, it has been identified that complex I deficiency can result in increased inflammation due to the generation of reactive oxygen species by innate immune cells. As a reduction in complex I activity has been demonstrated in human stomachs with atrophic gastritis, we investigated whether complex I deficiency could influence Helicobacter pylori pathogenesis. Ndufs6 gt/gt mice have a partial complex I deficiency. Complex I activity was quantified in the stomachs and immune cells of Ndufs6 gt/gt mice by spectrophotometric assays. Ndufs6 gt/gt mice were infected with H. pylori and bacterial colonization assessed by colony-forming assay, gastritis assessed histologically, and H. pylori -specific humoral response quantified by ELISA. The immune cells and stomachs of Ndufs6 gt/gt mice were found to have significantly decreased complex I activity, validating the model for assessing the effects of complex I deficiency in H. pylori infection. However, there was no observable effect of complex I deficiency on either H. pylori colonization, the resulting gastritis, or the humoral response. Although complex I activity is described to suppress innate immune responses and is decreased during atrophic gastritis in humans, our data suggest it does not affect H. pylori pathogenesis. © 2017 John Wiley & Sons Ltd.

  1. Stereological study of developing glomerular forms during human fetal kidney development.

    PubMed

    Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad

    2018-05-01

    Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.

  2. Alternatives for the Bedside Schwartz Equation to Estimate Glomerular Filtration Rate in Children.

    PubMed

    Pottel, Hans; Dubourg, Laurence; Goffin, Karolien; Delanaye, Pierre

    2018-01-01

    The bedside Schwartz equation has long been and still is the recommended equation to estimate glomerular filtration rate (GFR) in children. However, this equation is probably best suited to estimate GFR in children with chronic kidney disease (reduced GFR) but is not optimal for children with GFR >75 mL/min/1.73 m 2 . Moreover, the Schwartz equation requires the height of the child, information that is usually not available in the clinical laboratory. This makes automatic reporting of estimated glomerular filtration rate (eGFR) along with serum creatinine impossible. As the majority of children (even children referred to nephrology clinics) have GFR >75 mL/min/1.73 m 2 , it might be interesting to evaluate possible alternatives to the bedside Schwartz equation. The pediatric form of the Full Age Spectrum (FAS) equation offers an alternative to Schwartz, allowing automatic reporting of eGFR since height is not necessary. However, when height is involved in the FAS equation, the equation is essentially equal to the Schwartz equation for children, but there are large differences for adolescents. Combining standardized biomarkers increases the prediction performance of eGFR equations for children, reaching P10 ≈ 45% and P30 ≈ 90%. There are currently good and simple alternatives to the bedside Schwartz equation, but the more complex equations combining serum creatinine, serum cystatin C, and height show the highest accuracy and precision. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. The Radiologist Is in, but Was it Worth the Wait? Radiology Resident Note Quality in an Outpatient Interventional Radiology Clinic.

    PubMed

    Abboud, Salim E; Soriano, Stephanie; Abboud, Rayan; Patel, Indravadan; Davidson, Jon; Azar, Nami R; Nakamoto, Dean A

    Preprocedural evaluation of patients in an interventional radiology (IR) clinic is a complex synthesis of physical examination and imaging findings, and as IR transitions to an independent clinical specialty, such evaluations will become an increasingly critical component of a successful IR practice and quality patient care. Prior research suggests that preprocedural evaluations increased patient's perceived quality of care and may improve procedural technical success rates. Appropriate documentation of a preprocedural evaluation in the medical record is also paramount for an interventional radiologist to add value and function as an effective member of a larger IR service and multidisciplinary health care team. The purpose of this study is to examine the quality of radiology resident notes for patients seen in an outpatient IR clinic at a single academic medical center before and after the adoption of clinic note template with reminders to include platelet count, international normalized ratio, glomerular filtration rate, and plan for periprocedural coagulation status. Before adoption of the template, platelet count, international normalized ratio, glomerular filtration rate and an appropriate plan for periprocedural coagulation status were documented in 72%, 82%, 42%, and 33% of patients, respectively. After adoption of the template, appropriate documentation of platelet count, international normalized ratio, and glomerular filtration rate increased to 96%, and appropriate plan for periprocedural coagulation status was documented in 83% of patients. Patient evaluation and clinical documentation skills may not be adequately practiced during radiology residency, and tools such as templates may help increase documentation quality by radiology residents. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. In vivo imaging of leukocyte recruitment to glomeruli in mice using intravital microscopy.

    PubMed

    Kitching, A Richard; Kuligowski, Michael P; Hickey, Michael J

    2009-01-01

    Leukocytes mediate some forms of glomerulonephritis, particularly severe proliferative and crescentic forms. The renal glomerulus is one of the few sites within the microvasculature in which leukocyte recruitment occurs in capillaries. However, due to the difficulty of directly visualising the glomerulus, the mechanisms of leukocyte recruitment to glomerular capillaries are poorly understood. To overcome this, a murine kidney can be rendered hydronephrotic, by ligating one ureter, and allowing the mouse to rest for 12 weeks. This allows the visualisation of the glomerular microvasculature during inflammatory responses. In inflammation, in this example induced by anti-glomerular basement membrane (GBM) antibody, leukocytes can be observed undergoing adhesion in glomerular capillaries using intravital microscopy. Leukocyte adhesion can be quantitated using this approach. An observation protocol involving few, limited periods of epifluorescence avoids phototoxicity-induced leukocyte recruitment. The process of hydronephrosis does not alter the ability of anti-GBM-antibody to induce a glomerular inflammatory response. This approach allows detailed investigation of the mechanisms of leukocyte recruitment within glomeruli.

  5. Collagen IV Diseases: A Focus on the Glomerular Basement Membrane in Alport Syndrome

    PubMed Central

    Cosgrove, Dominic; Liu, Shiguang

    2016-01-01

    Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients. PMID:27576055

  6. Dual pathology as a cause of proteinuria in the post-transplant period; report of a case.

    PubMed

    Tewari, Rohit; Mendonca, Satish; Nijhawan, Vijay

    2016-01-01

    Proteinuria is common after renal transplantation and affects between 35%-45% of patients during the same year as their transplant. We report a case of dual pathology in the renal allograft as a cause of severe proteinuria. A 38-year-old male presented with end-stage renal disease. He underwent live related renal allograft transplant. His immediate post-transplant period was unremarkable. He developed rise in serum creatinine (2.1 mg/dl) 6 months after transplant and was biopsied. He was diagnosed as a case of acute cellular rejection type Ib with suspicion for antibody mediated rejection. He was treated with methylprednisolone to which he showed a good response with return of serum creatinine to 1.6 mg/dl. Subsequently, he developed a nephrotic range proteinuria 6 months after this episode of rejection. Repeat biopsy was performed. He was diagnosed as a case of immune complex mediated glomerulonephritis (GN) (morphologically consistent with pattern of membranoproliferative glomerulonephritis) with chronic humoral rejection in the form of transplant glomerulopathy (TG). IHC for C4d and immunofluorescence studies were instrumental making the diagnosis. He was treated with steroids and rituximab to which he showed a good response with remission of proteinuria. This case highlights the importance of picking up dual pathology in an allograft biopsy to ensure appropriate therapy. The role of C4d and its correct interpretation is further highlighted, especially with regard to pattern (granular versus linear) and location (glomerular capillaries versus peritubular capillaries).

  7. Dual pathology as a cause of proteinuria in the post-transplant period; report of a case

    PubMed Central

    Tewari, Rohit; Mendonca, Satish; Nijhawan, Vijay

    2016-01-01

    Proteinuria is common after renal transplantation and affects between 35%-45% of patients during the same year as their transplant. We report a case of dual pathology in the renal allograft as a cause of severe proteinuria. A 38-year-old male presented with end-stage renal disease. He underwent live related renal allograft transplant. His immediate post-transplant period was unremarkable. He developed rise in serum creatinine (2.1 mg/dl) 6 months after transplant and was biopsied. He was diagnosed as a case of acute cellular rejection type Ib with suspicion for antibody mediated rejection. He was treated with methylprednisolone to which he showed a good response with return of serum creatinine to 1.6 mg/dl. Subsequently, he developed a nephrotic range proteinuria 6 months after this episode of rejection. Repeat biopsy was performed. He was diagnosed as a case of immune complex mediated glomerulonephritis (GN) (morphologically consistent with pattern of membranoproliferative glomerulonephritis) with chronic humoral rejection in the form of transplant glomerulopathy (TG). IHC for C4d and immunofluorescence studies were instrumental making the diagnosis. He was treated with steroids and rituximab to which he showed a good response with remission of proteinuria. This case highlights the importance of picking up dual pathology in an allograft biopsy to ensure appropriate therapy. The role of C4d and its correct interpretation is further highlighted, especially with regard to pattern (granular versus linear) and location (glomerular capillaries versus peritubular capillaries). PMID:28197503

  8. Developmental changes in renal tubular transport - An overview

    PubMed Central

    Gattineni, Jyothsna; Baum, Michel

    2013-01-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. None the less, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development. PMID:24253590

  9. Developmental changes in renal tubular transport-an overview.

    PubMed

    Gattineni, Jyothsna; Baum, Michel

    2015-12-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.

  10. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes.

    PubMed

    Morello, Roy; Lee, Brendan

    2002-05-01

    In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.

  11. [Why? How? What for? We must measure the glomerular filtration].

    PubMed

    Treviño-Becerra, Alejandro

    2010-01-01

    The measurement of the glomerular filtration shows the degree of the functional qualities and the proficiency of the renal system. Despite new technologies, at present the best accepted technique for measuring the glomerular filtration in most countries is the clearance of creatinine in 24 hour urine. The clearance of creatinine has the advantage that it is confident, easy to reproduce, without technical limitations and low cost.

  12. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance

    PubMed Central

    Tian, Xuefei; Kim, Jin Ju; Monkley, Susan M.; Gotoh, Nanami; Nandez, Ramiro; Soda, Keita; Inoue, Kazunori; Balkin, Daniel M.; Hassan, Hossam; Son, Sung Hyun; Lee, Yashang; Moeckel, Gilbert; Calderwood, David A.; Holzman, Lawrence B.; Critchley, David R.; Zent, Roy; Reiser, Jochen; Ishibe, Shuta

    2014-01-01

    Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome. PMID:24531545

  13. Creatinine Clearance Is Not Equal to Glomerular Filtration Rate and Cockcroft-Gault Equation Is Not Equal to CKD-EPI Collaboration Equation.

    PubMed

    Fernandez-Prado, Raul; Castillo-Rodriguez, Esmeralda; Velez-Arribas, Fernando Javier; Gracia-Iguacel, Carolina; Ortiz, Alberto

    2016-12-01

    Direct oral anticoagulants (DOACs) may require dose reduction or avoidance when glomerular filtration rate is low. However, glomerular filtration rate is not usually measured in routine clinical practice. Rather, equations that incorporate different variables use serum creatinine to estimate either creatinine clearance in mL/min or glomerular filtration rate in mL/min/1.73 m 2 . The Cockcroft-Gault equation estimates creatinine clearance and incorporates weight into the equation. By contrast, the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations estimate glomerular filtration rate and incorporate ethnicity but not weight. As a result, an individual patient may have very different renal function estimates, depending on the equation used. We now highlight these differences and discuss the impact on routine clinical care for anticoagulation to prevent embolization in atrial fibrillation. Pivotal DOAC clinical trials used creatinine clearance as a criterion for patient enrollment, and dose adjustment and Federal Drug Administration recommendations are based on creatinine clearance. However, clinical biochemistry laboratories provide CKD-EPI glomerular filtration rate estimations, resulting in discrepancies between clinical trial and routine use of the drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The relationship between renal warm ischemia time and glomerular loss. An experimental study in a pig model.

    PubMed

    Damasceno-Ferreira, José Aurelino; Bechara, Gustavo Ruschi; Costa, Waldemar Silva; Pereira-Sampaio, Marco Aurélio; Sampaio, Francisco José Barcellos; Souza, Diogo Benchimol De

    2017-05-01

    To investigate the glomerular number after different warm ischemia times. Thirty two pigs were assigned into four groups. Three groups (G10, G20, and G30) were treated with 10, 20, and 30 minutes of left renal warm ischemia. The sham group underwent the same surgery without renal ischemia. The animals were euthanized after 3 weeks, and the kidneys were collected. Right kidneys were used as controls. The kidney weight, volume, cortical-medullar ratio, glomerular volumetric density, volume-weighted mean glomerular volume, and the total number of glomeruli per kidney were obtained. Serum creatinine levels were assessed pre and postoperatively. Serum creatinine levels did not differ among the groups. All parameters were similar for the sham, G10, and G20 groups upon comparison of the right and left organs. The G30 group pigs' left kidneys had lower weight, volume, and cortical-medullar ratio and 24.6% less glomeruli compared to the right kidney. A negative correlation was found between warm ischemia time and glomerular number. About one quarter of glomeruli was lost after 30 minutes of renal warm ischemia. No glomeruli loss was detected before 20 minutes of warm ischemia. However, progressive glomerular loss was associated with increasing warm ischemia time.

  15. Podometrics as a Potential Clinical Tool for Glomerular Disease Management.

    PubMed

    Kikuchi, Masao; Wickman, Larysa; Hodgin, Jeffrey B; Wiggins, Roger C

    2015-05-01

    Chronic kidney disease culminating in end-stage kidney disease is a major public health problem costing in excess of $40 billion per year with high morbidity and mortality. Current tools for glomerular disease monitoring lack precision and contribute to poor outcome. The podocyte depletion hypothesis describes the major mechanisms underlying the progression of glomerular diseases, which are responsible for more than 80% of cases of end-stage kidney disease. The question arises of whether this new knowledge can be used to improve outcomes and reduce costs. Podocytes have unique characteristics that make them an attractive monitoring tool. Methodologies for estimating podocyte number, size, density, glomerular volume and other parameters in routine kidney biopsies, and the rate of podocyte detachment from glomeruli into urine (podometrics) now have been developed and validated. They potentially fill important gaps in the glomerular disease monitoring toolbox. The application of these tools to glomerular disease groups shows good correlation with outcome, although data validating their use for individual decision making is not yet available. Given the urgency of the clinical problem, we argue that the time has come to focus on testing these tools for application to individualized clinical decision making toward more effective progression prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.

    PubMed

    Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De

    2016-11-01

    To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.

  17. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    PubMed

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  18. Urine podocyte mRNAs mark disease activity in IgA nephropathy

    PubMed Central

    Fukuda, Akihiro; Sato, Yuji; Iwakiri, Takashi; Komatsu, Hiroyuki; Kikuchi, Masao; Kitamura, Kazuo; Wiggins, Roger C.; Fujimoto, Shouichi

    2015-01-01

    Background Podocyte depletion is a major mechanism driving glomerulosclerosis. We and others have previously projected from model systems that podocyte-specific mRNAs in the urine pellet might serve as glomerular disease markers. We evaluated IgA nephropathy (IgAN) to test this concept. Methods From 2009 to 2013, early morning voided urine samples and kidney biopsies from IgAN patients (n = 67) were evaluated in comparison with urine samples from healthy age-matched volunteers (n = 28). Urine podocyte (podocin) mRNA expressed in relation to either urine creatinine concentration or a kidney tubular marker (aquaporin 2) was tested as markers. Results Urine podocyte mRNAs were correlated with the severity of active glomerular lesions (segmental glomerulosclerosis and acute extracapillary proliferation), but not with non-glomerular lesions (tubular atrophy/interstitial fibrosis) or with clinical parameters of kidney injury (serum creatinine and estimated glomerular filtration rate), or with degree of accumulated podocyte loss at the time of biopsy. In contrast, proteinuria correlated with all histological and clinical markers. Glomerular tuft podocyte nuclear density (a measure of cumulative podocyte loss) correlated with tubular atrophy/interstitial fibrosis, estimated-glomerular filtration rate and proteinuria, but not with urine podocyte markers. In a subset of the IgA cohort (n = 19, median follow-up period = 37 months), urine podocyte mRNAs were significantly decreased after treatment, in contrast to proteinuria which was not significantly changed. Conclusions Urine podocyte mRNAs reflect active glomerular injury at a given point in time, and therefore provide both different and additional clinical information that can complement proteinuria in the IgAN decision-making paradigm. PMID:25956757

  19. Association between obesity and glomerular hyperfiltration: the confounding effect of smoking and sodium and protein intakes.

    PubMed

    Ogna, Adam; Forni Ogna, Valentina; Bochud, Murielle; Guessous, Idris; Paccaud, Fred; Burnier, Michel; Wuerzner, Gregoire

    2016-04-01

    Glomerular hyperfiltration has been suggested as a possible mechanism linking obesity and chronic kidney disease (CKD), independently of classical risk factors. We explored the association of overweight and obesity with glomerular hyperfiltration in a large sample of the Swiss adult population, accounting for several confounders including dietary factors. Data from a 2010 to 2012 cross-sectional population-based survey in Switzerland were used. Creatinine clearance (CrCl) was determined from 24-h urine collection; CrCl > 140 ml/min was used to define glomerular hyperfiltration. Participants were categorized into lean (<25 kg/m(2)), overweight (25-29.9 kg/m(2)) and obese (≥30 kg/m(2)) according to body mass index (BMI). A total of 1339 participants were included in the analysis [median (IQR) age 49.4 (34.3-63.5) years, 48.9 % men]. The prevalences of overweight and obesity were 32.2 and 14.2 %, respectively. Median CrCl was 102[84-121] ml/min in lean, 110 [87-136] ml/min in overweight and 124 [97-150] ml/min in obese participants (p < 0.001). The prevalence of glomerular hyperfiltration increased across BMI categories (10.4, 20.8 and 34.7 %, respectively; p < 0.001). This positive association remained significant after adjusting for age, sex, hypertension, diabetes, smoking and dietary factors (sodium and protein intakes): odds ratio [95 %CI] 2.39 [1.52-3.76] (p < 0.001) for overweight versus lean and 4.10[2.31-7.27] (p < 0.001) for obesity versus lean. BMI categories and glomerular hyperfiltration are positively associated, independently of other known CKD risk factors and dietary confounders, suggesting that glomerular hyperfiltration may represent an early renal phenotype in obesity. Our observations confirm the significant association of glomerular hyperfiltration with sodium and protein intakes and identify sodium intake as an important modifying factor of the association between hyperfiltration and obesity.

  20. Clinicopathological Analysis of Glomerular Disease of Adult Onset Nephrotic Syndrome in an Indian Cohort- A Retrospective Study

    PubMed Central

    Suryawanshi, Mayur; Karnik, Swapnil

    2017-01-01

    Introduction Primary glomerular disease presenting with adult onset nephrotic syndrome are a major cause of chronic renal failure worldwide. The spectrum of renal disease presenting with nephrotic syndrome has undergone a gradual change globally over the course of time. However, there still exist regional differences in the incidence of primary glomerular diseases causing adult onset nephrotic syndrome. Aim To observe the spectrum of renal diseases presenting with adult onset nephrotic syndrome with comparative analysis of changing trends over the last five decades with regards to Western and Indian literature. Materials and Methods Subjects included patients with age of 18-80 years presenting with nephrotic syndrome. Renal biopsies with immunofluoroscence studies were performed in all patients. Baseline clinical parameters of serum urea, creatinine, albumin, globulin, cholesterol, 24 hour urine protein and urine microscopy were recorded. Descriptive statistics was used and results were expressed as frequencies, percentages, and mean±standard deviation. Results A total of 227 patients (72% males) were included for the study. Primary glomerular diseases formed 74.01% of total cases and majority of patients included males in the 4th decade. Minimal Change Disease (MCD) (15.8%) including its variants was the most common primary glomerular disease for adult onset of nephrotic syndrome followed by Mesangial proliferative Glomerulonephritis (MSGN) (13.2%). Membranous nephropathy and Type I Membranoproliferative Glomerulonephritis (MPGN) individually accounted for 12.3% of patients. Focal and Segmental Glomerulosclerosis (FSGS) accounted for only 11% of patients. Although, increased incidence of FSGS has been observed worldwide, there exist important regional differences in primary glomerular diseases in Indian population. MCD remains a major glomerular disease for adult onset nephrotic syndrome in different parts of India. Conclusion Our study over three years represents important data of regional variations of primary glomerular diseases presenting with adult onset nephrotic syndrome. PMID:28658768

  1. Validation of serum free light chain reference ranges in primary care.

    PubMed

    Galvani, Luca; Flanagan, Jane; Sargazi, Mansour; Neithercut, William D

    2016-05-01

    The demand for measurement of serum immunoglobulin free kappa (κ) and lambda (λ) light chains has increased. The κ:λ ratio is used to assist in diagnosis/monitoring of plasma cell disorders. The binding site reference range for serum-free light chain κ:λ ratios of 0.26-1.65 was derived from healthy volunteers. Subsequently, a reference range of 0.37-3.1 for patients with chronic kidney disease has been proposed. Elevated free light chain concentrations and borderline raised free light chain ratios also may be found in polyclonal gammopathies and with other non-renal illnesses. This assessment was conducted to validate the established free light chain reference ranges in individuals from primary care. A total of 130 samples were identified from routine blood samples collected in primary care for routine biochemistry testing and estimated glomerular filtration rate calculation. The median and range of κ:λ ratios found in each estimated glomerular filtration rate group used for chronic kidney disease classification were higher than previously described. This was the case for individuals with normal or essentially normal renal function with estimated glomerular filtration rates>90, (0.58-1.76) and estimated glomerular filtration rate of 60-90 mL/min/1.73 m(2), (0.71-1.93). Individuals with estimated glomerular filtration rate 15-30, (0.72-4.50) and estimated glomerular filtration rate <15 ml/min/1.73 m(2) (0.71-4.95) also had higher values when compared to the current renal reference range of 0.37-3.10. Elevation of free light chain-κ:λ ratios may occur in the absence of a reduced renal function shown by a normal estimated glomerular filtration rate and in the presence of reduced renal function by estimated glomerular filtration rate when comparing results with the established reference ranges. Explanations include choice of analytical systems or the presence of other concurrent non-plasma cell illness. © The Author(s) 2016.

  2. Clinical Implications of Basic Science Discoveries: Immune Homeostasis and the Microbiome-Dietary and Therapeutic Modulation and Implications for Transplantation.

