Mannik, M; Gauthier, V J; Stapleton, S A; Agodoa, L Y
1987-06-15
In previously published studies, highly cationized antibodies alone and in immune complexes bound to glomeruli by charge-charge interaction, but only immune complexes persisted in glomeruli. Because normal IgG does not deposit in glomeruli, studies were conducted to determine whether cationized antibodies can be prepared which deposit in glomeruli when bound to antigen but not when free in circulation. A series of cationized rabbit antiHSA was prepared with the number of added amino groups ranging from 13.3 to 60.2 per antibody molecule. Antibodies alone or in preformed soluble immune complexes, prepared at fivefold or 50-fold antigen excess, were administered to mice. With the injection of a fixed dose of 100 micrograms per mouse, antibodies alone did not deposit in glomeruli with less than 29.6 added amino groups by immunofluorescence microscopy. In contrast, 100 micrograms of antibodies with 23.5 added amino groups in immune complexes, made at fivefold antigen excess, formed immune deposits in glomeruli. With selected preparations of cationized, radiolabeled antibodies, deposition in glomeruli was quantified by isolation of mouse glomeruli. These quantitative data were in good agreement with the results of immunofluorescence microscopy. Immune complexes made at 50-fold antigen excess, containing only small-latticed immune complexes with no more than two antibody molecules per complex, deposited in glomeruli similar to antibodies alone. Selected cationized antibodies alone or in immune complexes were administered to mice in varying doses. In these experiments, glomerular deposition of immune complexes, made at fivefold antigen excess, was detected with five- to 10-fold smaller doses than the deposition of the same antibodies alone. These studies demonstrate that antibody molecules in immune complexes are more likely to deposit in glomeruli by charge-charge interactions than antibodies alone.
Hansson, Kenth-Arne; Døving, Kjell B; Skjeldal, Frode M
2015-10-01
The consensus view of olfactory processing is that the axons of receptor-specific primary olfactory sensory neurons (OSNs) converge to a small subset of glomeruli, thus preserving the odour identity before the olfactory information is processed in higher brain centres. In the present study, we show that two different subsets of ciliated OSNs with different odorant specificities converge to the same glomeruli. In order to stain different ciliated OSNs in the crucian carp Carassius carassius we used two different chemical odorants, a bile salt and a purported alarm substance, together with fluorescent dextrans. The dye is transported within the axons and stains glomeruli in the olfactory bulb. Interestingly, the axons from the ciliated OSNs co-converge to the same glomeruli. Despite intermingled innervation of glomeruli, axons and terminal fields from the two different subsets of ciliated OSNs remained mono-coloured. By 4-6 days after staining, the dye was transported trans-synaptically to separately stained axons of relay neurons. These findings demonstrate that specificity of the primary neurons is retained in the olfactory pathways despite mixed innervation of the olfactory glomeruli. The results are discussed in relation to the emerging concepts about non-mammalian glomeruli. © 2015. Published by The Company of Biologists Ltd.
Biophysical properties of normal and diseased renal glomeruli.
Wyss, Hans M; Henderson, Joel M; Byfield, Fitzroy J; Bruggeman, Leslie A; Ding, Yaxian; Huang, Chunfa; Suh, Jung Hee; Franke, Thomas; Mele, Elisa; Pollak, Martin R; Miner, Jeffrey H; Janmey, Paul A; Weitz, David A; Miller, R Tyler
2011-03-01
The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.
Puelles, Victor G.; Douglas-Denton, Rebecca N.; Cullen-McEwen, Luise A.; Li, Jinhua; Hughson, Michael D.; Hoy, Wendy E.; Kerr, Peter G.
2015-01-01
Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335–502), 389 NECs (IQR=265–498), and 146 PECs (IQR=111–206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431–746; P<0.01), 1383 NECs (IQR=998–2042; P<0.001), and 367 PECs (IQR=309–673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 106 µm3) than small glomeruli from adults and children (932 podocytes per 106 µm3; P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology. PMID:25568174
Petrakis, Ioannis; Stylianou, Kostas; Katsarou, Theodora; Giannakakis, Konstantinos; Perakis, Kostas; Vardaki, Eleftheria; Stratigis, Spyridon; Ganotakis, Emmanuel; Papavasiliou, Stathis; Daphnis, Eugenios
2013-01-01
The AKT-mTOR pathway is activated in diabetic nephropathy. Renin-angiotensin system modulators exert beneficial effects on the diabetic kidney. We explored the action of losartan on AKT-mTOR phosphorylation in glomeruli and podocytes. Diabetes mellitus was induced to Sprague-Dawley rats by streptozotocin. Five months later, the rats were commenced on losartan and euthanized 2 months later. Kidneys were processed for immunofluorescence studies. Glomeruli were isolated for Western blot analysis. Diabetes increased activated forms of AKT and mTOR both in glomeruli and podocytes. In diabetic rats, losartan decreased phosphorylated/activated forms of AKT (Thr308) and mTOR (Ser2448) in glomeruli but decreased only activated mTOR in podocytes. However, in both glomeruli and podocytes of healthy animals, an inverse pattern was evident. In conclusion, a new body of evidence indicates the differential activation of AKT-mTOR in glomeruli and podocytes of healthy and diabetic animals in response to losartan. PMID:23456824
A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI
NASA Astrophysics Data System (ADS)
Zhang, Min; Wu, Teresa; Bennett, Kevin M.
2015-03-01
The glomeruli of the kidney perform the key role of blood filtration and the number of glomeruli in a kidney is correlated with susceptibility to chronic kidney disease and chronic cardiovascular disease. This motivates the development of new technology using magnetic resonance imaging (MRI) to measure the number of glomeruli and nephrons in vivo. However, there is currently a lack of computationally efficient techniques to perform fast, reliable and accurate counts of glomeruli in MR images due to the issues inherent in MRI, such as acquisition noise, partial volume effects (the mixture of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such challenges are particularly severe because the glomeruli are very small, (in our case, a MRI image is ~16 million voxels, each glomerulus is in the size of 8~20 voxels), and the number of glomeruli is very large. To address this, we have developed an efficient Hessian based Difference of Gaussians (HDoG) detector to identify the glomeruli on 3D rat MR images. The image is first smoothed via DoG followed by the Hessian process to pre-segment and delineate the boundary of the glomerulus candidates. This then provides a basis to extract regional features used in an unsupervised clustering algorithm, completing segmentation by removing the false identifications occurred in the pre-segmentation. The experimental results show that Hessian based DoG has the potential to automatically detect glomeruli,from MRI in 3D, enabling new measurements of renal microstructure and pathology in preclinical and clinical studies.
Agodoa, L Y; Gauthier, V J; Mannik, M
1985-02-01
The administration of cationized antibodies, specific to human serum albumin, into the renal artery of rats caused transient presence of IgG in glomeruli by immunofluorescence microscopy. Intravenous infusion of appropriate doses of antigen after the injection of cationized antibodies resulted in immune deposit formation in glomeruli that persisted through 96 hr. By electron microscopy, these deposits were located in the subepithelial area. The injection of large doses of antigen produced immune deposits which were present in glomeruli for only a few hours, presumably due to formation of only small-latticed immune complexes. The presented data indicate that cationic antibodies bound to the fixed negative charges of the glomerular basement membrane can interact with circulating antigen to form immune deposits in glomeruli. This mechanism may be important because anionic antigens have been shown to induce the synthesis of cationic antibodies.
Age-related incidence of sclerotic glomeruli in human kidneys.
Kaplan, C.; Pasternack, B.; Shah, H.; Gallo, G.
1975-01-01
The incidence of sclerotic glomeruli as a function of age in kidneys from 122 patients without clinical evidence of renal disease or hypertension was estimated by histologic quantitation. Based on statistical analysis of data from this sample, 95% of the normal population up to 40 years of age would be expected to have less than 10% sclerotic glomeruli. After the age of 40 years, the upper limit containing 95% of the normal population exceeds 10% sclerosis, and after the age of 50, there is a broad scatter of observed percentage of sclerotic glomeruli. These findings suggest that, in patients 40 years of age and younger, sclerosis of glomeruli at an incidence greater than 10% is disease-related, while in patients older than 40 years (and particularly those older than 50), there is a transition, and the distinction between abiotrophic involutional sclerosis and disease-related sclerosis becomes less clear. PMID:51591
Bhan, A. K.; Schneeberger, E. E.; Collins, A. B.; McCluskey, R. T.
1984-01-01
The effects of systemic cell-mediated hypersensitivity reactions on glomeruli and lungs were investigated in rats. The animals were given an intravenous injection of antigen 7 days after sensitization or were given an intravenous injection of lymph node cells from sensitized syngeneic donors 1 day after antigen injection. Control animals were given an irrelevant antigen or saline. All animals received three injections of 3H-thymidine during the course of the experiments. The animals were sacrificed 2 or 3 days after antigen injection. Autoradiographs of renal and pulmonary tissue showed significantly more labeled mononuclear cells in glomeruli and pulmonary alveolar walls in the experimental groups than in the control groups. Immunofluorescence studies did not reveal antigen, rat IgG, or C3 in glomeruli. The results indicate that systemic cell-mediated reactions can lead to an accumulation of mononuclear cells in glomeruli and lungs, an effect that may contribute to tissue injury. Images Figure 1 Figure 2 Figure 3 PMID:6611090
Absence of C-type natriuretic peptide receptors in hamster glomeruli.
Luk, J K; Wong, E F; Wong, N L
1994-01-01
The distribution of atrial natriuretic peptide receptor B (ANPR-B) varies between tissues and species. The aim of this study is to determine whether ANPR-B is present in the hamster glomeruli. In vitro C-type natriuretic peptide (CNP)- and atrial natriuretic factor (ANF)-stimulated cGMP accumulation studies were performed in hamster glomeruli. Elevated cGMP accumulations were observed upon ANF addition. No cGMP response was seen with CNP. Competitive receptor-binding experiments were performed with 125I-CNP and 125I-ANF against their respective cold peptides in hamster glomeruli. Although no CNP binding was detected, positive ANF binding was found and two types of ANF receptor were demonstrated. The affinity (Kdl) and maximum binding capacity (Bmaxl) of the high-affinity ANF receptor were 0.014 +/- 0.001 nM and 60.4 +/- 10.2 fmol/mg protein, respectively. Those of the low-affinity receptor (Kd2 and Bmax2) were 45.7 +/- 6.2 nM and 28.3 +/- 6.3 pmol/mg protein, respectively. Similarly, saturation binding experiments also failed to show any CNP receptor binding in hamster glomeruli. This finding suggests that ANPR-B is not present in hamster glomeruli and CNP is not a direct physiological regulator of hamster renal function.
... changes to kidney cells. It may lead to kidney failure . Causes Glomerulonephritis is an inflammation of the glomeruli. The glomeruli of the kidney help filter wastes and fluids from the blood ...
Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice
Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker
2013-01-01
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211
Galarreta, Carolina I.; Grantham, Jared J.; Forbes, Michael S.; Maser, Robin L.; Wallace, Darren P.; Chevalier, Robert L.
2015-01-01
In polycystic kidney disease (PKD), renal parenchyma is destroyed by cysts, hypothesized to obstruct nephrons. A signature of unilateral ureteral obstruction, proximal tubular atrophy leads to formation of atubular glomeruli. To determine whether this process occurs in PKD, kidneys from pcy mice (moderately progressive PKD), kidneys from cpk mice (rapidly progressive PKD), and human autosomal dominant PKD were examined in early and late stages. Integrity of the glomerulotubular junction and proximal tubular mass were determined in sections stained with Lotus tetragonolobus lectin. Development of proximal tubular atrophy and atubular glomeruli was determined in serial sections of individual glomeruli. In pcy mice, most glomerulotubular junctions were normal at 20 weeks, but by 30 weeks, 56% were atrophic and 25% of glomeruli were atubular; glomerulotubular junction integrity decreased with increasing cyst area (r = 0.83, P < 0.05). In cpk mice, all glomerulotubular junctions were normal at 10 days, but by 19 days, 26% had become abnormal. In early-stage autosomal dominant PKD kidneys, 50% of glomeruli were atubular or attached to atrophic tubules; in advanced disease, 100% were abnormal. Thus, proximal tubular injury in cystic kidneys closely parallels that observed with ureteral obstruction. These findings support the hypothesis that, in renal cystic disorders, cyst-dependent obstruction of medullary and cortical tubules initiates a process culminating in widespread destruction of proximal convoluted tubules at the glomerulotubular junction. PMID:24815352
Pheromone-sensitive glomeruli in the primary olfactory centre of ants.
Yamagata, Nobuhiro; Nishino, Hiroshi; Mizunami, Makoto
2006-09-07
Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants.
... of small blood vessels in your kidneys that filter waste and excess water from your blood. Nephrotic ... blood vessels (glomeruli) of your kidneys. The glomeruli filter your blood as it passes through your kidneys, ...
Yum, M; Wheat, L J; Maxwell, D; Edwards, J L
1978-11-01
A 75-year-old man with Staphylococcus aureus endocarditis in whom acute diffuse proliferative glomerulonephritis developed is described. The light- and electron-microscopic changes of the glomeruli in this case were identical to those of acute poststreptococcal glomerulonephritis. Immunofluorescence revealed deposition of immunoglobulins and complement in the glomeruli. In addition, bacterial antigenic material was demonstrated in the glomeruli by indirect immunofluorescence. These observations further support the hypothesis of an immune-complex pathogenesis in this form of glomerulonephritis.
It's All in the Mix: Blend-Specific Behavioral Response to a Sexual Pheromone in a Butterfly
Larsdotter-Mellström, Helena; Eriksson, Kerstin; Liblikas I, Ilme; Wiklund, Christer; Borg-Karlson, Anna K.; Nylin, Sören; Janz, Niklas; Carlsson, Mikael A.
2016-01-01
Among insects, sexual pheromones are typically mixtures of two to several components, all of which are generally required to elicit a behavioral response. Here we show for the first time that a complete blend of sexual pheromone components is needed to elicit a response also in a butterfly. Males of the Green-veined White, Pieris napi, emit an aphrodisiac pheromone, citral, from wing glands. This pheromone is requisite for females to accept mating with a courting male. Citral is a mixture of the two geometric isomers geranial (E-isomer) and neral (Z-isomer) in an approximate 1:1 ratio. We found that both these compounds are required to elicit acceptance behavior, which indicates synergistic interaction between processing of the isomers. Using functional Ca2+ imaging we found that geranial and neral evoke significantly different but overlapping glomerular activity patterns in the antennal lobe, which suggests receptors with different affinity for the two isomers. However, these glomeruli were intermingled with glomeruli responding to, for example, plant-related compounds, i.e., no distinct subpopulation of pheromone-responding glomeruli as in moths and other insects. In addition, these glomeruli showed lower specificity than pheromone-activated glomeruli in moths. We could, however, not detect any mixture interactions among four identified glomeruli, indicating that the synergistic effect may be generated at a higher processing level. Furthermore, correlations between glomerular activity patterns evoked by the single isomers and the blend did not change over time. PMID:26973536
Origin of Parietal Podocytes in Atubular Glomeruli Mapped by Lineage Tracing
Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H.; Arkill, Kenton P.; Neal, Christopher R.; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart
2014-01-01
Parietal podocytes are fully differentiated podocytes lining Bowman’s capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman’s capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman’s capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman’s capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman’s capsule, rather than transdifferentiation from PECs to parietal podocytes. PMID:24071005
Gene regulation of atrial natriuretic peptide A, B, and C receptors in rat glomeruli.
Itoh, K; Nonoguchi, H; Shiraishi, N; Tomita, K
1999-01-01
Atrial natriuretic peptide (ANP) has three types of receptor. We investigated the gene regulation of three types of ANP receptors (ANPR-A, B, and C) in rat glomeruli using reverse transcription coupled with competitive polymerase chain reaction (PCR). Competitive PCR revealed that ANPR-C mRNA expression was most abundant (ANPR-C > A > B) in glomeruli from control rats among mRNA expressions of three receptors, which were 20- to 15,000-fold higher than those in inner medullary collecting ducts. Two days' dehydration caused reversible decreases of ANPR-A, B, and C mRNAs by 50-80%. To determine the mechanisms of down-regulation of mRNA expression, isolated glomeruli were incubated in isotonic or hypertonic solution. Hyperosmolality induced by NaCl, mannitol or raffinose caused significant increases of ANPR-A, B, and C mRNA expression. Hypertonicity by urea showed smaller effects. ANP stimulated the expression of ANPR-A, B, and C mRNA in vitro. These results indicate that dehydration caused reversible decreases of ANPR-A, B, and C mRNA expression in glomeruli, and these decreases were not caused by increased plasma osmolality but probably by lower circulating levels of ANP.
Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb.
Gómez, C; Briñón, J G; Barbado, M V; Weruaga, E; Valero, J; Alonso, J R
2005-06-01
The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.
Fukuda, Akihiro; Wickman, Larysa T.; Venkatareddy, Madhusudan; Sato, Yuji; Chowdhury, Mahboob; Wang, Su Q; Shedden, Kerby; Dysko, Robert; Wiggins, Jocelyn E.; Wiggins, Roger C.
2013-01-01
Podocyte depletion is a major mechanism driving glomerulosclerosis. Progression is the process by which progressive glomerulosclerosis leads to End Stage Kidney Disease (ESKD). We therefore tested the hypothesis that progression to ESKD can be caused by persistent podocyte loss using the human diphtheria toxin transgenic rat model. After initial podocyte injury causing >30% loss of podocytes glomeruli became destabilized, resulting in continuous podocyte loss over time until global podocyte depletion (ESKD) occured. Similar patterns of podocyte depletion were observed in the puromycin aminonucleoside and 5/6 nephrectomy rat models of progression. Angiotensin II blockade prevented continuous podocyte loss and progression (restabilized glomeruli). Discontinuing angiotensin II blockade resulted in recurrent glomerular destabilization, podocyte loss and progression. Reduction in blood pressure alone did not reduce proteinuria or prevent podocyte loss from destabilized glomeruli. The protective effect of angiotensin II blockade could be entirely accounted for by reduction in podocyte loss. These data demonstrate that an initiating event that results in a critical degree of podocyte depletion can destabilize glomeruli by setting in train a superimposed angiotensin II-dependent podocyte loss cycle that accelerates the progression process and results in global podocyte depletion and progression to ESKD. These events can be monitored non-invasively through urine mRNA assays. PMID:21937979
Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.
Wilks, M F; Gregg, N J; Bach, P H
1994-01-01
The present study was designed to assess the effects of mercury on glomerular integrity during the early phase of acute renal failure. The silver amplification method showed distribution of mercury in midcortical and juxtamedullary glomeruli and on the brush border of the S2 segment of the proximal tubule 15 min after treatment. At 30 min, there was a decrease in glomerular staining and increased mercury in the proximal tubule. After 3 hr, mercury was no longer detectable in glomeruli but was widespread in the lumen of the proximal tubule. By 24 hr, mercury was prominent in all proximal tubular segments throughout the cortex. The presence of mercury in glomeruli was not related to hemodynamic changes, as there was no evidence for blood redistribution toward juxtamedullary glomeruli as assessed by the filling of the microvascular system with Monastral Blue B. The reduced activity of horseradish peroxidase (administered i.v. 90 sec and 10 min before sacrifice) in juxtamedullary glomeruli 30 min after mercury administration suggests a decreased uptake of horseradish peroxidase or an increased glomerular protein filtration. These data support glomerular filtration as the predominant excretory route for mercury, highlight the marked nephron heterogeneity in the distribution of this metal, and show that impairment of glomerular integrity occurs before necrosis of the proximal tubules and acute renal failure.
In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye
Kistler, Andreas D.; Caicedo, Alejandro; Abdulreda, Midhat H.; Faul, Christian; Kerjaschki, Dontscho; Berggren, Per-Olof; Reiser, Jochen; Fornoni, Alessia
2014-01-01
Multiphoton microscopy enables live imaging of the renal glomerulus. However, repeated in vivo imaging of the same glomerulus over extended periods of time and the study of glomerular function independent of parietal epithelial and proximal tubular cell effects has not been possible so far. Here, we report a novel approach for non-invasive imaging of acapsular glomeruli transplanted into the anterior chamber of the mouse eye. After microinjection, glomeruli were capable of engrafting on the highly vascularized iris. Glomerular structure was preserved, as demonstrated by podocyte specific expression of cyan fluorescent protein and by electron microscopy. Injection of fluorescence-labeled dextrans of various molecular weights allowed visualization of glomerular filtration and revealed leakage of 70 kDa dextran in an inducible model of proteinuria. Our findings demonstrate functionality and long-term survival of glomeruli devoid of Bowman's capsule and provide a novel approach for non-invasive longitudinal in vivo study of glomerular physiology and pathophysiology. PMID:24464028
An insect-inspired model for visual binding I: learning objects and their characteristics.
Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M
2017-04-01
Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.
Charest, P M; Roth, J
1985-12-01
Sialic acid residues were localized by electron microscopy in renal glomeruli of normal and puromycin-treated rats with a cytochemical technique that utilized the Limax flavus lectin. In Lowicryl K4M thin sections from normal rats, sialic acid residues were found along the plasma membrane of the various glomerular cell types and in the glomerular basement membrane as well as the mesangial matrix. In NaDodSO4/PAGE, sialic acid residues of normal glomeruli were mainly confined to a 140-kDa protein previously identified as podocalyxin. The distribution of sialic acid residues in the podocyte plasma membrane was found to be remarkably regionalized. Based on the differential labeling intensity, three plasma membrane domains could be defined: the foot process base, the foot process region above the slit diaphragm, and the body of podocytes. Cytochemical and biochemical analysis of glomeruli from puromycin-treated rats showed a loss of sialic acid residues from glomerular sialoglycoconjugates indicating a perturbated glycosylation.
Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes
Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter
2016-01-01
Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855
Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V; Lyons, Karen M; Nguyen, Tri Q; Goldschmeding, Roel
2009-07-01
Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF(+/+) and CTGF(+/-) mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF(+/-) mice, pSmad1/5/8 was preserved, compared with diabetic CTGF(+/+) mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1.
Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.
2009-01-01
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158
Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems
Puche, Adam C.; Munger, Steven D.
2016-01-01
The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB. PMID:27902696
Callaway, Danielle A; McGill-Vargas, Lisa L; Quinn, Amy; Jordan, Jasmine L; Winter, Lauryn A; Anzueto, Diana; Dick, Edward J; Blanco, Cynthia L
2018-03-01
BackgroundPremature birth occurs when nephrogenesis is incomplete and has been linked to increased renal pathologies in the adult. Metabolic factors complicating preterm birth may have additional consequences for kidney development. Here, we evaluated the effects of prematurity and hyperglycemia on nephrogenesis in premature baboons when compared with those in term animals.MethodsBaboons were delivered prematurely (67% gestation; n=9) or at term (n=7) and survived for 2-4 weeks. Preterm animals were classified by glucose control during the first 5 days of life: normoglycemic (PtN; serum glucose 50-100 mg/dl, n=6) and hyperglycemic (PtH; serum glucose 150-250 mg/dl, n=3). Kidneys were assessed histologically for glomeruli relative area, maturity, size, and overall morphology. Kidney lysates were evaluated for oxidative damage with 4-hydroxynonenal (4-HNE) antibody.ResultsHistological examination revealed decreased glomeruli relative area (P<0.05), fewer glomerular generations (P<0.01), and increased renal corpuscle area (P<0.001) in preterm compared with those in term animals. Numbers of apoptotic glomeruli were similar between groups. PtH kidneys exhibited reduced nephrogenic zone width (P<0.0001), increased numbers of mature glomeruli (P<0.05), and increased 4-HNE staining compared with those in PtN kidneys.ConclusionPrematurity interrupts normal kidney development, independent of glomerular cell apoptosis. When prematurity is complicated by hyperglycemia; kidney development shifts toward accelerated maturation and increased oxidative stress.
Estimating individual glomerular volume in the human kidney: clinical perspectives.
Puelles, Victor G; Zimanyi, Monika A; Samuel, Terence; Hughson, Michael D; Douglas-Denton, Rebecca N; Bertram, John F; Armitage, James A
2012-05-01
Measurement of individual glomerular volumes (IGV) has allowed the identification of drivers of glomerular hypertrophy in subjects without overt renal pathology. This study aims to highlight the relevance of IGV measurements with possible clinical implications and determine how many profiles must be measured in order to achieve stable size distribution estimates. We re-analysed 2250 IGV estimates obtained using the disector/Cavalieri method in 41 African and 34 Caucasian Americans. Pooled IGV analysis of mean and variance was conducted. Monte-Carlo (Jackknife) simulations determined the effect of the number of sampled glomeruli on mean IGV. Lin's concordance coefficient (R(C)), coefficient of variation (CV) and coefficient of error (CE) measured reliability. IGV mean and variance increased with overweight and hypertensive status. Superficial glomeruli were significantly smaller than juxtamedullary glomeruli in all subjects (P < 0.01), by race (P < 0.05) and in obese individuals (P < 0.01). Subjects with multiple chronic kidney disease (CKD) comorbidities showed significant increases in IGV mean and variability. Overall, mean IGV was particularly reliable with nine or more sampled glomeruli (R(C) > 0.95, <5% difference in CV and CE). These observations were not affected by a reduced sample size and did not disrupt the inverse linear correlation between mean IGV and estimated total glomerular number. Multiple comorbidities for CKD are associated with increased IGV mean and variance within subjects, including overweight, obesity and hypertension. Zonal selection and the number of sampled glomeruli do not represent drawbacks for future longitudinal biopsy-based studies of glomerular size and distribution.
Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V.; Lyons, Karen M.; Nguyen, Tri Q.; Goldschmeding, Roel
2009-01-01
Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009) PMID:19255250
Batterton, M N; Robarts, D; Woodley, S K; Baum, M J
2006-06-12
Previously [S.K. Woodley, M.J. Baum, Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odors from males and females: an early step in mate identification, Eur. J. Neurosci. 20 (2004) 1025-1032], the receipt of intromission from a male activated glomeruli (indexed by Fos immunoreactivity in juxtaglomerular cells) in the main olfactory bulb (MOB) of estrous female ferrets which exceeded the activation seen after exposure to male anal scent gland odorants alone. We asked whether centrifugal inputs (e.g., from the locus coeruleus to the MOB) generated by the receipt of vaginal-cervical stimulation influence odor-induced MOB glomerular activation. We compared the activation of MOB glomeruli in estrous female ferrets which received a unilateral naris occlusion prior to exposure to: unscented air, volatile odorants from an anesthetized male, volatile + non-volatile odorants from direct physical contact with an anesthetized male, or mating stimulation. Little glomerular activation was observed in the MOB ipsilateral to an occluded naris, including females which received intromission. An equivalent distribution of activated glomeruli was observed in the ventral MOB of estrous females which either received mating stimulation or had direct physical contact with an anesthetized male. Considerably less glomerular activation occurred in females exposed only to volatile male odors. The MOB of female ferrets responded to body odorants from the opposite sex; however, there was no evidence that mating-induced centrifugal inputs directly activated MOB glomeruli or modified odor-induced glomerular activation.
Fourier-based quantification of renal glomeruli size using Hough transform and shape descriptors.
Najafian, Sohrab; Beigzadeh, Borhan; Riahi, Mohammad; Khadir Chamazkoti, Fatemeh; Pouramir, Mahdi
2017-11-01
Analysis of glomeruli geometry is important in histopathological evaluation of renal microscopic images. Due to the shape and size disparity of even glomeruli of same kidney, automatic detection of these renal objects is not an easy task. Although manual measurements are time consuming and at times are not very accurate, it is commonly used in medical centers. In this paper, a new method based on Fourier transform following usage of some shape descriptors is proposed to detect these objects and their geometrical parameters. Reaching the goal, a database of 400 regions are selected randomly. 200 regions of which are part of glomeruli and the other 200 regions are not belong to renal corpuscles. ROC curve is used to decide which descriptor could classify two groups better. f_measure, which is a combination of both tpr (true positive rate) and fpr (false positive rate), is also proposed to select optimal threshold for descriptors. Combination of three parameters (solidity, eccentricity, and also mean squared error of fitted ellipse) provided better result in terms of f_measure to distinguish desired regions. Then, Fourier transform of outer edges is calculated to form a complete curve out of separated region(s). The generality of proposed model is verified by use of cross validation method, which resulted tpr of 94%, and fpr of 5%. Calculation of glomerulus' and Bowman's space with use of the algorithm are also compared with a non-automatic measurement done by a renal pathologist, and errors of 5.9%, 5.4%, and 6.26% are resulted in calculation of Capsule area, Bowman space, and glomeruli area, respectively. Having tested different glomeruli with various shapes, the experimental consequences show robustness and reliability of our method. Therefore, it could be used to illustrate renal diseases and glomerular disorders by measuring the morphological changes accurately and expeditiously. Copyright © 2017 Elsevier B.V. All rights reserved.
Characteristics of renin release from isolated superfused glomeruli in vitro.
Blendstrup, K; Leyssac, P P; Poulsen, K; Skinner, S L
1975-01-01
1. A method is described for studying renin release from superfused rat glomeruli following their rapid isolation by a magnetic iron-oxide technique. 2. Microscopically selected glomeruli were free of tubular components. Some possessed vascular pole protrusions of up to 20 mum, unrelated to renin content. 3. Renin content of 102 batches, each of 400 glomeruli, was 1.34 plus or minus 0.08 times 10-4 Goldblatt hog units per 100 glomeruli (plus or minus S.E. of mean). Different osmolarities (305, 355 and 400 m-osmole/1.), sodium concentrations (110 and 135 mM) and buffer compositions of the preparation solution did not alter this value. Renin content per glomerulus in intact kidney was 100-fold higher. 4. At 30 degrees C the contained juxtaglomerular cells released renin at consistent but decreasing rates over 4-6 hr. Initial release rate in 110 mM sodium, 305 m-osmole/1. solutions were 0.86 plus or minus 0.068 times 10-6 units per 100 glomeruli per 30 min (plus or minus S.E. of mean, n = 42) or 0.546 plus or minus 0.046 percent of content per 30 min. In 135 mM sodium, 305 m-osmole/1. solutions, release was 2.4-fold higher (P less than 0.001) and remained elevated for at least 3 hr. When related to renin content per glomerulus resting release rate in vitro was higher by at most one order of magnitude than calculated in vivo values. 5. Release was augmented by gentle physical agitation of the glomeruli. 6. Release rate was inversely ralated to temperature. On reducing temperature from 30 degrees C, release increased 2.6-fold at 20 degrees C and 6.7-fold at 10 degrees C (P less than 0.001, n = 11). The response was reversible. 7. 3 mM sodium cyanide plus 3 mM sodium iodoacetate caused a variable release of renin associated with depletion of content within 4 hr. The response was progressive and reached a peak after 60 min. 8. Sensitivity of renin release to temperature and metabolic blockade indicates that energy is required for retention of renin by the cell. This, together with the release observed with increased sodium concentration at constant osmolarity, suggests a dependence of renin release upon the mechanism controlling the volume of the juxtaglomerular cell or its organelles. PMID:1133791
Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli
van der Wolde, James W.; Schulze, Keith E.; Short, Kieran M.; Wong, Milagros N.; Bensley, Jonathan G.; Cullen-McEwen, Luise A.; Caruana, Georgina; Hokke, Stacey N.; Li, Jinhua; Firth, Stephen D.; Harper, Ian S.; Nikolic-Paterson, David J.; Bertram, John F.
2016-01-01
Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli. PMID:26975438
Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age
Roeder, Sebastian S.; Stefanska, Ania; Eng, Diana G.; Kaverina, Natalya; Sunseri, Maria W.; McNicholas, Bairbre A.; Rabinovitch, Peter; Engel, Felix B.; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W.
2015-01-01
Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. PMID:26017974
Estimating individual glomerular volume in the human kidney: clinical perspectives
Puelles, Victor G.; Zimanyi, Monika A.; Samuel, Terence; Hughson, Michael D.; Douglas-Denton, Rebecca N.; Bertram, John F.
2012-01-01
Background. Measurement of individual glomerular volumes (IGV) has allowed the identification of drivers of glomerular hypertrophy in subjects without overt renal pathology. This study aims to highlight the relevance of IGV measurements with possible clinical implications and determine how many profiles must be measured in order to achieve stable size distribution estimates. Methods. We re-analysed 2250 IGV estimates obtained using the disector/Cavalieri method in 41 African and 34 Caucasian Americans. Pooled IGV analysis of mean and variance was conducted. Monte-Carlo (Jackknife) simulations determined the effect of the number of sampled glomeruli on mean IGV. Lin’s concordance coefficient (RC), coefficient of variation (CV) and coefficient of error (CE) measured reliability. Results. IGV mean and variance increased with overweight and hypertensive status. Superficial glomeruli were significantly smaller than juxtamedullary glomeruli in all subjects (P < 0.01), by race (P < 0.05) and in obese individuals (P < 0.01). Subjects with multiple chronic kidney disease (CKD) comorbidities showed significant increases in IGV mean and variability. Overall, mean IGV was particularly reliable with nine or more sampled glomeruli (RC > 0.95, <5% difference in CV and CE). These observations were not affected by a reduced sample size and did not disrupt the inverse linear correlation between mean IGV and estimated total glomerular number. Conclusions. Multiple comorbidities for CKD are associated with increased IGV mean and variance within subjects, including overweight, obesity and hypertension. Zonal selection and the number of sampled glomeruli do not represent drawbacks for future longitudinal biopsy-based studies of glomerular size and distribution. PMID:21984554
Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease
El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude
2015-01-01
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. PMID:25421557
Zhu, XinWang; Zhang, CongXiao; Fan, QiuLing; Liu, XiaoDan; Yang, Gang; Jiang, Yi; Wang, LiNing
2016-10-22
BACKGROUND Diabetic nephropathy (DN) is the most lethal diabetic microvascular complication; it is a major cause of renal failure, and an increasingly globally prominent healthcare problem. MATERIAL AND METHODS To identify susceptible microRNAs for the pathogenesis of DN and the targets of losartan treatment, microRNA arrays were employed to survey the glomerular microRNA expression profiles of KKAy mice treated with or without losartan. KKAy mice were assigned to either a losartan-treated group or a non-treatment group, with C57BL/6 mice used as a normal control. Twelve weeks after treatment, glomeruli from the mice were isolated. MicroRNA expression profiles were analyzed using microRNA arrays. Real-time PCR was used to confirm the results. RESULTS Losartan treatment improved albuminuria and the pathological lesions of KKAy mice. The expression of 10 microRNAs was higher, and the expression of 12 microRNAs was lower in the glomeruli of the KKAy untreated mice than that of the CL57BL/6 mice. The expression of 4 microRNAs was down-regulated in the glomeruli of the KKAy losartan-treated mice compared to that of the untreated mice. The expression of miRNA-503 and miRNA-181d was apparently higher in the glomeruli of the KKAy untreated mice, and was inhibited by losartan treatment. CONCLUSIONS The over-expression of miR-503 and miR-181d in glomeruli of KKAy mice may be responsible for the pathogenesis of DN and are potential therapeutic targets for DN.
Effect of hypo- and hyperthyroidism on hexokinase in the developing cerebellum of the rat.
Gutekunst, D I; Wilson, J E
1981-05-01
Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition. distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.
[Glomerular changes in the contralateral kidney in the rat with experimental hydronephrosis].
Castillo Bernabéu, R; Gázquez Ortiz, A; Bonillo Morales, A; Sierra Planas, M A; Ocaña Losa, J M; Romanos Lezcano, A
1985-10-31
We have studied under optic and electronmicroscopes the alterations of glomeruli in contralateral kidneys of rats with experimental hydronephrosis. Forty-eight Wistar rats, divided into two groups (control and experimental) were used. They were sacrificed 3, 6, 9 and 12 days after ureteral obstruction. There was a slight hypertrophy of glomeruli and hiperplasia of other components accompanied by a increased development of podocytes.
Cellular origin of fibronectin in interspecies hybrid kidneys
1984-01-01
The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross- reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo. PMID:6389571
Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.
Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M
1985-01-01
Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139
Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F
2010-11-01
Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.
BAMBI Elimination Enhances Alternative TGF-β Signaling and Glomerular Dysfunction in Diabetic Mice
Fan, Ying; Li, Xuezhu; Xiao, Wenzhen; Fu, Jia; Harris, Ray C.; Lindenmeyer, Maja; Cohen, Clemens D.; Guillot, Nicolas; Baron, Margaret H.; Wang, Niansong; Lee, Kyung; He, John C.; Chuang, Peter Y.
2015-01-01
BMP, activin, membrane-bound inhibitor (BAMBI) acts as a pseudo-receptor for the transforming growth factor (TGF)-β type I receptor family and a negative modulator of TGF-β kinase signaling, and BAMBI−/− mice show mild endothelial dysfunction. Because diabetic glomerular disease is associated with TGF-β overexpression and microvascular alterations, we examined the effect of diabetes on glomerular BAMBI mRNA levels. In isolated glomeruli from biopsies of patients with diabetic nephropathy and in glomeruli from mice with type 2 diabetes, BAMBI was downregulated. We then examined the effects of BAMBI deletion on streptozotocin-induced diabetic glomerulopathy in mice. BAMBI−/− mice developed more albuminuria, with a widening of foot processes, than BAMBI+/+ mice, along with increased activation of alternative TGF-β pathways such as extracellular signal–related kinase (ERK)1/2 and Smad1/5 in glomeruli and cortices of BAMBI−/− mice. Vegfr2 and Angpt1, genes controlling glomerular endothelial stability, were downmodulated in glomeruli from BAMBI−/− mice with diabetes. Incubation of glomeruli from nondiabetic BAMBI+/+ or BAMBI−/− mice with TGF-β resulted in the downregulation of Vegfr2 and Angpt1, effects that were more pronounced in BAMBI−/− mice and were prevented by a MEK inhibitor. The downregulation of Vegfr2 in diabetes was localized to glomerular endothelial cells using a histone yellow reporter under the Vegfr2 promoter. Thus, BAMBI modulates the effects of diabetes on glomerular permselectivity in association with altered ERK1/2 and Smad1/5 signaling. Future therapeutic interventions with inhibitors of alternative TGF-β signaling may therefore be of interest in diabetic nephropathy. PMID:25576053
Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease.
El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude; Chatziantoniou, Christos
2015-07-01
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. Copyright © 2015 by the American Society of Nephrology.
Insect Optic Glomeruli-Exploration of a Universal Circuit for Sensorimotor Processing
2010-02-03
laboratory of the small palisade output neurons from the lobula of Drosophila melanogaster, using in vivo targeting of green fluorescent protein...animals that reveal cohorts of lobula outputs to identified optic glomeruli. Using infrared illumination and optics, the cell bodies of such clones...surface of one of these neurons. Once contiguity between the neuron and electrolyte of the electrode has been established, the cell is recorded
A Robust Feedforward Model of the Olfactory System
NASA Astrophysics Data System (ADS)
Zhang, Yilun; Sharpee, Tatyana
Most natural odors have sparse molecular composition. This makes the principles of compressing sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has proposed that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. The dynamical aspects of optimization, however, would slow down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to Kenyon cells, which in the model corresponds to reconstruction. We show that provided this specific relationship holds true, the reconstruction will be both fast and robust to noise, and in particular to failure of glomeruli. The predicted connectivity rate from glomeruli to the Kenyon cells can be tested experimentally. This research was supported by James S. McDonnell Foundation, NSF CAREER award IIS-1254123, NSF Ideas Lab Collaborative Research IOS 1556388.
Damasceno-Ferreira, José Aurelino; Bechara, Gustavo Ruschi; Costa, Waldemar Silva; Pereira-Sampaio, Marco Aurélio; Sampaio, Francisco José Barcellos; Souza, Diogo Benchimol De
2017-05-01
To investigate the glomerular number after different warm ischemia times. Thirty two pigs were assigned into four groups. Three groups (G10, G20, and G30) were treated with 10, 20, and 30 minutes of left renal warm ischemia. The sham group underwent the same surgery without renal ischemia. The animals were euthanized after 3 weeks, and the kidneys were collected. Right kidneys were used as controls. The kidney weight, volume, cortical-medullar ratio, glomerular volumetric density, volume-weighted mean glomerular volume, and the total number of glomeruli per kidney were obtained. Serum creatinine levels were assessed pre and postoperatively. Serum creatinine levels did not differ among the groups. All parameters were similar for the sham, G10, and G20 groups upon comparison of the right and left organs. The G30 group pigs' left kidneys had lower weight, volume, and cortical-medullar ratio and 24.6% less glomeruli compared to the right kidney. A negative correlation was found between warm ischemia time and glomerular number. About one quarter of glomeruli was lost after 30 minutes of renal warm ischemia. No glomeruli loss was detected before 20 minutes of warm ischemia. However, progressive glomerular loss was associated with increasing warm ischemia time.
Fahim, T; Böhmig, G A; Exner, M; Huttary, N; Kerschner, H; Kandutsch, S; Kerjaschki, D; Bramböck, A; Nagy-Bojarszky, K; Regele, H
2007-02-01
Accumulation of inflammatory cells within capillaries is a common morphologic feature of humoral renal allograft rejection and is most easily appreciated if it occurs in glomeruli. The aim of our study was to determine the amount and composition of immune cells within glomeruli and peritubular capillaries (PTC) in cellular and humoral allograft rejection. Immunofluorescent double-labeling for CD31 and CD3 or CD68 was used for phenotyping and enumerating immune cells within glomeruli and PTC. The major findings are: (1) accumulation of immune cells in PTC is far more common than it would be anticipated based on the assessment by conventional histology; (2) it is not the absolute number of immune cells accumulating within capillaries, but rather the composition of the intracapillary cell population that distinguishes humoral rejection from cellular rejection and (3) in C4d positive biopsies a predominantly monocytic cell population accumulates not only within glomeruli but also within PTC. The median value of monocyte/T-cell ratio within PTC was 2.3 in C4d positive biopsies but only 1 (p = 0.0008) in C4d negative biopsies. Given their prominent presence within capillaries and their extensive biological versatility monocytes might contribute to the capillary damage observed in acute and chronic allograft rejection.
Insect Optic Glomeruli-Exploration of a Universal Circuit for Sensorimotor Processing
2011-01-25
09 to 2-28-10. We have successfully achieved the first recordings from any laboratory of the small palisade output neurons from the lobula of...glomeruli. Using infrared illumination and optics, the cell bodies of such clones are directly observed. A patch clamp recording electrode, filled...neuron and electrolyte of the electrode has been established, the cell is recorded during the presentation of a sequence of visual stimuli: stripes
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-08-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-01-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity. Images PMID:6206495
Outcome of the acute glomerular injury in proliferative lupus nephritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagnac, A.; Kiberd, B.A.; Farinas, M.C.
1989-09-01
Treatment with total lymphoid irradiation (TLI) and corticosteroids markedly reduced activity of systemic lupus erythematosis in 10 patients with diffuse proliferative lupus nephritis (DPLN) complicated by a nephrotic syndrome. Physiologic and morphometric techniques were used serially before, and 12 and 36 mo post-TLI to characterize the course of glomerular injury. Judged by a progressive reduction in the density of glomerular cells and immune deposits, glomerular inflammation subsided. A sustained reduction in the fractional clearance of albumin, IgG and uncharged dextrans of radius greater than 50 A, pointed to a parallel improvement in glomerular barrier size-selectivity. Corresponding changes in GFR weremore » modest, however. A trend towards higher GFR at 12 mo was associated with a marked increase in the fraction of glomerular tuft area occupied by patent capillary loops as inflammatory changes receded. A late trend toward declining GFR beyond 12 mo was associated with progressive glomerulosclerosis, which affected 57% of all glomeruli globally by 36 mo post-TLI. Judged by a parallel increase in volume by 59%, remaining, patent glomeruli had undergone a process of adaptive enlargement. We propose that an increasing fraction of glomeruli continues to undergo progressive sclerosis after DPLN has become quiescent, and that the prevailing GFR depends on the extent to which hypertrophied remnant glomeruli can compensate for the ensuing loss of filtration surface area.« less
Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties.
Bełtowski, Jerzy; Guranowski, Andrzej; Jamroz-Wiśniewska, Anna; Korolczuk, Agnieszka; Wojtak, Andrzej
2014-03-01
Hydrogen sulfide (H2S) is the gasotransmitter enzymatically synthesized in mammalian tissues from l-cysteine. H2S donors are considered as the potential drugs for the treatment of cardiovascular, neurological and inflammatory diseases. Recently, it has been demonstrated that synthetic nucleotide analogs, adenosine- and guanosine 5'-monophosphorothioates (AMPS and GMPS) can be converted to H2S and AMP or GMP, respectively, by purified histidine triad nucleotide-binding (Hint) proteins. We examined if AMPS and GMPS can be used as the H2S donors in intact biological systems. H2S production by isolated rat kidney glomeruli was measured by the specific polarographic sensor. H2S production was detected when glomeruli were incubated with AMPS or GMPS and ionotropic purinergic P2X7 receptor/channel agonist, BzATP. More H2S was generated from GMPS than from equimolar amount of AMPS. Nucleoside phosphorothioates together with BzATP relaxed angiotensin II-preconstricted glomeruli. In addition, infusion of AMPS or GMPS together with BzATP into the renal artery increased filtration fraction and glomerular filtration rate but had no effect on renal vascular resistance or renal blood flow. AMPS but not GMPS was converted to adenosine by isolated glomeruli, however, adenosine was not involved in AMPS-induced H2S synthesis because neither adenosine nor specific adenosine receptor agonists had any effect on H2S production. AMPS, but not GMPS, increased phosphorylation level of AMP-stimulated protein kinase (AMPK), but AMPK inhibitor, compound C, had no effect on AMPS-induced H2S production. In conclusion, nucleoside phosphorothioates are converted to H2S which relaxes isolated kidney glomeruli in vitro and increases glomerular filtration rate in vivo. AMPS and GMPS can be used as the H2S donors in experimental studies and possibly also as the H2S-releasing drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sadakane, Chiharu; Kase, Yoshio; Koseki, Junichi; Hasegawa, Yoshihiro; Shindo, Shoichiro; Maruyama, Hirobumi; Takeda, Shuichi; Takeda, Hiroshi; Hattori, Tomohisa
2011-02-01
Phosphodiesterase type IV (PDEIV) plays an important role in the immune response and inflammation. However, it is well known that classical PDEIV inhibitors have systemic side effects, so the clinical and chronic use of these agents as therapy for glomerulonephritis is difficult. This study was performed to elucidate the anti-nephritic effects of TJN-598, a new chemical compound derived from herbal components, on experimental mesangial proliferative glomerulonephritis. We first examined the effects of TJN-598 and captopril on mesangial expansion induced by anti-Thy1 serum in rats. Second, to investigate the effects of TJN-598 and rolipram, which are typical PDEIV inhibitors, on the production of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1, glomeruli were isolated from rats with anti-Thy1 nephritis and incubated with the test drugs in vitro for 48 h. Treatment with TJN-598 prevented an increase in the mesangial area/total glomerular area, in the number of cells in the glomerular cross section and matrix index. TJN-598 also inhibited the increases in the expression of α-smooth muscle actin, the TGF-β1-positive area, in the number of ED-1 positive cells and proliferating cell nuclear antigen-positive cells in the glomeruli. Furthermore, administration of TJN-598 inhibited increases in the levels of TGF-β1 protein derived from glomeruli with anti-Thy-1 nephritis. The addition of both TJN-598 and rolipram to the culture supernatant inhibited both increased expression of TGF-β1 and increases in levels of TNF-α in glomeruli isolated from rats with anti-Thy1 nephritis in a dose-dependent manner. These results suggest that TJN-598, a PDEIV inhibitor, is effective against expansion of mesangial cells, via the suppression of secretion of TGF-β1 and TNF-α from inflamed glomeruli.
Kosaka, Katsuko; Kosaka, Toshio
2004-04-19
We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs. Copyright 2004 Wiley-Liss, Inc.
