Double gloving to reduce surgical cross-infection.
Tanner, J; Parkinson, H
2002-01-01
The invasive nature of surgery, with its increased exposure to blood, means that during surgery there is a high risk of transfer of pathogens. Pathogens can be transferred through contact between surgical patients and the surgical team, resulting in post-operative or blood borne infections in patients or blood borne infections in the surgical team. Both patients and the surgical team need to be protected from this risk. This risk can be reduced by implementing protective barriers such as wearing surgical gloves. Wearing two pairs of surgical gloves, as opposed to one pair, is considered to provide an additional barrier and further reduce the risk of contamination. The primary objective of this review was to determine if double gloving (wearing two pairs of gloves), rather than single gloving, reduces the number of post-operative or blood borne infections in surgical patients or blood borne infections in the surgical team. The secondary objective of this review was to determine if double gloving, rather than single gloving, reduces the number of perforations to the innermost pair of surgical gloves. The innermost gloves (next to skin) compared with the outermost gloves are considered to be the last barrier between the patient and the surgical team. The reviewers searched the Cochrane Wounds Group Specialised Trials Register, MEDLINE, CINAHL, EMBASE and the Cochrane Controlled Trials Register. Glove manufacturing companies and professional organisations were also contacted. Randomised controlled trials involving: single gloving, double gloving, glove liners or coloured puncture indicator systems. Both reviewers independently assessed the relevance and quality of each trial. Trials to be included were cross checked and authenticated by both reviewers. Data was extracted by one reviewer and cross checked for accuracy by the second reviewer. Two trials were found which addressed the primary outcome. A total of 18 randomised controlled trials which measured glove perforations were identified and included in the review. DOUBLE GLOVING (wearing two pairs of latex gloves). Nine trials compared single latex gloves versus double latex gloves. These found no difference in the number of perforations between the single latex gloves and the outermost pair of the double latex gloves, but the number of perforations to the double latex-innermost glove was significantly reduced when two pairs of latex gloves were worn. ORTHOPAEDIC GLOVES (thicker than standard latex gloves). One trial compared single latex orthopaedic gloves with double latex gloves. This showed there was no difference in the number of perforations to the innermost gloves when wearing double latex gloves compared with a single pair of latex orthopaedic gloves. INDICATOR GLOVES (coloured latex gloves worn underneath latex gloves). Three trials compared double latex gloves versus double latex indicator gloves. These trials showed similar numbers of perforations to both the innermost and the outermost gloves for both gloving groups. Perforations to the outermost gloves were detected more easily when double latex indicator gloves were worn. Wearing double latex indicator gloves did not increase the detection of perforations to the innermost gloves. GLOVE LINERS (an insert worn between two pairs of latex gloves). Two trials compared double latex gloves versus double latex gloves with liners. These trials showed a significant reduction in the number of perforations to the innermost glove when a glove liner was worn between two pairs of latex gloves. CLOTH GLOVES (cloth gloves worn on top of latex gloves). Two trials compared double latex gloves versus latex inner with cloth outer gloves. These trials showed that wearing a cloth outer glove significantly reduced the number of perforations to the innermost latex glove. STEEL WEAVE GLOVES (steel weave gloves worn on top of latex gloves). One trial compared double latex gloves versus latex inner with steel weave outer gloves. This trial showed no reduction in the number of perforations to the innermost glove when wearing a steel weave outer glove. Wearing two pairs of latex gloves significantly reduces the number of perforations to the innermost glove. This evidence comes from trials undertaken in 'low risk' surgical specialties, that is specialties which did not include orthopaedic joint surgery. Wearing two pairs of latex gloves does not cause the glove wearer to sustain more perforations to their outermost glove. Wearing double latex indicator gloves enables the glove wearer to detect perforations to the outermost glove more easily than when wearing double latex gloves. However wearing a double latex indicator system will not assist with the detection of perforations to the innermost glove, nor reduce the number of perforations to either the outermost or the innermost glove. Wearing a glove liner between two pairs of latex gloves to undertake joint replacement surgery significantly reduces the number of perforations to the innermost glove compared with double latex gloves only. Wearing cloth outer gloves to undertake joint replacement surgery significantly reduces the number of perforations to the innermost glove compared with wearing double latex gloves. Wearing steel weave outer gloves to undertake joint replacement surgery does not reduce the number of perforations to innermost gloves compared with double latex gloves.
System and method for changing a glove attached to a glove box
Aluisi, Alan
2001-01-01
A system for changing the gloves of a glove box. The system requires the use of a new glove and a glove change ring to form a temporary secondary barrier to the exchange of atmospheres between the inner glove box and the room in which the glove box is operated. The system describes specific means for disengaging a used glove from the glove box port. The means for disengaging the used glove include use of a glove change hook and use of a glove with an attached tab for use in removal. A method for changing the gloves of a glove box is also described.
Double gloving to reduce surgical cross-infection.
Tanner, J; Parkinson, H
2006-07-19
The invasive nature of surgery, with its increased exposure to blood, means that during surgery there is a high risk of transfer of pathogens. Pathogens can be transferred through contact between surgical patients and the surgical team, resulting in post-operative or blood borne infections in patients or blood borne infections in the surgical team. Both patients and the surgical team need to be protected from this risk. This risk can be reduced by implementing protective barriers such as wearing surgical gloves. Wearing two pairs of surgical gloves, triple gloves, glove liners or cloth outer gloves, as opposed to one pair, is considered to provide an additional barrier and further reduce the risk of contamination. The primary objective of this review was to determine if additional glove protection reduces the number of surgical site or blood borne infections in patients or the surgical team. The secondary objective was to determine if additional glove protection reduces the number of perforations to the innermost pair of surgical gloves. The innermost gloves (next to skin) compared with the outermost gloves are considered to be the last barrier between the patient and the surgical team. We searched the Cochrane Wounds Group Specialised Register (January 2006), and the Cochrane Central Register of Controlled Trials (CENTRAL)(The Cochrane Library Issue 4, 2005). We also contacted glove manufacturing companies and professional organisations. Randomised controlled trials involving: single gloving, double gloving, triple gloving, glove liners, knitted outer gloves, steel weave outer gloves and perforation indicator systems. Both authors independently assessed the relevance and quality of each trial. Data was extracted by one author and cross checked for accuracy by the second author. Two trials were found which addressed the primary outcome, namely, surgical site infections in patients. Both trials reported no infections. Thirty one randomised controlled trials measuring glove perforations were identified and included in the review. Fourteen trials of double gloving (wearing two pairs of surgical latex gloves) were pooled and showed that there were significantly more perforations to the single glove than the innermost of the double gloves (OR 4.10, 95% CI 3.30 to 5.09). Eight trials of indicator gloves (coloured latex gloves worn underneath latex gloves to more rapidly alert the team to perforations) showed that significantly fewer perforations were detected with single gloves compared with indicator gloves (OR 0.10, 95% CI 0.06 to 0.16) or with standard double glove compared with indicator gloves (OR 0.08, 95% CI 0.04 to 0.17). Two trials of glove liners (a glove knitted with cloth or polymers worn between two pairs of latex gloves)(OR 26.36, 95% CI 7.91 to 87.82), three trials of knitted gloves (knitted glove worn on top of latex surgical gloves)(OR 5.76, 95% CI 3.25 to 10.20) and one trial of triple gloving (three pairs of latex surgical gloves)(OR 69.41, 95% CI 3.89 to 1239.18) all compared with standard double gloves, showed there were significantly more perforations to the innermost glove of a standard double glove in all comparisons. There is no direct evidence that additional glove protection worn by the surgical team reduces surgical site infections in patients, however the review has insufficient power for this outcome. The addition of a second pair of surgical gloves significantly reduces perforations to innermost gloves. Triple gloving, knitted outer gloves and glove liners also significantly reduce perforations to the innermost glove. Perforation indicator systems results in significantly more innermost glove perforations being detected during surgery.
Knitted outer gloves in primary hip and knee arthroplasty.
Tanner, J; Wraighte, P; Howard, P
2006-01-01
A randomised trial was carried out to determine the rate of perforation to inner gloves when comparing latex with knitted gloves during hip and knee arthroplasty. Members of the surgical team were randomised to wear either two pairs of latex gloves (standard double gloving) or a knitted glove on top of a latex glove. In addition, participants completed a visual analogue assessment of their overall satisfaction with the gloves. A total of 406 inner gloves were tested for perforations over a four-month period: 23% of inner gloves were perforated when latex outer gloves were used and 6% of inner gloves were perforated when knitted outer gloves were used. In total, there were 64 perforations to the inner gloves; only one of these perforations was detected by the glove wearer. Wearing knitted outer gloves during hip and knee arthroplasty statistically significantly reduces the risk of perforation to inner latex gloves (p<0.0001).
Wearing gloves in the hospital
Infection control - wearing gloves; Patient safety - wearing gloves; Personal protective equipment - wearing gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves
Frequency of glove perforation and the protective effect of double gloves in gynecological surgery.
Murta, Eddie F C; Silva, Cléber S; Júnior, Odilon R A
2003-06-01
The purposes of this prospective study were to verify the frequency of glove perforation during gynecological operations and to evaluate the efficacy of double gloving in preventing damage to the inner glove. From May 2000 to May 2001, three house staff and 12 residents were asked to place their used gloves in bags labeled with the following information: procedure performed, presence of a recognized glove perforation, and role in operating team (surgeon, first or second assistant, and instrumentalist). All glove sets were tested using the method of water pression. Damaged gloves were excluded from that analysis. In all, 35 and 51 operations were utilized with single and double gloves, respectively. There were 240 single gloves and 792 double gloves tested. Perforation occurred in 10.4% of the single gloves and 9.8% of the outer double gloves. There were no cases of perforation in the inner double gloves. In cases of operating time that lasted more than 2 h, 56% of the surgeries that used single gloves had perforation vs 58.5% of the double gloves. The first assistant had the major risk for glove perforation with the use of single or double gloves. The indicator finger of the non-dominant hand was the major risk for perforation. In conclusion, we recommend double gloving in all gynecological surgery to reduce the risk of contracting blood-borne diseases.
Hayes, Galina; Singh, Ameet; Gibson, Tom; Moens, Noel; Oblak, Michelle; Ogilvie, Adam; Reynolds, Debbie
2017-10-01
To determine the influence of orthopedic reinforced gloves on contamination events during small animal orthopedic surgery. Prospective randomized controlled trial SAMPLE POPULATION: Two hundred and thirty-seven pairs of orthopedic gloves (474 gloves) and 203 pairs of double standard gloves (812 gloves) worn during 193 orthopedic procedures. Primary and assistant surgeons were randomized to wear either orthopedic reinforced gloves or double gloves. Gloves were leak tested to identify perforations at the end of procedures. Perforations detected intraoperatively or postoperatively were recorded. A contamination event was defined as at least one perforation on either hand for orthopedic reinforced gloves, or a perforation of both the inner and outer glove on the same hand for double gloves. Baseline characteristics between the 2 intervention groups were similar. There was no difference in contamination events between the double-gloved and orthopedic gloved groups (OR = 0.95, 95% CI = 0.49-1.87, P = .89). The same percentage of contamination events (8% glove pairs used) occurred in the double gloved group (17 contamination events) and in the orthopedic gloved group (19 contamination events). The odds of a contamination event increased by 1.02 (95% CI 1.01-1.03, P < .001) with each additional minute of surgery. Orthopedic reinforced gloves and double standard gloving were equally effective at preventing contamination events in small animal orthopedic procedures. Surgeons reluctant to double glove due to perceptions of decreased dexterity and discomfort may safely opt for wearing orthopedic gloves, which may improve their compliance. © 2017 The American College of Veterinary Surgeons.
Butts, H.L.
1962-02-13
This invention comprises a housing unit to be fitted between a glove box port and a glove so that a slidable plate within the housing seals off the glove box port for evacuation of the glove box without damage to the glove. The housing and the glove may be evacuated without damage to the glove since movement of the glove is restricted during evacuation by the slidable plate. (AEC)
Glove perforation rate in vascular surgery--a comparison between single and double gloving.
Aarnio, P; Laine, T
2001-05-01
In surgery intact gloves act as a sterile barrier between surgeon and patient. The impermeable gloves protect the surgeon from bloodborne pathogens such as HIV, hepatitis B, and hepatitis C. On the other hand, the surgical wound is protected from micro-organisms from the skin of the surgeon. One objective of this study was to compare puncture rates between the double gloving color indication system and single-use gloves and the other to determine the extent to which glove perforations remain undetected during the course of vascular surgical operations. The study material comprised all gloves used in vascular surgical operations at Satakunta Central Hospital for a period of two months. The analysis was made by the glove type in a prospective and randomised manner. Gloves were tested immediately after the surgical procedure using the approved standardized water-leak method. With this method the glove is filled with water using a special filling tube, and the water-filled glove is then checked for two minutes to detect any holes. The gloves used in this study were either double gloves with indicator, or the standard glove used at our hospital. In 73 operations altogether 200 gloves were tested, half of them were double gloves and half were single gloves. The perforation occurred in the double gloves 3 times and with single gloves 12 times. The overall perforation rate was 15 out of 200 gloves (7.5%). The detection of perforation during surgery was 60%. Most frequently the perforation was located in the second finger of the left hand, 9 out of 15 perforations. In view of the critical importance of safety at work both transmitting the pathogens from the skin of the surgeon to the wound and transmitting the bloodborne pathogens from the patient to the surgeon, it is very important to use double gloving at least in operations where there is a high risk of glove perforation.
Glove Use and Glove Education in Workers with Hand Dermatitis.
Rowley, Kyle; Ajami, Daana; Gervais, Denise; Mooney, Lindsay; Belote, Amy; Kudla, Irena; Switzer-McIntyre, Sharon; Holness, D Linn
2016-01-01
Occupational skin diseases are common. The occurrence of occupational skin diseases represents a failure of primary prevention strategies that may include the use of personal protective equipment, most commonly gloves. The objective of this study was to describe current glove use and education practices related to gloves in workers being assessed for possible work-related hand dermatitis. Participants included consecutive patients being assessed for possible work-related hand dermatitis. A self-administered questionnaire obtained information on demographics, workplace characteristics and exposures, glove use, and education regarding gloves. Ninety percent of the 105 participants reported using gloves. Only 44% had received training related to glove use in the workplace. Major gaps in training content included skin care when using gloves, warning signs of skin problems, and glove size. If the worker indicated no glove training received, the majority reported they would have used gloves if such training was provided. Although the majority of workers being assessed wore gloves, the minority had received training related to glove use. Particular gaps in training content were identified. Those who had not received training noted they would likely have used gloves if training had been provided.
Cournoyer, Michael E.; Lawton, Cindy M.; Lounsbury, James B.; ...
2016-03-22
We use hand gloves (hereafter referred to as gloves) in the detonator manufacturing and packaging operations. As part of a process improvement program, new glove formulations have been considered that lower the overall risk of detonator operations by reducing ergonomic injury factors. Gloves with a specially treated surface for extra grip and control are now commercially available and have been recommended for use in detonator operations. A Glove Likeability Study demonstrated that detonator manufacturing and packaging workers prefer gloves with a specially treated surface over currently approved gloves made from latex and nitrile formulations. Glove material compatibility tests indicate thatmore » the recommended gloves are as compatible if not more compatible as the currently approved gloves for working with secondary explosives. Thus, these gloves with a specially treated surface for extra grip and control are now available for tasks where sensitivity and fingertip control are crucial. Replacement of the current gloves with gloves with a specially treated surface improves the safety configuration of detonator manufacturing and packaging operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E.; Lawton, Cindy M.; Lounsbury, James B.
We use hand gloves (hereafter referred to as gloves) in the detonator manufacturing and packaging operations. As part of a process improvement program, new glove formulations have been considered that lower the overall risk of detonator operations by reducing ergonomic injury factors. Gloves with a specially treated surface for extra grip and control are now commercially available and have been recommended for use in detonator operations. A Glove Likeability Study demonstrated that detonator manufacturing and packaging workers prefer gloves with a specially treated surface over currently approved gloves made from latex and nitrile formulations. Glove material compatibility tests indicate thatmore » the recommended gloves are as compatible if not more compatible as the currently approved gloves for working with secondary explosives. Thus, these gloves with a specially treated surface for extra grip and control are now available for tasks where sensitivity and fingertip control are crucial. Replacement of the current gloves with gloves with a specially treated surface improves the safety configuration of detonator manufacturing and packaging operations.« less
75 FR 38468 - Procurement List; Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
...: 8415-00-NIB-0810--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Small. NSN: 8415-00-NIB-0811--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Medium. NSN: 8415-00-NIB-0812--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Large. NSN: 8415-00-NIB-0813--Glove, Vinyl...
Performance Analysis of Exam Gloves Used for Aseptic Rodent Surgery
LeMoine, Dana M; Bergdall, Valerie K; Freed, Carrie
2015-01-01
Aseptic technique includes the use of sterile surgical gloves for survival surgeries in rodents to minimize the incidence of infections. Exam gloves are much less expensive than are surgical gloves and may represent a cost-effective, readily available option for use in rodent surgery. This study examined the effectiveness of surface disinfection of exam gloves with 70% isopropyl alcohol or a solution of hydrogen peroxide and peracetic acid (HP–PA) in reducing bacterial contamination. Performance levels for asepsis were met when gloves were negative for bacterial contamination after surface disinfection and sham ‘exertion’ activity. According to these criteria, 94% of HP–PA-disinfected gloves passed, compared with 47% of alcohol-disinfected gloves. In addition, the effect of autoclaving on the integrity of exam gloves was examined, given that autoclaving is another readily available option for aseptic preparation. Performance criteria for glove integrity after autoclaving consisted of: the ability to don the gloves followed by successful simulation of wound closure and completion of stretch tests without tearing or observable defects. Using this criteria, 98% of autoclaved nitrile exam gloves and 76% of autoclaved latex exam gloves met performance expectations compared with the performance of standard surgical gloves (88% nitrile, 100% latex). The results of this study support the use of HP–PA-disinfected latex and nitrile exam gloves or autoclaved nitrile exam gloves as viable cost-effective alternatives to sterile surgical gloves for rodent surgeries. PMID:26045458
Performance analysis of exam gloves used for aseptic rodent surgery.
LeMoine, Dana M; Bergdall, Valerie K; Freed, Carrie
2015-05-01
Aseptic technique includes the use of sterile surgical gloves for survival surgeries in rodents to minimize the incidence of infections. Exam gloves are much less expensive than are surgical gloves and may represent a cost-effective, readily available option for use in rodent surgery. This study examined the effectiveness of surface disinfection of exam gloves with 70% isopropyl alcohol or a solution of hydrogen peroxide and peracetic acid (HP-PA) in reducing bacterial contamination. Performance levels for asepsis were met when gloves were negative for bacterial contamination after surface disinfection and sham 'exertion' activity. According to these criteria, 94% of HP-PA-disinfected gloves passed, compared with 47% of alcohol-disinfected gloves. In addition, the effect of autoclaving on the integrity of exam gloves was examined, given that autoclaving is another readily available option for aseptic preparation. Performance criteria for glove integrity after autoclaving consisted of: the ability to don the gloves followed by successful simulation of wound closure and completion of stretch tests without tearing or observable defects. Using this criteria, 98% of autoclaved nitrile exam gloves and 76% of autoclaved latex exam gloves met performance expectations compared with the performance of standard surgical gloves (88% nitrile, 100% latex). The results of this study support the use of HP-PA-disinfected latex and nitrile exam gloves or autoclaved nitrile exam gloves as viable cost-effective alternatives to sterile surgical gloves for rodent surgeries.
Nielsen, Jesper Bo; Sørensen, Jens Ahm
2012-02-15
Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. Copyright © 2011 Elsevier B.V. All rights reserved.
Cross Contamination: Are Hospital Gloves Reservoirs for Nosocomial Infections?
Moran, Vicki; Heuertz, Rita
2017-01-01
Use of disposable nonsterile gloves in the hospital setting is second only to proper hand washing in reducing contamination during patient contact. Because proper handwashing is not consistently practiced, added emphasis on glove use is warranted. There is a growing body of evidence that glove boxes and dispensers available to healthcare workers are contaminated by daily exposure to environmental organisms. This finding, in conjunction with new and emerging antibiotic-resistant bacteria, poses a threat to patients and healthcare workers alike. A newly designed glove dispenser may reduce contamination of disposable gloves. The authors investigated contamination of nonsterile examination gloves in an Emergency Department setting according to the type of dispenser used to access gloves. A statistically significant difference existed between the number of bacterial colonies and the type of dispenser: the downward-facing glove dispenser had a lower number of bacteria on the gloves. There was no statistically significant difference in the number of gloves contaminated between the two types of glove dispensers. The study demonstrated that contamination of disposable gloves existed. Additional research using a larger sample size would validate a difference in the contamination of disposable gloves using outward or downward glove dispensers.
75 FR 22744 - Procurement List: Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
..., Industrial/Non-Medical Grade, 100 Gloves/Box, Small. NSN: 8415-00-NIB-0811--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Medium. NSN: 8415-00-NIB-0812--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Large. NSN: 8415-00-NIB-0813--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves...
EV space suit gloves (passive)
NASA Technical Reports Server (NTRS)
Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.
1975-01-01
A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.
Choosing the right surgical glove: an overview and update.