    PubMed

    Fishman, J A; Thomson, A W

    2015-07-01

    Links between the human microbiome and the innate and adaptive immune systems and their impact on autoimmune and inflammatory diseases are only beginning to be recognized. Characterization of the complex human microbial community is facilitated by culture-independent nucleic acid sequencing tools and bioinformatics systems. Specific organisms and microbial antigens are linked with initiation of innate immune responses that, depending on the context, may be associated with tolerogenic or effector immune responses. Further complexity is introduced by preclinical data that demonstrate the impacts of dietary manipulation on the prevention of genetically determined, systemic autoimmune disorders and on gastrointestinal microbiota. Investigation of interactions of complex microbial populations with the human immune system may provide new targets for clinical management in allotransplantation. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. A sestrin-dependent Erk/Jnk/p38 MAPK activation complex inhibits immunity during ageing

    PubMed Central

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2016-01-01

    Mitogen activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions, and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and co-ordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK Activation Complex; sMAC). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs only allowed partial functional recovery. T cells from old humans and mice were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during ageing. PMID:28114291

  4. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  5. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spino, M.; Chai, R.P.; Isles, A.F.

    1985-07-01

    A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and /sup 125/I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the resultmore » of enhanced glomerular filtration or tubular secretion.« less

  6. Dipping your feet in the water: podocytes in urine.

    PubMed

    Sir Elkhatim, Rashid; Li, Jordan Y Z; Yong, Tuck Y; Gleadle, Jonathan M

    2014-05-01

    Podocyte injury and loss plays an important role in the pathogenesis and progression of many kidney diseases. Studies have shown that podocyte-related markers and products can be detected in the urine of patients with glomerular diseases such as focal segmental glomerulosclerosis, IgA nephropathy, lupus nephritis, diabetic nephropathy and pre-eclampsia. Therefore, detecting the loss of podocytes in the urine provides a useful noninvasive technique of gathering information about the disease type and/or activity of glomerular diseases. Currently, urine podocyte-related protein markers, mRNA, microRNA and exosomes have been used with varying degrees of success to study glomerular diseases. The determination of urinary podocyte loss may become an important noninvasive tool in the evaluation of glomerular diseases.

  7. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  8. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  9. Pathways to nephron loss starting from glomerular diseases-insights from animal models.

    PubMed

    Kriz, Wilhelm; LeHir, Michel

    2005-02-01

    Studies of glomerular diseases in animal models show that progression toward nephron loss starts with extracapillary lesions, whereby podocytes play the central role. If injuries remain bound within the endocapillary compartment, they will undergo recovery or be repaired by scaring. Degenerative, inflammatory and dysregulative mechanisms leading to nephron loss are distinguished. In addition to several other unique features, the dysregulative mechanisms leading to collapsing glomerulopathy are particular in that glomeruli and tubules are affected in parallel. In contrast, in degenerative and inflammatory diseases, tubular injury is secondary to glomerular lesions. In both of the latter groups of diseases, the progression starts in the glomerulus with the loss of the separation between the tuft and Bowman's capsule by forming cell bridges (parietal cells and/or podocytes) between the glomerular and the parietal basement membranes. Cell bridges develop into tuft adhesions to Bowman's capsule, which initiate the formation of crescents, either by misdirected filtration (proteinaceous crescents) or by epithelial cell proliferation (cellular crescents). Crescents may spread over the entire circumference of the glomerulus and, via the glomerulotubular junction, may extend onto the tubule. Two mechanisms concerning the transfer of a glomerular injury onto the tubulointerstitium are discussed: (1) direct encroachment of extracapillary lesions and (2) protein leakage into tubular urine, resulting in injury to the tubule and the interstitium. There is evidence that direct encroachment is the crucial mechanism. Progression of chronic renal disease is underlain by a vicious cycle which passes on the damage from lost and/or damaged nephrons to so far healthy nephrons. Presently, two mechanisms are discussed: (1) the loss of nephrons leads to compensatory mechanisms in the remaining nephrons (glomerular hypertension, hyperfiltration, hypertrophy) which increase their vulnerability to any further challenge (overload hypothesis); and (2) a proteinuric glomerular disease leads, by some way or another, to tubulointerstitial inflammation and fibrosis, accounting for the further deterioration of renal function (fibrosis hypothesis). So far, no convincing evidence has been published that in primary glomerular diseases fibrosis is harmful to healthy nephrons. The potential of glomerular injuries to regenerate or to be repaired by scaring is limited. The only option for extracapillary injuries with tuft adhesion is repair by formation of a segmental adherent scar (i.e., segmental glomerulosclerosis).

  10. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis

    PubMed Central

    Nitsch, Dorothea; Grams, Morgan; Sang, Yingying; Black, Corri; Cirillo, Massimo; Djurdjev, Ognjenka; Iseki, Kunitoshi; Jassal, Simerjot K; Kimm, Heejin; Kronenberg, Florian; Øien, Cecilia M; Levin, Adeera; Woodward, Mark; Hemmelgarn, Brenda R

    2013-01-01

    Objective To assess for the presence of a sex interaction in the associations of estimated glomerular filtration rate and albuminuria with all-cause mortality, cardiovascular mortality, and end stage renal disease. Design Random effects meta-analysis using pooled individual participant data. Setting 46 cohorts from Europe, North and South America, Asia, and Australasia. Participants 2 051 158 participants (54% women) from general population cohorts (n=1 861 052), high risk cohorts (n=151 494), and chronic kidney disease cohorts (n=38 612). Eligible cohorts (except chronic kidney disease cohorts) had at least 1000 participants, outcomes of either mortality or end stage renal disease of ≥50 events, and baseline measurements of estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology Collaboration equation (mL/min/1.73 m2) and urinary albumin-creatinine ratio (mg/g). Results Risks of all-cause mortality and cardiovascular mortality were higher in men at all levels of estimated glomerular filtration rate and albumin-creatinine ratio. While higher risk was associated with lower estimated glomerular filtration rate and higher albumin-creatinine ratio in both sexes, the slope of the risk relationship for all-cause mortality and for cardiovascular mortality were steeper in women than in men. Compared with an estimated glomerular filtration rate of 95, the adjusted hazard ratio for all-cause mortality at estimated glomerular filtration rate 45 was 1.32 (95% CI 1.08 to 1.61) in women and 1.22 (1.00 to 1.48) in men (Pinteraction<0.01). Compared with a urinary albumin-creatinine ratio of 5, the adjusted hazard ratio for all-cause mortality at urinary albumin-creatinine ratio 30 was 1.69 (1.54 to 1.84) in women and 1.43 (1.31 to 1.57) in men (Pinteraction<0.01). Conversely, there was no evidence of a sex difference in associations of estimated glomerular filtration rate and urinary albumin-creatinine ratio with end stage renal disease risk. Conclusions Both sexes face increased risk of all-cause mortality, cardiovascular mortality, and end stage renal disease with lower estimated glomerular filtration rates and higher albuminuria. These findings were robust across a large global consortium. PMID:23360717

  11. Association of the cystatin C/creatinine ratio with the renally cleared hormones parathyroid hormone (PTH) and brain natriuretic peptide (BNP) in primary care patients: a cross-sectional study.

    PubMed

    Risch, Martin; Risch, Lorenz; Purde, Mette-Triin; Renz, Harald; Ambühl, Patrice; Szucs, Thomas; Tomonaga, Yuki

    2016-09-01

    The ratio of cystatin C to creatinine (cysC/crea) is regarded as a marker of glomerular filtration quality and predicts mortality. It has been hypothesized that increased mortality may be mediated by the retention of biologically active substances due to shrinking glomerular pores. The present study investigated whether cysC/crea is independently associated with the levels of two renally cleared hormones, which have been linked to increased mortality. We conducted a multicenter, cross-sectional study with a random selection of general practitioners (GPs) from all GP offices in seven Swiss cantons. Markers of glomerular filtration quality were investigated together with estimated glomerular filtration rate (eGFR), albuminuria and urinary neutrophil gelatinase associated lipocalin (uNGAL) as well as two renally cleared low-molecular-weight protein hormones (i.e. BNP and PTH), Morbidity was assessed with the Charlson Comorbidity Index (CCI). A total of 1000 patients (433 males; mean age 57 ± 17 years) were included. There was a significant univariate association of BNP (r = 0.36, p < 0.001) and PTH (r = 0.18, p < 0.001) with cysC/crea. An adjusted model that accounted for kidney function (eGFR), altered glomerular structure (albuminuria), renal stress (uNGAL), and CCI showed that BNP and PTH were independently associated with cysC/crea as well as with the ratio of cystatin C-based to creatinine-based eGFR. In conclusion, in primary care patients, BNP and PTH are independently associated both with markers of glomerular filtration quality and eGFR regardless of structural kidney damage or renal stress. These findings offer an explanation, how altered glomerular filtration quality could contribute to increased mortality.

  12. Podocyte Number in Children and Adults: Associations with Glomerular Size and Numbers of Other Glomerular Resident Cells

    PubMed Central

    Puelles, Victor G.; Douglas-Denton, Rebecca N.; Cullen-McEwen, Luise A.; Li, Jinhua; Hughson, Michael D.; Hoy, Wendy E.; Kerr, Peter G.

    2015-01-01

    Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335–502), 389 NECs (IQR=265–498), and 146 PECs (IQR=111–206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431–746; P<0.01), 1383 NECs (IQR=998–2042; P<0.001), and 367 PECs (IQR=309–673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 106 µm3) than small glomeruli from adults and children (932 podocytes per 106 µm3; P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology. PMID:25568174

  13. Partial rescue of glomerular laminin alpha5 mutations by wild-type endothelia produce hybrid glomeruli.

    PubMed

    Abrahamson, Dale R; St John, Patricia L; Isom, Kathryn; Robert, Barry; Miner, Jeffrey H

    2007-08-01

    Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.

  14. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus.

    PubMed

    Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu

    2008-01-15

    The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.

  15. Pathophysiologic Implications of Reduced Podocyte Number in a Rat Model of Progressive Glomerular Injury

    PubMed Central

    Macconi, Daniela; Bonomelli, Maria; Benigni, Ariela; Plati, Tiziana; Sangalli, Fabio; Longaretti, Lorena; Conti, Sara; Kawachi, Hiroshi; Hill, Prue; Remuzzi, Giuseppe; Remuzzi, Andrea

    2006-01-01

    Changes in podocyte number or density have been suggested to play an important role in renal disease progression. Here, we investigated the temporal relationship between glomerular podocyte number and development of proteinuria and glomerulosclerosis in the male Munich Wistar Fromter (MWF) rat. We also assessed whether changes in podocyte number affect podocyte function and focused specifically on the slit diaphragm-associated protein nephrin. Age-matched Wistar rats were used as controls. Estimation of podocyte number per glomerulus was determined by digital morphometry of WT1-positive cells. MWF rats developed moderate hypertension, massive proteinuria, and glomerulosclerosis with age. Glomerular hypertrophy was already observed at 10 weeks of age and progressively increased thereafter. By contrast, mean podocyte number per glomerulus was lower than normal in young animals and further decreased with time. As a consequence, the capillary tuft volume per podocyte was more than threefold increased in older rats. Electron microscopy showed important changes in podocyte structure of MWF rats, with expansion of podocyte bodies surrounding glomerular filtration membrane. Glomerular nephrin expression was markedly altered in MWF rats and inversely correlated with both podocyte loss and proteinuria. Our findings suggest that reduction in podocyte number is an important determinant of podocyte dysfunction and progressive impairment of the glomerular permselectivity that lead to the development of massive proteinuria and ultimately to renal scarring. PMID:16400008

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamori, I.; Yasuhara, S.; Takeda, Y.

    The effects of captopril on effective renal plasma flow and glomerular filtration rate were studied using a noninvasive radioisotopic method on individual kidneys in eight patients with renovascular hypertension and 12 patients with essential hypertension with various renin levels. Four patients with renovascular hypertension had unilateral while three had bilateral renal artery stenosis. The effective renal plasma flow and glomerular filtration rate were determined by using /sup 131/I-iodohippurate sodium and /sup 99m/Tc-diethylenetriamine pentaacetic acid, respectively. Glomerular filtration rate and effective renal plasma flow were significantly reduced in the stenotic kidneys of patients with renovascular hypertension compared with values in nonstenoticmore » kidneys (p less than 0.01). Treatment with captopril, 37.5 to 75 mg/day for 1 to 48 weeks, further reduced the glomerular filtration rate only in stenotic kidneys, and effective renal plasma flow increased in both kidney types. In two of the three renal hypertensive patients with bilateral renal artery stenosis, captopril produced a reversible azotemia that was unrelated to the fall in blood pressure, as evidenced by the lack of azotemia seen after a moderate blood pressure reduction induced by other antihypertensive medications. These results indicate that endogenous angiotensin II is essential in maintaining the glomerular filtration rate in stenotic kidneys and suggest that a reduction in glomerular filtration rate during captopril administration could indicate the presence of renal artery stenosis.« less

  17. Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity

    PubMed Central

    Aballay, Alejandro

    2010-01-01

    The nervous and immune systems consist of complex networks that have been known to be closely interrelated. However, given the complexity of the nervous and immune systems of mammals, including humans, the precise mechanisms by which the two systems influence each other remain understudied. To cut through this complexity, we used the nematode Caenorhabditis elegans as a simple system to study the relationship between the immune and nervous systems using sophisticated genetic manipulations. We found that C. elegans mutants in G-protein coupled receptors (GPCRs) expressed in the nervous system exhibit aberrant responses to pathogen infection. The use of different pathogens, different modes of infection, and genome-wide microarrays highlighted the importance of the GPCR NPR-1 in avoidance to certain pathogens and in the regulation of innate immunity. The regulation of innate immunity was found to take place at least in part through a mitogen-activated protein kinase signaling pathway similar to the mammalian p38 MAPK pathway. Here, the results that support the different roles of the NPR-1 neural circuit in the regulation of C. elegans responses to pathogen infection are discussed. PMID:19270528

  18. Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs.

    PubMed

    Furrow, E; Lees, G E; Brown, C A; Cianciolo, R E

    2017-05-01

    Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid.

  19. The Epidermal Growth Factor Receptor Promotes Glomerular Injury and Renal Failure in Rapidly Progressive Crescentic Glomerulonephritis; the Identification of Possible Therapy

    PubMed Central

    Bollée, Guillaume; Flamant, Martin; Schordan, Sandra; Fligny, Cécile; Rumpel, Elisabeth; Milon, Marine; Schordan, Eric; Sabaa, Nathalie; Vandermeersch, Sophie; Galaup, Ariane; Rodenas, Anita; Casal, Ibrahim; Sunnarborg, Susan W; Salant, David J; Kopp, Jeffrey B.; Threadgill, David W; Quaggin, Susan E; Dussaule, Jean-Claude; Germain, Stéphane; Mesnard, Laurent; Endlich, Karlhans; Boucheix, Claude; Belenfant, Xavier; Callard, Patrice; Endlich, Nicole; Tharaux, Pierre-Louis

    2011-01-01

    Rapidly progressive glomerulonephritis (RPGN) is a clinical a morphological expression of severe glomerular injury. Glomerular injury manifests as a proliferative histological pattern (“crescents”) with accumulation of T cells and macrophages, and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the EGFR/ErbB1 receptor in mice with RPGN. In HB-EGF-deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 days after the induction of experimental RPGN. This suggests that targeting the HB-EGF/EGFR pathway could also be beneficial for treatment of human RPGN. PMID:21946538

  20. Glomerular disease: why is there a dearth of high quality clinical trials?

    PubMed

    Leaf, David E; Appel, Gerald B; Radhakrishnan, Jai

    2010-08-01

    There is a paucity of high quality clinical trials in glomerular disease, particularly in non-diabetic kidney disease. The aims of this review include quantifying the extent of this problem and exploring reasons for the scarcity of such trials in primary glomerular disease, with an emphasis on immunoglobulin A nephropathy, minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy in comparison with the more common diseases of diabetic nephropathy and lupus nephritis. Reasons for the dearth of high quality clinical trials in primary glomerular disease include (1) low prevalence of disease; (2) variability in clinical presentation; (3) variability in treatment response; (4) lack of consensus in definitions; (5) difficulty in recruiting patients; (6) high costs of randomized controlled trials; and (7) lack of collaborative efforts. To facilitate greater numbers of high quality clinical trials in glomerular disease, practice guidelines should establish common classification systems of disease and common clinical end points, industry and non-industry sponsored research should find common ground and work together toward advancing science, and national registries should be created to encourage collaborations across institutions and across nations.

  1. Cluster Analysis of Rat Olfactory Bulb Responses to Diverse Odorants

    PubMed Central

    Falasconi, Matteo; Leon, Michael; Johnson, Brett A.; Marco, Santiago

    2012-01-01

    In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system. PMID:22459165

  2. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  3. Isolation and preliminary characterization of circulating immune complexes from rabbits with experimental syphilis.

    PubMed Central

    Baughn, R E; Musher, D M

    1983-01-01

    Immune complexes isolated from sera of rabbits with experimental, disseminated syphilis were found to have sedimentation coefficients greater than 19s. By radioimmunoblot assays, materials precipitated with 2.5% polyethylene glycol or chromatographed on DEAE-Affi-Gel Blue were found to contain albumin, C3, immunoglobulin M (IgM), IgG, and treponemal antigen(s), whereas control materials contained only albumin and IgG. When polyethylene glycol precipitation of immune complexes from syphilitic rabbits was followed by immobilization on protein A and acid elution, radioimmunoblots detected only IgG and treponemal antigen(s). Images PMID:6358025

  4. [Humoral immune diseases: Cutaneous vasculitis and auto-immune bullous dermatoses].

    PubMed

    Wechsler, Janine

    2018-02-01

    Humoral immunity is the cause of multiple diseases related to antibodies (IgA, IgG, IgM) produced by the patient. Two groups of diseases are identified. The first group is related to circulating antigen-antibody complexes. The antigens are various. They are often unknown. These immune complexes cause a vascular inflammation due to the complement fixation. Consequently, this group is dominated by inflammatory vasculitis. In the second group, the pathology is due to the fixation in situ of antibodies to a target antigen of the skin that is no more recognized by the patient. This group is represented by the auto-immune bullous dermatoses. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  6. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex.

    PubMed Central

    Brake, D A; Fedor, C H; Werner, B W; Miller, T J; Taylor, R L; Clare, R A

    1997-01-01

    A model to simulate natural immunity to Eimeria tenella was developed in three chicken lines which differ at the B locus of the major histocompatibility complex. Homozygous, 1-day-old chicks of the B19B19, B24B24, or B30B30 genotype were trickle immunized by being orally fed a small infectious dose of E. tenella oocysts for 5 consecutive days. These naturally exposed birds were then challenged at different times between 5 and 24 days after the final dose, and the level of protection was assessed 6 days after challenge, using body weight gain and intestinal lesion scores. The duration of immunity in naturally exposed birds differed among the major histocompatibility complex lines. Trickle immunization of the B19B19 haplotype afforded the longest and strongest level of protection compared to the other two haplotypes tested. In addition, in vitro splenic and peripheral blood lymphocyte proliferative responses in trickle-immunized birds were measured against sporozoite, merozoite, and tissue culture-derived E. tenella parasite antigens isolated from the recently described SB-CEV-1/F7 established cell line. The lymphocytes obtained from B19B19 birds trickle immunized responded in vitro to the E. tenella-infected SB-CEV-1/F7 tissue culture-derived parasite antigen. Furthermore, antigen-specific immune responses appeared earlier in immune, challenged B19B19 birds than in their naive, challenged counterparts. The development of a model simulating natural immunization will serve as a foundation to further characterize both humoral and cell-mediated responses to E. tenella tissue culture-derived parasite antigens and to better understand host protective immune responses to avian coccidiosis. PMID:9119452

  7. Anti-GBM disease and ANCA during dengue infection.

    PubMed

    Lizarraga, Karlo J; Florindez, Jorge A; Daftarian, Pirouz; Andrews, David M; Ortega, Luis M; Mendoza, Jair Munoz; Contreras, Gabriel N; Nayer, Ali

    2015-02-01

    Anti-glomerular basement membrane (GBM) disease is a severe inflammatory renal disorder due to pathogenic autoantibodies directed mainly against the α3 chain of type IV collagen. In ~1/4 of patients with anti-GBM disease, antineutrophil cytoplasmic antibodies (ANCA) predominantly with myeloperoxidase (MPO) specificity can be detected. Although the inciting stimuli leading to the development of an immune response against the type IV collagen and neutrophils are unknown, evidence indicates that both genetic and environmental factors play a role. Of note, molecular mimicry between self-antigens and nonself-antigens such as antigenic determinants of microorganisms has been implicated in the pathogenesis of anti-GBM disease and ANCA-associated vasculitis. A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue can be complicated by acute renal failure, proteinuria, hematuria and glomerulonephritis. We present a 66-year-old woman who was diagnosed with dengue infection and rapidly progressive glomerulonephritis during an outbreak of dengue in Honduras in the summer of 2013. Renal biopsy revealed severe crescentic glomerulonephritis. Immunofluorescence examination demonstrated strong linear IgG deposition along glomerular capillary walls. Serologic tests demonstrated antibodies against GBM, MPO and platelet glycoproteins. The patient was diagnosed with anti-GBM disease associated with p-ANCA with MPO specificity. Despite heavy immunosuppression and plasmapheresis, IgG titers against dengue virus continued to rise confirming the diagnosis of acute dengue infection. We present the first reported case of anti-GBM disease associated with p-ANCA with MPO specificity during dengue infection. This report calls for a heightened awareness of autoimmunity leading to crescentic glomerulonephritis in patients with dengue infection.

  8. Cerebral Vasculitis in X-linked Lymphoproliferative Disease Cured by Matched Unrelated Cord Blood Transplant.

    PubMed

    Gray, Paul E; O'Brien, Tracey A; Wagle, Mayura; Tangye, Stuart G; Palendira, Umaimainthan; Roscioli, Tony; Choo, Sharon; Sutton, Rosemary; Ziegler, John B; Frith, Katie

    2015-10-01

    Vasculitis occurs rarely in association with X-linked lymphoproliferative disease (XLP). There are four published cases of non-EBV XLP-associated cerebral vasculitis reported, none of whom have survived without major cognitive impairment. A 9-year old boy initially presented aged 5 years with a restrictive joint disease. He subsequently developed dysgammaglobulinemia, episodic severe pneumonitis, aplastic anaemia, gastritis and cerebral vasculitis. A diagnosis of XLP was made, based on flow cytometric analysis and the identification of a novel mutation in SH2D1A, c.96G>C. No peripheral blood lymphocyte clonal proliferation was identified and he was EBV negative, although human herpes virus-7 (HHV7) was detected repeatedly in his cerebrospinal fluid. He underwent a reduced intensity unrelated umbilical cord blood transplant, but failed to engraft. A second 5/6 matched cord gave 100 % donor engraftment. Complications included BK virus-associated haemorrhagic cystitis, a possible NK-cell mediated immune reconstitution syndrome and post-transplant anti-glomerular basement membrane disease, the latter treated with cyclophosphamide and rituximab. At +450 days post-transplant he is in remission from his vasculitis and anti-glomerular basement membrane disease, and HHV-7 has remained undetectable. This is the second published description of joint disease in XLP, and only the fourth case of non-EBV associated cerebral vasculitis in XLP, as well as being the first to be successfully treated for this manifestation. This case raises specific questions about vasculitis in XLP, in particular the potential relevance of HHV-7 to the pathogenesis.