Establishment of Nephrin Reporter Mice and Use for Chemical Screening
Tsuchida, Junichi; Matsusaka, Taiji; Ohtsuka, Masato; Miura, Hiromi; Okuno, Yukiko; Asanuma, Katsuhiko; Nakagawa, Takahiko; Yanagita, Motoko
2016-01-01
Nephrin is a critical component of glomerular filtration barrier, which is important to maintain glomerular structure and avoid proteinuria. Downregulation of nephrin expression is commonly observed at early stage of glomerular disorders, suggesting that methods to increase nephrin expression in podocytes may have therapeutic utility. Here, we generated a knockin mouse line carrying single copy of 5.5 kb nephrin promoter controlling expression of enhanced green fluorescent protein (EGFP) at Rosa26 genomic locus (Nephrin-EGFP mouse). In these mice, EGFP was specifically expressed in podocytes. Next, we isolated and cultivated glomeruli from these mice, and developed a protocol to automatically quantitate EGFP expression in cultured glomeruli. EGFP signal was markedly reduced after 5 days of culture but reduction was inhibited by vitamin D treatment. We confirmed that vitamin D increased mRNA and protein expression of endogenous nephrin in cultivated glomeruli. Thus, we generated a mouse line converting nephrin promoter activity into fluorescence, which can be used to screen compounds having activity to enhance nephrin gene expression. PMID:27362433
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
Functional organization of glomerular maps in the mouse accessory olfactory bulb
Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.
2014-01-01
Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215
orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants.
Trible, Waring; Olivos-Cisneros, Leonora; McKenzie, Sean K; Saragosti, Jonathan; Chang, Ni-Chen; Matthews, Benjamin J; Oxley, Peter R; Kronauer, Daniel J C
2017-08-10
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Kitamura, M; Kawachi, H
1997-09-15
Automatic control over exogenous gene expression in response to the activity of disease is a crucial hurdle for gene transfer-based therapies. Towards achieving this goal, we created a "cytosensor" that perceives local inflammatory states and subsequently regulates foreign gene expression. alpha-Smooth muscle actin is known to be expressed in glomerular mesangial cells exclusively in pathologic situations. CArG box element, the crucial regulatory sequence of the alpha-smooth muscle actin promoter, was used as a sensor for glomerular inflammation. Rat mesangial cells were stably transfected with an expression plasmid that introduces a beta-galactosidase gene under the control of CArG box elements. In vitro, the established cells expressed beta-galactosidase exclusively after stimulation with serum. To examine whether the cells are able to automatically control transgene activity in vivo, serum-stimulated or unstimulated cells were transferred into normal rat glomeruli or glomeruli subjected to anti-Thy 1 glomerulonephritis. When stimulated cells were transferred into the normal glomeruli, beta-galactosidase expression was switched off in vivo within 3 d. In contrast, when unstimulated cells were transferred into the nephritic glomeruli, transgene expression was substantially induced. These data indicate the feasibility of using the CArG box element as a molecular sensor for glomerular injury. In the context of advanced forms of gene therapy, this approach provides a novel concept for automatic regulation of local transgene expression where the transgene is required to be activated during inflammation and deactivated when the inflammation has subsided.
Stephens, Edward B.; Tian, Chunqiao; Li, Zhuang; Narayan, Opendra; Gattone, Vincent H.
1998-01-01
We previously showed that inoculation of rhesus macaques with molecularly cloned lymphocytetropic simian immunodeficiency virus (SIVmac239) results in SIV-associated nephropathy (SIVAN) and that the glomerulosclerotic lesions were associated with the selection of macrophagetropic (M-tropic) variants (V. H. Gattone et al., AIDS Res. Hum. Retroviruses 14:1163–1180, 1998). In the present study, seven rhesus macaques were inoculated with M-tropic SIVmacR71/17E, and the renal pathology was examined at necropsy. All SIVmacR71/17E-infected macaques developed AIDS, and most developed other systemic complications, including SIV-induced encephalitis and lentivirus interstitial pneumonia. There was no correlation between the length of infection (42 to 97 days), circulating CD4+ T-cell counts, and renal disease. Of the seven macaques inoculated with SIVmacR71/17E, five developed significant mesangial hyperplasia and expansion of matrix and four were clearly azotemic (serum urea nitrogen concentration of 40 to 112 mg/dl). These same five macaques developed focal segmental to global glomerulosclerotic lesions. Increased numbers of glomerular CD68+ cells (monocytes/macrophages) were found in glomeruli but not the tubulointerstitium of the macaques inoculated with SIVmacR71/17E. All macaques had glomerular deposits of immunoglobulin G (IgG), IgM, and tubuloreticular inclusions, and six of seven had IgA deposition. However, there was no correlation between the presence of circulating anti-SIVmac antibodies, immunoglobulin deposition, and glomerular disease. Tubulointerstitial infiltrates were mild, with little or no correlation to azotemia, while microcystic tubules were evident in those with glomerulosclerosis or azotemia. The four most severely affected macaques were positive for diffuse glomerular immunostaining for viral core p27 antigen, and there was intense staining in the glomeruli of the two macaques with the most severe glomerulosclerosis. Viral sequences were isolated from glomerular and tubulointerstitial fractions from macaques with severe glomerulosclerosis but only from the tubulointerstitial compartment of those that did not develop glomerulosclerosis. Interviral recombinant viruses generated with env sequences isolated from glomeruli confirmed the M-tropic nature of the virus found in the glomeruli. The correlation between the increased number of CD68+ cells (monocytes/macrophages) in the glomeruli, the localization of p27 antigen in the glomeruli, and the glomerular pathology confirms and extends our previous observations of an association between glomerular infection and infiltration by M-tropic virus and SIVAN. PMID:9765427
Stereological study of developing glomerular forms during human fetal kidney development.
Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad
2018-05-01
Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi
2016-06-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.
Liu, Shaolin; Puche, Adam C; Shipley, Michael T
2016-09-14
Sensory processing shapes our perception. In mammals, odor information is encoded by combinatorial activity patterns of olfactory bulb (OB) glomeruli. Glomeruli are richly interconnected by short axon cells (SACs), which form the interglomerular circuit (IGC). It is unclear how the IGC impacts OB output to downstream neural circuits. We combined in vitro and in vivo electrophysiology with optogenetics in mice and found the following: (1) the IGC potently and monosynaptically inhibits the OB output neurons mitral/tufted cells (MTCs) by GABA release from SACs: (2) gap junction-mediated electrical coupling is strong for the SAC→MTC synapse, but negligible for the SAC→ETC synapse; (3) brief IGC-mediated inhibition is temporally prolonged by the intrinsic properties of MTCs; and (4) sniff frequency IGC activation in vivo generates persistent MTC inhibition. These findings suggest that the temporal sequence of glomerular activation by sensory input determines which stimulus features are transmitted to downstream olfactory networks and those filtered by lateral inhibition. Odor identity is encoded by combinatorial patterns of activated glomeruli, the initial signal transformation site of the olfactory system. Lateral circuit processing among activated glomeruli modulates olfactory signal transformation before transmission to higher brain centers. Using a combination of in vitro and in vivo optogenetics, this work demonstrates that interglomerular circuitry produces potent inhibition of olfactory bulb output neurons via direct chemical and electrical synapses as well as by indirect pathways. The direct inhibitory synaptic input engages mitral cell intrinsic membrane properties to generate inhibition that outlasts the initial synaptic action. Copyright © 2016 the authors 0270-6474/16/369604-14$15.00/0.
Seki, Yoichi; Rybak, Jürgen; Wicher, Dieter; Sachse, Silke; Hansson, Bill S
2010-08-01
The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake
2016-01-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691
Forbes, Michael S.; Thornhill, Barbara A.; Galarreta, Carolina I.; Minor, Jordan J.; Gordon, Katherine A.
2013-01-01
Unilateral ureteral obstruction (UUO) in the adult mouse is the most widely used model of progressive renal disease: the proximal tubule is the nephron segment most severely affected and atubular glomeruli are formed after only 7 days of UUO. To determine the proximal nephron response to UUO in the maturing kidney, neonatal mice were examined 7 to 28 days following complete UUO under general anesthesia. Proximal tubular mass and maturation were determined by staining with Lotus tetragolonobus lectin. Superoxide was localized by nitroblue tetrazolium and collagen by Sirius red. Cell proliferation, cell death, PAX-2, megalin, α-smooth muscle actin (α-SMA), renin, and fibronectin were identified by immunohistochemistry. During the first 14 days of ipsilateral UUO, despite oxidative stress (4-hydroxynonenal staining), glomerulotubular continuity was maintained and mitochondrial superoxide production persisted. However, from 14 to 28 days, papillary growth was impaired and proximal tubules collapsed with increased apoptosis, autophagy, mitochondrial loss, and formation of atubular glomeruli. Fibronectin, α-SMA, and collagen increased in the obstructed kidney. Oxidative stress was present also in the contralateral kidney: renin was decreased, glomerulotubular maturation and papillary growth were delayed, followed by increased cortical and medullary growth. We conclude that neonatal UUO initially delays renal maturation and results in oxidative stress in both kidneys. In contrast to the adult, proximal tubular injury in the neonatal obstructed kidney is delayed at 14 days, followed only later by the formation of atubular glomeruli. Antioxidant therapies directed at proximal tubular mitochondria during early renal maturation may slow progression of congenital obstructive nephropathy. PMID:24107422
Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni
2007-02-19
To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.
Automated renal histopathology: digital extraction and quantification of renal pathology
NASA Astrophysics Data System (ADS)
Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.
2016-03-01
The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.
Puche, Adam C.; Shipley, Michael T.
2016-01-01
Sensory processing shapes our perception. In mammals, odor information is encoded by combinatorial activity patterns of olfactory bulb (OB) glomeruli. Glomeruli are richly interconnected by short axon cells (SACs), which form the interglomerular circuit (IGC). It is unclear how the IGC impacts OB output to downstream neural circuits. We combined in vitro and in vivo electrophysiology with optogenetics in mice and found the following: (1) the IGC potently and monosynaptically inhibits the OB output neurons mitral/tufted cells (MTCs) by GABA release from SACs: (2) gap junction-mediated electrical coupling is strong for the SAC→MTC synapse, but negligible for the SAC→ETC synapse; (3) brief IGC-mediated inhibition is temporally prolonged by the intrinsic properties of MTCs; and (4) sniff frequency IGC activation in vivo generates persistent MTC inhibition. These findings suggest that the temporal sequence of glomerular activation by sensory input determines which stimulus features are transmitted to downstream olfactory networks and those filtered by lateral inhibition. SIGNIFICANCE STATEMENT Odor identity is encoded by combinatorial patterns of activated glomeruli, the initial signal transformation site of the olfactory system. Lateral circuit processing among activated glomeruli modulates olfactory signal transformation before transmission to higher brain centers. Using a combination of in vitro and in vivo optogenetics, this work demonstrates that interglomerular circuitry produces potent inhibition of olfactory bulb output neurons via direct chemical and electrical synapses as well as by indirect pathways. The direct inhibitory synaptic input engages mitral cell intrinsic membrane properties to generate inhibition that outlasts the initial synaptic action. PMID:27629712
Variations on a Theme: Antennal Lobe Architecture across Coleoptera
Kollmann, Martin; Schmidt, Rovenna; Heuer, Carsten M.
2016-01-01
Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system. PMID:27973569
Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.
Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook
2015-08-01
Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.
SUNAMOTO, MASAAKI; KUZE, KOGO; IEHARA, NORIYUKI; TAKEOKA, HIROYA; NAGATA, KAZUHIRO; KITA, TORU; DOI, TOSHIO
1998-01-01
Glomerulosclerosis is characterized by accumulation of the mesangial extracellular matrix, including type I and IV collagen. The processing for the collagens in the glomeruli may play a critical role for development of glomerulosclerosis. We examined the expression of heat shock protein 47 (HSP47), a collagen-binding molecular chaperone in the progresive glomerulosclerosis model. Subtotally nephrectomized rats, unlike sham-operated rats, developed focal and segmental glomerulosclerosis. Immunological staining demonstrated an increased expression of HSP47 which paralleled the expression of type I and IV collagen in the glomeruli of the nephrectomized rats as the glomerulosclerosis developed. The mRNA levels encoding type I and type IV collagen and HSP47 were increased 3.4 fold, 3.6 fold and 2.8 fold, respectively, at week 7 after nephrectomy. By in situ hybridization, the expression of HSP47 mRNA was determined to be localized to the glomeruli with segmental sclerosis. These results suggest that HSP47 may play a central role in the process of extracellular matrix accumulation during the development of glomerulosclerosis. PMID:9741355
Patek, Charles E; Fleming, Stewart; Miles, Colin G; Bellamy, Christopher O; Ladomery, Michael; Spraggon, Lee; Mullins, John; Hastie, Nicholas D; Hooper, Martin L
2003-09-15
Denys-Drash syndrome (DDS) is caused by dominant mutations of the Wilms' tumour suppressor gene, WT1, and characterized by a nephropathy involving diffuse mesangial sclerosis, male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that heterozygosity for the Wt1tmT396 mutation induces DDS in heterozygous and chimeric (Wt1tmT396/+<-->+/+) mice. In the present study, the fate of Wt1 mutant cells in chimeric kidneys was assessed by in situ marker analysis, and immunocytochemistry was used to re-examine the claim that glomerulosclerosis (GS) is caused by loss of WT1 and persistent Pax-2 expression by podocytes. Wt1 mutant cells colonized glomeruli efficiently, including podocytes, but some sclerotic glomeruli contained no detectable Wt1 mutant cells. The development of GS was preceded by widespread loss of ZO-1 signal in podocytes (even in kidneys where <5% of glomeruli contained Wt1 mutant podocytes), increased intra-renal renin expression, and de novo podocyte TGF-beta1 expression, but not podocyte Pax-2 expression or loss of WT1, synaptopodin, alpha-actinin-4 or nephrin expression. However, podocytes in partially sclerotic glomeruli that still expressed WT1 at high levels showed reduced vimentin expression, cell cycle re-entry, and re-expressed desmin, cytokeratin and Pax-2. The results suggest that: (i) GS is not due to loss of WT1 expression by podocytes; (ii) podocyte Pax-2 expression reflects re-expression rather than persistent expression, and is the consequence of GS; (iii) GS is mediated systemically and the mechanism involves activation of the renin-angiotensin system; and (iv) podocytes undergo typical maturational changes but subsequently de-differentiate and revert to an immature phenotype during disease progression.
Galarreta, Carolina I.; Thornhill, Barbara A.; Forbes, Michael S.; Simpkins, Lauren N.; Kim, Dae-Kee
2013-01-01
Unilateral ureteral obstruction (UUO), a widely used model of chronic kidney disease and congenital obstructive uropathy, causes proximal tubular injury and formation of atubular glomeruli. Because transforming growth factor-β1 (TGF-β1) is a central regulator of renal injury, neonatal and adult mice were subjected to complete UUO while under general anesthesia and treated with vehicle or ALK5 TGF-β1 receptor inhibitor (IN-1130, 30 mg·kg−1·day−1). After 14 days, glomerulotubular integrity and proximal tubular mass were determined by morphometry of Lotus tetragonolobus lectin distribution, and the fraction of atubular glomeruli was determined by serial section analysis of randomly selected individual glomeruli. Glomerular area, macrophage infiltration, fibronectin distribution, and interstitial collagen were measured by morphometry. Compared with placebo, inhibition of TGF-β1 by IN-1130 decreased apoptosis and formation of atubular glomeruli, prevented parenchymal loss, increased glomerular area and glomerulotubular integrity, and increased proximal tubule fraction of the adult obstructed kidney parenchyma from 17 to 30% (P < 0.05, respectively). IN-1130 decreased macrophage infiltration and fibronectin and collagen deposition in the adult obstructed kidney by ∼50% (P < 0.05, respectively). In contrast to these salutary effects in the adult, IN-1130 caused widespread necrosis in obstructed neonatal kidneys. We conclude that whereas IN-1130 reduces obstructive injury in adult kidneys through preservation of glomerulotubular integrity and proximal tubular mass, TGF-β1 inhibition aggravates obstructive injury in neonates. These results indicate that while caution is necessary in treating congenital uropathies, ALK5 inhibitors may prevent nephron loss due to adult kidney disease. PMID:23303407
Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis
Lenoir, Olivia; Milon, Marine; Virsolvy, Anne; Hénique, Carole; Schmitt, Alain; Massé, Jean-Marc; Kotelevtsev, Yuri; Yanagisawa, Masashi; Webb, David J.; Richard, Sylvain
2014-01-01
The endothelin system has emerged as a novel target for the treatment of diabetic nephropathy. Endothelin-1 promotes mesangial cell proliferation and sclerosis. However, no direct pathogenic effect of endothelin-1 on podocytes has been shown in vivo and endothelin-1 signaling in podocytes has not been investigated. This study investigated endothelin effects in podocytes during experimental diabetic nephropathy. Stimulation of primary mouse podocytes with endothelin-1 elicited rapid calcium transients mediated by endothelin type A receptors (ETARs) and endothelin type B receptors (ETBRs). We then generated mice with a podocyte-specific double deletion of ETAR and ETBR (NPHS2-Cre×Ednralox/lox×Ednrblox/lox [Pod-ETRKO]). In vitro, treatment with endothelin-1 increased total β-catenin and phospho-NF-κB expression in wild-type glomeruli, but this effect was attenuated in Pod-ETRKO glomeruli. After streptozotocin injection to induce diabetes, wild-type mice developed mild diabetic nephropathy with microalbuminuria, mesangial matrix expansion, glomerular basement membrane thickening, and podocyte loss, whereas Pod-ETRKO mice presented less albuminuria and were completely protected from glomerulosclerosis and podocyte loss, even when uninephrectomized. Moreover, glomeruli from normal and diabetic Pod-ETRKO mice expressed substantially less total β-catenin and phospho-NF-κB compared with glomeruli from counterpart wild-type mice. This evidence suggests that endothelin-1 drives development of glomerulosclerosis and podocyte loss through direct activation of endothelin receptors and NF-κB and β-catenin pathways in podocytes. Notably, both the expression and function of the ETBR subtype were found to be important. Furthermore, these results indicate that activation of the endothelin-1 pathways selectively in podocytes mediates pathophysiologic crosstalk that influences mesangial architecture and sclerosis. PMID:24722437
Abrahamson, Dale R; St John, Patricia L; Isom, Kathryn; Robert, Barry; Miner, Jeffrey H
2007-08-01
Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.
Nezhad, Simin Torabi; Momeni, Babak; Basiratnia, Mitra
2010-09-01
Minimal change disease (MCD) and focal and segmental glomerulosclerosis (FSGS) are often studied together, because both present with heavy proteinuria and the nephrotic syndrome. The precise distinction between MCD and FSGS is sometimes difficult because of inadequate number of glomeruli for definite diagnosis. Some evidence suggests that markers of lipid peroxidation, such as malondialdehyde (MDA) is an index of free radical mediated injury and may be involved in the pathogenesis of FSGS. In this study, we assessed the immunoreactivity of MDA, the end product of lipid peroxidation in glomeruli of patients with idiopathic FSGS, MCD as well as normal controls (NC). Our results showed that the immunostaining level of MDA was significantly higher in patients with FSGS (mean = 1.5) than in either patients with MCD (mean = 0.16) or normal controls (mean = 0.11) with P value < 0.001. Glomerular MDA level correlated well with the degree of glomerulosclerosis in patients with idiopathic FSGS. Our data demonstrates that the glomerular level of MDA is higher in idiopathic FSGS than MCD. We suggest that MDA immunostaining can be helpful in differentiating between FSGS and MCD in problematic cases and when we do not have enough glomeruli for definite and correct diagnosis.
Dock and Pak regulate olfactory axon pathfinding in Drosophila.
Ang, Lay-Hong; Kim, Jenny; Stepensky, Vitaly; Hing, Huey
2003-04-01
The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.
Steenhard, Brooke M.; Vanacore, Roberto; Friedman, David; Zelenchuk, Adrian; Stroganova, Larysa; Isom, Kathryn; St. John, Patricia L.; Hudson, Billy G.; Abrahamson, Dale R.
2012-01-01
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM. PMID:23236390
Hsu, Yung-Chien; Lee, Pei-Hsien; Lei, Chen-Chou; Ho, Cheng; Shih, Ya-Hsueh; Lin, Chun-Liang
2015-01-01
Aims/Introduction The role of the renal nitric oxide (NO) system in the pathophysiology of diabetic nephropathy constitutes a very challenging and fertile field for future investigation. The purpose of the present study was to investigate whether NO donors can attenuate diabetic renal fibrosis and apoptosis through modulating oxidative-and nitrosative-stress, and Wnt signaling using in vivo diabetic models. Materials and Methods Diabetic rat was induced by a single intraperitoneal injection of streptozotocin. Rats in each group were intraperitoneally given 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (1 U/kg/day) and vehicle for 28 and 56 consecutive days. Expression of the oxidative-and nitrosative-stress, and Wnt signaling components were examined in kidneys from diabetic animals by quantitative reverse transcription polymerase chain reaction, western blot analysis and immunohistochemical staining. Results NO donor treatment significantly reduced the ratio of kidney weight to bodyweight and proteinuria. This treatment also significantly restored the suppressive effect of diabetes on urinary NO2 + NO3 levels. Immunohistochemistry showed that NO donor treatment significantly reduced transforming growth factor (TGF)-β1, fibronectin, cleaved caspase-3 and triphosphate-biotin nick end-labeling expression in the glomeruli of diabetic rats. We found that diabetes promoted 8-hydroxy-2′-deoxyguanosine, and peroxynitrite expression coincided with reduced endothelial NO synthase expression in glomeruli. Interestingly, NO donor treatment completely removed oxidative stress and nitrosative stress, and restored endothelial NO synthase expression in diabetic renal glomeruli. Immunohistomorphometry results showed that NO donor treatment significantly restored suppressed Wnt5a expression and β-catenin immunoreactivities in glomeruli. Based on laser-captured microdissection for quantitative reverse transcription polymerase chain reaction, diabetes significantly increased TGF-β1, and fibronectin expression coincided with depressed Wnt5a expression. NO donor treatment reduced TGF-β1, fibronectin activation, and the suppressing effect of diabetes on Wnt5a and β-catenin expression in renal glomeruli. Conclusions NO donor treatment alleviates extracellular matrix accumulation and apoptosis in diabetic nephropathy in vivo by not only preventing the diabetes-mediated oxidative and nitrostative stress, but also restoring downregulation of endothelial NO synthase expression and Wnt/β-catenin signaling. These findings suggest that modulation of NO is a viable alternative strategy for rescuing diabetic renal injury. PMID:25621130
Measurement of glomerulus diameter and Bowman's space width of renal albino rats.
Kotyk, Taras; Dey, Nilanjan; Ashour, Amira S; Balas-Timar, Dana; Chakraborty, Sayan; Ashour, Ahmed S; Tavares, João Manuel R S
2016-04-01
Glomerulus diameter and Bowman's space width in renal microscopic images indicate various diseases. Therefore, the detection of the renal corpuscle and related objects is a key step in histopathological evaluation of renal microscopic images. However, the task of automatic glomeruli detection is challenging due to their wide intensity variation, besides the inconsistency in terms of shape and size of the glomeruli in the renal corpuscle. Here, a novel solution is proposed which includes the Particles Analyzer technique based on median filter for morphological image processing to detect the renal corpuscle objects. Afterwards, the glomerulus diameter and Bowman's space width are measured. The solution was tested with a dataset of 21 rats' renal corpuscle images acquired using light microscope. The experimental results proved that the proposed solution can detect the renal corpuscle and its objects efficiently. As well as, the proposed solution has the ability to manage any input images assuring its robustness to the deformations of the glomeruli even with the glomerular hypertrophy cases. Also, the results reported significant difference between the control and affected (due to ingested additional daily dose (14.6mg) of fructose) groups in terms of glomerulus diameter (97.40±19.02μm and 177.03±54.48μm, respectively). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Predicting Outcome in Patients with Anti-GBM Glomerulonephritis.
van Daalen, Emma E; Jennette, J Charles; McAdoo, Stephen P; Pusey, Charles D; Alba, Marco A; Poulton, Caroline J; Wolterbeek, Ron; Nguyen, Tri Q; Goldschmeding, Roel; Alchi, Bassam; Griffiths, Meryl; de Zoysa, Janak R; Vincent, Beula; Bruijn, Jan A; Bajema, Ingeborg M
2018-01-06
Large studies on long-term kidney outcome in patients with anti-glomerular basement membrane (anti-GBM) GN are lacking. This study aimed to identify clinical and histopathologic parameters that predict kidney outcome in these patients. This retrospective analysis included a total of 123 patients with anti-GBM GN between 1986 and 2015 from six centers worldwide. Their kidney biopsy samples were classified according to the histopathologic classification for ANCA-associated GN. Clinical data such as details of treatment were retrieved from clinical records. The primary outcome parameter was the occurrence of ESRD. Kidney survival was analyzed using the log-rank test and Cox regression analyses. The 5-year kidney survival rate was 34%, with an improved rate observed among patients diagnosed after 2007 ( P =0.01). In patients with anti-GBM GN, histopathologic class and kidney survival were associated ( P <0.001). Only one of 15 patients with a focal class biopsy sample (≥50% normal glomeruli) developed ESRD. Patients with a sclerotic class biopsy sample (≥50% globally sclerotic glomeruli) and patients with 100% cellular crescents did not recover from dialysis dependency at presentation. In multivariable analysis, dialysis dependency at presentation (hazard ratio [HR], 3.17; 95% confidence interval [95% CI], 1.59 to 6.32), percentage of normal glomeruli (HR, 0.97; 95% CI, 0.95 to 0.99), and extent of interstitial infiltrate (HR, 2.02; 95% CI, 1.17 to 3.50) were predictors of ESRD during follow-up. Dialysis dependency, low percentage of normal glomeruli, and large extent of interstitial infiltrate are associated with poor kidney outcome in anti-GBM GN. Kidney outcome has improved during recent years; the success rate doubled after 2007. This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2017_11_21_CJASNPodcast_18_1_v.mp3. Copyright © 2018 by the American Society of Nephrology.
Gómez, C; Briñón, J G; Colado, M I; Orio, L; Vidal, M; Barbado, M V; Alonso, J R
2006-09-15
The lack of environmental olfactory stimulation produced by sensory deprivation causes significant changes in the deprived olfactory bulb. Olfactory transmission in the main olfactory bulb (MOB) is strongly modulated by centrifugal systems. The present report examines the effects of unilateral deprivation on the noradrenergic and cholinergic centrifugal systems innervating the MOB. The morphology, distribution, and density of positive axons were studied in the MOBs of control and deprived rats, using dopamine-beta-hydroxylase (DBH)-immunohistochemistry and acetylcholinesterase (AChE) histochemistry in serial sections. Catecholamine content was compared among the different groups of MOBs (control, contralateral, and ipsilateral to the deprivation) using high-performance liquid chromatography analysis. Sensory deprivation revealed that the noradrenergic system developed adaptive plastic changes after olfactory deprivation, including important modifications in its fiber density and distribution, while no differences in cholinergic innervation were observed under the same conditions. The noradrenergic system underwent an important alteration in the glomerular layer, in which some glomeruli showed a dense noradrenergic innervation that was not detected in control animals. The DBH-positive glomeruli with the highest noradrenergic fiber density were compared with AChE-stained sections and it was observed that the strongly noradrenergic-innervated glomeruli were always atypical glomeruli (characterized by their strong degree of cholinergic innervation). In addition to the morphological findings, our biochemical data revealed that olfactory deprivation caused a decrease in the content of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the ipsilateral MOB in comparison to the contralateral and control MOBs, together with an increase in noradrenaline levels in both the ipsilateral and contralateral MOBs. Our results show that regulation of the noradrenergic centrifugal system in the MOB depends on environmental olfactory stimulation and that it is highly reactive to sensory deprivation. By contrast, the cholinergic system is fairly stable and does not exhibit clear changes after the loss of sensory inputs.
Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.
Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun
2016-05-01
The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.
Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida
2010-01-01
Background Paired mushroom bodies, an unpaired central complex, and bilaterally arranged clusters of olfactory glomeruli are among the most distinctive components of arthropod neuroarchitecture. Mushroom body neuropils, unpaired midline neuropils, and olfactory glomeruli also occur in the brains of some polychaete annelids, showing varying degrees of morphological similarity to their arthropod counterparts. Attempts to elucidate the evolutionary origin of these neuropils and to deduce an ancestral ground pattern of annelid cerebral complexity are impeded by the incomplete knowledge of annelid phylogeny and by a lack of comparative neuroanatomical data for this group. The present account aims to provide new morphological data for a broad range of annelid taxa in order to trace the occurrence and variability of higher brain centers in segmented worms. Results Immunohistochemically stained preparations provide comparative neuroanatomical data for representatives from 22 annelid species. The most prominent neuropil structures to be encountered in the annelid brain are the paired mushroom bodies that occur in a number of polychaete taxa. Mushroom bodies can in some cases be demonstrated to be closely associated with clusters of spheroid neuropils reminiscent of arthropod olfactory glomeruli. Less distinctive subcompartments of the annelid brain are unpaired midline neuropils that bear a remote resemblance to similar components in the arthropod brain. The occurrence of higher brain centers such as mushroom bodies, olfactory glomeruli, and unpaired midline neuropils seems to be restricted to errant polychaetes. Conclusions The implications of an assumed homology between annelid and arthropod mushroom bodies are discussed in light of the 'new animal phylogeny'. It is concluded that the apparent homology of mushroom bodies in distantly related groups has to be interpreted as a plesiomorphy, pointing towards a considerably complex neuroarchitecture inherited from the last common ancestor, Urbilateria. Within the annelid radiation, the lack of mushroom bodies in certain groups is explained by widespread secondary reductions owing to selective pressures unfavorable for the differentiation of elaborate brains. Evolutionary pathways of mushroom body neuropils in errant polychaetes remain enigmatic. PMID:20441583
Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy
Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru
2014-01-01
We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438
2017-01-01
Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723
Aref'eva, A S; Dyban, P A; Krasil'shchikova, M S; Dobrucki, J W; Zatsepina, O V
2010-01-01
A characteristic feature of systemic autoimmune diseases along with appearance of autoantibodies targeting self-antigenes is deposition of immunoglobulins and components of the complement system in kidneys. However, mechanisms of the deposit formation and their cytotoxic effects still remain poorly studied. To elucidate these questions, we used SJL/J mice which are known to develop autoimmune process accompanied by the appearance of anti-fibrillarin antibodies following regular administrations of sublethal dozes of HgCl2. Using antibodies to the total murine ummunoglobulins we showed that immunodeposits were present in glomeruli of autoimmune and control (not-autoimmune) animals, but their intensity was directly correlated with the titer of anti-fibrillarin autoantibodies and was minimal in control mice. By confocal microscopy and conventional fluorescence microscopy it was defined that immunodeposits deeply penetrate glomeruli and are the most likely located within mesangial cells. In autoimmune animals, ummunoglobulins completely colocolized with the C3--component of complement, but not with the major autoantigen--the protein fibrillarin. We failed to determine the signs of cell proliferation or death in glomeruli. The most prominent difference between control and autoimmune mice was the presence if immunodeposits in renal blood vessels. These observations argue in favor of the idea that destructive and disfunctional renal lesions accompanying development of autoimmune diseases can be caused, in part, by accumulation of immunodeposits in blood vessels.
Application of Hanging Drop Technique for Kidney Tissue Culture.
Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng
2017-01-01
The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.
Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna
2014-06-01
Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Odors regulate Arc expression in neuronal ensembles engaged in odor processing.
Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C
2000-06-26
Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.
Topographic mapping--the olfactory system.
Imai, Takeshi; Sakano, Hitoshi; Vosshall, Leslie B
2010-08-01
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
21 CFR 866.5320 - Properdin factor B immuno-logical test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of the glomeruli of the kidney), lupus nephritis (kidney disease associated with a multisystem autoimmune disease, systemic lupus erythematosus), as well as several skin diseases, e.g., dermititis...
21 CFR 866.5320 - Properdin factor B immuno-logical test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... factor B aids in the diagnosis of several kidney diseases, e.g., chronic glomerulonephritis (inflammation of the glomeruli of the kidney), lupus nephritis (kidney disease associated with a multisystem...
Overexpression of Mafb in podocytes protects against diabetic nephropathy.
Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru
2014-11-01
We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. Copyright © 2014 by the American Society of Nephrology.
Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M
2007-08-01
Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.
Tay, S H; Blache, D; Gregg, K; Revell, D K
2012-11-01
Maternal nutrition during pregnancy can affect kidney development in the foetus, which may lead to adverse consequences in the mature kidney. It was expected that high-salt intake by pregnant ewes would lead to a reduction in foetal glomerular number but that the ovine kidney would adapt to maintain homoeostasis, in part by increasing the size of each glomerulus. Merino ewes that were fed either a control (1.5% NaCl) or high-salt (10.5% NaCl) diet during pregnancy, as well as their 5-month-old offspring, were subjected to a dietary salt challenge, and glomerular number and size and sodium excretion were measured. The high-salt offspring had 20% fewer glomeruli compared with the control offspring (P < 0.001), but they also had larger glomerular radii compared with the control offspring (P < 0.001). Consequently, the cross-sectional area of glomeruli was 18% larger in the high-salt offspring than in the control offspring (P < 0.05). There was no difference in the daily urinary sodium excretion between the two offspring groups (P > 0.05), although the high-salt offspring produced urine with a higher concentration of sodium. Our results demonstrated that maternal high-salt intake during pregnancy affected foetal nephrogenesis, altering glomerular number at birth. However, the ability to concentrate and excrete salt was not compromised, which indicates that the kidney was able to adapt to the reduction in the number of glomeruli.
Frasnelli, Elisa; Vinegoni, Claudio; Antolini, Renzo; Anfora, Gianfranco; Vallortigara, Giorgio; Haase, Albrecht
2011-01-01
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), has recently become a model for studying brain asymmetry among invertebrates. A strong lateralization favouring the right antenna was discovered in odour learning and short-term memory recall experiments, and a lateral shift favouring the left antenna for long-term memory recall. Corresponding morphological asymmetries have been found in the distribution of olfactory sensilla between the antennae and confirmed by electrophysiological odour response measurements in isolated right and left antennae. The aim of this study was to investigate whether a morphological asymmetry can be observed in the volume of the primary olfactory centres of the central nervous system, the antennal lobes (ALs). Precise volume measurements of a subset of their functional units, the glomeruli, were performed in both sides of the brain, exploiting the advantages of two-photon microscopy. This novel method allowed minimal invasive acquisition of volume images of the ALs, avoiding artefacts from brain extraction and dehydration. The study was completed by a series of behavioural experiments in which response asymmetry in odour recall following proboscis extension reflex conditioning was assessed for odours, chosen to stimulate strong activity in the same glomeruli as in the morphological study. The volumetric measurements found no evidence of lateralization in the investigated glomeruli within the experimental limits. Instead, in the behavioural experiments, a striking odour dependence of the lateralization was observed. The results are discussed on the basis of recent neurophysiological and ethological experiments in A. mellifera. PMID:21402106
... damage the glomeruli, including other kidney conditions , immune system problems, infections, or diseases like cancer and diabetes . In certain cases, an allergic reaction to food or a bee sting , the use of certain legal and illegal drugs, or morbid obesity can lead ...
Banerjee, Arkarup; Marbach, Fred; Anselmi, Francesca; Koh, Matthew S.; Davis, Martin B.; da Silva, Pedro Garcia; Delevich, Kristen; Oyibo, Hassana K.; Gupta, Priyanka; Li, Bo; Albeanu, Dinu F.
2015-01-01
Summary Odors elicit distributed activation of glomeruli in the olfactory bulb (OB). Crosstalk between co-active glomeruli has been proposed to perform a variety of computations, facilitating efficient extraction of sensory information by the cortex. Dopaminergic/GABAergic cells in the OB, which can be identified by their expression of the dopamine transporter (DAT), provide the earliest opportunity for such crosstalk. Here we show in mice that DAT+ cells carry concentration dependent odor signals and broadcast focal glomerular inputs throughout the OB to cause suppression of mitral/tufted (M/T) cell firing, an effect that is mediated by the external tufted (ET) cells coupled to DAT+ cells via chemical and electrical synapses. We find that DAT+ cells implement gain control and decorrelate odor representations in the M/T cell population. Our results further indicate that ET cells are gatekeepers of glomerular output and prime determinants of M/T responsiveness. PMID:26139373
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni
2006-01-01
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.
Bilateral renal dysplasia, nephroblastomatosis, and bronchial stenosis. A new syndrome?
Rodriguez, Maria Matilde; Correa-Medina, Mayrin; Whittington, Elizabeth E
2015-06-01
Bilateral nephroblastomatosis (NB) is an uncommon renal anomaly characterized by multiple confluent nephrogenic rests scattered through both kidneys, with only a limited number of cases reported in the medical literature. Some of these children may have associated either Perlman or Beckwith-Wiedemann syndrome and others do not demonstrate syndromic features. We report a full-term boy with anteverted nose, bilateral bronchial stenosis due to lack of cartilage, bilateral obstructive renal dysplasia and NB with glomeruloid features. The infant had visceromegaly, but neither gigantism nor hemihypertrophy. Immunohistochemistry for PAX2 (Paired box gene-2) and WT-1 (Wilms Tumor 1) were strongly positive in the areas of NB. GLEPP-1 (Glomerular Epithelial Protein) did not stain the areas of NB with a glomeruloid appearance, but was positive in the renal glomeruli as expected. We found neither associated bronchial stenosis nor the histology of NB resembling giant glomeruli in any of the reported cases of NB.
Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
Olsen, Shawn R; Wilson, Rachel I
2008-04-24
Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.
Human podocyte depletion in association with older age and hypertension.
Puelles, Victor G; Cullen-McEwen, Luise A; Taylor, Georgina E; Li, Jinhua; Hughson, Michael D; Kerr, Peter G; Hoy, Wendy E; Bertram, John F
2016-04-01
Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease. Copyright © 2016 the American Physiological Society.
Shen, Hung-Chang; Chu, Sao-Yu; Hsu, Tsai-Chi; Wang, Chun-Han; Lin, I-Ya; Yu, Hung-Hsiang
2017-04-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry.
Investigation of repeated vaccination as a possible cause of glomerular disease in mink.
Newman, Shelley Joy; Johnson, Roger; Sears, William; Wilcock, Brian
2002-07-01
The search for antigens capable of causing immune-complex-mediated glomerulonephritis continues. Modified live-virus vaccines commercially available for veterinary use are a possible source. In this study, repeated vaccination of mink with live-virus vaccines was investigated as a model for vaccine-induced glomerular injury. Three groups of 10-wk-old mink, 15 per group, were vaccinated once with 4-way vaccine against distemper, Pseudomonas aeruginosa infection, botulism and mink viral enteritis. Subsequently, all mink in each group each were vaccinated either with the 4-way vaccine, a monovalent canine distemper vaccine, or saline. Glomerular function was assessed at 2-wk intervals by determining the urinary protein:creatinine (P:C) ratio. Kidney sections taken at necropsy, 20 wk after the 1st vaccination, were examined by light and immunofluorescent microscopy for deposition of immunoglobulin and complement. There was no statistically significant difference between the treated and control groups based on average urinary P:C ratio medians. Light microscopic changes were detected in glomeruli, but Fisher's exact test showed no significant differences between any of the treatment groups. Deposition of immunoglobulin but not complement was significantly more frequent (P < 0.05) in the glomeruli of animals that received multiple injections of the 4-way vaccine than in the glomeruli of those given only the monovalent canine distemper vaccine or saline. These findings suggest that repeated vaccination may increase the glomerular deposition of immunoglobulin. Further studies are required to determine if the increased deposition of immunoglobulin contributes to the development of glomerular damage and to identify the antigens driving production of the deposited immunoglobulin.
Hoy, Wendy E; Hughson, Michael D; Diouf, Boucar; Zimanyi, Monika; Samuel, Terence; McNamara, Bridgette J; Douglas-Denton, Rebecca N; Holden, Libby; Mott, Susan A; Bertram, John F
2011-01-01
We have demonstrated considerable variability in the volumes of different glomeruli in given individuals (individual glomerular volume: IGV) in a stereologic study of kidneys at forensic autopsy performed to investigate sudden or unexpected death in people without manifest kidney disease. We review some important associations of IGV by subject characteristics and by ethnic groups. IGVs were measured by the Cavalieri method in 30 glomeruli in each of 111 adult males who belonged to 4 ethnic groups, i.e. US Whites, African-Americans, Africans from Senegal, and Australian Aborigines. Correlations of pooled IGV values with certain subject characteristics were evaluated in the US Whites. Pooled IGV data were compared in subjects across the 4 ethnic groups. In US Whites, mean IGV and its variance were greater with higher age, lower nephron number, lower birth weight, and with gross obesity, hypertension and cardiovascular death. In comparisons by ethnic group, mean IGV and IGV ranges were higher in African-Americans and Australian Aborigines than in US Whites and African Senegalese subjects. We conclude that glomerular enlargement with volume heterogeneity marks more advanced age, relative nephron deficiency, lower birth weight, obesity, hypertension, and advanced cardiovascular disease. The findings in African-Americans and Australian Aborigines suggest that larger IGVs and volume heterogeneity might mark populations with accentuated susceptibility to hypertension and kidney disease, but the data need to be further examined in the context of the determining characteristics defined in the US Whites. Copyright © 2011 S. Karger AG, Basel.
Zinc deficiency during growth: influence on renal function and morphology.
Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa
2007-03-13
This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.
The glial investment of the adult and developing antennal lobe of Drosophila
Oland, Lynne A.; Biebelhausen, John P.; Tolbert, Leslie P.
2009-01-01
In recent years, the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here, we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors. PMID:18537134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, M.; Rose, L.M.; Hochmann, A.
1982-05-01
We investigated the possible role of idiotypic interactions in the pathogenesis of the glomerular lesions observed in mice undergoing polyclonal B cell activation. BALB/c mice were studied for the presence of renal deposits of T15 idiotype-anti-T15 idiotype-immune complexes (IC) after injection of bacterial lipopolysaccharides (LPS). The T15 idiotype is the major idiotype of BALB/c mice anti-phosphorylcholine (PC) antibodies, which are cross-reactive with the idiotype of the TEPC-15 myeloma protein. This model was used because T15 idiotype-anti-T15 idiotype IC have been detected in the circulation of BALB/c mice after polyclonal B cell activation. First, an idiotype-specific immunofluorescence technique allowed us tomore » detect T15 idiotype-bearing immunoglobulins in glomeruli from day 6 to day 28 after LPS injection. Second, fluorescein isothiocyanate-conjugated TEPC-15 myeloma protein was found to localize in the glomeruli after in vivo injection 18 d after LPS administration. This renal localization was shown to be idiotype-specific and could be quantified in a trace-labeling experiment. Third, kidney-deposited immunoglobulins of mice injected with LPS were eluted, radiolabeled, and analyzed by radioimmunoassay. Both T15 idiotype-bearing immunoglobulins and anti-T15 idiotype antibodies were detected in the eluates, providing further evidence for a renal deposition of T15 idiotype-anti-T15 idiotype IC. Polyclonal B cell activation is likely to result in a simultaneous triggering of many idiotypic clones and of corresponding anti-idiotypic clones represented in the B cell repertoire. This could lead to the formation of a variety of idiotype-anti-idiotype IC that could participate in the development of glomerular lesions.« less
Ding, Fangrui; Wickman, Larysa; Wang, Su Q; Zhang, Yanqin; Wang, Fang; Afshinnia, Farsad; Hodgin, Jeffrey; Ding, Jie; Wiggins, Roger C
2017-12-01
Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach
Katsoulieris, Elias N.; Drossopoulou, Garyfalia I.; Kotsopoulou, Eleni S.; Vlahakos, Dimitrios V.; Lianos, Elias A.; Tsilibary, Effie C.
2016-01-01
Objective Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy. PMID:27434075
Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto
2016-01-01
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects. PMID:27494326
Tominaga, Tatsuya; Abe, Hideharu; Ueda, Otoya; Goto, Chisato; Nakahara, Kunihiko; Murakami, Taichi; Matsubara, Takeshi; Mima, Akira; Nagai, Kojiro; Araoka, Toshikazu; Kishi, Seiji; Fukushima, Naoshi; Jishage, Kou-ichi; Doi, Toshio
2011-01-01
Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN. PMID:21471216
Geraci, Stefania; Chacon-Caldera, Jorge; Cullen-McEwen, Luise; Schad, Lothar R; Sticht, Carsten; Puelles, Victor G; Bertram, John F; Gretz, Norbert
2017-09-01
Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life ( t 1/2 ) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes. Copyright © 2017 the American Physiological Society.
Atsaves, Vassilios; Makri, Panagiota; Detsika, Maria G; Tsirogianni, Alexandra; Lianos, Elias A
2016-01-01
Induction of heme oxygenase 1 (HO-1) in glomerular epithelial cells (GEC) in response to injury is poor and this may be a disadvantage. We, therefore, explored whether HO-1 overexpression in GEC can reduce proteinuria induced by puromycin aminonucleoside (PAN) or in anti-glomerular basement membrane (GBM) antibody (Ab)-mediated glomerulonephritis (GN). HO-1 overexpression in GEC (GECHO-1) of Sprague-Dawley rats was achieved by targeting a FLAG-human (h) HO-1 using transposon-mediated transgenesis. Direct GEC injury was induced by a single injection of PAN. GN was induced by administration of an anti-rat GBM Ab and macrophage infiltration in glomeruli was assessed by immunohistochemistry and western blot analysis, which was also used to assess glomerular nephrin expression. In GECHO-1 rats, FLAG-hHO-1 transprotein was co-immunolocalized with nephrin. Baseline glomerular HO-1 protein levels were higher in GECHO-1 compared to wild type (WT) rats. Administration of either PAN or anti-GBM Ab to WT rats increased glomerular HO-1 levels. Nephrin expression markedly decreased in glomeruli of WT or GECHO-1 rats treated with PAN. In anti-GBM Ab-treated WT rats, nephrin expression also decreased. In contrast, it was preserved in anti-GBM Ab-treated GECHO-1 rats. In these, macrophage infiltration in glomeruli and the ratio of urine albumin to urine creatinine (Ualb/Ucreat) were markedly reduced. There was no difference in Ualb/Ucreat between WT and GECHO-1 rats treated with PAN. Depending on the type of injury, HO-1 overexpression in GEC may or may not reduce proteinuria. Reduced macrophage infiltration and preservation of nephrin expression are putative mechanisms underlying the protective effect of HO-1 overexpression following immune injury. © 2016 S. Karger AG, Basel.
Anomalous Extracellular Diffusion in Rat Cerebellum
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-01-01
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. PMID:25954895
Inaga, Sumire; Kato, Masako; Hirashima, Sayuri; Munemura, Chishio; Okada, Sinichi; Kameie, Toshio; Katsumoto, Tetsuo; Nakane, Hironobu; Tanaka, Keiichi; Hayashi, Kazuhiko; Naguro, Tomonori
2010-01-01
Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.
Chu, Sao-Yu; Wang, Chun-Han; Lin, I-Ya
2017-01-01
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts. Here, by examining a previously explored transmembrane protein Semaphorin-1a (Sema-1a) which was proposed to globally control initial PN dendritic targeting along the dorsolateral-to-ventromedial axis of the AL, we discover a new role for Sema-1a in preventing dendrites of both uni-glomerular and poly-glomerular PNs from aberrant invasion into select AL regions and, intriguingly, this Sema-1a-deficient dendritic mis-targeting phenotype seems to associate with the origins of PNs from which they are derived. Further, ectopic expression of Sema-1a resulted in PN dendritic mis-projection from a select AL region into adjacent glomeruli, strengthening the idea that Sema-1a plays an essential role in preventing abnormal dendritic accumulation in select AL regions. Taken together, these results demonstrate that Sema-1a repulsion keeps dendrites of different types of PNs away from each other, enabling the same types of PN dendrites to be sorted into destined AL glomeruli and permitting for functional assembly of olfactory circuitry. PMID:28448523
Acute Oral Toxicity of DIGL-RP Solid Propellant in Sprague-Dawley Rats
1989-11-30
protein droplet and cast formation, glomeruli and cortical tubules Liver--diffuse vacuolation Stomach--multifocal, acute, necrotizing gastritis ...The choice of tissues examined histologically was biased by gross evaluation. Indications of renal protein loss were noted in five animals (casts and
Modeling of Spatial and Temporal Dynamics in Biological Olfactory Systems
2007-09-21
odorants were anisole, camphor , isoamyle acetate, and ilmonene, denoted by ANI, CAM, ISO, and LIM, respectively. The curve fitting resulted in the...much less dimensional connections to the mitral The investigated odorants were anisole (ANI), camphor (CAM), cells. The glomeruli are also highly
In vivo imaging of leukocyte recruitment to glomeruli in mice using intravital microscopy.