Tanner, Judith
Sterile surgical gloves are routinely worn during all invasive procedures to prevent the two-way transmission of pathogens between the surgical team and the patient. This reduces the risk of surgical-site infections and blood-borne diseases. Since their introduction to the operating room over 100 years ago, surgical gloves, and the materials used to make them, have continued to evolve in line with ever-changing healthcare demands. Following recent developments in surgical glove technologies, including de-proteinized natural rubber latex and newer gloving methods such as triple gloving, it is timely that an overview and update of surgical gloves is given. By providing information on latex-associated allergies, glove materials, gloving methods and glove protection, this article will enable practitioners to choose the most appropriate surgical glove.
Can the design of glove dispensing boxes influence glove contamination?
Assadian, O; Leaper, D J; Kramer, A; Ousey, K J
2016-11-01
Few studies have explored the microbial contamination of glove boxes in clinical settings. The objective of this observational study was to investigate whether a new glove packaging system in which single gloves are dispensed vertically, cuff end first, has lower levels of contamination on the gloves and on the surface around the box aperture compared with conventional glove boxes. Seven participating sites were provided with vertical glove dispensing systems (modified boxes) and conventional boxes. Before opening glove boxes, the surface around the aperture was sampled microbiologically to establish baseline levels of superficial contamination. Once the glove boxes were opened, the first pair of gloves in each box was sampled for viable bacteria. Thereafter, testing sites were visited on a weekly basis over a period of six weeks and the same microbiological assessments were made. The surface near the aperture of the modified boxes became significantly less contaminated over time compared with the conventional boxes (P<0.001), with an average of 46.7% less contamination around the aperture. Overall, gloves from modified boxes showed significantly less colony-forming unit contamination than gloves from conventional boxes (P<0.001). Comparing all sites over the entire six-week period, gloves from modified boxes had 88.9% less bacterial contamination. This simple improvement to glove box design reduces contamination of unused gloves. Such modifications could decrease the risk of microbial cross-transmission in settings that use gloves. However, such advantages do not substitute for strict hand hygiene compliance and appropriate use of non-sterile, single-use gloves. Copyright © 2016 The Healthcare Infection Society. All rights reserved.
Mobility of the elastic counterpressure space suit glove.
Tanaka, Kunihiko; Danaher, Patrick; Webb, Paul; Hargens, Alan R
2009-10-01
To evaluate the mobility of the current gas-pressurized glove of the extravehicular mobility unit (G-glove) and the elastic counterpressure glove (E-glove), we investigated range of motion (ROM) and indices of fatigue during grip endurance with both gloves using a bare hand as a control. In nine healthy male right-handed subjects, ROM of the proximal interphalangeal joint of the left middle finger was measured. The median frequency of electromyography (EMG) of the left flexor carpi radialis during grip with 25% of maximum strength was measured with the bare hand, G-glove, and E-glove. Using Borg's scale, discomfort was assessed during each grip test. ROM of the E-glove was similar to that of the bare hand (91 +/- 3 degrees and 97 +/- 1 degree for the E-glove and bare hand, respectively) and significantly higher than that of the G-glove (74 +/- 2 degrees). The change in the median frequency of the EMG, which is correlated with Borg's scale, was significantly smaller using the E-glove at marker time points of 1/4 and 1/2 of the total endurance time (-3.5 +/- 1.5 and -10.4 +/- 1.2 Hz) compared to those for the G-glove (-10.1 +/- 1.1 and -16.7 +/- 1.9 Hz). Thus, the G-glove had faster onset of fatigue than the E-glove. These results suggest the E-glove has better mobility and is more suitable for fine motor tasks as compared to the G-glove.
Glove perforation in hip and knee arthroplasty.
Demircay, Emre; Unay, Koray; Bilgili, Mustafa G; Alataca, Gulum
2010-11-01
The transmission of blood-borne pathogens during surgery is a major concern. Surgical gloves are the primary barrier between the surgeon and the patient. Surgical procedures that need manual handling of bony surfaces or sharp instruments have the highest risk of glove perforations. The frequencies and the sites of surgical glove perforations in arthroplasty procedures were assessed. We assessed the surgical glove perforations in total hip and knee arthroplasty procedures. Double standard latex gloves were used. A total of 983 outer and 511 inner gloves were tested. The gloves of all the surgical team members were tested for perforations during the first and second hours of surgery. There were 18.4% outer and 8.4% inner glove perforations. The most frequent site of perforation was the second digit of the nondominant hand (25.5%). We found that hip and knee arthroplasty had significantly more glove perforation risk for the surgeon in the first half of the operation rather than the second half, and 57.8% of the perforations were at the index finger and the thumb. Arthroplasty procedures still have high glove perforation rates despite the use of double gloving with frequent changes. Extra augmentation of the gloves in selected areas of the hand, in addition to double gloving, may be safer and more cost-effective than double gloving alone.
Prospective randomized assessment of single versus double-gloving for general surgical procedures.
Na'aya, H U; Madziga, A G; Eni, U E
2009-01-01
There is increased tendency towards double-gloving by general surgeons in our practice, due probably to awareness of the risk of contamination with blood or other body fluids during surgery. The aim of the study was to compare the relative frequency of glove puncture in single-glove versus double glove sets in general surgical procedures, and to determine if duration of surgery affects perforation rate. Surgeons at random do single or double gloves at their discretion, for general surgical procedures. All the gloves used by the surgeons were assessed immediately after surgery for perforation. A total of 1120 gloves were tested, of which 880 were double-glove sets and 240 single-glove sets. There was no significant difference in the overall perforation rate between single and double glove sets (18.3% versus 20%). However, only 2.3% had perforations in both the outer and inner gloves in the double glove group. Therefore, there was significantly greater risk for blood-skin exposure in the single glove sets (p < 0.01). The perforation rate was also significantly greater during procedures lasting an hour or more compared to those lasting less than an hour (p < 0.01). Double-gloving reduces the risk of blood-skin contamination in all general surgical procedures, and especially so in procedures lasting an hour or more.
Sung, Peng-Cheng
2014-01-01
This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.
Glove utilization in the prevention of cross transmission: a systematic review.
Picheansanthian, Wilawan; Chotibang, Jutamas
2015-05-15
Gloves are worn to protect hands from contamination from microorganisms and to reduce the risks of transmission of microorganisms from healthcare workers to patients and vice versa. However, gloves should be changed between patient contacts and hand washing is necessary before putting on gloves and immediately after removing gloves. The objective of this review was to evaluate and synthesize the best available research evidence that investigates clinical use of gloves in the prevention of cross transmission. Health care workers.Types of intervention(s): Glove use intervention. Types of outcomes: Contamination of healthcare workers' hands, transmission of infections, adherence to glove usage, inappropriate uses of gloves, and adherence to hand hygiene. Types of studies: Quasi-experimental studies and descriptive studies. The search sought to find published and unpublished studies. The time period of the search covered articles published from 2000 to 2012 in English and Thai. The databases searched included: MEDLINE, CINAHL, EMBASE, The Cochrane Library, PubMed, Science Direct, Current Content Connect, Blackwell synergy, Thai Nursing Research Database, Thai thesis database, Digital Library of Thailand Research Fund, Research of National Research Council of Thailand, and Database of Office of Higher Education. Studies selected for retrieval were assessed by two independent reviewers for methodological quality using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument software. Data extraction was performed using the standardized data extraction tool from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument software. A meta-synthesis was not possible due to the methodological heterogeneity of the included papers. The evidence was thus presented as a narrative summary. Twenty-three studies were included in this review. The results indicated that contamination of a healthcare worker's gloves with bacteria during routine care activities is common. The use of gloves can protect the hands of healthcare workers from bacterial contamination, but the protection afforded by the gloves was incomplete. Adherence to glove utilization among healthcare workers was suboptimal. Gloves were overused and often misused. The major break in compliance with glove use was failure to change gloves between procedures on the same patient. Inappropriate glove use can increase the risk of cross transmission. It is unclear if modifications in glove use alter compliance with hand hygiene among healthcare workers. Gloving can reduce acquisition of microorganisms on the hands. However, gloving does not completely prevent contamination of the hands. Compliance with glove use among healthcare workers is poor. Gloves were also overused and often misused. Inappropriate glove use can increase the risk of cross transmission via contaminated gloved hands. There is still not enough evidence to prove the influence of glove use on adherence to hand hygiene. This review strengthens the recent suggestion on the use of gloves to reduce bacterial contamination. However, gloving does not completely prevent contamination, thus emphasizing the need for hand antisepsis before and after patient contact. Intervention to improve the use of gloves and hand hygiene compliance after gloving in the healthcare settings should be implemented. Further studies should target poor compliers with glove use and promote strategies that can be evaluated. The Joanna Briggs Institute.
Improved Gloves for Firefighters
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J.
1983-01-01
New firefighter's gloves are more flexible and comfortable than previous designs. Since some firefighters prefer gloves made of composite materials while others prefer dip-coated gloves, both types were developed. New gloves also find uses in foundries, steelmills, and other plants where they are substituted for asbestos gloves.
The mechanical and microbiological integrity of surgical gloves.
Jamal, Ala; Wilkinson, Stephen
2003-03-01
Several manufacturers supply surgical gloves that have been individually tested (IT) for leaks. Other manufacturers supply gloves in which sample gloves from each batch are tested for leaks (batch tested: BT). The latter brands may be rejected by surgeons because of presumed increased risk of wound infection and staff exposure to patient pathogens. The influence of differences between glove brands on performance in surgery has not been extensively studied. The aims of the present study were to test the mechanical and microbiological integrity of IT compared to BT gloves. A total of 110 unused gloves from each of an IT and a BT brand were tested for leaks, first, by observation of water-jets from water-filled gloves and second, by measuring electrical resistance between inside and outside the glove surfaces, to give a baseline measure. A total of 304 IT and 280 BT gloves were then similarly leak-tested after 98 clean surgical procedures. The hands and gloves of scrub team members were cultured postsurgery. A total of 1/110 BT and 0/110 IT unused gloves contained leaks (NS, Fisher's exact test). Operative perforation rates were lower for BT compared with IT (8/280 cf. 22/304; P < 0.05 Fisher's exact test). There was no bias in types of operations or scrub team members to account for the difference. Growth of normal skin flora was found on virtually every wearer's hands post-operatively. Similar bacteria were frequently cultured from the outside of gloves at the conclusion of surgery (111/152 pairs IT cf. 122/140 pairs BT; P < 0.01, Fisher's exact test). This study provides evidence that the clinical performance of BT gloves is no different to IT gloves. There was no significant difference in mechanical leak rates for unused gloves. Paradoxically, although IT gloves were more likely to show macro-perforations after surgery, the incidence of contamination on the surface of BT gloves was greater, possibly reflecting a qualitative difference in glove material. This study suggests that both types of gloves develop microporosity during use, which may allow transfer of bacteria from the surgeon's skin to the surface of the glove.
Contamination of Critical Surfaces from NVR Glove Residues Via Dry Handling and Solvent Cleaning
NASA Technical Reports Server (NTRS)
Sovinski, Marjorie F.
2004-01-01
Gloves are often used to prevent the contamination of critical surfaces during handling. The type of glove chosen for use should be the glove that produces the least amount of non-volatile residue (NVR). This paper covers the analysis of polyethylene, nitrile, latex, vinyl, and polyurethane gloves using the contact transfer and gravimetric determination methods covered in the NASA GSFC work instruction Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples, 541-WI-5330.1.21 and in the ASTM Standard E-1731M-95, Standard Test Method for Gravimetric Determination of Non-Volatile Residue from Cleanroom Gloves. The tests performed focus on contamination of critical surfaces at the molecular level. The study found that for the most part, all of the gloves performed equally well in the contact transfer testing. However, the polyethylene gloves performed the best in the gravimetric determination testing, and therefore should be used whenever solvent contact is a possibility. The nitrile gloves may be used as a substitute for latex gloves when latex sensitivity is an issue. The use of vinyl gloves should be avoided, especially if solvent contact is a possibility. A glove database will be established by Goddard Space Flight Center (GSFC) Code 541 to compile the results from future testing of new gloves and different glove lots.
Incidence of glove failure during orthopedic operations and the protective effect of double gloves.
Thanni, Lateef O A; Yinusa, W
2003-12-01
To determine the usefulness of double gloves in protecting against the exposure of surgical team members' hands to blood. Five-hundred-ninety-six gloves were studied during 71 orthopedic operations using the water-loading test (filling a glove with water and occluding its cuff tightly to identify leaking points). In all, 73 glove perforations occurred, but only nine resulted in exposure to blood (blood touching the skin). The incidence of glove perforation was 12% (73/596), and overall exposure (blood touching the skin) per operation was 13% (9/71). The latter would have been 87% (62/71) but for the use of double gloves. Sixteen percent of the perforations in double gloves were in the inner gloves, while 84% were in the outer gloves. Exposure of surgeons was reduced from 54% to 10%, first assistants from 27% to 3%, and second assistants from 7% to 0 (p < 0.02, df = 2) by double-gloving. Significantly more perforations occurred during operations on bone, compared with soft tissue operations, p < 0.0001, RR = 4 (95% CL 1.87-8.55). The most common sites of glove perforation were the index finger (47%), thumb, and the palm region: 14% each. More glove perforations occurred in nondominant hands. Double-gloving offers additional protection to surgeons and assistants by preventing hand exposure to blood intraoperatively.
Phalen, Robert N; Le, Thi; Wong, Weng Kee
2014-01-01
Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.
Phalen, Robert N.; Le, Thi; Wong, Weng Kee
2014-01-01
Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. This study was aimed to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. In conclusion, glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves. PMID:24689368
EVALUATION OF GLOVEBOX GLOVES FOR EFFECTIVE PERMEATION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P.
A research and development task was undertaken to determine the permeabilities of hydrogen and dry air through different polymeric glove materials that are used to maintain the integrity of glovebox secondary containment. Fifteen different glove samples were obtained from four different manufacturers and samples cut from these gloves were tested. The gloves included baseline butyl rubber, Viton{reg_sign}, Dupont{reg_sign} Hypalon{reg_sign}, polyurethane, as well as composite gloves. The testing indicated that all of the vendor's butyl rubber gloves and the Jung Viton{reg_sign} gloves performed comparably in both gases.
A novel method of assessing the effectiveness of protective gloves--results from a pilot study.
Creely, K S; Cherrie, J W
2001-03-01
We have devised a novel method for evaluating the effectiveness of protective gloves and have undertaken a small study to assess this approach. Three types of glove were tested in a standardised simulation test with a permethrin-based pesticide. Prewashed cotton gloves were used to collect the samples. One was worn over the protective glove on one hand to measure the potential deposition of pesticide on the hands had the gloves not been worn. A second was placed under the protective glove on the opposite hand to measure the actual deposition of permethrin on the hands when the gloves were worn. This regime was reversed half way through each test in an attempt to prevent bias. Measurable inner glove contamination occurred on 25 out of 30 occasions. Geometric mean protection factors were calculated from the ratio of outer and inner sampling glove contamination, with average protection factors of 470, 200 and 96 being obtained for the two nitrile and PVC gloves, respectively. The PVC gloves were the least effective in preventing inner glove contamination, probably because the glove was thick and fairly inflexible, causing more pesticide to enter the glove around the cuff. Although the tasks were standardised, variability occurred due to worker behaviour and equipment failure. The spray pump failed on five occasions, resulting in higher levels of inner glove contamination and a geometric mean protection factor of 32. On the occasions when the pump worked correctly, the level of protection provided by the gloves rose dramatically with mean protection factors of 220 and 450 being obtained for workers categorised as "messy" and "tidy", respectively.
30 CFR 77.606-1 - Rubber gloves; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's gloves) worn while handling high-voltage trailing cables shall be rated at least 20,000 volts and shall... gloves (wireman's gloves) worn while handling trailing cables energized by 660 to 1,000 volts shall be...
NASA Technical Reports Server (NTRS)
Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar
2014-01-01
From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.
NASA Technical Reports Server (NTRS)
Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)
2001-01-01
Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.
Optimizing skin protection with semipermeable gloves.
Wulfhorst, Britta; Schwanitz, Hans Joachim; Bock, Meike
2004-12-01
Occlusion due to gloves is one important cause of glove irritation. Macerated softened skin gives poor protection against microbes and chemical injuries. The introduction of a breathable protective glove material would represent a significant step toward improved prevention of occupational skin disease. Performance levels of semipermeable and occlusive gloves were examined under conditions typical of the hairdressing profession. In two studies, tests comparing breathable semipermeable gloves to single-use gloves made of occlusive materials were conducted. In an initial study, a user survey was carried out in conjunction with bioengineering examinations. Values at baseline and values after gloves were worn were recorded by measuring transepidermal water loss (TEWL), skin humidity (SH), and skin surface hydrogen ion concentration (pH) in 20 healthy volunteers. In a second study, the gloves were tested for penetrability and permeability with three chemical compounds typically used in the hairdressing profession. Bioengineering examination objectively confirmed users' reports of reduced hand perspiration when semipermeable gloves were worn. The TEWL, SH, and skin surface pH values remained largely stable after 20 minutes of wearing semipermeable gloves, in contrast to the reactions observed with gloves of occlusive materials. Permeability tests indicated that the semipermeable material is effective, with some restrictions. Air leakage testing revealed that all 50 gloves tested were not airtight. Following the optimization of manufacturing methods, additional tests of the penetrability of semipermeable gloves will be necessary.
Reliability and performance of innovative surgical double-glove hole puncture indication systems.
Edlich, Richard F; Wind, Tyler C; Heather, Cynthia L; Thacker, John G
2003-01-01
During operative procedures, operating room personnel wear sterile surgical gloves designed to protect them and their patients against transmissible infections. The Food and Drug Administration (FDA) has set compliance policy guides for manufacturers of gloves. The FDA allows surgeons' gloves whose leakage defect rates do not exceed 1.5 acceptable quality level (AQL) to be used in operating rooms. The implications of this policy are potentially enormous to operating room personnel and patients. This unacceptable risk to the personnel and patient could be significantly reduced by the use of sterile double surgical gloves. Because double-gloves are also susceptible to needle puncture, a double-glove hole indication system is urgently needed to immediately detect surgical needle glove punctures. This warning would allow surgeons to remove the double-gloves, wash their hands, and then don a sterile set of double-gloves with an indication system. During the last decade, Regent Medical has devised non-latex and latex double-glove hole puncture indication systems. The purpose of this comprehensive study is to detect the accuracy of the non-latex and latex double-glove hole puncture indication systems using five commonly used sterile surgical needles: the taper point surgical needle, tapercut surgical needle, reverse cutting edge surgical needle, taper cardiopoint surgical needle, and spatula surgical needle. After subjecting both the non-latex and latex double-glove hole puncture indication systems to surgical needle puncture in each glove fingertip, these double-glove systems were immersed in a sterile basin of saline, after which the double-gloved hands manipulated surgical instruments. Within two minutes, both the non-latex and latex hole puncture indication systems accurately detected needle punctures in all of the surgical gloves, regardless of the dimensions of the surgical needles. In addition, the size of the color change visualized through the translucent outer glove did not correlate with needle diameter. On the basis of this extensive experimental evaluation, both the non-latex and latex double-glove hole puncture indication systems should be used in all operative procedures by all operating room personnel.
Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony
2015-01-01
Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information on the effectiveness of the gloves when used with many tools for reducing the vibration transmitted to the palm in three directions. The results can aid in the appropriate selection and use of these gloves. PMID:26726275
Evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration.
Griffin, M J
1998-05-01
A method of evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration is proposed. The glove isolation effectiveness was calculated from: (a) the measured transmissibility of a glove, (b) the vibration spectrum on the handle of a specific tool (or class of tools), and (c) the frequency weighting indicating the degree to which different frequencies of vibration cause injury. With previously reported tool vibration spectra and glove transmissibilities (from 10-1000 Hz), the method was used to test 10 gloves with 20 different powered tools. The frequency weighting for hand-transmitted vibration advocated in British standard 6842 (1987) and international standard 5349 (1986) greatly influences the apparent isolation effectiveness of gloves. With the frequency weighting, the gloves had little effect on the transmission of vibration to the hand from most of the tools. Only for two or three tools (those dominated by high frequency vibration) did any glove provide useful attenuation. Without the frequency weighting, some gloves showed useful attenuation of the vibration on most powered tools. In view of the uncertain effect of the vibration frequency in the causation of disorders from hand-transmitted vibration, it is provisionally suggested that the wearing of a glove by the user of a particular vibratory tool could be encouraged if the glove reduces the transmission of vibration when it is evaluated without the frequency weighting and does not increase the vibration when it is evaluated with the frequency weighting. A current international standard for the measurement and evaluation of the vibration transmitted by gloves can classify a glove as an antivibration glove when it provides no useful attenuation of vibration, whereas a glove providing useful attenuation of vibration on a specific tool can fail the test.
Lefebvre, Daniel R; Strande, Louise F; Hewitt, Charles W
2008-01-01
Acquiring a blood-borne disease is a risk of performing operations. Most data about seroconversion are based on hollow-bore needlesticks. Some studies have examined the inoculation volumes of pure blood delivered by suture needles. There is a lack of data about the effect of double-gloving on contaminant transmission in less viscous fluids that are not prone to coagulation. We used enzymatic colorimetry to quantify the volume of inoculation delivered by a suture needle that was coated with an aqueous contaminant. Substrate color change was measured using a microplate reader. Both cutting and tapered suture needles were tested against five different glove types and differing numbers of glove layers (from zero to three). One glove layer removed 97% of contaminant from tapered needles and 65% from cutting needles, compared with the no-glove control data. Additional glove layers did not significantly improve contaminant removal from tapered needles (p > 0.05). For the cutting needle, 2 glove layers removed 91% of contaminant, which was significantly better than a single glove (p = 0.002). Three glove layers did not afford statistically significant additional protection (p = 0.122). There were no statistically significant differences between glove types (p = 0.41). With an aqueous needle contaminant, a single glove layer removes contaminant from tapered needles as effectively as multiple glove layers. For cutting needles, double-glove layering offers superior protection. There is no advantage to triple-glove layering. A surgeon should double-glove for maximum safety. Additionally, a surgeon should take advantage of other risk-reduction strategies, such as sharps safety, risk management, and use of sharpless instrumentation when possible.
Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance
NASA Technical Reports Server (NTRS)
Benson, Elizabeth A.; England, Scott A.; Mesloh, Miranda; Thompson, Shelby; ajulu, Sudhakar
2010-01-01
The gloved hand is one of an astronaut s primary means of interacting with the environment, and any restrictions imposed by the glove can strongly affect performance during extravehicular activity (EVA). Glove restrictions have been the subject of study for decades, yet previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Past studies have tended to focus on the dexterity, strength, and functional performance of the gloved hand; this provides only a circumspect analysis of the impact of each type of restriction on the glove s overall capability. The aim of this study was to develop novel capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve their current designs. A series of evaluations were performed to compare unpressurized and pressurized (4.3 psi) gloved conditions with the ungloved condition. A second series of evaluations were performed with the Thermal Micrometeoroid Garment (TMG) removed. This series of tests provided interesting insight into how much of an effect the TMG has on gloved mobility - in some cases, the presence of the TMG restricted glove mobility as much as pressurization did. Previous hypotheses had assumed that the TMG would have a much lower impact on mobility, but these results suggest that an improvement in the design of the TMG could have a significant impact on glove performance. Tactility testing illustrated the effect of glove pressurization, provided insight into the design of hardware that interfaces with the glove, and highlighted areas of concern. The metrics developed in this study served to benchmark the Phase VI EVA glove and to develop requirements for the next-generation glove for the Constellation program.
Zaatreh, Sarah; Enz, Andreas; Klinder, Annett; König, Tony; Mittelmeier, Lena; Kundt, Günther; Mittelmeier, Wolfram
2016-01-01
Introduction: Surgical gloves are used to prevent contamination of the patient and the hospital staff with pathogens. The aim of this study was to examine the actual effectiveness of gloves by examining the damage (perforations, tears) to latex gloves during surgery in the case of primary hip and knee prosthesis implantation. Materials and methods: Latex surgical gloves used by surgeons for primary hip and knee replacement surgeries were collected directly after the surgery and tested using the watertightness test according to ISO EN 455-1:2000. Results: 540 gloves were collected from 104 surgeries. In 32.7% of surgeries at least one glove was damaged. Of all the gloves collected, 10.9% were damaged, mainly on the index finger. The size of the perforations ranged from ≤1 mm to over 5 mm. The surgeon's glove size was the only factor that significantly influenced the occurrence of glove damage. Surgeon training level, procedure duration, and the use of bone cement had no significant influence. Conclusions: Our results highlight the high failure rate of surgical gloves. This has acute implications for glove production, surgical practice, and hygiene guidelines. Further studies are needed to detect the surgical steps, surface structures, and instruments that pose an increased risk for glove damage.
Gloves Reprocessing: Does It Really Save Money?
Arora, Pankaj; Kumari, Santosh; Sodhi, Jitender; Talati, Shweta; Gupta, Anil Kumar
2015-12-01
Gloves are reprocessed and reused in health-care facilities in resource-limited settings to reduce the cost of availability of gloves. The study was done with the aim to compute the cost of reprocessing of gloves so that an economically rationale decision can be taken. A retrospective record-based cross-sectional study was undertaken in a central sterile supply department where different steps during reprocessing of gloves were identified and the cost involved in reprocessing per pair of gloves was calculated. The cost of material and manpower was calculated to arrive at the cost of reprocessing per pair of gloves. The cost of a reprocessed pair of surgical gloves was calculated to be Indian Rupee (INR) 14.33 which was greater than the cost of a new pair of disposable surgical gloves (INR 9.90) as the cost of sterilization of one pair of gloves itself came out to be INR 10.97. The current study showed that the purchase of sterile disposable single-use gloves is cheaper than the process of recycling. Reprocessing of gloves is not economical on tangible terms even in resource-limited settings, and from the perspective of better infection control as well as health-care worker safety, it further justifies the use of disposable gloves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemonds, David Preston
A breech lock for a glove box is provided that may be used to transfer one or more items into the glove box. The breech lock can be interchangeably installed in place of a plug, glove, or other device in a port or opening of a glove box. Features are provided to aid the removal of items from the breech lock by a gloved operator. The breech lock can be reused or, if needed, can be replaced with a plug, glove, or other device at the port or opening of the glove box.
DEVELOPMENT OF A NEW GLOVE FOR GLOVE BOXES WITH HIGH-LEVEL PERFORMANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blancher, J.; Poirier, J.M.
2003-02-27
This paper describes the results of a joint technological program of COGEMA and MAPA to develop a new generation of glove for glove boxes. The mechanical strength of this glove is twice as high as the best characteristics of gloves available on the market. This new generation of product has both a higher level of performance and better ergonomics.
Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for better effectiveness for protecting the fingers. PMID:27867313
Glove perforations during open surgery for gynaecological malignancies.
Manjunath, A P; Shepherd, J H; Barton, D P J; Bridges, J E; Ind, T E J
2008-07-01
To audit glove perforations at laparotomies for gynaecological cancers. Gynaecological oncology unit, cancer centre, London. Prospective audit. Twenty-nine laparotomies for gynaecological cancers over 3 months. Gloves used during laparotomies for gynaecological cancer were tested for perforations by the air inflation and water immersion technique. Parameters recorded were: type of procedure, localisation of perforation, type of gloves, seniority of surgeon, operation time and awareness of perforations. Glove perforation rate. Perforations were found in gloves from 27/29 (93%) laparotomies. The perforation rate was 61/462 (13%) per glove. The perforation rate was three times higher when the duration of surgery was more than 5 hours. The perforation rate was 63% for primary surgeons, 54.5% for first assistant, 4.7% for second assistant and 40.5% for scrub nurses. Clinical fellows were at highest risk of injury (94%). Two-thirds of perforations were on the index finger or thumb. The glove on the nondominant hand had perforations in 54% of cases. In 50% of cases, the participants were not aware of the perforations. There were less inner glove perforations in double gloves compared with single gloves (5/139 versus 26/154; P = 0.0004, OR = 5.4, 95% CI 1.9-16.7). The indicator glove system failed to identify holes in 44% of cases. Glove perforations were found in most (93%) laparotomies for gynaecological malignancies. They are most common among clinical fellows, are often unnoticed and often not detected by the indicator glove system.
Influence of wearing latex gloves on electric pulp tester readings in children.
Holan, G
1993-12-01
Electric pulp testers operated by completing an electric circuit. Latex examination gloves have been claimed to interrupt this circuit and lead to false-negative results. This study was conducted to evaluate the influence of wearing latex gloves on electric pulp tester (EPT) readings. The pulps of 80 maxillary permanent incisors of 22 children 10-13 1/2 years old were tested using the Pelton & Crane 'Vitapulp' instrument. Each tooth was tested twice: with gloves and with bare hands. Teeth failing to respond to the EPT without gloves were excluded from the study. All EPT readings ranged between 1 and 9.5. Five teeth gave the same responses with gloved and ungloved hands. Only five teeth did not respond when gloves were worn, and all of these gave readings near the top of the EPT scale when tested without gloves. The other 70 teeth presented significantly higher readings with gloves than without gloves. It is concluded that removal of examination gloves during the operation of the EPT is necessary only if no response is obtained.
Methods for reducing energy dissipation in cosmetic gloves.
Herder, J L; Cool, J C; Plettenburg, D H
1998-06-01
For cosmetic reasons, hand prostheses are provided with cosmetic gloves. Their pleasing appearance, however, is accompanied by poor mechanical behavior, resulting in a negative influence on prosthesis operation. Glove stiffness is high and nonlinear, and internal friction in the glove material causes energy dissipation (hysteresis). In this article, two methods for reducing hysteresis in cosmetic gloves are proposed, that may be applied independently or in combination. Glove modification. Altering the mechanical properties of the glove itself is the first method that is presented. It was found possible to reduce both stiffness and hysteresis about 50% by forming grooves into the inside of the glove. Together with the evaluation of this method, several properties of the cosmetic glove were determined. Motion optimization. Additionally, a second method for reducing hysteresis was developed. The amount of hysteresis is influenced by the way the glove is forced to deform. The prosthesis mechanism, determining this deformation, was designed for minimum hysteresis and maximum cosmesis. For the prosthesis-glove combination used in this study, thumb motion optimization reduced hysteresis by about 65%.
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new results and knowledge can be used to help select appropriate gloves for the operations of powered hand tools, to help perform risk assessment of the vibration exposure, and to help design better VR gloves. PMID:26543297
Comparison of nitrile gloves and nitrile over Nomex gloves.
Vorih, Deirdre Cronin; Bolton, Lauri D; Marcelynas, James; Nowicki, Thomas A; Jacobs, Lenworth; Robinson, Kenneth J
2009-01-01
Aeromedical flight crews must perform many tasks in flight requiring manual dexterity and fine precision. A common perception is that safety-enhancing fire-retardant gloves compromise patient care if worn during such tasks by providing added bulk and barrier to the hand. This study is a quantitative and qualitative analysis of this possible compromise to patient care. Sixteen practicing flight nurses and respiratory therapists were asked to perform 10 different standard patient care tasks while wearing either nitrile gloves or a nitrile-Nomex glove pair. Tasks were timed, rated as completed successfully or not, and were subsequently judged subjectively by the participants. Whereas the time required to insert an intravenous catheter and to insert a central line while wearing only nitrile gloves was significantly faster than when wearing both gloves, the time to perform all other tasks was not significantly different. In subjective ratings, the nitrile glove alone was scored significantly better than the two-glove combination by the study participants. Comfort, dexterity, tactile discrimination, and ease of use were all adversely affected by wearing a Nomex glove under a nitrile glove. Although the differences in times for most tasks may not be clinically significant, the difference in the subjective parameters may be great enough to cause helicopter emergency medical services (HEMS) practitioners to not wear Nomex gloves under nitrile gloves while performing procedures.
Power assist EVA glove development
NASA Technical Reports Server (NTRS)
Main, John A.; Peterson, Steven W.; Strauss, Alvin M.
1992-01-01
Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Benson, Elizabeth; England, Scott; Mesloh, Miranda; Thompson, Shelby
2009-01-01
The gloved hand is an astronaut s primary means of interacting with the environment, so performance on an EVA is strongly impacted by any restrictions imposed by the glove. As a result, these restrictions have been the subject of study for decades. However, previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Instead, studies have tended to focus on the dexterity, strength and functional performance of the gloved hand. Therefore, it has been difficult to judge the impact of each type of restriction on the glove s overall capability. The lack of basic information on glove mobility in particular, is related to the difficulty in instrumenting a gloved hand to allow an accurate evaluation. However, the current study aims at developing novel technological capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve upon their current designs. A series of evaluations were performed in ungloved, unpressurized and pressurized (4.3 psi) conditions, to allow a comparison across pressures and to the baseline barehanded condition. In addition, a subset of the testing was also performed with the Thermal Micrometeoroid Garment (TMG) removed. This test case in particular provided some interesting insight into how much of an impact the TMG has on gloved mobility -- in some cases, as much as pressurization of the glove. Previous rule-of-thumb estimates had assumed that the TMG would have a much lower impact on mobility, while these results suggest that an improvement in the TMG could actually have a significant impact on glove performance. Similarly, tactility testing illustrated the impact of glove pressurization on tactility and provided insight on the design of interfaces to the glove. The metrics described in this paper have been used to benchmark the Phase VI EVA glove and to develop requirements for the next generation glove for the Constellation program.
Integrity of Disposable Nitrile Exam Gloves Exposed to Simulated Movement
Phalen, Robert N.; Wong, Weng Kee
2011-01-01
Every year, millions of health care, first responder, and industry workers are exposed to chemical and biological hazards. Disposable nitrile gloves are a common choice as both a chemical and physical barrier to these hazards, especially as an alternative to natural latex gloves. However, glove selection is complicated by the availability of several types or formulations of nitrile gloves, such as low-modulus, medical-grade, low-filler, and cleanroom products. This study evaluated the influence of simulated movement on the physical integrity (i.e., holes) of different nitrile exam glove brands and types. Thirty glove products were evaluated out-of-box and after exposure to simulated whole-glove movement for 2 hr. In lieu of the traditional 1-L water-leak test, a modified water-leak test, standardized to detect a 0.15 ± 0.05 mm hole in different regions of the glove, was developed. A specialized air inflation method simulated bidirectional stretching and whole-glove movement. A worst-case scenario with maximum stretching was evaluated. On average, movement did not have a significant effect on glove integrity (chi-square; p=0.068). The average effect was less than 1% between no movement (1.5%) and movement (2.1%) exposures. However, there was significant variability in glove integrity between different glove types (p ≤ 0.05). Cleanroom gloves, on average, had the highest percentage of leaks, and 50% failed the water-leak test. Low-modulus and medical-grade gloves had the lowest percentages of leaks, and no products failed the water-leak test. Variability in polymer formulation was suspected to account for the observed discrepancies, as well as the inability of the traditional 1-L water-leak test to detect holes in finger/thumb regions. Unexpectedly, greater than 80% of the glove defects were observed in the finger and thumb regions. It is recommended that existing water-leak tests be re-evaluated and standardized to account for product variability. PMID:21476169
Erickson, Marilyn C; Liao, Jye-Yin; Webb, Cathy C; Habteselassie, Mussie Y; Cannon, Jennifer L
2018-02-02
Gloves are worn by workers harvesting ready-to-eat produce as a deterrent for contaminating the produce with enteric pathogens that may reside on their hands. As fields are not sterile environments, the probability for gloves to become contaminated still exists and therefore it is critical to understand the conditions that affect the survival of pathogens on gloves. Both Escherichia coli O157:H7 and Salmonella deposited on glove surfaces in a liquid state survived longer when the pathogen had been suspended in lettuce sap than when suspended in water. Despite this protection, pathogens deposited on clean single-use gloves were more likely to survive during drying than pathogens deposited on dirty gloves (a film of lettuce sap had been applied to the surface prior to pathogen application and soil had been ground into the gloves). Survival of both E. coli O157:H7 and Salmonella was biphasic with the greatest losses occurring during the first hour of drying followed by much slower losses in the ensuing hours. Pathogens grown in rich media (tryptic soy broth) versus minimal media (M9) as well as those cultured on solid agar versus liquid broth were also more likely to be resistant to desiccation when deposited onto gloves. Although survival of E. coli O157:H7 on nitrile gloves was in general greater than it was on latex gloves, the relative survival of Salmonella on the two glove types was inconsistent. Due to these inconsistencies, no one glove type is considered better than another in reducing the risk for contamination with enteric pathogens. In addition, the extended survival of what are generally referred to as stress-resistant pathogens suggests that gloves either be changed frequently during the day or washed in a disinfectant to reduce the risk of glove contamination that could otherwise contaminate product handled with the contaminated gloves. Copyright © 2017 Elsevier B.V. All rights reserved.
Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.
McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher
2013-01-01
Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.
Fundamentals of the knowledge about chemical additives present in rubber gloves.
Oliveira, Hegles Rosa de; Alchorne, Alice de Oliveira de Avelar
2011-01-01
One of the most frequent causes of allergic contact dermatitis of occupational origin are rubber additives, which are present in Personal Protective Equipment (PPE). The most allergenic additives of natural and synthetic gloves are thiurams, carbamates and mercapto group. To investigate the state of knowledge about the chemical additives used in the manufacture of synthetic rubber gloves. This was a qualitative research study in which professionals working in the manufacture, research, prescription and commercialization of gloves answered an open questionnaire. 30 individuals were interviewed: 4 researchers in occupational medicine, 5 occupational physicians, 2 occupational safety technicians, a rubber workers' union physician, an occupational safety engineer, a pro duction engineer of rubber gloves, 4 importers of gloves, a manufacturer of gloves, 3 businessmen who sell PPE, 3 salesclerks working in stores that sell PPE, 2 businessmen who own stores that sell products for allergic individuals, and 3 dermatologists. Knowledge of the chemical composition of rubber gloves is scant. The labeling of gloves, with the description of their chemical composition, would facilitate choosing the best type of glove for each person. This low-cost action to businesses would be a gain from the standpoint of public health, with huge repercussions for users of rubber gloves.
Rock, Clare; Harris, Anthony D; Reich, Nicholas G; Johnson, J Kristie; Thom, Kerri A
2013-11-01
Hand hygiene (HH) is recognized as a basic effective measure in prevention of nosocomial infections. However, the importance of HH before donning nonsterile gloves is unknown, and few published studies address this issue. Despite the lack of evidence, the World Health Organization and other leading bodies recommend this practice. The aim of this study was to assess the utility of HH before donning nonsterile gloves prior to patient contact. A prospective, randomized, controlled trial of health care workers entering Contact Isolation rooms in intensive care units was performed. Baseline finger and palm prints were made from dominant hands onto agar plates. Health care workers were then randomized to directly don nonsterile gloves or perform HH and then don nonsterile gloves. Postgloving finger and palm prints were then made from the gloved hands. Plates were incubated and colony-forming units (CFU) of bacteria were counted. Total bacterial colony counts of gloved hands did not differ between the 2 groups (6.9 vs 8.1 CFU, respectively, P = .52). Staphylococcus aureus was identified from gloves (once in "hand hygiene prior to gloving" group, twice in "direct gloving" group). All other organisms were expected commensal flora. HH before donning nonsterile gloves does not decrease already low bacterial counts on gloves. The utility of HH before donning nonsterile gloves may be unnecessary. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Lee, Hsiao-Shu; Lin, Yu-Wen
2009-04-01
Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not accelerate chemical breakthrough. The compositions of the challenge solutions and physical and chemical properties (MV and logK(ow)) affected permeation behaviors for different gloves.
Malhotra, Monika; Sharma, Jai Bhagwan; Wadhwa, Leena; Arora, Raksha
2004-08-01
To assess the glove perforation rate, efficacy of double gloving, effect of duration of surgery, expertise of surgeon and operative urgency on the glove perforation rate in obstetrical and gynecologic operations. From February to September 2002, double glove protocol was made necessary for all major obstetrical and gynecologic procedures. The operating surgeon, first and second assistant were included in the study. Gloves damage was noted (overt by inspection, occult by hydroinsufflation technique). Of the 156 procedures included in study, 32 procedures were performed (all emergency operations) single-gloved because surgeons found double gloving clumsy (56%), made it difficult to tie knots due to lack of dexterity (24%), or were too tight (20%). One thousand one hundred and twenty single gloves were examined after each procedure by hydroinsufflation. The overall perforation rate was 13.6% (single versus double outer gloves, 13.8% versus l3.2%, P > 0.05). Matching perforations were found in six cases (4.6%). Thus, the protection offered by double gloves was 95.4% even if the outer gloves were perforated. Four inner gloves had preexisting perforations. Sixty unused gloves checked similarly revealed a perforation rate of 1.6%. Emergency cases had higher perforation rate compared to elective surgeries (16.6% versus 10.8%, P < 0.00 1). Surgeries lasting for more than 40 min had a higher perforation rate compared to those finished in less than or equal to 40 min (18.6% versus 7.6%, P < 0.001). The middle finger of the left hand was the most commonly involved. The surgeon, first assistant and second assistant were involved in 73.6, 23.3 and 3.2% cases, respectively. Double gloving offers considerable protection against exposure to contaminants in the blood and body fluids of the patient and should be made routine, especially in developing countries where HIV, hepatitis B and C are widely prevalent. Double gloving should be made mandatory in emergency procedures, which have a higher perforation rate due to operative urgency, and gloves should be changed in operations lasting for more than 40 min to ensure integrity of barrier.
Comparison of 4 different types of surgical gloves used for preventing blood contact.
Wittmann, Andreas; Kralj, Nenad; Köver, Jan; Gasthaus, Klaus; Lerch, Hartmut; Hofmann, Friedrich
2010-05-01
Needlestick injuries are always associated with a risk of infection, because these types of punctures may expose healthcare workers to a patient's blood and/or body fluids. To compare the efficacy of 4 different types of surgical gloves for preventing exposure to blood as a result of needlestick injury. For simulation of needlestick injury, a circular sample of pork skin was tightened onto a bracket, and a single finger from a medical glove was stretched over the sample. First, a powder-free surgical glove with a gel coating was used to test blood contact. Second, a glove with a patented puncture indication system was used to test blood contact with a double-gloved hand. Third, 2 powder-free latex medical gloves of the same size and hand were combined for double gloving, again to test blood contact. Finally, we tested a glove with an integrated disinfectant on the inside. The punctures were carried out using diverse sharp surgical devices that were contaminated with (99)Tc-marked blood. The amount of blood contact was determined from the transmitted radioactivity. For the powder-free surgical glove with a gel coating, a mean volume of 0.048 microL of blood (standard error of the mean [SEM], 0.077 microL) was transferred in punctures with an automated lancet at a depth of 2.4 mm through 1 layer of latex. For the glove with an integrated disinfectant on the inside, the mean volume of blood transferred was 0.030 microL (SEM, 0.0056 microL) with a single glove and was 0.024 microL (SEM, 0.003 microL) with 2 gloves. For the glove with the patented puncture indication system, a mean volume of 0.024 microL (SEM, 0.003 microL) of blood was transferred. Double gloving or the use of a glove with disinfectant can result in a decrease in the volume of blood transferred. Therefore, the use of either of these gloving systems could help to minimize the risk of bloodborne infections for medical staff.