  9. Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease.

    PubMed

    Winter, Lauren; Wong, Lydia A; Jerums, George; Seah, Jas-Mine; Clarke, Michele; Tan, Sih Min; Coughlan, Melinda T; MacIsaac, Richard J; Ekinci, Elif I

    2018-01-01

    Diabetic kidney disease is a common complication of type 1 and type 2 diabetes and is the primary cause of end-stage renal disease in developed countries. Early detection of diabetic kidney disease will facilitate early intervention aimed at reducing the rate of progression to end-stage renal disease. Diabetic kidney disease has been traditionally classified based on the presence of albuminuria. More recently estimated glomerular filtration rate has also been incorporated into the staging of diabetic kidney disease. While albuminuric diabetic kidney disease is well described, the phenotype of non-albuminuric diabetic kidney disease is now widely accepted. An association between markers of inflammation and diabetic kidney disease has previously been demonstrated. Effector molecules of the innate immune system including C-reactive protein, interleukin-6, and tumor necrosis factor-α are increased in patients with diabetic kidney disease. Furthermore, renal infiltration of neutrophils, macrophages, and lymphocytes are observed in renal biopsies of patients with diabetic kidney disease. Similarly high serum neutrophil and low serum lymphocyte counts have been shown to be associated with diabetic kidney disease. The neutrophil-lymphocyte ratio is considered a robust measure of systemic inflammation and is associated with the presence of inflammatory conditions including the metabolic syndrome and insulin resistance. Cross-sectional studies have demonstrated a link between high levels of the above inflammatory biomarkers and diabetic kidney disease. Further longitudinal studies will be required to determine if these readily available inflammatory biomarkers can accurately predict the presence and prognosis of diabetic kidney disease, above and beyond albuminuria, and estimated glomerular filtration rate.

  10. Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia

    PubMed Central

    Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085

  11. Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases.

    PubMed

    Sever, Sanja; Schiffer, Mario

    2018-06-01

    Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Elevated Serum GAD65 and GAD65-GADA Immune Complexes in Stiff Person Syndrome.

    PubMed

    Gu Urban, Gucci Jijuan; Friedman, Mikaela; Ren, Ping; Törn, Carina; Fex, Malin; Hampe, Christiane S; Lernmark, Åke; Landegren, Ulf; Kamali-Moghaddam, Masood

    2015-06-16

    Glutamic acid decarboxylase 65 (GAD65) and autoantibodies specific for GAD65 (GADA) are associated with autoimmune diseases including Stiff Person Syndrome (SPS) and Type 1 diabetes (T1D). GADA is recognized as a biomarker of value for clinical diagnosis and prognostication in these diseases. Nonetheless, it remains medically interesting to develop sensitive and specific assays to detect GAD65 preceding GADA emergence, and to monitor GADA-GAD65 immune complexes in blood samples. In the present study, we developed a highly sensitive proximity ligation assay to measure serum GAD65. This novel assay allowed detection of as little as 0.65 pg/ml GAD65. We were also able to detect immune complexes involving GAD65 and GADA. Both free GAD65 and GAD65-GADA levels were significantly higher in serum samples from SPS patients compared to healthy controls. The proximity ligation assays applied for detection of GAD65 and its immune complexes may thus enable improved diagnosis and better understanding of SPS.

  13. [Current insights about recurrence of glomerular diseases after renal transplantation].

    PubMed

    Kofman, Tomek; Oniszczuk, Julie; Lang, Philippe; Grimbert, Philippe; Audard, Vincent

    2018-05-01

    Recurrence of glomerular disease after renal transplantation is a frequent cause of graft loss. Incidence, risk factors and outcome of recurrence are widely due to the underlying glomerular disease. Graft biopsy analysis is required to confirm the definitive diagnosis of recurrence and to start an appropriate therapy that, in some cases, remains challenging to prevent graft failure. Increased use of protocol biopsy and recent advances in our understanding of the pathogenesis of some glomerular diseases with the identification of some relevant biomarkers provide a unique opportunity to initiate kidney-protective therapy at early stages of recurrence on the graft. This review summarizes our current knowledge on the management of many recurrent primary and secondary glomerulonephritis after kidney transplantation. Copyright © 2018 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  14. Glomerular diseases outcome at one year in a tertiary care centre

    PubMed Central

    Mahmud, Huma Mamun; Kumar, Darshan; Irum, Humera; Farman Ali, Syed

    2015-01-01

    Objectives: To determine outcome in primary and secondary glomerular diseases at one year follow up. Methods: Study design is observational cohort, done in out-patient department, Dow Iinternational Medical College, DUHS. All information gathered on a proforma. All patients with dipstick positive proteinuria and clinical glomerular disease were included in study. Patients with no proteinuria were excluded so were patients with stage 5 CKD. Patients were followed for proteinuria and renal insufficiency at completion of one year follow up. Statistical analysis was done on SPSS version 16. Result: Total number of patients who completed one year follow up was 173. Mean age of patients was 51.67+ 10.16 (range 15 to 75 years). Ninety two (53.2%), were males and 81(46.8%) were females, ratio being 1.1: 1.0. Mean weight of our patients was 67.43+ 14.13 Kg, (35 to 107 kg). Commonest cause of glomerular disease in our patient was diabetic nephropathy which was seen in 94.2% patients. Commonest associated problem with glomerular disease was hypertension seen in 66.5% of patients. Four out of 173 patients had stage 5 CKD at end of follow up at one year while quantitativ proteinuria remained same at one year follow up. Conclusion: One year follow up is critical for patients with glomerular disease associated with stage 4 CKD as progression to end stage renal failure may be seen within one year in these patients. PMID:26101512

  15. Basement Membrane Defects in Genetic Kidney Diseases

    PubMed Central

    Chew, Christine; Lennon, Rachel

    2018-01-01

    The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease. PMID:29435440

  16. Acute glomerular upregulation of ornithine decarboxylase is not essential for mesangial cell proliferation and matrix expansion in anti-Thy-1-nephritis.

    PubMed

    Ketteler, M; Westenfeld, R; Gawlik, A; de Heer, E; Distler, A

    2000-01-01

    Pathways of L-arginine metabolism including nitric oxide, agmatine and polyamine synthesis are upregulated during glomerular inflammation in experimental glomerulonephritis. In anti-Thy-1-glomerulonephritis L-arginine-deficient diets ameliorate the disease course in this model. However, it is unclear which metabolic pathway is affected by this substrate depletion. Since polyamines are important proproliferative molecules, we studied the effect of specific polyamine synthesis blockade in vivo on mesangial cell proliferation and glomerular fibrosis in this model. Anti-Thy-1-glomerulonephritis was induced in male Sprague-Dawley rats by single-bolus injection of monoclonal ER4-antibodies. Rats were treated with difluoromethylornithine (0.5-2% in the drinking water), a selective inhibitor of the rate-limiting enzyme of polyamine synthesis, ornithine decarboxylase (ODC). Mesangial cell proliferation and matrix expansion were evaluated in PAS-stained kidney tissues. Glomerular TGF-beta and biglycan-mRNA-expression were determined by Northern blot analysis and albuminuria was measured using a competitive ELISA. Data were compared to untreated controls. Though complete inhibition of ODC activity was achieved at any time point, difluoromethlornithine treatment had no significant effect on albuminuria, glomerular matrix protein expression and mesangial cell count in this model. The acute upregulation of glomerular ODC activity above baseline in anti-Thy1-glomerulonephritis is not pathophysiologically important for disease development however, biological effects of available polyamine pools cannot be excluded by our study.

  17. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    PubMed

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P < .001). However, the thresholds for the two anesthetic methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Thresholds for contrast-enhanced diagnostic US-induced injury of the microvasculature appear to be minimally affected by anesthetic methods. © 2016 by the American Institute of Ultrasound in Medicine.

  18. Tumor-induced perturbations of cytokines and immune cell networks.

    PubMed

    Burkholder, Brett; Huang, Ren-Yu; Burgess, Rob; Luo, Shuhong; Jones, Valerie Sloane; Zhang, Wenji; Lv, Zhi-Qiang; Gao, Chang-Yu; Wang, Bao-Ling; Zhang, Yu-Ming; Huang, Ruo-Pan

    2014-04-01

    Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders

    PubMed Central

    te Velde, Anje A.; Bezema, Tjitske; van Kampen, Antoine H. C.; Kraneveld, Aletta D.; 't Hart, Bert A.; van Middendorp, Henriët; Hack, Erik C.; van Montfrans, Joris M.; Belzer, Clara; Jans-Beken, Lilian; Pieters, Raymond H.; Knipping, Karen; Huber, Machteld; Boots, Annemieke M. H.; Garssen, Johan; Radstake, Tim R.; Evers, Andrea W. M.; Prakken, Berent J.; Joosten, Irma

    2016-01-01

    In order to combat chronic immune disorders (CIDs), it is an absolute necessity to understand the bigger picture, one that goes beyond insights at a one-disease, molecular, cellular, and static level. To unravel this bigger picture we advocate an integral, cross-disciplinary approach capable of embracing the complexity of the field. This paper discusses the current knowledge on common pathways in CIDs including general psychosocial and lifestyle factors associated with immune functioning. We demonstrate the lack of more in-depth psychosocial and lifestyle factors in current research cohorts and most importantly the need for an all-encompassing analysis of these factors. The second part of the paper discusses the challenges of understanding immune system dynamics and effectively integrating all key perspectives on immune functioning, including the patient’s perspective itself. This paper suggests the use of techniques from complex systems science in describing and simulating healthy or deviating behavior of the immune system in its biopsychosocial surroundings. The patient’s perspective data are suggested to be generated by using specific narrative techniques. We conclude that to gain more insight into the behavior of the whole system and to acquire new ways of combatting CIDs, we need to construct and apply new techniques in the field of computational and complexity science, to an even wider variety of dynamic data than used in today’s systems medicine. PMID:28018353

  20. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    PubMed Central

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  1. Inhibition of WISE preserves renal allograft function.

    PubMed

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  2. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. Published by Elsevier Inc.

  3. Glomerular Lesions in Proteinuric Miniature Schnauzer Dogs

    PubMed Central

    Furrow, E.; Lees, G. E.; Brown, C. A.; Cianciolo, R. E.

    2017-01-01

    Miniature Schnauzer dogs are predisposed to idiopathic hypertriglyerceridemia, which increases risk for diseases such as pancreatitis and gallbladder mucocele. Recently, elevated triglyceride concentrations have been associated with proteinuria in this breed, although it is difficult to determine which abnormality is primary. Retrospective review of renal tissue from 27 proteinuric Miniature Schnauzers revealed that 20 dogs had ultrastructural evidence of osmophilic globules consistent with lipid in glomerular tufts. Seven of these dogs had lipid thromboemboli in glomerular capillary loops that distorted their shape and compressed circulating erythrocytes. Triglyceride concentrations were reported in 6 of these 7 dogs, and all were hypertriglyceridemic. In addition, glomerular lipidosis (defined as accumulation of foam cells within peripheral capillary loops) was identified in a single dog. The remaining 12 dogs had smaller amounts of lipid that could only be identified ultrastructurally. Neither signalment data nor clinicopathologic parameters (serum albumin, serum creatinine, urine protein-to-creatinine ratio, and blood pressure) differed among the various types of lipid lesions. During the time course of this study, all dogs diagnosed with glomerular lipid thromboemboli were Miniature Schnauzers, underscoring the importance of recognizing these clear spaces within capillary loops as lipid. PMID:28005494

  4. Glomerular function in sickle cell disease patients during crisis.

    PubMed

    Aderibigbe, A; Arije, A; Akinkugbe, O O

    1994-06-01

    An 8 month prospective study was carried out in 20 adult sickle cell disease (SCD) patients 16 sickle cell anaemia (Hbss) and 4 sickle cell Hbc disease (Hbsc); who had vaso-occlusive crises within the study period to determine the extent of the effect of sickle cell crisis on glomerular function in SCD patients during crisis. The male: female ratio was 1:57 and their mean age was 21.1 +/- 7.9 years. Creatinine clearance (CCr), as an index of glomerular function, was determined at the pre-crisis, crisis, 2 and 4 weeks post-crisis and at the end of the study period. The mean values of their CCr dropped from 113.37 +/- 33.80mls/min at pre-crisis stage to 96.39 +/- 30.13mls/min during crisis (p < 0.001) indicating glomerular dysfunction. It improved significantly to 107.75 +/- 30.20mls/min at 4 weeks post-crisis (p < 0.001). There was no significant differences in the mean values of CCr at the end of the study (116.20 +/- 31.43mls/min) compared to the pre-crisis stage (p > 0.05). It is concluded that glomerular dysfunction in SCD patients during crisis is potentially reversible.

  5. Ethanol at Low Concentrations Protects Glomerular Podocytes through Alcohol Dehydrogenase and 20-HETE

    PubMed Central

    McCarthy, Ellen T.; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J.; Sharma, Mukut

    2014-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. PMID:25447342

  6. Neuronal proteins are novel components of podocyte major processes and their expression in glomerular crescents supports their role in crescent formation.

    PubMed

    Sistani, Laleh; Rodriguez, Patricia Q; Hultenby, Kjell; Uhlen, Mathias; Betsholtz, Christer; Jalanko, Hannu; Tryggvason, Karl; Wernerson, Annika; Patrakka, Jaakko

    2013-01-01

    The podocyte has a central role in the glomerular filtration barrier typified by a sophisticated morphology of highly organized primary (major) and secondary (foot) processes. The molecular makeup of foot processes is well characterized, but that of major processes is poorly known. Previously, we profiled the glomerular transcriptome through large-scale sequencing and microarray profiling. Unexpectedly, the survey found expression of three neuronal proteins (Huntingtin interacting protein 1 (Hip1), neurofascin (Nfasc), and olfactomedin-like 2a (Olfml2a)), all enriched in the glomerulus. These proteins were expressed exclusively by podocytes, wherein they localized to major processes as verified by RT-PCR, western blotting, immunofluorescence, and immunoelectron microscopy. During podocyte development, these proteins colocalized with vimentin, confirming their association with major processes. Using immunohistochemistry, we found coexpression of Hip1 and Olfml2a along with the recognized podocyte markers synaptopodin and Pdlim2 in glomerular crescents of human kidneys, indicating the presence of podocytes in these lesions. Thus, three neuronal proteins are highly expressed in podocyte major process. Using these new markers we found that podocytes contribute to the formation of glomerular crescents.

  7. A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein

    PubMed Central

    Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  8. Effects of novel adjuvant complex/Eimeria profilin vaccine on intestinal host immune responses against live E. acervulina challenge infection

    USDA-ARS?s Scientific Manuscript database

    The effects of a novel adjuvant; composed of Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC), on protective immunity against avian coccidiosis following immunization with an Eimeria recombinant protein were determined. Broiler chickens were subcutaneously immunized w...

  9. Immunogenomics: a foundation for intelligent immune design.

    PubMed

    Holt, Robert A

    2015-11-19

    The complexity of the immune system is now being interrogated using methodologies that generate extensive multi-dimensional data. Effective collection, integration and interpretation of these data remain difficult, but overcoming these important challenges will provide new insights into immune function and opportunities for the rational design of new immune interventions.

  10. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It helps ... to find and destroy them. If your immune system cannot do its job, the results can be ...

  11. Improved Pulse Wave Velocity and Renal Function in Individualized Calcineurin Inhibitor Treatment by Immunomonitoring: The Randomized Controlled Calcineurin Inhibitor-Sparing Trial.

    PubMed

    Sommerer, Claudia; Brocke, Janina; Bruckner, Thomas; Schaier, Matthias; Morath, Christian; Meuer, Stefan; Zeier, Martin; Giese, Thomas

    2018-03-01

    A new immune monitoring tool which assesses the expression of nuclear factor of activated T cells (NFAT)-regulated genes measures the functional effects of cyclosporine A. This is the first prospective randomized controlled study to compare standard pharmacokinetic monitoring by cyclosporine trough levels to NFAT-regulated gene expression (NFAT-RE). Expression of the NFAT-regulated genes was determined by qRT-PCR at cyclosporine trough and peak level. Cardiovascular risk was assessed by change of pulse wave velocity from baseline to month 6. Clinical follow-up was 12 months. In total, 55 stable kidney allograft recipients were enrolled. Mean baseline residual NFAT-RE was 13.1 ± 9.1%. Patients in the NFAT-RE group showed a significant decline in pulse wave velocity from baseline to month 6 versus the standard group (-1.7 ± 2.0 m/s vs 0.4 ± 1.4 m/s, P < 0.001). Infections occurred more often in the standard group compared with the immune monitoring group. No opportunistic infections occurred with NFAT-RE monitoring. At 12 months of follow-up, renal function was significantly better with NFAT-RE versus standard monitoring (Nankivell glomerular filtration rate: 68.5 ± 17.4 mL/min vs 57.2 ± 19.0 mL/min; P = 0.009). NFAT-RE as translational immune monitoring tool proved efficacious and safe in individualizing cyclosporine therapy, with the opportunity to reduce the cardiovascular risk and improve long-term renal allograft function.

  12. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  13. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  14. Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.

    PubMed

    Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J

    2016-12-01

    The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.

  15. Determination of glomerular function in advanced renal failure.

    PubMed Central

    Manz, F; Alatas, H; Kochen, W; Lutz, P; Rebien, W; Schärer, K

    1977-01-01

    In 15 children with advanced chronic renal failure, glomerular filtration rate was determined by different methods. Inulin clearance correlated well with the mean of creatinine and urea clearance, and also with 51-chromium edetic acid (EDTA) clearance measured over 24 hours. The absolute values of creatinine clearance and of 51Cr-EDTA clearance measured up to 8 hours were higher than inulin clearance. In advanced renal failure both the 51Cr-EDTA clearance measured over 24 hours, and the mean of creatinine and urea clearance, provide acceptable estimates of true glomerular filtration rate. PMID:411426

  16. [Could isolated mesangial deposits of C3 be responsible of glomerular hematuric nephropathies (author's transl)].

    PubMed

    Saint-Andre, J P; Touzard, D; Houssin, A; Simard, C

    1982-01-01

    This communication presents three cases of prolonged macroscopic hematuria in young subjects. Complementary explorations eliminated urologic or vascular causes. Renal biopsies showed minimal glomerular lesions with light microscopy, normal basement membranes in electron microscopy and mesangial deposits of C3 and properdine in immunofluorescence. Although the mesangial deposits of C3 lack specificity and the number of observations is small, it appears useful to report such cases so as to indicate their frequency and perhaps their autonomy, in glomerular hematuric nephropathies.

  17. An Education in Contrast: State-by-State Assessment of School Immunization Records Requirements

    PubMed Central

    Jessop, Amy B.; Field, Robert I.

    2014-01-01

    Objectives. We reviewed the complexities of school-related immunization policies, their relation to immunization information systems (IIS) and immunization registries, and the historical context to better understand this convoluted policy system. Methods. We used legal databases (Lexis-Nexis and Westlaw) to identify school immunization records policies for 50 states, 5 cities, and the District of Columbia (Centers for Disease Control and Prevention “grantees”). The original search took place from May to September 2010 (cross-referenced in July 2013 with the list on http://www.immunize.org/laws). We describe the requirements, agreement with IIS policies, and penalties for policy violations. Results. We found a complex web of public health, medical, and education-directed policies, which complicates immunization data sharing. Most (79%) require records of immunizations for children to attend school or for a child-care institution licensure, but only a few (11%) require coordination between IIS and schools or child-care facilities. Conclusions. To realize the full benefit of IIS investment, including improved immunization and school health program efficiencies, IIS and school immunization records policies must be better coordinated. States with well-integrated policies may serve as models for effective harmonization. PMID:25122033

  18. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  19. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.

    PubMed

    Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten

    2015-10-05

    Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.

  20. Establishment of conditionally immortalized human glomerular mesangial cells in culture, with unique migratory properties.

    PubMed

    Sarrab, Ramadan M; Lennon, Rachel; Ni, Lan; Wherlock, Matthew D; Welsh, Gavin I; Saleem, Moin A

    2011-11-01

    The aim of this study was to establish an immortalized human mesangial cell line similar to mesangial cells in vivo for use as a tool for understanding glomerular cell function. Mesangial cells were isolated from glomerular outgrowths from a normal human kidney, then retrovirally transfected with a temperature-sensitive SV40T antigen+human telomerase (hTERT). Mesangial cells exhibited features of compact cells with small bodies in a confluent monolayer at 33°C, but the cell shape changed to flat and stellate after 5 days in growth-restrictive conditions (37°C). Western blot and immunofluorescence analysis showed that podocyte markers (nephrin, CD2AP, podocin, Wilms' tumor-1) and an endothelial-specific molecule (VE-cadherin) were not detectable in this cell line, whereas markers characteristic of mesangial cells (α-SMA, fibronectin, and PDGFβ-R) were strongly expressed. In migration assays, a significant reduction in wound surface was observed in podocyte and endothelial cells as soon as 12 h (75 and 62%, respectively) and complete wound closure after 24 h. In contrast, no significant change was observed in mesangial cells after 12 h, and even after 48 h the wounds were not completely closed. Until now, conditionally immortalized podocyte and endothelial cell lines derived from mice and humans have been described, and this has greatly boosted research on glomerular physiology and pathology. We have established the first conditionally immortalized human glomerular mesangial cell line, which will be an important adjunct in studies of representative glomerular cells, as well as in coculture studies. Unexpectedly, mesangial cells' ability to migrate seems to be slower than for other glomerular cells, suggesting this line will demonstrate functional properties distinct from previously available mesangial cell cultures. This conditionally immortalized human mesangial cell line represents a new tool for the study of human mesangial cell biology in vitro.