Kitching, A Richard; Kuligowski, Michael P; Hickey, Michael J
2009-01-01
Leukocytes mediate some forms of glomerulonephritis, particularly severe proliferative and crescentic forms. The renal glomerulus is one of the few sites within the microvasculature in which leukocyte recruitment occurs in capillaries. However, due to the difficulty of directly visualising the glomerulus, the mechanisms of leukocyte recruitment to glomerular capillaries are poorly understood. To overcome this, a murine kidney can be rendered hydronephrotic, by ligating one ureter, and allowing the mouse to rest for 12 weeks. This allows the visualisation of the glomerular microvasculature during inflammatory responses. In inflammation, in this example induced by anti-glomerular basement membrane (GBM) antibody, leukocytes can be observed undergoing adhesion in glomerular capillaries using intravital microscopy. Leukocyte adhesion can be quantitated using this approach. An observation protocol involving few, limited periods of epifluorescence avoids phototoxicity-induced leukocyte recruitment. The process of hydronephrosis does not alter the ability of anti-GBM-antibody to induce a glomerular inflammatory response. This approach allows detailed investigation of the mechanisms of leukocyte recruitment within glomeruli.
Balseiro, Ana; Dalton, Kevin P; del Cerro, Ana; Márquez, Isabel; Parra, Francisco; Prieto, José M; Casais, R
2010-11-01
This report describes the isolation and characterisation of the common midwife toad virus (CMTV) from juvenile alpine newts (Mesotriton alpestris cyreni) and common midwife toad (CMT) tadpoles (Alytes obstetricans) in the Picos de Europa National Park in Northern Spain in August 2008. A comparative pathological and immunohistochemical study was carried out using anti-CMTV polyclonal serum. In the kidneys, glomeruli had the most severe histological lesions in CMT tadpoles, while both glomeruli and renal tubular epithelial cells exhibited foci of necrosis in juvenile alpine newts. Viral antigens were detected by immunohistochemical labelling mainly in the kidneys of CMT tadpoles and in ganglia of juvenile alpine newts. This is the first report of ranavirus infection in the alpine newt, the second known species to be affected by CMTV in the past 2 years. Copyright © 2009 Elsevier Ltd. All rights reserved.
Dhawale, Ashesh K.; Hagiwara, Akari; Bhalla, Upinder S.; Murthy, Venkatesh N.; Albeanu, Dinu F.
2011-01-01
Sensory inputs frequently converge on the brain in a spatially organized manner, often with overlapping inputs to multiple target neurons. Whether the responses of target neurons with common inputs become decorrelated depends on the contribution of local circuit interactions. We addressed this issue in the olfactory system using newly generated transgenic mice expressing channelrhodopsin-2 in all olfactory sensory neurons. By selectively stimulating individual glomeruli with light, we identified mitral/tufted (M/T) cells that receive common input (sister cells). Sister M/T cells had highly correlated responses to odors as measured by average spike rates, but their spike timing in relation to respiration was differentially altered. In contrast, non-sister M/T cells correlated poorly on both these measures. We suggest that sister M/T cells carry two different channels of information: average activity representing shared glomerular input, and phase-specific information that refines odor representations and is substantially independent for sister M/T cells. PMID:20953197
Hed, J; Eneström, S
1981-01-01
Formalin is known to mask the antigenicity of immune deposits in glomeruli but not of surface immunoglobulins of isolated lymphocytes. We have shown in mice with experimental passive anti-GBM glomerulonephritis that formalin masks the antigenicity of GBM-bound immunoglobulins only if the tissue is fixed before sectioning. The presence of a high concentration of normal bovine serum during fixation of cryostat sections masks the antigenicity of immune deposits, whereas formalin alone has no obvious effect. The same results were obtained with human immunoglobulins (IgG, IgM and IgA) bound to tissue sections. Protease treatment with pepsin and trypsin restored the ability of the immunoglobulins to be stained. The masking effect seems to be due to extensive cross-linking of environmental proteins which prevents fluorescent conjugates reaching their antigens. Methods for detecting immunoglobulins in tissues must, therefore, take into consideration the influence of fixatives not only on epitopes but also on the environment in which the antigenic determinants are localised.
Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli
Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...
Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli
Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...
Onizuka, Miho; Hoang, Huu; Kawato, Mitsuo; Tokuda, Isao T; Schweighofer, Nicolas; Katori, Yuichi; Aihara, Kazuyuki; Lang, Eric J; Toyama, Keisuke
2013-11-01
The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency to display such activity patterns is enhanced or reduced by the local administration of the GABA-A receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory (gi) and gap-junctional conductance (gc) using an IO network model. This model was built upon a prior IO network model, in which the individual neurons consisted of soma and dendritic compartments, by adding a glomerular compartment comprising electrically coupled spines that received inhibitory synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions for comparison with experimental data consisting of multi-electrode recordings of complex spikes from arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the experimental and simulation spike data were evaluated as feature vectors, including firing rates, local variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the inverse problem such that the simulation and experimental spike data were closely matched in the PCA space. The goodness of the match was confirmed by an analysis of variance (ANOVA) of the PCA scores between the experimental and simulation spike data. In the PIX condition, gi was found to decrease to approximately half its control value. CBX caused an approximately 30% decrease in gc from control levels. These results support the hypothesis that the glomeruli are control points for determining the spatiotemporal characteristics of olivocerebellar activity and thus may shape its ability to convey signals to the cerebellum that may be used for motor learning or motor control purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Shiga toxins (Stxs) produced by Shiga toxin-producing Escherichia coli (STEC) are considered as the main causative agent, leading to the development of the hemolytic uremic syndrome (HUS); these toxins injure endothelial cells mainly the glomeruli. After passing through the intestinal wall, Stxs hav...
Neonicotinoid-induced impairment of odour coding in the honeybee
Andrione, Mara; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht
2016-01-01
Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level the representations of different odours are no longer separated. This demonstrates that, under neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination ability of the honey bees. PMID:27905515
Functional neuroanatomy of the rhinophore of Archidoris pseudoargus
NASA Astrophysics Data System (ADS)
Wertz, Adrian; Rössler, Wolfgang; Obermayer, Malu; Bickmeyer, Ulf
2007-06-01
For sea slugs, chemosensory information represents an important sensory modality, because optical and acoustical information are limited. In the present study, we focussed on the neuroanatomy of the rhinophores and processing of olfactory stimuli in the rhinophore ganglion of Archidoris pseudoargus, belonging to the order of Nudibranchia in the subclass of Opisthobranchia. Histological techniques, fluorescent markers, and immunohistochemistry were used to analyse neuroanatomical features of the rhinophore. A large ganglion and a prominent central lymphatic channel are surrounded by longitudinal muscles. Many serotonin-immunoreactive (IR) processes were found around the centre and between the ganglion and the highly folded lobes of the rhinophore, but serotonin-IR cell bodies were absent inside the rhinophore. In contrast to the conditions recently found in Aplysia punctata, we found no evidence for the presence of olfactory glomeruli within the rhinophore. Using calcium-imaging techniques with Fura II as a calcium indicator, we found differential calcium responses in various regions within the ganglion to stimulation of the rhinophore with different amino acids. The lack of glomeruli in the rhinophores induces functional questions about processing of chemical information in the rhinophore.
Renal receptors for atrial and C-type natriuretic peptides in the rat.
Brown, J; Zuo, Z
1992-07-01
Receptors for alpha-atrial natriuretic peptide (alpha-ANP) and C-type natriuretic peptide [CNP-(1-22)] were quantified in kidneys from adult Wistar rats by in vitro autoradiography. 125I-labeled alpha-ANP (100 pM) bound reversibly to glomeruli, outer medullary vasa recta, and inner medulla with an apparent dissociation constant (Kd) of 3-6 nM. The presence of 10 microM des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4- 23) (C-ANP), a specific ligand of the ANPR-C subtype of alpha-ANP receptor, inhibited approximately 50% of the glomerular binding of 125I-alpha-ANP, and this moiety of glomerular binding was also inhibited by CNP-(1-22) with an apparent inhibitory constant (Ki) of 10.47 +/- 7.59 nM. C-ANP and CNP-(1-22) showed little affinity for the medullary binding sites of alpha-ANP. 125I-[Tyr0]CNP-(1-22) (110 pM) bound solely to glomeruli and was competitively displaced by increasing concentrations of [Tyr0]CNP-(1-22) with an apparent Kd of 1.42 +/- 0.48 nM. Binding of increasing concentrations (25 pM to 1 nM) of 125I-[Tyr0]CNP-(1-22) in the presence or absence of 1 microM [Tyr0]CNP-(1-22) also demonstrated a high affinity (Kd of 0.41 +/- 0.07 nM) for the glomerular binding of 125I-[Tyr0]CNP-(1-22). Bound 125I-[Tyr0]CNP-(1-22) could be displaced by excess alpha-ANP and excess CNP-(1-22), both with high affinities. The glomerular binding of 125I-[Tyr0]CNP-(1-22) was also prevented by 10 microM C-ANP. Guanosine 3',5'-cyclic monophosphate produced by isolated glomeruli was measured by radioimmunoassay.(ABSTRACT TRUNCATED AT 250 WORDS)
JC, Velez; KJ, Ryan; CE, Harbeson; AM, Bland; MN, Budisavljevic; JM, Arthur; WR, Fitzgibbon; JR, Raymond; MG, Janech
2009-01-01
Intraglomerular renin-angiotensin system (RAS) enzyme activities have been examined previously using glomerular lysates and immune-based assays. However, preparation of glomerular extracts compromises the integrity of their anatomic architecture. In addition, antibody-based assays focus on angiotensin (ANG)-II detection, ignoring the generation of other ANG-I-derived metabolites, some of which may cross-react with ANG-II. Therefore, our aim was to examine the metabolism of ANG-I in freshly isolated intact glomeruli using MALDI-TOF mass spectrometry (MS) as an analytical method. Glomeruli from male Sprague-Dawley rats were isolated by sieving and incubated in Krebs buffer in the presence of 1 μM ANG-I for 15 - 90 minutes, with or without various peptidase inhibitors. Peptide sequences were confirmed by MALDI-TOF MS/MS or linear-trap-quadrupole MS. Peaks were quantified using customized valine-13C.15N-labeled peptides as standards. The most prominent peaks resulting from ANG-I cleavage were 899 and 1181 m/z, corresponding to ANG-1-7 and ANG-2-10, respectively. Smaller peaks for ANG-II, ANG-1-9 and ANG-3-10 also were detected. The disappearance of ANG-I was significantly reduced during inhibition of aminopeptidase-A or neprilysin. In contrast, captopril did not alter ANG-I degradation. Furthermore, during simultaneous inhibition of aminopeptidase-A and neprilysin, the disappearance of ANG-I was markedly attenuated compared to all other conditions. These results suggest that there is prominent intraglomerular conversion of ANG-I to ANG-2-10 and ANG-1-7, mediated by aminopeptidase-A and neprilysin, respectively. Formation of these alternative ANG peptides may be critical to counterbalance the local actions of ANG-II. Enhancement of these enzymatic activities may constitute potential therapeutic targets for ANG-II mediated glomerular diseases. PMID:19289651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.
1989-06-01
An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organmore » uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.« less
Sinakevitch, Irina T.; Smith, Adrian N.; Locatelli, Fernando; Huerta, Ramon; Bazhenov, Maxim; Smith, Brian H.
2013-01-01
Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. PMID:24187534
Renal expression of aminopeptidase A in rats with two-kidney, one-clip hypertension.
Wolf, G; Wenzel, U; Assmann, K J; Stahl, R A
2000-12-01
Angiotensin II (ANG II) is a major factor involved in the progression of chronic renal disease. Although the generation of this vasoactive peptide has been investigated in great detail, only a few studies have hitherto addressed the metabolism of ANG II into fragments such as angiotensin III and IV (ANG III, IV) which may exert physiological effects independent of ANG II. Aminopeptidase A (APA) is the major enzyme degrading ANG II. The aim of the current study was to evaluate glomerular APA expression in rats with two-kidney, one-clip hypertension. The left renal artery was restricted with a 0.2-mm silver clip. Kidneys were harvested 1 and 4 weeks after surgery. APA enzyme and protein expression was evaluated in kidney sections. Total APA enzyme activity and mRNA expression was assessed in isolated glomeruli. Degradation of exogenous ANG II by isolated glomeruli was measured with reverse-phase high-performance liquid chromatography. APA enzyme activity, protein, and mRNA expression were stimulated in the clipped kidney 1 week after surgery compared with the contralateral kidney or normal controls. In contrast, 4 weeks after clipping APA activity and expression was higher in the contralateral kidney. In parallel to these findings, degradation of ANG II was greatest in isolated glomeruli obtained from the clipped kidney after 1 week. However, preparations from the contralateral kidney 4 weeks after surgery were more active in the metabolism of exogenous ANG II. The present study provides evidence that APA is complexly regulated in in vivo situations with an activated local renin-ANG II system. ANG II appears to play a direct role in this regulation. However, since conversion of ANG II to ANG III by APA is the initial step leading to the formation of ANG IV which may exert detrimental effects not mediated through classical ANG II receptors, a local increase in APA activity may contribute to the progression of chronic renal disease even during complete AT(1)-receptor blockade.
Anomalous extracellular diffusion in rat cerebellum.
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-05-05
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Macrophage in the Development of Experimental Crescentic Glomerulonephritis
Thomson, Napier M.; Holdsworth, Stephen R.; Glasgow, Eric F.; Atkins, Robert C.
1979-01-01
The role played by the macrophage in the development of injury in rabbit nephrotoxic nephritis (NTN) has been assessed by electron microscopy and glomerular culture of renal tissue obtained by several biopsies during the course of the disease. These observations have been correlated with the other immune, cellular, and biochemical events occurring in the glomerulus, ie, deposition of immunoglobulin and complement, proteinuria, polymorphonuclear leukocyte (PMN) exudation, fibrin deposition, crescent formation, and renal failure. A biphasic macrophage accumulation was detected, corresponding to the heterologous and autologous phases of the disease. In the autologous or crescentic phase, macrophages accumulated within the glomerular tuft from Day 5; their appearance coincided with the accumulation of PMN and development of proteinuria. Fibrin deposition in Bowman's space, which commenced on Days 6 and 7, was rapidly followed by the migration of macrophages from the glomeruli into Bowman's space. Within Bowman's space, macrophages were observed to phagocytose fibrin, transform into epithelioid and giant cells, and accumulate to form a substantial proportion of the cells forming the crescent. The inflammatory process of PMN exudation, macrophage accumulation, fibrin deposition, and crescent formation and the degree of renal failure reached a maximum by Days 12 to 14. Thereafter, resolution of the inflammatory process occurred so that by Day 40 macrophages had disappeared from the glomeruli. However, varying degrees of glomerular damage and renal failure persisted, occurring largely as a result of glomerulosclerosis and sclerosis of crescents. The tissue culture studies also demonstrated mesangial cell proliferation during the inflammatory process but did not show any abnormality of epithelial cell activity. This study demonstrates that the macrophages participate in NTN by accumulating in damaged glomeruli then migrating into Bowman's space (probably in response to fibrin deposition) where they undergo granulomatous transformation and accumulate, contributing to crescent formation. ImagesFigure 2Figure 3Figure 4Figure 1 PMID:371409
Tian, Jihua; Wang, Yanhong; Guo, Haixiu; Li, Rongshan
2015-12-01
IgA nephropathy (IgAN) is one of the most frequent forms of glomerulonephritis, and 20 to 40% of patients progress to end-stage renal disease (ESRD) within 20 years of disease onset. However, little is known about the molecular pathways involved in the altered physiology of mesangial cells during IgAN progression. This study was designed to explore the role of mTOR signaling and the potential of targeted rapamycin therapy in a rat model of IgAN. After establishing an IgA nephropathy model, the rats were randomly divided into four groups: control, control+rapamycin, IgAN and IgA+rapamycin. Western blotting and immunohistochemistry were performed to determine phospho-Akt, p70S6K and S6 protein levels. Coomassie Brilliant Blue was utilized to measure 24-h urinary protein levels. The biochemical parameters of the rats were analyzed with an autoanalyzer. To evaluate IgA deposition in the glomeruli, FITC-conjugated goat anti-rat IgA antibody was used for direct immunofluorescence. Cellular proliferation and the mesangial matrix in glomeruli were assayed via histological and morphometric procedures. Our results showed that p70S6K, S6 and Akt phosphorylation were significantly upregulated in IgAN rats, and rapamycin effectively inhibited p70S6K and S6 phosphorylation. A low dose of the mTOR inhibitor rapamycin reduced proteinuria, inhibited IgA deposition, and protected kidney function in an IgAN rat model. Low-dose rapamycin treatment corresponded to significantly lower cellular proliferation rates and a decreased mesangial matrix in the glomeruli. In conclusion, the Akt/mTOR/p70S6K pathway was activated in IgAN, and our findings suggested that rapamycin may represent a viable option for the treatment of IgAN. Copyright © 2015 Elsevier Inc. All rights reserved.
Tremblay, J; Huot, C; Willenbrock, R C; Bayard, F; Gossard, F; Fujio, N; Koch, C; Kuchel, O; Debinski, W; Hamet, P
1993-11-01
Atrial natriuretic peptide (ANP) specifically stimulates particulate guanylate cyclase, and cyclic guanosine monophosphate (cGMP) has been recognized as its second messenger. Spontaneously hypertensive rats (SHR) have elevated plasma ANP levels, but manifest an exaggerated natriuretic and diuretic response to exogenous ANP when compared to normotensive strains. In isolated glomeruli, the maximal cGMP response to ANP corresponds to a 12- to 14-fold increase over basal levels in normotensive strains (Wistar 13 +/- 2; Wistar-Kyoto 12 +/- 2; Sprague-Dawley 14 +/- 2) while a maximal 33 +/- 3-fold elevation occurs in SHR (P < 0.001). This hyperresponsiveness of cGMP is reproducible in intact glomeruli from SHR from various commercial sources. Furthermore, this abnormality develops early in life, even before hypertension is clearly established, and persists despite pharmacological modulation of blood pressure, indicating that it is a primary event in hypertension. In vitro studies have revealed a higher particulate guanylate cyclase activity in membranes from glomeruli and other tissues from SHR. This increase is not accounted for by different patterns of ANP binding to its receptor subtypes between normotensive and hypertensive strains, as assessed by competitive displacement with C-ANP102-121, an analog which selectively binds to one ANP receptor subtype. The hyperactivity of particulate guanylate cyclase in SHR and its behavior under basal, ligand (ANP), and detergent-enhanced conditions could be attributed either to increased expression or augmented sensitivity of the enzyme. Radiation-inactivation analysis does not evoke a disturbance in the size of regulatory elements normally repressing enzymatic activity, while the expression of particulate guanylate cyclase gene using mutated standard of A- and B-receptors partial cDNAs, quantified by polymerase chain reaction (PCR) transcript titration assay, manifests a selective increase of one guanylate cyclase subtype. Our data suggest that in hypertension, genetic overexpression of the ANP A-receptor subtype is related to the exaggerated biological response to ANP in this disease.
USDA-ARS?s Scientific Manuscript database
Aim: Shiga toxins, Stx-1 and Stx-2, by injuring endothelial cells mainly of the glomeruli, are considered as the cause of D+HUS. After passing through the intestinal wall, Stxs have to be delivered via the systemic circulation to the target organs. This study was aimed at measuring free Stx-2 in ser...
Optic Glomeruli: Biological Circuits that Compute Target Identity
2013-11-01
vitripennis. Insect Mol. Biol. Suppl. 1:121-36. Strausfeld NJ. 2012. Arthropod Brains. Evolution , Functional Elegance and Historical Significance. Harvard...Neuroscience and Center for Insect Science University of Arizona Tucson, AZ 85721 Contract No. FA8651-10-1-0001 November 2013 FINAL REPORT...PERFORMING ORGANIZATION REPORT NUMBER Department of Neuroscience and Center for Insect Science University of Arizona Tucson, AZ 85721
Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation
Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart
2012-01-01
Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596
Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.
Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela
2007-01-01
The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.
Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele
2016-01-01
The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.
Zhang, Danke; Li, Yuanqing; Wu, Si; Rasch, Malte J.
2013-01-01
Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (“sister cells”) found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time. PMID:24167488
Chen, S; Bacon, K B; Li, L; Garcia, G E; Xia, Y; Lo, D; Thompson, D A; Siani, M A; Yamamoto, T; Harrison, J K; Feng, L
1998-07-06
Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds.
Oizumi, Masafumi; Satoh, Ryota; Kazama, Hokto; Okada, Masato
2012-01-01
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts "pre"-synaptically rather than "post"-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates "pre"-synaptically but not "post"-synaptically in the Drosophila antennal lobe.
Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M.; Ma, Minghong
2006-01-01
A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli. PMID:16446455
Grosmaitre, Xavier; Vassalli, Anne; Mombaerts, Peter; Shepherd, Gordon M; Ma, Minghong
2006-02-07
A glomerulus in the mammalian olfactory bulb receives axonal inputs from olfactory sensory neurons (OSNs) that express the same odorant receptor (OR). Glomeruli are generally thought to represent functional units of olfactory coding, but there are no data on the electrophysiological properties of OSNs that express the same endogenous OR. Here, using patch clamp recordings in an intact epithelial preparation, we directly measured the transduction currents and receptor potentials from the dendritic knobs of mouse OSNs that express the odorant receptor MOR23 along with the green fluorescent protein. All of the 53 cells examined responded to lyral, a known ligand for MOR23. There were profound differences in response kinetics, particularly in the deactivation phase. The cells were very sensitive to lyral, with some cells responding to as little as 10 nM. The dynamic range was unexpectedly broad, with threshold and saturation in individual cells often covering three log units of lyral concentration. The potential causes and biological significance of this cellular heterogeneity are discussed. Patch clamp recording from OSNs that express a defined OR provides a powerful approach to investigate the sensory inputs to individual glomeruli.
Wang, M S; Kurokawa, K
1981-11-05
Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.
Lakshmanan, Hariprasath; Raman, Jegadeesh; Pandian, Arjun; Kuppamuthu, Kumaresan; Nanjian, Raaman; Sabaratam, Vikineswary; Naidu, Murali
2016-08-01
Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P < 0.05) in serum uric acid, creatinine, aspartate transaminase (AST) and alanine transaminase (ALP) levels. Histological examination of liver showed mild mononuclear infiltration in the portal trait, enlarged nucleus around the central vein and mild loss of hepatocyte architecture in rats treated with 750 mg/kg of AESC. Histological examination of kidney showed focal interstitial fibrosis, crowding of glomeruli and mild hydropic change with hypercellular glomeruli in rats treated with 750 mg/kg of AESC. However, no remarkable histoarchitectural change in hepatocytes and glomeruli were observed in rats treated with lower concentrations (250 and 500 mg/kg b.w.) of AESC compared to control group animals. The no-observed adverse effect level (NOAEL) of AESC in the present study was 500 mg/kg b.w. Signs of toxic effects are evident from the current study. Although AESC contains low concentrations of PA, findings from this study suggest that regular consumers of herbal remedies derived from this plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use in traditional medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
The method for glomerulations detection in histological images of prostate
NASA Astrophysics Data System (ADS)
Zavarzin, A. A.; Pronichev, A. N.; Rodionova, O. V.; Komochkina, E. A.; Prilepskaya, E. A.; Kovylina, M. V.
2018-01-01
In the work presented, a method for detecting glomeruli in pictures of histological preparations of the prostate gland is described, the presence of which indicates a malignant neoplasm. Pathological structures at the level of microimages are investigated. The developed method is the result of joint activity of the National Research Nuclear University "MEPhI" and the Moscow State Medical and Stomatological University named after A.I. Evdokimova.
Ding, Yanfeng; Stidham, Rhesa; Bumeister, Ron; Trevino, Isaac; Winters, Ali; Sprouse, Marc; Ding, Min; Ferguson, Deborah A.; Meyer, Colin J.; Wigley, W. Christian; Ma, Rong
2012-01-01
Bardoxolone methyl, a synthetic triterpenoid, improves the estimated glomerular filtration rate (GFR) in patients with chornic kidney disease and type 2 diabetes. Since the contractile activity of mesangial cells may influence glomerular filtration, we evaluated the effect of the synthetic triterpenoid RTA405 with structural similarity to bardoxolone methyl, on GFR in rats and on mesangial cell contractility in freshly isolated glomeruli. In rats, RTA 405 increased basal GFR, assessed by inulin clearance, and attenuated the angiotensin II-induced decline in GFR. RTA 405 increased the filtration fraction, but did not affect arterial blood pressure or renal plasma flow. Glomeruli from RTA 405-treated rats were resistant to angiotensin II-induced volume reduction ex vivo. In cultured mesangial cells, angiotensin II-stimulated contraction was attenuated by RTA 405, in a dose- and time-dependent fashion. Further, Nrf2 targeted gene transcription (regulates antioxidant, anti-inflammatory, and cytoprotective responses) in mesangial cells was associated with decreased basal and reduced angiotensin II-stimulated hydrogen peroxide and calcium ion levels. These mechanisms contribute to the GFR increase that occurs following treatment with RTA 405 in rats and may underlie the effect of bardoxolone methyl on the estimated GFR in patients. PMID:23235569
Ding, Yanfeng; Stidham, Rhesa D; Bumeister, Ron; Trevino, Isaac; Winters, Ali; Sprouse, Marc; Ding, Min; Ferguson, Deborah A; Meyer, Colin J; Wigley, W Christian; Ma, Rong
2013-05-01
Bardoxolone methyl, a synthetic triterpenoid, improves the estimated glomerular filtration rate (GFR) in patients with chronic kidney disease and type 2 diabetes. Since the contractile activity of mesangial cells may influence glomerular filtration, we evaluated the effect of the synthetic triterpenoid RTA 405, with structural similarity to bardoxolone methyl, on GFR in rats and on mesangial cell contractility in freshly isolated glomeruli. In rats, RTA 405 increased basal GFR, assessed by inulin clearance, and attenuated the angiotensin II-induced decline in GFR. RTA 405 increased the filtration fraction, but did not affect arterial blood pressure or renal plasma flow. Glomeruli from RTA 405-treated rats were resistant to angiotensin II-induced volume reduction ex vivo. In cultured mesangial cells, angiotensin II-stimulated contraction was attenuated by RTA 405, in a dose- and time-dependent fashion. Further, Nrf2-targeted gene transcription (regulates antioxidant, anti-inflammatory, and cytoprotective responses) in mesangial cells was associated with decreased basal and reduced angiotensin II-stimulated hydrogen peroxide and calcium ion levels. These mechanisms contribute to the GFR increase that occurs following treatment with RTA 405 in rats and may underlie the effect of bardoxolone methyl on the estimated GFR in patients.
Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli.
Bennett, Michael R; Czech, Kimberly A; Arend, Lois J; Witte, David P; Devarajan, Prasad; Potter, S Steven
2007-01-01
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease. In this report we used laser capture microdissection to purify diseased glomeruli, and microarrays to provide universal gene expression profiles. The results provide a deeper understanding of the molecular mechanisms of the disease process and suggest novel therapeutic strategies. Consistent with earlier studies, molecular markers of the differentiated podocyte, including WT1, nephrin, and VEGF, were dramatically downregulated in the diseased glomerulus. We also observed multiple changes consistent with increased TGF-beta signaling, including elevated expression of TGF-beta(2), TGF-beta(3), SMAD2, TGF-beta(1) receptor, and thrombospondin. In addition, there was relatively low level expression of Csf1r, a marker of macrophages, but elevated expression of the chemokines CXCL1, CXCL2, CCL3, and CXCL14. We also observed strongly upregulated expression of Sox9, a transcription factor that can drive a genetic program of chondrogenesis and fibrosis. Further, the gene with the greatest fold increase in expression in the diseased glomerulus was osteopontin, which has been previously strongly implicated in kidney fibrosis in the unilateral ureteral obstruction mouse model. These results confirm old findings, and indicate the involvement of new genetic pathways in the cause and progression of FSGS. Copyright 2007 S. Karger AG, Basel.
Compound effects of aging and experimental FSGS on glomerular epithelial cells.
Schneider, Remington R S; Eng, Diana G; Kutz, J Nathan; Sweetwyne, Mariya T; Pippin, Jeffrey W; Shankland, Stuart J
2017-02-17
Advanced age portends a poorer prognosis in FSGS. To understand the impact of age on glomerular podocytes and parietal epithelial cells (PECs), experimental FSGS was induced in 3m-old mice (20-year old human age) and 27m-old mice (78-year old human age) by abruptly depleting podocytes with a cytopathic anti-podocyte antibody. Despite similar binding of the disease-inducing antibody, podocyte density was lower in aged FSGS mice compared to young FSGS mice. Activated PEC density was higher in aged versus young FSGS mice, as was the percentage of total activated PECs. Additionally, the percentage of glomeruli containing PECs with evidence of phosphorylated ERK and EMT was higher in aged FSGS mice. Extracellular matrix, measured by collagen IV and silver staining, was higher in aged FSGS mice along Bowman's capsule. However, collagen IV accumulation in the glomerular tufts alone and in glomeruli with both tuft and Bowman's capsule accumulation were similar in young FSGS and aged FSGS mice. Thus, the major difference in collagen IV staining in FSGS was along Bowman's capsule in aged mice. The significant differences in podocytes, PECs and extracellular matrix accumulation between young mice and old mice with FSGS might explain the differences in outcomes in FSGS based on age.
Compound effects of aging and experimental FSGS on glomerular epithelial cells
Kutz, J. Nathan; Sweetwyne, Mariya T.; Pippin, Jeffrey W.; Shankland, Stuart J.
2017-01-01
Advanced age portends a poorer prognosis in FSGS. To understand the impact of age on glomerular podocytes and parietal epithelial cells (PECs), experimental FSGS was induced in 3m-old mice (20-year old human age) and 27m-old mice (78-year old human age) by abruptly depleting podocytes with a cytopathic anti-podocyte antibody. Despite similar binding of the disease-inducing antibody, podocyte density was lower in aged FSGS mice compared to young FSGS mice. Activated PEC density was higher in aged versus young FSGS mice, as was the percentage of total activated PECs. Additionally, the percentage of glomeruli containing PECs with evidence of phosphorylated ERK and EMT was higher in aged FSGS mice. Extracellular matrix, measured by collagen IV and silver staining, was higher in aged FSGS mice along Bowman's capsule. However, collagen IV accumulation in the glomerular tufts alone and in glomeruli with both tuft and Bowman's capsule accumulation were similar in young FSGS and aged FSGS mice. Thus, the major difference in collagen IV staining in FSGS was along Bowman's capsule in aged mice. The significant differences in podocytes, PECs and extracellular matrixaccumulation between young mice and old mice with FSGS might explain the differences in outcomes in FSGS based on age. PMID:28222042
Serotonin modulates the population activity profile of olfactory bulb external tufted cells
Liu, Shaolin; Aungst, Jason L.; Puche, Adam C.
2012-01-01
Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT2A receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5–8 Hz) to facilitate odor coding. PMID:22013233
Hovis, Kenneth R.; Ramnath, Rohit; Dahlen, Jeffrey E.; Romanova, Anna L.; LaRocca, Greg; Bier, Mark E.; Urban, Nathaniel N.
2012-01-01
The mammalian accessory olfactory system is specialized for the detection of chemicals that identify kin and conspecifics. Vomeronasal sensory neurons (VSNs), residing in the vomeronasal organ, project axons to the accessory olfactory bulb (AOB) where they form synapses with principle neurons, known as mitral cells. The organization of this projection is quite precise and is believed to be essential for appropriate function of this system. However, how this precise connectivity is established is unknown. We show here that in mice the vomeronasal duct is open at birth, allowing external chemical stimuli access to sensory neurons, and that these sensory neurons are capable of releasing neurotransmitter to downstream neurons as early as the first post-natal day. Using major histocompatibility complex class I (MHC-1) peptides to activate a selective subset of VSNs during the first few post-natal days of development, we show that increased activity results in exuberant VSN axonal projections and a delay in axonal coalescence into well-defined glomeruli in the AOB. Finally, we show that mitral cell dendritic refinement occurs just after the coalescence of pre-synaptic axons. Such a mechanism may allow the formation of precise connectivity with specific glomeruli that receive input from sensory neurons expressing the same receptor type. PMID:22674266
Focal Segmental Glomerulosclerosis in Related Miniature Schnauzer Dogs.
Yau, Wilson; Mausbach, Lisa; Littman, Meryl P; Cianciolo, Rachel E; Brown, Cathy A
2018-03-01
Focal segmental glomerulosclerosis (FSGS) recently has been recognized as a common cause of proteinuria in dogs in general, and in Miniature Schnauzer dogs in particular. This study describes the morphologic features present in the kidneys of 8 related proteinuric Miniature Schnauzer dogs. The FSGS, characterized by solidification of portions of the capillary tuft, affected 32% to 49% of examined glomeruli in these dogs. Synechiae, often accompanied by hyalinosis, were present in 13% to 54% of glomeruli and were more prevalent in older dogs. Seven of 8 dogs had arteriolar hyalinosis. Ultrastructurally, all dogs had evidence of a podocytopathy in the absence of electron-dense deposits, glomerular basement membrane splitting, or fibrils. All dogs had multifocal to extensive podocyte foot process effacement. Other podocyte changes included microvillous transformation, the presence of vacuoles or protein resorption droplets, cytoplasmic electron-dense aggregates, and occasional binucleation. Variable amounts of intraglomerular lipid were present in all dogs. All dogs were proteinuric, with measured values for the urine protein-to-creatinine ratio ranging from 1.2 to 6.5. Azotemia was mild to absent and dogs were euthanatized at 5.1 to 14 years of age, in all cases due to nonrenal diseases. The underlying cause of FSGS in these Miniature Schnauzer dogs has yet to be determined, but contributors likely include genetic podocytopathy, lipid abnormalities, and glomerular hypertension.
COMPLEMENT FIXATION IN DISEASED TISSUES
Burkholder, Peter M.
1961-01-01
An immunohistologic complement fixation test has been used in an effort to detect immune complexes in sections of kidney from rats injected with rabbit anti-rat kidney serum and in sections of biopsied kidneys from four humans with membranous glomerulonephritis. Sections of the rat and human kidneys were treated with fluorescein-conjugated anti-rabbit globulin or antihuman globulin respectively. Adjacent sections in each case were incubated first with fresh guinea pig serum and then in a second step were treated with fluorescein-conjugated antibodies against fixed guinea pig complement to detect sites of fixation of the complement. It was demonstrated that the sites of rabbit globulin in glomerular capillary walls of the rat kidneys and the sites of localized human globulin in thickened glomerular capillary walls and swollen glomerular endothelial cells of the human kidneys were the same sites in which guinea pig complement was fixed in vitro. It was concluded from these studies that rabbit nephrotoxic antibodies localize in rat glomeruli in complement-fixing antigen-antibody complexes. Furthermore, it was concluded that the deposits of human globulin in the glomeruli of the human kidneys behaved like antibody globulin in complement-fixing antigen-antibody complexes. The significance of demonstrating complement-fixing immune complexes in certain diseased tissues is discussed in regard to determination of the causative role of allergic reactions in disease. PMID:19867205
Strauss, J; Pardo, V; Koss, M N; Griswold, W; McIntosh, R M
1975-03-01
The nature of the glomerular-bound antibody and the putative antigen was investigated in one of the patients with sickle cell disease and immune deposit membranoproliferative glomerulonephritis by immunohistologic and glomerular antibody elution. Renal proximal tubular epithelial antigen was localized in association with immunoglobulins G (IgG), M (IgM), Clq fraction of the first component of complement (Clq) and the third component of complement (C3) in a granular pattern along the glomerular basement membrane of the patient's kidney. IgG and IgM were eluted from glomeruli. These immunoglobulins fixed to the proximal tubules of normal human kidney by direct immunofluorescence. This localization was abolished by absorption of the eluted immunoglobulins with renal tubular epithelial (RTE) antigen. The IgG eluted from the glomeruli blocked the fixation of rabbit anti-RTE antigen to normal proximal tubular brush border. These studies suggest that the nephritis in this patient was due to deposition of complexes or RTE antigen and specific antibody. An autologous immune complex nephritis may develop in some patients with sickle cell anemia secondary to RTE antigen released possibly after renal ischemia or some other phenomenon causing renal tubular damage.
Counting glomeruli and podocytes: rationale and methodologies
Puelles, Victor G.; Bertram, John F.
2015-01-01
Purpose of review There is currently much interest in the numbers of both glomeruli and podocytes. This interest stems from greater understanding of the effects of suboptimal fetal events on nephron endowment, the associations between low nephron number and chronic cardiovascular and kidney disease in adults, and the emergence of the podocyte depletion hypothesis. Recent findings Obtaining accurate and precise estimates of glomerular and podocyte number has proven surprisingly difficult. When whole kidneys or large tissue samples are available, design-based stereological methods are considered gold-standard because they are based on principles that negate systematic bias. However, these methods are often tedious and time-consuming, and oftentimes inapplicable when dealing with small samples such as biopsies. Therefore, novel methods suitable for small tissue samples, and innovative approaches to facilitate high through put measurements, such as magnetic resonance imaging (MRI) to estimate glomerular number and flow cytometry to estimate podocyte number, have recently been described. Summary This review describes current gold-standard methods for estimating glomerular and podocyte number, as well as methods developed in the past 3 years. We are now better placed than ever before to accurately and precisely estimate glomerular and podocyte number, and to examine relationships between these measurements and kidney health and disease. PMID:25887899
Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.
Rössler, Wolfgang; Brill, Martin F
2013-11-01
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
Quantitative analysis of the renal aging in rats. Stereological study.
Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de
2016-05-01
To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.
Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.
Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De
2016-11-01
To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.
Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system.
Liu, Wendy W; Wilson, Rachel I
2013-06-18
Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.
Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuehai; Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000; Lu, Huixia
Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared withmore » C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.« less
Insect Optic Glomeruli: Exploration of a Universal Circuit for Sensorimotor Processing
2012-01-20
based on an algorithm published by Cohen...Cajal, SR, Sánchez D (1915) Contribucion al conocimiento de los centros nerviosos de los insectos...Drosophila revealed by green fluorescent protein-‐ based Ca2+ imaging. J Neurosci 24: 6507–6514.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ando, Seiichiro, E-mail: andosei78102@biscuit.ocn.ne.jp; Amano, Hirofumi; Amano, Eri
2010-04-09
FTY720 is a novel investigational agent targeting the sphingosine 1-phosphate (S1P) receptors with an ability to cause immunosuppression by inducing lymphocyte sequestration in lymphoid organs. Systemic lupus erythematosus (SLE) is refractory autoimmune disease characterized by the production of a wide variety of autoantibodies and immune complex (IC)-mediated lupus nephritis. Among several SLE-prone strains of mice, BXSB is unique in terms of the disease-associated monocytosis in periphery and the reduced frequency of marginal zone B (MZ B) cells in spleen. In the present study, we examined the effect of FTY720 on lupus nephritis of BXSB mice. FTY720 treatment resulted in amore » marked decrease in lymphocytes, but not monocytes, in peripheral blood, and caused relocalization of marginal zone B (MZ B) cells into the follicle in the spleen. These changes did not affect the production of autoantibodies, thus IgG and C3 were deposited in glomeruli in FTY720-treated mice. Despite these IC depositions, FTY720-treated mice showed survival advantage with the improved proteinuria. Histological analysis revealed that FTY720 suppressed mesangial cell proliferation and inflammatory cell infiltration. These results suggest that FTY720 ameliorates lupus nephritis by inhibiting the end-stage inflammatory process following IC deposition in glomeruli.« less
Hawke, Christine G; Painter, Dorothy M; Kirwan, Paul D; Van Driel, Rosemary R; Baxter, Alan G
2003-01-01
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by the production of antibodies directed against self antigens. Immune complex glomerulonephritis (GN) is one of the most serious complications of this disorder and can lead to potentially fatal renal failure. The aetiology of SLE is complex and multifactorial, characterized by interacting environmental and genetic factors. Here we examine the nature of the renal pathology in mycobacteria-treated non-obese diabetic (NOD) mice, in order to assess its suitability as a model for studying the aetiopathogenesis of, and possible treatment options for, lupus nephritis (LN) in humans. Both global and segmental proliferative lesions, characterized by increased mesangial matrix and cellularity, were demonstrated on light microscopy, and lesions varied in severity from very mild mesangiopathic GN through to obliteration of capillary lumina and glomerular sclerosis. Mixed isotype immune complexes (IC) consisting of immunoglobulin G (IgG), IgM, IgA and complement C3c were detected using direct immunofluorescence. They were deposited in multiple sites within the glomeruli, as confirmed by electron microscopy. The GN seen in mycobacteria-treated NOD mice therefore strongly resembles the pathology seen in human LN, including mesangiopathic, mesangiocapillary and membranous subclasses of LN. The development of spontaneous mixed isotype IC in the glomeruli of some senescent NOD mice suggests that mycobacterial exposure is accelerating, rather than inducing, the development of GN in this model. PMID:12519305
Liu, Rong-Tao; Xiao, Jing; Guo, Hui-Ling; Qiu, Dun-Guo; Yin, Hua-Hu; Wang, Zheng-Rong
2005-11-01
To investigate the expression of A-type atrial natriuretic peptide receptor (ANPR-A) in the kidneys of renovascular hypertension rats and evaluate the significance of the expression. The rat model of renovascular hypertension was produced by constricting one lateral renal artery. After the renal artery being constricted for 4 weeks and 8 weeks, the systolic BP of rats was measured with a manometer using the tail-cuff method. Then, the expression of ANPR-A was respectively detected by immunohistochemical technique in the kidneys of the two-kidney, one-clip (2K1C) rats, and the expression level of ANPR-A was semi-quantitatively measured by Mias-2000 computer image analyzer. At 4 weeks after the artery-constricted operation,the expression of ANPR-A increased significantly in 2K1C hypertensive rat glomeruli and decreased significantly in renal tubules, compared with control (P<0.01), but there was no marked change in medullar collecting tubules. At 8 weeks after the artery-constricted operation, the expression of ANPR-A decreased significantly in 2K1C hypertensive rat renal tubules and medullar collecting tubules, compared with control (P<0.01); however, there was weak expression in glomeruli, and no statistically significant difference was seen when compared with control (P>0.05). The expression of ANPR-A decreased significantly in kidney tissues of renovascular
Rao, Velidi H.; Meehan, Daniel T.; Delimont, Duane; Nakajima, Motowo; Wada, Takashi; Ann Gratton, Michael; Cosgrove, Dominic
2006-01-01
Alport syndrome is a glomerular basement membrane (GBM) disease caused by mutations in type IV collagen genes. A unique irregular thickening and thinning of the GBM characterizes the progressive glomerular pathology. The metabolic imbalances responsible for these GBM irregularities are not known. Here we show that macrophage metalloelastase (MMP-12) expression is >40-fold induced in glomeruli from Alport mice and is markedly induced in glomeruli of both humans and dogs with Alport syndrome. Treatment of Alport mice with MMI270 (CGS27023A), a broad spectrum MMP inhibitor that blocks MMP-12 activity, results in largely restored GBM ultrastructure and function. Treatment with BAY-129566, a broad spectrum MMP inhibitor that does not inhibit MMP-12, had no effect. We show that inhibition of CC chemokine receptor 2 (CCR2) receptor signaling with propagermanium blocks induction of MMP-12 mRNA and prevents GBM damage. CCR2 receptor is expressed in glomerular podocytes of Alport mice, suggesting MCP-1 activation of CCR2 on podocytes may underlie induction of MMP-12. These data indicate that the irregular GBM that characterizes Alport syndrome may be mediated, in part, by focal degradation of the GBM due to MMP dysregulation, in particular, MMP-12. Thus, MMP-12/CCR2 inhibitors may provide a novel and effective therapeutic strategy for Alport glomerular disease. PMID:16816359
Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R
2013-02-01
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. Copyright © 2012 Wiley Periodicals, Inc.
Functional transformations of odor inputs in the mouse olfactory bulb.
Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi
2014-01-01
Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.
van Vuuren, Stefan H.; Sol, Chalana M.; Broekhuizen, Roel; Lilien, Marc R.; Oosterveld, Michiel J. S.; Nguyen, Tri Q.
2012-01-01
Background Patients with unilateral MultiCystic Kidney Dysplasia (MCKD) or unilateral renal agenesis (URA) have a congenital solitary functioning kidney (CSFK) that is compensatory enlarged. The question whether this enlargement is due to increased nephron numbers and/or to nephron hypertrophy is unresolved. This question is of utmost clinical importance, since hypertrophy is associated with a risk of developing hypertension and proteinuria later in life with consequent development of CKD and cardiovascular disease. Methodology/Principal Findings In a cohort of 32,000 slaughter pigs, 7 congenital solitary functioning kidneys and 7 control kidneys were identified and harvested. Cortex volume was measured and with a 3-dimensional stereologic technique the number and volume of glomeruli was determined and compared. The mean total cortex volume was increased by more than 80% and the mean number of glomeruli per kidney was 50% higher in CSFKs than in a single control kidney, equaling 75% of the total nephron number in both kidneys of control subjects. The mean total glomerular volume in the CSFKs was not increased relative to the controls. Conclusions/Significance Thus, in pigs, compensatory enlargement of a CSFK is based on increased nephron numbers. Extrapolation of these findings to the human situation suggests that patients with a CSFK might not be at increased risk for developing hyperfiltration-associated renal and cardiovascular disease in later life due to a lower nephron number. PMID:23185419
Early detection of acute tubulointerstitial nephritis in the genesis of Mesoamerican nephropathy.
Fischer, Rebecca S B; Vangala, Chandan; Truong, Luan; Mandayam, Sreedhar; Chavarria, Denis; Granera Llanes, Orlando M; Fonseca Laguna, Marcos U; Guerra Baez, Alvaro; Garcia, Felix; García-Trabanino, Ramón; Murray, Kristy O
2018-03-01
Mesoamerican nephropathy is a devastating disease of unknown etiology that affects mostly young agricultural workers in Central America. An understanding of the mechanism of injury and the early disease process is urgently needed and will aid in identification of the underlying cause and direct treatment and prevention efforts. We sought to describe the renal pathology in Mesoamerican nephropathy at its earliest clinical appearance in prospectively identified acute case patients in Nicaragua. We considered those with elevated (or increased at least 0.3 mg/dL or 1.5-fold from baseline) serum creatinine, leukocyturia, and either leukocytosis or neutrophilia for inclusion in this biopsy study. Renal tissue was obtained by ultrasound-guided biopsy for examination by light, immunofluorescence, and electron microscopy. All 11 individuals who underwent renal biopsy showed tubulointerstitial nephritis, with varying degrees of inflammation and chronicity. Interstitial cellular infiltrates (predominantly T lymphocytes and monocytes), mostly in the corticomedullary junction; neutrophilic accumulation in the tubular lumens; largely preserved glomeruli; few mild ischemic changes; and no immune deposits were noted. The acute components of tubulointerstitial nephritis were acute tubular cell injury, interstitial edema, and early fibrosis. Chronic tubulointerstitial nephritis included severe tubular atrophy, thickened tubular basement membrane, and interstitial fibrosis. Thus, renal histopathology in Mesoamerican nephropathy reveals primary interstitial disease with intact glomeruli. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Han, Lei; Yang, Zhiling; Li, Kailong; Zou, Jiaqun; Li, Hongmei; Han, Jian; Zhou, Lijuan; Liu, Xiaojie; Zhang, Xin; Zheng, Yingru; Yu, Lili; Li, Li
2014-01-01
Background: Preeclampsia (PE) and eclampsia remain leading causes of maternal and fetal mortality worldwide. The kidney is considered the first and most severely affected organ in women with PE/eclampsia. In this study, we analyzed new morphologic features of kidney biopsies and clinical findings in patients with PE or eclampsia at our hospital. Methods: Eight patients with PE/eclampsia underwent renal biopsies during the antepartum (3/8) or postpartum (5/8) period. Maternal clinical findings, major serological indices, neonatal outcomes, and renal histopathologic and immunofluorescent characteristics were reviewed for each case. Results: Most patients had abnormal serum cholesterol (8/8), triglyceride (6/8), albumin (7/8), and uric acid (5/8). The ratio of blood urea nitrogen (BUN) to serum creatinine (SCr) was elevated in all patients. Five of eight newborns survived. Various degrees of morphologic change were present in the renal glomeruli, and were associated with proteinuria. All patients had deposition of complement factor 4 (C4) in the renal glomeruli and seven had deposition of immunoglobulin M (IgM). Conclusion: Endotheliosis, vacuolation of podocytes, proliferation of mesangial cells, and protein casts in the tubule lumens were found in the kidneys of women with PE/eclampsia. Immune depositions of C4 and IgM are major contributors to renal lesions in preeclamptic patients, whose neonates can generally survive. Eclampsia can occur without increased blood pressure. PMID:25197387
Lortie, M J; Novotny, W F; Peterson, O W; Vallon, V; Malvey, K; Mendonca, M; Satriano, J; Insel, P; Thomson, S C; Blantz, R C
1996-01-01
Until recently, conversion of arginine to agmatine by arginine decarboxylase (ADC) was considered important only in plants and bacteria. In the following, we demonstrate ADC activity in the membrane-enriched fraction of brain, liver, and kidney cortex and medulla by radiochemical assay. Diamine oxidase, an enzyme shown here to metabolize agmatine, was localized by immunohistochemistry in kidney glomeruli and other nonrenal cells. Production of labeled agmatine, citrulline, and ornithine from [3H]arginine was demonstrated and endogenous agmatine levels (10(-6)M) in plasma ultrafiltrate and kidney were measured by HPLC. Microperfusion of agmatine into renal interstitium and into the urinary space of surface glomeruli of Wistar-Frömter rats produced reversible increases in nephron filtration rate (SNGFR) and absolute proximal reabsorption (APR). Renal denervation did not alter SNGFR effects but prevented APR changes. Yohimbine (an alpha 2 antagonist) microperfusion into the urinary space produced opposite effects to that of agmatine. Microperfusion of urinary space with BU-224 (microM), a synthetic imidazoline2 (I2) agonist, duplicated agmatine effects on SNGFR but not APR whereas an I1 agonist had no effect. Agmatine effects on SNGFR and APR are not only dissociable but appear to be mediated by different mechanisms. The production and degradation of this biologically active substance derived from arginine constitutes a novel endogenous regulatory system in the kidney. PMID:8567962
Sene, Letícia de Barros; Mesquita, Flávia Fernandes; de Moraes, Leonardo Nazário; Santos, Daniela Carvalho; Carvalho, Robson; Gontijo, José Antônio Rocha; Boer, Patrícia Aline
2013-01-01
Prior study shows that maternal protein-restricted (LP) 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-β1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1α1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-β1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition. PMID:23977013
Immunocytochemistry of the olfactory marker protein.
Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P
1977-12-01
The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.
Tamai, Eiji; Ishida, Tetsuya; Miyata, Shigeru; Matsushita, Osamu; Suda, Hirofumi; Kobayashi, Shoji; Sonobe, Hiroshi; Okabe, Akinobu
2003-09-01
In this paper we show that Clostridium perfringens epsilon-toxin accumulates predominantly in the mouse kidney, where it is distributed mainly in glomeruli, capillaries, and collecting ducts. Although some pycnotic and exfoliated epithelial cells were observed in distal tubuli and collecting ducts, there were no findings indicative of severe renal injury. Bilateral nephrectomy increased the mouse lethality of the toxin, suggesting that the kidney contributes to the host defense against the lethal toxicity of epsilon-toxin.
Optical coherence tomography (OCT) of a murine model of chronic kidney disease
NASA Astrophysics Data System (ADS)
Wang, Hsing-Wen; Guo, Hengchang; Andrews, Peter M.; Anderson, Erik; Chen, Y.
2015-03-01
Chronic Kidney Disease (CKD) is characterized by a progressive loss in renal function over time. Pathology can provide valuable insights into the progression of CKD by analyzing the status of glomeruli and the uriniferous tubules over time. Optical coherence tomography (OCT) is a new procedure that can analyze the microscopic structure of the kidney in a non-invasive manner. This is especially important because there are significant artifacts associated with excision biopsies and immersion fixation procedures. Recently, we have shown that OCT can provide real time images of kidney microstructure and Doppler OCT (DOCT) can image glomerular renal blood flow in vivo without administrating exogenous contrast agents. In this study, we used OCT to evaluate CKD in a model induced by intravenous Adriamycin injection into Munich-Wistar rats. We evaluated tubular density and tubular diameter from OCT images at several post- Adriamycin induction time points and compared them with conventional light microscopic histological imaging. Proteinurea and serum creatinine were used as physiological markers of the extent of CKD. Preliminary OCT results revealed changes in tubular density due to tubular necrosis and interstitial fibrosis within the first 4 weeks following Adriamycin injection. From week 4 to 8 after Adriamycin induction, changes in tubular density and diameter occurred due to both tubular loss and tubular dilation. The results suggest OCT can provide additional information about kidney histopathology in CKD. DOCT revealed reduced blood flow in some glomeruli probably as a consequence of focal glomerularsclerosis.
Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila
Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.
2015-01-01
Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A
2015-05-13
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.
Chittiprol, Seetharamaiah; Chen, Phylip; Petrovic-Djergovic, Danica; Eichler, Tad
2011-01-01
The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR >> KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines. PMID:21632959
Chen, Jing; Boyle, Scott; Zhao, Min; Su, Wei; Takahashi, Keiko; Davis, Linda; Decaestecker, Mark; Takahashi, Takamune; Breyer, Matthew D; Hao, Chuan-Ming
2006-05-01
Nestin, an intermediate filament protein, is widely used as stem cell marker. Nestin has been shown to interact with other cytoskeleton proteins, suggesting a role in regulating cellular cytoskeletal structure. These studies examined renal nestin localization and developmental expression in mice. In developing kidney, anti-nestin antibody revealed strong immunoreactivity in vascular cleft of the S-shaped body and vascular tuft of capillary loop-stage glomerulus. The nestin-positive structures also were labeled by endothelial cell markers FLK1 and CD31 in immature glomeruli. Nestin was not detected in epithelial cells of immature glomeruli. In contrast, in mature glomerular, nestin immunoreactivity was observed only outside laminin-positive glomerular basement membrane, and co-localized with nephrin, consistent with podocyte nestin expression. In adult kidney, podocytes were the only cells that exhibited persistent nestin expression. Nestin was not detected in ureteric bud and its derivatives throughout renal development. Cell lineage studies, using a nestin promoter-driven Cre mouse and a ROSA26 reporter mouse, showed a strong beta-galactosidase activity in intermediate mesoderm in an embryonic day 10 embryo and all of the structures except those that were derived from ureteric bud in embryonic kidney through adult kidney. These studies show that nestin is expressed in progenitors of glomerular endothelial cells and renal progenitors that are derived from metanephric mesenchyme. In the adult kidney, nestin expression is restricted to differentiated podocytes, suggesting that nestin could play an important role in maintaining the structural integrity of the podocytes.
Chittiprol, Seetharamaiah; Chen, Phylip; Petrovic-Djergovic, Danica; Eichler, Tad; Ransom, Richard F
2011-09-01
The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR > KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.
Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming
2017-01-01
Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683
NASA Astrophysics Data System (ADS)
Coccini, T.; Roda, E.; Barni, S.; Manzo, L.
2013-04-01
Renal morphological parameters were determined in rats intratracheally instilled with model cadmium-containing silica nanoparticles (Cd-SiNPs, 1mg/rat), also exploring whether their potential modifications would be associated with toxicogenomic changes. Cd-SiNP effects, evaluated 7 and 30 days post-exposure, were assessed by (i) histopathology (Haematoxylin/Eosin Staining), (ii) characterization of apoptotic features by TUNEL staining. Data were compared with those obtained by CdCl2 (400μg/rat), SiNPs (600μg/rat), 0.1 ml saline. Area-specific cell apoptosis was observed in all treatment groups: cortex and inner medulla were the most affected regions. Apoptotic changes were apparent at 7 days post-exposure in both areas, and were still observable in inner medulla 30 days after treatment. Increase in apoptotic frequency was more pronounced in Cd-SiNP-treated animals compared to either CdCl2 or SiNPs. Histological findings showed comparable alterations in the renal glomerular (cortex) architecture occurring in all treatment groups at both time-points considered. The glomeruli appeared often collapsed, showing condensed, packed mesangial and endothelial cells. Oedematous haemorrhagic glomeruli were also observed in Cd-SiNPs-treated animals. Bare SiNPs caused morphological and apoptotic changes without modifying the renal gene expression profile. These findings support the concept that multiple assays and an integrated testing strategy should be recommended to characterize toxicological responses to nanoparticles in mammalian systems.
Saiga, Kan; Tokunaka, Kazuhiro; Ichimura, Eiji; Toyoda, Eriko; Abe, Fuminori; Yoshida, Minako; Furukawa, Hiroshi; Nose, Masato; Ono, Masao
2006-11-01
NK026680 is a newly identified type of immunosuppressive agent that inhibits dendritic cell (DC) functions and consequently reduces the mortality of mice with experimental acute graft-versus-host disease. This study was undertaken to evaluate NK026680 suppression of DC functions in preventing development of rapidly progressive glomerulonephritis (RPGN) and perinuclear antineutrophil cytoplasmic antibodies (pANCA) in SCG/Kj mice. Oral administration of NK026680 to SCG/Kj mice began when mice were 8-10 weeks old, before the onset of disease, and continued for 56 days. The efficacy of NK026680 was evaluated using the mortality of mice, the results of urinalysis, histopathologic evaluation for glomerular injury, and immunofluorescence staining for the detection of immune complex (IC) deposition in glomeruli, and by assessing lymphadenopathy and measuring autoantibody titers. Oral administration of NK026680 at a dosage of 25 mg/kg once daily or 50 mg/kg once daily significantly suppressed 1) spontaneous mortality, 2) proteinuria and hematuria, 3) blood urea nitrogen levels, 4) glomerular damage characterized histopathologically, 5) IC deposition in glomeruli, 6) the development of pANCA and anti-DNA antibodies, and 7) lymphadenopathy. The newly identified DC inhibitor, NK026680, prevented the onset of RPGN, autoantibody production, and lymphadenopathy in SCG/Kj mice, suggesting a crucial role for DC function in these autoimmune phenotypes. NK026680 may be a potent immunosuppressive agent for the treatment of ANCA-associated renovascular disorders.
GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.
Duann, Pu; Lianos, Elias A
2009-09-01
Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.
GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury
Duann, Pu; Lianos, Elias A.
2009-01-01
Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-β1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury. PMID:19587144
Strambi, Colette; Cayre, Myriam; Sattelle, David B.; Augier, Roger; Charpin, Pierre; Strambi, Alain
1998-01-01
The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain. PMID:10454373
Systemic AA amyloidosis in island foxes (Urocyon littoralis): Severity and risk factors
Gaffney, Patricia M.; Witte, Carmel; Clifford, Deana L.; Imai, Denise M.; O’Brien, Timothy D.; Trejo, Margarita; Liberta, Falk; Annamalai, Karthikeyan; Fändrich, Marcus; Masliah, Eliezer; Munson, Linda; Sigurdson, Christina J.
2016-01-01
Systemic amyloid A (AA) amyloidosis is highly prevalent (34%) in endangered island foxes (Urocyon littoralis) and poses a risk to species recovery. Although elevated serum amyloid A from prolonged or recurrent inflammation predisposes to AA amyloidosis, additional risk factors are poorly understood. Here we define the severity of glomerular and medullary renal amyloid and identify risk factors for AA amyloidosis in 321 island foxes necropsied from 1987 through 2010. In affected kidneys, amyloid more commonly accumulated in the medullary interstitium than in the glomeruli [98% (78/80) versus 56% (45/80), respectively, p < 0.0001], and medullary deposition was more commonly severe [19% (20/105)] as compared to glomeruli [7% (7/105), p = 0.01]. Univariate odds ratios (ORs) of severe renal AA amyloidosis were greater for short- and long-term captive foxes compared to free-ranging (OR=3.2, 3.7, respectively, overall p = 0.05) and females compared to males (OR = 2.9, p = 0.05). Multivariable logistic regression revealed independent risk factors for amyloid development were increasing age class (OR = 3.8, p < 0.0001), San Clemente Island subspecies compared to San Nicolas Island subspecies (OR = 5.3, p = 0.0003), captivity (OR = 5.1, p = 0.0001), and nephritis (OR = 2.3, p = 0.01). The increased risk associated with the San Clemente subspecies or captivity suggests roles for genetic as well as exogenous risk factors in the development of AA amyloidosis. PMID:26419399
Kanwar, Y S; Kumar, A; Yang, Q; Tian, Y; Wada, J; Kashihara, N; Wallner, E I
1999-09-28
Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix protein and is expressed in the renal tubular basement membranes. Its role in metanephric development was investigated. TIN-ag cDNA, isolated from the newborn mouse library, had an ORF of 1,425 nucleotides, a putative signal sequence, and an ATP/GTP-binding site. The translated sequence had approximately 80% identity with rabbit TIN-ag. Among various tissues, TIN-ag mRNA was primarily expressed in the newborn kidney. In the embryonic metanephros, TIN-ag expression was confined to the distal convolution or pole of the S-shaped body, the segment of the nascent nephron that is the progenitor of renal tubules. Treatment with TIN-ag antisense oligodeoxynucleotide induced dysmorphogenesis of the embryonic metanephroi, malformation of the S-shaped body, and a decrease in the tubular population, whereas the glomeruli were unaffected. Treatment also led to a decrease of TIN-Ag mRNA, de novo synthesis of TIN-ag protein, and its antibody reactivity. The mRNA expression of glomerular epithelial protein 1 (a marker for renal podocytes), anti-heparan-sulfate-proteoglycan antibody reactivity, and wheat germ agglutinin lectin staining of the metanephros were unaffected. The anti-TIN-ag antibody treatment also caused deformation of the S-shaped body and a reduction in the tubular population, whereas the glomeruli were unchanged. The data suggest that the TIN-ag, unlike other basement membrane proteins, selectively regulates tubulogenesis, whereas glomerulogenesis is largely unaffected.
Satake, Kenji; Shimizu, Yoshio; Sasaki, Yohei; Yanagawa, Hiroyuki; Suzuki, Hitoshi; Suzuki, Yusuke; Horikoshi, Satoshi; Honda, Shinichiro; Shibuya, Kazuko; Shibuya, Akira; Tomino, Yasuhiko
2014-06-13
Although serum under-O-glycosylated IgA1 in IgA nephropathy (IgAN) patients may deposit more preferentially in glomeruli than heavily-O-glycosylated IgA1, the relationship between the glomerular IgA deposition level and the O-glycan profiles of serum IgA1 remains obscure. Serum total under-O-glycosylated IgA1 levels were quantified in 32 IgAN patients by an enzyme-linked immunosorbent assay (ELISA) with Helix aspersa (HAA) lectin. Serum under-O-glycosylated polymeric IgA1 (pIgA1) was selectively measured by an original method using mouse Fcα/μ receptor (mFcα/μR) transfectant and flow cytometry (pIgA1 trap). The percentage area of IgA deposition in the whole glomeruli (Area-IgA) was quantified by image analysis on the immunofluorescence of biopsy specimens. Correlations were assessed between the Area-IgA and data from HAA-ELISA or pIgA1 trap. The relationships between clinical parameters and data from HAA-ELISA or pIgA1 trap were analyzed by data mining approach. While the under-O-glycosylated IgA1 levels in IgAN patients were significantly higher than those in healthy controls when measured (p<0.05), there was no significant difference in under-O-glycosylated pIgA1. There was neither a correlation observed between the data from HAA-ELISA and pIgA1 trap (r2=0.09) in the IgAN patients (r2=0.005) nor was there a linear correlation between Area-IgA and data from HAA-ELISA or the pIgA1 trap (r2=0.005, 0.03, respectively). Contour plots of clinical parameters versus data from HAA-ELISA and the pIgA1 trap revealed that patients with a high score in each clinical parameter concentrated in specific areas, showing that patients with specific O-glycan profiles of IgA1 have similar clinical parameters. A decision tree analysis suggested that dominant immune complexes in glomeruli were consisted of: 1) IgA1-IgG and complements, 2) pIgA1 and complements, and 3) monomeric IgA1-IgA or aggregated monomeric IgA1. Serum under-O-glycosylated IgA1 levels are not correlated with glomerular IgA deposition based upon heterogeneity in the composition of glomerular immune complexes in IgAN patients.
Automatic computational labeling of glomerular textural boundaries
NASA Astrophysics Data System (ADS)
Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.
A novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes.
Kindt, Frances; Hammer, Elke; Kemnitz, Stefan; Blumenthal, Antje; Klemm, Paul; Schlüter, Rabea; Quaggin, Susan E; van den Brandt, Jens; Fuellen, Georg; Völker, Uwe; Endlich, Karlhans; Endlich, Nicole
2017-01-01
Therapeutic options for treating glomerulopathies, the main cause of chronic kidney disease, are limited. Podocyte dedifferentiation is a major event in the pathogenesis of glomerulopathies. The goal of the present study was, therefore, to develop an assay to monitor podocyte differentiation suitable for compound screening. We isolated and cultured glomeruli from transgenic mice, expressing cyan fluorescent protein (CFP) under the control of the promoter of nephrin, a marker of podocyte differentiation. Mean CFP fluorescence intensity per glomerulus (MFG) was determined by summation of all glomerular voxels from confocal z-stacks in the absence and presence of pharmaceutical compounds. In untreated cultured glomeruli, MFG remained fairly stable during the first 5 days, when foot processes were already effaced, and the level of many podocyte-specific proteins was only mildly affected, as revealed by proteomics. Between day 6 and 9, MFG decreased to almost zero. The decrease in MFG was paralleled by a decrease in CFP and nephrin expression, as determined by RT-PCR, western blots and proteomics. Puromycin aminonucleoside (PAN), which damages podocytes, concentration-dependently induced a complete loss of MFG. Dexamethasone (25 μM) and pioglitazone (10 μM) markedly attenuated the effect of 0.6 μg·mL -1 PAN on MFG. In summary, we established a novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes in situ. Our assay is suitable for compound screening to identify drugs for the treatment of glomerulopathies. © 2016 The British Pharmacological Society.
A novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes
Kindt, Frances; Hammer, Elke; Kemnitz, Stefan; Blumenthal, Antje; Klemm, Paul; Schlüter, Rabea; Quaggin, Susan E; van den Brandt, Jens; Fuellen, Georg; Völker, Uwe; Endlich, Karlhans
2016-01-01
Background and Purpose Therapeutic options for treating glomerulopathies, the main cause of chronic kidney disease, are limited. Podocyte dedifferentiation is a major event in the pathogenesis of glomerulopathies. The goal of the present study was, therefore, to develop an assay to monitor podocyte differentiation suitable for compound screening. Experimental Approach We isolated and cultured glomeruli from transgenic mice, expressing cyan fluorescent protein (CFP) under the control of the promoter of nephrin, a marker of podocyte differentiation. Mean CFP fluorescence intensity per glomerulus (MFG) was determined by summation of all glomerular voxels from confocal z‐stacks in the absence and presence of pharmaceutical compounds. Key Results In untreated cultured glomeruli, MFG remained fairly stable during the first 5 days, when foot processes were already effaced, and the level of many podocyte‐specific proteins was only mildly affected, as revealed by proteomics. Between day 6 and 9, MFG decreased to almost zero. The decrease in MFG was paralleled by a decrease in CFP and nephrin expression, as determined by RT‐PCR, western blots and proteomics. Puromycin aminonucleoside (PAN), which damages podocytes, concentration‐dependently induced a complete loss of MFG. Dexamethasone (25 μM) and pioglitazone (10 μM) markedly attenuated the effect of 0.6 μg·mL−1 PAN on MFG. Conclusion and Implications In summary, we established a novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes in situ. Our assay is suitable for compound screening to identify drugs for the treatment of glomerulopathies. PMID:27858997
Sechi, L A; Valentin, J P; Griffin, C A; Lee, E; Bartoli, E; Humphreys, M H; Schambelan, M
1995-01-01
To determine whether decreased renal responsiveness to atrial natriuretic peptide (ANP) in diabetes is mediated by alterations in the renal ANP receptor, ANP receptor density and affinity were measured 17-20 d after streptozotocin injection and compared with values in vehicle-treated controls and streptozotocin-treated rats made euglycemic with insulin. Plasma ANP concentration was significantly greater in hyperglycemic diabetic rats than in control or euglycemic diabetic rats. Both in glomeruli and inner medulla, ANP receptor dissociation constant did not differ among the three study groups, whereas the maximum binding capacity was decreased significantly in hyperglycemic diabetics in comparison with controls and euglycemic diabetics. Glomerular clearance receptors were also decreased significantly in hyperglycemic diabetic rats in comparison with control and euglycemic diabetic rats. To determine whether the decreased number of renal ANP receptors in diabetic rats was associated with a decreased biological response, we measured ANP-dependent cyclic GMP (cGMP) accumulation by isolated glomeruli and inner medullary collecting duct cells in vitro. cGMP accumulation was significantly less in hyperglycemic diabetic rats than in controls or euglycemic diabetic rats both in the presence or absence of the phosphodiesterase inhibitor zaprinast. cGMP phosphodiesterase activity in inner medullary collecting duct cells obtained from control and hyperglycemic diabetic rats did not differ. Thus, the decreased number of biologically active ANP receptors in the kidneys of diabetic rats is accompanied by decreased biological responsiveness in vitro and provides a potential explanation for the reduction in renal sensitivity to ANP in this condition. Images PMID:7769090
Contrast Enhanced Diagnostic Ultrasound Causes Renal Tissue Damage in a Porcine Model
Miller, Douglas L.; Dou, Chunyan; Wiggins, Roger C.
2010-01-01
Objective Glomerular capillary hemorrhage (GCH) has been reported and confirmed as a consequence of contrast-enhanced diagnostic ultrasound (CEDUS) of rat kidney. This study assessed renal tissue injury in the larger porcine model. Methods The right kidneys of anesthetized pigs were imaged in 8 groups of 4 pigs. A Vingmed System Five (General Electric Co. Cincinnati OH) was used at 1.5 MHz in B-mode to intermittently scan the kidney at 4 s intervals. A Sequoia 512 (Acuson, Mountain View CA) was used in the 1.5 MHz Cadence CPS mode with intermittent agent-clearance bursts at 4 s intervals. Kidneys were scanned transabdominally, or after laparotomy through a saline standoff. The Sequoia 512 probe was placed in contact with the kidney for one group. Definity (Lantheus Medical Imaging, N. Billerica, MA) was infused at 4 μl/kg/min (diluted 33:1 in saline) for 4 min during scanning. Results Blood-filled urinary tubules were evident on the kidney surface for all groups, except for the group with the probe in contact with the kidney. GCH was found by histology in 31.7 % ± 9.8 % of glomeruli in the center of the scan plane for 1.7 MPa transabdominal scanning and 1.5 % ± 2.9 % of glomeruli in sham samples (P<0.05). In addition, hematuria was detected after scanning, and tubular obstruction occurred in some nephrons. Conclusion Renal tissue damage was induced by CEDUS in the porcine model. This result, together with previous studies in rats, support an hypothesis that GCH would occur in humans from similar CEDUS. PMID:20876892
[Regression of glomerulosclerosis in a girl with C3 nephropathy].
Jarmoliński, Tomasz; Borucka, Barbara; Wozniak, Aldona
2005-01-01
Regression of glomerular sclerosis was documented in experimental models as a result of RAA system blocking and/or cyclosporin A (CsA) treatment. Here we present a case of a girl suffering from nephrotic syndrome (NS) in whom unusual healing of glomerular changes appeared. First time the girl was admitted to our department at the age of 4 year with 2 years history of steroid-dependent NS. Kidney biopsy studied in light microscopy revealed 11 glomeruli among which 5 were totally sclerosed and the others showed mesangial proliferation and segmental mesangial matrix expansion. Diffuse interstitial mononuclear cells infiltration was also visible. In fluorescence microscopy only granular C3 and fibrinogen deposits were seen. C3 nephropathy was diagnosed and cyclophosphamide therapy started. As no effects appeared, CsA was introduced together with angiotensin converting enzyme inhibitor (ACEI) enalapril for two years without any relapse during treatment. Prednisone was gradually reduced and finally stopped after a year. On the second biopsy performed to assess CsA nephrotoxicity among 16 glomeruli evaluated in light microscopy only 1 was sclerosed, while the others presented just mild mesangial proliferation. No interstitial changes were found. Fluorescence showed IgA and IgM added to glomerular C3 deposits. CsA was then stopped and after 4 months relapses and steroid-dependency appeared again, so CsA was reintroduced. Actually the girl is 8-year-old, remission of NS has been observed for six months. As a conclusion we would like to suggest that treatment with CsA and ACEI may cause glomerular healing even in a case of advanced glomerulosclerosis.
Odor Evoked Neural Oscillations in Drosophila Are Mediated by Widely Branching Interneurons
Tanaka, Nobuaki K.; Ito, Kei; Stopfer, Mark
2009-01-01
Stimulus-evoked oscillatory synchronization of neurons has been observed in a wide range of species. Here, we combined genetic strategies with paired intracellular and local field potential (LFP) recordings from the intact brain of Drosophila to study mechanisms of odor-evoked neural oscillations. We found common food odors at natural concentrations elicited oscillations in LFP recordings made from the mushroom body (MB), a site of sensory integration and analogous to the vertebrate pyriform cortex. The oscillations were reversibly abolished by application of the GABAa blocker picrotoxin. Intracellular recordings from local and projection neurons within the antennal lobe (AL, analogous to the olfactory bulb) revealed odor-elicited spikes and sub-threshold membrane potential oscillations that were tightly phase-locked to LFP oscillations recorded downstream in the MBs. These results suggested that, as in locusts, odors may elicit the oscillatory synchronization of AL neurons by means of GABAergic inhibition from local neurons (LNs). An analysis of the morphologies of genetically distinguished LNs revealed two populations of GABAergic neurons in the AL. One population of LNs innervated parts of glomeruli lacking terminals of receptor neurons, whereas the other branched more widely, innervating throughout the glomeruli, suggesting the two populations might participate in different neural circuits. To test the functional roles of these LNs, we used the temperature-sensitive dynamin mutant gene, shibire, to conditionally and reversibly block chemical transmission from each or both of these populations of LNs. We found only the more widely branching population of LNs is necessary for generating odor-elicited oscillations. PMID:19571150
Roselino, Ana Carolina; Hrncir, Michael; da Cruz Landim, Carminda; Giurfa, Martin; Sandoz, Jean-Christophe
2015-07-01
Among social insects, the stingless bees (Apidae, Meliponini), a mainly tropical group of highly eusocial bees, present an intriguing variety of well-described olfactory-dependent behaviors showing both caste- and sex-specific adaptations. By contrast, little is known about the neural structures underlying such behavioral richness or the olfactory detection and processing abilities of this insect group. This study therefore aimed to provide the first detailed description and comparison of the brains and primary olfactory centers, the antennal lobes, of the different members of a colony of the stingless bee Melipona scutellaris. Global neutral red staining, confocal laser scanning microscopy, and 3D reconstructions were used to compare the brain structures of males, workers, and virgin queens with a special emphasis on the antennal lobe. We found significant differences between both sexes and castes with regard to the relative volumes of olfactory and visual neuropils in the brain and also in the number and volume of the olfactory glomeruli. In addition, we identified one (workers, queens) and three or four (males) macroglomeruli in the antennal lobe. In both sexes and all castes, the largest glomerulus (G1) was located at a similar position relative to four identified landmark glomeruli, close to the entrance of the antennal nerve. This similarity in position suggests that G1s of workers, virgin queens, and males of M. scutellaris may correspond to the same glomerular entity, possibly tuned to queen-emitted volatiles since all colony members need this information. © 2015 Wiley Periodicals, Inc.
Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M
2017-04-01
Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Trouw, Leendert A.; Groeneveld, Tom W.L.; Seelen, Marc A.; Duijs, Jacques M.G.J.; Bajema, Ingeborg M.; Prins, Frans A.; Kishore, Uday; Salant, David J.; Verbeek, J. Sjef; Kooten, Cees van; Daha, Mohamed R.
2004-01-01
Anti-C1q autoantibodies are present in sera of patients with several autoimmune diseases, including systemic lupus erythematosus (SLE). Strikingly, in SLE the presence of anti-C1q is associated with the occurrence of nephritis. We have generated mouse anti–mouse C1q mAb’s and used murine models to investigate whether anti-C1q autoantibodies actually contribute to renal pathology in glomerular immune complex disease. Administration of anti-C1q mAb JL-1, which recognizes the collagen-like region of C1q, resulted in glomerular deposition of C1q and anti-C1q autoantibodies and mild granulocyte influx, but no overt renal damage. However, combination of JL-1 with a subnephritogenic dose of C1q-fixing anti–glomerular basement membrane (anti-GBM) antibodies enhanced renal damage characterized by persistently increased levels of infiltrating granulocytes, major histological changes, and increased albuminuria. This was not observed when a non–C1q-fixing anti-GBM preparation was used. Experiments with different knockout mice showed that renal damage was dependent not only on glomerular C1q and complement activation but also on Fcγ receptors. In conclusion, anti-C1q autoantibodies deposit in glomeruli together with C1q but induce overt renal disease only in the context of glomerular immune complex disease. This provides an explanation why anti-C1q antibodies are especially pathogenic in patients with SLE. PMID:15343386
Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse
2017-03-01
The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.
Karpuk, Nikolay; Hayar, Abdallah
2008-01-01
Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.
Higher HOMA-IR index and correlated factors of insulin resistance in patients with IgA nephropathy.
Yang, Yue; Wei, Ri-Bao; Wang, Yuan-da; Zhang, Xue-Guang; Rong, Na; Tang, Li; Chen, Xiang-Mei
2012-11-01
To investigate the index of homeostasis model of insulin resistance (HOMA-IR) in IgA nephropathy (IgAN) patients, and to explore the possible correlated factors contributing to insulin resistance (IR) within these patients. There were 255 IgAN patients and 45 membranous nephropathy (MN) patients in our database. We identified 89 IgAN subjects and 21 MN subjects without diabetes and undergoing glucocorticoid therapy for at least 6 months. Data regarding physical examination, blood chemistry and renal pathology were collected from 89 IgAN subjects and 21 MN subjects. Then 62 IgAN patients and 19 MN patients with chronic kidney disease (CKD) Stage 1 - 2 were selected for the comparison of HOMA-IR index, 89 IgAN patients were selected for multiple regression analysis to test for correlated factors of HOMA-IR index with IgAN patients. Comparison between IgAN and MN show that HOMA-IR index was significantly higher in IgAN patients with CKD Stage 1 - 2. After logarithmic transformation with urine protein (UPr), Ln(UPr) (b = 0.186, p = 0.008), eGFR (b = -0.005, p = 0.014), > 50% of glomeruli with mesangial hypercellularity (b = 0.285, p = 0.027) and body mass index (BMI) (b = 0.039, p = 0.008) were correlated factors of HOMA-IR index in the multiple regression analysis. IgAN patients had higher HOMA-IR index compared with MN in the stages of CKD 1 - 2. For IgAN patients, more UPr, lower eGFR, > 50% of glomeruli with mesangial hypercellularity and higher BMI were correlated with IR.
Lichtnekert, Julia; Kaverina, Natalya V.; Eng, Diana G.; Gross, Kenneth W.; Kutz, J. Nathan; Pippin, Jeffrey W.
2016-01-01
Because adult podocytes cannot proliferate and are therefore unable to self-renew, replacement of these cells depends on stem/progenitor cells. Although podocyte number is higher after renin-angiotensin-aldosterone system (RAAS) inhibition in glomerular diseases, the events explaining this increase are unclear. Cells of renin lineage (CoRL) have marked plasticity, including the ability to acquire a podocyte phenotype. To test the hypothesis that RAAS inhibition partially replenishes adult podocytes by increasing CoRL number, migration, and/or transdifferentiation, we administered tamoxifen to Ren1cCreERxRs-tdTomato-R CoRL reporter mice to induce permanent labeling of CoRL with red fluorescent protein variant tdTomato. We then induced experimental FSGS, typified by abrupt podocyte depletion, with a cytopathic antipodocyte antibody. RAAS inhibition by enalapril (angiotensin-converting enzyme inhibitor) or losartan (angiotensin-receptor blocker) in FSGS mice stimulated the proliferation of CoRL, increasing the reservoir of these cells in the juxtaglomerular compartment (JGC). Compared with water or hydralazine, RAAS inhibition significantly increased the migration of CoRL from the JGC to the intraglomerular compartment (IGC), with more glomeruli containing RFP+CoRL and, within these glomeruli, more RFP+CoRL. Moreover, RAAS inhibition in FSGS mice increased RFP+CoRL transdifferentiation in the IGC to phenotypes, consistent with those of podocytes (coexpression of synaptopodin and Wilms tumor protein), parietal epithelial cells (PAX 8), and mesangial cells (α8 integrin). These results show that in the context of podocyte depletion in FSGS, RAAS inhibition augments CoRL proliferation and plasticity toward three different glomerular cell lineages. PMID:27080979
Percutaneous ultrasound-guided renal biopsy: A Libyan experience
Mishra, A.; Tarsin, R.; ElHabbash, B.; Zagan, N.; Markus, R.; Drebeka, S.; AbdElmola, K.; Shawish, T.; Shebani, A.; AbdElmola, T.; ElUsta, A.; Ehtuish, E. F.
2010-01-01
This study was done to assess the safety and efficacy of ultrasound-guided percutaneous renal biopsy (PRB), to ascertain the risk factors for complications and determine the optimal period of observation. The radiologist (A.M.) at the National Organ Transplant Centre, Central Hospital, Tripoli, Libya, performed 86 PRBs between February 1, 2006, and January 31, 2008, using an automated biopsy gun with 16-gauge needle. Coagulation profile was done in all the patients. All patients were kept on strict bed rest for six hours post-procedure. Eighty six renal biopsies were performed on 78 patients referred from rheumatology department and eight post-kidney transplant recipients; 23 were males with age range 15 – 56 years and 63 females with age range 16 – 66 years. A mean of 17.5 glomeruli were present in each specimen. A glomerular yield of less than five glomeruli was seen in four biopsies. Class I lupus nephritis (LN) was seen in 1 patient, class II lupus nephritis in 7 patients, class III LN in 13 patients and class IV LN in 29 patients. All the eight renal allografts were diagnosed as acute tubular necrosis or acute interstitial rejection. The risk of post-biopsy bleeding was higher in women, older patients and higher PTT. The overall complication rate was 5.8%. Three complications were observed within six hours of biopsy. No late complication was seen. PRB under real-time ultrasound-guidance is a safe and efficacious procedure to establish the histological diagnosis and should be done as out-patient procedure. Observation time of six hours post-biopsy is optimal. PMID:20835320
1984-01-01
The glomerular epithelial polyanion is a specialized cell surface component found on renal glomerular epithelial cells (podocytes) that is rich in sialoprotein(s), as detected by staining with cationic dyes (colloidal iron, alcian blue) and wheat germ agglutinin (WGA). We have isolated rat glomeruli and analyzed their protein composition by SDS PAGE in 5-10% gradient gels. When the gels were stained with alcian blue or "Stains All," a single band with an apparent Mr of 140,000 was detected that also stained very prominently with silver, but not with Coomassie Blue. This band predominated in fluorograms of gels of isolated glomeruli that had been labeled in their sialic acid residues by periodate-[3H]borohydride. In lectin overlays, the 140-kilodalton (kd) band was virtually the only one that bound [125I]wheat germ agglutinin, and this binding could be prevented by predigestion with neuraminidase. [125I]Peanut lectin bound exclusively to the 140-kd band after neuraminidase treatment. An antibody was prepared that specifically recognizes only the 140-kd band by immunoprecipitation and immuneoverlay. By immunoperoxidase and immunogold techniques, it was localized to the surface coat of the glomerular epithelium and, less extensively, to that of endothelial cells. When analyzed (after electroelution from preparative SDS gels), the 140-kd band was found to contain approximately 20% hexose and approximately 4.5% sialic acid. These findings indicate that the 140-kd protein is the major sialoprotein of the glomerulus, and it is the only component of glomerular lysates with an affinity for cationic dyes and lectins identical to that defined histochemically for the epithelial polyanion in situ. Since this molecule is a major component of the cell coat or glycocalyx of the podocytes, we have called it "podocalyxin." PMID:6371025
Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C
1998-12-01
The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.
Oliveira, Vitor Antunes; Favero, Gaia; Stacchiotti, Alessandra; Giugno, Lorena; Buffoli, Barbara; de Oliveira, Claudia Sirlene; Lavazza, Antonio; Albanese, Massimo; Rodella, Luigi Fabrizio; Pereira, Maria Ester; Rezzani, Rita
2017-05-01
This work investigated the effects of mercury chloride (HgCl 2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18 th gestation day) and lactating (7 th lactation day) were injected once with HgCl 2 (5 mg/kg) or saline (controls). We observed that HgCl 2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl 2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl 2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl 2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl 2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017. © 2016 Wiley Periodicals, Inc.
Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes
Yuan, Zhi-xiang; Jia, Lu; Lim, Lee Yong; Lin, Ju-chun; Shu, Gang; Zhao, Ling; Ye, Gang; Liang, Xiao-xia; Ji, Hongming; Fu, Hua-lin
2017-01-01
Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios – 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) – of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN. PMID:28848346
Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes.
Yuan, Zhi-Xiang; Jia, Lu; Lim, Lee Yong; Lin, Ju-Chun; Shu, Gang; Zhao, Ling; Ye, Gang; Liang, Xiao-Xia; Ji, Hongming; Fu, Hua-Lin
2017-01-01
Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios - 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) - of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC 50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG 5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN.
Liu, Wei; Zhang, Yue; Liu, Shuxia; Liu, Qingjuan; Hao, Jun; Shi, Yonghong; Zhao, Song; Duan, Huijun
2013-06-01
Podocyte injury plays a crucial role in the development of diabetic nephropathy (DN), but its underlying mechanism remains poorly understood. Emerging evidences suggest that the cytoskeleton disruption is related to podocyte injury. The aim of this study was to investigate whether nestin, a cytoskeleton-associated intermediate filament protein, is involved in the development of DN. Rat diabetes was induced by intraperitoneal injection of streptozotocin. The renal histological changes were investigated by light microscopy and transmission electron microscopy. The location of nestin and vimentin in renal tissues was observed by immunohistochemistry. The protein or messenger RNA levels of nestin and cyclin-dependent kinase 5 (Cdk5) were detected by Western blot and real-time polymerase chain reaction. The relationship between nestin and vimentin was detected by co-immunoprecipitation. Compared with controls, diabetic rats showed significant characteristics of renal damage. The expression of nestin and vimentin in the glomeruli was increased at the early stage of diabetes, which then gradually decreased. Co-immunoprecipitation assays demonstrated that nestin disassembled with vimentin in diabetic rats. The expression of Cdk5 was increased in a time-dependent manner in diabetic rats. The degree of albuminuria in diabetic rats was negatively correlated with nestin and positively correlated with Cdk5. Roscovitine, a Cdk5 inhibitor, reduced the degradation of nestin. Moreover, podocyte injuries were significantly ameliorated by treatment with roscovitine. The intermediate filament protein nestin is associated with development of DN. Blockage of Cdk5 increases the level of nestin and attenuates renal damage, which would provide a useful target for DN therapy.
Suzuki, D; Miyata, T; Saotome, N; Horie, K; Inagi, R; Yasuda, Y; Uchida, K; Izuhara, Y; Yagame, M; Sakai, H; Kurokawa, K
1999-04-01
Advanced glycation end products (AGE) include a variety of protein adducts whose accumulation has been implicated in tissue damage associated with diabetic nephropathy (DN). It was recently demonstrated that among AGE, glycoxidation products, whose formation is closely linked to oxidation, such as carboxymethyllysine (CML) and pentosidine, accumulate in expanded mesangial matrix and nodular lesions in DN, in colocalization with malondialdehyde-lysine (MDA-lysine), a lipoxidation product, whereas pyrraline, another AGE structure whose deposition is rather independent from oxidative stress, was not found within diabetic glomeruli. Because CML, pentosidine, and MDA-lysine are all formed under oxidative stress by carbonyl amine chemistry between protein amino group and carbonyl compounds, their colocalization suggests a local oxidative stress and increased protein carbonyl modification in diabetic glomerular lesions. To address this hypothesis, human renal tissues from patients with DN or IgA nephropathy were examined with specific antibodies to characterize most, if not all, carbonyl modifications of proteins by autoxidation products of carbohydrates, lipids, and amino acids: CML (derived from carbohydrates, lipids, and amino acid), pentosidine (derived from carbohydrates), MDA-lysine (derived from lipids), 4-hydroxynonenal-protein adduct (derived from lipids), and acrolein-protein adduct (derived from lipids and amino acid). All of the protein adducts were identified in expanded mesangial matrix and nodular lesions in DN. In IgA nephropathy, another primary glomerular disease leading to end-stage renal failure, despite positive staining for MDA-lysine and 4-hydroxynonenal-protein adduct in the expanded mesangial area, CML, pentosidine, and acrolein-protein adduct immunoreactivities were only faint in glomeruli. These data suggest a broad derangement in nonenzymatic biochemistry in diabetic glomerular lesions, and implicate an increased local oxidative stress and carbonyl modification of proteins in diabetic glomerular tissue damage ("carbonyl stress").
2012-01-01
Background MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. Case presentation We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Conclusions Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves. PMID:22353239
Piccoli, Giorgina Barbara; Bonino, Laura Davico; Campisi, Paola; Vigotti, Federica Neve; Ferraresi, Martina; Fassio, Federica; Brocheriou, Isabelle; Porpiglia, Francesco; Restagno, Gabriella
2012-02-21
MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves.
Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H
2008-08-01
Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.
McNamara, Bridgette J; Diouf, Boucar; Hughson, Michael D; Hoy, Wendy E; Bertram, John F
2009-05-01
Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20- 30 years and 12 subjects aged 50-70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. IGVs ranged from 1.31 x 10(6) microm3 to 12.40 x 10(6) microm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (> or =1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects.
Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.
Hong, Quan; Zhang, Lu; Das, Bhaskar; Li, Zhengzhe; Liu, Bohan; Cai, Guangyan; Chen, Xiangmei; Chuang, Peter Y; He, John Cijiang; Lee, Kyung
2018-06-01
Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Published by Elsevier Inc.
Reno-protective effects of propolis on gentamicin-induced acute renal toxicity in swiss albino mice.
Aldahmash, Badr Abdullah; El-Nagar, Doaa Mohamed; Ibrahim, Khalid Elfakki
Kidney is a vital organ which plays an important and irreplaceable role in detoxification and removal of xenobiotics. And therefore is vulnerable to develop various forms of injuries. Hence, making it immensely important to search for natural reno-protective compounds. This study therefore, aims to evaluate the reno-protective properties of propolis against gentamicin induced renal toxicity in mice. Three groups of 10 male mice each were used for this study. First group served as control, the second group (Gm group) was administered orally 80mg/kg body weight gentamicin for 7 days, and the third group (GmP group) was administered same dose of gentamicin with propolis (500mg/kg body weight) for 7 days. Various parameters were used to study the renal toxicity. Gentamicin caused significant renal damage as evident by the rise in BUN levels, diminished glomeruli hypocellularity, moderately dilated tubules, and mild loss of brush border, severe infiltration, extensive tubular degeneration and presence of tubular cast. Histochemistry results show presence of collagen and reticular fibres. Immunohistochemical reactions show kidney injury (Kim-1 gene-expression), oxidative stress (MDA gene-expression), and an increase in apoptosis (caspase-3 gene-expression). Co-administration of propolis with gentamicin showed significant decrease in BUN levels, appearance of healthy glomeruli with normal cellularity, reduction of tubular injury, decrease of collagen and reticular fibres deposition, reduction of apoptosis, kidney injury and oxidative stress. Results presented in this study clearly show the reno-protective role of propolis against gentamicin-induced toxicity on mice kidney. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
2012-01-01
Background Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede) Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. Results Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. Conclusion A split of the afferents from the (first) pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed. PMID:22214384
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
Bourne, Jennifer N; Schoppa, Nathan E
2017-02-15
Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Serotonin increases synaptic activity in olfactory bulb glomeruli
Brill, Julia; Shao, Zuoyi; Puche, Adam C.; Wachowiak, Matt
2016-01-01
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822
Muscarinic Receptors Modulate Dendrodendritic Inhibitory Synapses to Sculpt Glomerular Output
Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus
2015-01-01
Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. PMID:25855181
Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.
Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T
2015-04-08
Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.
Serotonin increases synaptic activity in olfactory bulb glomeruli.
Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T
2016-03-01
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.
Boini, Krishna M.; Xia, Min; Koka, Saisudha; Gehr, Todd W.; Li, Pin-Lan
2016-01-01
Ceramide has been reported to initiate inflammasome formation and activation in obesity and different pathological conditions. The present study was performed to explore the role of acid sphingomyelinase (Asm) in the development of high fat diet (HFD)-induced inflammasome and activation and consequent glomerular injury. Asm knockout (Asm−/−) and wild type (Asm+/+) mice with or without Asm short hairpin RNA (shRNA) transfection were fed a HFD or normal chow for 12 weeks to produce obesity and associated glomerular injury. HFD significantly enhanced the Asm activity, ceramide production, colocalization of Nlrp3 (Nod-like receptor protein 3) with ASC (apoptosis-associated speck-like protein) or Caspase-1, NADPH-dependent superoxide (O2•−) production in glomeruli of Asm+/+mice than in control diet-fed mice. However, such HFD-induced increases in Asm activity, ceramide production, colocalization of Nlrp3 with ASC or Caspase-1, superoxide (O2•−) production was attenuated in Asm−/− or Asm shRNA-transfected wild-type mice. In consistency with decreased inflammasome formation, the caspase-1 activity and IL-1β production was significantly attenuated in Asm−/− or Asm shRNA-transfected wild-type mice fed a HFD. Morphological examinations showed that HFD-induced profound injury in glomeruli of Asm+/+ mice which was markedly attenuated in Asm−/− mice. The decreased glomerular damage index in Asm−/− mice was accompanied by attenuated proteinuria. Fluorescent immunohistochemical examinations using podocin as a podocyte marker showed that inflammasome formation induced by the HFD were mostly located in podocytes as demonstrated by co-localization of podocin with Nlrp3. In conclusion, these observations disclose a pivotal role of Asm in the HFD-induced inflammasome formation and consequent glomerular inflammation and injury. PMID:26980705
Induction of passive Heymann nephritis in complement component 6-deficient PVG rats.
Spicer, S Timothy; Tran, Giang T; Killingsworth, Murray C; Carter, Nicole; Power, David A; Paizis, Kathy; Boyd, Rochelle; Hodgkinson, Suzanne J; Hall, Bruce M
2007-07-01
Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.
Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; González-Ramírez, Ricardo; Namorado-Tónix, Carmen; Pedraza-Chaverri, José; Reyes, Jose L
2017-01-01
Hyperglycemia in diabetes alters tight junction (TJ) proteins in the kidney. We evaluated the participation of aldosterone (ALD), and the effect of spironolactone (SPL), a mineralocorticoid receptor antagonist, on the expressions of claudin-2, -4, -5 and -8, and occludin in glomeruli, proximal and distal tubules isolated from diabetic rats. Type 1 diabetes was induced in female Wistar rats by a single tail vein injection of streptozotocin (STZ), and SPL was administrated daily by gavage, from days 3-21. Twenty-one days after STZ injection the rats were sacrificed. In diabetic rats, the serum ALD levels were increased, and SPL-treatment did not have effect on these levels or in hyperglycemia, however, proteinuria decreased in SPL-treated diabetic rats. Glomerular damage, evaluated by nephrin and Wilm's tumor 1 (WT1) protein expressions, and proximal tubular damage, evaluated by kidney injury molecule 1 (Kim-1) and heat shock protein 72 kDa (Hsp72) expressions, were ameliorated by SPL. Also, SPL prevented decrement in claudin-5 in glomeruli, and claudin-2 and occludin in proximal tubules by decreasing oxidative stress, evaluated by superoxide anion (O2●-) production, and oxidative stress markers. In distal tubules, SPL ameliorated increase in mRNA, protein expression, and phosphorylation in threonine residues of claudin-4 and -8, through a serum and glucocorticoid-induced kinase 1 (SGK1), and with-no-lysine kinase 4 (WNK4) signaling pathway. In conclusion, this is the first study that demonstrates that ALD modulates the expression of renal TJ proteins in diabetes, and that the blockade of its actions with SPL, may be a promising therapeutic strategy to prevent alterations of TJ proteins in diabetic nephropathy.
Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.
Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise
2011-08-01
In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.
Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis.
Riser, B L; Cortes, P
2001-01-01
Connective tissue growth factor (CTGF), a member of the closely related CCN family of cytokines appears to be fibrotic in skin. To determine whether CTGF is implicated in diabetic glomerulosclerosis we studied cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to rhCTGF significantly increased fibronectin and collagen type I secretion. Further, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36-38 kDa). However, exposure to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in glomerulosclerosis, markedly induced the expression of CTGF transcripts. With all but mechanical strain there was a concomitant stimulation of CTGF protein secretion. TGF-beta also induced abundant quantities of a small molecular weight form of CTGF (18 kDa). The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta neutralizing antibody blocked this stimulation. In vivo studies using quantitative RT-PCR demonstrated that while CTGF transcripts were low in the glomeruli of control mice, expression was increased 27-fold after approximately 3.5 months of diabetes. These changes occurred early in diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (2-fold) observed in whole kidney cortices indicted that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation in both diabetic and non-diabetic glomerulosclerosis, acting downstream of TGF-beta.
Protein S Protects against Podocyte Injury in Diabetic Nephropathy.
Zhong, Fang; Chen, Haibing; Xie, Yifan; Azeloglu, Evren U; Wei, Chengguo; Zhang, Weijia; Li, Zhengzhe; Chuang, Peter Y; Jim, Belinda; Li, Hong; Elmastour, Firas; Riyad, Jalish M; Weber, Thomas; Chen, Hongyu; Wang, Yongjun; Zhang, Aihua; Jia, Weiping; Lee, Kyung; He, John C
2018-05-01
Background Diabetic nephropathy (DN) is a leading cause of ESRD in the United States, but the molecular mechanisms mediating the early stages of DN are unclear. Methods To assess global changes that occur in early diabetic kidneys and to identify proteins potentially involved in pathogenic pathways in DN progression, we performed proteomic analysis of diabetic and nondiabetic rat glomeruli. Protein S (PS) among the highly upregulated proteins in the diabetic glomeruli. PS exerts multiple biologic effects through the Tyro3, Axl, and Mer (TAM) receptors. Because increased activation of Axl by the PS homolog Gas6 has been implicated in DN progression, we further examined the role of PS in DN. Results In human kidneys, glomerular PS expression was elevated in early DN but suppressed in advanced DN. However, plasma PS concentrations did not differ between patients with DN and healthy controls. A prominent increase of PS expression also colocalized with the expression of podocyte markers in early diabetic kidneys. In cultured podocytes, high-glucose treatment elevated PS expression, and PS knockdown further enhanced the high-glucose-induced apoptosis. Conversely, PS overexpression in cultured podocytes dampened the high-glucose- and TNF- α -induced expression of proinflammatory mediators. Tyro3 receptor was upregulated in response to high glucose and mediated the anti-inflammatory response of PS. Podocyte-specific PS loss resulted in accelerated DN in streptozotocin-induced diabetic mice, whereas the transient induction of PS expression in glomerular cells in vivo attenuated albuminuria and podocyte loss in diabetic OVE26 mice. Conclusions Our results support a protective role of PS against glomerular injury in DN progression. Copyright © 2018 by the American Society of Nephrology.
Mixed organic solvents induce renal injury in rats.
Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong
2012-01-01
To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.
Mixed Organic Solvents Induce Renal Injury in Rats
Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong
2012-01-01
To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287
NITROGEN RETENTION IN THE BLOOD IN EXPERIMENTAL ACUTE NEPHRITIS OF THE CAT
Folin, Otto; Karsner, Howard T.; Denis, W.
1912-01-01
It will be seen that uranium nephritis, which involves both tubules and glomeruli, the former more markedly than the latter, produces a marked accumulation of nitrogen in the blood. Chromate nephritis, which involves almost exclusively the tubules, produces only moderate retention of nitrogen. Cantharidin nephritis which involves both tubules and glomeruli, the latter more severely than does uranium, produces a marked accumulation of nitrogen, beginning early and persisting for a considerable period. The experiments were controlled by testing the blood of normal cats kept under the same conditions, these animals showing only slight variations from day to day. This general statement is in accordance with the physiological classification of these nephritides except that the retention in uranium occurs at an early stage, where, according to the physiological studies of Schlayer and his associates, and of Pearce, Hill, and Eisenbrey, the vascular changes have not as yet appeared. It must be noticed that in the three types of nephritis that form the subject of this investigation, anatomical study shows the glomerulus to be distinctly involved in the two forms where accumulation of nitrogen in the blood is most marked, a condition indicating that although almost pure tubular involvement produces only moderate accumulation, the additional involvement of the glomerulus is extremely important in leading to a retention of nitrogenous waste products. The accumulation of non-protein nitrogen in the blood and tissues is not large when compared with the total intake or elimination of nitrogen, and consequently it is practically impossible by means of ordinary nitrogen equilibrium experiments to demonstrate the fact of the retention, to say nothing of determining the degree of accumulation of waste products accompanying nephritis. That both can be demonstrated by the method employed in this research is clearly shown by the figures recorded ablove. PMID:19867613
NITROGEN RETENTION IN THE BLOOD IN EXPERIMENTAL ACUTE NEPHRITIS OF THE CAT.
Folin, O; Karsner, H T; Denis, W
1912-12-01
It will be seen that uranium nephritis, which involves both tubules and glomeruli, the former more markedly than the latter, produces a marked accumulation of nitrogen in the blood. Chromate nephritis, which involves almost exclusively the tubules, produces only moderate retention of nitrogen. Cantharidin nephritis which involves both tubules and glomeruli, the latter more severely than does uranium, produces a marked accumulation of nitrogen, beginning early and persisting for a considerable period. The experiments were controlled by testing the blood of normal cats kept under the same conditions, these animals showing only slight variations from day to day. This general statement is in accordance with the physiological classification of these nephritides except that the retention in uranium occurs at an early stage, where, according to the physiological studies of Schlayer and his associates, and of Pearce, Hill, and Eisenbrey, the vascular changes have not as yet appeared. It must be noticed that in the three types of nephritis that form the subject of this investigation, anatomical study shows the glomerulus to be distinctly involved in the two forms where accumulation of nitrogen in the blood is most marked, a condition indicating that although almost pure tubular involvement produces only moderate accumulation, the additional involvement of the glomerulus is extremely important in leading to a retention of nitrogenous waste products. The accumulation of non-protein nitrogen in the blood and tissues is not large when compared with the total intake or elimination of nitrogen, and consequently it is practically impossible by means of ordinary nitrogen equilibrium experiments to demonstrate the fact of the retention, to say nothing of determining the degree of accumulation of waste products accompanying nephritis. That both can be demonstrated by the method employed in this research is clearly shown by the figures recorded ablove.
Low-level laser therapy improves crescentic glomerulonephritis in rats.
Yamato, Masanori; Kaneda, Akira; Kataoka, Yosky
2013-07-01
Low-level laser therapy (LLLT) can reduce inflammation in a variety of clinical conditions, including trauma, postherpetic neuralgia, and rheumatoid arthritis. However, the effect of LLLT on internal organs has not been elucidated. The goal of the present study was to investigate the anti-inflammatory effect of daily external LLLT in an animal model of crescentic glomerulonephritis. Crescentic glomerulonephritis was induced in male Wister Kyoto rats by intravenous injection of antibody for glomerular basement membrane (GBM). The rats were irradiated with a low-reactive level diode laser with an infrared wavelength of 830 nm from the shaved skin surface once a day for 14 days (irradiation spot size on the skin surface, 2.27 cm(2); power intensity, 880 mW/cm(2); irradiation mode, continuous mode; irradiation time, 250 s; energy, 500 J; energy density, 220 J/cm(2)). After laser irradiation for 14 days, animals were killed, and the extent of inflammation was evaluated. Expression of gene for inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) was assessed by reverse transcription polymerase chain reaction. Crescent formation in glomeruli and infiltration of macrophages and lymphocytes were assessed by histochemical observation. Injection of anti-GBM antibody induced severe glomerulonephritis with crescent formation. Histological observations indicated that LLLT suppressed crescent formation and infiltration of ED1+ macrophages and CD8+ lymphocytes into the glomeruli. LLLT attenuated the levels of IL-1β and TNF-α messenger RNA in the renal cortex. Externally directed LLLT suppresses the activity of rat anti-GBM crescentic glomerulonephritis in rats. LLLT has the potential to be used for direct treatment of glomerulonephritis.
Kidney disease in beagles injected with polonium-210
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruenger, F.W.; Lloyd, R.D.; Taylor, G.N.
An unusually high incidence of kidney disease (tubular degeneration and necrosis with fibrous replacement) was observed among 24 beagles injected at about 5 years of age with 116 or 329 kBq 226Ra kg-1 but not among an additional 10 beagles given about 39 kBq 226Ra kg-1. This 226Ra solution also contained 210Pb, 210Bi, and 210Po. To determine whether the kidney disease was related to the radiation from 226Ra and its short-lived progeny or to the alpha radiation from 210Po, 2 beagles about 7 years of age were injected with 451 kBq 226Ra kg-1 of 210Po citrate. Measurements of polonium retentionmore » in the kidneys of 4 additional beagles given 210Bi citrate enabled us to model the retention of these emitters in the dog kidney and to estimate the kidney dose from the alpha radiation of 210Po following injection of either 226Ra + 210Bi + 210Po or 210Po only. Autoradiography revealed that almost equal concentrations of 210Po were in the tubular epithelium and/or its basement membrane and in the glomeruli, but very little of the 210Bi deposited in kidney tissue was present in the glomeruli. Radiation damage to the kidneys similar to that observed previously in beagles given 226Ra solutions that also contained 210Bi and 210Po was seen among the beagles given 210Po but not in the dogs given purified 226Ra. The analysis of these data indicated that the relatively high incidence of kidney disease among the mature beagles injected with 226Ra and its accompanying 210Bi and 210Po resulted from alpha irradiation of the kidneys by the substantial amount of 210Po that was in the injection solution.« less
Zheng, Xiaomin; Liang, Liang; Hei, Changchun; Yang, Wenjuan; Zhang, Tingyuan; Wu, Kai; Qin, Yi; Chang, Qing
2018-04-17
Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABA A receptor alpha5 subunit (α5GABA A R) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.
ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.
Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M
2015-03-01
This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P < 0.05). High-salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor-selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high-salt diet. In addition, chronic infusion of C57BL6/J mice with a subpressor dose of ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Pathology and diagnosis of renal non-AL amyloidosis.
Sethi, Sanjeev; Theis, Jason D
2018-06-01
Renal amyloidosis is characterized by acellular Congo red positive deposits in the glomeruli, interstitium and/or arteries. Light chain restriction on immunofluorescence studies is present in AL-amyloidosis, the most common type of amyloidosis involving the kidney. The detection of Congo red positive deposits coupled with negative immunofluorescence studies is highly suggestive of non-AL amyloidosis. Some of the non-AL amyloidosis are common while others are relatively rare. The clinical features, laboratory and renal pathology findings are helpful in the diagnosis and typing of non-AL amyloidosis. Thus, ALECT2 amyloidosis is characterized by diffuse cortical interstitial amyloid deposits, AA amyloidosis shows vascular deposits in addition to the glomerular deposits, AFib amyloidosis is characterized by massive amyloid accumulation limited to the glomeruli resulting in the obliteration of glomerular architecture, AApoA1 and AApoAIV are characterized by large amyloid deposits restricted to the medulla, and AGel shows swirling patterns of amyloid fibrils on electron microscopy. While light microscopy is very helpful, accurate typing of non-AL amyloidosis then requires immunohistochemical or laser microdissection/mass spectrometry studies of the Congo red positive deposits. Immunohistochemical studies are available for some of the non-AL amyloidosis. On the other hand, mass spectrometry analysis is a one stop methodology for confirmation and typing of amyloidosis. The diagnosis and typing of amyloidosis by mass spectrometry is based on finding the signature amyloid peptides, apolipoprotein E and serum amyloid-P component, followed by detection of precursor amyloidogenic protein such as LECT2, fibrinogen-α, gelsolin, etc. To, summarize, non-AL amyloidosis is a group of amyloidosis with distinctive clinical, laboratory and renal pathology findings. Typing of the amyloidosis is best performed using mass spectrometry methodology. Accurate typing of non-AL amyloidosis is imperative for correct management, prognosis, and genetic counseling.
Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings
NASA Technical Reports Server (NTRS)
Cox, A. B.; Kraft, L. M.
1984-01-01
For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.
Generation of a Three-Dimensional Kidney Structure from Pluripotent Stem Cells.
Yoshimura, Yasuhiro; Taguchi, Atsuhiro; Nishinakamura, Ryuichi
2017-01-01
The kidney is a vital organ that has an important role in the maintenance of homeostasis by fluid volume regulation and waste product excretion. This role cannot be performed without the three-dimensional (3D) structure of the kidney. Therefore, it is important to generate the 3D structure of the kidney when inducing functional kidney tissue or the whole organ from pluripotent stem cells. In this chapter, we describe the detailed methods to induce kidney progenitor cells from pluripotent stem cells, which are based on embryological development. We also provide a method to generate 3D kidney tissue with vascularized glomeruli upon transplantation.
Keeping their distance? Odor response patterns along the concentration range
Strauch, Martin; Ditzen, Mathias; Galizia, C. Giovanni
2012-01-01
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations. PMID:23087621
Asymptomatic proteinuria. Clinical significance.
Papper, S
1977-09-01
Patients with asymptomatic proteinuria have varied reasons for the proteinuria and travel diverse courses. In the individual with normal renal function and no systemic cause, ie, idiopathic asymptomatic proteinuria, the outlook is generally favorable. Microscopic hematuria probably raises some degree of question about prognosis. The kidney shows normal glomeruli, subtle changes, or an identifiable lesion. The initial approach includes a clinical and laboratory search for systemic disease, repeated urinalyses, quantitative measurements of proteinuria, determination of creatinine clearance, protein electrophoresis where indicated, and intravenous pyelography. The need for regularly scheduled follow-up evaluation is emphasized. Although the initial approach need not include renal biopsy, a decline in creatinine clearance, an increase in proteinuria, or both are indications for biopsy and consideration of drug therapy.
Crescentic Glomerulonephritis in a Polar Bear (Ursus maritimus)
BABA, Hiroshi; KUDO, Tomoo; MAKINO, Yoshinori; MOCHIZUKI, Yasumasa; TAKAGI, Takayo; UNE, Yumi
2013-01-01
ABSTRACT Spontaneous crescentic glomerulonephritis (CrGN) in animals has only been reported in dog and sheep. We report the pathological features of CrGN in a 17-year-old male polar bear that died due to renal failure. Histologically, the lesions were characterized by fibrocellular crescents, adhesion between Bowman’s capsule and the glomerular capillary tuft and an increase in the mesangial matrix in glomeruli. The proliferating cells in the crescent were partly immunopositive for cytokeratin and intensely positive for vimentin, WT-1 and α-smooth muscle actin, suggesting they originated from parietal epithelial cells. Ultrastructually, thickening of the glomerular basement membrane and loss of epithelial cell foot processes were observed with electron-dense deposits. PMID:23856758
Crescentic glomerulonephritis in a polar bear (Ursus maritimus).
Baba, Hiroshi; Kudo, Tomoo; Makino, Yoshinori; Mochizuki, Yasumasa; Takagi, Takayo; Une, Yumi
2013-11-01
Spontaneous crescentic glomerulonephritis (CrGN) in animals has only been reported in dog and sheep. We report the pathological features of CrGN in a 17-year-old male polar bear that died due to renal failure. Histologically, the lesions were characterized by fibrocellular crescents, adhesion between Bowman's capsule and the glomerular capillary tuft and an increase in the mesangial matrix in glomeruli. The proliferating cells in the crescent were partly immunopositive for cytokeratin and intensely positive for vimentin, WT-1 and α-smooth muscle actin, suggesting they originated from parietal epithelial cells. Ultrastructually, thickening of the glomerular basement membrane and loss of epithelial cell foot processes were observed with electron-dense deposits.
[Rapidly progressive glomerulonephritis: a diagnostic and therapeutic emergency].
Halfon, Matthieu; Teta, Daniel; Rotman, Samuel; Pruijm, Menno; Humbert, Antoine
2014-02-26
Rapidly progressive glomerulonephritis (RPG) is a rare clinical syndrome characterized by kidney damage that can lead to irreversible kidney failure. RPG can be caused by primary glomerular disease or can be part of a systemic autoimmune disorder. All RPG have a similar pathophysiology (proliferation of cells in Bowman's capsule and formation of crescents) and clinical evolution (rapidly progressive kidney failure with proteinuria and an active urine sediment). Immunosuppressive therapy and sometimes plasma exchanges are required. Overall- and kidney survival are closely linked to the blood creatinine level at presentation, the percentage of damaged glomeruli, and to the underlying cause. RPG is therefore a diagnostic and therapeutic emergency that needs quick referral to a nephrologist.
Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni
2017-01-01
CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability. PMID:29155846
RASH, JOHN E.; DAVIDSON, KIMBERLY G. V.; KAMASAWA, NAOMI; YASUMURA, THOMAS; KAMASAWA, MASAMI; ZHANG, CHUNBO; MICHAELS, ROBIN; RESTREPO, DIEGO; OTTERSEN, OLE P.; OLSON, CARL O.; NAGY, JAMES I.
2006-01-01
Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at “mixed” glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3′-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli. PMID:16841170
van Setten, P A; van Hinsbergh, V W; van den Heuvel, L P; Preyers, F; Dijkman, H B; Assmann, K J; van der Velden, T J; Monnens, L A
1998-06-01
The epidemic form of the hemolytic uremic syndrome (HUS) in children is hallmarked by endothelial cell damage, most predominantly displayed by the glomerular capillaries. The influx of mononuclear (MO) and polymorphonuclear cells (PMNs) into the glomeruli may be an important event in the initiation, prolongation, and progression of glomerular endothelial cell damage in HUS patients. The molecular mechanisms for the recruitment of these leukocytes into the kidney are unclear, but monocyte chemoattractant protein-1 (MCP-1) and IL-8 are suggested to be prime candidates. In this study, we analyzed the presence of both chemokines in 24-h urinary (n = 15) and serum (n = 14) samples of HUS children by specific ELISAs. Furthermore, kidney biopsies of three different HUS children were examined for MO and PMN cell infiltration by histochemical techniques and electron microscopy. Whereas the chemokines MCP-1 and IL-8 were present in only very limited amounts in urine of 17 normal control subjects, serial samples of HUS patients demonstrated significantly elevated levels of both chemokines. HUS children with anuria showed higher initial and maximum chemokine levels than their counterparts without anuria. A strong positive correlation was observed between urinary MCP-1 and IL-8 levels. Whereas initial serum IL-8 levels were significantly increased in HUS children, serum MCP-1 levels were only slightly elevated compared with serum MCP-1 in control children. No correlation was found between urinary and serum chemokine concentrations. Histologic and EM studies of HUS biopsy specimens clearly showed the presence of MOs and to a lesser extent of PMNs in the glomeruli. The present data suggest an important local role for MOs and PMNs in the process of glomerular endothelial-cell damage. The chemokines MCP-1 and IL-8 may possibly be implicated in the pathogenesis of HUS through the recruitment and activation of MOs and PMNs, respectively.
STAT3 inhibition attenuates the progressive phenotypes of Alport syndrome mouse model.
Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kamura, Misato; Kojima, Haruka; Fukuda, Ryosuke; Motomura, Keishi; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Takeo, Toru; Nakagata, Naomi; Shuto, Tsuyoshi; Kai, Hirofumi
2018-02-01
Alport syndrome (AS) is a hereditary, progressive nephritis caused by mutation of type IV collagen. Previous studies have shown that activation of signal transducer and activator of transcription 3 (STAT3) exacerbates other renal diseases, but whether STAT3 activation exacerbates AS pathology is still unknown. Here we aim to investigate the involvement of STAT3 in the progression of AS. Phosphorylated STAT3 expression was assessed by immunoblotting analysis of kidneys and glomeruli of an AS mouse model (Col4a5 G5X mutant). To determine the effect of blocking STAT3 signaling, we treated AS mice with the STAT3 inhibitor stattic (10 mg/kg i.p., three times per week for 10 weeks; n = 10). We assessed the renal function [proteinuria, blood urea nitrogen (BUN), serum creatinine] and analyzed the glomerular injury score, fibrosis and inflammatory cell invasion by histological staining. Moreover, we analyzed the gene expression of nephritis-associated molecules. Phosphorylated STAT3 was upregulated in AS kidneys and glomeruli. Treatment with stattic ameliorated the progressive renal dysfunction, such as increased levels of proteinuria, BUN and serum creatinine. Stattic also significantly suppressed the gene expression levels of renal injury markers (Lcn2, Kim-1), pro-inflammatory cytokines (Il-6, KC), pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) and Mmp9. Stattic treatment decreased the renal fibrosis congruently with the decrease of transforming growth factor beta (TGF-β) protein and increase of antifibrosis-associated markers p-Smad1, 5 and 8, which are negative regulators of TGF-β signaling. STAT3 inhibition significantly ameliorated the renal dysfunction in AS mice. Our finding identifies STAT3 as an important regulator in AS progression and provides a promising therapeutic target for AS. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Barisoni, Laura; Troost, Jonathan P; Nast, Cynthia; Bagnasco, Serena; Avila-Casado, Carmen; Hodgin, Jeffrey; Palmer, Matthew; Rosenberg, Avi; Gasim, Adil; Liensziewski, Chrysta; Merlino, Lino; Chien, Hui-Ping; Chang, Anthony; Meehan, Shane M; Gaut, Joseph; Song, Peter; Holzman, Lawrence; Gibson, Debbie; Kretzler, Matthias; Gillespie, Brenda W; Hewitt, Stephen M
2016-07-01
The multicenter Nephrotic Syndrome Study Network (NEPTUNE) digital pathology scoring system employs a novel and comprehensive methodology to document pathologic features from whole-slide images, immunofluorescence and ultrastructural digital images. To estimate inter- and intra-reader concordance of this descriptor-based approach, data from 12 pathologists (eight NEPTUNE and four non-NEPTUNE) with experience from training to 30 years were collected. A descriptor reference manual was generated and a webinar-based protocol for consensus/cross-training implemented. Intra-reader concordance for 51 glomerular descriptors was evaluated on jpeg images by seven NEPTUNE pathologists scoring 131 glomeruli three times (Tests I, II, and III), each test following a consensus webinar review. Inter-reader concordance of glomerular descriptors was evaluated in 315 glomeruli by all pathologists; interstitial fibrosis and tubular atrophy (244 cases, whole-slide images) and four ultrastructural podocyte descriptors (178 cases, jpeg images) were evaluated once by six and five pathologists, respectively. Cohen's kappa for inter-reader concordance for 48/51 glomerular descriptors with sufficient observations was moderate (0.40
Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico
2017-01-01
CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.
McNamara, Bridgette J.; Diouf, Boucar; Hughson, Michael D.; Hoy, Wendy E.; Bertram, John F.
2009-01-01
Background. Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). Methods. IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20– 30 years and 12 subjects aged 50–70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. Results. IGVs ranged from 1.31 × 106 μm3 to 12.40 × 106 μm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (≥1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. Conclusion. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects. PMID:19028752
Edwards, A; Daniels, B S; Deen, W M
1997-01-01
The filtration rates for water and a polydisperse mixture of Ficoll across films of isolated glomerular basement membrane (GBM) were measured to characterize convective transport across this part of the glomerular capillary wall. Glomeruli were isolated from rat kidneys and the cells were removed by detergent lysis, leaving a preparation containing almost pure GBM that could be consolidated into a layer at the base of a small ultrafiltration cell. A Ficoll mixture with Stokes-Einstein radii ranging from about 2.0 to 7.0 nm was labeled with fluorescein, providing a set of rigid, spherical test macromolecules with little molecular charge. Filtration experiments were performed at two physiologically relevant hydraulic pressure differences (delta P), 35 and 60 mmHg. The sieving coefficient (filtrate-to-retentate concentration ratio) for a given size of Ficoll tended to be larger at 35 than at 60 mmHg, the changes being greater for the smaller molecules. The Darcy permeability also varied inversely with pressure, averaging 1.48 +/- 0.10 nm2 at 35 mmHg and 0.82 +/- 0.07 nm2 at 60 mmHg. Both effects could be explained most simply by postulating that the intrinsic permeability properties of the GBM change in response to compression. The sieving data were consistent with linear declines in the hindrance factors for convection and diffusion with increasing pressure, and correlations were derived to relate those hindrance factors to molecular size and delta P. Comparisons with previous Ficoll sieving data for rats in vivo suggest that the GBM is less size-restrictive than the cell layers, but that its contribution to the overall size selectivity of the barrier is not negligible. Theoretical predictions of the Darcy permeability based on a model in which the GBM is a random fibrous network consisting of two populations of fibers were in excellent agreement with the present data and with ultrastructural observations in the literature.
Yoshida, Yutaka; Miyazaki, Kenji; Kamiie, Junichi; Sato, Masao; Okuizumi, Seiji; Kenmochi, Akihisa; Kamijo, Ken'ichi; Nabetani, Takuji; Tsugita, Akira; Xu, Bo; Zhang, Ying; Yaoita, Eishin; Osawa, Tetsuo; Yamamoto, Tadashi
2005-03-01
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.
GLUT-1 overexpression: Link between hemodynamic and metabolic factors in glomerular injury?
Gnudi, Luigi; Viberti, GianCarlo; Raij, Leopoldo; Rodriguez, Veronica; Burt, Davina; Cortes, Pedro; Hartley, Barry; Thomas, Stephen; Maestrini, Sabrina; Gruden, Gabriella
2003-07-01
Mesangial matrix deposition is the hallmark of hypertensive and diabetic glomerulopathy. At similar levels of systemic hypertension, Dahl salt-sensitive but not spontaneously hypertensive rats (SHR) develop glomerular hypertension, which is accompanied by upregulation of transforming growth factor beta1 (TGF-beta1), mesangial matrix expansion, and sclerosis. GLUT-1 is ubiquitously expressed and is the predominant glucose transporter in mesangial cells. In mesangial cells in vitro, GLUT-1 overexpression increases basal glucose transport, resulting in excess fibronectin and collagen production. TGF-beta1 has been shown to upregulate GLUT-1 expression. We demonstrated that in hypertensive Dahl salt-sensitive (S) rats fed 4% NaCl (systolic blood pressure [SBP]: 236+/-9 mm Hg), but not in similarly hypertensive SHR (SBP: 230+/-10 mm Hg) or their normotensive counterparts (Dahl S fed 0.5% NaCl, SBP: 145+/-5 mm Hg; and Wistar-Kyoto, SBP: 137+/-3 mm Hg), there was an 80% upregulation of glomerular GLUT-1 protein expression (P< or =0.03). This was accompanied by a 2.7-fold upregulation of TGF-beta1 protein expression in glomeruli of DSH compared with DSN rats (P=0.02). TGF-beta1 expression was not upregulated and did not differ in the glomeruli of Wistar-Kyoto and SHR rats. As an in vitro surrogate of the in vivo hemodynamic stress imposed by glomerular hypertension, we used mechanical stretching of human and rat mesangial cells. We found that after 33 hours of stretching, mesangial cells overexpressed GLUT-1 (40%) and showed an increase in basal glucose transport of similar magnitude (both P< or =0.01), which could be blocked with an anti TGF-beta1-neutralizing antibody. These studies suggest a novel link between hemodynamic and metabolic factors that may cooperate in inducing progressive glomerular injury in conditions characterized by glomerular hypertension.
Zambon, Joao Paulo; Ko, In Kap; Abolbashari, Mehran; Huling, Jennifer; Clouse, Cara; Kim, Tae Hyoung; Smith, Charesa; Atala, Anthony; Yoo, James J
2018-06-05
Kidney transplantation is currently the only definitive solution for the treatment of end-stage renal disease (ESRD), however transplantation is severely limited by the shortage of available donor kidneys. Recent progress in whole organ engineering based on decellularization/recellularization techniques has enabled pre-clinical in vivo studies using small animal models; however, these in vivo studies have been limited to short-term assessments. We previously developed a decellularization system that effectively removes cellular components from porcine kidneys. While functional re-endothelialization on the porcine whole kidney scaffold was able to improve vascular patency, as compared to the kidney scaffold only, the duration of patency lasted only a few hours. In this study, we hypothesized that significant damage in the microvasculatures within the kidney scaffold resulted in the cessation of blood flow, and that thorough investigation is necessary to accurately evaluate the vascular integrity of the kidney scaffolds. Two decellularization protocols [sodium dodecyl sulfate (SDS) with DNase (SDS + DNase) or Triton X-100 with SDS (TRX + SDS)] were used to evaluate and optimize the levels of vascular integrity within the kidney scaffold. Results from vascular analysis studies using vascular corrosion casting and angiograms demonstrated that the TRX + SDS method was able to better maintain intact and functional microvascular architectures such as glomeruli within the acellular matrices than that by the SDS + DNase treatment. Importantly, in vitro blood perfusion of the re-endothelialized kidney construct revealed improved vascular function of the scaffold by TRX + SDS treatment compared with the SDS + DNase. Our results suggest that the optimized TRX + SDS decellularization method preserves kidney-specific microvasculatures and may contribute to long-term vascular patency following implantation. Kidney transplantation is the only curative therapy for patients with end-stage renal disease (ESRD). However, in the United States, the supply of donor kidneys meets less than one-fifth of the demand; and those patients that receive a donor kidney need life-long immunosuppressive therapy to avoid organ rejection. In the last two decades, regenerative medicine and tissue engineering have emerged as an attractive alternative to overcome these limitations. In 2013, Song et al. published the first experimental orthotopic transplantation of a bioengineering kidney in rodents. In this study, they demonstrated evidences of kidney tissue regeneration and partial function restoration. Despite these initial promising results, there are still many challenges to achieve long-term blood perfusion without graft thrombosis. In this paper, we demonstrated that perfusion of detergents through the renal artery of porcine kidneys damages the glomeruli microarchitecture as well as peritubular capillaries. Modifying dynamic parameters such as flow rate, detergent concentration, and decellularization time, we were able to establish an optimized decellularization protocol with no evidences of disruption of glomeruli microarchitecture. As a proof of concept, we recellularized the kidney scaffolds with endothelial cells and in vitro perfused whole porcine blood successfully for 24 h with no evidences of thrombosis. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
'The genetic analysis of functional connectomics in Drosophila'
Meinertzhagen, Ian A.; Lee, Chi-Hon
2014-01-01
Fly and vertebrate nervous systems share many organization characteristics, such as layers, columns and glomeruli, and utilize similar synaptic components, such ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly’s connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental computation mechanisms that underlie behaviour. PMID:23084874
Topographic PIXE analysis of platinum levels in kidney slices from CIS-platin treated patients
NASA Astrophysics Data System (ADS)
Dikhoff, T. G. M. H.; Van Der Heide, J. A.; McVie, J. G.
1985-05-01
Concentrations of platinum and several other trace elements have been measured exploiting a 50 × 50 μ proton beam for PIXE analysis. The thickness of a selective germanium absorber for the spectral resolution of platinum L β and selenium K α peaks optimized, taking into account the fluorescent X-rays excited in the absorber material. The measurements have been performed in the framework of a project on the assessment of the toxicity of cytostatic platinum compounds. The lateral distributions of platinum in human kidneys and in dog tissues were measured. The highest concentrations of platinum were seen in arterial walls, followed by glomeruli and tubules. Chronic kidney damage may be correlated to this pattern of retention.
Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R
1995-08-04
Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.
Amyloidosis in the black-footed ferret (Mustela nigripes).
Garner, Michael M; Raymond, James T; O'Brien, Timothy D; Nordhausen, Robert W; Russell, William C
2007-03-01
This study describes clinical, histologic, immunohistochemical and electron microscopic features of amyloid A amyloidosis occurring in black-footed ferrets (Mustela nigripes) from eight U.S. zoological institutions. Ferrets had nonregenerative anemia, serum chemistries consistent with chronic renal disease, and proteinuria. Amyloid was present in a variety of tissues, but it was most severe in renal glomeruli and associated with tubular protein loss and emaciation. Congo red/potassium permanganate (KMnO4) and immunohistochemical stains revealed that the amyloid was of the AA type. Concurrent diseases and genetic predisposition were considered the most important contributing factors to development of amyloidosis. Analysis of the genetic tree did not reveal convincing evidence of a common ancestor in the affected ferrets, but a genetic predisposition is likely because all the captive black-footed ferrets are related.
Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu
2014-01-01
A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.
Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying
2015-01-01
As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy. Albumin overload may induce MMP-9 expression and secretion by PECs via the activation of p44/42 MAPK pathway. PMID:25849723
Schachtner, Joachim; Trosowski, Björn; D'Hanis, Wolfgang; Stubner, Stephan; Homberg, Uwe
2004-06-01
During metamorphosis, the insect nervous system undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. To understand further the mechanisms involved in transforming larval to adult tissue we have mapped the metamorphic changes in a particularly well established brain area, the antennal lobe of the sphinx moth Manduca sexta, using an antiserum recognizing RFamide-related neuropeptides. Five types of RFamide-immunoreactive (ir) neurons could be distinguished in the antennal lobe, based on morphology and developmental appearance. Four cell types (types II-V, each consisting of one or two cells) showed RFamide immunostaining in the larva that persisted into metamorphosis. By contrast, the most prominent group (type I), a mixed population of local and projection neurons consisting of about 60 neurons in the adult antennal lobe, acquired immunostaining in a two-step process during metamorphosis. In a first step, from 5 to 7 days after pupal ecdysis, the number of labeled neurons reached about 25. In a second step, starting about 4 days later, the number of RFamide-ir neurons increased within 6 days to about 60. This two-step process parallels the rise and fall of the developmental hormone 20-hydroxyecdysone (20E) in the hemolymph. Artificially shifting the 20E peak to an earlier developmental time point resulted in the precocious appearance of RFamide immunostaining and led to premature formation of glomeruli. Prolonging high 20E concentrations to stages when the hormone titer starts to decline had no effect on the second increase of immunostained cell numbers. These results support the idea that the rise in 20E, which occurs after pupal ecdysis, plays a role in the first phase of RFamide expression and in glomeruli formation in the developing antennal lobes. The role of 20E in the second phase of RFamide expression is less clear, but increased cell numbers showing RFamide-ir do not appear to be a consequence of the declining levels in 20E that occur during adult development.
Infections and reduced functioning kidney mass induce chronic rejection in rat kidney allografts.
Heemann, U W; Azuma, H; Tullius, S G; Schmid, C; Philipp, T; Tilney, N L
1996-07-01
The etiology of chronic rejection of kidney allografts is unknown, although hyperfiltration, acute rejection, viral infection and initial graft ischemia have been implicated. To test whether endothelial activation may be the link between these factors and chronic rejection, the endotoxin (lipopolysaccharide-LPS), a potent activator of endothelial cells, was evaluated in an established chronic rejection model. Bilaterally nephrectomized Lewis recipients of orthotopically transplanted Fisher 344 kidneys were treated briefly with low dose cyclosporine (1.5 mg/kg/day x 10). Recipients were given a non-lethal dose of LPS (2 mg) i.p. at 8 weeks and compared to allografted controls treated with vehicle. Urine protein was measured every 4 weeks. Rats in the treated group were sacrificed at 12 and 16 weeks, control animals at 12, 16 and 24 weeks (20/group) and examined histologically. In the chronically rejecting control allografts, progressive interstitial and glomerular sclerosis and vascular intimal proliferation had become apparent by 12 weeks. Infiltration of glomeruli, particularly by macrophages (M phi), and the coincident presence of cytokines were prominent, peaking at 16 weeks. LPS treatment accelerated and intensified these changes; proteinuria was more pronounced (16 weeks: 79 mg/24 h vs. 49 mg/24 h, p < 0.05). Numbers of infiltrating M phi peaked at 12 weeks in LPS treated hosts (69 c/FV vs. 27 c/FV in untreated controls, p < 0.01), accompanied by an increased upregulation of MHC class II and cytokine expression, particularly TNF alpha and PDGF around arteries and areas of infiltration. BY 16 weeks, 35 +/- 3% of glomeruli in LPS treated recipients had become sclerotic vs. 15 +/- 6% (p < 0.05) in controls, again associated with increased expression of cytokines (PDGF, TNF alpha, TGF beta), adhesion molecules (ICAM-1) and extracellular matrix proteins. Overall, the extent of chronic rejection of grafts in LPS treated rats at 16 weeks was similar to that developing in non-treated rats at 24 weeks. Activation of graft endothelium and/or host leucocytes increased the pace of graft infiltration and the expression of cytokines and other molecules. These events accelerate the process of chronic rejection.
Masurkar, Arjun V.; Chen, Wei R.
2011-01-01
Odor identity is encoded by the activity of olfactory bulb glomeruli, which receive primary sensory input and transfer it to projection neurons. Juxtaglomerular cells (JGCs) may influence glomerular processing via firing of long lasting plateau potentials. Though inward currents have been investigated, little is known regarding potassium current contribution to JGC plateau potentials. We pursued study of these currents, with the overarching goal of creating components for a computational model of JGC plateau potential firing. In conditions minimizing calcium-activated potassium current (IK(Ca)), we used whole cell voltage clamp and in vitro slice preparations to characterize three potassium currents in rat JGCs. The prominent component Ikt1 displayed rapid kinetics (τ10%−90% rise 0.6–2ms, τinactivation 5–10ms) and was blocked by high concentration 4-AP (5mM) and TEA (40mM). It had half maximal activation at −10mV (V½max) and little inactivation at rest. Ikt2, with slower kinetics (τ10%−90% rise 11–15ms, τinactivation 100–300ms), was blocked by low concentration 4-AP (0.5mM) and TEA (5mM). The V½max was 0mV and inactivation was also minimal at rest. Sustained current Ikt3 showed sensitivity to low concentration 4-AP and TEA, and had V½max of +10mV. Further experiments, in conditions of physiologic calcium buffering, suggested that IK(Ca) contributed to Ikt3 with minimal effect on plateau potential evolution. We transformed these characterizations into Hodgkin-Huxley models that robustly mimicked experimental data. Further simulation demonstrated that Ikt1 would be most efficiently activated by plateau potential waveforms, predicting a critical role in shaping JGC firing. These studies demonstrated that JGCs possess a unique potassium current profile, with delayed rectifier (Ikt3), atypical A-current (Ikt1), and D-current (Ikt2) in accordance with known expression patterns in OB glomeruli. Our simulations also provide an initial framework for more integrative models of JGC plateau potential firing. PMID:21704678
Boini, Krishna M.; Xia, Min; Abais, Justine M.; Xu, Ming; Li, Cai-xia; Li, Pin-Lan
2012-01-01
Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2.− level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2.− level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2.− production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme inhibition protects the podocytes and glomeruli from hHcys-induced oxidative stress and injury. PMID:23024785
Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G
2000-01-01
Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced elevation of CTGF mRNA (twofold) observed in whole kidney cortices indicated that the primary alteration of CTGF expression was in the glomerulus. These results suggest that CTGF upregulation is an important factor in the pathogenesis of mesangial matrix accumulation and progressive glomerulosclerosis, acting downstream of TGF-beta.
Zhou, Zhanmei
2014-01-01
In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate (UAER) and albumin to creatinine ratio. We conclude that phosphorylated Thr308-AKT regulates VEGF-A expression by interacting with either nephrin in glomeruli or Ang II in renal tubules. Antiangiogenic treatment improves renal injury and function in early experimental diabetes. PMID:24759991
The effect of charge on the renal distribution of ferritin.
Cohen, S; Vernier, R L; Michael, A F
1983-02-01
The effect of charge on the tissue distribution of ferritin was evaluated in rats following intravenous administration of 3 monomeric species preparatively separated by molecular sieve chromatography from aggregated ferritin and having the same molecular weight but differing only in electrostatic charge: native ferritin, with a isoelectric point (pI) of 4.5 (NF); cationized ferritin, with a pI of 6.4-7.4 (CF 7.0); and cationized ferritin, with a pI of 8.25-8.75 (CF 8.5). At varying time intervals (30 minutes to 72 hours) after the administration of these ferritins in a dose of 10 mg/100 g, the levels in the blood were determined, the tissue (kidney, liver, spleen) distribution semiquantitatively evaluated by immunofluorescence (IF), and electron microscopic examination (EM) of the kidney carried out. The following results were obtained: 1) The plasma levels of CF (8.5) and CF (7.0) were significantly higher than NF after 6 hours. NF was not detected after 24 hours, whereas CF continued to circulate at 72 hours. 2) There was a striking decrease in the uptake of CF (7.0) and CF (8.5), when compared with NF, by Kupffer cells and splenic phagocytes in the red pulp at all time periods. 3) In the glomerulus, NF was found primarily in the mesangium and gradually disappeared over a period of 72 hours, whereas CF was present in greater amounts and persisted for longer periods of time in the mesangium and in the peripheral capillary wall. By electron microscopy, CF (8.5) could be seen in th lamina rara and within the mesangium in small aggregates aligned parallel to mesangial cell processes, whereas NF and CF (7.0) were distributed homogeneously throughout the mesangial matrix. 4) NF, but not CF, was also observed surrounding blood vessels and in interstitial phagocytes. These in vivo studies demonstrate that the electrostatic charge of ferritin affects its uptake in vivo by components of the mononuclear phagocytic system (MPS). The persistence and distribution of CF in glomeruli is a consequence of higher blood levels associated with impaired phagocytic uptake as well as charge-related binding to sites within the glomeruli.
Mice with a "monoclonal nose": perturbations in an olfactory map impair odor discrimination.
Fleischmann, Alexander; Shykind, Benjamin M; Sosulski, Dara L; Franks, Kevin M; Glinka, Meredith E; Mei, Dan Feng; Sun, Yonghua; Kirkland, Jennifer; Mendelsohn, Monica; Albers, Mark W; Axel, Richard
2008-12-26
We have altered the neural representation of odors in the brain by generating a mouse with a "monoclonal nose" in which greater than 95% of the sensory neurons express a single odorant receptor, M71. As a consequence, the frequency of sensory neurons expressing endogenous receptor genes is reduced 20-fold. We observe that these mice can smell, but odor discrimination and performance in associative olfactory learning tasks are impaired. However, these mice cannot detect the M71 ligand acetophenone despite the observation that virtually all sensory neurons and glomeruli are activated by this odor. The M71 transgenic mice readily detect other odors in the presence of acetophenone. These observations have implications for how receptor activation in the periphery is represented in the brain and how these representations encode odors.
Adenoviral hepatitis in a female bearded dragon (Amphibolurus barbatus).
Julian, A F; Durham, P J
1982-05-01
A female bearded dragon (Amphibolurus barbatus) died following intermittent periods of inappetance. No significant gross lesions were found at autopsy, but histological examination revealed disordered liver architecture with numerous foci of coagulative necrosis. Eosinophilic intranuclear inclusions were present in many hepatocytes, some epithelial cells of the bile ductules and occasional epithelial cells of renal tubes and glomeruli. Large numbers of viral particles within many nuclei, associated with the intranuclear inclusion were demonstrated by electronmicroscopy. Similar particles, sometimes in paracrystalline arrays, were also seen within membrane-bound vesicles located next to the nuclei and to a lesser degree within the cytoplasm and extracellular spaces. The virus was considered to be an adenovirus on the basis of its size, morphology, site of formation and lack of envelopment. It was considered to he the cause of the hepatitis.
MRI tools for assessment of microstructure and nephron function of the kidney.
Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S
2016-12-01
MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.
Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.
van Wijk, Michiel; Wadman, Wytse J; Sabelis, Maurice W
2006-01-01
The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.
An olfactory cocktail party: figure-ground segregation of odorants in rodents.
Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N
2014-09-01
In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, studies have found that both humans and rodents are poor at analyzing the components of odorant mixtures, suggesting that olfaction is a synthetic sense in which mixtures are perceived holistically. We found that mice could be easily trained to detect target odorants embedded in unpredictable and variable mixtures. To relate the behavioral performance to neural representation, we imaged the responses of olfactory bulb glomeruli to individual odors in mice expressing the Ca(2+) indicator GCaMP3 in olfactory receptor neurons. The difficulty of segregating the target from the background depended strongly on the extent of overlap between the glomerular responses to target and background odors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors.
Kerjaschki, D; Poczewski, H; Dekan, G; Horvat, R; Balzar, E; Kraft, N; Atkins, R C
1986-01-01
Glomerular visceral epithelial cells are endowed with a sialic acid-rich surface coat (the "glomerular epithelial polyanion"), which in rat tissue contains the sialoprotein podocalyxin. We have identified a major membrane sialoprotein in human glomeruli that is similar to rat podocalyxin in its sialic acid-dependent binding of wheat germ agglutinin and in its localization on the surface of glomerular epithelial and endothelial cells, as shown by immunoelectron microscopy, using the monoclonal antibody PHM5. Differences in the sialoproteins of the two species are indicated by the discrepancy of their apparent molecular weights in sodium dodecyl sulfate gels, by the lack of cross reactivity of their specific antibodies, and by the lack of homology of their proteolytic peptide maps. It is therefore possible that the human glomerular sialoprotein and rat podocalyxin are evolutionarily distinct, but have similar functions. Images PMID:3533998
Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi
2016-01-01
We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.
Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway
Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.
2009-01-01
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250
An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria
Cha, Eun Jung; Hwang, Won Min; Yun, Sung-Ro; Park, Moon Hyang
2016-01-01
Bartter syndrome (BS) I–IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis. PMID:26755355
An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria.
Cha, Eun Jung; Hwang, Won Min; Yun, Sung-Ro; Park, Moon Hyang
2016-03-01
Bartter syndrome (BS) I-IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis.
Effects of a stable prostacyclin analog on experimental ischemic acute renal failure.
Tobimatsu, M; Ueda, Y; Saito, S; Tsumagari, T; Konomi, K
1988-01-01
The effect of OP-41483, a stable prostacyclin (PGI2) analog, on ischemic acute renal failure (ARF) was investigated in dogs. Administration of OP-41483 for three days after ischemia significantly increased renal cortical blood flow (RCBF) when compared with dogs treated with the saline vehicle. In the OP-41483-treated group, serum creatinine levels remained relatively low during postoperative days 1-3 and mean survival time was prolonged. Injection of a silicone rubber vascular casting compound (Microfil) revealed increased numbers of visible renal cortical glomeruli and microvessels compared to the saline vehicle group. Histologic sections showed only very limited tubular necrosis, whereas sections of kidneys treated with saline showed extensive tubular necrosis. In conclusion, this stable prostacyclin analog provided a significant degree of protection for the kidneys from ischemic injury and may be useful in a clinical setting. Images Figs. 3A-D. Figs. 4A-D. PMID:3291800
Bilateral renal dysplasia with nephron hypoplasia in a foal.
Zicker, S C; Marty, G D; Carlson, G P; Madigan, J E; Smith, J M; Goetzman, B W
1990-06-15
Bilateral renal dysplasia and nephron hypoplasia was diagnosed in a Quarter Horse foal with clinical signs of lethargy, convulsions, and diarrhea. Laboratory evaluation revealed anemia, hypoproteinemia, leukopenia, hyponatremia, hypochloremia, and hyposmolality. The foal also had high concentrations of serum creatinine, BUN, and phosphorus. Evaluation of urinary indices revealed a high ratio of urinary gamma-glutamyl-transferase activity to concentration of creatinine, as well as a high fractional clearance ratio of sodium and potassium. Intravenous treatment with saline solution (0.9% NaCl) and antimicrobials provided only temporary resolution of some of the abnormalities. Diagnosis was partly established by histologic evaluation of renal tissue obtained via an ultrasonographically guided biopsy and was confirmed at necropsy. Pathologic changes in the kidney were unique in that the size of the kidneys, along with the appearance and number of glomeruli, were essentially normal despite marked hypoplasia of nephron tubules in the medulla.
Multifocal Spinal Cord Nephroblastoma in a Dog.