Prior, Yeliz; Sutton, Chris; Cotterill, Sarah; Adams, Jo; Camacho, Elizabeth; Arafin, Nazina; Firth, Jill; O'Neill, Terence; Hough, Yvonne; Jones, Wendy; Hammond, Alison
2017-05-30
Arthritis gloves are regularly provided as part of the management of people with rheumatoid arthritis (RA) and undifferentiated (early) inflammatory arthritis (IA). Usually made of nylon and elastane (i.e. Lycra®), these arthritis gloves apply pressure with the aims of relieving hand pain, stiffness and improving hand function. However, a systematic review identified little evidence supporting their use. We therefore designed a trial to compare the effectiveness of the commonest type of arthritis glove provided in the United Kingdom (Isotoner gloves) (intervention) with placebo (control) gloves (i.e. larger arthritis gloves providing similar warmth to the intervention gloves but minimal pressure only) in people with these conditions. Participants aged 18 years and over with RA or IA and persistent hand pain will be recruited from National Health Service Trusts in the United Kingdom. Following consent, participants will complete a questionnaire booklet, then be randomly allocated to receive intervention or placebo arthritis gloves. Within three weeks, they will be fitted with the allocated gloves by clinical specialist rheumatology occupational therapists. Twelve weeks (i.e. the primary endpoint) after completing the baseline questionnaire, participants will complete a second questionnaire, including the same measures plus additional questions to explore adherence, benefits and problems with glove-wear. A sub-sample of participants from each group will be interviewed at the end of their participation to explore their views of the gloves received. The clinical effectiveness and cost-effectiveness of the intervention, compared to placebo gloves, will be evaluated over 12 weeks. The primary outcome measure is hand pain during activity. Qualitative interviews will be thematically analysed. This study will evaluate the commonest type of arthritis glove (Isotoner) provided in the NHS (i.e. the intervention) compared to a placebo glove. The results will help occupational therapists, occupational therapy services and people with arthritis make informed choices as to the value of arthritis gloves. If effective, arthritis gloves should become more widely available in the NHS to help people with RA and IA manage hand symptoms and improve performance of daily activities, work and leisure. If not, services can determine whether to cease supplying these to reduce service costs. ISRCTN Registry: ISRCTN25892131 Registered 05/09/2016.
[Old and new types of sanitary gloves: what has improved?].
Belleri, L; Crippa, Michela
2008-01-01
During the eighties a large increase in latex gloves production was observed because of the high demand of gloves in health care settings. In this period a low compliance to minimal quality standard was detected and the poor glove quality was associated with an increase of both irritant and allergic glove-related diseases. Since the second half of nineties health care workers and manufacturers paid more attention to these problems and a trend to a gradual, even if slow, quality improvement was observed. Most frequently powder-free gloves and synthetic gloves were offered on the market. The aim of this study was to highlight what has improved about materials and types of sanitary gloves during the last ten years. The information are based on a review of the scientific literature and practical experiences. Today a large selection of gloves made of different materials are available and they should be addressed to specific tasks. The review of the scientific literature and the analysis of many technical sheets provided by the manufacturers pointed out a trend to a better latex gloves quality (less chemical additives and generally a lower total protein content); sometimes data about a lower extractable latex allergens content are also available. Unfortunately detailed information on glove composition are not usually provided by the manufacturers; purchasers should require the manufacturing company to give comprehensive information and verify their reliability. Moreover the regulation in force should be adapted to higher quality standards. Powder-free and synthetic gloves consumption has improved but the use of synthetic rubber gloves should be further enhanced since some materials (e.g. neoprene and nitrile rubber) have a good biocompatibility and seem to have physical properties and protective efficacy similar to latex. Moreover allergic reactions to synthetic gloves (some chemical additives) are only occasional.
Bucknor, A; Karthikesalingam, A; Markar, SR; Holt, PJ; Jones, I; Allen-Mersh, TG
2010-01-01
INTRODUCTION The prudent selection of surgical gloves can deliver significant efficiency savings. However, objective data are lacking to compare differences in cutaneous sensibility between competing gloves. Therefore, the present study examined the use of a single comparable model of sterile surgical glove from two competing providers, Gammex PF HyGrip® (Ansell Limited, Red Bank, NJ, USA) with Biogel® (Mölnlycke Health Care AB, Göteborg, Sweden). SUBJECTS AND METHODS Cutaneous pressure threshold, static and moving two-point discrimination were measured as indices of objective surgical glove performance in 52 blinded healthcare professionals. RESULTS The mean cutaneous pressure threshold was 0.0680 ± 0.0923 g for skin, 0.411 ± 0.661 g for Ansell gloves and 0.472 ± 0.768 g for Biogel gloves. Skin was significantly more sensitive than Ansell (P< 0.0001) or Biogel (P< 0.0001) gloves (Wilcoxon signed rank test). There was no statistical difference between Biogel and Ansell gloves (P = 0.359). There was no significant difference between static or moving 2-point discrimination of skin and Ansell gloves (P= 0.556, P = 0.617; Wilcoxon signed rank test), skin and Biogel gloves (P= 0.486, P= 0.437; Wilcoxon signed rank test) or Ansell and Biogel gloves (P= 0.843, P= 0.670; Wilcoxon signed rank test). CONCLUSIONS No demonstrable objective difference was found between competing gloves in the outcome measures of cutaneous sensibility and two-point discrimination. However, a difference in subjective preference was noted. Untested factors may underlie this discrepancy, and further research should employ more sophisticated measurements of surgical performance using competing models of surgical glove. PMID:21118618
[Prevention of work-related latex allergy].
Mehlum, I S
1998-09-10
Latex allergy has become a common work-related disease among health care workers. An increase in the use of latex gloves is the main reason for this. Measures to prevent sensitization and allergic reactions to latex can be implemented at various administrative levels: at national and international levels by regulations and recommendations, and by the implementation of various measures at the place of work. When to use gloves and what gloves to use are important issues, balancing barrier properties and the need to prevent infection with the need to prevent sensitization and allergic reactions to latex. There are great variations between allergen levels in different gloves, and this can be measured in different ways. Threshold levels are not specified, and latex gloves should not be considered devoid of allergenic potential. The Norwegian Labour Inspection Authority has carried out a survey on latex gloves, based on information from manufacturers and importers, and present this survey to guide glove users. We recommend powder-free gloves with low levels of latex allergens/leachable proteins, chemicals and endotoxins. There are several low-allergen gloves available on the Norwegian market, but for some gloves we lack important information.
Extra-Vehicular Activity (EVA) glove evaluation test protocol
NASA Technical Reports Server (NTRS)
Hinman-Sweeney, E. M.
1994-01-01
One of the most critical components of a space suit is the gloves, yet gloves have traditionally presented significant design challenges. With continued efforts at glove development, a method for evaluating glove performance is needed. This paper presents a pressure-glove evaluation protocol. A description of this evaluation protocol, and its development is provided. The protocol allows comparison of one glove design to another, or any one design to bare-handed performance. Gloves for higher pressure suits may be evaluated at current and future design pressures to drive out differences in performance due to pressure effects. Using this protocol, gloves may be evaluated during design to drive out design problems and determine areas for improvement, or fully mature designs may be evaluated with respect to mission requirements. Several different test configurations are presented to handle these cases. This protocol was run on a prototype glove. The prototype was evaluated at two operating pressures and in the unpressurized state, with results compared to bare-handed performance. Results and analysis from this test series are provided, as is a description of the configuration used for this test.
Permeability of latex gloves after contact with dental materials.
Richards, J M; Sydiskis, R J; Davidson, W M; Josell, S D; Lavine, D S
1993-09-01
The use of latex examination gloves in the dental office has become the standard of care. However, the effectiveness of gloves as a barrier after coming into contact with specific dental materials is still uncertain. To examine the effects of dental materials is still uncertain. To examine the effects of dental materials on latex, 100 latex examination glove finger tips were divided into 10 groups. Each group was manipulated in a different dental material for 15 minutes. Permeability was detected by the passage of herpes virus across the latex membrane, rinsed from the inner glove surface and titrated onto Vero cells. Significant virus leakage was discovered in gloves treated with acrylic monomer, chloroform, and orange solvent. Little virus leakage was noted in bleach, soap, and 30% phosphoric acid etchant treated gloves, and no virus leakage was found with composite resin, ethanol, formocresol, and water treated gloves. These data were supported with scanning electron micrographs taken of the treated glove samples and comparing with the controls. When certain dental materials are manipulated while wearing gloves, irreversible damage to the material occurs and may increase the practitioner's exposure to pathogens.
Glove perforations and blood contact associated with manipulation of the fetal scalp electrode.
Rhoton-Vlasak, A; Duff, P
1993-02-01
To assess prospectively the frequency of glove injury associated with insertion of the fetal scalp electrode and subsequent examination of the cervix with the electrode in place. Over a 7-month period, sterile gloves were collected after use for insertion of the fetal scalp electrode or cervical examination with the electrode in place. Attendants indicated their level of training, time, date and purpose of glove use, and cervical examination. They also noted whether they were aware of a glove perforation or observed blood, amniotic fluid, or genital tract secretions on their hand. Glove patency was assessed by filling the glove with water to 1.5-2.0 times its normal volume and observing for leaks. One hundred unused gloves were tested for patency and served as controls. Five hundred one gloves were evaluated, of which 13 (2.6%, 95% confidence interval [Cl] 1-4%) had perforations. Seven of 277 gloves (2.5%) used only for examinations had perforations, compared with six of 244 (2.5%) used only for insertion of the electrode. Two percent (95% CI 0-5%) of the unused control gloves had perforations. These observed differences were not statistically significant. Nineteen attendants (3.8%, 95% CI 2.1-5.5%) noted blood or genital tract secretions on their hand after insertion of the electrode (N = 4) or subsequent cervical examination (N = 15). Only one point of contract resulted from a glove perforation; the other 18 were on the wrist and apparently resulted from leakage of fluid around the open cuff of the glove. The risk of glove perforation during insertion of the fetal scalp electrode or subsequent cervical examination is low if proper technique is observed. Blood or fluid contact is more likely to result from leakage of fluid around the open cuff of the glove during a vaginal examination.
Glove and gown effects on intraoperative bacterial contamination.
Ward, William G; Cooper, Joshua M; Lippert, Dylan; Kablawi, Rawan O; Neiberg, Rebecca H; Sherertz, Robert J
2014-03-01
Experiments were performed to determine the risk of bacterial contamination associated with changing outer gloves and using disposable spunlace paper versus reusable cloth gowns. Despite decades of research, there remains a lack of consensus regarding certain aspects of optimal aseptic technique including outer glove exchange while double-gloving and surgical gown type selection. In an initial glove study, 102 surgical team members were randomized to exchange or retain outer gloves 1 hour into clean orthopedic procedures; cultures were obtained 15 minutes later from the palm of the surgeon's dominant gloved hand and from the surgical gown sleeve. Surgical gown type selection was recorded. A laboratory strike-through study investigating bacterial transmission through cloth and paper gowns was performed with coagulase-negative staphylococci. In a follow-up glove study, 251 surgical team members, all wearing paper gowns, were randomized as in the first glove study. Glove study 1 revealed 4-fold higher levels of baseline bacterial contamination (31% vs 7%) on the sleeve of surgical team members wearing cloth gowns than those using paper gowns [odds ratio (95% confidence interval): 4.64 (1.72-12.53); P = 0.0016]. The bacterial strike-through study revealed that 26 of 27 cloth gowns allowed bacterial transmission through the material compared with 0 of 27 paper gowns (P < 0.001). In glove study 2, surgeons retaining outer gloves 1 hour into the case had a subsequent positive glove contamination rate of 23% compared with 13% among surgeons exchanging their original outer glove [odds ratio (95% confidence interval): 1.97 (1.02-3.80); P = 0.0419]. Paper gowns demonstrated less bacterial transmission in the laboratory and lower rates of contamination in the operating room. Disposable paper gowns are recommended for all surgical cases, especially those involving implants, because of the heightened risk of infection. Outer glove exchange just before handling implant materials is also recommended to minimize intraoperative contamination.
Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions
McDowell, Thomas W.; Dong, Ren G.; Welcome, Daniel E.; Xu, Xueyan S.; Warren, Christopher
2015-01-01
Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. PMID:24160755
Mechanical counter-pressure vs. gas-pressurized spacesuit gloves: grip and sensitivity.
Danaher, Patrick; Tanaka, Kunihiko; Hargens, Alan R
2005-04-01
An elastic mechanical counter pressure (MCP) glove for spacesuits is under development. In this study we compared handgrip and pinch grip strength levels for the MCP glove and the current extravehicular mobility unit (EMU) gas-pressurized glove. We employed handgrip and pinch grip dynamometers to assess strength levels and von Frey monofilaments to evaluate hand sensitivity. Tests were conducted with the gloved hand inserted in an evacuation chamber at 200 mmHg below atmospheric pressure to simulate conditions in space. Average bare hand strength was 463 N and decreased to 240 N for EMU and 250 N for MCP. Pinch grip and key grip testing showed no difference among conditions. However, there was a significant decrease in palmar grip strength from 111 N barehanded to 67 N in both gloves. Barehanded endurance time was 160 s and dropped to 63 and 69 s for EMU and MCP, respectively. Sensitivity was significantly better for MCP compared with the EMU. The MCP glove improved hand sensitivity when compared with the EMU glove and performed as well as the EMU glove in terms of overall handgrip strength, endurance at 25% of maximum handgrip strength, pinch grip, palmar grip, and key grip tests. Improvements in fabric composition and glove design may further improve ergonomic and other functional parameters of the MCP glove.
Brown, Robert H; Taenkhum, Kanika; Buckley, Timothy J; Hamilton, Robert G
2004-08-01
Proactive medical institutions implement latex allergen avoidance to protect workers and patients with latex allergy and to prevent latex sensitization in these groups by creating latex-safe environments that include replacement of natural rubber latex examination and surgical gloves, especially those that are powdered, with synthetic alternatives. We have hypothesized that an apparent decreasing trend in new latex allergy cases in hospitals using only synthetic examination gloves but the occasional powdered latex surgical glove might result from constitutive differences in allergen content (particle size distribution and quantity) between powdered surgical gloves and examination gloves. Because aerodynamic particle size determines where inhaled airborne allergen deposits in the airway, the aim of this study was to investigate the differential particle size distribution of latex allergen released from powdered latex examination and surgical gloves. Powdered and nonpowdered latex examination and surgical gloves were processed to create an aerosol in a glove box equipped with air sampling equipment capable of total particle number and mass measurements. Air particulate generated in the glove box was collected on impactors with less than 2.5-microm, 2.5- to 10-microm, and greater than 10-microm particle size limits (4 L/min for 4 hours). All filters were extracted, and latex allergen was quantified by using a latex-CAP inhibition assay with a human IgE anti-latex serum pool. Latex aeroallergen on powdered sterile surgical gloves resided primarily on particles greater than 10 microm in size (P <.006). In contrast, powdered examination gloves released the highest total latex aeroallergen content, with 68% of the particles sized in the respirable 2.5- to 10-microm range and carrying 56% of the airborne latex allergen. Significantly lower quantities and larger sizes of latex allergen-containing particles released from surgical gloves provides one potential explanation as to why an apparent decrease in new cases of latex allergy can occur in hospitals that successfully replace latex examination gloves with synthetic gloves but continue occasional use of powdered surgical gloves.
NASA Technical Reports Server (NTRS)
Bishu, Ram R.
1992-01-01
Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand, and e) differences in performance exist between partial pressure suit glove and full pressure suit glove, especially in the unpressurized condition.
Surgical glove perforation in cardiac surgery.
Driever, R; Beie, M; Schmitz, E; Holland, M; Knapp, M; Reifschneider, H J; Hofmann, F; Vetter, H O
2001-12-01
Recently, concern for the protection of health care employees and health care recipients has led to increasing awareness of transmitted infections. Sterile surgical gloves were tested to determine the incidence of perforations after being worn during procedures commonly performed by cardiac surgeons. In a prospective study conducted from January 15, 2000 through February 15, 2000, 953 gloves worn during cardiac surgery were evaluated for punctures. Pairs of sterile latex surgical gloves were collected over a period of one month. Routine tasks included mainly bypass and valve surgery. Impermeability was tested by means of a water retention test according to European standard EN 455 Part 1 performed on 954 (Manufix, Hartmann, Germany) latex gloves. A control group of 50 unused gloves was also evaluated for the presence of spontaneous leakage. Gloves were separated according to whether the wearer was an operator (254 gloves), first assistant (220 gloves), second assistant (272 gloves), or theatre nurse (207 gloves). Gloves with a known perforation occurring during the procedure were not included in the study. There were no punctures in the 50 unused gloves. Punctures were detected in 66 of 254 (26.0 %) gloves used by operators, 49 of 220 (22.3 %) used by first assistants, 25 of 272 (9.2 %) used by second assistants, and 78 of 207 (37.7 %) used by theatre nurses. Some gloves had more than one puncture, accounting for the 244 holes detected (operators 75/244 = 30.7 %; first assistants 54/244 = 22.1 %; second assistants 28/244 = 11.5 %; theatre nurses 87/244 = 35.7 %). Sites of scalpel and suture needle injuries were most commonly the thumb (27.3 %) and pointer finger (42.1 %) of the non-dominant hand, followed by, in descending order: middle finger (10.2 %), other fingers (15.7 %), palm (3.8 %) and back of the hand (0.9 %). The number of punctures that occur during cardiac operations is obviously higher than has so far been assumed. Therefore, cardiac surgeons should consider the incidence of unknown glove perforations when planning surgery in patients with infectious diseases.
Design options for improving protective gloves for industrial assembly work.
Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W
2014-07-01
The study investigated the effects of wearing two new designs of cotton glove on several hand performance capabilities and compared them against the effects of barehanded, single-layered and double cotton glove conditions when working with hand tools (screwdriver and pliers). The new glove designs were based on the findings of subjective hand discomfort assessments for this type of work and aimed to match the glove thickness to the localised pressure and sensitivity in different areas of the hand as well as to provide adequate dexterity for fine manipulative tasks. The results showed that the first prototype glove and the barehanded condition were comparable and provided better dexterity and higher handgrip strength than double thickness gloves. The results support the hypothesis that selective thickness in different areas of the hand could be applied by glove manufacturers to improve the glove design, so that it can protect the hands from the environment and at the same time allow optimal hand performance capabilities. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Permeability of different types of medical protective gloves to acrylic monomers.
Lönnroth, Emma-Christin; Wellendorf, Hanne; Ruyter, Eystein
2003-10-01
Dental personnel and orthopedic surgeons are at risk when manually handling products containing methyl methacrylate (MMA). Dental products may also contain cross-linking agents such as ethylene glycol dimethacrylate (EGDMA) or 1,4-butanediol dimethacrylate (1,4-BDMA). Skin contact with monomers can cause hand eczema, and the protection given by gloves manufactured from different types of material is not well known. The aim of this study was to determine the breakthrough time (BTT, min) as a measure of protection (according to the EU standard EN-374-3) for a mixture consisting of MMA, EGDMA and 1,4-BDMA. Fifteen different gloves representing natural rubber latex material, synthetic rubber material (e.g. nitrile rubbers), and synthetic polymer material were tested. The smallest monomer MMA permeated within 3 min through all glove materials. A polyethylene examination glove provided the longest protection period to EGDMA and 1, 4-BDMA (> 120 min and 25.0 min), followed by the surgical glove Tactylon (6.0 min and 8.7 min) and the nitrile glove Nitra Touch (5.0 min and 8.7 min). This study showed that the breakthrough time (based on permeation rate) cannot be regarded as a 'safe limit'. When the permeation rate is low, monomers may have permeated before BTT can be determined. Using double gloves with a synthetic rubber inner glove and a natural rubber outer glove provided longer protection when the inner glove was rinsed in water before placing the outer glove on top.
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-12-01
We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.
Aircraft energy efficiency laminar flow control glove flight conceptual design study
NASA Technical Reports Server (NTRS)
Wright, A. S.
1979-01-01
A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.
Antimicrobial allergy from polyvinyl chloride gloves.
Aalto-Korte, Kristiina; Alanko, Kristiina; Henriks-Eckerman, Maj-Len; Jolanki, Riitta
2006-10-01
Contact allergy to plastic gloves is rare. Benzisothiazolinone is a biocide that is mainly used in industrial settings. We first suspected delayed-type contact allergy to benzisothiazolinone from polyvinyl chloride (PVC) gloves in 2004. We looked through our medical records from 1991 to 2005 to find similar cases. We found a total of 8 patients who are allergic to benzisothiazolinone and who had had exacerbations of their hand dermatitis while using PVC gloves. Patch testing revealed that 3 of them had weak allergic or doubtful reactions to the glove materials. Six of them had used Evercare Soft, Medi-Point, or Derma Grip PVC gloves, which in chemical analysis were shown to contain 9 to 32 ppm of benzisothiazolinone. Seven of the patients worked in dentistry or health care and 1 in farming. All of them had had hand dermatitis for many years. To our knowledge, there have been no previous reports of contact allergy to antimicrobial agents in plastic gloves. Benzisothiazolinone is widely used as a biocide in the manufacture of disposable PVC gloves. Small amounts of benzisothiazolinone in the gloves may sensitize those who already have hand dermatitis. We recommend that all patients with hand dermatitis while using PVC gloves should be patch tested with benzisothiazolinone.