  1. Pattern of glomerular disease in the Saudi population: a single-center, five-year retrospective study.

    PubMed

    Nawaz, Z; Mushtaq, F; Mousa, D; Rehman, E; Sulaiman, M; Aslam, N; Khawaja, N

    2013-11-01

    Glomerular diseases continue to be the leading cause of end-stage renal disease (ESRD) globally. Hence, it is important to recognize the pattern of glomerular diseases in different geographical areas in order to understand the patho-biology, incidence and progression of the disorder. Published studies from different centers in Saudi Arabia have reported contradicting results. In this retrospective study, we report our experience at the Armed Forces Hospital, Riyadh, Saudi Arabia. A total of 348 native renal biopsies performed at our center on patients with proteinuria >1 g, hematuria and/or renal impairment during a period of 5 years (between January 2005 and December 2009) were studied by a histopathologist using light microscopy, immunofluorescence and electron microscopy, and were categorized. Results showed that primary glomerular disease accounted for 55.1% of all renal biopsies. The most common histological lesion was focal and segmental glomerulosclerosis (FSGS) (27.6%), followed by minimal change disease (MCD) (17.7%) and membrano-proliferative glomerulonephritis (MPGN) (13.0%). Secondary glomerular disease accounted for 37.9% of the glomerular diseases, with lupus nephritis (LN) being the most common lesion (54.5%), followed by hypertensive nephrosclerosis (22%), post-infectious glomerulonephritis (7.5%), diabetic nephropathy (DN) (6.8%) and vasculitides (4.5%). Four percent of all biopsies turned out to be ESRD while biopsy was inadequate in 2.8% of the cases. In conclusion, our study showed that FSGS was the most common primary GN encountered, while LN was the most common secondary GN. We encountered 14 cases of crescentic glomerulonephritis. Also, the prevalence of MPGN, MCD, IgA nephropathy and membranous GN was many folds higher in males when compared with the Western data. We believe that it is mandatory to maintain a Saudi Arabian Renal Biopsy Registry to understand better the pattern of glomerular disease in the Saudi population and to follow any change in trend.

  2. Chronic Kidney Disease Epidemiology Collaboration versus Modification of Diet in Renal Disease equations for renal function evaluation in patients undergoing partial nephrectomy.

    PubMed

    Shikanov, Sergey; Clark, Melanie A; Raman, Jay D; Smith, Benjamin; Kaag, Matthew; Russo, Paul; Wheat, Jeffrey C; Wolf, J Stuart; Huang, William C; Shalhav, Arieh L; Eggener, Scott E

    2010-11-01

    A novel equation, the Chronic Kidney Disease Epidemiology Collaboration, has been proposed to replace the Modification of Diet in Renal Disease for estimated glomerular filtration rate due to higher accuracy, particularly in the setting of normal renal function. We compared these equations in patients with 2 functioning kidneys undergoing partial nephrectomy. We assembled a cohort of 1,158 patients from 5 institutions who underwent partial nephrectomy between 1991 and 2009. Only subjects with 2 functioning kidneys were included in the study. The end points were baseline estimated glomerular filtration rate, last followup estimated glomerular filtration rate (3 to 18 months), absolute and percent change estimated glomerular filtration rate ([absolute change/baseline] × 100%), and proportion of newly developed chronic kidney disease stage III. The agreement between the equations was evaluated using Bland-Altman plots and the McNemar test for paired observations. Mean baseline estimated glomerular filtration rate derived from the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations were 73 and 77 ml/minute/1.73 m(2), respectively, and following surgery were 63 and 67 ml/minute/1.73 m(2), respectively. Mean percent change estimated glomerular filtration rate was -12% for both equations (p = 0.2). The proportion of patients with newly developed chronic kidney disease stage III following surgery was 32% and 25%, according to the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations, respectively (p = 0.001). For patients with 2 functioning kidneys undergoing partial nephrectomy the Chronic Kidney Disease Epidemiology Collaboration equation provides slightly higher glomerular filtration rate estimates compared to the Modification of Diet in Renal Disease equation, with 7% fewer patients categorized as having chronic kidney disease stage III or worse. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Podocytes from the diagnostic and therapeutic point of view.

    PubMed

    Müller-Deile, Janina; Schiffer, Mario

    2017-08-01

    The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.

  4. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    DOE PAGES

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; ...

    2015-09-22

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less

  5. Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials

    PubMed Central

    Tomaras, Georgia D.; Plotkin, Stanley A.

    2016-01-01

    Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811

  6. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    PubMed

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-09

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  7. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton

    PubMed Central

    Takeda, Tetsuro; McQuistan, Tammie; Orlando, Robert A.; Farquhar, Marilyn G.

    2001-01-01

    Podocalyxin (PC), the major sialoprotein of glomerular epithelial cells (GECs), helps maintain the characteristic architecture of the foot processes and the patency of the filtration slits. PC associates with actin via ezrin, a member of the ERM family of cytoskeletal linker proteins. Here we show that PC is linked to ezrin and the actin cytoskeleton via Na+/H+-exchanger regulatory factor 2 (NHERF2), a scaffold protein containing two PDZ (PSD-95/Dlg/ZO-1) domains and an ERM-binding region. The cytoplasmic tail of PC contains a C-terminal PDZ-binding motif (DTHL) that binds to the second PDZ domain of NHERF2 in yeast two-hybrid and in vitro pull-down assays. By immunocytochemistry NHERF2 colocalizes with PC and ezrin along the apical domain of the GEC plasma membrane. NHERF2 and ezrin form a multimeric complex with PC, as they coimmunoprecipitate with PC. The PC/NHERF2/ezrin complex interacts with the actin cytoskeleton, and this interaction is disrupted in GECs from puromycin aminonucleoside–, protamine sulfate–, or sialidase-treated rats, which show a dramatic loss of foot processes, comparable to that seen in the nephrotic syndrome. Thus NHERF2 appears to function as a scaffold protein linking PC to ezrin and the actin cytoskeleton. PC/NHERF2/ezrin/actin interactions are disrupted in pathologic conditions associated with changes in GEC foot processes, indicating their importance for maintaining the unique organization of this epithelium. J. Clin. Invest. 108:289–301 (2001). DOI:10.1172/JCI200112539. PMID:11457882

  8. Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria.

    PubMed

    Kasztan, Małgorzata; Piwkowska, Agnieszka; Kreft, Ewelina; Rogacka, Dorota; Audzeyenka, Irena; Szczepanska-Konkel, Mirosława; Jankowski, Maciej

    2016-07-01

    Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms underlying the in vitro and in vivo purinergic actions on glomerular filter permeability to albumin by measuring convectional albumin permeability (Palb) in a single isolated rat glomerulus based on the video microscopy method. Primary cultured rat podocytes were used for the analysis of Palb, cGMP accumulation, PKG-Iα dimerization, and immunofluorescence. In vitro, natural nucleotides (ATP, ADP, UTP, and UDP) and nonmetabolized ATP analogs (2-meSATP and ATP-γ-S) increased Palb in a time- and concentration-dependent manner. The effects were dependent on P2 receptor activation, nitric oxide synthase, and cytoplasmic guanylate cyclase. ATP analogs significantly increased Palb, cGMP accumulation, and subcortical actin reorganization in a PKG-dependent but nondimer-mediated route in cultured podocytes. In vivo, 2-meSATP and ATP-γ-S increased Palb but did not significantly affect urinary albumin excretion. Both agonists enhanced the clathrin-mediated endocytosis of albumin in podocytes. A product of adenine nucleotides hydrolysis, adenosine, increased the permeability of the glomerular barrier via adrenergic receptors in a dependent and independent manner. Our results suggest that the extracellular nucleotides that stimulate an increase of glomerular Palb involve nitric oxide synthase and cytoplasmic guanylate cyclase with actin reorganization in podocytes. Copyright © 2016 the American Physiological Society.

  9. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease

    PubMed Central

    Majumder, Syamantak; Thieme, Karina; Batchu, Sri N.; Alghamdi, Tamadher A.; Bowskill, Bridgit B.; Kabir, M. Golam; Liu, Youan; Advani, Suzanne L.; White, Kathryn E.; Geldenhuys, Laurette; Tennankore, Karthik K.; Poyah, Penelope; Siddiqi, Ferhan S.

    2017-01-01

    Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain–containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways. PMID:29227285

  10. Laminin α2-Mediated Focal Adhesion Kinase Activation Triggers Alport Glomerular Pathogenesis

    PubMed Central

    Delimont, Duane; Dufek, Brianna M.; Meehan, Daniel T.; Zallocchi, Marisa; Gratton, Michael Anne; Phillips, Grady; Cosgrove, Dominic

    2014-01-01

    It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages. PMID:24915008

  11. Biophysical properties of normal and diseased renal glomeruli.

    PubMed

    Wyss, Hans M; Henderson, Joel M; Byfield, Fitzroy J; Bruggeman, Leslie A; Ding, Yaxian; Huang, Chunfa; Suh, Jung Hee; Franke, Thomas; Mele, Elisa; Pollak, Martin R; Miner, Jeffrey H; Janmey, Paul A; Weitz, David A; Miller, R Tyler

    2011-03-01

    The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.

  12. Epidermal growth factor receptor inhibition with erlotinib ameliorates anti-Thy 1.1-induced experimental glomerulonephritis.

    PubMed

    Rintala, Jukka M; Savikko, Johanna; Rintala, Sini E; Palin, Niina; Koskinen, Petri K

    2016-06-01

    Mesangial proliferative glomerulonephritis is a common glomerular disorder that may lead to end-stage renal disease. Epidermal growth factor (EGF) plays an important role in the regulation of cell growth, proliferation, and differentiation and in the pathology of various renal diseases. Erlotinib is a novel, oral, highly selective tyrosine kinase inhibitor of the EGF receptor. It is clinically used to treat non-small cell lung and pancreatic cancers. Here, we investigated the effect of erlotinib on the progression of mesangioproliferative glomerulonephritis in an experimental model. Mesangial glomerulonephritis was induced with anti-rat Thy-1.1 antibody in male Wistar rats weighing 150-160 g. Rats were treated with erlotinib (10 mg/kg/day p.o.) or vehicle only (polyethylene glycol). Native Wistar rat kidneys were used as histological controls. Serum creatinine levels were measured at day 7. Kidneys were harvested 7 days after antibody administration for histology. Native controls showed no histological signs of glomerular pathology. In the vehicle group, intense glomerular inflammation developed after 7 days and prominent mesangial cell proliferation and glomerular matrix accumulation was seen. Erlotinib was well tolerated and there were no adverse effects during the follow-up period. Erlotinib significantly prevented progression of the glomerular inflammatory response and glomerular mesangial cell proliferation as well as matrix accumulation when compared with the vehicle group. Erlotinib also preserved renal function. These results indicate that erlotinib prevents the early events of experimental mesangial proliferative glomerulonephritis. Therefore, inhibition of the EGF receptor with erlotinib could prevent the progression of glomerulonephritis also in clinical nephrology.

  13. Pulmonary immunity and extracellular matrix interactions.

    PubMed

    O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B

    2018-04-09

    The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  14. Single cell transcriptomics to explore the immune system in health and disease†

    PubMed Central

    Regev, Aviv; Teichmann, Sarah A.

    2017-01-01

    The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043

  15. 76 FR 12117 - Call for Comments on the Draft Report of the Adult Immunization Working Group to the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Call for Comments on the Draft Report of the Adult Immunization Working Group to the National Vaccine Advisory Committee on Adult Immunization: Complex Challenges..., national adult immunization program that will lead to vaccine-preventable disease reduction by improving...

  16. Recent progress in the understanding of host immunity to avian coccidiosis: IL-17 family cytokines as the sentinels on the intestinal mucosa

    USDA-ARS?s Scientific Manuscript database

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. Innate immunity is mediated by various subpopulations of innate immune cells through the secretion of soluble factors with diverse functi...

  17. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems.

    PubMed

    Morse, Robert P; Nikolakakis, Kiel C; Willett, Julia L E; Gerrick, Elias; Low, David A; Hayes, Christopher S; Goulding, Celia W

    2012-12-26

    Contact-dependent growth inhibition (CDI) systems encode polymorphic toxin/immunity proteins that mediate competition between neighboring bacterial cells. We present crystal structures of CDI toxin/immunity complexes from Escherichia coli EC869 and Burkholderia pseudomallei 1026b. Despite sharing little sequence identity, the toxin domains are structurally similar and have homology to endonucleases. The EC869 toxin is a Zn(2+)-dependent DNase capable of completely degrading the genomes of target cells, whereas the Bp1026b toxin cleaves the aminoacyl acceptor stems of tRNA molecules. Each immunity protein binds and inactivates its cognate toxin in a unique manner. The EC869 toxin/immunity complex is stabilized through an unusual β-augmentation interaction. In contrast, the Bp1026b immunity protein exploits shape and charge complementarity to occlude the toxin active site. These structures represent the initial glimpse into the CDI toxin/immunity network, illustrating how sequence-diverse toxins adopt convergent folds yet retain distinct binding interactions with cognate immunity proteins. Moreover, we present visual demonstration of CDI toxin delivery into a target cell.

  18. Anti-glomerular basement membrane blood test

    MedlinePlus

    ... the part of the kidney that helps filter waste and extra fluid from the blood. Anti-glomerular basement membrane antibodies are antibodies against this membrane. They can lead to kidney damage. This article describes the blood test to detect these antibodies.

  19. Performance of the chronic kidney disease-epidemiology study equations for estimating glomerular filtration rate before and after nephrectomy.

    PubMed

    Lane, Brian R; Demirjian, Sevag; Weight, Christopher J; Larson, Benjamin T; Poggio, Emilio D; Campbell, Steven C

    2010-03-01

    Accurate renal function determination before and after nephrectomy is essential for proper prevention and management of chronic kidney disease due to nephron loss and ischemic injury. We compared the estimated glomerular filtration rate using several serum creatinine based formulas against the measured rate based on (125)I-iothalamate clearance to determine which most accurately reflects the rate in this setting. Of 7,611 patients treated at our institution since 1975 the measured glomerular filtration rate was selectively determined before and after nephrectomy in 268 and 157, respectively. Performance of the Cockcroft-Gault, Modification of Diet in Renal Disease Study, re-expressed Modification of Diet in Renal Disease Study and Chronic Kidney Disease-Epidemiology Study equations, each of which estimates the glomerular filtration rate, were determined using serum creatinine, age, gender, weight and body surface area. The performance of serum creatinine, reciprocal serum creatinine and the 4 formulas was compared with the measured rate using Pearson's correlation, Lin's concordance coefficient and residual plots. Median serum creatinine was 1.4 mg/dl and the median measured glomerular filtration rate was 50 ml per minute per 1.73 m(2). The correlation between serum creatinine and the measured rate was poor (-0.66) compared with that of reciprocal serum creatinine (0.78) and the 4 equations (0.82 to 0.86). The Chronic Kidney Disease-Epidemiology Study equation performed with greatest precision and accuracy, and least bias of all equations. Stage 3 or greater chronic kidney disease ((125)I-iothalamate glomerular filtration rate 60 ml per minute per 1.73 m(2) or less) was present in 44% of patients with normal serum creatinine (1.4 mg/dl or less) postoperatively. Such missed diagnoses of chronic kidney disease decreased 42% using the Chronic Kidney Disease-Epidemiology Study equation. Glomerular filtration rate estimation equations outperform serum creatinine and better identify patients with perinephrectomy compromised renal function. The newly developed, serum creatinine based, Chronic Kidney Disease-Epidemiology Study equation has sufficient accuracy to render direct glomerular filtration rate measurement unnecessary before and after nephrectomy for cause in most circumstances. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Stress, Anxiety, and Immunomodulation: A Pharmacological Analysis.

    PubMed

    Ray, A; Gulati, K; Rai, N

    2017-01-01

    Stress and stressful events are common occurrences in our daily lives and such aversive situations bring about complex changes in the biological system. Such stress responses influence the brain and behavior, neuroendocrine and immune systems, and these responses orchestrate to increase or decrease the ability of the organism to cope with such stressors. The brain via expression of complex behavioral paradigms controls peripheral responses to stress and a bidirectional link exists in the modulation of stress effects. Anxiety is a common neurobehavioral correlate of a variety of stressors, and both acute and chronic stress exposure could precipitate anxiety disorders. Psychoneuroimmunology involves interactions between the brain and the immune system, and it is now being increasingly recognized that the immune system could contribute to the neurobehavioral responses to stress. Studies have shown that the brain and its complex neurotransmitter networks could influence immune function, and there could be a possible link between anxiogenesis and immunomodulation during stress. Physiological and pharmacological data have highlighted this concept, and the present review gives an overview of the relationship between stress, anxiety, and immune responsiveness. © 2017 Elsevier Inc. All rights reserved.

  1. Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling

    PubMed Central

    Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki

    2010-01-01

    Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428

  2. Demonstration of antibodies to collagen and of collagen-anticollagen immune complexes in rheumatoid arthritis synovial fluids

    PubMed Central

    Menzel, J.; Steffen, C.; Kolarz, G.; Eberl, R.; Frank, O.; Thumb, N.

    1976-01-01

    Menzel, J., Steffen, C., Kolarz, G., Eberl, R., Frank, O., and Thumb, N. (1976).Annals of the Rheumatic Diseases, 35, 446-450. Demonstration of antibodies to collagen and of collagen-anticollagen immune complexes in rheumatoid arthritis synovial fluids. Twenty-nine synovial fluids from patients with rheumatoid arthritis (RA) and 10 synovial fluids from patients with other joint diseases were investigated with regard to the presence of antibodies to denatured human collagen and of collagen-anticollagen immune complexes. 12 of the 29 RA synovial fluids showed anticollagen titres from 1: 16 to 1: 512 in passive haemagglutination. Only one patient in the group with no arthritis had a significant anticollagen titre of 1: 32. Digestion of the synovial fluids with bacterial collagenase resulted in an anticollagen titre increase from two to four dilution steps in 9 of the RA fluids, while 6 previously negative RA synovial fluids showed anticollagen titres from 1: 32 to 1: 128 after digestion with collagenase. These results indicate the existence of collagen-anticollagen immune complexes in 15 of the 29 RA synovial fluids investigated. PMID:185972

  3. Interpretation of the Raji cell assay in sera containing anti-nuclear antibodies and immune complexes.

    PubMed Central

    Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N

    1981-01-01

    The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676

  4. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions.

    PubMed

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-19

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  5. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng

    2016-05-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.

  6. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  7. Clinical dehydration and glomerular filtration rate in acute paediatric gastroenteritis.

    PubMed

    Milani, Gregorio P; Fossali, Emilio F; Perri, Alessandra; Vettori, Arianna; Grillo, Paolo; Agostoni, Carlo

    2013-08-01

    To evaluate changes in glomerular filtration rate in acute gastroenteritis. The correlation between two clinical diagnostic scales and glomerular filtration rate has been investigated in 113 children with acute gastroenteritis in a paediatric emergency setting. A significant reduction of GFR was found in 10% children less than, and 5% children higher than, 2 years of age with acute gastroenteritis. The differences observed as for risk of renal hypoperfusion suggests to consider the age of children as an important determinant to consider the dehydration status in acute gastroenteritis. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  8. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.

    PubMed

    Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B

    2004-01-01

    Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.

  9. Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.

    PubMed

    Wilks, M F; Gregg, N J; Bach, P H

    1994-01-01

    The present study was designed to assess the effects of mercury on glomerular integrity during the early phase of acute renal failure. The silver amplification method showed distribution of mercury in midcortical and juxtamedullary glomeruli and on the brush border of the S2 segment of the proximal tubule 15 min after treatment. At 30 min, there was a decrease in glomerular staining and increased mercury in the proximal tubule. After 3 hr, mercury was no longer detectable in glomeruli but was widespread in the lumen of the proximal tubule. By 24 hr, mercury was prominent in all proximal tubular segments throughout the cortex. The presence of mercury in glomeruli was not related to hemodynamic changes, as there was no evidence for blood redistribution toward juxtamedullary glomeruli as assessed by the filling of the microvascular system with Monastral Blue B. The reduced activity of horseradish peroxidase (administered i.v. 90 sec and 10 min before sacrifice) in juxtamedullary glomeruli 30 min after mercury administration suggests a decreased uptake of horseradish peroxidase or an increased glomerular protein filtration. These data support glomerular filtration as the predominant excretory route for mercury, highlight the marked nephron heterogeneity in the distribution of this metal, and show that impairment of glomerular integrity occurs before necrosis of the proximal tubules and acute renal failure.

  10. Prevalence of glomerular hyperfiltration and nephromegaly in normo- and microalbuminuric type 2 diabetic patients.

    PubMed

    Gragnoli, G; Signorini, A M; Tanganelli, I; Fondelli, C; Borgogni, P; Borgogni, L; Vattimo, A; Ferrari, F; Guercia, M

    1993-01-01

    Glomerular hyperfiltration, correlated with nephromegaly, is a frequent finding in type 1 (insulin-dependent) diabetes. In type 2 (non-insulin-dependent) diabetes, very few studies have been performed, and the results have been inconclusive. Glomerular filtration rate (GFR) and kidney volume, using 99mTc-DTPA scintigraphy and ultrasonography, respectively, were evaluated in 58 control subjects and 163 type 2 diabetic patients; 79 of whom were normoalbuminuric and 84 microalbuminuric. In the two groups of patients, these parameters did not differ significantly from those of controls, even when hypertensive subjects were excluded. Glomerular hyperfiltration was observed in 10 cases; all were normotensive (9.8%), of whom 7 were normoalbuminuric and 3 microalbuminuric. Nephromegaly was observed in 3 other normotensive microalbuminuric diabetic patients. Hypertensive subjects showed a lower GFR than normotensive patients and control subjects. Multivariate analysis showed a negative correlation between glomerular filtrate and systolic blood pressure (BP) in the overall population of patients and in normo- and microalbuminuric patients taken separately. It is concluded that the relationship between these variables forms a continuum in our type 2 diabetic patients; it may also be important in determining the low prevalence of hyperfiltration and nephromegaly found in our patients, who had BP levels higher than those of controls.

  11. Citral is renoprotective for focal segmental glomerulosclerosis by inhibiting oxidative stress and apoptosis and activating Nrf2 pathway in mice.

    PubMed

    Yang, Shun-Min; Hua, Kuo-Feng; Lin, Yu-Chuan; Chen, Ann; Chang, Jia-Ming; Kuoping Chao, Louis; Ho, Chen-Lung; Ka, Shuk-Man

    2013-01-01

    The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establishment of a pathogenesis-based therapeutic strategy for the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in Litseacubeba, a traditional Chinese herbal medicine, can inhibit oxidant activity, macrophage and NF-κB activation. In the present study, first, we used a mouse model of FSGS with the features of glomerular epithelial hyperplasia lesions (EPHLs), a key histopathology index of progression of FSGS, peri-glomerular inflammation, and progressive glomerular hyalinosis/sclerosis. When treated with citral for 28 consecutive days at a daily dose of 200 mg/kg of body weight by gavage, the FSGS mice showed greatly reduced EPHLs, glomerular hyalinosis/sclerosis and peri-glomerular mononuclear leukocyte infiltration, suggesting that citral may be renoprotective for FSGS and act by inhibiting oxidative stress and apoptosis and early activating the Nrf2 pathway. Meanwhile, a macrophage model involved in anti-oxidative and anti-inflammatory activities was employed and confirmed the beneficial effects of citral on the FSGS model.