Henker, L C; Bianchi, R M; Vargas, T P; de Oliveira, E C; Driemeier, D; Pavarini, S P
2018-01-01
A 1-year-old male American pit bull terrier was presented with a history of proprioceptive deficits and mild lameness of the right hindlimb, which progressed after 5 months to paraparesis, culminating in tetraparesis after 2 weeks. Necropsy findings were limited to the spinal cord and consisted of multiple, intradural, extramedullary, slightly red masses which produced segmental areas of medullary swelling located in the cervical intumescence, thoracolumbar column, sacral segment and cauda equina. Histological evaluation revealed a tumour, composed of epithelial, stromal and blastemal cells, with structures resembling tubules, acini and embryonic glomeruli. Immunohistochemical labelling for vimentin, cytokeratin and S100 was positive for the stromal, epithelial and blastemal cells, respectively. A final diagnosis of multifocal spinal cord nephroblastoma was established. This is the first report of such a tumour showing concomitant involvement of the cervicothoracic, thoracolumbar, sacral and cauda equina areas of the spinal cord. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Mechanisms of immune deposit formation in glomerulonephritis].
Bussolati, B; Camussi, G
1996-03-01
Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.
Fanconi's syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs.
Hong, Yin-Tai; Fu, Lin-Shien; Chung, Lin-Huei; Hung, Shien-Chung; Huang, Yi-Ting; Chi, Chin-Shiang
2006-04-01
Aristolochic acid-associated nephropathy (AAN) has been identified as a separate entity of progressive tubulo-interstitial nephropathy. Its characteristic pathological findings, including hypocellular interstitial fibrosis, intimal thickening of interlobular and afferent arterioles with glomeruli sparing or mild sclerosis, have been identified. Many cases of AAN in adults have been reported in Taiwan as well as throughout the world, but it has seldom been described in children. We report on a 10-year-old boy who presented with severe anemia, Fanconi's syndrome, and progressive renal failure. Renal biopsy revealed typical findings of AAN. Aristolochic acids I and II were identified from a Chinese herb mixture ingested by the boy. AAN was diagnosed after other etiologies had been excluded. The case demonstrates the hazards of Chinese herbs with regard to children's health in Taiwan and suggests that more attention should be paid to this issue.
Origins of correlated activity in an olfactory circuit.
Kazama, Hokto; Wilson, Rachel I
2009-09-01
Multineuronal recordings often reveal synchronized spikes in different neurons. The manner in which correlated spike timing affects neural codes depends on the statistics of correlations, which in turn reflects the connectivity that gives rise to correlations. However, determining the connectivity of neurons recorded in vivo can be difficult. We investigated the origins of correlated activity in genetically labeled neurons of the Drosophila antennal lobe. Dual recordings showed synchronized spontaneous spikes in projection neurons (PNs) postsynaptic to the same type of olfactory receptor neuron (ORN). Odors increased these correlations. The primary origin of correlations lies in the divergence of each ORN onto every PN in its glomerulus. Reciprocal PN-PN connections make a smaller contribution to correlations and PN spike trains in different glomeruli were only weakly correlated. PN axons from the same glomerulus reconverge in the lateral horn, where pooling redundant signals may allow lateral horn neurons to average out noise that arises independently in these PNs.
Progressive renal insufficiency related to ALK inhibitor, alectinib.
Nagai, Kojiro; Ono, Hiroyuki; Matsuura, Motokazu; Hann, Michael; Ueda, Sayo; Yoshimoto, Sakiya; Tamaki, Masanori; Murakami, Taichi; Abe, Hideharu; Ishikura, Hisashi; Doi, Toshio
2018-04-01
Alectinib is a second generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor and is generally effective and tolerated in patients who have demonstrated disease progression or adverse effects while on the first generation inhibitor, crizotinib. ALK inhibitors can cause a reversible chronic increase of serum creatinine concentration; however, they rarely induce progressive renal insufficiency. We herein report a case of a 68-year-old woman diagnosed with ALK-positive advanced non-small cell lung cancer and who received ALK inhibitors. Due to dysgeusia and transaminitis, her medication was switched from crizotinib to alectinib. Rapid progressive glomerulonephritis developed 1 year after the initiation of alectinib treatment. A renal biopsy revealed unique kidney lesions in both tubules and glomeruli. Glucocorticoid therapy partially reversed kidney impairment. However, re-administration of alectinib caused kidney dysfunction, which was improved by the cessation of alectinib. Our case suggests that much attention should be paid to kidney function when using ALK inhibitors.
Fogelson, S B; Yanong, R P E; Kane, A; Teal, C N; Berzins, I K; Smith, S A; Brown, C; Camus, A
2015-09-01
Histologic evaluation of the renal system in the lined seahorse Hippocampus erectus reveals a cranial kidney with low to moderate cellularity, composed of a central dorsal aorta, endothelial lined capillary sinusoids, haematopoietic tissue, fine fibrovascular stroma, ganglia and no nephrons. In comparison, the caudal kidney is moderately to highly cellular with numerous highly convoluted epithelial lined tubules separated by interlacing haematopoietic tissue, no glomeruli, fine fibrovascular stroma, numerous capillary sinusoids, corpuscles of Stannius and clusters of endocrine cells adjacent to large calibre vessels. Ultrastructural evaluation of the renal tubules reveals minimal variability of the tubule epithelium throughout the length of the nephron and the majority of tubules are characterized by epithelial cells with few apical microvilli, elaborate basal membrane infolding, rare electron dense granules and abundant supporting collagenous matrix. © 2015 The Fisheries Society of the British Isles.
Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei
2014-01-01
In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996
Knott, Thomas K; Madany, Pasil A; Faden, Ashley A; Xu, Mei; Strotmann, Jörg; Henion, Timothy R; Schwarting, Gerald A
2012-07-04
The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2(-/-) mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2(-/-) neurons. Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2(-/-) mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2(-/-) olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2(-/-) mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2(-/-) olfactory neurons. Results presented here show that many odorant receptors are under-expressed in β3GnT2(-/-) mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2(-/-) mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2(-/-) mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact.
The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.
Child, Kevin M; Herrick, Daniel B; Schwob, James E; Holbrook, Eric H; Jang, Woochan
2018-06-22
The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear. SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well-known capacity for recovering from most forms of injury when younger which may contribute to age-related olfactory loss. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA ; TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need. Copyright © 2018 the authors.
Assmann, Karel J M; van Son, Jacco P H F; Dïjkman, Henry B P M; Mentzel, Stef; Wetzels, Jack F M
2002-07-01
Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at day 1 that is accompanied by an accelerated focal glomerulosclerosis at day 21. We suggest that the Thy-1.1 transgenic mouse is an excellent model to study specifically the relation between podocytic injury, albuminuria and the development of focal glomerulosclerosis.
2012-01-01
Background Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated α-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. Results The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. Conclusions The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship. PMID:22947030
Adler, S; Baker, P; Pritzl, P; Couser, W G
1985-07-01
Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.
Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei
2014-01-01
In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate (UAER) and albumin to creatinine ratio. We conclude that phosphorylated Thr³⁰⁸-AKT regulates VEGF-A expression by interacting with either nephrin in glomeruli or Ang II in renal tubules. Antiangiogenic treatment improves renal injury and function in early experimental diabetes.
Burton, Shawn D.
2015-01-01
Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates. PMID:26490853
Crescentic glomerular nephritis associated with rheumatoid arthritis: a case report.
Balendran, K; Senarathne, L D S U; Lanerolle, R D
2017-07-21
Rheumatoid arthritis is a systemic disorder where clinically significant renal involvement is relatively common. However, crescentic glomerular nephritis is a rarely described entity among the rheumatoid nephropathies. We report a case of a patient with rheumatoid arthritis presenting with antineutrophil cytoplasmic antibody-negative crescentic glomerular nephritis. A 54-year-old Sri Lankan woman who had recently been diagnosed with rheumatoid arthritis was being treated with methotrexate 10 mg weekly and infrequent nonsteroidal anti-inflammatory drugs. She presented to our hospital with worsening generalized body swelling and oliguria of 1 month's duration. Her physical examination revealed that she had bilateral pitting leg edema and periorbital edema. She was not pale or icteric. She had evidence of mild synovitis of the small joints of the hand bilaterally with no deformities. No evidence of systemic vasculitis was seen. Her blood pressure was 170/100 mmHg, and her jugular venous pressure was elevated to 7 cm with an undisplaced cardiac apex. Her urine full report revealed 2+ proteinuria with active sediment (dysmorphic red blood cells [17%] and granular casts). Her 24-hour urinary protein excretion was 2 g. Her serum creatinine level was 388 μmol/L. Abdominal ultrasound revealed normal-sized kidneys with acute parenchymal changes and mild ascites. Her renal biopsy showed renal parenchyma containing 20 glomeruli showing diffuse proliferative glomerular nephritis, with 14 of 20 glomeruli showing cellular crescents, and the result of Congo red staining was negative. Her rheumatoid factor was positive with a high titer (120 IU/ml), but results for antinuclear antibody, double-stranded deoxyribonucleic acid, and antineutrophil cytoplasmic antibody (perinuclear and cytoplasmic) were negative. Antistreptolysin O titer <200 U/ml and cryoglobulins were not detected. The results of her hepatitis serology, retroviral screening, and malignancy screening were negative. Her erythrocyte sedimentation rate was 110 mm in the first hour, and her C-reactive protein level was 45 mg/dl. Her liver profile showed hypoalbuminemia of 28 g/dl. She was treated with immunomodulators and had a good recovery of her renal function. This case illustrates a rare presentation of antineutrophil cytoplasmic antibody-negative crescentic glomerular nephritis in a patient with rheumatoid arthritis, awareness of which would facilitate early appropriate investigations and treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyon, K.H.; Kracko, D.A.; Strunk, M.R.
1995-12-01
The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less
Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Ping; Koenig, Rolf; Boor, Paul J.
2008-04-01
Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltrationmore » was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice.« less
Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.
List, James F; Whaley, Jean M
2011-03-01
Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.
Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity
Reyes, José L.; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María del Carmen
2013-01-01
Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457
Nur77 deficiency leads to systemic inflammation in elderly mice.
Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua
2015-01-01
Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.
The wiring diagram of a glomerular olfactory system
Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert
2016-01-01
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418
Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation
Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro
2016-01-01
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514
Non-redundant coding of aversive odours in the main olfactory pathway
Dewan, Adam; Pacifico, Rodrigo; Zhan, Ross; Rinberg, Dmitry; Bozza, Thomas
2013-01-01
Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons which express a large repertoire of canonical odorant receptors (ORs) and a much smaller repertoire of Trace Amine-Associated Receptors (TAARs)1–4. Odours are encoded in a combinatorial fashion across glomeruli in the main olfactory bulb, with each glomerulus corresponding to a different receptor5–7. The degree to which individual receptor genes contribute to odour perception is unclear. Here we show that genetic deletion of the olfactory TAAR gene family, or even a single TAAR gene, eliminates aversion that mice display to low concentrations of volatile amines and to the odour of predator urine. Our findings identify a role for the TAARs in olfaction, namely in the high-sensitivity detection of innately aversive odours. In addition, our data reveal that aversive amines are represented in a non-redundant fashion, and that individual main olfactory receptor genes can contribute significantly to odour perception. PMID:23624375
Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria
Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H.; Roberts, Ian S.D.; Sheehan, Susan; Savage, Holly; Haller, Hermann
2016-01-01
Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. PMID:27020856
Tanigawa, Shunsuke; Sharma, Nirmala; Hall, Michael D.; Nishinakamura, Ryuichi; Perantoni, Alan O.
2015-01-01
Summary Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix. Passaged MM cells express the key stem cell regulators Six2 and Pax2 and remain competent to respond to WNT4 induction and form mature tubular epithelia and glomeruli. Mechanistically, LIF activates STAT, which binds to a Stat consensus sequence in the Six2 proximal promoter and sustains SIX2 levels. ROCKi, on the other hand, attenuates the LIF-induced differentiation activity of JNK. Concomitantly, the combination of LIF/ROCKi upregulates Slug expression and activates YAP, which maintains SIX2, PAX2, and SALL1. Using this novel model, our study underscores the pivotal roles of SIX2 and YAP in MM stem cell stability. PMID:26321142
The Dynamics of Glomerular Ultrafiltration in the Rat
Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.
1971-01-01
Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578
Strugnell, R A; Underwood, J R; Clarke, F M; Pedersen, J S; Chalmers, P J; Faine, S; Toh, B H
1983-01-01
A monoclonal IgM smooth muscle antibody secreted by a hybrid (MMI-1) of mouse plasmacytoma NS-1 with spleen cells from mouse immunized with Treponema pallidum was detected by indirect immunofluorescence tests on frozen tissue sections and on acetone fixed monolayers of rat and human fibroblasts. The antibody did not react with acetone fixed smears of T. pallidum but reacted with smooth muscle fibres and with striations of skeletal and cardiac muscle. In non-muscle cells, the antibody stained liver in a 'polygonal' pattern, thymus with accentuated staining of the thymic medulla, renal glomeruli and the brush border and peritubular fibrils of renal tubules. In fibroblast monolayers, the antibody stained stress fibres in an interrupted pattern. Immunoblotting with muscle proteins and the antibody showed labelling of a 100K molecule. The cellular distribution of the mouse monoclonal antibody is similar to that obtained with anti-actin antibody suggesting that the corresponding antigen may be an actin binding protein. Images Fig. 3 PMID:6347470
Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice☆
Basgen, John M.; Sobin, Christina
2014-01-01
Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams’ drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals. PMID:24300173
Non-redundant coding of aversive odours in the main olfactory pathway.
Dewan, Adam; Pacifico, Rodrigo; Zhan, Ross; Rinberg, Dmitry; Bozza, Thomas
2013-05-23
Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons that express a large repertoire of canonical odorant receptors and a much smaller repertoire of trace amine-associated receptors (TAARs). Odours are encoded in a combinatorial fashion across glomeruli in the main olfactory bulb, with each glomerulus corresponding to a specific receptor. The degree to which individual receptor genes contribute to odour perception is unclear. Here we show that genetic deletion of the olfactory Taar gene family, or even a single Taar gene (Taar4), eliminates the aversion that mice display to low concentrations of volatile amines and to the odour of predator urine. Our findings identify a role for the TAARs in olfaction, namely, in the high-sensitivity detection of innately aversive odours. In addition, our data reveal that aversive amines are represented in a non-redundant fashion, and that individual main olfactory receptor genes can contribute substantially to odour perception.
Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M
2016-01-01
Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094
Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells
Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe
2016-01-01
Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208
Proteomic analysis of the kidney filtration barrier--Problems and perspectives.
Rinschen, Markus M; Benzing, Thomas; Limbutara, Kavee; Pisitkun, Trairak
2015-12-01
Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins
Mosca, Timothy J; Luo, Liqun
2014-01-01
Understanding information flow through neuronal circuits requires knowledge of their synaptic organization. In this study, we utilized fluorescent pre- and postsynaptic markers to map synaptic organization in the Drosophila antennal lobe, the first olfactory processing center. Olfactory receptor neurons (ORNs) produce a constant synaptic density across different glomeruli. Each ORN within a class contributes nearly identical active zone number. Active zones from ORNs, projection neurons (PNs), and local interneurons have distinct subglomerular and subcellular distributions. The correct number of ORN active zones and PN acetylcholine receptor clusters requires the Teneurins, conserved transmembrane proteins involved in neuromuscular synapse organization and synaptic partner matching. Ten-a acts in ORNs to organize presynaptic active zones via the spectrin cytoskeleton. Ten-m acts in PNs autonomously to regulate acetylcholine receptor cluster number and transsynaptically to regulate ORN active zone number. These studies advanced our ability to assess synaptic architecture in complex CNS circuits and their underlying molecular mechanisms. DOI: http://dx.doi.org/10.7554/eLife.03726.001 PMID:25310239
2012-01-01
Background The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2−/− mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2−/− neurons. Results Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2−/− mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2−/− olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2−/− mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2−/− olfactory neurons. Conclusions Results presented here show that many odorant receptors are under-expressed in β3GnT2−/− mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2−/− mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2−/− mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact. PMID:22559903
Costache, G; Popov, D; Georgescu, A; Cenuse, M; Jinga, V V; Simionescu, M
2000-01-01
The experimental model of Golden Syrian hamster subjected to concomitant hyperlipemia (diet-induced) and diabetes (by streptozotocin injection) for 24 weeks is characterised by the prevalence of micro- and macroangiopathies. We have used the hyperlipemic-diabetic (HD) hamsters to investigate: a) whether there is an alteration in the reactivity of the resistance arteries (mean internal diameter: 210-250 microm), b) if present, which are the structural and biochemical changes that accompany the functional modifications, and c) to examine the pathomorphological changes induced by the association of hyperlipemia and diabetes on vital organs such as myocardium and kidney glomeruli. To these aims, biochemical assays of plasma components, light- and electronmicroscopy, myographic, morphometric and spectrofluorimetric techniques were used. The mesenteric resistance arteries of HD hamsters exhibited (as compared to similar arteries in normals) a decreased contractile response to noradrenaline (1.86+/-0.35 vs. 2.43+/-0.21), and an impeded endothelium dependent relaxation to acetylcholine (approximately 61.40% vs. approximately 79.80%). The association of hyperlipemia with diabetes induced changes in morphology of the resistance arteries consisting in approximately 10% increase of the intima plus media cross-sectional area, approximately 20% decrease of the vascular lumen area, and approximately 2.85 fold augmentation of the wall to lumen ratio. The resistance arteries exhibited structural modifications of the endothelium (up to 8 copies of Weibel-Palade bodies/endothelial cell), and smooth muscle cells (secretory phenotype), and in the vessels media small calcification cores appeared embedded in a hyperplasic extracellular matrix. The vascular mesenteric bed of the HD hamsters contained approximately 2.30 and approximately 1.30 fold increased concentrations of AGE-collagen and pentosidine, respectively, above the normal values. The HD hamsters displayed also modifications that may be dependent on or may lead to an increase in blood pressure, such as: a) approximately 2 fold increase in the activity of serum angiotensin converting enzyme; b) approximately 4.8 fold enhancement of erythrocytes fragility (as a measure of the oxidative stress); c) left ventricular hypertrophy associated with a progressive disarray of cardiomyocyte contractile fibers, interruptions of the Z bands, and accumulation of collagen-rich extracellular matrix indicative of interstitial fibrosis; d) the kidney glomerular capillaries appeared partially or totally collapsed, with a thickened basement membrane which appeared polymorphic, and in some locations made up of successive layers connected by fine bridges and intercalated nodules; in addition, an increase (approximately 1.50 fold) of the mesangial volume was indicative of glomerulosclerosis.
Wu, Jun-Biao; Ye, Shu-Fang; Liang, Chun-Ling; Li, Yu-Cui; Yu, Ying-Jia; Lai, Jie-Mei; Lin, Hui; Zheng, Jie; Zhou, Jiu-Yao
2014-02-12
Nephrotic syndrome (NS) is a clinical syndrome with a variety of causes, mainly characterized by heavy proteinuria. Podocyte injury plays a key role in proteinuria, one of the principal means for the control of NS is to prevent podocyte injury. Qi-Dan Fang consists of two of the most extensively applied herbal remedies among Traditional Chinese Medicine (TCM) (Radix Astragali Mongolici and Radix Salviae Miltiorrhizae, with a weight ratio of 5:1) which are specifically used for the treatment of various kidney diseases. In previous studies, we found that Qi-Dan Fang provides improvement to patients with adriamycin-induced nephrotic syndrome by alleviating proteinuria and serum lipid. The aim of this study is to study the efficiency of Qi-Dan Fang on NS model rat with renal dysfunction and podocyte injury, something which has not been carried out yet. The rats were divided into Normal, Model, Jin Gui Shen Qi Pill (4.12 g/kg), Qi-Dan Fang (3.09, 6.17 and 12.34 g/kg/d) groups, they were each given a single tail intravenous injection of Adriamycin (6.0 mg/kg) except for the Normal group and were orally administered dosages of Qi-Dian Fang and Jin Gui Shen Qi pills once daily for 7 weeks. Following the treatment, the content of cystation C (CysC), blood urea nitrogen (BUN), serum creatinine (Scr) were measured with an autobiochemical analyser. The pathomorphological changes to the glomeruli, the mRNA expressions of nephrin, podocin, CD2AP genes and p53, bax, bcl-2 proteins expressions were also carried out to probe the effects of Qi-Dan Fang. (1) Qi-Dan Fang treatment raised the level of CysC in blood serum while lowering the content of BUN and Scr in the adriamycin-induced nephrotic syndrome rat model; (2) Long-term administration of Qi-Dan Fang was able to ameliorate pathomorphological change of glomeruli and repair the organization structure of Glomerulus; (3) Qi-Dan Fang could increase the mRNA expression of nephrin, podocin and CD2AP genes, down-regulate the expression of p53, bax proteins, while increased bcl-2 protein to protect the podocyte and restore Glomerular selective filtration function. Results of our present studies reveal that Qi-Dan Fang is able to enhance renal function, inhibit podocyte injury to provide improvements to the Adriamycin-induced nephrotic syndrome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Renal echo-3D and microalbuminuria in children of diabetic mothers: a preliminary study.
Cappuccini, B; Torlone, E; Ferri, C; Arnone, S; Troiani, S; Bini, V; Bellomo, G; Barboni, G; Di Renzo, G
2013-08-01
Maternal diabetes has assumed epidemic relevance in recent years and animal studies have provided some evidence that it may cause abnormalities in renal development and a reduction in nephron endowment in the offspring; however, human data are lacking. The renal cortex contains ∼95% of the glomeruli and its volume could be taken as a surrogate measure of glomerular number; based on this assumption, we measured renal cortex volume and in addition, microalbuminuria in a homogeneous sample of 42 children of diabetic (pregestational, n = 13, and gestational, n = 29) mothers, compared with 21 healthy children born of non-diabetic mothers. The offspring of diabetic mothers showed a significant reduction of renal cortex volume and higher albumin excretion compared with controls, possibly attributable to a reduction in the number of nephrons and the difference was statistically significant (P < 0.001). Although further studies on a larger sample are necessary, our preliminary findings suggest that maternal diabetes may affect renal development with sequelae later in life, requiring closer monitoring and follow-up. Furthermore, the importance of strict maternal diabetes management and control must be emphasized.
Dijkman, Henry; Smeets, Bart; van der Laak, Jeroen; Steenbergen, Eric; Wetzels, Jack
2005-10-01
Focal segmental glomerulosclerosis (FSGS) is one of the most common patterns of glomerular injury encountered in human renal biopsies. Epithelial hyperplasia, which can be prominent in FSGS, has been attributed to dedifferentiation and proliferation of podocytes. Based on observations in a mouse model of FSGS, we pointed to the role of parietal epithelial cells (PECs). In the present study we investigated the relative role of PECs and podocytes in human idiopathic FSGS. We performed a detailed study of lesions from a patient with recurrent idiopathic FSGS by serial sectioning, marker analysis and three-dimensional reconstruction of glomeruli. We have studied the expression of markers for podocytes, PECs, mesangial cells, endothelium, and myofibroblasts. We also looked at proliferation and composition of the deposited extracellular matrix (ECM). We found that proliferating epithelial cells in FSGS lesions are negative for podocyte and macrophage markers, but stain for PEC markers. The composition of the matrix deposited by these cells is identical to Bowman's capsule. Our study demonstrates that PECs are crucially involved in the pathogenesis of FSGS lesions.
Tanigawa, Shunsuke; Taguchi, Atsuhiro; Sharma, Nirmala; Perantoni, Alan O; Nishinakamura, Ryuichi
2016-04-26
Nephron progenitors in the embryonic kidney propagate while generating differentiated nephrons. However, in mice, the progenitors terminally differentiate shortly after birth. Here, we report a method for selectively expanding nephron progenitors in vitro in an undifferentiated state. Combinatorial and concentration-dependent stimulation with LIF, FGF2/9, BMP7, and a WNT agonist is critical for expansion. The purified progenitors proliferated beyond the physiological limits observed in vivo, both for cell numbers and lifespan. Neonatal progenitors were maintained for a week, while progenitors from embryonic day 11.5 expanded 1,800-fold for nearly 20 days and still reconstituted 3D nephrons containing glomeruli and renal tubules. Furthermore, progenitors generated from mouse embryonic stem cells and human induced pluripotent cells could be expanded with retained nephron-forming potential. Thus, we have established in vitro conditions for promoting the propagation of nephron progenitors, which will be essential for dissecting the mechanisms of kidney organogenesis and for regenerative medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NEPHROPATHIES IN THE EUROPEAN CAPTIVE CHEETAH (ACINONYX JUBATUS) POPULATION.
Url, Angelika; Krutak, Verena; Kübber-Heiss, Anna; Chvala-Mannsberger, Sonja; Robert, Nadia; Dinhopl, Nora; Schmidt, Peter; Walzer, Chris
2016-09-01
According to previous studies in captive cheetah ( Acinonyx jubatus ) populations, one of the most threatening diseases besides amyloidosis, myelopathy, veno occlusive disease, and gastritis, is renal failure. Contrary to captive cheetahs in North America and South Africa, morphological data concerning renal lesions in the cheetah European Endangered Species Program (EEP) are lacking. This study details the histological characterization as well as immunohistochemical and morphometrical analysis of nephropathies in 35 captive cheetahs from the EEP, which were necropsied between 1985 and 2003. Examination of paraffin- and glycolmethacrylate-methylmethacrylate (GMA-MMA) embedded kidney samples by light microscopy revealed glomerulonephritis in 91%, with a high prevalence for glomerulosclerosis and glomerulonephritis with the histologic pattern of membranous glomerulonephritis (77%). Besides these predominating glomerulopathies, a wide range of other renal lesions, like acute tubular necrosis, interstitial nephritis, calcinosis, and amyloidosis, were present. Pathological expression of collagen type IV, complement C3, fibronectin, and IgG was demonstrated in the glomeruli of the cheetah kidneys with the use of the avidin-biotin complex method. Morphometrical analysis was performed on GMA-MMA embedded kidney samples to obtain glomerulosclerosis index and glomerulosclerosis incidence.
DNA methylation mediates neural processing after odor learning in the honeybee
Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. Giovanni
2017-01-01
DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) – regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees’ relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees’ primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network. PMID:28240742
Histopathological retrospective study of canine renal disease in Korea, 2003~2008
Yhee, Ji-Young; Yu, Chi-Ho; Kim, Jong-Hyuk; Im, Keum-Soon; Chon, Seung-Ki
2010-01-01
Renal disease includes conditions affecting the glomeruli, tubules, interstitium, pelvis, and vasculature. Diseases of the kidney include glomerular diseases, diseases of the tubules and interstitium, diseases of renal pelvis, and developmental abnormalities. Renal tissue samples (n = 70) submitted to the Department of Veterinary Pathology of Konkuk University from 2003 to 2008 were included in this study. Tissue histopathology was performed using light microscopy with hematoxylin and eosin stains. Masson's trichrome, Congo Red, and Warthin starry silver staining were applied in several individual cases. Glomerular diseases (22.9%), tubulointerstitial diseases (8.6%), neoplastic diseases (8.6%), conditions secondary to urinary obstruction (24.3%), and other diseases (35.7%) were identified. Glomerulonephritis (GN) cases were classified as acute proliferative GN (5.7%), membranous GN (4.3%), membranoproliferative GN (4.3%), focal segmental GN (2.9%), and other GN (4.2%). The proportion of canine GN cases presently identified was not as high as the proportions identified in human studies. Conversely, urinary obstruction and end-stage renal disease cases were relatively higher in dogs than in human populations. PMID:21113095
Characterization of diabetic nephropathy in CaM kinase IIalpha (Thr286Asp) transgenic mice.
Suzuki, Hikari; Kato, Ichiro; Usui, Isao; Takasaki, Ichiro; Tabuchi, Yoshiaki; Oya, Takeshi; Tsuneyama, Koichi; Kawaguchi, Hiroshi; Hiraga, Koichi; Takasawa, Shin; Okamoto, Hiroshi; Tobe, Kazuyuki; Sasahara, Masakiyo
2009-01-30
Detailed studies were performed on diabetic kidneys derived from transgenic mice overexpressing the mutant form (Thr286Asp) of Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaM kinase IIalpha) in pancreatic beta-cells. Kidney weight/body weight ratio, urinary albumin/creatinine ratio, serum BUN level, and mesangial/glomerular area ratio were all significantly higher in transgenic mice than in wild-type mice. cDNA microarray analysis revealed 17 up-regulated genes and 12 down-regulated genes in transgenic kidney. Among up-regulated genes, cyclin D2 (6.70-fold) and osteopontin (2.35-fold) were thought to play important roles in the progression of diabetic nephropathy. Transgenic glomeruli and tubular epithelial cells were strongly stained for osteopontin, a molecule which induces immune response. In quantitative real-time RT-PCR analyses, expressions of not only M1 macrophage marker genes but also M2 macrophage marker genes were elevated in renal cortex of transgenic mice. Overall results indicate that CaM kinase IIalpha (Thr286Asp) transgenic mice serve as an excellent model for diabetic nephropathy.
Glomerulonephritis in a ferret with feline coronavirus infection.
Fujii, Yuta; Tochitani, Tomoaki; Kouchi, Mami; Matsumoto, Izumi; Yamada, Toru; Funabashi, Hitoshi
2015-09-01
A male domestic ferret (Mustela putorius furo), which was purchased from outside of Japan at 13 weeks of age, was euthanized at 18 months of age because of poor health. At autopsy, the liver, spleen, and mesenteric lymph node were enlarged, and white foci were observed on the outer surface of the liver. The outer surface of the mesenteric lymph node was dark red. Histologically, granulomas were observed in the liver, spleen, bone marrow, and lymph nodes, composed mainly of aggregated epithelioid macrophages, some of which were positive to an anti-feline coronavirus (FCoV; Alphacoronavirus 1) antibody in immunohistochemistry. Mesangioproliferative glomerulonephritis was observed, and periodic acid-Schiff-positive deposits were observed along glomerular capillary walls. These deposits stained pale red with periodic acid-methenamine silver stain and red with Masson trichrome stain, and were also observed in the mesangial matrix. In affected glomeruli, glomerular capillary walls and mesangial areas were positive for anti-ferret immunoglobulin G. By electron microscopy, subepithelial and mesangial electron-dense deposits were observed consistent with immune complex deposition. The deposition of immune complexes may have been associated with FCoV infection. © 2015 The Author(s).
Bollée, Guillaume; Flamant, Martin; Schordan, Sandra; Fligny, Cécile; Rumpel, Elisabeth; Milon, Marine; Schordan, Eric; Sabaa, Nathalie; Vandermeersch, Sophie; Galaup, Ariane; Rodenas, Anita; Casal, Ibrahim; Sunnarborg, Susan W; Salant, David J; Kopp, Jeffrey B.; Threadgill, David W; Quaggin, Susan E; Dussaule, Jean-Claude; Germain, Stéphane; Mesnard, Laurent; Endlich, Karlhans; Boucheix, Claude; Belenfant, Xavier; Callard, Patrice; Endlich, Nicole; Tharaux, Pierre-Louis
2011-01-01
Rapidly progressive glomerulonephritis (RPGN) is a clinical a morphological expression of severe glomerular injury. Glomerular injury manifests as a proliferative histological pattern (“crescents”) with accumulation of T cells and macrophages, and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the EGFR/ErbB1 receptor in mice with RPGN. In HB-EGF-deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 days after the induction of experimental RPGN. This suggests that targeting the HB-EGF/EGFR pathway could also be beneficial for treatment of human RPGN. PMID:21946538
Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.
Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario
2016-11-01
Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.
Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A
2010-07-01
WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.
Stable olfactory sensory neuron in vivo physiology during normal aging.
Kass, Marley D; Czarnecki, Lindsey A; McGann, John P
2018-05-08
Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.
Rangel, Erika B; Gomes, Samirah A; Dulce, Raul A; Premer, Courtney; Rodrigues, Claudia O; Kanashiro-Takeuchi, Rosemeire M; Oskouei, Behzad; Carvalho, Decio A; Ruiz, Phillip; Reiser, Jochen; Hare, Joshua M
2013-01-01
The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive. Here, we identify a neonatal kidney-derived c-kit+ cell population that fulfills all of the criteria as a stem cell. These cells were found in the thick ascending limb of Henle's loop and exhibited clonogenicity, self-renewal, and multipotentiality with differentiation capacity into mesoderm and ectoderm progeny. Additionally, c-kit+ cells formed spheres in nonadherent conditions when plated at clonal density and expressed markers of stem cells, progenitors, and differentiated cells. Ex-vivo expanded c-kit+ cells integrated into several compartments of the kidney, including tubules, vessels, and glomeruli, and contributed to functional and morphological improvement of the kidney following acute ischemia-reperfusion injury in rats. Together these findings document a novel neonatal rat kidney c-kit+ stem cell population that can be isolated, expanded, cloned, differentiated, and employed for kidney repair following acute kidney injury. These cells have important biological and therapeutic implications. PMID:23733311
What is new in the management of rapidly progressive glomerulonephritis?
Greenhall, George H.B.; Salama, Alan D.
2015-01-01
Rapidly progressive glomerulonephritis (RPGN) results from severe crescentic damage to glomeruli and leads to irreversible kidney failure if not diagnosed and managed in a timely fashion. Traditional treatment has relied on glucocorticoids and cyclophosphamide, with additional plasmapheresis for certain conditions. Here we describe updates in the management of RPGN, according to the underlying renal pathology. However, there remains a paucity of trials that have enrolled patients with more advanced renal disease, dialysis dependence or with RPGN, and we are therefore still reliant on extrapolation of data from studies of patients with a less severe form of disease. In addition, reporting bias results in publication of cases or cohorts showing benefit for newer agents in advanced disease or RPGN, but it remains unclear how many unsuccessful outcomes in these circumstances take place. Since clinical trials specifically in RPGN are unlikely, use of biologic registries or combination of sufficient sized cohort series may provide indications of benefit outside of a clinical trial setting and should be encouraged, in order to provide some evidence for the efficacy of therapeutic regimens in RPGN and advanced renal disease. PMID:25815169
Saiga, Kan; Yoshida, Minako; Nakamura, Iwao; Toyoda, Eriko; Tokunaka, Kazuhiro; Morohashi, Hirohisa; Abe, Fuminori; Nemoto, Kyuichi; Nose, Masato
2008-09-01
The therapeutic efficacy of immunosuppressants for treating rapidly progressive glomerulonephritis (RPGN) with crescent formation remains controversial. SCG/Kj mice spontaneously develop RPGN-like symptoms, characteristic of crescentic glomerulonephritis and systemic small vessel vasculitis, associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). We evaluated the "ameliorative", not prophylactic, effects of immunosuppressive agents, deoxyspergualin (DSG), cyclophosphamide (CYC) and prednisolone (PDN), on RPGN in these mice. DSG at intraperitoneal doses of 3 and 6 mg/kg, CYC at an oral dose of 12 mg/kg, or PDN at an intraperitoneal dose of 120 mg/kg was administered once a day for 21 days to female mice "at the onset of hematuria". A set of control SCG/Kj mice received only saline injections. DSG and CYC significantly prolonged survival, improved the proteinuria, hematuria and hyperuremia, and decreased the serum level of myeloperoxidase-ANCA. Moreover, DSG significantly suppressed the formation of crescents in glomeruli. PDN failed to affect any of the parameters. DSG might be useful for inducing remission in crescentic glomerulonephritis involved in RPGN.
Dong, Li-Qun; Wang, Zheng; Yu, Ping; Guo, Yan-Nan; Wu, Jin; Feng, Shi-Pin; Li, Sha
2009-01-01
To investigate the expression of glomerular heparin sulfate (HS) in paediatric patients with minimal change nephritic syndrome (MCNS). The kidyney tissues were collected by biopsy from 13 paediatric patients with MCNS, while 5 normal renal biopsy samples were used as control. HS in glomeruli was analysed by indirect immunofluorescence staining using four different monoclonal antibodies, Hepss1, 3G10, JM403 and 10E4, which all recognize distinct HS species and each interacts with a specific HS domain. The concentrations of urine heparan sulfate also were measured by enzyme-linked immunosorbent assay (Elisa). Expression of HS fine domains was aberrant in paediatric patients compared with control subjects. Children with MCNS in replase showed a decreased glomerular expression of 10E4, JM403 and Hepss1 (P < 0.05). The level of urinary HS was significantly increased in peadiatric patients with MCNS when compared with that in control subjects (P < 0.01). These results suggest that loss of heparan sulphate in renal tissue may play a role in the pathogenesis of MCNS proteinuria.
MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding.
D'Hulst, Charlotte; Mina, Raena B; Gershon, Zachary; Jamet, Sophie; Cerullo, Antonio; Tomoiaga, Delia; Bai, Li; Belluscio, Leonardo; Rogers, Matthew E; Sirotin, Yevgeniy; Feinstein, Paul
2016-07-26
Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Targeting therapeutics to the glomerulus with nanoparticles.
Zuckerman, Jonathan E; Davis, Mark E
2013-11-01
Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Sensory reception of the primer pheromone ethyl oleate
NASA Astrophysics Data System (ADS)
Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang
2012-05-01
Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.
Iwazu, Yoshitaka; Akimoto, Tetsu; Izawa, Sayoko; Inoue, Makoto; Muto, Shigeaki; Ando, Yasuhiro; Iwazu, Kana; Fukushima, Noriyoshi; Yumura, Wako; Kusano, Eiji
2012-06-01
We describe a case of an adult female who presented with nephrotic syndrome. She was diagnosed with systemic lupus erythematosus with serum antinuclear antibodies, leucopenia with lymphopenia, butterfly erythema, and nephrotic syndrome. Renal biopsy revealed normal glomeruli with diffuse effacement of the foot processes, consistent with lupus podocytopathy. Although human albumin replacement was performed initially, acute renal failure developed rapidly. Therefore, she was treated with double filtration plasmapheresis (DFPP) in addition to oral steroid. After steroid therapy combined with DFPP, the renal function and proteinuria improved rapidly. Although the impact of DFPP on the treatment of lupus nephritis remains to be delineated, our observations suggest that DFPP in lupus podocytopathy played a pivotal role in facilitating the early recovery from renal injuries. Because of the rapid improvement of renal function without any change in body weight by DFPP, acute renal failure in the setting of lupus podocytopathy might contribute to an alternative pathophysiological factor for the diminished glomerular filtration rate, similar to that observed in the setting of idiopathic minimal change glomerulopathy.
Terkawi, Mohamad Alaa; Nishimura, Maki; Furuoka, Hidefumi
2016-01-01
In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality. PMID:26755155
The synaptic terminations of certain midbrain-olivary fibers in the opossum.
King, J S; Hamos, J E; Maley, B E
1978-11-15
The nuclear origin and distribution of midbrain-olivary fibers has been described in a previous study utilizing axonal transport techniques (Linauts and Martin, '78a). The present report extends their results to the electron microscopic level and details the postsynaptic distribution of such fibers. Lesions within the ventral periaqueductal grey and adjacent tegmentum, the red nucleus or the nucleus subparafascicularis result in electron dense axon terminals within the olive at survival times of 48, 72 and 96 hours. At 72 hours, many degenerating presynaptic profiles shrink, become irregular in shape and are totally or partially surrounded by glial processes. The principal olivary nucleus contains the majority of these profiles. However, the subparafascicular terminals are more abundant in the rostral and intermediate parts of the medial accessory nucleus and the rubral terminals are concentrated within the dorsal lamella of the principal nucleus. The nuclear location of the degenerating terminals was determined by examination of 1 micrometer plastic sections cut in the transverse plane from each block face prior to thin sectioning. Degenerating terminals were counted in three cases, one from each of the three lesion sites described above. When taken together these cases show that just over 50% of the degenerating terminals are presynaptic to spiny appendages and are located within the synaptic clusters (glomeruli) described previously (King, '76). The percentage of degenerating terminals in the glomeruli increases to 70% when the lesion is in the ventral periaqueductal grey and adjacent tegmentum. The remaining degenerating terminals contact dendritic shafts outside the astrocytic boundaries of the synaptic clusters. The synpatic vesicle populations within the degenerating terminals vary with the location of the lesion. Lesions in the ventral periaqueductal grey and the adjacent tegmentum result in the degeneration of terminals with either clear spherical vesicles or endings with both clear spherical vesicles and a variable number of large dense core vesicles. In contrast, the primary degenerative changes that occur after destruction of the red nucleus or the nucleus subparafascicularis are in terminals with clear spherical vesicles. When the synaptic complex was present in the plane of section, regardless of the site of the lesion, the degenerating terminals could be classified as Gray's type I. Thus, we have demonstrated that afferents from the mesencephalon terminate within synpatic clusters located in the principal and medial accessory (part A) subnuclei of the inferior olive. Although the mesencephalic afferents have multiple origins (Linauts and Martin, '78a), many of their synaptic terminals contact spiny appendages within the synaptic clusters. This postsynaptic site also receives cerebellar terminals (King et al., '76). The origin of presynaptic profiles within the synaptic clusters that contain clear pleomorphlic vesicles is yet to be determined.
An insect-inspired model for visual binding II: functional analysis and visual attention.
Northcutt, Brandon D; Higgins, Charles M
2017-04-01
We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.
Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.
Ellery, Stacey J; Ireland, Zoe; Kett, Michelle M; Snow, Rod; Walker, David W; Dickinson, Hayley
2013-02-01
Acute kidney injury (AKI) is a major complication for infants following an asphyxic insult at birth. We aimed to determine if kidney structure and function were affected in an animal model of birth asphyxia and if maternal dietary creatine supplementation could provide an energy reserve to the fetal kidney, maintaining cellular respiration during asphyxia and preventing AKI. Pregnant spiny mice were maintained on normal chow or chow supplemented with creatine from day 20 gestation. On day 38 (term ~39 d), pups were delivered by cesarean section (c-section) or subjected to intrauterine asphyxia. Twenty-four hours after insult, kidneys were collected for histological or molecular analysis. Urine and plasma were also collected for biochemical analysis. AKI was evident at 24 h after birth asphyxia, with a higher incidence of shrunken glomeruli (P < 0.02), disturbance to tubular arrangement, tubular dilatation, a twofold increase (P < 0.02) in expression of Ngal (early marker of kidney injury), and decreased expression of the podocyte differentiation marker nephrin. Maternal creatine supplementation prevented the glomerular and tubular abnormalities observed in the kidney at 24 h and the increased expression of Ngal. Maternal creatine supplementation may prove useful in ameliorating kidney injury associated with birth asphyxia.
Maladjustment of kidneys to microgravity: Design of measures to reduce the loss of calcium
NASA Technical Reports Server (NTRS)
Nechay, Bohdan R.
1989-01-01
Losses of skeletal calcium and body fluids occur during prolonged exposure to microgravity. The kidney plays a major role in regulating the physiological functions involved. Relative to this regulatory function, the kidney performs three operations: filtration of blood plasma through the glomeruli, reabsorption, and secretion of fluid and electrolytes so that needed components are retained and only waste is eliminated in the urine. Using data published in Biomedical Results from Skylab, researchers performed new calculations that reflect more directly the operations of the kidney in the handling of calcium, sodium, chloride, potassium and phosphate during space flight. These calculations revealed that the fraction of filtered calcium that was rejected by renal tubules and excreted in the urine increased by 71 percent, from 1.77 percent (preflight) to 3.02 percent (inflight) of the filtered load. This represents a large absolute increase because the total filtered amount is huge. Because the tubular rejection fraction of other ions increased relatively less than that of calcium, researchers postulate the inflight development of a specific renal defect that causes an excessive loss of calcium in urine and thereby contributes to the weakening of bones.
Spencer, John David; Schwaderer, Andrew L; Wang, Huanyu; Bartz, Julianne; Kline, Jennifer; Eichler, Tad; DeSouza, Kristin R; Sims-Lucas, Sunder; Baker, Peter; Hains, David S
2013-04-01
The mechanisms that maintain sterility in the urinary tract are incompletely understood; however, recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Ribonuclease 7 (RNase 7), a potent antimicrobial peptide contributing to urinary tract sterility, is expressed by intercalated cells in the renal collecting tubules and is present in the urine at levels sufficient to kill bacteria at baseline. Here, we characterize the expression and function of RNase 7 in the human urinary tract during infection. Both quantitative real-time PCR and enzyme-linked immunosorbant assays demonstrated increases in RNASE7 expression in the kidney along with kidney and urinary RNase 7 peptide concentrations with infection. While immunostaining localized RNase 7 production to the intercalated cells of the collecting tubule during sterility, its expression during pyelonephritis was found to increase throughout the nephron but not in glomeruli or the interstitium. Recombinant RNase 7 exhibited antimicrobial activity against uropathogens at low micromolar concentrations by disrupting the microbial membrane as determined by atomic force microscopy. Thus, RNase 7 expression is increased in the urinary tract with infection and has antibacterial activity against uropathogens at micromolar concentrations.
Spencer, John David; Schwaderer, Andrew L.; Wang, Huanyu; Bartz, Julianne; Kline, Jennifer; Eichler, Tad; DeSouza, Kristin R.; Sims-Lucas, Sunder; Baker, Peter; Hains, David S.
2012-01-01
The mechanisms that maintain sterility in the urinary tract are incompletely understood; however, recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Ribonuclease 7 (RNase 7), a potent antimicrobial peptide contributing to urinary tract sterility, is expressed by intercalated cells in the renal collecting tubules and is present in the urine at levels sufficient to kill bacteria at baseline. Here, we characterize the expression and function of RNase 7 in the human urinary tract during infection. Both quantitative real-time PCR and ELISA assays demonstrated increases in RNASE7 expression in the kidney along with kidney and urinary RNase 7 peptide concentrations with infection. While immunostaining localized RNase 7 production to the intercalated cells of the collecting tubule during sterility, its expression during pyelonephritis was found to increase throughout the nephron but not in glomeruli or the interstitium. Recombinant RNase 7 exhibited antimicrobial activity against uropathogens at low micromolar concentrations by disrupting the microbial membrane as determined by atomic force microscopy. Thus, RNase 7 expression is increased in the urinary tract with infection, and has antibacterial activity against uropathogens at micromolar concentrations. PMID:23302724
PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments.
Terada, Y; Tomita, K; Nonoguchi, H; Yang, T; Marumo, F
1994-08-01
The present study was undertaken to investigate the presence of C-type natriuretic peptide (CNP) mRNA and its receptor, natriuretic peptide B-type receptor (ANPR-B) mRNA, in rat renal structures. The microlocalization of mRNAs coding for CNP and ANPR-B was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, vasa recta bundle, and arcuate arteries. The PCR signal for CNP was detected in glomerulus, vasa recta bundle, and arcuate artery. The PCR product of ANPR-B was widely present in renal structures. Relatively large amounts of ANPR-B PCR product were detected in glomerulus, vasa recta bundle, arcuate artery, and distal nephron segments. A relatively high concentration of CNP (10(-7) M) stimulated guanosine 3',5'-cyclic monophosphate accumulation in glomerulus, medullary thick ascending limb, cortical collecting duct, and inner medullary collecting duct. Our data demonstrate that CNP can be produced locally in the glomerulus and renal vascular system and that ANPR-B is widely distributed in renal structures. Thus CNP may influence renal function and act in autocrine and paracrine fashions in the kidney.
Liu, Zun Chang; Chang, Thomas M.S.
2012-01-01
This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology. PMID:18979292
Miyamoto, Satoshi; Hsu, Cheng-Chih; Hamm, Gregory; Darshi, Manjula; Diamond-Stanic, Maggie; Declèves, Anne-Emilie; Slater, Larkin; Pennathur, Subramaniam; Stauber, Jonathan; Dorrestein, Pieter C; Sharma, Kumar
2016-05-01
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb
Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan
2016-01-01
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096
Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D
2016-08-08
Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Bradford, W. D.; Croker, B. P.; Tisher, C. C.
1979-01-01
The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676
Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A
2009-09-29
Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Bradford, M J; Lovy, J; Patterson, D A
2010-09-01
Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.
Differences in peripheral sensory input to the olfactory bulb between male and female mice
NASA Astrophysics Data System (ADS)
Kass, Marley D.; Czarnecki, Lindsey A.; Moberly, Andrew H.; McGann, John P.
2017-04-01
Female mammals generally have a superior sense of smell than males, but the biological basis of this difference is unknown. Here, we demonstrate sexually dimorphic neural coding of odorants by olfactory sensory neurons (OSNs), primary sensory neurons that physically contact odor molecules in the nose and provide the initial sensory input to the brain’s olfactory bulb. We performed in vivo optical neurophysiology to visualize odorant-evoked OSN synaptic output into olfactory bub glomeruli in unmanipulated (gonad-intact) adult mice from both sexes, and found that in females odorant presentation evoked more rapid OSN signaling over a broader range of OSNs than in males. These spatiotemporal differences enhanced the contrast between the neural representations of chemically related odorants in females compared to males during stimulus presentation. Removing circulating sex hormones makes these signals slower and less discriminable in females, while in males they become faster and more discriminable, suggesting opposite roles for gonadal hormones in influencing male and female olfactory function. These results demonstrate that the famous sex difference in olfactory abilities likely originates in the primary sensory neurons, and suggest that hormonal modulation of the peripheral olfactory system could underlie differences in how males and females experience the olfactory world.
Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul
2012-01-01
In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928
Central blood pressure and chronic kidney disease
Ohno, Yoichi; Kanno, Yoshihiko; Takenaka, Tsuneo
2016-01-01
In this review, we focused on the relationship between central blood pressure and chronic kidney diseases (CKD). Wave reflection is a major mechanism that determines central blood pressure in patients with CKD. Recent medical technology advances have enabled non-invasive central blood pressure measurements. Clinical trials have demonstrated that compared with brachial blood pressure, central blood pressure is a stronger risk factor for cardiovascular (CV) and renal diseases. CKD is characterized by a diminished renal autoregulatory ability, an augmented direct transmission of systemic blood pressure to glomeruli, and an increase in proteinuria. Any elevation in central blood pressure accelerates CKD progression. In the kidney, interstitial inflammation induces oxidative stress to handle proteinuria. Oxidative stress facilitates atherogenesis, increases arterial stiffness and central blood pressure, and worsens the CV prognosis in patients with CKD. A vicious cycle exists between CKD and central blood pressure. To stop this cycle, vasodilator antihypertensive drugs and statins can reduce central blood pressure and oxidative stress. Even in early-stage CKD, mineral and bone disorders (MBD) may develop. MBD promotes oxidative stress, arteriosclerosis, and elevated central blood pressure in patients with CKD. Early intervention or prevention seems necessary to maintain vascular health in patients with CKD. PMID:26788468
STUDIES ON THE ETIOLOGY OF HEARTWATER
Cowdry, E. V.
1925-01-01
A Gram-negative, intracellular, coccus-like microorganism was found in cases of heartwater in the three species which are susceptible to the disease; namely, goats, sheep, and cattle. It was absent in the case of control animals, both normal ones and those dying of some. other diseases. The presence of this microorganism was definitely related to the febrile reaction. It was most easily detected in the renal glomeruli and in the small capillaries of the cerebral cortex but probably occurred throughout the body. The microorganism was a typical endothelial parasite, being restricted in distribution to the endothelial cells of the smaller blood vessels and to portions of such elements which had broken off into the blood stream. It was never observed to cause injury to the cells other than those incident to mechanical distention through accumulation within them of many individuals in large densely packed masses which were characteristically spherical. A typical attribute was the presence of several of these masses within the cytoplasm of a single endothelial cell. In view of the association of this microorganism with heartwater, a disease of ruminants, and thus far the only one in which microorganisms resembling Rickettsiœ have been reported, the designation Rickettsia ruminantium is proposed. PMID:19869049
Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendlovic, S.; Brocke, S.; Meshorer, A.
1988-04-01
Systemic lupus erythematosus (SLE) is considered to be the quintessential autoimmune disease. It has not been possible to induce SLE in animal models by DNA immunization or by challenge with anti-DNA antibodies. The authors report a murine model of SLE-like disease induced by immunization of C3H.SW female mice with a common human monoclonal anti-DNA idiotype (16/6 idiotype). Following a booster injection with the 16/6 idiotype, high levels of murine anti-16/6 and anti-anti-16/6 antibodies (associated with anti-DNA activity) were detected in the sera of the immunized mice. Elevated titers of autoantibodies reacting with DNA, poly(I), poly(dT), ribonucleoprotein, autoantigens (Sm, SS-A (Ro),more » and SS-B (La)), and cardiolipin were noted. The serological findings were associated with increased erythrocyte sedimentation rate, leukopenia, proteinuria, immune complex deposition in the glomerular mesangium, and sclerosis of the glomeruli. The immune complexes in the kidneys were shown to contain the 16/6 idiotype. This experimental SLE-like model may be used to elucidate the mechanisms underlying SLE.« less
Autoimmune kidney disease in MRL/Mp-lpr/lpr mice inhibited by OK-432, a streptococcal preparation.
Mihara, M; Ohsugi, Y
1989-01-01
Autoimmune MRL/Mp-lpr/lpr (MRL/l) mice were treated with the immunostimulating anti-cancer drug OK-432 (a streptococcal preparation), a potent inducer of tumour necrosis factor. Treatment was initiated at 8 weeks of age, before the onset of the autoimmune disease. OK-432 prevented the development of immune complex-mediated glomerulonephritis in a dose-dependent manner, and prolonged the life in this strain of mice. At 36 weeks of age, the incidence of proteinuria was 90% in the controls, 60% in the 0.5-KE(1 KE = 0.1 mg) treatment group, and 33% in the 2.0-KE group. The 50% survival time was 23 weeks for the controls; 32 weeks for the 0.5-KE group; and greater than 36 weeks for the 2.0-KE group. Immune complex deposition in glomeruli was significantly reduced in the treated groups. The IgM class of serum autoantibody levels was significantly increased by OK-432 treatment but the IgG class was almost unchanged. Furthermore, lymphadenopathy and splenomegaly were not suppressed. The results indicate that OK-432 may be useful in the treatment of autoimmune disease in humans. PMID:2805413
Kussman, Ashleigh; Gohara, Amira
2012-12-01
Goodpasture syndrome is a rare, life-threatening autoimmune disease characterized by a triad of rapidly progressive glomerulonephritis, a hemorrhagic pulmonary condition and the presence of anti-glomerular basement membrane (anti-GBM) antibodies. The antibodies initiate destruction of the kidney glomeruli, resulting in a focal necrotizing glomerulitis, which may progress rapidly to renal failure. Autoantibody-mediated damage of alveolar basement membranes leads to diffuse pulmonary hemorrhage, which in some cases may be severe enough to cause respiratory failure. Many clinicians use a variety of assays to detect serum anti-GBM antibodies; however, these tests may be falsely negative in up to 15% of patients with Goodpasture syndrome. Here, we report an unusual case of a 40-year-old man with clinical evidence of Goodpasture syndrome, a negative anti-GBM antibody serum result, eosinophilia and delta granule pool storage deficiency. After a 14-day hospital stay and extensive workup, as well as treatment with antibiotics, steroids and ventilator support for respiratory failure, the patient continued to deteriorate and entered multisystem organ failure. The family decided to withdraw ventilator support, and the patient expired. Immunofluorescence testing for anti-GBM autoantibodies on lung and kidney tissues during an autopsy confirmed the diagnosis of Goodpasture syndrome.
Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.
2010-01-01
WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064
Role of neuropeptide Y (NPY) in the regulation of reproduction: study based on catfish model.
Subhedar, Nishikant; Gaikwad, Archana; Biju, K C; Saha, Subhash
2005-04-01
Significance of NPY in the regulation of GnRH-LH axis was evaluated. Considerable NPY immunoreactivity was seen in the components like olfactory system, basal telencephalon, preoptic and tuberal areas, and the pituitary gland that serve as neuroanatomical substrates for processing reproductive information. Close anatomical association as well as colocalizations of NPY and GnRH were seen in the olfactory receptor neurons, olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tracts, fibers in the ventral telencephalon and pituitary. In the pituitary, NPY fibers seem to innervate the GnRH as well as LH cells. Intracranial administration of NPY resulted in significant increase in the GnRH immunoreactivity in all the components of the olfactory system. In the pituitary, NPY augmented the population of GnRH fibers and LH cells. HPLC analysis showed that salmon GnRH content in the olfactory organ, bulb, preoptic area+telencephalon and pituitary was also significantly increased following NPY treatment. NPY may play a role in positive regulation of GnRH throughout the neuraxis and also up-regulate the LH cells in the pituitary.
Hirsch, H Z; Ainsworth, S K; DeBeukelaer, M; Brissie, R M; Hennigar, G R
1981-04-01
The presence of hepatitis B surface antigen (HBsAg) in association with immunoglobulins and complement components within the glomerular basement membranes of adults having chronic active hepatitis has been well documented. In addition, investigators in Poland have demonstrated HBsAg immune complexes in glomeruli of children who did not have clinical evidence of hepatitis. More recently, a single case of childhood membranous glomerulonephritis in an asymptomatic carrier of hepatitis B virus was cited by observers in Canada. Reported here is the deposition of HBsAg immune complexes in the glomerular basement membranes of a 13-year-old black boy who had membranous glomerulopathy but not clinical evidence of hepatitis. This may be the first reported case in the United States of HbsAg-associated membranous glomerulonephritis in a child asymptomatic for hepatitis B virus, and only the second such case in North America. However, unlike previous studies of childhood glomerulopathy in association with hepatitis B virus, this patient is seropositive for both HBsAg and anti-HBs (antibody for hepatitis B surface antigen). Similar "rare" serologic findings were found for the patient's eldest male sib.
Miyata, S; Monnier, V
1992-01-01
Pyrraline is one of the major Maillard compounds resulting from the reaction of glucose with amino compounds at slightly acidic pH. For in vivo studies, monoclonal pyrraline antibodies were raised after immunization of Balb/c mice with keyhole limpet hemocyamin-caproyl pyrraline conjugate. Of 660 hybridoma clones from one donor, 260 produced an antibody to the free hapten, two of which named Pyr-A and Pyr-B also cross-reacted with L-lysyl pyrraline. Using Pyr-B antibody and an ELISA, a gradual increase in pyrraline immunoreactivity was observed in serum albumin incubated with glucose or 3-deoxyglucosone. Plasma pyrraline levels increased fourfold (P less than 0.001) in Sprague-Dawley rats upon induction of diabetes with streptozotocin and were twofold increased in randomly selected plasmas from diabetic humans. Highly specific pyrraline immunoreactivity was detected in sclerosed glomeruli from diabetic and old normal kidneys as well as in renal arteries with arteriolosclerosis and in perivascular and peritubular sclerosed extracellular matrix and basement membranes. The preferential localization of pyrraline immunoreactivity in the extracellular matrix strengthens the notion that the advanced glycosylation reaction may contribute to decreased turnover and thickening of the extracellular matrix in diabetes and aging. Images PMID:1556177
Central projections and entries of capsaicin-sensitive muscle afferents.
Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R
1996-03-25
The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.
Concentration gradient of oxalate from cortex to papilla in rat kidney.
Nakatani, Tatsuya; Ishii, Keiichi; Sugimoto, Toshikado; Kamikawa, Sadanori; Yamamoto, Keisuke; Yoneda, Yukio; Kanazawa, Toshinao; Kishimoto, Taketoshi
2003-02-01
The kidney eliminates the major fraction of plasma oxalate. It is well known that oxalate is freely filtered by glomeruli and secreted by the proximal tubules. However, the renal handling of oxalate in distal nephrons, which is considered as playing an important role in stone formation, remains obscure. At 15-180 min after intravenous injection of 14C-oxalate to rats, the intrarenal localization of radioactivity was quantitatively measured by the radioluminographic method using a bioimaging analyzer. Tissue radioactivity was compared with plasma, and urinary radioactivities were measured by a liquid scintillation counter. The control study was conducted with 14C-inulin. The radioactivity of 14C-oxalate in the papilla was 10 times greater than in the cortex and eight times greater than in the medulla 180 min after injection when almost no radioactivity was present in the urine. In contrast, the radioactivity of 14C-inulin was nine times less in the papilla than in the cortex at the same time. Oxalate remains in the renal papilla for an extended period. This accumulation of oxalate may be attributed to calcium oxalate crystal fixation along the deep nephron which is considered to be the first step of stone formation.
Patera, Janusz; Chorostowska-Wynimko, Joanna; Słodkowska, Janina; Borowska, Adamina; Skopiński, Piotr; Sommer, Ewa; Wasiutyński, Aleksander; Skopińska-Rózewska, Ewa
2006-01-01
Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s) responsible for the observed effects is of vital importance.
Shahi, Neetu; Sarma, Debaji; Pandey, Jyoti; Das, Partha; Sarma, Dandadhar; Mallik, Sumanta Kumar
2016-07-01
The present study was carried out to evaluate sub-lethal mechanism of acid mine drainage toxicity in fingerlings (9.5 ± 2.4 cm) of golden mahseer, Tor putitora. Exposed fingerlings showed significant reduction (P < 0.01) in blood erythrocytes, neutrophils, thrombocytes, lymphocytes and leukocytes in contrast to increase in number of immature circulating cells. Hyperplasia, degeneration of glomeruli, presence of inflammatory cells and increased number of melanomacrophage aggregates, vacuolization of cell cytoplasm, hepatocyte swelling were marked in kidney and liver of fish. Ladder in, an increment of 180-200 bp of hepatic and kidney DNA, by electrophoresis were consistent with DNA damage. 10 day exposure to acid mine drainage resulted in reduction of double stranded DNA to 46.0 and 48.0 in hepatocytes and kidney cells respectively. Significant increase (P < 0.01) in tail length and percent tail DNA was evident by comet assay. The results suggest that exposure to acid mine drainage might cause irreversible damage to immune cells, tissue and DNA of fish, and this model of DNA damage may contribute in identifying novel molecular mechanism of interest for bioremediation application.
Floral to green: mating switches moth olfactory coding and preference.
Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard
2012-06-22
Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.
Partitioning-Defective 1a/b Depletion Impairs Glomerular and Proximal Tubule Development.
Akchurin, Oleh; Du, Zhongfang; Ramkellawan, Nadira; Dalal, Vidhi; Han, Seung Hyeok; Pullman, James; Müsch, Anne; Susztak, Katalin; Reidy, Kimberly J
2016-12-01
The kidney is a highly polarized epithelial organ that develops from undifferentiated mesenchyme, although the mechanisms that regulate the development of renal epithelial polarity are incompletely understood. Partitioning-defective 1 (Par1) proteins have been implicated in cell polarity and epithelial morphogenesis; however, the role of these proteins in the developing kidney has not been established. Therefore, we studied the contribution of Par1a/b to renal epithelial development. We examined the renal phenotype of newborn compound mutant mice carrying only one allele of Par1a or Par1b. Loss of three out of four Par1a/b alleles resulted in severe renal hypoplasia, associated with impaired ureteric bud branching. Compared with kidneys of newborn control littermates, kidneys of newborn mutant mice exhibited dilated proximal tubules and immature glomeruli, and the renal proximal tubular epithelia lacked proper localization of adhesion complexes. Furthermore, Par1a/b mutants expressed low levels of renal Notch ligand Jag1, activated Notch2, and Notch effecter Hes1. Together, these data demonstrate that Par1a/b has a key role in glomerular and proximal tubule development, likely via modulation of Notch signaling. Copyright © 2016 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu
2017-12-01
Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.
STUDIES ON THE MECHANISM OF EXPERIMENTAL PROTEINURIA INDUCED BY RENIN
Deodhar, Sharad D.; Cuppage, Francis E.; Gableman, E.
1964-01-01
Renin-induced proteinuria in the rat was investigated, with special emphasis on the relationship between the enzymatic activity and the proteinuric effect of renin. The dependence of the proteinuric effect on the enzymatic activity was shown by using (a) renin preparations of widely varying purity and (b) chemically modified "active" and "inactive" renin derivatives. Angiotensin II, the pressor product of the enzymatic action of renin, also produced significant proteinuria. Adrenalectomy abolished the proteinuria induced by renin. Proteinuria, however, occurred as a result of pretreatment with DOCA, or aldosterone, or without treatment, 7 to 8 weeks after adrenalectomy. Electron microscopic studies of the kidney at the time of maximal proteinuria showed focal flattening and fusion of epithelial foot processes, as well as swelling and vesicle formation in endothelial and epithelial cells of the glomeruli. Studies with intravenously injected saccharated iron oxide showed increased permeability of the glomerular capillary basement membrane to these particles. These changes were transient and were not seen 24 hours after renin injection. Adrenalectomy prevented these changes. It is concluded that renin, acting through angiotensin, causes glomerular capillary damage with increased permeability of these structures to protein and resultant proteinuria. The adrenal glands participate in a permissive role in this phenomenon. PMID:14212126
Baum, Michael J.
2012-01-01
Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chunfa, E-mail: chunfa.huang@case.edu; Department of Medicine, Case Western Reserve University; Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposedmore » to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.« less
Odour maps in the brain of butterflies with divergent host-plant preferences.
Carlsson, Mikael A; Bisch-Knaden, Sonja; Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.
Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences
Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S.; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants. PMID:21901154
Burt, Davina; Salvidio, Gennaro; Tarabra, Elena; Barutta, Federica; Pinach, Silvia; Dentelli, Patrizia; Camussi, Giovanni; Perin, Paolo Cavallo; Gruden, Gabriella
2007-01-01
In crescentic glomerulonephritis (GN), monocyte chemoattractant protein-1 (MCP-1) is overexpressed within the glomeruli, and MCP-1 blockade has renoprotective effects. Adult podocytes are in a quiescent state, but acquisition of a migratory/proliferative phenotype has been described in crescentic GN and implicated in crescent formation. The cognate CC chemokine receptor 2 (CCR2), the MCP-1 receptor, is expressed by other cell types besides monocytes and has been implicated in both cell proliferation and migration. We investigated whether MCP-1 binding to CCR2 can induce a migratory/proliferative response in cultured podocytes. MCP-1 binding to CCR2 enhanced podocyte chemotaxis/haptotaxis in a concentration-dependent manner and had a modest effect on cell proliferation. Closure of a wounded podocyte monolayer was delayed by CCR2 blockade, and CCR2 was overexpressed at the wound edge, suggesting a role for CCR2 in driving podocyte migration. Immunohistochemical analysis of kidney biopsies from patients with crescentic GN demonstrated CCR2 expression in both podocytes and cellular crescents, confirming the clinical relevance of our in vitro findings. In conclusion, the MCP-1/CCR2 system is functionally active in podocytes and may be implicated in the migratory events triggered by podocyte injury in crescentic GN and other glomerular diseases. PMID:18055544
Petrakis, Ioannis; Mavroeidi, Vasiliki; Stylianou, Kostas; Andronikidi, Eva; Lioudaki, Eirini; Perakis, Kostas; Stratigis, Spyridon; Vardaki, Eleftheria; Zafeiri, Maria; Giannakakis, Kostantinos; Plaitakis, Andreas; Amoiridis, George; Saraiva, Maria Joao; Daphnis, Eugene
2013-09-01
Familial amyloid polyneuropathy is characterized by transthyretin (TTR) deposition in various tissues, including the kidneys. While deposition induces organ dysfunction, renal involvement in TTR-related amyloidosis could manifest from proteinuria to end-stage kidney failure. As proteinuria is considered result of glomerular filtration barrier injury we investigated whether TTR deposition affects either glomerular basement membrane (GBM) or podocytes. Immunohistochemistry, immunoblot and gene expression studies for nephrin, podocin and WT1 were run on renal tissue from human-TTRV30M transgenic mice hemizygous or homozygous for heat shock factor one (Hsf-1). Transmission electron microscopy was used for evaluation of podocyte foot process width (PFW) and GBM thickness in Hsf-1 hemizygous mice with or without TTRV30M or amyloid deposition. Glomeruli of hsf-1 hemizygous transgenic mice showed lower nephrin and podocin protein levels but an increased podocyte number when compared to Hsf-1 homozygous transgenic mice. Nephrin, podocin and WT1 gene expression levels were unaffected by the Hsf-1 carrier status. TTRV30M deposition was associated with increased PFW and GBM thickness. Under the effect of Hsf-1 hemizygosity, TTRV30M deposition has deleterious effects on GBM thickness, PFW and slit diaphragm composition, without affecting nephrin and podocin gene expression.
KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria
Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi
2014-01-01
The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666
Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B; Kon, Valentina; Ichikawa, Iekuni
2011-07-01
Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. This study examined the potential benefit of maintaining podocyte-derived VEGF in podocyte defense and survival after PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, antiapoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Furthermore, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology were significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell after injury and preempt subsequent deterioration of the glomerulus in developing mice.
Zhou, Guangyu; Wang, Yanqiu; He, Ping; Li, Detian
2013-01-01
The present study was conducted to investigate the effects of probucol on the progression of diabetic nephropathy and the underlying mechanism in type 2 diabetic db/db mice. Eight weeks db/db mice were treated with regular diet or probucol-containing diet (1%) for 12 weeks. Non-diabetic db/m mice were used as controls. We examined body weight, blood glucose, and urinary albumin. At 20 weeks, experimental mice were sacrificed and their blood and kidneys were extracted for the analysis of blood chemistry, kidney histology, oxidative stress marker, and podocyte marker. As a result, 24 h urinary albumin excretions were reduced after probucol treatment. There were improvements of extracellular matrix accumulation and fibronectin and collagen IV deposition in glomeruli in the probucol-treated db/db mice. The reduction of nephrin and the loss of podocytes were effectively prevented by probucol in db/db mice. Furthermore, probucol significantly decreased the production of thiobarbituric acid-reactive substances (TBARS), an index of reactive oxygen species (ROS) generation and down-regulated the expression of Nox2. Taken together, our findings support that probucol may have the potential to protect against type 2 diabetic nephropathy via amelioration of podocyte injury and reduction of oxidative stress.
Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes
Madhusudhan, Thati; Wang, Hongjie; Straub, Beate K.; Gröne, Elisabeth; Zhou, Qianxing; Shahzad, Khurrum; Müller-Krebs, Sandra; Schwenger, Vedat; Gerlitz, Bruce; Grinnell, Brian W.; Griffin, John H.; Reiser, Jochen; Gröne, Hermann-Josef; Esmon, Charles T.; Nawroth, Peter P.
2012-01-01
The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPCinduced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies. PMID:22117049
Amyloidosis in association with spontaneous feline immunodeficiency virus infection.
Asproni, Pietro; Abramo, Francesca; Millanta, Francesca; Lorenzi, Davide; Poli, Alessandro
2013-04-01
Tissues from 34 naturally feline immunodeficiency virus (FIV)-infected cats, 13 asymptomatic cats and 21 cats with signs of feline acquired immunodeficiency syndrome (F-AIDS), and 35 FIV-seronegative subjects were examined to determine the presence of amyloid deposits. Twenty experimentally FIV-infected cats and five specific pathogen-free (SPF) control cats were also included in the study. Paraffin-embedded sections from kidney and other organs were submitted to histological and histochemical analysis. Amyloid deposits were identified by a modified Congo red stain and confirmed by electron microscopy to demonstrate the presence of amyloid fibrils in amyloid positive glomeruli. In all positive cases, secondary amyloidosis was identified with potassium permanganate pretreatment and amyloid type was further characterised by immunohistochemistry using primary antibodies against human AA and feline AL amyloids. Amyloid deposits were present in different tissues of 12/34 (35%) naturally FIV-infected cats (seven presenting F-AIDS and five in asymptomatic phase) and in 1/30 FIV-seronegative cats. All the experimentally FIV-infected and SPF subjects showed no amyloid deposits. Amyloidosis has been reported in human lentiviral infections, and the data reported here demonstrate the need, in naturally FIV-infected cats, to consider the presence of amyloidosis in differential diagnosis of hepatic and renal disorders to better assess the prognosis of the disease.
Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.
Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y
2010-04-01
The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.
Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease
Dufek, Brianna; Meehan, Daniel; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic
2016-01-01
Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the sub-capillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of pro-inflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is upregulated in Alport glomeruli, and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan, or under conditions of siRNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and pro-inflammatory cytokines, increased lifespan, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model. PMID:27165837
Gibson, Nicholas J; Tolbert, Leslie P
2006-04-10
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.
Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.
2009-01-01
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons. PMID:19787046
Gibson, Nicholas J.; Tolbert, Leslie P.
2008-01-01
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681
Spontaneous, generalized lipidosis in captive greater horseshoe bats (Rhinolophus ferrumequinum).
Gozalo, Alfonso S; Schwiebert, Rebecca S; Metzner, Walter; Lawson, Gregory W
2005-11-01
During a routine 6-month quarantine period, 3 of 34 greater horseshoe bats (Rhinolophus ferrumequinum) captured in mainland China and transported to the United States for use in echolocation studies were found dead with no prior history of illness. All animals were in good body condition at the time of death. At necropsy, a large amount of white fat was found within the subcutis, especially in the sacrolumbar region. The liver, kidneys, and heart were diffusely tan in color. Microscopic examination revealed that hepatocytes throughout the liver were filled with lipid, and in some areas, lipid granulomas were present. renal lesions included moderate amounts of lipid in the cortical tubular epithelium and large amounts of protein and lipid within Bowman's capsules in the glomeruli. In addition, one bat had large lipid vacuoles diffusely distributed throughout the myocardium. The exact pathologic mechanism inducing the hepatic, renal, and cardiac lipidosis is unknown. The horseshoe bats were captured during hibernation and immediately transported to the United States. It is possible that the large amount of fat stored coupled with changes in photoperiod, lack of exercise, and/or the stress of captivity might have contributed to altering the normal metabolic processes, leading to anorexia and consequently lipidosis in these animals.
Kang, Ju Hyung; Baik, Haing Woon; Yoo, Seung-Min; Kim, Joo Heon; Cheong, Hae Il; Park, Chung-Gyu; Kang, Hee Gyung; Ha, Il-Soo
2016-01-01
Renin, in addition to its activation of the renin-angiotensin system, binds to the (pro)renin receptor (PRR) and triggers inflammatory and fibrogenic signaling in tissue. In addition, aliskiren, a direct renin inhibitor, has been shown to affect IgG metabolism by altering PRR and neonatal Fc receptors (FcRns). We investigated the effect of aliskiren on proteinuria, glomerular extracellular matrix, expressions of fibronectin, transforming growth factor β1 (TGF-β1), PRR, FcRn and renal metabolism of IgG in a mice model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). IgG deposition and expressions of FcRn and PRR were enhanced at glomeruli and urinary IgG levels increased in anti-GBM GN. Aliskiren attenuated anti-GBM GN with reduction of proteinuria and cortical expressions of fibronectin and TGF-β1. In addition, aliskiren suppressed the renal cortical expressions of FcRn and PRR. Aliskiren also reduced the glomerular IgG depositions and the urinary IgG levels albeit with increased circulating serum IgG levels. These results suggest that suppression of FcRn and PRR and regulation of IgG metabolism may be related to the attenuation of anti-GBM GN by aliskiren. © 2016 S. Karger AG, Basel.
Shcherbakova, V M
2016-01-01
The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.
Wasser, Hannah; Biller, Alexandra; Antonopoulos, Georgios; Meyer, Heiko; Bicker, Gerd; Stern, Michael
2017-04-01
The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.
Collapsing glomerulopathy, the Saudi Arabian scenario
Husain, Sufia
2017-01-01
Objectives: To compare the clinico-pathological features of collapsing glomerulopathy (CG) at a tertiary hospital in Saudi Arabia with the world literature. Methods: In a retrospective study, all biopsy-diagnosed cases of CG between 2004-2015 were identified and analyzed, at King Khalid University Hospital, King Saud University, Riyadh. The clinico-pathological findings along with prognosis were reviewed and compared with the reported literature. Results: Thirty-one CG patients were identified, most were adult males. All the CG cases were idiopathic, all Arabs, none HIV positive, none of African descent, and none with a history of drug abuse. The number of glomeruli with collapsing lesions per biopsy ranged from 1 to 9. Other types of FSGS lesions (not otherwise specified and perihilar) were also noted. There was extensive podocyte effacement. Upon treatment, remission (complete/partial) was noted in almost half the patients; around one fourth did not respond to treatment; and one fourth progressed to end stage kidney disease (ESKD). The median time taken to develop ESKD from the time of biopsy diagnosis was 23 months. Conclusion: The clinico-pathological and prognostic correlates of CG in Saudi Arabia are comparable with that of the world literature. The management protocol at our center is the same as that practiced in different parts of the world, and the prognosis is overall poor. PMID:28439601
A biophysical signature of network affiliation and sensory processing in mitral cells
Angelo, Kamilla; Rancz, Ede A.; Pimentel, Diogo; Hundahl, Christian; Hannibal, Jens; Fleischmann, Alexander; Pichler, Bruno; Margrie, Troy W.
2012-01-01
One defining characteristic of the mammalian brain is its neuronal diversity1. For a given region, substructure or layer and even cell type2, variability in neuronal morphology and connectivity2-5 persists. While it is well established that such cellular properties vary considerably according to neuronal type, the significant biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked membrane potential sag recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells reveal that the amount of hyperpolarization-evoked sag potential and current6 is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 subunit of the hyperpolarization-activated current (Ih) channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so only one type of odorant receptor is universally expressed7. We therefore suggest that population diversity in the intrinsic profile of mitral cells reflect functional adaptations of distinct local circuits dedicated to processing subtly different odor-related information. PMID:22820253
Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice
Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian
2013-01-01
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342
Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.
Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O
2013-08-01
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.
Effects of the food additive, citric acid, on kidney cells of mice.
Chen, Xg; Lv, Qx; Liu, Ym; Deng, W
2015-01-01
Citric acid is a food additive that is widely used in the food and drink industry. We investigated the effects of citric acid injection on mouse kidney. Forty healthy mice were divided into four groups of 10 including one control group and three citric acid-treated groups. Low dose, middle dose and high dose groups were given doses of 120, 240 and 480 mg/kg of citric acid, respectively. On day 7, kidney tissues were collected for histological, biochemical and molecular biological examination. We observed shrinkage of glomeruli, widened urinary spaces and capillary congestion, narrowing of the tubule lumen, edema and cytoplasmic vacuolated tubule cells, and appearance of pyknotic nuclei. The relation between histopathological changes and citric acid was dose dependent. Compared to the control, T-SOD and GSH-Px activities in the treated groups decreased with increasing doses of citric acid, NOS activity tended to increase, and H2O2 and MDA contents gradually decreased, but the differences between any treated group and the control were not statistically significant. The apoptosis assay showed a dose-dependent increase of caspase-3 activity after administering citrate that was statistically significant. DNA ladder formation occurred after treatment with any dose of citric acid. We concluded that administration of citric acid may cause renal toxicity in mice.
Novel roles of complement in renal diseases and their therapeutic consequences.
Wada, Takehiko; Nangaku, Masaomi
2013-09-01
The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.
Zhou, Fu-Wen; Dong, Hong-Wei; Ennis, Matthew
2016-12-01
The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β 2 -, but not β 1 -, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (I NaP ) and hyperpolarization-activated inward (I h ) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal. Copyright © 2016 the American Physiological Society.
2010-01-01
Background Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication. Results Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species. Conclusion This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago. PMID:20187931
Glomerular latency coding in artificial olfaction.
Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique
2011-01-01
Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.
Kussman, Ashleigh; Gohara, Amira
2012-01-01
Goodpasture syndrome is a rare, life-threatening autoimmune disease characterized by a triad of rapidly progressive glomerulonephritis, a hemorrhagic pulmonary condition and the presence of anti-glomerular basement membrane (anti-GBM) antibodies. The antibodies initiate destruction of the kidney glomeruli, resulting in a focal necrotizing glomerulitis, which may progress rapidly to renal failure. Autoantibody-mediated damage of alveolar basement membranes leads to diffuse pulmonary hemorrhage, which in some cases may be severe enough to cause respiratory failure. Many clinicians use a variety of assays to detect serum anti-GBM antibodies; however, these tests may be falsely negative in up to 15% of patients with Goodpasture syndrome. Here, we report an unusual case of a 40-year-old man with clinical evidence of Goodpasture syndrome, a negative anti-GBM antibody serum result, eosinophilia and delta granule pool storage deficiency. After a 14-day hospital stay and extensive workup, as well as treatment with antibiotics, steroids and ventilator support for respiratory failure, the patient continued to deteriorate and entered multisystem organ failure. The family decided to withdraw ventilator support, and the patient expired. Immunofluorescence testing for anti-GBM autoantibodies on lung and kidney tissues during an autopsy confirmed the diagnosis of Goodpasture syndrome. PMID:26069804
Rossmann, P; Matousovic, K; Bucek, J
1975-01-01
In four renal biopsies of two patients with chronic glomerulonephritis (GN), the so-called dense deposit nephropathy (NDD) was diagnosed by means of light, electron, and immunofluorescence microscopy. In routine paraffin sections the picture approached that of the membrano-proliferative GN. In semithin sections (toluidine blue, periodic acid-Ag-methenamine) and especially in the ultrastructure there appeared extensive confluent deposits of a very dense substance, infiltrating the lamina densa of glomerular capillaries, basal membranes of both Bowman's capsules and tubules, and arteriolar walls. In this localization, a non-diffuse "psdudolinear" deposition of beta1c was detected, whereas antisera to main Ig-fractions and fibrin(ogen) were not fixed. In a biopsy performed six years later, a concentration of dense depositis towards the mesangial area and a partial regeneration of basal membranes were observed. In a part of dense deposits there appeared vacuolization, primarily in tubular and arteriolar basal membranes. In glomeruli, focal IgM deposits were apparent at an advanced stage. NDD apparently is a sequel of a particular metabolic (immune?) process, afflicting solely the renal membranous system and distinctly dns known at present. The noncharacteristic clinical presentation resembles chronic. GN, is very protracted, lengthy, and relatively benigh, with a chance of functional and possible even morphological remission.
An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum).
Lumsden, J S; Russell, S; Huber, P; Wybourne, B A; Ostland, V E; Minamikawa, M; Ferguson, H W
2008-12-01
Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.
Processing of odor mixtures in the zebrafish olfactory bulb.
Tabor, Rico; Yaksi, Emre; Weislogel, Jan-Marek; Friedrich, Rainer W
2004-07-21
Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.
Micro-anatomical changes in major blood vessel caused by dengue virus (serotype 2) infection.
Priya, Sivan Padma; Sakinah, S; Ling, Mok Pooi; Chee, Hui-Yee; Higuchi, Akon; Hamat, Rukman Awang; Neela, Vasantha Kumari; Alarfaj, Abdullah A; Munusamy, Murugan A; Hatamleh, Ashraf A; Al-Sabri, Ahmed E; Abdulaziz Al-Suwailem, Ibrahim Ahmad; Rajan, Mariappan; Benelli, Giovanni; Marlina; Kumar, S Suresh
2017-07-01
Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed. Copyright © 2017. Published by Elsevier B.V.
Depth-section imaging of swine kidney by spectrally encoded microscopy
NASA Astrophysics Data System (ADS)
Liao, Jiuling; Gao, Wanrong
2016-10-01
The kidneys are essential regulatory organs whose main function is to regulate the balance of electrolytes in the blood, along with maintaining pH homeostasis. The study of the microscopic structure of the kidney will help identify kidney diseases associated with specific renal histology change. Spectrally encoded microscopy (SEM) is a new reflectance microscopic imaging technique in which a grating is used to illuminate different positions along a line on the sample with different wavelengths, reducing the size of system and imaging time. In this paper, a SEM device is described which is based on a super luminescent diode source and a home-built spectrometer. The lateral resolution was measured by imaging the USAF resolution target. The axial response curve was obtained as a reflect mirror was scanned through the focal plane axially. In order to test the feasibility of using SEM for depth-section imaging of an excised swine kidney tissue, the images of the samples were acquired by scanning the sample at 10 μm per step along the depth direction. Architectural features of the kidney tissue could be clearly visualized in the SEM images, including glomeruli and blood vessels. Results from this study suggest that SEM may be useful for locating regions with probabilities of kidney disease or cancer.
Tougaard, Birgitte G; Pedersen, Katja Venborg; Krag, Søren Rasmus; Gilbertson, Janet A; Rowczenio, Dorota; Gillmore, Julian D; Birn, Henrik
2016-09-01
Apolipoprotein A-I (apo A-I) amyloidosis is a non-AL, non-AA, and non-transthyretin type of amyloidosis associated with mutations in the APOA1 gene inherited in an autosomal dominant fashion. It is a form of systemic amyloidosis, but at presentation, can also mimic localized amyloidosis. The renal presentation generally involves interstitial and medullary deposition of apo A-I amyloid protein. We describe the identification of apo A-I amyloidosis by mass spectrometry in a 52-year old male, with no family history of amyloidosis, presenting with nephrotic syndrome and associated with heterozygosity for a novel APOA1 mutation (c.220 T > A) which encodes the known amyloidogenic Trp50Arg variant. Renal amyloid deposits in this case were confined to the glomeruli alone, and the patient developed progressive renal impairment. One year after diagnosis, the patient had a successful kidney transplant from an unrelated donor. Pathogenic mutations in the APOA1 gene are generally associated with symptoms of amyloidosis. In this family however, genotyping of family members identified several unaffected carriers suggesting a variable disease penetrance, which has not been described before in this form of amyloidosis and has implications when counselling those with APOA1 mutations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Post-infectious acute glomerulonephritis with podocytopathy induced by parvovirus B19 infection.
Hara, Satoshi; Hirata, Masayoshi; Ito, Kiyoaki; Mizushima, Ichiro; Fujii, Hiroshi; Yamada, Kazunori; Nagata, Michio; Kawano, Mitsuhiro
2018-03-01
Human parvovirus B19 infection causes a variety of glomerular diseases such as post-infectious acute glomerulonephritis and collapsing glomerulopathy. Although each of these appears independently, it has not been fully determined why parvovirus B19 provokes such a variety of different glomerular phenotypes. Here, we report a 68-year-old Japanese man who showed endocapillary proliferative glomerulonephritis admixed with podocytopathy in association with parvovirus B19 infection. The patient showed acute onset of heavy proteinuria, microscopic hematuria and kidney dysfunction with arthralgia and oliguria after close contact with a person suffering from erythema infectiosum. In the kidney biopsy specimen, glomeruli revealed diffuse and global endocapillary infiltration of inflammatory cells, with some also showing tuft collapse with aberrant vacuolation, swelling, and hyperplasia of glomerular epithelial cells. Immunofluorescence revealed dense granular C3 deposition that resembled the "starry sky pattern". Intravenous glucocorticoid pulse therapy followed by oral prednisolone and cyclosporine combination therapy resulted in considerable amelioration of the kidney dysfunction and urinary abnormalities. The present case reveals that parvovirus B19 infection can induce different glomerular phenotypes even in the same kidney structure. This finding may provide hints useful for the further elucidation of the pathogenesis of parvovirus B19-induced glomerular lesions. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Tea, Joy S.; Chihara, Takahiro; Luo, Liqun
2010-01-01
Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276
Riser, B L; Cortes, P; Zhao, X; Bernstein, J; Dumler, F; Narins, R G
1992-01-01
To define the interplay of glomerular hypertension and hypertrophy with mesangial extracellular matrix (ECM) deposition, we examined the effects of glomerular capillary distention and mesangial cell stretching on ECM synthesis. The volume of microdissected rat glomeruli (Vg), perfused ex vivo at increasing flows, was quantified and related to the proximal intraglomerular pressure (PIP). Glomerular compliance, expressed as the slope of the positive linear relationship between PIP and Vg was 7.68 x 10(3) microns 3/mmHg. Total Vg increment (PIP 0-150 mmHg) was 1.162 x 10(6) microns 3 or 61% (n = 13). A 16% increase in Vg was obtained over the PIP range equivalent to the pathophysiological limits of mean transcapillary pressure difference. A similar effect of renal perfusion on Vg was also noted histologically in tissue from kidneys perfused/fixed in vivo. Cultured mesangial cells undergoing cyclic stretching increased their synthesis of protein, total collagen, and key components of ECM (collagen IV, collagen I, laminin, fibronectin). Synthetic rates were stimulated by cell growth and the degree of stretching. These results suggest that capillary expansion and stretching of mesangial cells by glomerular hypertension provokes increased ECM production which is accentuated by cell growth and glomerular hypertrophy. Mesangial expansion and glomerulosclerosis might result from this interplay of mechanical and metabolic forces. Images PMID:1430216
Apelin impairs myogenic response to induce diabetic nephropathy in mice.
Zhang, Jia; Yin, Jiming; Wang, Yangjia; Li, Bin; Zeng, Xiangjun
2018-03-09
The cause of the invalid reaction of smooth muscle cells to mechanical stimulation that results in a dysfunctional myogenic response that mediates the disruption of renal blood flow (RBF) in patients with diabetes is debatable. The present study revealed that increased apelin concentration in serum of diabetic mice neutralized the myogenic response mediated by apelin receptor (APJ) and resulted in increased RBF, which promoted the progression of diabetic nephropathy. The results showed that apelin concentration, RBF, and albuminuria:creatinine ratio were all increased in kkAy mice, and increased RBF correlated positively with serum apelin both in C57 and diabetic mice. The increased RBF was accompanied by decreased phosphorylation of myosin light chain (MLC), β-arrestin, and increased endothelial NOS in glomeruli. Meanwhile, calcium, phosphorylation of MLC, and β-arrestin were decreased by high glucose and apelin treatment in cultured smooth muscle cells, as well. eNOS was increased by high glucose and increased by apelin in cultured endothelial cells (ECs). Knockdown of β-arrestin expression in smooth muscle cells cancelled phosphorylation of MLC induced by apelin. Therefore, apelin may induce the progression of diabetic nephropathy by counteracting the myogenic response in smooth muscle cells.-Zhang, J., Yin, J., Wang, Y., Li, B., Zeng, X. Apelin impairs myogenic response to induce diabetic nephropathy in mice.
Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction.
Chakrabarti, S; Syme, H M; Brown, C A; Elliott, J
2013-01-01
Chronic kidney disease is common in geriatric cats, but most cases have nonspecific renal lesions, and few studies have correlated these lesions with clinicopathological markers of renal dysfunction. The aim of this study was to identify the lesions best correlated with renal function and likely mediators of disease progression in cats with chronic kidney disease. Cats were recruited through 2 first-opinion practices between 1992 and 2010. When postmortem examinations were authorized, renal tissues were preserved in formalin. Sections were evaluated by a pathologist masked to all clinicopathological data. They were scored semiquantitatively for the severity of glomerulosclerosis, interstitial inflammation, and fibrosis. Glomerular volume was measured using image analysis; the percentage of glomeruli that were obsolescent was recorded. Sections were assessed for hyperplastic arteriolosclerosis and tubular mineralization. Kidneys from 80 cats with plasma biochemical data from the last 2 months of life were included in the study. Multivariable linear regression (P < .05) was used to assess the association of lesions with clinicopathological data obtained close to death. Interstitial fibrosis was the lesion best correlated with the severity of azotemia, hyperphosphatemia, and anemia. Proteinuria was associated with interstitial fibrosis and glomerular hypertrophy, whereas higher time-averaged systolic blood pressure was associated with glomerulosclerosis and hyperplastic arteriolosclerosis.
Dunér, Fredrik; Lindström, Karin; Hultenby, Kjell; Hulkko, Jenny; Patrakka, Jaakko; Tryggvason, Karl; Haraldsson, Börje; Wernerson, Annika; Pettersson, Erna
2010-01-01
It is still unclear what happens in the glomerulus when proteinuria starts. Using puromycin aminonucleoside nephrosis (PAN) rats, we studied early ultrastructural and permeability changes in relation to the expression of the podocyte-associated molecules nephrin, α-actinin, dendrin, and plekhh2, the last two of which were only recently discovered in podocytes. Using immune stainings, semiquantitative measurement was performed under the electron microscope. Permeability was assessed using isolated kidney perfusion with tracers. Possible effects of ACE inhibition were tested. By day 2, some patchy foot process effacement, but no proteinuria, appeared. The amount of nephrin was reduced in both diseased and normal areas. The other proteins showed few changes, which were limited to diseased areas. By day 4, foot process effacement was complete and proteinuria appeared in parallel with signs of size barrier damage. Nephrin decreased further, while dendrin and plekhh2 also decreased but α-actinin remained unchanged. ACE inhibition had no significant protective effect. PAN glomeruli already showed significant pathology by day 4, despite relatively mild proteinuria. This was preceded by altered nephrin expression, supporting its pivotal role in podocyte morphology. The novel proteins dendrin and plekhh2 were both reduced, suggesting roles in PAN, whereas α-actinin was unchanged. Copyright © 2010 S. Karger AG, Basel.
Johnson, Brett A.; Ong, Joan; Leon, Michael
2014-01-01
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145
Podometrics as a Potential Clinical Tool for Glomerular Disease Management.
Kikuchi, Masao; Wickman, Larysa; Hodgin, Jeffrey B; Wiggins, Roger C
2015-05-01
Chronic kidney disease culminating in end-stage kidney disease is a major public health problem costing in excess of $40 billion per year with high morbidity and mortality. Current tools for glomerular disease monitoring lack precision and contribute to poor outcome. The podocyte depletion hypothesis describes the major mechanisms underlying the progression of glomerular diseases, which are responsible for more than 80% of cases of end-stage kidney disease. The question arises of whether this new knowledge can be used to improve outcomes and reduce costs. Podocytes have unique characteristics that make them an attractive monitoring tool. Methodologies for estimating podocyte number, size, density, glomerular volume and other parameters in routine kidney biopsies, and the rate of podocyte detachment from glomeruli into urine (podometrics) now have been developed and validated. They potentially fill important gaps in the glomerular disease monitoring toolbox. The application of these tools to glomerular disease groups shows good correlation with outcome, although data validating their use for individual decision making is not yet available. Given the urgency of the clinical problem, we argue that the time has come to focus on testing these tools for application to individualized clinical decision making toward more effective progression prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Razzaque, Mohammed Shawkat; Koji, Takehiko; Harada, Takashi; Taguchi, Takashi
1997-01-01
Although the role of extracellular matrices in the development of glomerulosclerosis has been discussed widely, the cellular origin of type VI collagen in diabetic nephropathy (DN) has remained relatively unexplored. This study reports the distribution and cellular origin of type VI collagen in DN. Type VI collagen‐specific oligonucleotide probes and monoclonal antibody were used to assess the relative expression of mRNA for \\alpha1 (VI) chain and its translated protein in paraffin‐embedded renal biopsy sections of DN. By immunohistochemistry, compared to the control, increased deposition of type VI collagen was noted in the diffuse and nodular lesions of diabetic glomeruli. For cellular localization of type VI collagen mRNA, paraffin‐embedded renal sections of the control and DN were hybridized in situ with digoxigenin (Dig)‐labeled antisense oligo‐DNA probe complementary to a part of \\alpha1 (VI) mRNA. In comparison to the control kidney sections, increased numbers of intraglomerular cells (both mesangial and epithelial cells) were positive for α1 (VI) mRNA in renal biopsy sections of DN. From the results, we conclude that overexpression of type VI collagen by intraglomerular cells with its increased deposition might significantly contribute to the glomerulosclerosis found in DN. PMID:9497854
Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats.
Zhu, Xia; Cheng, Ya-Qin; Du, Lei; Li, Yu; Zhang, Fan; Guo, Hao; Liu, Yao-Wu; Yin, Xiao-Xing
2015-02-01
This study was designed to investigate the effects of mangiferin on renal fibrosis, osteopontin production, and inflammation in the kidney of diabetic rats. Diabetes was induced through the single administration of streptozotocin (55 mg/kg, i.p.). Diabetic rats were treated with mangiferin (15, 30, and 60 mg/kg/day, i.g.) for 9 weeks. The kidney was fixed in 10% formalin for glomerulus fibrosis examination using Masson trichrome staining. Kidney and blood were obtained for assays of the associated biochemical parameters. Chronic mangiferin treatment prevented renal glomerulus fibrosis evidenced by decreases in Mason-stained positive area of glomeruli, protein expression of type IV collagen, and α-smooth muscle actin in the kidney of diabetic rats, in comparison with decreases in mRNA and protein expression of osteopontin as well as protein expression of cyclooxygenase 2 and NF-кB p65 subunit in the renal cortex of diabetic rats. Moreover, mangiferin reduced the levels of interleukin 1β in both the serum and the kidney of diabetic rats. Our findings demonstrate that mangiferin prevents the renal glomerulus fibrosis of diabetic rats, which is realized through the suppression of osteopontin overproduction and inflammation likely via inactivation of NF-кB. Copyright © 2014 John Wiley & Sons, Ltd.