Gill, C O; Jones, T
2002-06-01
On eight occasions, five volunteers each handled five pieces of meat with bare hands or while wearing dry or wet knitted gloves or rubber gloves after hands had been inoculated with Escherichia coli or after handling a piece of meat inoculated with E. coli. On each occasion, after all meat was handled, each piece of meat, glove, and hand were sampled to recover E. coli. When hands were inoculated, E. coli was recovered from all meat handled with bare hands, in lesser numbers from some pieces handled with knitted gloves, and from only one piece handled with rubber gloves. When pieces of inoculated meat were handled, the numbers of E. coli transferred to uninoculated meat from bare hands or rubber gloves decreased substantially with each successive piece of uninoculated meat, but decreases were small with knitted gloves. The findings indicate that, compared with bare hands, the use of knitted gloves could reduce the transfer of bacteria from hands to meat but could increase the transfer of bacteria between meat pieces, whereas the use of rubber gloves could largely prevent the first and greatly reduce the second type of bacteria transfer.
Evaluating Utility Gloves as a Potential Reservoir for Pathogenic Bacteria.
Grant, Kathy L; Naber, E Donald; Halteman, William A
2015-08-01
This pilot study sought to determine the rate and degree to which gram-negative Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus occurred on the inside of utility gloves used at University of Maine at Augusta, Dental Health Programs' dental hygiene clinic. Five steam autoclave utility gloves were randomly selected to serve as control and a convenience sample of 10 used utility gloves were selected from the sterilization area. A sample was collected from a predetermined surface area from the inside of each steam autoclave utility glove and used utility glove. Each sample was used to inoculate a Petri plate containing 2 types of culture media. Samples were incubated at 37° C for 30 to 36 hours in aerobic conditions. Colony forming units (CFU) were counted. Confidence intervals (CI) estimated the rate of contamination with gram-negative K. pneumoniae, E. coli and P. aeruginosa on the inside of steam autoclave utility gloves to be n=33 95% CL [0.000, 0.049], used utility gloves to be n=70, 95% CL [0.000, 0.0303]. Data estimated the rate of contamination with gram-positive S. aureus on the inside of steam autoclave utility gloves to be n=35, 95% CL [0.233, 0.530], used utility gloves to be n=70, 95% CL [0.2730, 0.4975]. Culture media expressed a wide range of CFU from 0 to over 200. The risk of utility glove contamination with gram-negative bacteria is likely low. The expressed growth of S. aureus from steam autoclave utility gloves controls raises questions about the effectiveness and safety of generally accepted sterilization standards for the governmentally mandated use of utility gloves. Copyright © 2015 The American Dental Hygienists’ Association.
Investigation of X-ray permeability of surgical gloves coated with different contrast agents
Kayan, Mustafa; Yaşar, Selçuk; Saygın, Mustafa; Yılmaz, Ömer; Aktaş, Aykut Recep; Kayan, Fatmanur; Türker, Yasin; Çetinkaya, Gürsel
2016-01-01
Objective: We aimed to investigate the effectiveness and radiation protection capability of latex gloves coated with various contrast agents as an alternative to lead gloves. Methods: The following six groups were created to evaluate the permeability of X-ray in this experimental study: lead gloves, two different non-ionic contrast media (iopromide 370/100 mg I/mL and iomeprol 400/100 mg I/mL), 10% povidone–iodine (PV–I), 240/240 g/mL barium sulphate and a mixture of equal amounts of all contrast agents. A radiation dose detector was placed in coated latex gloves for each one. The absorption values of radiation from latex gloves coated with various contrast agents were measured and compared with the absorption of radiation from lead gloves. This study was designed as an ‘experimental study’. Results: The mean absorption value of X-ray from lead gloves was 3.0±0.08 µG/s. The mean absorption values of X-ray from latex gloves coated with various contrast agents were 3.7±0.09 µG/s (iopromide 370/100 mg I/mL), 3.6±0.09 µG/s (iomeprol 400/100 mg I/mL), 3.7±0.04 µG/s (PV–I), 3.1±0.07 µG/s (barium sulphate) and 3.8±0.05 µG/s (mixture of all contrast agents). Latex gloves coated with barium sulphate provided the best radiation absorption compared with latex gloves coated with other radiodense contrast agents. Conclusion: Latex gloves coated with barium sulphate may provide protection equivalent to lead gloves. PMID:26680548
EVA Glove Sensor Feasbility II Abstract
NASA Technical Reports Server (NTRS)
Melone, Kate
2014-01-01
The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.
Dexterity test data contribute to reduction in leaded glovebox gloves use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E; Lawton, Cindy M; Castro, Amanda M
2009-01-01
Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (T A-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions onmore » which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon(reg.) were the primary glove for programmatic operations at TA55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented.« less
Ravikumar, C M; Sangur, Rajashekar
2012-01-01
Addition silicone impression materials have been used as impression material for more than 20 years. Although they are among the most expensive impression materials, they became popular during the past decade as they have excellent physical properties. Prevention of infection is an important aspect in dental treatment since dental professionals are routinely exposed to the wide variety of microorganisms present in saliva. Gloves are the most common protective measure used during dental treatment. The gloves are mostly made of latex. In this study, we examine how the setting time of three types polyvinyl putty materials were affected by the use of five different brands of latex gloves and one brand of vinyl gloves. Each material was first mixed without wearing gloves according to the manufacturer's instructions. After the stipulated mixing time, the setting time was measured using the Vicat needle. The setting time is measured from the time of mixing till the time that the needle does not produce any indentation on the surface of the material. The putty material was then mixed with gloved hands (using the five different brands of latex gloves in turn) and the setting time was measured. Then the material was mixed with washed gloved hands, and the setting time was measured again. Finally, the material was mixed with vinyl gloved hands and the setting time was measured. The following conclusions were drawn from the study: Reprosil and Express showed significant variation in the setting time with the latex gloved hands.There was no significant variation in the setting time when material was mixed with unwashed vs washed gloved hands.Vinyl gloves did not significantly affect the setting time of any of the putty impression materials.
RoboGlove: Initial Work Toward a Robotically Assisted EVA Glove
NASA Technical Reports Server (NTRS)
Rogers, Jonathan
2015-01-01
The RoboGlove is a device designed to provide additional grip strength or endurance for a user. In applying this Robonaut 2 spinoff technology to the Phase VI Space Suit glove, the project is using robotic tendons and actuators to regain some of the hand performance that is lost when wearing a pressurized glove. An array of sensors embedded into the finger softgoods provides input to the control system which retracts the tendons, helping to close the user's hand. While active, this system provides augmentation, but is nonintrusive to glove usage when disabled.
Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P
2018-01-01
The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused amplification of handle vibration at the fingers. The fingers' vibration transmission performance of gloves were further evaluated using a proposed finger frequency-weighting W f apart from the standardized W h -weighting. It is shown that the W h weighting generally overestimates the VR glove effectiveness in limiting the fingers vibration in the high (H: 200-1250 Hz) frequency range. Both the weightings, however, revealed comparable performance of gloves in the mid (M: 25-200 Hz) frequency range. The VR gloves, with the exception of the leather glove, showed considerable reductions in the grip strength (27-41%), while the grip strength reduction was not correlated with the glove material thickness. It is suggested that effectiveness of VR gloves should be assessed considering the vibration transmission to both the palm and fingers of the hand together with the hand grip strength reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mathews, Airek R; Que Hee, Shane S
2017-04-01
The aim was to develop a whole glove permeation method for cyclohexanol to generate permeation parameter data for a non-moving dextrous robot hand (normalized breakthrough time t b , standardized breakthrough time t s , steady state permeation rate P s , and diffusion coefficient D). Four types of disposable powderless, unsupported, and unlined nitrile gloves from the same producer were investigated: Safeskin Blue and Kimtech Science Blue, Purple, and Sterling. The whole glove method developed involved a peristaltic pump for water circulation through chemically resistant Viton tubing to continually wash the inner surface of the test glove via holes in the tubing, a dextrous robot hand operated by a microprocessor, a chemically protective nitrile glove to protect the robot hand, an incubator to maintain 35°C temperature, and a hot plate to maintain 35°C at the sampling point of the circulating water. Aliquots of 1.0 mL were sampled at regular time intervals for the first 60 min followed by removal of 0.5 mL aliquots every hour to 8 hr. Quantification was by the internal standard method after gas chromatography-selective ion electron impact mass spectrometry using a non-polar capillary column. The individual glove values of t b and t s differed for the ASTM closed loop method except for Safeskin Blue, but did not for the whole glove method. Most of the kinetic parameters agreed within an order of magnitude for the two techniques. The order of most protective to least protective glove was Blue and Safeskin, then Purple followed by Sterling for the whole gloves. The analogous order for the modified F739 ASTM closed loop method was: Safeskin, Blue, Purple, and Sterling, almost the same as for the whole glove. The Sterling glove was "not recommended" from the modified ASTM data, and was "poor" from the whole glove data.
Edmiston, Charles E; Zhou, S Steve; Hoerner, Pierre; Krikorian, Raffi; Krepel, Candace J; Lewis, Brian D; Brown, Kellie R; Rossi, Peter J; Graham, Mary Beth; Seabrook, Gary R
2013-02-01
Percutaneous injuries associated with cutting instruments, needles, and other sharps (eg, metallic meshes, bone fragments, etc) occur commonly during surgical procedures, exposing members of surgical teams to the risk for contamination by blood-borne pathogens. This study evaluated the efficacy of an innovative integrated antimicrobial glove to reduce transmission of the human immunodeficiency virus (HIV) following a simulated surgical-glove puncture injury. A pneumatically activated puncturing apparatus was used in a surgical-glove perforation model to evaluate the passage of live HIV-1 virus transferred via a contaminated blood-laden needle, using a reference (standard double-layer glove) and an antimicrobial benzalkonium chloride (BKC) surgical glove. The study used 2 experimental designs. In method A, 10 replicates were used in 2 cycles to compare the mean viral load following passage through standard and antimicrobial gloves. In method B, 10 replicates were pooled into 3 aliquots and were used to assess viral passage though standard and antimicrobial test gloves. In both methods, viral viability was assessed by observing the cytopathic effects in human lymphocytic C8166 T-cell tissue culture. Concurrent viral and cell culture viability controls were run in parallel with the experiment's studies. All controls involving tissue culture and viral viability were performed according to study design. Mean HIV viral loads (log(10)TCID(50)) were significantly reduced (P < .01) following passage through the BKC surgical glove compared to passage through the nonantimicrobial glove. The reduction (log reduction and percent viral reduction) of the HIV virus ranged from 1.96 to 2.4 and from 98.9% to 99.6%, respectively, following simulated surgical-glove perforation. Sharps injuries in the operating room pose a significant occupational risk for surgical practitioners. The findings of this study suggest that an innovative antimicrobial glove was effective at significantly (P < .01) reducing the risk for blood-borne virus transfer in a model of simulated glove perforation. Copyright © 2013 Mosby, Inc. All rights reserved.
Minimizing Glovebox Glove Breaches, Part III: Deriving Service Lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, M.E.; Wilson, K.V.; Maestas, M.M.
At the Los Alamos Plutonium Facility, various isotopes of plutonium along with other actinides are handled in a glove box environment. Weapons-grade plutonium consists mainly in Pu-239. Pu-238 is another isotope used for heat sources. The Pu-238 is more aggressive regarding gloves due to its higher alpha-emitting characteristic ({approx}300 times more active than Pu-239), which modifies the change-out intervals for gloves. Optimization of the change-out intervals for gloves is fundamental since Nuclear Materials Technology (NMT) Division generates approximately 4 m{sup 3}/yr of TRU waste from the disposal of glovebox gloves. To reduce the number of glovebox glove failures, the NMTmore » Division pro-actively investigates processes and procedures that minimize glove failures. Aging studies have been conducted that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on mechanical data of thermally aged Hypalon{sup R}, and Butasol{sup R} glove samples. Information from this study represent an important baseline in gauging the acceptable standards for polymeric gloves used in a laboratory glovebox environment and will be used later to account for possible presence of dose-rate or synergistic effects in 'combined-environment'. In addition, excursions of contaminants into the operator's breathing zone and excess exposure to the radiological sources associated with unplanned breaches in the glovebox are reduced. (authors)« less
Todd, Ewen C D; Michaels, Barry S; Greig, Judy D; Smith, Debra; Bartleson, Charles A
2010-09-01
The role played by food workers and other individuals in the contamination of food has been identified as an important contributing factor leading to foodborne outbreaks. To prevent direct bare hand contact with food and food surfaces, many jurisdictions have made glove use compulsory for food production and preparation. When properly used, gloves can substantially reduce opportunities for food contamination. However, gloves have limitations and may become a source of contamination if they are punctured or improperly used. Experiments conducted in clinical and dental settings have revealed pinhole leaks in gloves. Although such loss of glove integrity can lead to contamination of foods and surfaces, in the food industry improper use of gloves is more likely than leakage to lead to food contamination and outbreaks. Wearing jewelry (e.g., rings) and artificial nails is discouraged because these items can puncture gloves and allow accumulation of microbial populations under them. Occlusion of the skin during long-term glove use in food operations creates the warm, moist conditions necessary for microbial proliferation and can increase pathogen transfer onto foods through leaks or exposed skin or during glove removal. The most important issue is that glove use can create a false sense of security, resulting in more high-risk behaviors that can lead to cross-contamination when employees are not adequately trained.
PCR-Based Method for Detecting Viral Penetration of Medical Exam Gloves
Broyles, John M.; O'Connell, Kevin P.; Korniewicz, Denise M.
2002-01-01
The test approved by the U.S. Food and Drug Administration for assessment of the barrier quality of medical exam gloves includes visual inspection and a water leak test. Neither method tests directly the ability of gloves to prevent penetration by microorganisms. Methods that use microorganisms (viruses and bacteria) to test gloves have been developed but require classical culturing of the organism to detect it. We have developed a PCR assay for bacteriophage φX174 that allows the rapid detection of penetration of gloves by this virus. The method is suitable for use with both latex and synthetic gloves. The presence of glove powder on either latex or synthetic gloves had no effect on the ability of the PCR assay to detect bacteriophage DNA. The assay is rapid, sensitive, and inexpensive; requires only small sample volumes; and can be automated. PMID:12149320
Investigation of the effects of extravehicular activity (EVA) gloves on performance
NASA Technical Reports Server (NTRS)
Bishu, Ram R.; Klute, Glenn
1993-01-01
The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.
Assessment of Protective Gloves for Use with Airfed Suits
Millard, Claire E.
2015-01-01
Gloves are often needed for hand protection at work, but they can impair manual dexterity, especially if they are multilayered or ill-fitting. This article describes two studies of gloves to be worn with airfed suits (AFS) for nuclear decommissioning or containment level 4 (CL4) microbiological work. Both sets of workers wear multiple layers of gloves for protection and to accommodate decontamination procedures. Nuclear workers are also often required to wear cut-resistant gloves as an extra layer of protection. A total of 15 subjects volunteered to take part in manual dexterity testing of the different gloving systems. The subjects’ hands were measured to ensure that the appropriate sized gloves were used. The gloves were tested with the subjects wearing the complete clothing ensembles appropriate to the work, using a combination of standard dexterity tests: the nine-hole peg test; a pin test adapted from the European Standard for protective gloves, the Purdue Pegboard test, and the Minnesota turning test. Specialized tests such as a hand tool test were used to test nuclear gloves, and laboratory-type manipulation tasks were used to test CL4 gloves. Subjective assessments of temperature sensation and skin wettedness were made before and after the dexterity tests of the nuclear gloves only. During all assessments, we made observations and questioned the subjects about ergonomic issues related to the clothing ensembles. Overall, the results show that the greater the thickness of the gloves and the number of layers the more the levels of manual dexterity performance are degraded. The nuclear cut-resistant gloves with the worst level of dexterity were stiff and inflexible and the subjects experienced problems picking up small items and bending their hands. The work also highlighted other factors that affect manual dexterity performance, including proper sizing, interactions with the other garments worn at the time, and the work equipment in use. In conclusion, when evaluating gloves for use in the workplace it is important to use tests that reflect the working environment and always to consider the balance between protection and usability. PMID:26272645
Beránková, Martina; Hojerová, Jarmila; Peráčková, Zuzana
2017-11-01
Exposure of handlers'/operators' hands is a main route of agricultural pesticides entry into their body. Non-occupational handlers still lack information about appropriate selection of protective gloves to minimize exposure and reduce adverse effects of these chemicals. According to the results of our previous survey, six commercially available, water-resistant gloves commonly used by non-professional gardeners were evaluated for permeation of Acetamiprid, Pirimicarb, and Chlorpyrifos-methyl (Chlorp-m) pesticides by means of in vitro testing. In-use conditions were mimicked as close as possible. Chlorp-m through latex was observed inside the glove from >10 to ⩽15 min; however, Acetamiprid and Pirimicarb through neoprene/latex and all the three pesticides through butyl were not observed inside gloves for the duration of the experiments (the Breakthrough time (BT)>8 h). The 1-h exposure proved the interior glove contamination with Chlorp-m through disposable latex, vinyl, and nitrile gloves (51, 33, and 41% of applied dose (AD), respectively) just as with Acetamiprid and Pirimicarb through latex glove (11 and 14%AD, respectively). However, when storing the used gloves for 4 days after the exposure, no release of the three pesticides from the butyl and Acetamiprid from neoprene/latex gloves was detected. In all other cases, pesticides were found in the interior glove (36-79, 31-63, and 51-81%AD for Acetamiprid, Pirimicarb, and Chlorp-m, respectively). If used repeatedly, gloves contaminated in this way lose their protective function but give the user a false sense of security. The results suggest that (i) water-resistant gloves are not necessarily pesticide resistant; (ii) disposable latex gloves commonly worn by non-professional gardeners provide inadequate protection even for a short-time contact with pesticides; (iii) to assess the efficiency of reusable gloves, not only BT value but also the reservoir/release effect of parent pesticide and its degradation products should be evaluated; and (iv) awareness-raising activities for non-occupational handlers of pesticides should be enhanced.
Assessment of Protective Gloves for Use with Airfed Suits.
Millard, Claire E; Vaughan, Nicholas P
2015-10-01
Gloves are often needed for hand protection at work, but they can impair manual dexterity, especially if they are multilayered or ill-fitting. This article describes two studies of gloves to be worn with airfed suits (AFS) for nuclear decommissioning or containment level 4 (CL4) microbiological work. Both sets of workers wear multiple layers of gloves for protection and to accommodate decontamination procedures. Nuclear workers are also often required to wear cut-resistant gloves as an extra layer of protection. A total of 15 subjects volunteered to take part in manual dexterity testing of the different gloving systems. The subjects' hands were measured to ensure that the appropriate sized gloves were used. The gloves were tested with the subjects wearing the complete clothing ensembles appropriate to the work, using a combination of standard dexterity tests: the nine-hole peg test; a pin test adapted from the European Standard for protective gloves, the Purdue Pegboard test, and the Minnesota turning test. Specialized tests such as a hand tool test were used to test nuclear gloves, and laboratory-type manipulation tasks were used to test CL4 gloves. Subjective assessments of temperature sensation and skin wettedness were made before and after the dexterity tests of the nuclear gloves only. During all assessments, we made observations and questioned the subjects about ergonomic issues related to the clothing ensembles. Overall, the results show that the greater the thickness of the gloves and the number of layers the more the levels of manual dexterity performance are degraded. The nuclear cut-resistant gloves with the worst level of dexterity were stiff and inflexible and the subjects experienced problems picking up small items and bending their hands. The work also highlighted other factors that affect manual dexterity performance, including proper sizing, interactions with the other garments worn at the time, and the work equipment in use. In conclusion, when evaluating gloves for use in the workplace it is important to use tests that reflect the working environment and always to consider the balance between protection and usability. © Crown copyright 2015.
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-01-01
Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309
Mobility of an elastic glove for extravehicular activity without prebreathing.
Tanaka, Kunihiko; Ikeda, Mizuki; Mochizuki, Yosuke; Katafuchi, Tetsuro
2011-09-01
The current U.S. extravehicular activity (EVA) suit is pressurized at 0.29 atm, which is much lower than the pressures of sea level and inside a space station. Higher pressure can reduce the risk of decompression sickness (DCS), but mobility would be sacrificed. We have demonstrated that a glove and sleeve made of elastic material increased mobility when compared with those made of nonelastic material, such as that found in the current suit. We hypothesized that an elastic glove of 0.65 atm that has no risk of DCS also has greater mobility compared with a non-elastic glove of 0.29 atm. The right hands of 10 healthy volunteers were studied in a chamber with their bare hands at normal ambient pressure, after donning a non-elastic glove with a pressure differential of 0.29 atm, and after donning an elastic glove with a pressure differential of 0.29 and 0.65 atm. Range of motion (ROM) of the index finger and surface electromyography (EMG) amplitudes during finger flexion were measured. ROM with gloves was significantly smaller than that of bare hands, but was similar between conditions of gloves regardless of elasticity and pressure differentials. However, EMG amplitudes with the elastic glove of 0.29 and 0.65 atm were significantly smaller than those with the non-elastic glove of 0.29 atm. The results suggest that mobility of the elastic glove of 0.65 atm may be better than that of the non-elastic glove of 0.29 atm, similar to that used in the current EVA suit.
2009-11-19
CAPE CANAVERAL, Fla. – This newly designed glove, one of the entries in the 2009 Astronaut Glove Challenge, undergoes a joint force test the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, at the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, inventors tested the gloves to measure dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ross, Amy
2008-01-01
This presentation addressed the question "What is a spacesuit glove?" - a highly specialized mobility system. It is an excellent basic tutorial on the design considerations of a spacesuit glove and the many facets of developing a glove that provides good mobility and thermal protection.
Develop and Manufacture an Ergonomically Sound Glovebox Glove Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Cindy M.
Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causingmore » unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5 th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specifications for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new glovebox gloves were tested against the presently used glovebox gloves for design validity. The testing included a subjective survey and four dexterity tests. The prototype was statistically significant in 3 dexterity tests and favorable on 8 out of 10 survey questions. The more ergonomically sound glovebox glove will improve worker comfort, mitigate glovebox worker injuries, and reduce glove breaches.« less
Micropunctures of rubber gloves used in oral surgery.
Skaug, N
1976-10-01
In 720 operations in ambulatory oral surgery, the 2,880 surgical rubber gloves used were tested at the end of operation for perforations not earlier detected (microperforations). Gloves of ordinary thickness (type A) and of a thicker quality (type B) were examined. Perforations were found in 1495% and 22.0% of type A gloves and in 3.2% and 2.0% of type B gloves when oral surgeons and dental students, respectively, were operators. Gloves worn by operation assistants showed a lower incidence of perforation. Before operation, 50 gloves of type A were punctured at the tip of right index finger by a sterile dental probe. Results of bacteriologic examinations of the right index and middle fingers strongly indicated that a high number of bacteria passed through pinholes in the gloves. The intact surgical glove represents an impermeable barrier, protecting not only the operation wound against skin bacteria from the hands of the oral surgeon, but also the oral surgeon against pathogenic microorganisms, in particular hepatitis virus type B, escaping from the oral cavity of the patient.
A FLEXIBLE POLYTHENE GLOVE BOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A.
1957-11-01
The need for a glove box capable of maintaining an inert atmosphere arose during the sampling and analysis of the alkali metals. The conventional rigid glove box was found to be unsuitable in practice and also inefficient in theory. The requirement was met by improvising a flexible glove box from thin polythene sheet. The alternative solution a this problem would have required an expensive vacuum glove box with its attendant pumping unit. (auth)
Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.
2004-01-01
Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.
Pontén, Ann; Hamnerius, Nils; Bruze, Magnus; Hansson, Christer; Persson, Christina; Svedman, Cecilia; Thörneby Andersson, Kirsten; Bergendorff, Ola
2013-02-01
An increased frequency of occupational contact hand dermatitis among surgical operating theatre personnel has been noticed. To evaluate patients with occupational contact dermatitis caused by their rubber gloves, and to describe a method for analysing the content of the allergens in the gloves. Patch tests were performed with the baseline series, a rubber chemical series, and the patients' own gloves. A method for analysing 1,3-diphenylguanidine (DPG) and cetylpyridinium chloride in the gloves was developed. Contact allergy to thiuram mix was found in 8 of 16 patients, whereas 12 of 16 patients reacted to DPG. In 7 of 8 patients, contact allergy to cetylpyridinium chloride was found. In the patients' gloves, cetylpyridinium chloride and DPG were detected at higher concentrations on the inside of the gloves than on the outside. Most patients had worked for decades in their present occupations, but their hand dermatitis had only been present for months. Contact allergy to DPG in gloves has been disputed, but, in this study, we were able to confirm the presence of DPG and cetylpyridinium chloride in the causative gloves by using a modified method for the analysis. The presence of these chemicals in gloves caused an increase in occupational contact dermatitis in surgical operating theatre personnel. © 2012 John Wiley & Sons A/S.
Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.
Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H
2013-06-01
One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.
Edlich, Richard F; Long, William B; Gubler, K Dean; Rodeheaver, George T; Thacker, John G; Borel, Lise; Chase, Margot E; Cross, Catherine L; Fisher, Allyson L; Lin, Kant Y; Cox, Mary J; Zura, Robert B
2009-02-01
During the last 25 years, scientific experimental and clinical studies have documented the dangers of cornstarch powder on examination and surgical gloves because the cornstarch promotes wound infection, causes serious peritoneal adhesions and granulomatous peritonitis, and is a well-documented vector of the latex allergy epidemic in the world. Realizing the dangers of cornstarch on examination and surgical gloves, Germany's regulations of personal protective equipment banned the use of surgical glove powder cornstarch in 1997. In 2000, the Purchasing and Supply agency for the United Kingdom ceased to purchase any gloves lubricated with cornstarch. Realizing the dangers of cornstarch-powdered gloves, many hospitals and clinics in the United States have banned the use of cornstarch-powdered examination and surgical gloves. Hospitals that have banned cornstarch in their examination and surgical gloves have noted a marked reduction in the latex allergy epidemic in their facilities. Realizing the dangers of cornstarch-powdered examination and surgical gloves, Dr Sheila A. Murphey, branch chief, Infection Control Devices Branch, Division of Anesthesiology, General Hospital, Infection Control, and Dental Devices Office of Device Evaluation, Center for Devices and Radiological Health of the Food and Drug Administration (FDA), recommended that a Citizen's Petition be filed to the FDA to ban cornstarch on surgical and examination gloves. The 12 authors of this report have attached the enclosed petition to the FDA to ban the use of cornstarch on all synthetic and latex examination and surgical gloves used in the United States.
Oreskov, Katia W; Søsted, Heidi; Johansen, Jeanne D
2015-06-01
Hand eczema is frequent among Danish hairdressers, and they are advised to use gloves as protection. However, studies indicate that a significant proportion use gloves inappropriately. To determine whether hairdressers and apprentices use protective gloves in the correct way, and to determine whether a demonstration of correct use could cause an improvement. Forty-three hairdressers and apprentices were asked to perform a hair wash while wearing gloves. The shampoo used was contaminated with an ultraviolet (UV) trace material. Two rounds of hair washing were carried out by each person, interrupted by a demonstration of how to use gloves correctly. Photographs were taken to compare UV contamination before and after the demonstration. All of the participants (100%) had their hands contaminated during the first round; the area ranged between 0.02 and 101.37 cm(2) (median 3.62 cm(2)). In the second round, 55.8% were contaminated (range 0.00-3.08 cm(2) ; median 0.01 cm(2)). The reduction in contaminated skin areas was statistically significant (p < 0.001), proving an effect of the glove demonstration. There were no significant differences between hairdressers and apprentices. Hairdressers and apprentices lack knowledge on how to handle gloves correctly. A short demonstration of correct glove use made a significant difference in the skin protection provided by gloves. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yoo, Won-Gyu
2015-01-01
[Purpose] The present study examined the effects of wearing rubber gloves on the activities of the forearm and shoulder muscles during two dishwashing stages. [Subjects] This study included 10 young females. [Methods] The participants performed two dishwashing stages (washing and rinsing) with and without rubber gloves. The activities of the wrist flexor and upper trapezius muscles were measured using wireless electromyography. [Results] During the washing stage, the activities of the wrist flexor and upper trapezius muscles were significantly greater without gloves than with gloves when performing the same tasks. However, during the rinsing stage, the activities of these muscles did not differ significantly according to the use of gloves. [Conclusion] Dishwashers should wear gloves during the washing stage to prevent wrist and shoulder pain. PMID:26311980
2017-01-01
Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation) of 30.44 (5.35) years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI), hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C) and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove). The data were analyzed using the Shapiro–Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA) of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C) had a significant influence on grip when compared to medium (25 °C) and high (45 °C) hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves. PMID:29207573
An evaluation of hospital hand hygiene practice and glove use in Hong Kong.
Chau, Janita P-C; Thompson, David R; Twinn, Sheila; Lee, Diana T F; Pang, Sharon W M
2011-05-01
To identify omissions in hand hygiene practice and glove use among hospital workers in Hong Kong. Hospital-acquired infection is the commonest complication affecting hospitalised patients. Even though research evidence suggests that hand hygiene and proper glove use are the most important ways to prevent the spread of disease and infection, compliance with both are reported to be unacceptably low. An observational study of hospital workers in one acute and two convalescence and rehabilitation hospitals in Hong Kong was conducted. The participating clinical areas included the medical and surgical wards, accident and emergency department and intensive care unit. Hand hygiene practice and glove use amongst 206 hospital health and support workers, stratified according to years of working experience, were observed. The number of observed episodes for hand hygiene was 1037 and for glove use 304. Compliance with hand hygiene was 74.7% and with glove use 72.4%. In approximately two-third of episodes, participants washed their hands after each patient contact; though, 78.5% failed to rub their hands together vigorously for at least 15 seconds. The major break in compliance with glove use was failure to change gloves between procedures on the same patient. In 28.6% of observed glove use episodes, participants did not wear gloves during procedures that exposed them to blood, body fluids, excretion, non-intact skin or mucous membranes. Significant differences in performance scores on antiseptic hand rub were found between the two types of hospital and on glove use between the three groups of work experience: ≤ 5, 6-10, >10 years. Education and reinforcement of proper hand hygiene practice and glove use among hospital health and support workers is needed. © 2011 Blackwell Publishing Ltd.
Disinfection of gloves: feasible, but pay attention to the disinfectant/glove combination.
Scheithauer, S; Häfner, H; Seef, R; Seef, S; Hilgers, R D; Lemmen, S
2016-11-01
Compliance with hand hygiene is complicated by indications for hand disinfection in rapid succession during the care of one patient. In such situations, disinfection of gloves could facilitate better workflow and optimize compliance rates. We analysed the efficacy of disinfecting gloves by comparing an individual effect of five different hand disinfectant solutions in combination with three different glove types. The investigation was performed in accordance with DIN EN 1500:2013. For all combinations, ten analyses were performed, including (1) right/left-hand examination disinfection efficacy after the first and fifth contamination with E. coli K12 NCTC 10538, (2) recovery rates after contamination, (3) reduction efficacy, (4) fingertip immersion culture, and (5) check for tightness. Disinfection of the ungloved hands was taken as an additional benchmark. The disinfection efficacy for all disinfectant/glove combinations was better with rather than without gloves. For eight combinations, the disinfection efficacy was always >5.0 log 10 . There were significant differences within the gloves (P=0.0021) and within the disinfectant product (P=0.0023), respectively. In detail, Nitril Blue Eco-Plus performed significantly better than Vasco Braun (P=0.0017) and Latex Med Comfort (P=0.0493). Descoderm showed a significantly worse performance than Promanum pure (P=0.043). In the check for tightness, only the Vasco Braun gloves showed no leaks in all samples. There were relevant qualitative differences pertaining to the comfort of disinfecting gloves. The disinfection efficacy for the different disinfectant/glove combinations was greater than for the ungloved hands. However, various disinfectant/glove combinations produce relevant differences as regards disinfection efficacy. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
The use of powdered gloves in dental practice: a cause for concern?
Field, E A
1997-01-01
To critically review the potential hazards associated with the use of powdered, natural rubber latex (NRL) gloves in dental practice and to report some practical difficulties which may be encountered when handling dental materials with powdered NRL gloves. Articles published in the international literature over the last 10 years. A number of recent studies in the medical and surgical literature have confirmed that NRL proteins leach out of latex gloves and bind to surgical glove powders. The most serious, potential hazard associated with the continued use of powdered NRL gloves in dental practice is that of latex sensitization by exposure to aerosolized NRL proteins. Hand dermatitis is now recognized as an occupational hazard in dentistry and has been associated with the continuous wearing of protective gloves. Studies, in the dermatological literature, have suggested that glove powders may exacerbate an irritant dermatitis and enhance the potential for adverse reactions to other components of NRL gloves. The surgical literature has already highlighted the risks of post-operative granuloma formation, due to glove powder contamination of the surgical wound. The possible effects of powder contamination of dental implant sites, on the outcome and success of implants has yet to be established. Recent in vitro studies have investigated the effect of latex glove contamination on the shear-bond strength of porcelain laminate veneers: one study demonstrated that starch powder significantly affected the bond strength, whereas the other showed that latex glove contamination of the porcelain surface did not have any significant effect. Long-term, in vivo studies are now required. Dental practitioners should consider the potential health risks which are associated with the use of powdered NRL in dental practice. Powder contamination may affect the long-term results and success of clinical procedures in dentistry.
Permeation of fingerprints through laboratory gloves.
Willinski, G
1980-07-01
Repeated controlled tests have shown that impressions from laboratory gloves will print onto optical components in 20 to 40 min and, in some cases, sooner. Careful testing demonstrated that palmar sweat passed through the glove material; the problem was not that gloves conform to the friction ridges of the fingers and then transfer some contaminant. The problem can be alleviated to a great extent by wearing thin cotton gloves like those commonly used in the film industry.
A human factors evaluation of Extravehicular Activity gloves
NASA Technical Reports Server (NTRS)
O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan
1989-01-01
One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.
Spacesuit glove manufacturing enhancements through the use of advanced technologies
NASA Astrophysics Data System (ADS)
Cadogan, David; Bradley, David; Kosmo, Joseph
The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.
Lierman, Sylvie; De Sutter, Petra; Dhont, Marc; Van der Elst, Josiane
2007-10-01
To submit different glove brands to double-quality control tests using mouse embryo assay (MEA) and the human sperm motility assay (HuSMA). Operator protection against infectious body fluid contamination is a safety issue in assisted reproductive technology (ART). When using gloves in the ART laboratory, toxic substances can be transmitted to culture media, even during brief contact. Quality control study of gloves in ART. University hospital-based infertility center. Seven- to 8-week-old female B6D2F1 hybrid mice. We tested two surgical, two cleanroom, and six examination glove brands. Only gloves brands that passed both HuSMA and MEA were submitted to further QC using zona-free and/or cryopreserved MEA. Sperm motility index, two-cell and blastocyst development, blastocyst total cell number. Quality control by MEA and HuSMA identified two glove brands to be nontoxic. Our study shows that gloves used in ART can be toxic and should be tested as part of an ongoing quality control program.
Next Generation Life Support: High Performance EVA Glove
NASA Technical Reports Server (NTRS)
Walsh, Sarah K.
2015-01-01
The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.
Glove perforation time and frequency in total hip arthroplasty procedures.
Kaya, Ibrahim; Uğraş, Akin; Sungur, Ibrahim; Yilmaz, Murat; Korkmaz, Musa; Cetinus, Ercan
2012-01-01
The aim of the present study was to investigate glove perforation rate and time and evaluate the factors affecting glove perforation in total hip arthroplasty (THA). Nine hundred seventy-nine gloves used in 57 THA procedures were assessed according to the perforation. Forty-four (77.2%) procedures were primary THA and 13 (22.8%) were revision THA. Gloves were changed when perforated, become dirty with blood or blood products, and before bone cementing. All gloves were filled with water at the end of the operation and controlled for perforation. Two hundred and one surgical gloves used during scrubbing and removed after draping the patient were examined as the control group. The location (which finger), number and time of the perforation, surgery type and duration, and distribution of the perforation location according to the surgical team were assessed. Patients' mean age was 62.9 ± 14.6 (range: 33 to 97) years and the mean surgery duration was 162.9 ± 32.0 minutes. Thirty-two glove perforations were noted in 19 of the operations. Of these perforations, 28 belonged to the surgeons and first assistants. There was no significant difference between the dominant or non-dominant hand according to the location of perforations. Perforations in the first and second fingers of the gloves accounted for 81.3% of all perforations. There was no significant difference in terms of number of gloves used, perforation numbers and operation duration between the primary and revision THA procedures. Two perforated gloves (0.99%) were found in the control group and the difference between the number of perforations in the control and study groups was significant (p=0.048). We recommend the use of two pairs of gloves to avoid the risk of contamination and protect the surgical team from infectious disease in major surgeries like THA. Surgical gloves should be changed when they are excessively contaminated with surgical fluids and the surgeon and first assistant should also change their outer gloves at an average of every 90 minutes.
Reduction of antigenic protein levels in latex gloves after gamma irradiation.
Zehr, B D; Gromelski, S; Beezhold, D
1994-01-01
Gamma irradiation is currently the method most commonly used to sterilize surgical gloves. In this study, the effect of gamma irradiation on antigenic proteins in latex gloves was examined. Protein extraction and quantitation were carried out using latex gloves before and after sterilization. Antigenic protein levels were determined by an ELISA assay specific for latex proteins (LEAP). LEAP analysis revealed a significant decrease after gamma-irradiation sterilization. This observation may partially explain the lower levels of extractable antigenic proteins found in sterile surgical gloves compared with nonsterile examination gloves. However, gamma irradiation was less effective than autoclave sterilization in reducing protein levels.
2009-11-19
CAPE CANAVERAL, Fla. – This newly designed glove is one of the entries in the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, at the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, inventors tested the gloves to measure dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment
NASA Technical Reports Server (NTRS)
Gong, Leslie; Richards, W. Lance
1998-01-01
A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.
The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
Rice, I; Dysterheft, J; Bleakney, A W; Cooper, R A
2016-01-01
Our purpose was to examine the influence of glove type on kinetic and spatiotemporal parameters at the handrim in elite wheelchair racers. Elite wheelchair racers (n=9) propelled on a dynamometer in their own racing chairs with a force and moment sensing wheel attached. Racers propelled at 3 steady state speeds (5.36, 6.26 & 7.60 m/s) and performed one maximal effort sprint with 2 different glove types (soft & solid). Peak resultant force, peak torque, impulse, contact angle, braking torque, push time, velocity, and stroke frequency were recorded for steady state and sprint conditions. Multiple nonparametric Wilcoxon matched pair's tests were used to detect differences between glove types, while effect sizes were calculated based on Cohen's d. During steady state trials, racers propelled faster, using more strokes and larger contact angle, while applying less impulse with solid gloves compared to soft gloves. During the sprint condition, racers achieved greater top end velocities, applying larger peak force, with less braking torque with solid gloves compared to soft gloves. Use of solid gloves may provide some performance benefits to wheelchair racers during steady state and top end velocity conditions. © Georg Thieme Verlag KG Stuttgart · New York.
The Efficacy of Anti-vibration Gloves
Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel
2016-01-01
Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615
Reduction of use of latex gloves in food handlers: an intervention study.
Lee, A; Nixon, R; Frowen, K
2001-02-01
Frequent latex glove use is a risk factor for the development of latex allergy. With the increase in latex glove use, latex allergy has become more prevalent. There are a number of occupational groups in which the use of latex gloves is both inappropriate and even hazardous, including food handlers, where the hazard relates particularly to their latex-sensitive customers. The aim of this study was to assess both the use of latex gloves by food handlers and the impact of an intervention study on reducing latex glove use. This was done at the Queen Victoria Market in Melbourne, Australia. We found that 10 out of 30 stalls (33%) used latex gloves, and that following a short education program, this was reduced to 1 stall (3%, p=0.006). The potential to reduce latex glove use by using this intervention study was 93% (95% confidence interval of 54%-100%). We recommend that food handlers be educated during their training, not only about hygiene issues, but also about the appropriate type of glove to wear, in order to prevent both the development of a new occupational group at risk of becoming allergic to latex, but more importantly to protect their latex-sensitive customers.
Finite-Element Analysis of a Mach-8 Flight Test Article Using Nonlinear Contact Elements
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1997-01-01
A flight test article, called a glove, is required for a Mach-8 boundary-layer experiment to be conducted on a flight mission of the air-launched Pegasus(reg) space booster. The glove is required to provide a smooth, three-dimensional, structurally stable, aerodynamic surface and includes instrumentation to determine when and where boundary-layer transition occurs during the hypersonic flight trajectory. A restraint mechanism has been invented to attach the glove to the wing of the space booster. The restraint mechanism securely attaches the glove to the wing in directions normal to the wing/glove interface surface, but allows the glove to thermally expand and contract to alleviate stresses in directions parallel to the interface surface. A finite-element analysis has been performed using nonlinear contact elements to model the complex behavior of the sliding restraint mechanism. This paper provides an overview of the glove design and presents details of the analysis that were essential to demonstrate the flight worthiness of the wing-glove test article. Results show that all glove components are well within the allowable stress and deformation requirements to satisfy the objectives of the flight research experiment.
Phillips, A. M.; Birch, N. C.; Ribbans, W. J.
1997-01-01
Twenty-five orthopaedic surgeons underwent eight motor and sensory tests while using four different glove combinations and without gloves. As well as single and double latex, surgeons wore a simple Kevlar glove with latex inside and outside and then wore a Kevlar and Medak glove with latex inside and outside, as recommended by the manufacturers. The effect of learning with each sequence was neutralised by randomising the glove order. The time taken to complete each test was recorded and, where appropriate, error rates were noted. Simple sensory tests took progressively longer to perform so that using the thickest glove combination led to the completion times being doubled. Error rates increased significantly. Tests of stereognosis also took longer and use of the thickest glove combination caused these tests to take three times as long on average. Error rates again increased significantly. However, prolongation of motor tasks was less marked. We conclude that, armed with this quantitative analysis of sensitivity and dexterity impairment, surgeons can judge the relative difficulties that may be incurred as a result of wearing the gloves against the benefits that they offer in protection. PMID:9135240
Glove Perforations During Interventional Radiological Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leena, R. V., E-mail: leenarv_76@yahoo.co.uk; Shyamkumar, N. K.
2010-04-15
Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.
1982-02-08
S82-26645 (March 1982) --- Spacesuit inner gloves consist of pressure bladders covered by Beta Cloth. EVA outer gloves are made of Beta Cloth, Mylar and a metallic mesh hand area. The thumb and fingertips of the glove are molded of silicone rubber to permit a degree of sensitivity. The inner gloves attach to the suit by pressure sealing rings, similar to these used in helmet-to-suit connections. The outer gloves served as a cover to protect from micrometeorites, abrasions and heat.
Initial Work Toward a Robotically Assisted EVA Glove
NASA Technical Reports Server (NTRS)
Rogers, J.; Peters, B.; McBryan, E.; Laske, E.
2016-01-01
The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.