  12. Citral Is Renoprotective for Focal Segmental Glomerulosclerosis by Inhibiting Oxidative Stress and Apoptosis and Activating Nrf2 Pathway in Mice

    PubMed Central

    Yang, Shun-Min; Hua, Kuo-Feng; Lin, Yu-Chuan; Chen, Ann; Chang, Jia-Ming; Kuoping Chao, Louis; Ho, Chen-Lung; Ka, Shuk-Man

    2013-01-01

    The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establishment of a pathogenesis-based therapeutic strategy for the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in Litsea cubeba , a traditional Chinese herbal medicine, can inhibit oxidant activity, macrophage and NF-κB activation. In the present study, first, we used a mouse model of FSGS with the features of glomerular epithelial hyperplasia lesions (EPHLs), a key histopathology index of progression of FSGS, peri-glomerular inflammation, and progressive glomerular hyalinosis/sclerosis. When treated with citral for 28 consecutive days at a daily dose of 200 mg/kg of body weight by gavage, the FSGS mice showed greatly reduced EPHLs, glomerular hyalinosis/sclerosis and peri-glomerular mononuclear leukocyte infiltration, suggesting that citral may be renoprotective for FSGS and act by inhibiting oxidative stress and apoptosis and early activating the Nrf2 pathway. Meanwhile, a macrophage model involved in anti-oxidative and anti-inflammatory activities was employed and confirmed the beneficial effects of citral on the FSGS model. PMID:24069362

  13. Glomerular latency coding in artificial olfaction.

    PubMed

    Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique

    2011-01-01

    Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.

  14. Coexistent findings of renal glomerular disease with Hashimoto's thyroiditis.

    PubMed

    Koçak, Gülay; Huddam, Bülent; Azak, Alper; Ortabozkoyun, Levent; Duranay, Murat

    2012-05-01

    Hashimoto's thyroiditis (HT) is a common autoimmune thyroid disease with a female preponderance. Renal involvement in HT is not uncommon. In the present study, we aimed to define the frequency and characteristics of the glomerular diseases associated with HT and further the understanding of any common pathogenesis between HT and glomerular disease. We reviewed retrospectively 28 patients with HT who were referred to our Department because of unexplained haematuria, proteinuria or renal impairment from 2007 to 2011. Routine laboratory investigations including blood count, serum biochemistry, urinalysis and 24-h urinary protein excretion were performed on all patients. Renal biopsy was performed in 20 patients with HT, and the specimens were examined by light microscopy and immunofluorescence staining. We detected four cases of focal segmental glomerulosclerosis (FSGS), four membranous glomerulonephritis (MGN), two minimal-change disease (MCD), three immunoglobulin A nephritis (IgAN), three chronic glomerulonephritis (CGN) and one amyloidosis. In three patients, the renal biopsy findings were nonspecific. Daily urinary protein excretion and glomerular filtration rates were found to be independent of the level of thyroid hormone and thyroid-specific autoantibodies. Glomerular pathologies associated with HT are similar to those in the general population, the most common lesions being MGN, FSGS and IgA nephritis. © 2012 Blackwell Publishing Ltd.

  15. Post-infectious acute glomerulonephritis with podocytopathy induced by parvovirus B19 infection.

    PubMed

    Hara, Satoshi; Hirata, Masayoshi; Ito, Kiyoaki; Mizushima, Ichiro; Fujii, Hiroshi; Yamada, Kazunori; Nagata, Michio; Kawano, Mitsuhiro

    2018-03-01

    Human parvovirus B19 infection causes a variety of glomerular diseases such as post-infectious acute glomerulonephritis and collapsing glomerulopathy. Although each of these appears independently, it has not been fully determined why parvovirus B19 provokes such a variety of different glomerular phenotypes. Here, we report a 68-year-old Japanese man who showed endocapillary proliferative glomerulonephritis admixed with podocytopathy in association with parvovirus B19 infection. The patient showed acute onset of heavy proteinuria, microscopic hematuria and kidney dysfunction with arthralgia and oliguria after close contact with a person suffering from erythema infectiosum. In the kidney biopsy specimen, glomeruli revealed diffuse and global endocapillary infiltration of inflammatory cells, with some also showing tuft collapse with aberrant vacuolation, swelling, and hyperplasia of glomerular epithelial cells. Immunofluorescence revealed dense granular C3 deposition that resembled the "starry sky pattern". Intravenous glucocorticoid pulse therapy followed by oral prednisolone and cyclosporine combination therapy resulted in considerable amelioration of the kidney dysfunction and urinary abnormalities. The present case reveals that parvovirus B19 infection can induce different glomerular phenotypes even in the same kidney structure. This finding may provide hints useful for the further elucidation of the pathogenesis of parvovirus B19-induced glomerular lesions. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  16. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat.

    PubMed Central

    Riser, B L; Cortes, P; Zhao, X; Bernstein, J; Dumler, F; Narins, R G

    1992-01-01

    To define the interplay of glomerular hypertension and hypertrophy with mesangial extracellular matrix (ECM) deposition, we examined the effects of glomerular capillary distention and mesangial cell stretching on ECM synthesis. The volume of microdissected rat glomeruli (Vg), perfused ex vivo at increasing flows, was quantified and related to the proximal intraglomerular pressure (PIP). Glomerular compliance, expressed as the slope of the positive linear relationship between PIP and Vg was 7.68 x 10(3) microns 3/mmHg. Total Vg increment (PIP 0-150 mmHg) was 1.162 x 10(6) microns 3 or 61% (n = 13). A 16% increase in Vg was obtained over the PIP range equivalent to the pathophysiological limits of mean transcapillary pressure difference. A similar effect of renal perfusion on Vg was also noted histologically in tissue from kidneys perfused/fixed in vivo. Cultured mesangial cells undergoing cyclic stretching increased their synthesis of protein, total collagen, and key components of ECM (collagen IV, collagen I, laminin, fibronectin). Synthetic rates were stimulated by cell growth and the degree of stretching. These results suggest that capillary expansion and stretching of mesangial cells by glomerular hypertension provokes increased ECM production which is accentuated by cell growth and glomerular hypertrophy. Mesangial expansion and glomerulosclerosis might result from this interplay of mechanical and metabolic forces. Images PMID:1430216

  17. Podocyte-Specific VEGF-A Gain of Function Induces Nodular Glomerulosclerosis in eNOS Null Mice

    PubMed Central

    Veron, Delma; Aggarwal, Pardeep K.; Velazquez, Heino; Kashgarian, Michael; Moeckel, Gilbert

    2014-01-01

    VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF164 gain of function in eNOS−/− mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF164 gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS−/− mice with podocyte-specific VEGF164 gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF164 gain of function decreased glomerular S-nitrosylation of laminin in eNOS−/− mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson–like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin. PMID:24578128

  18. Complement, lymphocytotoxins and immune complexes in infectious mononucleosis: serial studies in uncomplicated cases

    PubMed Central

    Charlesworth, J. A.; Quin, J. W.; Macdonald, G. J.; Lennane, R. J.; Boughton, C. R.

    1978-01-01

    Serial studies of complement, immunoglobulins, lymphocytotoxins and immune complexes were performed in thirteen patients with uncomplicated infectious mononucleosis (IM). Two methods were used to detect immune complexes: a C1q-binding assay (C1q-BA) and the Raji-cell radioimmunoassay (RIA). Patients were followed until there was complete serological recovery. Individual complement components were normal or elevated but three patients showed initial reduction in total haemolytic activity. IgG, IgM, and IgA rose moderately during the acute phase. All sera showed thymocyte-specific cytotoxic activity at some time during the acute phase but were negative by 6 months. The C1q-BA was positive initially in twelve patients but had returned to normal by 6 months. The standard Raji RIA was negative in fifty out of fifty-five samples tested and it is proposed that this reflects the predominant IgM antibody response in these patients. In contrast, incorporation of a multispecific anti-immunoglobulin into this assay yielded data that was frequently positive; these correlated highly with that of the C1q-BA (P<0·001). Lymphocytotoxic activity correlated with the C1q-BA (P<0·001) and the modified Raji RIA (P<0·05). Patterns of lymphocytotoxicity and immune complex reactivity suggested an inverse relationship between these two parameters. It is proposed that this lymphocytotoxicity leads to production of antibody of restricted class permitting enhanced clearance of immune complexes. PMID:737909

  19. Spectroscopic techniques to study the immune response in human saliva

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  20. [Autoantibody formation against the antigens of the synaptonemal complex in the syngeneic immunization of male Mus musculus].

    PubMed

    Dadashev, S Ia; Gorach, G G; Kolomiets, O L

    1994-01-01

    Male mice were immunized with the suspension of synaptonemal complexes (SC) isolated from mouse spermatocytes nuclei. The indirect immunofluorescent analysis showed the active binding of sera obtained from immunized mice to SC of mouse spermatocyte spreads. At early and mid-pachytene, SC can be clearly identified in 19 autosome bivalents and in sex chromosome bivalent. According to the electron microscopic analysis, all structural elements of SC bind antibodies. Metaphase chromosomes were not stained with the immune sera. Specificity of interaction between SC components and antibodies was confirmed in a series of control experiments. Analysis of sera obtained from mice after their syngeneic immunization with isolated SC fraction suggested that certain mouse SC components induce the formation of autoantibodies. This, in turn, suggests that these SC components are meiosis-specific.

  1. [A complex interplay of hormones, neuro-transmitters, neuropeptides and immunity cells is responsible for the control of eating].

    PubMed

    Rondanelli, M

    1997-09-01

    Food-seeking behaviour is a complex mechanism which involves an interplay of hormones, neurotransmitters, neuropeptides and immunity cells. In this review the important role of the cooperation between the SNC system, the endocrine system and in particular the immune system in the control of eating is underlined. Like stress and depression, in fact the regulation of eating represents another example of the interplay between these three systems and it is secondary to a bidirectional dialogue between the center and the periphery.

  2. Increased tumor localization and reduced immune response to adenoviral vector formulated with the liposome DDAB/DOPE.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J

    2007-04-01

    We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.

  3. Cross-presentation of IgG-containing immune complexes

    PubMed Central

    Baker, Kristi; Rath, Timo; Lencer, Wayne I.; Fiebiger, Edda

    2012-01-01

    IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells. PMID:22847331

  4. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  5. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    PubMed Central

    Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490

  6. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    PubMed

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  7. Decreased Nephrin and GLEPP-1, But Increased VEGF, Flt-1, and Nitrotyrosine, Expressions in Kidney Tissue Sections From Women With Preeclampsia

    PubMed Central

    Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping

    2011-01-01

    Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353

  8. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.

    PubMed Central

    Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M

    1985-01-01

    Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139

  9. Associations between age, body size and nephron number with individual glomerular volumes in urban West African males.

    PubMed

    McNamara, Bridgette J; Diouf, Boucar; Hughson, Michael D; Hoy, Wendy E; Bertram, John F

    2009-05-01

    Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20- 30 years and 12 subjects aged 50-70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. IGVs ranged from 1.31 x 10(6) microm3 to 12.40 x 10(6) microm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (> or =1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects.

  10. Glomerular filtration rate and kidney size in type 2 (non-insulin-dependent) diabetes mellitus.

    PubMed

    Wirta, O R; Pasternack, A I

    1995-07-01

    The objective of the present study was to estimate glomerular filtration rate and kidney size in recently diagnosed and long-term type 2 (non-insulin-dependent) diabetic subjects. The study design comprised of a population-based controlled cross-sectional survey of middle-aged type 2 diabetic subjects in the City of Tampere, Southwest Finland. One hundred and fifty consecutive recently diagnosed and 146 long-term middle-aged type 2 diabetic subjects with a disease duration of at least five years and one hundred and fifty age- and sex-matched (to recent diabetic subjects) non-diabetic control subjects were recruited. The glomerular filtration rate by single-shot 51Cr-EDTA clearance and kidney size by native X-ray tomography were measured. The glomerular filtration rate (ml/min/1.73 m2) was increased in both recently diagnosed (males 121 [27] and females 112 [27]) and long-term (males 123 [24] and females 102 [36]) diabetic subjects (corrected for age) compared to control subjects (males 111 [26] and females 93 [17]). The kidney areas (cm2) were greater in both recent diabetic (males 116.6 [15.4] and females 99.1 [15.3] and long-term diabetic (males 118.3 [15.8] and females 100.4 [15.2]) subjects than in the control group (males 104.3 [12.0] and females 88.6 [12.0]). All differences between diabetic subjects and non-diabetic subjects were statistically significant (p < 0.05), except that between long-term diabetic and non-diabetic females for glomerular filtration rate (p = 0.07). Analyzed by linear regression glomerular filtration rate was related to kidney area in all study groups and to hemoglobin A1c in long-term diabetic males.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: implications for principles underlying odor mapping

    PubMed Central

    Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed

    2015-01-01

    Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819

  12. Effect of Mannitol on Glomerular Ultrafiltration in the Hydropenic Rat

    PubMed Central

    Blantz, Roland C.

    1974-01-01

    The effect of mannitol upon glomerular ultrafiltration was examined in hydropenic Munich-Wistar rats. Superficial nephron filtration rate (sngfr) rose from 32.0±0.9 nl/min/g kidney wt to 42.0±1.6 (P < 0.001) in eight rats. Hydrostatic pressure gradients acting across the glomerular capillary (ΔP) were measured in glomerular capillaries and Bowman's space with a servo-nulling device, systemic (πA) and efferent arteriolar oncotic pressures (πE) were determined by microprotein analysis. These data were applied to a computer-based mathematical model of glomerular ultrafiltration to determine the profile of effective filtration pressure (EFP = ΔP — π) and total glomerular permeability (LpA) in both states. Filtration equilibrium obtained in hydropenia (LpA ≥ 0.099±0.006 nl/s/g kidney wt/mm Hg) and sngfr rose because EFP increased from a maximum value of 4.2±1.1 to 12.8±0.5 mm Hg after mannitol (P <0.01). This increase was due to both increased nephron plasma flow and decreased πA. Computer analysis of these data revealed that more than half (>58%) of this increase was due to decreased πA, consequent to dilution of protein. Since EFP was disequilibrated after mannitol, LpA could be calculated accurately (0.065 ± 0.003 nl/s/g kidney wt/mm Hg) and was significantly lower than the minimum estimate in hydropenia. Therefore, sngfr does increase with mannitol and this increase is not wholly dependent upon an increase in nephron plasma flow since the major factor increasing EFP was decreased πA. PMID:4418509

  13. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease

    PubMed Central

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre

    2016-01-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman’s capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44, α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman’s capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. PMID:26260163

  14. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease.

    PubMed

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre; Plaisier, Emmanuelle

    2016-04-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman's capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44,α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman's capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. Copyright © 2016 by the American Society of Nephrology.

  15. BAMBI Elimination Enhances Alternative TGF-β Signaling and Glomerular Dysfunction in Diabetic Mice

    PubMed Central

    Fan, Ying; Li, Xuezhu; Xiao, Wenzhen; Fu, Jia; Harris, Ray C.; Lindenmeyer, Maja; Cohen, Clemens D.; Guillot, Nicolas; Baron, Margaret H.; Wang, Niansong; Lee, Kyung; He, John C.; Chuang, Peter Y.

    2015-01-01

    BMP, activin, membrane-bound inhibitor (BAMBI) acts as a pseudo-receptor for the transforming growth factor (TGF)-β type I receptor family and a negative modulator of TGF-β kinase signaling, and BAMBI−/− mice show mild endothelial dysfunction. Because diabetic glomerular disease is associated with TGF-β overexpression and microvascular alterations, we examined the effect of diabetes on glomerular BAMBI mRNA levels. In isolated glomeruli from biopsies of patients with diabetic nephropathy and in glomeruli from mice with type 2 diabetes, BAMBI was downregulated. We then examined the effects of BAMBI deletion on streptozotocin-induced diabetic glomerulopathy in mice. BAMBI−/− mice developed more albuminuria, with a widening of foot processes, than BAMBI+/+ mice, along with increased activation of alternative TGF-β pathways such as extracellular signal–related kinase (ERK)1/2 and Smad1/5 in glomeruli and cortices of BAMBI−/− mice. Vegfr2 and Angpt1, genes controlling glomerular endothelial stability, were downmodulated in glomeruli from BAMBI−/− mice with diabetes. Incubation of glomeruli from nondiabetic BAMBI+/+ or BAMBI−/− mice with TGF-β resulted in the downregulation of Vegfr2 and Angpt1, effects that were more pronounced in BAMBI−/− mice and were prevented by a MEK inhibitor. The downregulation of Vegfr2 in diabetes was localized to glomerular endothelial cells using a histone yellow reporter under the Vegfr2 promoter. Thus, BAMBI modulates the effects of diabetes on glomerular permselectivity in association with altered ERK1/2 and Smad1/5 signaling. Future therapeutic interventions with inhibitors of alternative TGF-β signaling may therefore be of interest in diabetic nephropathy. PMID:25576053

  16. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.

    PubMed

    Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M

    2015-03-01

    This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P < 0.05). High-salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor-selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high-salt diet. In addition, chronic infusion of C57BL6/J mice with a subpressor dose of ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. BINDING OF SOLUBLE IMMUNE COMPLEXES TO HUMAN LYMPHOBLASTOID CELLS

    PubMed Central

    Theofilopoulos, Argyrios N.; Dixon, Frank J.; Bokisch, Viktor A.

    1974-01-01

    In the present work we studied the expression of membrane-bound Ig (MBIg) as well as receptors for IgG Fc and complement on nine human lymphoblastoid cell lines. When MBIg and receptors for IgG Fc were compared, four categories of cell lines could be distinguished: (a) cell lines having both MBIg and receptors for IgG Fc, (b) cell lines having MBIg but lacking receptors for IgG Fc, (c) cell lines lacking MBIg but having receptors for IgG Fc, and (d) cell lines lacking both MBIg and receptors for IgG Fc. Two types of receptors for complement could be detected on the cell lines studied, one for C3-C3b and one for C3d. When sensitized red cells carrying C3b or C3d were used for rosette tests, three categories of cell lines could be distinguished: (a) cell lines having receptors for C3b and C3d, (b) cell lines having receptors only for C3d and (c) cell lines lacking both receptors. However, when a more sensitive immunofluorescent method was used instead of the rosette technique, it was found that cell lines unable to form rosettes with EAC1423bhu were able to bind soluble C3 or C3b which indicated the presence of these receptors on the cell surface. Inhibition experiments showed that receptors for C3-C3b and receptors for C3d are distinct and that receptors for C3-C3b and C3d are different from receptors for IgG Fc. A cell line (Raji) without MBIg but with receptors for IgG Fc, C3-C3b, and C3d was selected for use in studying the binding mechanism of soluble immune complexes to cell surface membrane. Aggregated human gamma globulin was used in place of immune complexes. Immune complexes containing complement bind to Raji cells only via receptors for complement, namely receptors for C3-C3b and C3d. Binding of immune complexes containing complement to cells is much greater than that of complexes without complement. Immune complexes bound to cells via receptors for complement can be partially released from the cell surface by addition of normal human serum as well as isolated human C3 or C3b. We postulate that such release is due to competition of immune complex bound C3b and free C3 or C3b for the receptors on Raji cells. PMID:4139225

  18. Circulating Immune Complexes in Lyme Arthritis

    PubMed Central

    Hardin, John A.; Walker, Lesley C.; Steere, Allen C.; Trumble, Thomas C.; Tung, Kenneth S. K.; Williams, Ralph C.; Ruddy, Shaun; Malawista, Stephen E.

    1979-01-01

    We have found immunoglobulin (Ig) G-containing material consistent with immune complexes in the sera of patients with Lyme arthritis. It was detected in 29 of 55 sera (55%) from 31 patients by at least one of three assays: 125I-C1q binding, C1q solid phase, or Raji cell. The presence of reactive material correlated with clinical aspects of disease activity; it was found early in the illness, was most prominent in sera from the sickest patients, was infrequent during remissions, and often fluctuated in parallel with changes in clinical status. The results in the two C1q assays showed a strong positive correlation (P<0.001). They were each elevated in 45% of the sera and were usually concordant (85%). In contrast, the Raji cell assay was less frequently positive and often discordant with the C1q assays. In sucrose density gradients, putative circulating immune complexes sedimented near 19S; they, too, were detected best by the two assays based on C1q binding. An additional 7S component was found in some sera by the 125I-C1q binding assay. Serum complement was often above the range of normal in patients with mild disease and normal in patients with severe disease but did not correlate significantly with levels of circulating immune complexes. IgM and IgG rheumatoid factors were not detectable. These findings support a role for immune complexes in the pathogenesis of Lyme arthritis. Their measurement, by either the 125I-C1q binding assay or by the C1q solid phase assay, often provides a sensitive index of disease activity. Moreover, the complexes are likely sources of disease-related antigens for further study of this new disorder. PMID:429566

  19. Advances in the genetically complex autoinflammatory diseases.

    PubMed

    Ombrello, Michael J

    2015-07-01

    Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet's disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases-namely, the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically complex autoinflammatory phenotypes.

  20. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis--a review.

    PubMed

    Löwik, M M; Groenen, P J; Levtchenko, E N; Monnens, L A; van den Heuvel, L P

    2009-11-01

    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin beta2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction.

  1. In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye

    PubMed Central

    Kistler, Andreas D.; Caicedo, Alejandro; Abdulreda, Midhat H.; Faul, Christian; Kerjaschki, Dontscho; Berggren, Per-Olof; Reiser, Jochen; Fornoni, Alessia

    2014-01-01

    Multiphoton microscopy enables live imaging of the renal glomerulus. However, repeated in vivo imaging of the same glomerulus over extended periods of time and the study of glomerular function independent of parietal epithelial and proximal tubular cell effects has not been possible so far. Here, we report a novel approach for non-invasive imaging of acapsular glomeruli transplanted into the anterior chamber of the mouse eye. After microinjection, glomeruli were capable of engrafting on the highly vascularized iris. Glomerular structure was preserved, as demonstrated by podocyte specific expression of cyan fluorescent protein and by electron microscopy. Injection of fluorescence-labeled dextrans of various molecular weights allowed visualization of glomerular filtration and revealed leakage of 70 kDa dextran in an inducible model of proteinuria. Our findings demonstrate functionality and long-term survival of glomeruli devoid of Bowman's capsule and provide a novel approach for non-invasive longitudinal in vivo study of glomerular physiology and pathophysiology. PMID:24464028

  2. Quantitative indexes of aminonucleoside-induced nephrotic syndrome.

    PubMed Central

    Nevins, T. E.; Gaston, T.; Basgen, J. M.