Nakamura, Yoichi; Yi, Shuang-Qin; Iimura, Akira; Terayama, Hayato; Naito, Munekazu; Itoh, Masahiro
2005-11-01
Two cases of the horseshoe kidney in Japanese cadaver were reported in this paper. The kidneys and their associated vessels in the retroperitoneal cavity were carefully examined, and the histological examination of the isthmus was performed. In Case 1, four arteries arose from the abdominal aorta. One right and two left renal arteries were distributed to the apical, upper, middle and posterior regions of the kidney, respectively, and the artery of isthmus entered the lower segments and the isthmus. In Case 2, six arteries arose from the abdominal aorta. Among three arteries arose from the inferior end of the aorta and entered the lower segments and the isthmus. Histological study revealed that the isthmuses consisted of collecting tubes, glomeruli and urinary tubules and fibrous connective tissue. The incidence of the horseshoe kidney during the dissecting practice at Tokyo Medical University in a period of 24 years from 1980 to 2003 was estimated to be 0.16% (2 out of the 1,219 cadavers). The anatomical and embryological significance of this anomaly and its associated vascular system were discussed. And the histology of the parenchymal structure of the isthmus in the horseshoe kidney containing either fibrous connective tissue or renal parenchyma was also analyzed in this report.
2010-01-01
Background Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. Results The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusions In parallel to previous behavioral findings that B. latro has aerial olfaction, our results indicate that their central olfactory pathway is indeed most prominent. Similar findings from the closely related terrestrial hermit crab Coenobita clypeatus suggest that in Coenobitidae, olfaction is a major sensory modality processed by the brain, and that for these animals, exploring the olfactory landscape is vital for survival in their terrestrial habitat. Future studies on terrestrial members of other crustacean taxa such as Isopoda, Amphipoda, Astacida, and Brachyura will shed light on how frequently the establishment of an aerial sense of olfaction evolved in Crustacea during the transition from sea to land. Amounting to ca. 1,000,000, the numbers of interneurons that analyse the olfactory input in B. latro brains surpasses that in other terrestrial arthropods, as e.g. the honeybee Apis mellifera or the moth Manduca sexta, by two orders of magnitude suggesting that B. latro in fact is a land-living arthropod that has devoted a substantial amount of nervous tissue to the sense of smell. PMID:20831795
Mauer, S. Michael; Sutherland, David E. R.; Howard, Richard J.; Fish, Alfred J.; Najarian, John S.; Michael, Alfred F.
1973-01-01
A mechanism of immune glomerular injury is described based on the fixation of antibody (Ab) to an antigen (Ag) that has localized in the glomerular mesangium. Rabbits were given, intravenously (i.v.), aggregated human IgG (AHIgG) or albumin (AHSA) and 10 h later, when the Ag by immunofluorescent microscopy was present in the mesangium, a kidney was removed and transplanted into a normal rabbit. The recipient then received, i.v., rabbit anti-HIgG or anti-HSA. Within minutes of Ab infusion, glomeruli of the donor kidney had polymorphonuclear (PMN) infiltration that over the next few hours became marked and was associated with glomerular cell swelling. At 24 h a decrease in PMN's and early mesangial proliferation was seen. By 3 days there was marked mesangial hypercellularity and increased mesangial matrix. Within minutes after Ab administration rabbit IgG, C3, and fibrin were seen in the glomerular mesangium. There was a fall in complement titer by 1 min after Ab infusion that was due to complement consumption by the donor kidney. Complement then returned to normal levels by 48 h. Significant glomerular injury did not occur (a) in the recipient's own kidney, (b) from Ag administration and transplantation without recipient Ab administration, or (c) from transplantation and Ab administration without prior Ag administration. These studies demonstrated that Ag localized in the glomerular mesangium can react with circulating Ab and complement resulting in severe glomerular injury. PMID:4570015
Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice
Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R
2002-01-01
The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury. PMID:12067297
Cyclin-dependent kinase 2 protects podocytes from apoptosis
Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna
2016-01-01
Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672
Guzman, Johanna; Jauregui, Alexandra N.; Merscher-Gomez, Sandra; Maiguel, Dony; Muresan, Cristina; Mitrofanova, Alla; Diez-Sampedro, Ana; Szust, Joel; Yoo, Tae-Hyun; Villarreal, Rodrigo; Pedigo, Christopher; Molano, R. Damaris; Johnson, Kevin; Kahn, Barbara; Hartleben, Bjoern; Huber, Tobias B.; Saha, Jharna; Burke, George W.; Abel, E. Dale; Brosius, Frank C.; Fornoni, Alessia
2014-01-01
Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria. PMID:24101677
Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu
2008-01-15
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.
Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B.; Kon, Valentina; Ichikawa, Iekuni
2011-01-01
Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. The present study examined the potential benefit of maintaining podocyte-derived vascular endothelial growth factor (VEGF) in podocyte defense and survival following PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, anti-apoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Further, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology was significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell following injury and preempt subsequent deterioration of the glomerulus in developing mice. PMID:21451433
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Interconnected Network Motifs Control Podocyte Morphology and Kidney Function
Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi
2014-01-01
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609
Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.
Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim
2015-10-01
Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.
2008-02-01
The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study hadmore » values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.« less
Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb.
Mori, K; Nowycky, M C; Shepherd, G M
1981-05-01
1. An in vitro preparation of the turtle olfactory bulb has been developed. Electrophysiological properties of mitral cells in the isolated bulb have been analysed with intracellular recordings. 2. Mitral cells have been driven antidromically from the lateral olfactory tract, or activated directly by current injection. Intracellular injections of horseradish peroxidase (HRP) show that turtle mitral cells have long secondary dendrites that extend up to 1800 micrometer from the cell body and reach around half of the bulbar circumference. There are characteristically two primary dendrites, each supplying separate olfactory glomeruli. 3. Using intracellular current pulses, the whole-neurone resistance was found to range from 33 to 107 M omega. The whole-neurone charging transient had a slow time course. The membrane time constant was estimated to be 24-93 msec by the methods of Rall. The electrotonic length of the mitral cell equivalent cylinder was estimated by Rall's methods to be 0.9-1.9. 4. The spikes generated by turtle mitral cells were only partially blocked by tetrodotoxin (TTX) in the bathing medium. The TTX-resistant spikes were enhanced in the presence of tetraethylammonium (TEA), and blocked completely by cobalt. 5. The implications of the electrical properties for impulse generation in turtle mitral cells are discussed. The mitral cells have dendrodendritic synapses onto granule cells, and the TTX-resistant spikes may therefore play an important role in presynaptic transmitter release at these synapses.
Parietal cells-new perspectives in glomerular disease.
Miesen, Laura; Steenbergen, Eric; Smeets, Bart
2017-07-01
In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.
Measuring glomerular number from kidney MRI images
NASA Astrophysics Data System (ADS)
Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas
2016-03-01
Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.
Patulin in apple juice and its risk assessments on albino mice.
Al-Hazmi, Mansour A
2014-07-01
The contamination of apple juice with patulin mycotoxin is a major risk factor in food safety. This study focuses to assess the biochemical and histopathological effects of patulin in apple juice samples collected from different outlets retailing in Jeddah, Kingdom of Saudi Arabia. On the basis of the selected dose level, 152.5 ppb patulin/ml was administered daily orally for up to 6 weeks to male albino mice. The exposure to contaminated samples revealed significant elevation of all the studied blood parameters (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities as well as creatinine, urea and uric acid contents). On the other hand, and with regard to the accumulated neuronal toxicity of the tested dose level, the toxic signs were recorded as significant increase in the aggressive and locomotor behavioral changes. In addition, the brain areas monoamines concentration revealed variable increased changes. The potential maximal changes in norepinephrine, dopamine and serotonin5-hydroxytryptamine levels attained in cortex, hypothalamus, striatum, hippocampus, midbrain and pons and medulla were assessed. Moreover, the histological examination revealed degeneration and necrosis in liver tissues and degenerated glomeruli and hemorrhage between the tubules of the cortical region in kidney tissues. The study declared that patulin-contaminated (152.5 ppb) apple juice exhibited liver, kidney and neurotoxicological effects in 6 weeks orally administered mice. © The Author(s) 2012.
Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.
Grove, Kerri J; Lareau, Nichole M; Voziyan, Paul A; Zeng, Fenghua; Harris, Raymond C; Hudson, Billy G; Caprioli, Richard M
2018-05-17
Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS -/- db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Differential tissue expression of enhanced green fluorescent protein in 'green mice'.
Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei
2010-06-01
In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.
Canterini, Sonia; Bosco, Adriana; Carletti, Valentina; Fuso, Andrea; Curci, Armando; Mangia, Franco; Fiorenza, Maria Teresa
2012-03-01
We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.
Meteyer, C.U.; Rideout, B.A.; Gilbert, M.; Shivaprasad, H.L.; Oaks, J.L.
2005-01-01
Oriental white-backed vultures (Gyps bengalensis; OWBVs) died of renal failure when they ingested diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), in tissues of domestic livestock. Acute necrosis of proximal convoluted tubules in these vultures was severe. Glomeruli, distal convoluted tubules, and collecting tubules were relatively spared in the vultures that had early lesions. In most vultures, however, lesions became extensive with large urate aggregates obscuring renal architecture. Inflammation was minimal. Extensive urate precipitation on the surface and within organ parenchyma (visceral gout) was consistently found in vultures with renal failure. Very little is known about the physiologic effect of NSAIDs in birds. Research in mammals has shown that diclofenac inhibits formation of prostaglandins. We propose that the mechanism by which diclofenac induces renal failure in the OWBV is through the inhibition of the modulating effect of prostaglandin on angiotensin II-mediated adrenergic stimulation. Renal portal valves open in response to adrenergic stimulation, redirecting portal blood to the caudal vena cava and bypassing the kidney. If diclofenac removes a modulating effect of prostaglandins on the renal portal valves, indiscriminant activation of these valves would redirect the primary nutrient blood supply away from the renal cortex. Resulting ischemic necrosis of the cortical proximal convoluted tubules would be consistent with our histologic findings in these OWBVs.
α1β1 Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome
Zallocchi, Marisa; Johnson, Brianna M.; Meehan, Daniel T.; Delimont, Duane; Cosgrove, Dominic
2014-01-01
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. l-NAME salt–induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2–deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2–null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1–dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. PMID:23911822
O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl
2015-01-01
Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.
Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P.; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki
2017-01-01
Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis. PMID:28191821
Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki
2017-02-13
Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.
Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice.
Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R
2002-06-01
The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury.
Triglycerides in the human kidney cortex: relationship with body size.
Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R; Rogers, John T; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W
2014-01-01
Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis.
Hereditary Lysozyme Amyloidosis Variant p.Leu102Ser Associates with Unique Phenotype
Nasr, Samih H.; Dasari, Surendra; Mills, John R.; Theis, Jason D.; Zimmermann, Michael T.; Fonseca, Rafael; Vrana, Julie A.; Lester, Steven J.; McLaughlin, Brooke M.; Gillespie, Robert; Highsmith, W. Edward; Lee, John J.; Dispenzieri, Angela
2017-01-01
Lysozyme amyloidosis (ALys) is a rare form of hereditary amyloidosis that typically manifests with renal impairment, gastrointestinal (GI) symptoms, and sicca syndrome, whereas cardiac involvement is exceedingly rare and neuropathy has not been reported. Here, we describe a 40-year-old man with renal impairment, cardiac and GI symptoms, and peripheral neuropathy. Renal biopsy specimen analysis revealed amyloidosis with extensive involvement of glomeruli, vessels, and medulla. Amyloid was also detected in the GI tract. Echocardiographic and electrocardiographic findings were consistent with cardiac involvement. Proteomic analysis of Congo red–positive renal and GI amyloid deposits detected abundant lysozyme C protein. DNA sequencing of the lysozyme gene in the patient and his mother detected a heterozygous c.305T>C alteration in exon 3, which causes a leucine to serine substitution at codon 102 (Human Genome Variation Society nomenclature: p.Leu102Ser; legacy designation: L84S). We also detected the mutant peptide in the proband’s renal and GI amyloid deposits. PolyPhen analysis predicted that the mutation damages the encoded protein. Molecular dynamics simulations suggested that the pathogenesis of ALys p.Leu102Ser is mediated by shifting the position of the central β-hairpin coordinated with an antiparallel motion of the C-terminal helix, which may alter the native-state structural ensemble of the molecule, leading to aggregation-prone intermediates. PMID:28049649
Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.
Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen
2013-11-01
Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.
Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.
Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L
2017-03-01
In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABA A receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D 2 and GABA B receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells. NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.
Wilson, Heather M.; Chettibi, Salah; Jobin, Christian; Walbaum, David; Rees, Andrew J.; Kluth, David C.
2005-01-01
Infiltrating macrophages (mφ) can cause injury or facilitate repair, depending on how they are activated by the microenvironment. Studies in vitro have defined the roles of individual cytokines and signaling pathways in activation, but little is known about how macrophages integrate the multiple signals they receive in vivo. We inhibited nuclear factor-κB in bone marrow-derived macrophages (BMDMs) by using a recombinant adenovirus expressing dominant-negative IκB (Ad-IκB). This re-orientated macrophage activation so they became profoundly anti-inflammatory in settings where they would normally be classically activated. In vitro, the lipopolysaccharide-induced nitric oxide, interleukin-12, and tumor necrosis factor-α synthesis was abrogated while interleukin-10 synthesis increased. In vivo, fluorescently labeled BMDMs transduced with Ad-IκB and injected into the renal artery significantly reduced inducible nitric oxide synthase and MHC class II expression when activated naturally in glomeruli of rats with nephrotoxic nephritis. Furthermore, although they only comprised 15% of glomerular macrophages, their presence significantly reduced glomerular infiltration and activation of host macrophages. Injury in nephrotoxic nephritis was also decreased when assessed morphologically and by severity of albuminuria. The results demonstrate the power of Ad-IκB-transduced BMDMs to inhibit injury when activated by acute immune-mediated inflammation within the glomerulus. PMID:15972949
de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; de Oliveira, Paola Raquel Braz; Cordeiro, Viviane Silva Cristino; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Souza, Marcelo Augusto Vieira; Ognibene, Dayane Texeira; Daleprane, Julio Beltrame; Sousa, Pergentino José Cunha; Resende, Angela Castro; de Moura, Roberto Soares
2014-09-01
This study examined the effect of açaí (Euterpe oleracea Mart.) seed extract (ASE) on cardiovascular and renal alterations in adult offspring, whose mothers were fed a low-protein (LP) diet during pregnancy. Four groups of rats were fed: control diet (20% protein); ASE (200 mg/kg per day); and LP (6% protein); LP + ASE (6% protein + ASE) during pregnancy. After weaning, all male offspring were fed a control diet and sacrificed at 4 months old. We evaluated the blood pressure, vascular function, serum and urinary parameters, plasma and kidney oxidative damage, and antioxidant activity and renal structural changes. Hypertension and the reduced acetylcholine-induced vasodilation in the LP group were prevented by ASE. Serum levels of urea, creatinine and fractional excretion of sodium were increased in LP and reduced in LP + ASE. ASE improved nitrite levels and the superoxide dismutase and glutathione peroxidase activity in LP, with a corresponding decrease of malondialdehyde and protein carbonyl levels. Kidney volume and glomeruli number were reduced and glomerular volume was increased in LP. These renal alterations were prevented by ASE. Treatment of protein-restricted dams with ASE provides protection from later-life hypertension, oxidative stress, renal functional and structural changes, probably through a vasodilator and antioxidant activity. © 2014 Royal Pharmaceutical Society.
Appraisal of lupus nephritis by renal imaging with gallium-67
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakir, A.A.; Lopez-Majano, V.; Hryhorczuk, D.O.
1985-08-01
To assess the activity of lupus nephritis, 43 patients with systemic lupus erythematosus (SLE) were studied by gallium imaging. Delayed renal visualization 48 hours after the gallium injection, a positive result, was noted in 25 of 48 scans. Active renal disease was defined by the presence of hematuria, pyuria (10 or more red blood cells or white blood cells per high-power field), proteinuria (1 g or more per 24 hours), a rising serum creatinine level, or a recent biopsy specimen showing proliferative and/or necrotizing lesions involving more than 20 percent of glomeruli. Renal disease was active in 18 instances, inactivemore » in 23, and undetermined in seven (a total of 48 scans). Sixteen of the 18 scans (89 percent) in patients with active renal disease showed positive findings, as compared with only four of 23 scans (17 percent) in patients with inactive renal disease (p less than 0.001). Patients with positive scanning results had a higher rate of hypertension (p = 0.02), nephrotic proteinuria (p = 0.01), and progressive renal failure (p = 0.02). Mild mesangial nephritis (World Health Organization classes I and II) was noted only in the patients with negative scanning results (p = 0.02) who, however, showed a higher incidence of severe extrarenal SLE (p = 0.04). It is concluded that gallium imaging is a useful tool in evaluating the activity of lupus nephritis.« less
Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.
2015-01-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609
Catanuto, Paola; Doublier, Sophie; Lupia, Enrico; Fornoni, Alessia; Berho, Mariana; Karl, Michael; Striker, Gary E; Xia, Xiaomei; Elliot, Sharon
2009-06-01
Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.
Liu, Hongbing; Chen, Shaowei; Yao, Xiao; Li, Yuwen; Chen, Chao-Hui; Liu, Jiao; Saifudeen, Zubaida; El-Dahr, Samir S
2018-05-18
Nephron progenitor cells (NPCs) are Six2-positive metanephric mesenchyme cells, which undergo self-renewal and differentiation to give rise to nephrons until the end of nephrogenesis. Histone deacetylases (HDACs) are a group of epigenetic regulators that control cell fate, but their role in balancing NPC renewal and differentiation is unknown. Here, we report that NPC-specific deletion of Hdac1 and Hdac2 genes in mice results in early postnatal lethality owing to renal hypodysplasia and loss of NPCs. HDAC1/2 interact with the NPC renewal regulators Six2, Osr1 and Sall1, and are co-bound along with Six2 on the Six2 enhancer. Although the mutant NPCs differentiate into renal vesicles (RVs), Hdac1/2 mutant kidneys lack nascent nephrons or mature glomeruli, a phenocopy of Lhx1 mutants. Transcriptional profiling and network analysis identified disrupted expression of Lhx1 and its downstream genes, Dll1 and Hnf1a/4a , as key mediators of the renal phenotype. Finally, although HDAC1/2-deficient NPCs and RVs overexpress hyperacetylated p53, Trp53 deletion failed to rescue the renal dysgenesis. We conclude that the epigenetic regulators HDAC1 and HDAC2 control nephrogenesis via interactions with the transcriptional programs of nephron progenitors and renal vesicles. © 2018. Published by The Company of Biologists Ltd.
Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity
Trichilo, Vincenzo; Pisani, Antonina; Malta, Consuelo; Laurà, Rosalba; Santoro, Domenico; Germanà, Antonino; Minutoli, Letteria
2018-01-01
Background Cadmium (Cd), a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p.) alone, Cd chloride (CdCl2) (2 mg/kg/day i.p.) alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p.) for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions. PMID:29849925
Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity.
Micali, Antonio; Pallio, Giovanni; Irrera, Natasha; Marini, Herbert; Trichilo, Vincenzo; Puzzolo, Domenico; Pisani, Antonina; Malta, Consuelo; Santoro, Giuseppe; Laurà, Rosalba; Santoro, Domenico; Squadrito, Francesco; Altavilla, Domenica; Germanà, Antonino; Minutoli, Letteria
2018-01-01
Cadmium (Cd), a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p.) alone, Cd chloride (CdCl 2 ) (2 mg/kg/day i.p.) alone, or CdCl 2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p.) for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.
Molecular Mechanisms and Regulation of Urinary Acidification
Kurtz, Ira
2015-01-01
The H+ concentration in human blood is kept within very narrow limits, ~ 40 nM, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: 1) reabsorb HCO3− that is filtered through the glomeruli to prevent its excretion in the urine; 2) generate a sufficient quantity of new HCO3− to compensate for the loss of HCO3− resulting from dietary metabolic H+ loads and loss of HCO3− in the urea cycle; and 3) excrete HCO3− (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~ 60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level. PMID:25428859
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T
2013-02-13
Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.
The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses
Masurkar, Arjun V.; Chen, Wei R.
2015-01-01
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089
Renal blood flow and oxygenation drive nephron progenitor differentiation.
Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder
2014-08-01
During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.
Novel Type of Renal Amyloidosis Derived from Apolipoprotein-CII.
Nasr, Samih H; Dasari, Surendra; Hasadsri, Linda; Theis, Jason D; Vrana, Julie A; Gertz, Morie A; Muppa, Prasuna; Zimmermann, Michael T; Grogg, Karen L; Dispenzieri, Angela; Sethi, Sanjeev; Highsmith, W Edward; Merlini, Giampaolo; Leung, Nelson; Kurtin, Paul J
2017-02-01
Amyloidosis is characterized by extracellular deposition of misfolded proteins as insoluble fibrils. Most renal amyloidosis cases are Ig light chain, AA, or leukocyte chemotactic factor 2 amyloidosis, but rare hereditary forms can also involve the kidneys. Here, we describe the case of a 61-year-old woman who presented with nephrotic syndrome and renal impairment. Examination of the renal biopsy specimen revealed amyloidosis with predominant involvement of glomeruli and medullary interstitium. Proteomic analysis of Congo red-positive deposits detected large amounts of the Apo-CII protein. DNA sequencing of the APOC2 gene in the patient and one of her children detected a heterozygous c.206A→T transition, causing an E69V missense mutation. We also detected the mutant peptide in the proband's renal amyloid deposits. Using proteomics, we identified seven additional elderly patients with Apo-CII-rich amyloid deposits, all of whom had kidney involvement and histologically exhibited nodular glomerular involvement. Although prior in vitro studies have shown that Apo-CII can form amyloid fibrils and that certain mutations in this protein promote amyloid fibrillogenesis, there are no reports of this type of amyloidosis in humans. We propose that this study reveals a new form of hereditary amyloidosis (AApoCII) that is derived from the Apo-CII protein and appears to manifest in the elderly and preferentially affect the kidneys. Copyright © 2017 by the American Society of Nephrology.
A prospective, randomized therapeutic trial for schistosomal specific nephropathy.
Sobh, M A; Moustafa, F E; Sally, S M; Foda, M A; Deelder, A M; Ghoneim, M A
1989-11-01
In this work 26 patients with schistosomal specific nephropathy were randomly distributed among three groups. Group I cases were given anti-schistosomal drugs (oxamniquine and praziquantel), group II cases were given anti-schistosomal drugs plus prednisolone, and group III cases were given anti-schistosomal drugs plus cyclosporine. The schistosomal specificity of kidney lesions was assessed by detecting the schistosomal specific antigens (CAA and CCA) and antibodies deposited in the renal glomeruli of these patients. Patients who had another etiologic cause which may explain their kidney disease were not admitted to this study. After initiation of the treatment, patients were followed up every other week in the outpatient clinic for 12 months. Follow-up showed complete remission of proteinuria in two cases in group II (duration of remission was 4 and 8 months) and in one case in group III (duration of remission was 6 months) but in none in group I. Partial remission was observed in one case in group I, in three cases in group II and in one case in group III. During the observation period, improvement in kidney function was observed in two cases in group II but deterioration in kidney function was observed in one case in group I and in one other case in group III. We conclude that in patients with schistosomal nephropathy, none of the tried therapeutic regimens produce regression of the disease if given to patients with established disease.
Scherzer, Pnina; Katalan, Shachaf; Got, Gay; Pizov, Galina; Londono, Irene; Gal-Moscovici, Anca; Popovtzer, Mordecai M.; Ziv, Ehud
2011-01-01
The Psammomys obesus lives in natural desert habitat on low energy (LE) diet, however when maintained in laboratory conditions with high energy (HE) diet it exhibits pathological metabolic changes resembling those of type 2 diabetes. We have evaluated and correlated the histopathology, metabolic and functional renal alterations occurring in the diabetic Psammomys. Renal function determined by measuring glomerular filtration rate (GFR), protein excretion, protein/creatinine ratio and morpho-immunocytochemical evaluations were performed on HE diet diabetic animals and compared to LE diet control animals. The diabetic animals present a 54% increase in GFR after one month of hyperglycemic condition and a decrease of 47% from baseline values after 4 months. Protein excretion in diabetic animals was 5 folds increased after 4 months. Light microscopy showed an increase in glomeruli size in the diabetic Psammomys, and electron microscopy and immunocytochemical quantitative evaluations revealed accumulation of basement membrane material as well as frequent splitting of the glomerular basement membrane. In addition, glycogen-filled Armanni-Ebstein clear cells were found in the distal tubules including the thick ascending limbs of the diabetic animals. These renal complications in the Psammomys, including changes in GFR with massive proteinuria sustained by physiological and histopathological changes, are very similar to the diabetic nephropathy in human. The Psamommys obesus represents therefore a reliable animal model of diabetic nephropathy. PMID:22025969
Low birth weight is associated with impaired murine kidney development and function.
Barnett, Christina; Nnoli, Oluwadara; Abdulmahdi, Wasan; Nesi, Lauren; Shen, Michael; Zullo, Joseph A; Payne, David L; Azar, Tala; Dwivedi, Parth; Syed, Kunzah; Gromis, Jonathan; Lipphardt, Mark; Jules, Edson; Maranda, Eric L; Patel, Amy; Rabadi, May M; Ratliff, Brian B
2017-08-01
BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.ResultsMalnourished pregnant mothers gave birth to LBW neonates that had 40% reduced body weight and 54% decreased survival. Renal blood perfusion was reduced by 37%, whereas kidney volume and GFR were diminished in the LBW neonate. During gestation, the LBW neonatal kidney had 2.2-fold increased apoptosis, 76% decreased SIX2+ progenitor cells, downregulation of mesenchymal-to-epithelial signaling factors Wnt9b and Fgf8, 64% less renal vesicle formation, and 32% fewer nephrons than controls. At birth, increased plasma levels of IL-1β, IL-6, IL-12(p70), and granulocyte-macrophage colony-stimulating factor in the LBW neonate reduced SIX2+ progenitor cells.ConclusionIncreased pro-inflammatory cytokines in the LBW neonate decrease SIX2+ stem cells in the developing kidney. Reduced renal stem cells (along with the decreased mesenchymal-to-epithelial signaling) blunt renal vesicle generation, nephron formation, and kidney development. Subsequently, the mouse LBW neonate has reduced glomeruli volume, renal perfusion, and GFR.
Denby, Laura; Work, Lorraine M; Seggern, Dan J Von; Wu, Eugene; McVey, John H; Nicklin, Stuart A; Baker, Andrew H
2007-09-01
The potential efficacy of gene delivery is dictated by the infectivity profile of existing vectors, which is often restrictive. In order to target cells and organs for which no efficient vector is currently available, a promising approach would be to engineer vectors with novel transduction profiles. Applications that involve injecting adenovirus (Ad) vectors into the bloodstream require that native tropism for the liver be removed, and that targeting moieties be engineered into the capsid. We previously reported that pseudotyping the Ad serotype 5 fiber for that of Ad19p results in reduced hepatic transduction. In this study we show that this may be caused, at least in part, by a reduction in the capacity of the Ad19p-based virus to bind blood coagulation factors. It is therefore a potential candidate for vector retargeting, focusing on the kidney as a therapeutic target. We used in vivo phage display in rats, and identified peptides HTTHREP and HITSLLS that homed to the kidneys following intravenous injection. We engineered the HI loop of Ad19p to accommodate peptide insertions and clones. Intravenous delivery of each peptide-modified virus resulted in selective renal targeting, with HTTHREP and HITSLLS-targeted viruses selectively transducing tubular epithelium and glomeruli, respectively. Our study has important implications for the use of genetic engineering of Ad fibers to produce targeted gene delivery vectors.
Ai, Minrong; Blais, Steven; Park, Jin-Yong; Min, Soohong; Neubert, Thomas A; Suh, Greg S B
2013-06-26
Drosophila olfactory sensory neurons express either odorant receptors or ionotropic glutamate receptors (IRs). The sensory neurons that express IR64a, a member of the IR family, send axonal projections to either the DC4 or DP1m glomeruli in the antennal lobe. DC4 neurons respond specifically to acids/protons, whereas DP1m neurons respond to a broad spectrum of odorants. The molecular composition of IR64a-containing receptor complexes in either DC4 or DP1m neurons is not known, however. Here, we immunoprecipitated the IR64a protein from lysates of fly antennal tissue and identified IR8a as a receptor subunit physically associated with IR64a by mass spectrometry. IR8a mutants and flies in which IR8a was knocked down by RNAi in IR64a+ neurons exhibited defects in acid-evoked physiological and behavioral responses. Furthermore, we found that the loss of IR8a caused a significant reduction in IR64a protein levels. When expressed in Xenopus oocytes, IR64a and IR8a formed a functional ion channel that allowed ligand-evoked cation currents. These findings provide direct evidence that IR8a is a subunit that forms a functional olfactory receptor with IR64a in vivo to mediate odor detection.
Is There Evidence for Myelin Modeling by Astrocytes in the Normal Adult Brain?
Varela-Echevarría, Alfredo; Vargas-Barroso, Víctor; Lozano-Flores, Carlos; Larriva-Sahd, Jorge
2017-01-01
A set of astrocytic process associated with altered myelinated axons is described in the forebrain of normal adult rodents with confocal, electron microscopy, and 3D reconstructions. Each process consists of a protuberance that contains secretory organelles including numerous lysosomes which polarize and open next to disrupted myelinated axons. Because of the distinctive asymmetric organelle distribution and ubiquity throughout the forebrain neuropil, this enlargement is named paraxial process (PAP). The myelin envelope contiguous to the PAP displays focal disruption or disintegration. In routine electron microscopy clusters of large, confluent, lysosomes proved to be an effective landmark for PAP identification. In 3D assemblies lysosomes organize a series of interconnected saccules that open up to the plasmalemma next to the disrupted myelin envelope(s). Activity for acid hydrolases was visualized in lysosomes, and extracellularly at the PAP-myelin interface and/or between the glial and neuronal outer aspects. Organelles in astrocytic processes involved in digesting pyknotic cells and debris resemble those encountered in PAPs supporting a likewise lytic function of the later. Conversely, processes entangling tripartite synapses and glomeruli were devoid of lysosomes. Both oligodendrocytic and microglial processes were not associated with altered myelin envelopes. The possible roles of the PAP in myelin remodeling in the context of the oligodendrocyte-astrocyte interactions and in the astrocyte's secretory pathways are discussed. PMID:28932188
Effect of mesenchymal stem cells on anti-Thy1,1 induced kidney injury in albino rats
Sakr, Saber; Rashed, Laila; Zarouk, Waheba; El-Shamy, Rania
2013-01-01
Objective To evaluate the effect of mesenchymal stem cells (MSCs) in rats with anti-Thy1,1 nephritis. Methods Female albino rats were divided into three groups, control group, anti-Thy1,1 group and treatment with i.v. MSCs group. MSCs were derived from bone marrow of male albino rats, Y-chromosome gene was detected by polymerase chain reaction in the kidney. Serum urea and creatinine were estimated for all groups. Kidney of all studied groups was examined histologically and histochemically (total carbohydrates and total proteins). DNA fragmentation and expression of α-SMA were detected. Results Kidney of animals injected with anti-Thy1,1 showed inflammatory leucocytic infiltration, hypertrophied glomeruli, tubular necrosis and congestion in the renal blood vessels. The kidney tissue also showed reduction of carbohydrates and total proteins together with increase in apoptosis and in expression of α-SMA. Moreover, the levels of urea and creatinine were elevated. Treating animals with MSCs revealed that kidney tissue displayed an improvement in the histological and histochemical changes. Apoptosis and α-SMA expression were decreased, and the levels of urea and creatinine decreased. Conclusions The obtained results demonstrated the potential of MSCs to ameliorate the structure and function of the kidney in rats with anti-Thy1,1 nephritis possibly through the release of paracrine growth factor(s). PMID:23620833
Pathology of Podocytopathies Causing Nephrotic Syndrome in Children.
Ranganathan, Sarangarajan
2016-01-01
Nephrotic syndrome (NS) in children includes a diverse group of diseases that range from genetic diseases without any immunological defects to causes that are primarily due to immunological effects. Recent advances in molecular and genomic studies have resulted in a plethora of genetic defects that have been localized to the podocyte, the basic structure that is instrumental in normal filtration process. Although the disease can manifest from birth and into adulthood, the primary focus of this review would be to describe the novel genes and pathology of primary podocyte defects that cause NS in children. This review will restrict itself to the pathology of congenital NS, minimal change disease (MCD), and its variants and focal segmental glomerulosclerosis (FSGS). The two major types of congenital NS are Finnish type characterized by dilated sausage shaped tubules morphologically and diffuse mesangial sclerosis characterized by glomerulosclerosis. MCD has usually normal appearing biopsy features on light microscopy and needs electron microscopy for diagnosis, whereas FSGS in contrast has classic segmental sclerosing lesions identified in different portions of the glomeruli and tubular atrophy. This review summarizes the pathological characteristics of these conditions and also delves into the various genetic defects that have been described as the cause of these primary podocytopathies. Other secondary causes of NS in children, such as membranoproliferative and membranous glomerulonephritis, will not be covered in this review.
Yoon, Sang Pil; Maeng, Young Hee; Hong, Ran; Lee, Byung Rai; Kim, Chong Gue; Kim, Hyun Lee; Chung, Jong Hoon; Shin, Byung Chul
2014-10-01
There is increasing evidence suggesting that antioxidants in green tea extracts may protect kidneys on the progression of end-stage renal disease. We investigated the protective impacts of (-)-epigallocatechin 3-O-gallate (EGCG) against streptozotocin (STZ)-induced diabetic nephropathy in mice. The mice were divided into 5 groups (n=10 per group): control (saline, i.p.), STZ (200mg/kg, i.p.), EGCG50 (50mg/kg, S.Q.), EGCG100 (100mg/kg, S.Q.), and EGCG200 (200mg/kg, S.Q.). Animals were sacrificed at scheduled times after EGCG administration and then quantitative and qualitative analysis were performed. Compared with the control group, the STZ group showed an increase in levels of blood glucose, blood urea nitrogen, creatinine and urine protein amounts with a decrease in body weight. All the above parameters were significantly reversed with EGCG treatment, especially in the EGCG100 group. After STZ injection, there was a mesangial proliferation with increased renal osteopontin accumulation and its protein expression in the glomeruli and the proximal tubules. Mice kidneys after EGCG-treatment showed a reduced expression of above parameters and relatively improved histopathological findings. These results indicated that EGCG 100mg/kg might provide an effective protection against STZ-induced diabetic nephropathy in mice by osteopontin suppression. Copyright © 2014 Elsevier GmbH. All rights reserved.
Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina; Cerretani, Daniela; Di Paolo, Marco; Fiaschi, Anna Ida; Frati, Paola; Neri, Margherita; Pedretti, Monica; Fineschi, Vittorio
2014-10-01
Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Kamiie, J; Sugahara, G; Yoshimoto, S; Aihara, N; Mineshige, T; Uetsuka, K; Shirota, K
2017-01-01
Here we report a pig with amyloid A (AA) amyloidosis associated with Streptococcus suis infection and identification of a unique amyloid sequence in the amyloid deposits in the tissue. Tissues from the 180-day-old underdeveloped pig contained foci of necrosis and suppurative inflammation associated with S. suis infection. Congo red stain, immunohistochemistry, and electron microscopy revealed intense AA deposition in the spleen and renal glomeruli. Mass spectrometric analysis of amyloid material extracted from the spleen showed serum AA 2 (SAA2) peptide as well as a unique peptide sequence previously reported in a pig with AA amyloidosis. The common detection of the unique amyloid sequence in the current and past cases of AA amyloidosis in pigs suggests that this amyloid sequence might play a key role in the development of porcine AA amyloidosis. An in vitro fibrillation assay demonstrated that the unique AA peptide formed typically rigid, long amyloid fibrils (10 nm wide) and the N-terminus peptide of SAA2 formed zigzagged, short fibers (7 nm wide). Moreover, the SAA2 peptide formed long, rigid amyloid fibrils in the presence of sonicated amyloid fibrils formed by the unique AA peptide. These findings indicate that the N-terminus of SAA2 as well as the AA peptide mediate the development of AA amyloidosis in pigs via cross-seeding polymerization.
Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma.
Revelo, Monica P; Federspiel, Charles; Helderman, Harold; Fogo, Agnes B
2005-12-01
Chronic allograft nephropathy (CAN) is a major cause of loss of renal allografts. Mechanisms postulated to be involved include sequelae of rejection, warm ischaemia time, drug toxicity, ongoing hypertension and dyslipidaemia. Plasminogen activator inhibitor-1 (PAI-1) is implicated not only in thrombosis, but also in fibrosis, by inhibiting matrix degradation, and is expressed in renal parenchymal cells as well as in macrophages. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid receptor superfamily, and plays a major beneficial role in lipid regulation, insulin sensitivity and macrophage function, factors that may play a role in CAN. We therefore studied the expression of these molecules in CAN. All renal biopsy/nephrectomy files from Vanderbilt and Nashville VAMC from a 6 year period were reviewed to identify all renal transplant biopsies or nephrectomies more than 6 months after transplant with CAN. CAN was defined as fibrosis in the graft, vascular, interstitial or glomerular. All cases were scored for severity of fibrosis in vasculature (0-3 scale), glomeruli (% affected with either segmental and/or global sclerosis) and interstitial fibrosis (% of sample affected). PAI-1 and PPAR-gamma immunostaining was assessed on a 0-3 scale in glomeruli, vessels and tubules. Eighty-two patients with a total of 106 samples met entry criteria. The population consisted of 59 Caucasians and 23 African-Americans; 49 males, 33 females with average age 37.9+/-1.7 years. Average time after transplant at time of biopsy was 60.5+/-4.9 months (range 7-229). Glomerulosclerosis extent in CAN was on average 26.5+/-2.4% compared with 3.6+/-1.2% in normal control kidneys from native kidney cancer nephrectomies and 0% in transplanted kidney biopsies from patients obtained > or =6 months after transplantation without CAN. Native control kidneys showed mild interstitial fibrosis (8.0+/-1.2%), whereas transplant controls showed very minimal fibrosis (2.0+/-2.0%). Interstitial fibrosis in CAN kidneys was on average 47.9+/-2.4%. Glomerular PAI-1 and PPAR-gamma staining scores were markedly increased in CAN (1.8+/-0.1, 2.3+/-0.1, respectively) compared with normal control kidneys from native kidney cancer nephrectomies (PAI-1 0.2+/-0.2 and PPAR-gamma 0.4+/-0.2, P<0.001) and transplanted kidney biopsies from patients obtained > or =6 months after transplantation without CAN (PAI-1 0 and PPAR-gamma 0, P<0.001). Tubular PAI-1 and PPAR-gamma staining scores were 1.9+/-0.1 and 1.9+/-0.1, respectively, and also increased over both native and transplant kidney controls (0.8+/-0.2 for both categories for PAI-1, 1.2+/-0.2 for both categories for PPAR-gamma, respectively). Vascular sclerosis in CAN was 1.0+/-0.1 with increased PAI-1 and PPAR-gamma scores (1.7+/-0.1, 1.2+/-0.1, respectively) compared with controls. Infiltrating macrophages were increased in CAN, and were positive for both PAI-1 and PPAR-gamma. Biopsies with less sclerosis overall showed a trend for less PAI-1 and PPAR-gamma staining. PAI-1 and PPAR-gamma are both increased in CAN compared with non-scarred native or transplant control kidneys. We speculate that altered matrix metabolism and macrophage function might be involved in the development of CAN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinouski, M.; Kehr, S.; Finney, L.
2012-04-17
Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less
Yang, Shun-Min; Chan, Yi-Lin; Hua, Kuo-Feng; Chang, Jia-Ming; Chen, Hui-Ling; Tsai, Yung-Jen; Hsu, Yu-Juei; Chao, Louis Kuoping; Feng-Ling, Yang; Tsai, Yu-Ling; Wu, Shih-Hsiung; Wang, Yih-Fuh; Tsai, Change-Ling; Chen, Ann; Ka, Shuk-Man
2014-08-01
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS. Copyright © 2014 Elsevier Inc. All rights reserved.
sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor
Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua
2014-01-01
The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547
Small blob identification in medical images using regional features from optimum scale.
Zhang, Min; Wu, Teresa; Bennett, Kevin M
2015-04-01
Recent advances in medical imaging technology have greatly enhanced imaging-based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this research, we are interested in one type of imaging objects: small blobs. Examples of small blob objects are cells in histopathology images, glomeruli in MR images, etc. This problem is particularly challenging because the small blobs often have in homogeneous intensity distribution and an indistinct boundary against the background. Yet, in general, these blobs have similar sizes. Motivated by this finding, we propose a novel detector termed Hessian-based Laplacian of Gaussian (HLoG) using scale space theory as the foundation. Like most imaging detectors, an image is first smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale on which a presegmentation is conducted. The advantage of the Hessian process is that it is capable of delineating the blobs. As a result, regional features can be retrieved. These features enable an unsupervised clustering algorithm for postpruning which should be more robust and sensitive than the traditional threshold-based postpruning commonly used in most imaging detectors. To test the performance of the proposed HLoG, two sets of 2-D grey medical images are studied. HLoG is compared against three state-of-the-art detectors: generalized LoG, Radial-Symmetry and LoG using precision, recall, and F-score metrics.We observe that HLoG statistically outperforms the compared detectors.
The directed differentiation of human iPS cells into kidney podocytes.
Song, Bi; Smink, Alexandra M; Jones, Christina V; Callaghan, Judy M; Firth, Stephen D; Bernard, Claude A; Laslett, Andrew L; Kerr, Peter G; Ricardo, Sharon D
2012-01-01
The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm's tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.
Albumin-induced podocyte injury and protection are associated with regulation of COX-2.
Agrawal, Shipra; Guess, Adam J.; Chanley, Melinda A.; Smoyer, and William E.
2014-01-01
Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids. PMID:24918154
Pérez, Vanessa; López, Dolores; Boixadera, Ester; Ibernón, Meritxell; Espinal, Anna; Bonet, Josep; Romero, Ramón
2017-02-03
Minimal change disease (MCD) and primary focal segmental glomerulosclerosis (FSGS) are glomerular diseases characterized by nephrotic syndrome. Their diagnosis requires a renal biopsy, but it is an invasive procedure with potential complications. In a small biopsy sample, where only normal glomeruli are observed, FSGS cannot be differentiated from MCD. The correct diagnosis is crucial to an effective treatment, as MCD is normally responsive to steroid therapy, whereas FSGS is usually resistant. The purpose of our study was to discover and validate novel early urinary biomarkers capable to differentiate between MCD and FSGS. Forty-nine patients biopsy-diagnosed of MCD and primary FSGS were randomly subdivided into a training set (10 MCD, 11 FSGS) and a validation set (14 MCD, 14 FSGS). The urinary proteome of the training set was analyzed by two-dimensional differential gel electrophoresis coupled with mass spectrometry. The proteins identified were quantified by enzyme-linked immunosorbent assay in urine samples from the validation set. Urinary concentration of alpha-1 antitrypsin, transferrin, histatin-3 and 39S ribosomal protein L17 was decreased and calretinin was increased in FSGS compared to MCD. These proteins were used to build a decision tree capable to predict patient's pathology. This preliminary study suggests a group of urinary proteins as possible non-invasive biomarkers with potential value in the differential diagnosis of MCD and FSGS. These biomarkers would reduce the number of misdiagnoses, avoiding unnecessary or inadequate treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania
Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneysmore » of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney.« less
Fukunaga, Shohei; Yamanaka, Shuichiro; Fujimoto, Toshinari; Tajiri, Susumu; Uchiyama, Taketo; Matsumoto, Kei; Ito, Takafumi; Tanabe, Kazuaki; Yokoo, Takashi
2018-02-19
To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development. Copyright © 2018 Elsevier Inc. All rights reserved.
Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu
2012-01-01
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633
Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair.
Ahmed, Hanaa H; Toson, Elshahat A; El-Mezayen, Hatem A; Rashed, Laila A; Elsherbiny, Eslam S
2017-07-01
The current study sought to clarify the role of bone marrow derived mesenchymal stem cells (BM-MSCs) and adipose tissue derived mesenchymal stem cells (AD-MSCs) in repressing nephropathy in the experimental model. Moreover, the aim of this work was extended to compare between stem cells role and angiotensin converting enzyme inhibitor in kidney repair. Isolation and preparation of MSCs culture, flow cytometry using CD34, CD44 and CD105 cell surface markers, biochemical analyses for determination of serum creatinine, urea, transforming growth factor β (TGF-β), cystatin C (CYS-C) and urinary N-Acetyl-ß-D-Glucosaminidase (UNAG), and histopathological investigation of kidney tissue sections were performed. The results of the present study revealed that single intravenous infusion of MSCs either derived from bone marrow or adipose tissue was able to enhance renal reparative processes through significantly decreased serum creatinine, urea, TGF-β and CYS-C levels as well as UNAG level and significantly increase glomerular filtration rate. Additionally, the histopathological investigations of kidney tissues showed that MSCs have significant regenerative effects as evidenced by the decrease in focal inflammatory cells infiltration, focal interstitial nephritis and congested glomeruli as well as degenerated tubules. The current data provided distinct evidence about the favourable impact of AD-MSCs and BM-MSCs in attenuation of cyclosporine-induced nephropathy in rats through their ability to promote functional and structural kidney repair via transdifferentiation. © 2016 Asian Pacific Society of Nephrology.
Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.
Singh, Gaaminepreet; Krishan, Pawan
2018-06-02
Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.
α1β1 integrin/Rac1-dependent mesangial invasion of glomerular capillaries in Alport syndrome.
Zallocchi, Marisa; Johnson, Brianna M; Meehan, Daniel T; Delimont, Duane; Cosgrove, Dominic
2013-10-01
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. L-NAME salt-induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2-deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2-null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1-dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion.
Park, Joon-Keun; Mervaala, Eero Ma; Muller, Dominik N; Menne, Jan; Fiebeler, Anette; Luft, Friedrich C; Haller, Hermann
2009-03-01
We showed earlier that statin treatment ameliorates target-organ injury in a transgenic model of angiotensin (Ang) II-induced hypertension. We now test the hypothesis that rosuvastatin (1, 10, and 50 mg/kg/day) influences leukocyte adhesion and infiltration, prevents induction of inducible nitric oxide synthase (iNOS), and ameliorates target-organ damage in a dose-dependent fashion. We treated rats harboring the human renin and human angiotensinogen genes (dTGR) from week 4 to 8 (n = 20 per group). Untreated dTGR developed severe hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. Mortality of untreated dTGR at age 8 weeks was 59%. Rosuvastatin treatment decreased mortality dose-dependently. Blood pressure was not affected. Albuminuria was reduced dose-dependently. Interstitial adhesion molecule (ICAM)-1 expression was markedly reduced by rosuvastatin, as were neutrophil and monocyte infiltration. Immunohistochemistry showed an increased endothelial and medial iNOS expression in small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR. Immunoreactivity was stronger in cortex than medulla. Rosuvastatin markedly reduced the iNOS expression in both cortex and medulla. Finally, matrix protein (type IV collagen, fibronectin) expression was also dose- dependently reduced by rosuvastatin. Our findings indicate that rosuvastatin dose- dependently ameliorates angiotensin II-induced-organ damage and almost completely prevents inflammation at the highest dose. The data implicate 3-hydroxy-3-methylglutaryl coenzyme A function in signaling events leading to target-organ damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderman, F.W. Jr.
1975-08-15
The toxicology and metabolism of nickel compounds (NiCl/sub 2/, Ni/sub 3/S/sub 2/, NiS, and Ni powder) were investigated in rats and hamsters. The new knowledge has included: demonstration that hyperglucagonemia is primarily responsible for the acute hyperglycemic effect of parenteral Ni(II) in rats; demonstration that parenteral injection of Ni(II) in rats produces acute nephropathy with proteinuria and amino aciduria, and with ultrastructural lesions of renal glomeruli and tubules; confirmation of the inhibitory effect of manganese upon the carcinogenicity of Ni/sub 3/S/sub 2/ after intramuscular injection in rats, and elucidation of the effects of manganese upon the rates of excretion ofmore » nickel, and upon the acute histological reactions produced by Ni/sub 3/S/sub 2/; discovery that the antidotal efficacy of triethylenetetramine (TETA) in acute Ni(II) poisoning in rats is substantially greater than that of other chelating agents, including ..cap alpha..-lipoic acid, diethyldithiocarbamate, d-penicillamine, and glycylglycyl-L-histidine-N-methylamide; observation that the acute renal toxicity of Ni(II) is suppressed by administration of TETA, but that the hyperglycemic and hyperglucagonemic responses to Ni(II) are not prevented by TETA; confirmation that marked erythrocytosis is induced in rats by a single intrarenal injection of Ni/sub 3/S/sub 2/, and elucidation of the time-response and dose-response relationships for the Ni-induced erythrocytosis. (auth)« less