Robinson, Andrew L; Lee, Hyun Jung; Kwon, Junehee; Todd, Ewen; Rodriguez, Fernando Perez; Ryu, Dojin
2016-02-01
Hand washing and glove use are the main methods for reducing bacterial cross-contamination from hands to ready-to-eat food in a food service setting. However, bacterial transfer from hands to gloves is poorly understood, as is the effect of different durations of soap rubbing on bacterial reduction. To assess bacterial transfer from hands to gloves and to compare bacterial transfer rates to food after different soap washing times and glove use, participants' hands were artificially contaminated with Enterobacter aerogenes B199A at ∼9 log CFU. Different soap rubbing times (0, 3, and 20 s), glove use, and tomato dicing activities followed. The bacterial counts in diced tomatoes and on participants' hands and gloves were then analyzed. Different soap rubbing times did not significantly change the amount of bacteria recovered from participants' hands. Dicing tomatoes with bare hands after 20 s of soap rubbing transferred significantly less bacteria (P < 0.01) to tomatoes than did dicing with bare hands after 0 s of soap rubbing. Wearing gloves while dicing greatly reduced the incidence of contaminated tomato samples compared with dicing with bare hands. Increasing soap washing time decreased the incidence of bacteria recovered from outside glove surfaces (P < 0.05). These results highlight that both glove use and adequate hand washing are necessary to reduce bacterial cross-contamination in food service environments.
2009-11-19
CAPE CANAVERAL, Fla. – At the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida, Patrick Simpkins, director of Engineering at Kennedy, tries out a pair of space gloves for their dexterity and flexibility in a glove box at the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program. Looking over his shoulder is Kennedy Director Bob Cabana. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, the gloves were submitted to burst tests, joint force tests and tests to measure their dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Understanding Factors that Influence Protective Glove Use among Automotive Spray Painters
Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael
2017-01-01
Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4–5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4–5 mil) and thick (14 mil) latex. We found that medium to thick (6–8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4–5 mil) latex gloves. Of concern is the users’ difficulty to distinguish between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints; most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Jude M.
Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand ismore » incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the thumb for better positioning, 45 degrees extension angle for the thumb for better positioning, and various angles for the other fingers to allow a more relaxed and natural fit. 3D modeling was used to implement the anthropometric data listed above onto an existing scanned solid model of a human hand. SolidWorks 2010 3-D modeling package was utilized to manipulate the hand model to represent the anthropometric data researched. The anthropometrics and modifications were reviewed by the University of New Mexico Department of Orthopedics hand surgeons. After all modifications and reviews were completed the model was printed out using stereolithography. The printed out model of the hand was used as a mold to create a prototype glovebox glove. The new mold was taken to Piercan USA to produce a 20mil Polyurethane/Hypalon glovebox glove. The Minnesota Dexterity test and Purdue Pegboard test were used to measure the dexterity of the prototype glovebox glove against a current 15 mil Hypalon LANL glovebox glove. Using the data from the tests a student t test was used to determine if there was a significant difference between the current hypalon glove results and the new prototype glove results. With a 95% confidence level the prototype showed to have a significantly lower mean difference from the current hypalon glovebox glove with the Minnesota Dexterity test. With a 95% confidence level the prototype showed to have a significantly higher mean difference from the current hypalon glovebox glove with the Purdue Pegboard test. A p value method was also performed to confirm the results of the student t test. A survey was also given to glovebox workers to determine if they preferred the new design. The best reaction from glovebox workers was the new thumb position, 73.2% of the sample population agreed with the new thumb position. Developing a new glovebox glove will improve the ergonomics of the hand for work performed, decrease exposure time, decreasing risk of breaching, increasing productivity, reducing injuries, and improving work performance. In the future the new glovebox glove can also be implemented in other research fields such as: pharmaceutical research and development, semiconducting industry, biohazard industry, and other laboratories conducting nuclear research and development.« less
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1989-01-01
A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Ballast system for maintaining constant pressure in a glove box
NASA Astrophysics Data System (ADS)
Shlichta, Paul J.
1989-09-01
A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1990-01-01
A ballast system for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Klingner, Thomas D; Boeniger, Mark F
2002-05-01
Wearing chemical-resistant gloves and clothing is the primary method used to prevent skin exposure to toxic chemicals in the workplace. The process for selecting gloves is usually based on manufacturers' laboratory-generated chemical permeation data. However, such data may not reflect conditions in the workplace where many variables are encountered (e.g., elevated temperature, flexing, pressure, and product variation between suppliers). Thus, the reliance on this selection process is questionable. Variables that may influence the performance of chemical-resistant gloves are identified and discussed. Passive dermal monitoring is recommended to evaluate glove performance under actual-use conditions and can bridge the gap between laboratory data and real-world performance.
Commercial golf glove effects on golf performance and forearm muscle activity.
Sorbie, Graeme G; Darroch, Paul; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C
2017-01-01
The study aimed to determine whether or not commercial golf gloves influence performance variables and forearm muscle activity during golf play. Fifteen golfers participated in the laboratory based study, each performing 8 golf swings with a Driver and 7-iron whilst wearing a glove and 8 without wearing the glove. Club head speed, ball speed and absolute carry distance performance variables were calculated. Surface electromyography was recorded from the flexor digitorum superficialis and extensor carpi radialis brevis on both forearm muscles. Club head speed, ball speed and absolute carry distance was significantly higher when using the Driver with the glove in comparison to the Driver without the glove (p < 0.05). No significant differences were evident when using the 7-iron and no significant differences were displayed in muscle activity in either of the conditions. Findings from this study suggest that driving performance is improved when wearing a glove.
Smart glove: hand master using magnetorheological fluid actuators
NASA Astrophysics Data System (ADS)
Nam, Y. J.; Park, M. K.; Yamane, R.
2007-12-01
In this study, a hand master using five miniature magneto-rheological (MR) actuators, which is called 'the smart glove', is introduced. This hand master is intended to display haptic feedback to the fingertip of the human user interacting with any virtual objects in virtual environment. For the smart glove, two effective approaches are proposed: (i) by using the MR actuator which can be considered as a passive actuator, the smart glove is made simple in structure, high in power, low in inertia, safe in interface and stable in haptic feedback, and (ii) with a novel flexible link mechanism designed for the position-force transmission between the fingertips and the actuators, the number of the actuator and the weight of the smart glove can be reduced. These features lead to the improvement in the manipulability and portability of the smart glove. The feasibility of the constructed smart glove is verified through basic performance evaluation.
Effect of shelf aging on vibration transmissibility of anti-vibration gloves
SHIBATA, Nobuyuki
2017-01-01
Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817
2009-11-19
CAPE CANAVERAL, Fla. – At the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida, Anna Heiney, a Public Affairs support writer with Abacus Technology at Kennedy, tries out a pair of space gloves for their dexterity and flexibility in a glove box at the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program. Looking over his shoulder is Kennedy Director Bob Cabana. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, the gloves were submitted to burst tests, joint force tests and tests to measure their dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan
1988-01-01
One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
Durable Tactile Glove for Human or Robot Hand
NASA Technical Reports Server (NTRS)
Butzer, Melissa; Diftler, Myron A.; Huber, Eric
2010-01-01
A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.
Comparison of positive pressure gloves on hand function in adults with burns.
O'Brien, Kimberly A; Weinstock-Zlotnick, Gwen; Hunter, Hope; Yurt, Roger W
2006-01-01
The purpose of this study was to analyze the impact of a standard, custom-made pressure glove vs The NewYork-Presbyterian Dexterity Glove (NYPDG) with silon application on the palmer surface on functional hand use of burn survivors. A standard, custom-made pressure glove and NYPDG were given to 18 participants in a randomized order. Subjects wore each glove for 7 to 10 days during all activities of daily living (ADL). Variables such as hand function, difficulty of fine and gross motor ADL, and participant glove preference were assessed with each glove condition. Data collection of the second glove took place 7 to 10 days later incorporating a quasiexperimental, repeated measure design. A crossover design was used to analyze the data. The NYPDG demonstrated significantly better results in all of the four outcome categories measured: time to complete the Jebsen, the Jebsen Likert scale, fine motor ADL, and gross motor ADL. This study demonstrated that functional tasks took less time to complete and were more easily performed when using the NYPDG.
A new methodology for the assessment of hand protection from ultraviolet exposure.
Khazova, M; O'Hagan, J B; Grainger, K J-L
2006-01-01
A number of industrial applications and public services involve occupational exposure to ultraviolet radiation (UVR) from a variety of lamps and lasers. The aim of this study was to develop a methodology for the assessment of the UV protection level for disposable gloves. Glove UV protection factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. Our study showed that for all tested gloves a change in UVR attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of UVR protection. Glove material has a bigger effect on UVR protection level than variations in the glove thickness or its colour. Examples of assessment of the 'worst case scenario' are compared with the protection level against a number of sources, together with the guidance on a simplified evaluation protocol. An application-specific assessment, illustrated for 'SmartWater' forensic examinations and biological trans-illuminators, demonstrates that some gloves provide inadequate protection against occupational UV exposure.
Design and Characterization of a Soft Robotic Therapeutic Glove for Rheumatoid Arthritis.
Chua, Matthew Chin Heng; Lim, Jeong Hoon; Yeow, Raye Chen Hua
2017-07-27
The modeling and experimentation of a pneumatic actuation system for the development of a soft robotic therapeutic glove is proposed in this article for the prevention of finger deformities in rheumatoid arthritis (RA) patients. The Rehabilitative Arthritis Glove (RA-Glove) is a soft robotic glove fitted with two internal inflatable actuators for lateral compression and massage of the fingers and their joints. Two mechanical models to predict the indentation and bending characteristics of the inflatable actuators based on their geometrical parameters will be presented and validated with experimental results. Experimental validation shows that the model was within a standard deviation of the experimental mean for input pressure range of 0 to 2 bars. Evaluation of the RA-Glove was also performed on six healthy human subjects. The stress distribution along the fingers of the subjects using the RA-Glove was also shown to be even and specific to the finger sizes. This article demonstrates the modeling of soft pneumatic actuators and highlights the potential of the RA-Glove as a therapeutic device for the prevention of arthritic deformities of the fingers.
Examining the Usefulness of ISO 10819 Anti-Vibration Glove Certification.
Budd, Diandra; House, Ron
2017-03-01
Anti-vibration gloves are commonly worn to reduce hand-arm vibration exposure from work with hand-held vibrating tools when higher priority and more effective controls are unavailable. For gloves to be marketed as 'anti-vibration' they must meet the vibration transmissibility criteria described in the International Organization for Standardization (ISO) standard 10819 (2013). Several issues exist with respect to the methodology used for glove testing as well as the requirements for glove design and composition in ISO 10819 (2013). The true usefulness of anti-vibration gloves at preventing hand-arm vibration syndrome (HAVS) is controversial, given that their performance is dependent on tool vibration characteristics and the anthropometrics of workers in real working conditions. The major risk associated with the use of anti-vibration gloves is that it will give employees and employers a false sense of protection against the negative effects of hand-transmitted vibration. This commentary examines the limitations of the current international standards for anti-vibration glove testing and certification, thereby calling into question the degree of protection that anti-vibration gloves provide against HAVS, and cautioning users to consider both their benefits and potential drawbacks on a case-by-case basis. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Transmission of vibration through gloves: effects of contact area.
Md Rezali, Khairil Anas; Griffin, Michael J
2017-01-01
For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.
Transmission of vibration through glove materials: effects of contact force.
Md Rezali, Khairil Anas; Griffin, Michael J
2018-04-26
This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Practice and attitudes regarding double gloving among staff surgeons and surgical trainees.
Lipson, Mark E; Deardon, Rob; Switzer, Noah J; de Gara, Chris; Ball, Chad G; Grondin, Sean C
2018-06-01
Despite supporting evidence, many staff surgeons and surgical trainees do not routinely double glove. We performed a study to assess rates of and attitudes toward double gloving and the use of eye protection in the operating room. We conducted an electronic survey among all staff surgeons and surgical trainees at 2 tertiary care centres in Alberta between September and November 2015.We analyzed the data using log-binomial regression for binary outcomes to account for multiple independent variables and interactions. For 2-group comparisons, we used a 2-group test of proportions. The response rate was 34.3% (361/1051); 205/698 staff surgeons (29.4%) and 156/353 surgical trainees (44.2%) responded. Trainees were more likely than staff surgeons to ever double glove in the operating room ( p = 0.01) and to do so routinely ( p = 0.01). Staff surgeons were more likely than trainees to never double glove ( p = 0.01). A total of 300/353 respondents (85.0%) reported using eye protection routinely in the operating room. Needle-stick injury was common (184 staff surgeons [92.5%], 115 trainees [74.7%]). Reduced tactile feedback, decreased manual dexterity and discomfort/poor fit were perceived barriers to double gloving. Rates of double gloving leave room for improvement. Surgical trainees were more likely than staff surgeons to double glove. Barriers remain to routine double gloving among staff surgeons and trainees. Increased education on the benefits of double gloving and early introduction of this practice may increase uptake.
Furlong, Melissa; Tanner, Caroline M; Goldman, Samuel M; Bhudhikanok, Grace S.; Blair, Aaron; Chade, Anabel; Comyns, Kathleen; Hoppin, Jane A.; Kasten, Meike; Korell, Monica; Langston, J William; Marras, Connie; Meng, Cheryl; Richards, Marie; Ross, G Webster; Umbach, David M; Sandler, Dale P; Kamel, Freya
2014-01-01
Pesticides have been associated with Parkinson’s disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) Study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ≥ 5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ≥ 2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among people who used <2 hygiene practices (OR 5.5 [95% CI 1.1, 27.1]) but was not associated with PD among people who used 2 or more practices (interaction p=0.02). Although sample size was limited in the FAME study, protective glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides. PMID:25461423
Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables
NASA Technical Reports Server (NTRS)
Charvat, Chacqueline M.; Norcross, Jason; Reid, Christopher R.; McFarland, Shane M.
2015-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only. The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.
Dexterity tests data contribute to reduction in leaded glovebox gloves use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E; Lawton, Cindy M; Castro, Amanda M
2008-01-01
Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions onmore » which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.« less
Furlong, Melissa; Tanner, Caroline M; Goldman, Samuel M; Bhudhikanok, Grace S; Blair, Aaron; Chade, Anabel; Comyns, Kathleen; Hoppin, Jane A; Kasten, Meike; Korell, Monica; Langston, J William; Marras, Connie; Meng, Cheryl; Richards, Marie; Ross, G Webster; Umbach, David M; Sandler, Dale P; Kamel, Freya
2015-02-01
Pesticides have been associated with Parkinson's disease (PD), and protective gloves and workplace hygiene can reduce pesticide exposure. We assessed whether use of gloves and workplace hygiene modified associations between pesticides and PD. The Farming and Movement Evaluation (FAME) study is a nested case-control study within the Agricultural Health Study. Use of protective gloves, other PPE, and hygiene practices were determined by questionnaire (69 cases and 237 controls were included). We considered interactions of gloves and hygiene with ever-use of pesticides for all pesticides with ≥5 exposed and unexposed cases and controls in each glove-use stratum (paraquat, permethrin, rotenone, and trifluralin). 61% of respondents consistently used protective gloves and 87% consistently used ≥2 hygiene practices. Protective glove use modified the associations of paraquat and permethrin with PD: neither pesticide was associated with PD among protective glove users, while both pesticides were associated with PD among non-users (paraquat OR 3.9 [95% CI 1.3, 11.7], interaction p=0.15; permethrin OR 4.3 [95% CI 1.2, 15.6] interaction p=0.05). Rotenone was associated with PD regardless of glove use. Trifluralin was associated with PD among participants who used <2 hygiene practices (OR 5.5 [95% CI 1.1, 27.1]) but was not associated with PD among participants who used 2 or more practices (interaction p=0.02). Although sample size was limited in the FAME study, protective glove use and hygiene practices appeared to be important modifiers of the association between pesticides and PD and may reduce risk of PD associated with certain pesticides. Published by Elsevier Ltd.
Spacesuit Glove-Induced Hand Trauma and Analysis of Potentially Related Risk Variables
NASA Technical Reports Server (NTRS)
McFarland, Shane M.; Reid, Christopher R.; Norcross, Jason; Charvat, Jacqueline M.
2015-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. Glove injuries, both anecdotal and recorded, have been reported during EVA training and flight persistently through NASA's history regardless of mission or glove model. Theories as to causation such as glove-hand fit are common but often lacking in supporting evidence. Previous statistical analysis has evaluated onycholysis in the context of crew anthropometry only (Opperman et al 2010). The purpose of this study was to analyze all injuries (as documented in the medical records) and available risk factor variables with the goal to determine engineering and operational controls that may reduce hand injuries due to the EVA glove in the future. A literature review and data mining study were conducted between 2012 and 2014. This study included 179 US NASA crew who trained or completed an EVA between 1981 and 2010 (crossing both Shuttle and ISS eras) and wore either the 4000 Series or Phase VI glove during Extravehicular Mobility Unit (EMU) spacesuit EVA training and flight. All injuries recorded in medical records were analyzed in their association to candidate risk factor variables. Those risk factor variables included demographic characteristics, hand anthropometry, glove fit characteristics, and training/EVA characteristics. Utilizing literature, medical records and anecdotal causation comments recorded in crewmember injury data, investigators were able to identify several risk factors associated with increased risk of glove related injuries. Prime among them were smaller hand anthropometry, duration of individual suited exposures, and improper glove-hand fit as calculated by the difference in the anthropometry middle finger length compared to the baseline EVA glove middle finger length.
Glove and mitten protection in extreme cold weather: an Antarctic study.
Iserson, Kenneth V
2016-01-01
Background Myths, misconceptions and a general lack of information surround the use of gloves and mittens in extreme cold environments. Objective This study assessed how well an assortment of gloves and mittens performed in a very cold environment. Methods A convenience sample of gloves and mittens were tested in Antarctica during the winter of 2016 using a calibrated thermometer (range: -148°F to +158°F/-100°C to +70°C) three times over a 0.5-mile distance (~20 minutes). A small sensor on a 10-foot-long cable was taped to the radial surface of the distal small finger on the non-dominant hand. The tested clothing was donned over the probe, the maximum temperature inside the glove/mitten was established near a building exit (ambient temperature approximately 54°F/12°C), and the building was exited, initiating the test. The hand was kept immobile during the test. Some non-heated gloves were tested with chemical heat warmers placed over the volar or dorsal wrist. Results The highest starting (96°F/36°C) and ending (82°F/28°C) temperatures were with electrically heated gloves. The lowest starting temperature was with electrically heated gloves with the power off (63°F/17°C). Non-heated gloves with an inserted chemical hand warmer had the lowest minimum temperature (33°F/1°C). Maximum temperatures for gloves/mittens did not correlate well with their minimum temperature. Conclusions Coverings that maintained finger temperatures within a comfortable and safe range (at or above 59°F/15°C) included the heated gloves and mittens (including some with the power off) and mittens with liners. Mittens without liners (shell) generally performed better than unheated gloves. Better results generally paralleled the item's cost. Inserting chemical heat warmers at the wrist increased heat loss, possibly through the exposed area around the warmer.
Glove and mitten protection in extreme cold weather: an Antarctic study.
Iserson, Kenneth V
2016-01-01
Myths, misconceptions and a general lack of information surround the use of gloves and mittens in extreme cold environments. This study assessed how well an assortment of gloves and mittens performed in a very cold environment. A convenience sample of gloves and mittens were tested in Antarctica during the winter of 2016 using a calibrated thermometer (range: -148°F to +158°F/-100°C to +70°C) three times over a 0.5-mile distance (~20 minutes). A small sensor on a 10-foot-long cable was taped to the radial surface of the distal small finger on the non-dominant hand. The tested clothing was donned over the probe, the maximum temperature inside the glove/mitten was established near a building exit (ambient temperature approximately 54°F/12°C), and the building was exited, initiating the test. The hand was kept immobile during the test. Some non-heated gloves were tested with chemical heat warmers placed over the volar or dorsal wrist. The highest starting (96°F/36°C) and ending (82°F/28°C) temperatures were with electrically heated gloves. The lowest starting temperature was with electrically heated gloves with the power off (63°F/17°C). Non-heated gloves with an inserted chemical hand warmer had the lowest minimum temperature (33°F/1°C). Maximum temperatures for gloves/mittens did not correlate well with their minimum temperature. Coverings that maintained finger temperatures within a comfortable and safe range (at or above 59°F/15°C) included the heated gloves and mittens (including some with the power off) and mittens with liners. Mittens without liners (shell) generally performed better than unheated gloves. Better results generally paralleled the item's cost. Inserting chemical heat warmers at the wrist increased heat loss, possibly through the exposed area around the warmer.
NASA Technical Reports Server (NTRS)
Koscheyev, Victor S.; Leon, Gloria R.; Trevino, Robert C.