    1984-01-01

    Aminonucleoside of puromycin (PAN) is known to cause altered glomerular permeability, resulting in a nephrotic syndrome in rats. The early sequence of this lesion was studied quantitatively, with the application of a new morphometric technique for determining epithelial foot process widths and a sensitive assay for quantifying urinary albumin excretion. Twenty-four hours following a single intraperitoneal injection of PAN, significant widening of foot processes was documented. Within 36 hours significant increases in urinary albumin excretion were observed. When control rats were examined, there was no clear correlation between epithelial foot process width and quantitative albumin excretion. However, in the PAN-treated animals, abnormal albuminuria only appeared in association with appreciable foot process expansion. These studies indicate that quantitative alterations occur in the rat glomerular capillary wall as early as 24 hours after PAN. Further studies of altered glomerular permeability may use these sensitive measures to more precisely define the temporal sequence and elucidate possible subgroups of experimental glomerular injury. Images Figure 1 Figure 2 PMID:6486243

  3. Proteomic analysis of the kidney filtration barrier--Problems and perspectives.

    PubMed

    Rinschen, Markus M; Benzing, Thomas; Limbutara, Kavee; Pisitkun, Trairak

    2015-12-01

    Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis

    PubMed Central

    Philipp, Eva E. R.; Kraemer, Lars; Melzner, Frank; Poustka, Albert J.; Thieme, Sebastian; Findeisen, Ulrike; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus. PMID:22448234

  5. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  6. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  7. Exacerbation of Diabetic Renal Alterations in Mice Lacking Vasohibin-1

    PubMed Central

    Hinamoto, Norikazu; Maeshima, Yohei; Yamasaki, Hiroko; Nasu, Tatsuyo; Saito, Daisuke; Watatani, Hiroyuki; Ujike, Haruyo; Tanabe, Katsuyuki; Masuda, Kana; Arata, Yuka; Sugiyama, Hitoshi; Sato, Yasufumi; Makino, Hirofumi

    2014-01-01

    Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy. PMID:25255225

  8. Deletion of pro-angiogenic factor vasohibin-2 ameliorates glomerular alterations in a mouse diabetic nephropathy model

    PubMed Central

    Masuda, Kana; Ujike, Haruyo; Hinamoto, Norikazu; Miyake, Hiromasa; Tanimura, Satoshi; Sugiyama, Hitoshi; Sato, Yasufumi; Maeshima, Yohei; Wada, Jun

    2018-01-01

    Angiogenesis has been implicated in glomerular alterations in the early stage of diabetic nephropathy. We previously reported the renoprotective effects of vasohibin-1 (VASH1), which is a novel angiogenesis inhibitor derived from endothelial cells, on diabetic nephropathy progression. Vasohibin-2 (VASH2) was originally identified as a VASH1 homolog and possesses pro-angiogenic activity in contrast to VASH1. In addition, VASH2 was recently shown to promote epithelial-to-mesenchymal transition via enhanced transforming growth factor (TGF)-β signaling in cancer cells. Herein, we investigated the pathogenic roles of VASH2 in diabetic nephropathy using VAHS2-deficient mice. The type 1 diabetes model was induced by intraperitoneal injections of streptozotocin in VASH2 homozygous knockout (VASH2LacZ/LacZ) or wild-type mice. These mice were euthanized 16 weeks after inducing hyperglycemia. Increased urine albumin excretion and creatinine clearance observed in diabetic wild-type mice were significantly prevented in diabetic VASH2-deficient mice. Accordingly, diabetes-induced increase in glomerular volume and reduction in glomerular slit-diaphragm density were significantly improved in VASH2 knockout mice. Increased glomerular endothelial area was also suppressed in VASH2-deficient mice, in association with inhibition of enhanced vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), but not VEGF level. Furthermore, glomerular accumulation of mesangial matrix, including type IV collagen, and increased expression of TGF-β were improved in diabetic VASH2 knockout mice compared with diabetic wild-type mice. Based on the immunofluorescence findings, endogenous VASH2 localization in glomeruli was consistent with mesangial cells. Human mesangial cells (HMCs) were cultured under high glucose condition in in vitro experiments. Transfection of VASH2 small interfering RNA (siRNA) into the HMCs resulted in the suppression of type IV collagen production induced by high glucose compared with control siRNA. These results indicate that VASH2 may be involved in diabetes-induced glomerular alterations, particularly impaired filtration barrier and mesangial expansion. Therefore, VASH2 is likely to represent a promising therapeutic target for diabetic nephropathy. PMID:29641565

  9. Immunology for physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelson, A.S.; Weisbuch, G.

    1997-10-01

    The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less

  10. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  11. Toll-like receptors and intestinal defence: molecular basis and therapeutic implications.

    PubMed

    Cario, Elke

    2003-07-07

    Toll-like receptors (TLRs) play a principle role in distinct pathogen recognition and in the initiation of innate immune responses of the intestinal mucosa. Activated innate immunity interconnects downstream with adaptive immunity in complex feedback regulatory loops. Intestinal disease might result from inappropriate activation of the mucosal immune system driven by TLRs in response to normal luminal flora.

  12. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  13. Using the Drosophila Nephrocyte to Model Podocyte Function and Disease

    PubMed Central

    Helmstädter, Martin; Huber, Tobias B.; Hermle, Tobias

    2017-01-01

    Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease. PMID:29270398

  14. Phospholipase C-β in immune cells.

    PubMed

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-09-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Innate Lymphoid Cells: a new paradigm in immunology

    PubMed Central

    Eberl, Gérard; Colonna, Marco; Di Santo, James P.; McKenzie, Andrew N.J.

    2016-01-01

    Summary Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex crosstalk between microenvironment, ILCs and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy. PMID:25999512

  16. Phospholipase C-β in Immune Cells

    PubMed Central

    Kawakami, Toshiaki; Xiao, Wenbin

    2013-01-01

    Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. PMID:23981313

  17. Inhibition of Akt/mTOR/p70S6K Signaling Activity With Huangkui Capsule Alleviates the Early Glomerular Pathological Changes in Diabetic Nephropathy.

    PubMed

    Wu, Wei; Hu, Wei; Han, Wen-Bei; Liu, Ying-Lu; Tu, Yue; Yang, Hai-Ming; Fang, Qi-Jun; Zhou, Mo-Yi; Wan, Zi-Yue; Tang, Ren-Mao; Tang, Hai-Tao; Wan, Yi-Gang

    2018-01-01

    Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro , murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro , the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro , and provided the first evidence that HKC directly contributes to the prevention of the early DN.

  18. The Major Histocompatibility Complex and Autism Spectrum Disorder

    PubMed Central

    Needleman, Leigh A.; McAllister, A. Kimberley

    2015-01-01

    Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune- related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD. PMID:22760919

  19. Nanoporous Anodic Alumina Surface Modification by Electrostatic, Covalent, and Immune Complexation Binding Investigated by Capillary Filling.

    PubMed

    Eckstein, Chris; Acosta, Laura K; Pol, Laura; Xifré-Pérez, Elisabet; Pallares, Josep; Ferré-Borrull, Josep; Marsal, Lluis F

    2018-03-28

    The fluid imbibition-coupled laser interferometry (FICLI) technique has been applied to detect and quantify surface changes and pore dimension variations in nanoporous anodic alumina (NAA) structures. FICLI is a noninvasive optical technique that permits the determination of the NAA average pore radius with high accuracy. In this work, the technique is applied after each step of different surface modification paths of the NAA pores: (i) electrostatic immobilization of bovine serum albumin (BSA), (ii) covalent attachment of streptavidin via (3-aminipropyl)-triethoxysilane and glutaraldehyde grafting, and (iii) immune complexation. Results show that BSA attachment can be detected as a reduction in estimated radius from FICLI with high accuracy and reproducibility. In the case of the covalent attachment of streptavidin, FICLI is able to recognize a multilayer formation of the silane and the protein. For immune complexation, the technique is able to detect different antibody-antigen bindings and distinguish different dynamics among different immune species.

  20. Study of rubella candidate vaccine based on a structurally modified plant virus.

    PubMed

    Trifonova, Ekaterina A; Zenin, Vladimir A; Nikitin, Nikolai A; Yurkova, Maria S; Ryabchevskaya, Ekaterina M; Putlyaev, Egor V; Donchenko, Ekaterina K; Kondakova, Olga A; Fedorov, Alexey N; Atabekov, Joseph G; Karpova, Olga V

    2017-08-01

    A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    PubMed

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  2. Parietal cells-new perspectives in glomerular disease.

    PubMed

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-07-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.

  3. Role for Macrophage Metalloelastase in Glomerular Basement Membrane Damage Associated with Alport Syndrome

    PubMed Central

    Rao, Velidi H.; Meehan, Daniel T.; Delimont, Duane; Nakajima, Motowo; Wada, Takashi; Ann Gratton, Michael; Cosgrove, Dominic

    2006-01-01

    Alport syndrome is a glomerular basement membrane (GBM) disease caused by mutations in type IV collagen genes. A unique irregular thickening and thinning of the GBM characterizes the progressive glomerular pathology. The metabolic imbalances responsible for these GBM irregularities are not known. Here we show that macrophage metalloelastase (MMP-12) expression is >40-fold induced in glomeruli from Alport mice and is markedly induced in glomeruli of both humans and dogs with Alport syndrome. Treatment of Alport mice with MMI270 (CGS27023A), a broad spectrum MMP inhibitor that blocks MMP-12 activity, results in largely restored GBM ultrastructure and function. Treatment with BAY-129566, a broad spectrum MMP inhibitor that does not inhibit MMP-12, had no effect. We show that inhibition of CC chemokine receptor 2 (CCR2) receptor signaling with propagermanium blocks induction of MMP-12 mRNA and prevents GBM damage. CCR2 receptor is expressed in glomerular podocytes of Alport mice, suggesting MCP-1 activation of CCR2 on podocytes may underlie induction of MMP-12. These data indicate that the irregular GBM that characterizes Alport syndrome may be mediated, in part, by focal degradation of the GBM due to MMP dysregulation, in particular, MMP-12. Thus, MMP-12/CCR2 inhibitors may provide a novel and effective therapeutic strategy for Alport glomerular disease. PMID:16816359

  4. Evaluation of erythrocyte dysmorphism by light microscopy with lowering of the condenser lens: A simple and efficient method.

    PubMed

    Barros Silva, Gyl Eanes; Costa, Roberto Silva; Ravinal, Roberto Cuan; Saraiva e Silva, Jucélia; Dantas, Marcio; Coimbra, Terezila Machado

    2010-03-01

    To demonstrate that the evaluation of erythrocyte dysmorphism by light microscopy with lowering of the condenser lens (LMLC) is useful to identify patients with a haematuria of glomerular or non-glomerular origin. A comparative double-blind study between phase contrast microscopy (PCM) and LMLC is reported to evaluate the efficacy of these techniques. Urine samples of 39 patients followed up for 9 months were analyzed, and classified as glomerular and non-glomerular haematuria. The different microscopic techniques were compared using receiver-operator curve (ROC) analysis and area under curve (AUC). Reproducibility was assessed by coefficient of variation (CV). Specific cut-offs were set for each method according to their best rate of specificity and sensitivity as follows: 30% for phase contrast microscopy and 40% for standard LMLC, reaching in the first method the rate of 95% and 100% of sensitivity and specificity, respectively, and in the second method the rate of 90% and 100% of sensitivity and specificity, respectively. In ROC analysis, AUC for PCM was 0.99 and AUC for LMLC was 0.96. The CV was very similar in glomerular haematuria group for PCM (35%) and LMLC (35.3%). LMLC proved to be effective in contributing to the direction of investigation of haematuria, toward the nephrological or urological side. This method can substitute PCM when this equipment is not available.

  5. Novel routes of albumin passage across the glomerular filtration barrier.

    PubMed

    Castrop, H; Schießl, I M

    2017-03-01

    Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII.

    PubMed

    Takizawa, F; Adamczewski, M; Kinet, J P

    1992-08-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation.

  7. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII

    PubMed Central

    1992-01-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation. PMID:1386873

  8. Rational combinations of immunotherapy for pancreatic ductal adenocarcinoma.

    PubMed

    Blair, Alex B; Zheng, Lei

    2017-06-01

    The complex interaction between the immune system, the tumor and the microenvironment in pancreatic ductal adenocarcinoma (PDA) leads to the resistance of PDA to immunotherapy. To overcome this resistance, combination immunotherapy is being proposed. However, rational combinations that target multiple aspects of the complex anti-tumor immune response are warranted. Novel clinical trials will investigate and optimize the combination immunotherapy for PDA.

  9. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  10. Immunologically induced peliosis hepatis in rats.

    PubMed Central

    Husztik, E.; Lázár, G.; Szabó, E.

    1984-01-01

    Peliosis hepatis has been induced immunologically with anti-rat glomerular basal membrane rabbit serum in rats pre-sensitized with a rare earth metal complex, neodymium pyrocatechin disulphonate (NPD). This is the first experimental evidence that peliosis hepatis may develop as a result of an immunological process. It is noteworthy that in this experimental form of peliosis hepatis and in that observed earlier in rats treated with basic polyglutamic acid derivatives, severe defibrination was detected and, as in most human cases, not only the liver but other organs were also involved in the peliotic lesions. Since the rare earth metal compounds, among them the pyrocatechin disulphonate complex of neodymium, depress the reticulo-endothelial activity, a role of the reticulo-endothelial system in the pathogenesis of this experimental form of peliosis hepatis is suggested. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6547617

  11. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II.

    PubMed

    D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E

    2009-04-01

    Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.

  12. Mechanisms regulating skin immunity and inflammation.

    PubMed

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  13. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes

    PubMed Central

    Eid, Stéphanie; Boutary, Suzan; Braych, Kawthar; Sabra, Ramzi; Massaad, Charbel; Hamdy, Ahmed; Rashid, Awad; Moodad, Sarah; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Abstract Aim: Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. Results: High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. Innovation: Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Conclusion: mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703–719. PMID:27393154

  14. Estimating glomerular filtration rate (GFR) in children. The average between a cystatin C- and a creatinine-based equation improves estimation of GFR in both children and adults and enables diagnosing Shrunken Pore Syndrome.

    PubMed

    Leion, Felicia; Hegbrant, Josefine; den Bakker, Emil; Jonsson, Magnus; Abrahamson, Magnus; Nyman, Ulf; Björk, Jonas; Lindström, Veronica; Larsson, Anders; Bökenkamp, Arend; Grubb, Anders

    2017-09-01

    Estimating glomerular filtration rate (GFR) in adults by using the average of values obtained by a cystatin C- (eGFR cystatin C ) and a creatinine-based (eGFR creatinine ) equation shows at least the same diagnostic performance as GFR estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparison of eGFR cystatin C and eGFR creatinine plays a pivotal role in the diagnosis of Shrunken Pore Syndrome, where low eGFR cystatin C compared to eGFR creatinine has been associated with higher mortality in adults. The present study was undertaken to elucidate if this concept can also be applied in children. Using iohexol and inulin clearance as gold standard in 702 children, we studied the diagnostic performance of 10 creatinine-based, 5 cystatin C-based and 3 combined cystatin C-creatinine eGFR equations and compared them to the result of the average of 9 pairs of a eGFR cystatin C and a eGFR creatinine estimate. While creatinine-based GFR estimations are unsuitable in children unless calibrated in a pediatric or mixed pediatric-adult population, cystatin C-based estimations in general performed well in children. The average of a suitable creatinine-based and a cystatin C-based equation generally displayed a better diagnostic performance than estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparing eGFR cystatin and eGFR creatinine may help identify pediatric patients with Shrunken Pore Syndrome.

  15. ENHANCED ANTITOXIN RESPONSES IN IRRADIATED MICE ELICITED BY COMPLEXES OF TETANUS TOXOID AND SPECIFIC ANTIBODY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R.D.; Terres, G.

    1963-12-01

    Enhanced primary antitoxin responses were obtained in mice immunized by intravenous injection with complexes of tetanus toxoid and mouse antitoxin, presumably formed either in vivo, or prepared in vitro in antigen-antibody ratios of antibody excess, equivalence, and antigen excess. The demonstration of the enhancement phenomenon elicited by complexes of toxoid and isologous mouse antitoxin provide conclusive evidence that the antibody portion of the complex does not need to be of heterologous origin in order to elicit enhanced primary antibody responses in mice. Intravenous immunization with the above complexes elicited enhanced primary responses in irradiated animals, whereas minimal responses were obtainedmore » with antigen only. Littie difference was observed in primary responses in nonirradiated mice when antigen only or antigen complexed with specific antibody is given by subcutaneous injection. However, enhanced primary antitoxin responses were obtained in irradiated mice (400 rad) immunized with the various complexes over the responses observed in irradiated animals immunlzed with antigen only. The greatest degree of enhancement occurred when the complexes were prepared in the region of equivalence and antigen excess. Secondary antitoxin responses were repressed when the same complexes of antigen and antibody were injected to elicit secondary responses. A corresponding repression of secondary responses was observed in irradiated mice when radiation doses of 300 rad were delivered 24 hr before the second injection of antigen complexed with specific mouse antitoxin. (BBB)« less

  16. Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen

    PubMed Central

    1994-01-01

    Antinuclear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated with certain viral infections. The factors that initiate ANA production and determine ANA specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor suppressor protein were induced in mice immunized with purified complexes of murine p53 and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT complexes were transient, but low levels of the autoantibodies persisted. The latter may have been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established by immunizing with p53/SVT complexes, it could be maintained without a requirement for SVT. These data may be explained in at least two ways. First, altered antigen processing resulting from the formation of p53/SVT complexes might activate autoreactive T helper cells specific for cryptic epitopes of murine p53, driving anti-p53 autoantibody production. Alternatively, SVT- responsive T cells may provide intermolecular-intrastructural help to B cells specific for murine p53. In a second stage, these activated B cells might themselves process self p53, generating p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an immune response directed against this naturally occurring complex of self and nonself antigens may be relevant to the generation of specific autoantibodies in viral infections, and may also have implications for understanding the pathogenesis of ANAs in SLE. In particular, our results imply that autoimmunity can be initiated by a "hit and run" mechanism in which the binding of a viral antigen to a self protein triggers an immune response that subsequently can be perpetuated by self antigen. PMID:8145041

  17. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

    PubMed

    Yuba, Eiji; Kanda, Yuhei; Yoshizaki, Yuta; Teranishi, Ryoma; Harada, Atsushi; Sugiura, Kikuya; Izawa, Takeshi; Yamate, Jyoji; Sakaguchi, Naoki; Koiwai, Kazunori; Kono, Kenji

    2015-10-01

    Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.

    PubMed

    Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2011-02-15

    Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.

  19. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Advances in sepsis research derived from animal models.

    PubMed

    Männel, Daniela N

    2007-09-01

    Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.

  1. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens

    PubMed Central

    Gomez, Daniela; Sunyer, J Oriol; Salinas, Irene

    2013-01-01

    The field of mucosal immunology research has grown fast over the past few years, and our understanding on how mucosal surfaces respond to complex antigenic cocktails is expanding tremendously. With the advent of new molecular sequencing techniques, it is easier to understand how the immune system of vertebrates is, to a great extent, orchestrated by the complex microbial communities that live in symbiosis with their hosts. The commensal microbiota is now seen as the “extended self” by many scientists. Similarly, fish immunologist are devoting important research efforts to the field of mucosal immunity and commensals. Recent breakthroughs on our understanding of mucosal immune responses in teleost fish open up the potential of teleosts as animal research models for the study of human mucosal diseases. Additionally, this new knowledge places immunologists in a better position to specifically target the fish mucosal immune system while rationally designing mucosal vaccines and other immunotherapies. In this review, an updated view on how teleost skin, gills and gut immune cells and molecules, function in response to pathogens and commensals is provided. Finally, some of the future avenues that the field of fish mucosal immunity may follow in the next years are highlighted. PMID:24099804

  2. Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza

    PubMed Central

    Zarnitsyna, Veronika I.; Ellebedy, Ali H.; Davis, Carl; Jacob, Joshy; Ahmed, Rafi; Antia, Rustom

    2015-01-01

    The immune responses to influenza, a virus that exhibits strain variation, show complex dynamics where prior immunity shapes the response to the subsequent infecting strains. Original antigenic sin (OAS) describes the observation that antibodies to the first encountered influenza strain, specifically antibodies to the epitopes on the head of influenza's main surface glycoprotein, haemagglutinin (HA), dominate following infection with new drifted strains. OAS suggests that responses to the original strain are preferentially boosted. Recent studies also show limited boosting of the antibodies to conserved epitopes on the stem of HA, which are attractive targets for a ‘universal vaccine’. We develop multi-epitope models to explore how pre-existing immunity modulates the immune response to new strains following immunization. Our models suggest that the masking of antigenic epitopes by antibodies may play an important role in describing the complex dynamics of OAS and limited boosting of antibodies to the stem of HA. Analysis of recently published data confirms model predictions for how pre-existing antibodies to an epitope on HA decrease the magnitude of boosting of the antibody response to this epitope following immunization. We explore strategies for boosting of antibodies to conserved epitopes and generating broadly protective immunity to multiple strains. PMID:26194761

  3. Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion.

    PubMed

    Xiao, Zhihua; Visentin, Gian P; Dayananda, Kannayakanahalli M; Neelamegham, Sriram

    2008-08-15

    We tested the possibility that immune complexes formed following platelet factor 4 (PF4/CXCL4) binding to anti-PF4 antibody can stimulate neutrophil activation, similar to previous reports with platelets. Monoclonal Abs against PF4 and IgG from a heparin-induced thrombocytopenia (HIT) patient were applied. We observed that although PF4 or anti-PF4 antibody alone did not alter neutrophil function, costimulation with both reagents resulted in approximately 3-fold increase in cell surface Mac-1 expression, enhanced cell adhesion via L-selectin and CD18 integrins, and degranulation of secondary and tertiary granules. The level of Mac-1 up-regulation peaked at an intermediate PF4 dose, suggesting that functional response varies with antigen-antibody stoichiometry. PF4 binding to neutrophils was blocked by chondroitinase ABC. Cell activation was inhibited by both chondroitinase ABC and anti-CD32/FcgammaRII blocking mAb, IV.3. Confocal microscopy demonstrated that immune complexes colocalize with CD32a. Studies with HIT IgG demonstrated that neutrophils could be activated in the absence of exogenous heparin. These data, together, show that leukocyte surface chondroitin sulfates promote neutrophil activation by enhancing immune-complex binding to CD32a. Studies with recombinant PF4 suggest a role for arginine 49 in stabilizing PF4-chondroitin binding. Neutrophils activated via this mechanism may contribute to thrombosis and inflammation in patients mounting an immune response to PF4-heparin.

  4. [Not Available].

    PubMed

    Fernández Castillo, Rafael; Cañadas de la Fuente, Gustavo R; Cañadas de la Fuente, Guillermo A; De la Fuente Solana, Emilia Inmaculada; Esteban de la Rosa, Rafael José; Bravo Soto, Juan

    2016-07-19

    Introducción: la obesidad y el sobrepeso presentan efectos adversos sobre la salud, lo que contribuye a la aparición de enfermedades metabólicas y cardiovasculares que ponen en peligro la integridad del injerto.Objetivo: investigar la influencia del IMC pretrasplante renal sobre el funcionamiento del injerto renal al año de trasplante mediante el estudio de cuatro métodos distintos de medir la filtración glomerular.Material y métodos: en este trabajo se ha seguido a 1.336 pacientes de ambos sexos trasplantados renales; se les realizaron mediciones pretrasplante y postrasplante de parámetros bioquímicos, mediciones antropométricas y función renal mediante medidas de filtrado glomerular.Resultados: a mayor índice de masa corporal pretrasplante se produce una disminución del filtrado glomerular medido por cuatro métodos distintos, así como mayor porcentaje de rechazos.Conclusiones: un IMC elevado pretrasplante contribuye a la disfunción del injerto, a una disminución del filtrado glomerular y a complicaciones del injerto en el primer año postrasplante.

  5. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane.

    PubMed

    Funk, Steven D; Lin, Meei-Hua; Miner, Jeffrey H

    2018-04-16

    The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. Pro: 'The usefulness of biomarkers in glomerular diseases'. The problem: moving from syndrome to mechanism--individual patient variability in disease presentation, course and response to therapy.

    PubMed

    Mariani, Laura H; Kretzler, Matthias

    2015-06-01

    The diagnosis and treatment decisions in glomerular disease are principally based on renal pathology and nonspecific clinical laboratory measurements such as serum creatinine and urine protein. Using these classification approaches, patients have marked variability in rate of progression and response to therapy, exposing a significant number of patients to toxicity without benefit. Additionally, clinical trials are at risk of not being able to detect an efficacious therapy in relevant subgroups as patients with shared clinical-pathologic diagnoses have heterogeneous underlying pathobiology. To change this treatment paradigm, biomarkers that reflect the molecular mechanisms underlying the clinical-pathologic diagnoses are needed. Recent progress to identify such biomarkers has been aided by advances in molecular profiling, large-scale data generation and multi-scalar data integration, including prospectively collected clinical data. This article reviews the evolving success stories in glomerular disease biomarkers across the genotype-phenotype continuum and highlights opportunities to transition to precision medicine in glomerular disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  7. Renin-angiotensin system within the diabetic podocyte.

    PubMed

    Márquez, Eva; Riera, Marta; Pascual, Julio; Soler, María José

    2015-01-01

    Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin-angiotensin system (RAS) that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II-mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of the glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015 the American Physiological Society.

  8. PERSISTENCE OF HAPTEN-ANTIBODY COMPLEXES IN THE CIRCULATION OF IMMUNIZED ANIMALS AFTER A SINGLE INTRAVENOUS INJECTION OF HAPTEN

    PubMed Central

    Schmidt, Donald H.; Kaufman, Bette M.; Butler, Vincent P.

    1974-01-01

    To study the fate of a low molecular weight antigen (hapten) in the circulation of animals whose sera contain antibodies specific for that low molecular weight antigen, a single injection of digoxin-3H (0.4 mg/kg) was administered intravenously to 18 rabbits. Thirteen animals (nine nonimmunized and four immunized with bovine serum albumin) served as control animals. In five rabbits which had been immunized with a digoxin-bovine serum albumin conjugate and whose sera contained digoxin-specific antibodies, the mean 12-h serum digoxin concentration was 8,300 ng/ml (control: 92 ng/ml) and the mean serum concentration 12 mo after the single injection of digoxin-3H was 85 ng/ml. In digoxin-immunized rabbits, less than 10% of the digoxin-3H was excreted in the first 10 days (control: 77% recovered in urine and feces) and the mean biological half-life of digoxin, as calculated from serum digoxin-3H disappearance curves, was 72 days (control: 3.4 days). In sera of digoxin-immunized rabbits, more than 90% of the circulating digoxin-3H was immunoglobulin bound, as determined by the double-antibody and dextran-coated charcoal methods. The serum disappearance rate of 125I-antidigoxin antibodies was similar in nonimmunized and in immunized animals and in the presence or absence of digoxin. It is concluded that the biological half-life of a hapten may be markedly prolonged when the hapten is bound to specific antibody. The persistence of antibody-hapten complexes in the circulation suggests that these complexes may not be deposited in tissues and raises the possibility that low molecular weight determinants may be capable of preventing or reversing the deposition of immune complexes, containing macromolecular antigens, in the tissues of experimental animals and man. PMID:4129823

  9. Composition of the cellular infiltrate in patients with simple and complex appendicitis.

    PubMed

    Gorter, Ramon R; Wassenaar, Emma C E; de Boer, Onno J; Bakx, Roel; Roelofs, Joris J T H; Bunders, Madeleine J; van Heurn, L W Ernst; Heij, Hugo A

    2017-06-15

    It is now well established that there are two types of appendicitis: simple (nonperforating) and complex (perforating). This study evaluates differences in the composition of the immune cellular infiltrate in children with simple and complex appendicitis. A total of 47 consecutive children undergoing appendectomy for acute appendicitis between January 2011 and December 2012 were included. Intraoperative criteria were used to identify patients with either simple or complex appendicitis and were confirmed histopathologically. Immune histochemical techniques were used to identify immune cell markers in the appendiceal specimens. Digital imaging analysis was performed using Image J. In the specimens of patients with complex appendicitis, significantly more myeloperoxidase positive cells (neutrophils) (8.7% versus 1.2%, P < 0.001) were detected compared to patients with a simple appendicitis. In contrast, fewer CD8+ T cells (0.4% versus 1.3%, P = 0.016), CD20 + cells (2.9% versus 9.0%, P = 0.027), and CD21 + cells (0.2% versus 0.6%, P = 0.028) were present in tissue from patients with complex compared to simple appendicitis. The increase in proinflammatory innate cells and decrease of adaptive cells in patients with complex appendicitis suggest potential aggravating processes in complex appendicitis. Further research into the underlying mechanisms may identify novel biomarkers to be able to differentiate simple and complex appendicitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases.

    PubMed

    Mang, Hyunggon; Feng, Baomin; Hu, Zhangjian; Boisson-Dernier, Aurélien; Franck, Christina M; Meng, Xiangzong; Huang, Yanyan; Zhou, Jinggeng; Xu, Guangyuan; Wang, Taotao; Shan, Libo; He, Ping

    2017-12-01

    Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction. © 2017 American Society of Plant Biologists. All rights reserved.

  11. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus.

    PubMed

    Chung, Sharon A; Brown, Elizabeth E; Williams, Adrienne H; Ramos, Paula S; Berthier, Celine C; Bhangale, Tushar; Alarcon-Riquelme, Marta E; Behrens, Timothy W; Criswell, Lindsey A; Graham, Deborah Cunninghame; Demirci, F Yesim; Edberg, Jeffrey C; Gaffney, Patrick M; Harley, John B; Jacob, Chaim O; Kamboh, M Ilyas; Kelly, Jennifer A; Manzi, Susan; Moser-Sivils, Kathy L; Russell, Laurie P; Petri, Michelle; Tsao, Betty P; Vyse, Tim J; Zidovetzki, Raphael; Kretzler, Matthias; Kimberly, Robert P; Freedman, Barry I; Graham, Robert R; Langefeld, Carl D

    2014-12-01

    Lupus nephritis is a manifestation of SLE resulting from glomerular immune complex deposition and inflammation. Lupus nephritis demonstrates familial aggregation and accounts for significant morbidity and mortality. We completed a meta-analysis of three genome-wide association studies of SLE to identify lupus nephritis-predisposing loci. Through genotyping and imputation, >1.6 million markers were assessed in 2000 unrelated women of European descent with SLE (588 patients with lupus nephritis and 1412 patients with lupus without nephritis). Tests of association were computed using logistic regression adjusting for population substructure. The strongest evidence for association was observed outside the MHC and included markers localized to 4q11-q13 (PDGFRA, GSX2; P=4.5×10(-7)), 16p12 (SLC5A11; P=5.1×10(-7)), 6p22 (ID4; P=7.4×10(-7)), and 8q24.12 (HAS2, SNTB1; P=1.1×10(-6)). Both HLA-DR2 and HLA-DR3, two well established lupus susceptibility loci, showed evidence of association with lupus nephritis (P=0.06 and P=3.7×10(-5), respectively). Within the class I region, rs9263871 (C6orf15-HCG22) had the strongest evidence of association with lupus nephritis independent of HLA-DR2 and HLA-DR3 (P=8.5×10(-6)). Consistent with a functional role in lupus nephritis, intra-renal mRNA levels of PDGFRA and associated pathway members showed significant enrichment in patients with lupus nephritis (n=32) compared with controls (n=15). Results from this large-scale genome-wide investigation of lupus nephritis provide evidence of multiple biologically relevant lupus nephritis susceptibility loci. Copyright © 2014 by the American Society of Nephrology.

  12. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis.

    PubMed

    Rankin, Andrew L; Seth, Nilufer; Keegan, Sean; Andreyeva, Tatyana; Cook, Tim A; Edmonds, Jason; Mathialagan, Nagappan; Benson, Micah J; Syed, Jameel; Zhan, Yutian; Benoit, Stephen E; Miyashiro, Joy S; Wood, Nancy; Mohan, Shashi; Peeva, Elena; Ramaiah, Shashi K; Messing, Dean; Homer, Bruce L; Dunussi-Joannopoulos, Kyri; Nickerson-Nutter, Cheryl L; Schnute, Mark E; Douhan, John

    2013-11-01

    Autoantibody production and immune complex deposition within the kidney promote renal disease in patients with lupus nephritis. Thus, therapeutics that inhibit these pathways may be efficacious in the treatment of systemic lupus erythematosus. Bruton's tyrosine kinase (BTK) is a critical signaling component of both BCR and FcR signaling. We sought to assess the efficacy of inhibiting BTK in the development of lupus-like disease, and in this article describe (R)-5-amino-1-(1-cyanopiperidin-3-yl)-3-(4-[2,4-difluorophenoxy]phenyl)-1H-pyrazole-4-carboxamide (PF-06250112), a novel highly selective and potent BTK inhibitor. We demonstrate in vitro that PF-06250112 inhibits both BCR-mediated signaling and proliferation, as well as FcR-mediated activation. To assess the therapeutic impact of BTK inhibition, we treated aged NZBxW_F1 mice with PF-06250112 and demonstrate that PF-06250112 significantly limits the spontaneous accumulation of splenic germinal center B cells and plasma cells. Correspondingly, anti-dsDNA and autoantibody levels were reduced in a dose-dependent manner. Moreover, administration of PF-06250112 prevented the development of proteinuria and improved glomerular pathology scores in all treatment groups. Strikingly, this therapeutic effect could occur with only a modest reduction observed in anti-dsDNA titers, implying a critical role for BTK signaling in disease pathogenesis beyond inhibition of autoantibody production. We subsequently demonstrate that PF-06250112 prevents proteinuria in an FcR-dependent, Ab-mediated model of glomerulonephritis. Importantly, these results highlight that BTK inhibition potently limits the development of glomerulonephritis by impacting both cell- and effector molecule-mediated pathways. These data provide support for evaluating the efficacy of BTK inhibition in systemic lupus erythematosus patients.

  13. Purinergic signaling in kidney disease.

    PubMed

    Menzies, Robert I; Tam, Frederick W; Unwin, Robert J; Bailey, Matthew A

    2017-02-01

    Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Asbestos-induced autoimmunity in C57BL/6 mice.

    PubMed

    Pfau, Jean C; Sentissi, Jami J; Li, Sheng'ai; Calderon-Garciduenas, Lilian; Brown, Jared M; Blake, David J

    2008-04-01

    Environmental impacts on autoimmunity have significant public health implications. Epidemiological studies have shown associations between exposure to airborne silicates, such as crystalline silica or asbestos, and autoimmunity, but the etiology remains unclear. The purpose of this study was to test the hypothesis that asbestos could lead to a specific pattern of autoantibodies and pathology indicative of systemic autoimmune disease (SAID). Female C57Bl/6 mice were instilled intratracheally with 2 doses x 60 microg/mouse of amphibole asbestos (tremolite), wollastonite (a non-fibrogenic control fiber), or saline alone. Serum samples were collected and urine was checked for protein bi-weekly for 7 months. By 26 weeks, the asbestos-instilled animals had a significantly higher frequency of positive anti-nuclear antibody (ANA) tests compared to wollastonite and saline groups. The majority of positive ANAs showed homogeneous or combined homogeneous/speckled patterns, and tested positive for antibodies to dsDNA and SSA/Ro 52. Serum isotyping showed no significant changes in IgM, IgA, or IgG subclasses. However, there was an overall decrease in the mean IgG serum concentration in asbestos-instilled mice. IgG immune complex deposition was demonstrated in the kidneys of asbestos-instilled mice, with evidence of glomerular and tubule abnormalities suggestive of glomerulonephritis. Flow cytometry demonstrated moderate changes in the percentages of CD25+ T-suppressor cells and B1a B-cells in the superficial cervical lymph nodes of the asbestos-instilled mice. These data demonstrate that asbestos leads to immunologic changes consistent with the development of autoimmunity. This study provides a non-autoimmune prone murine model for use in future elucidation of mechanisms involved in asbestos-induced autoimmune disease.

  15. Noncanonical autophagy inhibits the auto-inflammatory, lupus-like response to dying cells

    PubMed Central

    Martinez, Jennifer; Cunha, Larissa D.; Park, Sunmin; Yang, Mao; Lu, Qun; Orchard, Robert; Li, Quan-Zhen; Yan, Mei; Janke, Laura; Guy, Cliff; Linkermann, Andreas; Virgin, Herbert W.; Green, Douglas R.

    2016-01-01

    Defects in dying cell clearance are postulated to underlie the pathogenesis of systemic lupus erythematosus (SLE)1. Mice lacking molecules associated with dying cell clearance develop SLE-like disease2, and phagocytes from SLE patients often display defective clearance and increased inflammatory cytokine production when exposed to dying cells in vitro. Previously, we3–6 and others7 described a form of noncanonical autophagy called “LC3-associated phagocytosis” (LAP), wherein phagosomes containing engulfed particles, including dying cells3,4,7, recruit elements of the autophagy pathway to facilitate phagosome maturation and digestion of cargo. Genome-wide association studies have identified polymorphisms in atg58 and possibly atg79, involved in both canonical autophagy and LAP3–7, as predisposition markers for SLE. Here, we describe the consequences of defective LAP in vivo. Mice lacking any of several components of the LAP pathway display elevated serum inflammatory cytokines, autoantibodies, glomerular immune complex deposition, and evidence of kidney damage. Dying cells, injected into LAP-deficient animals, are engulfed but not efficiently degraded, and trigger acute elevation of pro-inflammatory cytokines but not the anti-inflammatory interleukin (IL)-10. Repeated injection of dying cells into LAP-deficient, but not LAP-sufficient animals accelerated SLE-like disease, including increased serum levels of autoantibodies. In contrast, animals deficient for genes required for canonical autophagy but not LAP do not display defective dead cell clearance, inflammatory cytokine production, or SLE-like disease, and like wild-type animals, produce IL-10 in response to dying cells. Therefore, defects in LAP, rather than canonical autophagy, can cause SLE-like phenomena, and may contribute to the pathogenesis of SLE. PMID:27096368

  16. [IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].

    PubMed

    Kochlamasashvili, B; Gogiashvili, L; Jandieri, K

    2017-11-01

    Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.

  17. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense.

    PubMed

    Wiermer, Marcel; Cheng, Yu Ti; Imkampe, Julia; Li, Meilan; Wang, Dongmei; Lipka, Volker; Li, Xin

    2012-06-01

    In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de-regulated Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107-160 nuclear pore sub-complex, and implicated in immunity-related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107-160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL-type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil-type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL-triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1-conditioned resistance pathways in Arabidopsis. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Protein-protein interactions in the RPS4/RRS1 immune receptor complex

    PubMed Central

    Sarris, Panagiotis F.

    2017-01-01

    Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation. PMID:28475615

  20. Nomograms for predicting graft function and survival in living donor kidney transplantation based on the UNOS Registry.

    PubMed

    Tiong, H Y; Goldfarb, D A; Kattan, M W; Alster, J M; Thuita, L; Yu, C; Wee, A; Poggio, E D

    2009-03-01

    We developed nomograms that predict transplant renal function at 1 year (Modification of Diet in Renal Disease equation [estimated glomerular filtration rate]) and 5-year graft survival after living donor kidney transplantation. Data for living donor renal transplants were obtained from the United Network for Organ Sharing registry for 2000 to 2003. Nomograms were designed using linear or Cox regression models to predict 1-year estimated glomerular filtration rate and 5-year graft survival based on pretransplant information including demographic factors, immunosuppressive therapy, immunological factors and organ procurement technique. A third nomogram was constructed to predict 5-year graft survival using additional information available by 6 months after transplantation. These data included delayed graft function, any treated rejection episodes and the 6-month estimated glomerular filtration rate. The nomograms were internally validated using 10-fold cross-validation. The renal function nomogram had an r-square value of 0.13. It worked best when predicting estimated glomerular filtration rate values between 50 and 70 ml per minute per 1.73 m(2). The 5-year graft survival nomograms had a concordance index of 0.71 for the pretransplant nomogram and 0.78 for the 6-month posttransplant nomogram. Calibration was adequate for all nomograms. Nomograms based on data from the United Network for Organ Sharing registry have been validated to predict the 1-year estimated glomerular filtration rate and 5-year graft survival. These nomograms may facilitate individualized patient care in living donor kidney transplantation.

  1. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats

    NASA Technical Reports Server (NTRS)

    Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.

    1992-01-01

    Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Estimating individual glomerular volume in the human kidney: clinical perspectives.

    PubMed

    Puelles, Victor G; Zimanyi, Monika A; Samuel, Terence; Hughson, Michael D; Douglas-Denton, Rebecca N; Bertram, John F; Armitage, James A

    2012-05-01

    Measurement of individual glomerular volumes (IGV) has allowed the identification of drivers of glomerular hypertrophy in subjects without overt renal pathology. This study aims to highlight the relevance of IGV measurements with possible clinical implications and determine how many profiles must be measured in order to achieve stable size distribution estimates. We re-analysed 2250 IGV estimates obtained using the disector/Cavalieri method in 41 African and 34 Caucasian Americans. Pooled IGV analysis of mean and variance was conducted. Monte-Carlo (Jackknife) simulations determined the effect of the number of sampled glomeruli on mean IGV. Lin's concordance coefficient (R(C)), coefficient of variation (CV) and coefficient of error (CE) measured reliability. IGV mean and variance increased with overweight and hypertensive status. Superficial glomeruli were significantly smaller than juxtamedullary glomeruli in all subjects (P < 0.01), by race (P < 0.05) and in obese individuals (P < 0.01). Subjects with multiple chronic kidney disease (CKD) comorbidities showed significant increases in IGV mean and variability. Overall, mean IGV was particularly reliable with nine or more sampled glomeruli (R(C) > 0.95, <5% difference in CV and CE). These observations were not affected by a reduced sample size and did not disrupt the inverse linear correlation between mean IGV and estimated total glomerular number. Multiple comorbidities for CKD are associated with increased IGV mean and variance within subjects, including overweight, obesity and hypertension. Zonal selection and the number of sampled glomeruli do not represent drawbacks for future longitudinal biopsy-based studies of glomerular size and distribution.

  3. Long-Term Renal Function Recovery following Radical Nephrectomy for Kidney Cancer: Results from a Multicenter Confirmatory Study.

    PubMed

    Zabor, Emily C; Furberg, Helena; Lee, Byron; Campbell, Steven; Lane, Brian R; Thompson, R Houston; Antonio, Elvis Caraballo; Noyes, Sabrina L; Zaid, Harras; Jaimes, Edgar A; Russo, Paul

    2018-04-01

    We sought to confirm the findings from a previous single institution study of 572 patients from Memorial Sloan Kettering Cancer Center in which we found that 49% of patients recovered to the preoperative estimated glomerular filtration rate within 2 years following radical nephrectomy for renal cell carcinoma. A multicenter retrospective study was performed in 1,928 patients using data contributed from 3 independent centers. The outcome of interest was postoperative recovery to the preoperative estimated glomerular filtration rate. Data were analyzed using cumulative incidence and competing risks regression with death from any cause treated as a competing event. This study demonstrated that 45% of patients had recovered to the preoperative estimated glomerular filtration rate by 2 years following radical nephrectomy. Furthermore, this study confirmed that recovery of renal function differed according to preoperative renal function such that patients with a lower preoperative estimated glomerular filtration rate had an increased chance of recovery. This study also suggested that larger tumor size and female gender were significantly associated with an increased chance of renal function recovery. In this multicenter retrospective study we confirmed that in the long term a large proportion of patients recover to preoperative renal function following radical nephrectomy for kidney tumors. Recovery is more likely among those with a lower preoperative estimated glomerular filtration rate. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Acid Sphingomyelinase Gene Deficiency Ameliorates the Hyperhomocysteinemia-Induced Glomerular Injury in Mice

    PubMed Central

    Boini, Krishna M.; Xia, Min; Li, Caixia; Zhang, Chun; Payne, Lori P.; Abais, Justine M.; Poklis, Justin L.; Hylemon, Philip B.; Li, Pin-Lan

    2011-01-01

    Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm−/−) and wild-type (Asm+/+) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm+/+ mice compared with that from Asm−/− or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm+/+ mice but not in those from Asm−/− and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase–associated local oxidative stress during hHcys. PMID:21893018

  5. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease

    PubMed Central

    Piccoli, Giorgina B.; Grassi, Giorgio; Cabiddu, Gianfranca; Nazha, Marta; Roggero, Simona; Capizzi, Irene; De Pascale, Agostino; Priola, Adriano M.; Di Vico, Cristina; Maxia, Stefania; Loi, Valentina; Asunis, Anna M.; Pani, Antonello; Veltri, Andrea

    2015-01-01

    The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients. PMID:26676663

  6. Association between anti-beta2 glycoprotein I antibodies and renal glomerular C4d deposition in lupus nephritis patients with glomerular microthrombosis: a prospective study of 155 cases.

    PubMed

    Shen, Y; Chen, X-W; Sun, C-Y; Dai, M; Yan, Y-C; Yang, C-D

    2010-09-01

    Glomerular microthrombosis (GMT) is a common vascular change in patients with lupus nephritis (LN). The mechanism underlying GMT is still unknown. In our previous study, we found that the level of IgG anti-beta2 glycoprotein I (beta2GPI) antibodies was higher in the LN-GMT group than in the LN-non-GMT group, which indicated that anti-beta2GPI antibodies may play a role in GMT formation. Many studies have demonstrated that the activation of the classical complement pathway may play a critical role in fetal loss and aPL-induced thrombosis formation. To investigate whether complement activation plays a role in GMT formation and to evaluate its relationship with aPL, we prospectively investigated deposition of C4d in 155 renal biopsy specimens of LN patients. The results revealed a strong relationship between the intensity of glomerular C4d staining and the presence of microthrombi (p < 0.001). The detection rate of IgG anti-beta2GPI antibodies was higher in the LN-GMT group than in the LN-non-GMT group (p < 0.05). Further, the intensity of glomerular C4d staining was significantly related with IgG anti-beta2GPI antibodies (p < 0.05). The results of our study suggest that anti-beta2GPI antibodies may play a role in GMT formation, and this process might involve complement activation.

  7. Comparison of odor and mating-induced glomerular activation in the main olfactory bulb of estrous female ferrets.

    PubMed

    Batterton, M N; Robarts, D; Woodley, S K; Baum, M J

    2006-06-12

    Previously [S.K. Woodley, M.J. Baum, Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odors from males and females: an early step in mate identification, Eur. J. Neurosci. 20 (2004) 1025-1032], the receipt of intromission from a male activated glomeruli (indexed by Fos immunoreactivity in juxtaglomerular cells) in the main olfactory bulb (MOB) of estrous female ferrets which exceeded the activation seen after exposure to male anal scent gland odorants alone. We asked whether centrifugal inputs (e.g., from the locus coeruleus to the MOB) generated by the receipt of vaginal-cervical stimulation influence odor-induced MOB glomerular activation. We compared the activation of MOB glomeruli in estrous female ferrets which received a unilateral naris occlusion prior to exposure to: unscented air, volatile odorants from an anesthetized male, volatile + non-volatile odorants from direct physical contact with an anesthetized male, or mating stimulation. Little glomerular activation was observed in the MOB ipsilateral to an occluded naris, including females which received intromission. An equivalent distribution of activated glomeruli was observed in the ventral MOB of estrous females which either received mating stimulation or had direct physical contact with an anesthetized male. Considerably less glomerular activation occurred in females exposed only to volatile male odors. The MOB of female ferrets responded to body odorants from the opposite sex; however, there was no evidence that mating-induced centrifugal inputs directly activated MOB glomeruli or modified odor-induced glomerular activation.

  8. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    PubMed

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Lack of passive transfer of renal tubulointerstitial disease by serum or monoclonal antibody specific for renal tubular antigens in the mouse.

    PubMed

    Evans, B D; Dilwith, R L; Balaban, S L; Rudofsky, U H

    1988-01-01

    Mice immunized with rabbit renal basement membranes form autoantibodies to their kidney glomerular and tubular basement membranes (GBM/TBM). Development of renal tubular disease (RTD) consists of deposition of autoantibodies along the GBM/TBM with the inter- and intratubular accumulation of lymphocytes and macrophages and destruction of the TBM. Transfer of this disease in mice with either serum or monoclonal antibodies, however, has been difficult to demonstrate and, therefore, attempts were made to confirm a report that RTD is passively transferred by anti-TBM autoantibodies. Using the revised protocol in this later report, we found that 12 weeks after transfer autoantibodies were deposited along the GBM and/or TBM of the recipients, yet RTD was not observed. Although qualitative and quantitative characteristics of the antibody may play a role in the pathogenesis in the murine model of RTD, we could not obtain evidence to support and confirm this study.

  10. The roles of the immune system in women's reproduction: evolutionary constraints and life history trade-offs.

    PubMed

    Abrams, Elizabeth T; Miller, Elizabeth M

    2011-01-01

    Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.

  11. Fallen Angels or Risen Apes? A Tale of the Intricate Complexities of Imbalanced Immune Responses in the Pathogenesis and Progression of Immune-Mediated and Viral Cancers

    PubMed Central

    Ondondo, Beatrice Omusiro

    2014-01-01

    Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes. PMID:24639678

  12. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.

  13. Associations between age, body size and nephron number with individual glomerular volumes in urban West African males

    PubMed Central

    McNamara, Bridgette J.; Diouf, Boucar; Hughson, Michael D.; Hoy, Wendy E.; Bertram, John F.

    2009-01-01

    Background. Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). Methods. IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20– 30 years and 12 subjects aged 50–70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. Results. IGVs ranged from 1.31 × 106 μm3 to 12.40 × 106 μm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (≥1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. Conclusion. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects. PMID:19028752

  14. Contribution of stone size to chronic kidney disease in kidney stone formers.

    PubMed

    Ahmadi, Farrokhlagha; Etemadi, Samira Motedayen; Lessan-Pezeshki, Mahbob; Mahdavi-Mazdeh, Mitra; Ayati, Mohsen; Mir, Alireza; Yazdi, Hadi Rokni

    2015-01-01

    To determine whether stone burden correlates with the degree of chronic kidney disease in kidney stone formers. A total of 97 extracorporeal shockwave lithotripsy candidates aged 18 years and older were included. Size, number and location of the kidney stones, along with cumulative stone size, defined as the sum of diameters of all stones) were determined. Estimated glomerular filtration rate was determined using the Chronic Kidney Disease Epidemiology Collaboration cystatin C/creatinine equation, and chronic kidney disease was defined as estimated glomerular filtration rate <60 mL/min/1.73 m(2). In individuals with cumulative stone size <20 mm, estimated glomerular filtration rate significantly decreased when moving from the first (estimated glomerular filtration rate 75.5 ± 17.8 mL/min/1.73 m(2)) to the fourth (estimated glomerular filtration rate 56.4 ± 20.44 mL/min/1.73 m(2) ) quartile (P = 0.004). When patients with a cumulative stone size ≥ 20 mm were included, the observed association was rendered non-significant. In individuals with a cumulative stone size < 20 mm, each 1-mm increase in cumulative stone size was associated with a 20% increased risk of having chronic kidney disease. The relationship persisted even after adjustment for age, sex, body mass index, C-reactive protein, fasting plasma glucose, thyroid stimulating hormone, presence of microalbuminuria, history of renal calculi, history of extracorporeal shockwave lithotripsy, number and location of the stones (odds ratio 1.24, 95% confidence interval 1.02-1.52). The same was not observed for individuals with a cumulative stone size ≥ 20 mm. In kidney stone formers with a cumulative stone size up to 20 mm, estimated glomerular filtration rate linearly declines with increasing cumulative stone size. Additionally, cumulative stone size is an independent predictor of chronic kidney disease in this group of patients. © 2014 The Japanese Urological Association.

  15. Clinical Relevance of Differences in Glomerular Filtration Rate Estimations in Frail Older People by Creatinine- vs. Cystatin C-Based Formulae.

    PubMed

    Jacobs, Anne; Benraad, Carolien; Wetzels, Jack; Rikkert, Marcel Olde; Kramers, Cornelis

    2017-06-01

    The risk of incorrect medication dosing is high in frail older people. Therefore, accurate assessment of the glomerular filtration rate is important. The objective of this study was to compare the estimated glomerular filtration rate using creatinine- and cystatin C-based formulae, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, in frail older people. We hypothesized that frailty determines the difference between the creatinine- and cystatin C-based formulae. The mean difference between CKD-EPI creatinine and cystatin C was determined using (cross-sectional) data of 55 patients (mean age 73 years) admitted to a psychiatric ward for older adults. The level of agreement of these estimations was assessed by a Bland-Altman analysis. In all patients, the Rockwood's Frailty Index was derived and correlated with the mean difference between CKD-EPI creatinine and cystatin C. The mean difference between CKD-EPI creatinine (mean 71.2 mL/min/1.73 m 2 ) and CKD-EPI cystatin C (mean 57.6 mL/min/1.73 m 2 ) was 13.6 mL/min/1.73 m 2 (p < 0.0001). The two standard deviation limit in the Bland-Altman plot was large (43.2 mL/min/1.73 m 2 ), which represents a low level of agreement. The Frailty Index did not correlate with the mean difference between the creatinine- and cystatin C-based glomerular filtration rate (Pearson correlation coefficient 0.182, p = 0.184). There was a significant gap between a creatinine- and cystatin C-based estimation of glomerular filtration rate, irrespective of frailty. The range of differences between the commonly used estimated glomerular filtration rate formulae might result in clinically relevant differences in drug prescription and differences in chronic kidney disease staging.

  16. Underlying renal insufficiency: the pivotal risk factor for Pneumocystis jirovecii pneumonia in immunosuppressed patients with non-transplant glomerular disease.

    PubMed

    Ye, Wen-Ling; Tang, Nan; Wen, Yu-Bing; Li, Hang; Li, Min-Xi; Du, Bin; Li, Xue-Mei

    2016-11-01

    Data on PCP in patients with glomerular disease are rare. The aim of this study was to assess the predictors of PCP development, the risk factors for mortality and the incidence of acute kidney injury (AKI) when high-dose trimethoprim-sulphamethoxazole (TMP-SMX) was used in patients with non-transplant glomerular disease. Forty-seven patients with PCP, as confirmed by positive results for Pneumocystis jirovecii DNA or Pneumocystis jirovecii cysts tested by a methenamine silver stain between January 1, 2003, and December 30, 2012, were retrospectively investigated. The baseline characteristics of glomerular disease, clinical findings of PCP and renal parameters after treatment were collected. Predictors for PCP development and risk factors for mortality were determined using a multivariate logistic regression analysis. All PCP patients exclusively received immunosuppressants. Baseline renal insufficiency [estimated glomerular filtration rate (eGFR) <60 mL/min·1.73 m 2 ] was present in 87.23 % of patients. The overall mortality rate was 29.79 %. A pulmonary coinfection and the need for mechanical ventilation were independently associated with PCP mortality. A lower eGFR, lower serum albumin level and a higher percentage of global glomerulosclerosis were independent predictors of PCP in patients with IgA nephropathy receiving immunosuppressants. AKI occurred in 60.47 % of patients who received TMP-SMX. After treatment cessation, 93.75 % of surviving patients showed a recovery of renal function to baseline values. PCP is a fatal complication in patients with glomerular disease, and the use of immunosuppressants may be a basic risk factor for this infection. Underlying renal insufficiency and high renal pathology chronicity are the key risk factors for PCP in IgA nephropathy. TMP-SMX therapy remains an ideal choice because of high treatment response and frequently reversible kidney injury.

  17. GLUT-1 overexpression: Link between hemodynamic and metabolic factors in glomerular injury?

    PubMed

    Gnudi, Luigi; Viberti, GianCarlo; Raij, Leopoldo; Rodriguez, Veronica; Burt, Davina; Cortes, Pedro; Hartley, Barry; Thomas, Stephen; Maestrini, Sabrina; Gruden, Gabriella

    2003-07-01

    Mesangial matrix deposition is the hallmark of hypertensive and diabetic glomerulopathy. At similar levels of systemic hypertension, Dahl salt-sensitive but not spontaneously hypertensive rats (SHR) develop glomerular hypertension, which is accompanied by upregulation of transforming growth factor beta1 (TGF-beta1), mesangial matrix expansion, and sclerosis. GLUT-1 is ubiquitously expressed and is the predominant glucose transporter in mesangial cells. In mesangial cells in vitro, GLUT-1 overexpression increases basal glucose transport, resulting in excess fibronectin and collagen production. TGF-beta1 has been shown to upregulate GLUT-1 expression. We demonstrated that in hypertensive Dahl salt-sensitive (S) rats fed 4% NaCl (systolic blood pressure [SBP]: 236+/-9 mm Hg), but not in similarly hypertensive SHR (SBP: 230+/-10 mm Hg) or their normotensive counterparts (Dahl S fed 0.5% NaCl, SBP: 145+/-5 mm Hg; and Wistar-Kyoto, SBP: 137+/-3 mm Hg), there was an 80% upregulation of glomerular GLUT-1 protein expression (P< or =0.03). This was accompanied by a 2.7-fold upregulation of TGF-beta1 protein expression in glomeruli of DSH compared with DSN rats (P=0.02). TGF-beta1 expression was not upregulated and did not differ in the glomeruli of Wistar-Kyoto and SHR rats. As an in vitro surrogate of the in vivo hemodynamic stress imposed by glomerular hypertension, we used mechanical stretching of human and rat mesangial cells. We found that after 33 hours of stretching, mesangial cells overexpressed GLUT-1 (40%) and showed an increase in basal glucose transport of similar magnitude (both P< or =0.01), which could be blocked with an anti TGF-beta1-neutralizing antibody. These studies suggest a novel link between hemodynamic and metabolic factors that may cooperate in inducing progressive glomerular injury in conditions characterized by glomerular hypertension.

  18. Immunization Against Infectious Disease

    ERIC Educational Resources Information Center

    Mortimer, Edward A., Jr.

    1978-01-01

    The success of present and future immunization programs is endangered by public and physician complacency and by complex legal and ethical problems related to informed consent and responsibility for rare, vaccine-related injury. (BB)

  19. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  20. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum

    PubMed Central

    Vieira-de-Abreu, Adriana; Campbell, Robert A.; Weyrich, Andrew S.

    2015-01-01

    Platelets are chief effector cells in hemostasis. In addition, however, their specializations include activities and intercellular interactions that make them key effectors in inflammation and in the continuum of innate and adaptive immunity. This review focuses on the immune features of human platelets and platelets from experimental animals and on interactions between inflammatory, immune, and hemostatic activities of these anucleate but complex and versatile cells. The experimental findings and evidence for physiologic immune functions include previously unrecognized biologic characteristics of platelets and are paralleled by new evidence for unique roles of platelets in inflammatory, immune, and thrombotic diseases. PMID:21818701

  1. Anomalies in T Cell Function Are Associated With Individuals at Risk of Mycobacterium abscessus Complex Infection

    PubMed Central

    Lutzky, Viviana P.; Ratnatunga, Champa N.; Smith, Daniel J.; Kupz, Andreas; Doolan, Denise L.; Reid, David W.; Thomson, Rachel M.; Bell, Scott C.; Miles, John J.

    2018-01-01

    The increasing global incidence and prevalence of non-tuberculous mycobacteria (NTM) infection is of growing concern. New evidence of person-to-person transmission of multidrug-resistant NTM adds to the global concern. The reason why certain individuals are at risk of NTM infections is unknown. Using high definition flow cytometry, we studied the immune profiles of two groups that are at risk of Mycobacterium abscessus complex infection and matched controls. The first group was cystic fibrosis (CF) patients and the second group was elderly individuals. CF individuals with active M. abscessus complex infection or a history of M. abscessus complex infection exhibited a unique surface T cell phenotype with a marked global deficiency in TNFα production during mitogen stimulation. Importantly, immune-based signatures were identified that appeared to predict at baseline the subset of CF individuals who were at risk of M. abscessus complex infection. In contrast, elderly individuals with M. abscessus complex infection exhibited a separate T cell phenotype underlined by the presence of exhaustion markers and dysregulation in type 1 cytokine release during mitogen stimulation. Collectively, these data suggest an association between T cell signatures and individuals at risk of M. abscessus complex infection, however, validation of these immune anomalies as robust biomarkers will require analysis on larger patient cohorts. PMID:29942313

  2. Anomalies in T Cell Function Are Associated With Individuals at Risk of Mycobacterium abscessus Complex Infection.

    PubMed

    Lutzky, Viviana P; Ratnatunga, Champa N; Smith, Daniel J; Kupz, Andreas; Doolan, Denise L; Reid, David W; Thomson, Rachel M; Bell, Scott C; Miles, John J

    2018-01-01

    The increasing global incidence and prevalence of non-tuberculous mycobacteria (NTM) infection is of growing concern. New evidence of person-to-person transmission of multidrug-resistant NTM adds to the global concern. The reason why certain individuals are at risk of NTM infections is unknown. Using high definition flow cytometry, we studied the immune profiles of two groups that are at risk of Mycobacterium abscessus complex infection and matched controls. The first group was cystic fibrosis (CF) patients and the second group was elderly individuals. CF individuals with active M. abscessus complex infection or a history of M. abscessus complex infection exhibited a unique surface T cell phenotype with a marked global deficiency in TNFα production during mitogen stimulation. Importantly, immune-based signatures were identified that appeared to predict at baseline the subset of CF individuals who were at risk of M. abscessus complex infection. In contrast, elderly individuals with M. abscessus complex infection exhibited a separate T cell phenotype underlined by the presence of exhaustion markers and dysregulation in type 1 cytokine release during mitogen stimulation. Collectively, these data suggest an association between T cell signatures and individuals at risk of M. abscessus complex infection, however, validation of these immune anomalies as robust biomarkers will require analysis on larger patient cohorts.

  3. Whither vaccines?

    PubMed

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  4. Defining dysbiosis and its influence on host immunity and disease

    PubMed Central

    Petersen, Charisse; Round, June L

    2014-01-01

    Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases. PMID:24798552

  5. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    PubMed Central

    Katsuyama, Takayuki; Tsokos, George C.; Moulton, Vaishali R.

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field. PMID:29868033

  6. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    PubMed Central

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  8. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus.

    PubMed

    Katsuyama, Takayuki; Tsokos, George C; Moulton, Vaishali R

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.

  9. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity.

    PubMed

    Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae

    2017-11-24

    Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  11. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region

    PubMed Central

    Díaz Lozano, Isabel María; De Pablos, Luis Miguel; Longhi, Silvia Andrea; Zago, María Paola; Schijman, Alejandro Gabriel; Osuna, Antonio

    2017-01-01

    The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite. Those EVs are responsible for the formation of immune complexes (ICs) containing anti-MASP SP IgGs in patients with different (cardiac, digestive and asymptomatic) chronic Chagas disease manifestations. Moreover, purified EVs as well as the MASP SP inhibit the action of the complement system and also show a significant association with the humoral response in patients with digestive pathologies. These findings reveal a new route for the secretion of MASP proteins in T. cruzi, which uses EVs as vehicles for immature and misfolded proteins, forming circulating immune complexes. Such complexes could be used in the prognosis of digestive pathologies of clinical forms of Chagas disease. PMID:28294160

  12. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region

    NASA Astrophysics Data System (ADS)

    Díaz Lozano, Isabel María; de Pablos, Luis Miguel; Longhi, Silvia Andrea; Zago, María Paola; Schijman, Alejandro Gabriel; Osuna, Antonio

    2017-03-01

    The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite. Those EVs are responsible for the formation of immune complexes (ICs) containing anti-MASP SP IgGs in patients with different (cardiac, digestive and asymptomatic) chronic Chagas disease manifestations. Moreover, purified EVs as well as the MASP SP inhibit the action of the complement system and also show a significant association with the humoral response in patients with digestive pathologies. These findings reveal a new route for the secretion of MASP proteins in T. cruzi, which uses EVs as vehicles for immature and misfolded proteins, forming circulating immune complexes. Such complexes could be used in the prognosis of digestive pathologies of clinical forms of Chagas disease.

  13. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samplesmore » from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.« less

  14. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    PubMed Central

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  15. Analysis of the ZAR1 immune complex reveals determinants for immunity and molecular interactions

    USDA-ARS?s Scientific Manuscript database

    Plants depend on innate immunity to prevent disease. Plant pathogenic bacteria, like Pseudomonas syringae and Xanthomonas campestris, use the type III secretion system as a molecular syringe to inject type III secreted effector (T3SE) proteins in plants. The primary function of most T3SEs is to supp...

  16. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  17. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  18. Using an agent-based model to analyze the dynamic communication network of the immune response

    PubMed Central

    2011-01-01

    Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471

  19. Plant Immunity

    USDA-ARS?s Scientific Manuscript database

    Plants are faced with defending themselves against a multitude of pathogens, including bacteria, fungi, viruses, nematodes, etc. Immunity is multi-layered and complex. Plants can induce defenses when they recognize small peptides, proteins or double-stranded RNA associated with pathogens. Recognitio...

  20. Both IIC and IID Components of Mannose Phosphotransferase System Are Involved in the Specific Recognition between Immunity Protein PedB and Bacteriocin-Receptor Complex.

    PubMed

    Zhou, Wanli; Wang, Guohong; Wang, Chunmei; Ren, Fazheng; Hao, Yanling

    2016-01-01

    Upon exposure to exogenous pediocin-like bacteriocins, immunity proteins specifically bind to the target receptor of the mannose phosphotransferase system components (man-PTS IIC and IID), therefore preventing bacterial cell death. However, the specific recognition of immunity proteins and its associated target receptors remains poorly understood. In this study, we constructed hybrid receptors to identify the domains of IIC and/or IID recognized by the immunity protein PedB, which confers immunity to pediocin PA-1. Using Lactobacillus plantarum man-PTS EII mutant W903, the IICD components of four pediocin PA-1-sensitive strains (L. plantarum WQ0815, Leuconostoc mesenteroides 05-43, Lactobacillus salivarius REN and Lactobacillus acidophilus 05-172) were respectively co-expressed with the immunity protein PedB. Well-diffusions assays showed that only the complex formed by LpIICD from L. plantarum WQ0815 with pediocin PA-1 could be recognized by PedB. In addition, a two-step PCR approach was used to construct hybrid receptors by combining LpIIC or LpIID recognized by PedB with the other three heterologous IID or IIC compounds unrecognized by PedB, respectively. The results showed that all six hybrid receptors were recognized by pediocin PA-1. However, when IIC or IID of L. plantarum WQ0815 was replaced with any corresponding IIC or IID component from L. mesenteroides 05-43, L. salivarius REN and L. acidophilus 05-172, all the hybrid receptors could not be recognized by PedB. Taken altogether, we concluded that both IIC and IID components of the mannose phosphotransferase system play an important role in the specific recognition between the bacteriocin-receptor complex and the immunity protein PedB.

Top