2000-01-01
This study explored the effectiveness of local wrist/palm warming as a potential countermeasure for providing finger comfort during extended duration EVA. Methods: Six subjects (5 males and 1 female) were evaluated in a sagitally divided liquid cooling/warming garment (LCWG) with modified liquid cooling/warming (LCW) gloves in three different experimental conditions. Condition 1: Stage 1- no LCWG; chamber adaptation with LCW glove inlet water temperature 33 C; Stage 2-LCW glove inlet water temperature cooled to 8 C; Stage 3-LCW glove inlet water temperature warmed to 45 C; Condition 2: Stage1-LCWG and LCW glove inlet water temperature 33 C; Stage 2-LCWG inlet temperature cooled to 31 C, LCW gloves, 8 C; Stage 3-LCWG inlet water temperature remains at 31 C, LCW glove inlet water temperature warmed to 45 C; Condition 3: Stage l -LCWG and LCW gloves 33 C; Stage 2-LCWG inlet water temperature cooled to 28 C, LCW gloves, 8 C; Stage 3-LCWG remains at 28 C, LCW glove water temperature warmed to 45 C. Results: Wrist/palm area warming significantly increased finger temperature (Tfing) and blood perfusion in Stage 3 compared to Stage 2. The LCW gloves were most effective in increasing Stage 3 Tfing in Condition 1; and in increasing blood perfusion in Conditions 1 and 2 compared to Condition 3. Ratings of subjective perception of heat in the hand and overall body heat were higher at Stage 3 than Stage 2, with no significant differences across Conditions. Conclusions: Local wrist/palm warming was effective in increasing blood circulation to the distal extremities, suggesting the potential usefulness of this technique for increasing astronaut thermal comfort during EVA while decreasing power requirements. The LCW gloves were effective in heating the highly cooled fingers when the overall body was in a mild heat deficit.
Hand washing and use of gloves while managing patients receiving mechanical ventilation in the ICU.
Khatib, M; Jamaleddine, G; Abdallah, A; Ibrahim, Y
1999-07-01
To evaluate the effectiveness of warning labels permanently attached to mechanical ventilators in improving the practice of hand washing and use of gloves by respiratory care practitioners (RCPs) in the ICU. The study consisted of two 4-week periods. Daily observations of hand washing and use of gloves by RCPs were made over four 1-h observation periods. Prior to the first 4-week period, the importance of hand washing and use of gloves was presented to all staff. At the end of the first period, "Wash Hands Use Gloves" labels were permanently placed on all ventilators in the ICU. The RCPs were not aware they were being observed for hand washing and use of gloves in either period. The total number of encounters between the RCPs and patients as well as the rates of hand washing and use of gloves were obtained during the study. The rates of hand washing and use of gloves were significantly higher during the second period when labels were attached to the ventilators, as compared to the rates during the first period: hand washing, 92% vs 46% (p < 0.05); use of gloves, 92% vs 43% (p < 0.05), respectively. During the first period, the rates of pre-encounter hand washing (78%, 48%, 27%, and 29% in weeks 1 through 4, respectively) and the use of gloves (56%, 37%, 32%, and 45% in weeks 1 through 4, respectively) were primarily declining. This was not observed during the second period of the study (94%, 88%, 95%, and 92% in weeks 1 through 4, respectively) for the rates of pre-encounter hand washing and the use of gloves. Simple measures such as the placement of warning labels on mechanical ventilators can significantly improve hand washing and use of gloves by RCPs in the ICU.
Phase VI Glove Durability Testing
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn
2011-01-01
The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a detailed description of the test hardware and methodology, shares the results of the testing, and provides recommendations for future work.
Incidence and patterns of surgical glove perforations: experience from Addis Ababa, Ethiopia.
Bekele, Abebe; Makonnen, Nardos; Tesfaye, Lidya; Taye, Mulat
2017-03-20
Surgical glove perforation is a common event. The operating staff is not aware of the perforation until the procedure is complete, sometimes in as high as 70% of the incidences. Data from Ethiopia indicates that the surgical workforce suffers from a very surgery related accidents, however there is paucity of data regarding surgical glove perforation. The main objective is to describe the incidence and patterns of surgical glove perforation during surgical procedures and to compare the rates between emergency and elective surgeries at one of the main hospitals in Addis Ababa Ethiopia. This is a prospective study, performed at the Minilik II referral hospital, Addis Ababa. All surgical gloves worn during all major surgical procedures (Emergency and Elective) from June 1-July 20, 2016 were collected and used for the study. Standardised visual and hydro insufflation techniques were used to test the gloves for perforations. Parameters recorded included type of procedure performed, number of perforations, localisation of perforation and the roles of the surgical team. A total of 2634 gloves were tested, 1588 from elective and 1026 from emergency procedures. The total rate of perforation in emergency procedures was 41.4%, while perforation in elective surgeries was 30.0%. A statistically significant difference (P < 0.05) was found in between emergency and elective surgeries. There were a very high rate of perforations of gloves among first surgeons 40.6% and scrub nurses 38.8% during elective procedures and among first surgeons (60.14%), and second assistants (53.0%) during emergency surgeries. Only 0.4% of inner gloves were perforated. The left hand, the left index finger and thumb were the most commonly perforated parts of the glove. Glove perforation rate was low among consultant surgeons than residents. Our reported perforation rate is higher than most publications, and this shows that the surgical workforce in Ethiopia is under a clear and present threat. Measures such as double gloving seems to have effectively prevented cutaneous blood exposure and thus should become a routine for all surgical procedures. Manufacturing related defects and faults in glove quality may also be contributing factors.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunodeficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), and its risk of transmission... (collectively known as medical gloves) to reduce the risk of transmission of HIV and other blood-borne... gloves to reduce the risk of transmission of HIV and other blood-borne infectious deseases. The CDC...
Code of Federal Regulations, 2013 CFR
2013-04-01
... immunodeficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), and its risk of transmission... (collectively known as medical gloves) to reduce the risk of transmission of HIV and other blood-borne... gloves to reduce the risk of transmission of HIV and other blood-borne infectious deseases. The CDC...
Code of Federal Regulations, 2012 CFR
2012-04-01
... immunodeficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), and its risk of transmission... (collectively known as medical gloves) to reduce the risk of transmission of HIV and other blood-borne... gloves to reduce the risk of transmission of HIV and other blood-borne infectious deseases. The CDC...
Code of Federal Regulations, 2014 CFR
2014-04-01
... immunodeficiency virus (HIV), which causes acquired immune deficiency syndrome (AIDS), and its risk of transmission... (collectively known as medical gloves) to reduce the risk of transmission of HIV and other blood-borne... gloves to reduce the risk of transmission of HIV and other blood-borne infectious deseases. The CDC...
Dexterity testing of chemical-defense gloves. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinette, K.M.; Ervin; Zehner, G.F.
1986-05-01
Chemical-defense gloves (12.5-mil Epichlorohydron/Butyl, 14-mil Epichlorohydron/Butyl, and 7-mil Butyl with Nomex overgloves) were subjected to four dexterity tests (O'Connor Finger Dexterity Test, Pennsylvania Bi-Manual Worksample-Assembly, Minnesota Rate of Manipulation Turning, and the Crawford Small Test). Results indicated that subjects performances were most impaired by the 7-mil Butyl with Nomex overglove. Though differences between the other three gloved conditions were not always statistically significant, subjects performed silghtly better while wearing the Epichlorohydron/Butyl gloves, no matter which thickness, than they did while wearing the 15-mil butyl gloves. High negative correlation between anthropometry and gloved tests scores of subjects suggested that poor glovemore » fit may also have affected subjects performances.« less
NASA Technical Reports Server (NTRS)
Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott
2013-01-01
The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems.
NASA Technical Reports Server (NTRS)
Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott
2013-01-01
The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.
NASA Astrophysics Data System (ADS)
Dolez, Patricia; Vinches, Ludwig; Wilkinson, Kevin; Plamondon, Philippe; Vu-Khanh, Toan
2011-07-01
Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health & Safety (H&S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H&S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.
Peregrina, Alejandro; Land, Martin F; Feil, Phillip; Price, Connie
2003-09-01
Polymerization inhibition of polyvinylsiloxane impression materials has been reported when in sustained contact with some types of latex gloves. This study examined the polymerization inhibition of 3 polyvinylsiloxane impression materials placed in contact with surfaces subjected to prior contact with gloves or commonly used surfactants. A 2 x 3 x 4 x 2 design was used (n = 20), with 2 types of gloves (powdered and unpowdered), 3 types of polyvinylsiloxane impression materials (Aquasil, Extrude, and Affinis), 4 surfactant conditions (water, soap/water-rinse, alcohol, and unexposed), and 2 ambient temperatures of 22 degrees C and 36 degrees C. After glove exposure to surfactants, a glass surface was subjected to rubbing contact with the treated glove for a standardized time. After drying, automixed polyvinylsiloxane impression materials were dispensed onto the treated surface. Specimens were removed and evaluated for polymerization inhibition at the manufacturer's recommended polymerization time (36 degrees C), or after 15 minutes at 22 degrees C. Specimens were rated as polymerized, or as inhibited if any polyvinylsiloxane residue remained on the slab. A chi-square analysis was used to evaluate the results (alpha=.05). Setting inhibition was found only with one of the polyvinylsiloxane materials when alcohol was used as a surfactant. At 22 degrees C, the inhibition rate ranged from 95% to 100% for both glove types; at 36 degrees C inhibition ranged from 40% (unpowdered gloves) to 75% (powdered gloves), respectively. Under these in vitro conditions, glove exposure to alcohol resulted in polymerization inhibition of 1 of 3 tested polyvinylsiloxane impression materials (Extrude).
NASA Technical Reports Server (NTRS)
Tanaka, Kunihiko; Waldie, James; Steinbach, Gregory C.; Webb, Paul; Tourbier, Dietmar; Knudsen, Jeffrey; Jarvis, Christine W.; Hargens, Alan R.
2002-01-01
INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... examination and by a water leak test method, using 1,000 milliliters (ml) of water. (i) Units examined. Each... inches up the fill tube.) (iii) Leak test examination. Immediately after adding the water, examine the glove for water leaks. Do not squeeze the glove; use only minimum manipulation to spread the fingers to...
Glove box for water pit applications
Mills, William C [Richland, WA; Rabe, Richard A [North Fork, ID
2005-01-18
A glove box assembly that includes a glove box enclosure attached to a longitudinally extending hollow tube having an entranceway, wherein the portion of the tube is in a liquid environment. An elevator member is provided for raising an object that is introduced into the hollow tube from the liquid environment to a gas environment inside the glove box enclosure while maintaining total containment.
ISMAIL, Ismaniza; GASKIN, Sharyn; PISANIELLO, Dino; EDWARDS, John W.
2017-01-01
Elbow length PVC gloves are often recommended for protection against organophosphorus pesticide (OP) exposure in agriculture. However, performance may be reduced due to high temperature, UV exposure and abrasion. We sought to assess these impacts for two OPs under normal use and reasonable worst-case scenarios. Glove permeation tests were conducted using ASTM cells with two PVC glove brands at 23°C and 45°C for up to 8 h. Technical grade dichlorvos and formulated diazinon were used undiluted and at application strength. Breakthough of undiluted dichlorvos occurred at both 23°C and 45°C, but only at 45°C for application strength. Breakthrough of diazinon was not achieved, except when undiluted at 45°C. UV-exposed and abraded gloves showed reduced performance, with the effect being approximately two-fold for dichlorvos. Only small differences were noted between glove brands. Extra precautions should be taken when handling concentrated OPs at high temperature, or when using abraded or sunlight-exposed gloves. PMID:29199264
Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick
2009-01-01
Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters
Edlich, Richard F; Mason, Shelley S; Swainston, Erin; Dahlstrom, Jill J; Gubler, K; Long, William B
2009-01-01
It has been well documented in the medical literature that powdered medical gloves can have serious consequences to patients and health-care workers. Adverse reactions to natural latex gloves, such as contact dermatitis and urticaria, occupational asthma, and anaphylaxis, have been documented as a significant cause of Workers' Compensation claims among health-care workers. While the cost of examination and surgical gloves is significant, this factor must be considered with the total cost of Workers' Compensation claims and possible litigation bestowed upon hospitals and glove manufacturing companies. In the United States, Canada, Belgium, and Germany, medical leaders have documented the dangers of powdered latex gloves and have implemented transition programs that are reducing Workers' Compensation claims filed by health-care workers. While attorneys view litigation against powdered glove manufacturers as the "next big tort", the authors of this article were not able to document all compensation costs to disabled workers because many settlements do not allow the claimant to disclose this information.
RoboGlove-A Grasp Assist Device for Earth and Space
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ihrke, C. A.; Bridgwater, L. B.; Rogers, J. M.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.
2015-01-01
The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. Work is underway to integrate the RoboGlove system with a space suit glove to add strength or reduce fatigue during spacewalks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove in an assembly-line configuration and discusses work toward the space suit application.
Influence of surgical gloves on haptic perception thresholds.
Hatzfeld, Christian; Dorsch, Sarah; Neupert, Carsten; Kupnik, Mario
2018-02-01
Impairment of haptic perception by surgical gloves could reduce requirements on haptic systems for surgery. While grip forces and manipulation capabilities were not impaired in previous studies, no data is available for perception thresholds. Absolute and differential thresholds (20 dB above threshold) of 24 subjects were measured for frequencies of 25 and 250 Hz with a Ψ-method. Effects of wearing a surgical glove, moisture on the contact surface and subject's experience with gloves were incorporated in a full-factorial experimental design. Absolute thresholds of 12.8 dB and -29.6 dB (means for 25 and 250 Hz, respectively) and differential thresholds of -12.6 dB and -9.5 dB agree with previous studies. A relevant effect of the frequency on absolute thresholds was found. Comparisons of glove- and no-glove-conditions did not reveal a significant mean difference. Wearing a single surgical glove does not affect absolute and differential haptic perception thresholds. Copyright © 2017 John Wiley & Sons, Ltd.
Application of Spacesuit Glove Requirements Tools to Athletic and Personal Protective Equipment
NASA Technical Reports Server (NTRS)
England, Scott; Benson, Elizabeth; Melsoh, Miranda; Thompson, Shelby; Rajulu, Sudhakar
2010-01-01
Despite decades of ongoing improvement, astronauts must still struggle with inhibited dexterity and accelerated fatigue due to the requirement of wearing a pressurized Extra-Vehicular Activity (EVA) glove. Recent research in the Anthropometry and Biomechanics Facility at NASA's Johnson Space Center has focused on developing requirements for improvements in the design of the next generation of EVA glove. In the course of this research, it was decided to expand the scope of the testing to include a variety of commercially available athletic and consumer gloves to help provide a more recognizable comparison for investigators and designers to evaluate the current state of EVA glove mobility and strength. This comparison is being provided with the hope that innovative methods may help commercial development of gloves for various athletic and personal protective endeavors.
How risky are pinholes in gloves? A rational appeal for the integrity of gloves for isolators.
Gessler, Angela; Stärk, Alexandra; Sigwarth, Volker; Moirandat, Claude
2011-01-01
Isolators provide a high degree of protection for the product and/or the environment and operators in pharmaceutical production, as well as for analytical and sterility testing. Gloves allow for performing testing and for easy access to the process. Due to their nature-thin plastic, highly flexible-and their risk of puncture or rupture, they are regarded as one of the main potential sources of contamination. Glove integrity testing is therefore a main issue and has been addressed by many regulations such as those imposed by the USP, U.S. Food and Drug Administration, and Pharmaceutical Inspection Convention. This paper presents a short overview of different glove integrity test procedures and their ability to detect leaking gloves. Additionally, extensive microbiological tests have been performed to give more evidence and cross-correlation to physical testing. Most of the physical tests have limitations either in detecting pinholes and/or they are difficult to implement for routine testing. Microbiological tests are only applicable for evaluation and validation purposes, but not for routine testing, because they are time-consuming and do not allow immediate action. Routine visual verification of gloves by trained personnel turns out to be a very reliable technique. Additional microbiological tests supported by microbiological environmental monitoring helped to develop a new concept presented here on how to handle gloves with pinholes. It is proposed not to automatically consider a pinhole in a glove as a breach in isolator integrity, but to consider any action in view of controlling and monitoring the effective bioload on the outside of the gloves. With the combination of semi-automatic physical testing with independent protocol, visual inspection, and control of bioload through microbiological environmental monitoring potential contamination, risks can be minimized and maximum safety maintained. Isolators are enclosure designs to protect critical handling and process steps in pharmaceutical environments. They provide a high degree of protection for product and/or environment and operators against particles, potentially hazardous active principles, and microbial load. Gloves mounted on windows and doors of the isolator allow for manipulation, performing testing, and access to the process. Due to their nature and their use with risk of puncture or rupture, they are regarded as a potential source for contamination. Glove integrity testing has therefor been addressed by regulations such as those imposed by the USP and the Food and Drug Administration. This paper presents a short overview of various glove integrity test procedures and their ability to detect leaking gloves. Most of the tests have limitations either in detecting pinholes and/or they are difficult to implement for routine testing. Routine visual verification of gloves by trained personnel turns out to be a very reliable technique. Additional microbiological tests led to a new concept presented here on how to handle gloves with pinholes and how to take action. With this approach, risks can be minimized and maximum safety maintained by controlling and monitoring the effective bioload on the outside of the gloves.
The Short-term Protective Effects of ‘Non-PPE’ Gloves Used by Greenhouse Workers
Roff, Martin
2015-01-01
Task-based worker exposure assessments are used in regulatory product approval for pesticides. Some agricultural workers may be exposed to pesticide residues predominantly via transfer to the hands during plant tending or crop harvesting. They may use thin ‘splash-resistant single-use’ (SRSU) gloves or cotton gloves as good industry practice, for example, to protect a delicate crop from bruising, rather than specifically for chemical protection. These ‘non-personal protective equipment (PPE)’ gloves may or may not have been tested for chemical resistance, but can nevertheless give limited protection from chemicals. This paper reports experiments to assess the protection factors (PFs) of ‘non-PPE’ gloves against chemicals, to better inform the regulatory exposure assessments. One type of lightweight cotton and three types of 0.1 mm SRSU gloves 25cm long (latex, nitrile, and vinyl) that might be used as ‘non-PPE’ gloves and one type of 0.4 mm PPE nitrile gauntlet 33cm long were worn by 36 volunteers in greenhouses at four nurseries, handling plants sprayed with transferable but non-permeating strontium acetate in four consecutive 1-h sessions, including one session in which no gloves were worn. Dislodgeable foliar residues were measured by rinsing leaves in bags. Each subject carried out their task such as weeding or trimming, for their four sessions on their set of plants. Handwashes followed each session, and the washings were sampled and analysed for strontium. Unprotected hand contamination was taken to be the within-subject ‘challenge’ in the absence of gloves. It ranged from 166 to 4091 µg equivalent of strontium acetate on the hands and increased with increasing foliar residues. Geometric mean PFs were 60 (95% CI 38–87, n = 22) for PPE gauntlets, 32 (25–41, n = 65) for SRSU gloves and 5.3 (3.5–8, n = 21) for lightweight cotton. The PFs offered by the waterproof gloves (gauntlets and SRSU) increased with challenge, but for the absorbent cotton gloves it decreased. The measurement of protection is restricted by the limit of quantification (LOQ) such that protection must apparently increase with challenge, nevertheless the above trends remained even after removal of data
Contact Dermatitis from Penetration of Rubber Gloves by Acrylic Monomer
Pegum, J. S.; Medhurst, F. A.
1971-01-01
An orthopaedic surgeon developed dermatitis from acrylic materials. The acrylic monomer was found to penetrate surgical rubber gloves readily. Cases of “rubber glove dermatitis” with negative patch tests may have a similar explanation. Laboratory tests suggest that monomer does not damage rubber sufficiently to allow bacteria to penetrate gloves, but it remains possible that this would happen under theatre conditions. PMID:5581492
A Glove for Tapping and Discrete 1D/2D Input
NASA Technical Reports Server (NTRS)
Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert
2012-01-01
This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.
Glove Testing for Performance Against Flying Glass Shards
2014-09-01
superior dexterity to those with leather palms could still provide protection from flying shards of glass. 15. SUBJECT TERMS PPE...test glove was subject to significant scorching. It was decided that a woven Kevlar® fiber glove with a leather layer, covering both the palm and... leather -palmed gloves were considered too bulky for use by personnel with small hands, greatly decreasing dexterity. The wearer could not
Analysis of Human-Spacesuit Interaction
NASA Technical Reports Server (NTRS)
Thomas, Neha
2015-01-01
Astronauts sustain injuries of various natures such as finger delamination, joint pain, and redness due to their interaction with the space suit. The role of the Anthropometry and Biomechanics Facility is to understand the biomechanics, environmental variables, and ergonomics of the suit. This knowledge is then used to make suggestions for improvement in future iterations of the space suit assembly to prevent injuries while allowing astronauts maneuverability, comfort, and tactility. The projects I was involved in were the Extravehicular Mobility Unit (EMU) space suit stiffness study and the glove feasibility study. The EMU project looked at the forces exerted on the shoulder, arm, and wrist when subjects performed kinematic tasks with and without a pressurized suit. The glove study consisted of testing three conditions - the Series 4000 glove, the Phase VI glove, and the no glove condition. With more than forty channels of sensor data total, it was critical to develop programs that could analyze data with basic descriptive statistics and generate relevant graphs to help understand what happens within the space suit and glove. In my project I created a Graphical User Interface (GUI) in MATLAB that would help me visualize what each sensor was doing within a task. The GUI is capable of displaying overlain plots and can be synchronized with video. This was helpful during the stiffness testing to visualize how the forces on the arm acted while the subject performed tasks such as shoulder adduction/abduction and bicep curls. The main project of focus, however, was the glove comparison study. I wrote MATLAB programs which generated movies of the strain vectors during specific tasks. I also generated graphs that summarized the differences between each glove for the strain, shear and FSR sensors. Preliminary results indicate that the Phase VI glove places less strain and shear on the hand. Future work includes continued data analysis of surveys and sensor data. In the end, the ideal glove is one that provides more tactility for the astronauts but lessens injuries. Often times, a more tactile glove transmits forces better to the hand; thus, achieving a balance of both a tactile and safe glove is the main challenge present.
An Approach for Performance Assessments of Extravehicular Activity Gloves
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; Benosn, Elizabeth
2014-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in pressurized conditions, with and without thermal micrometeoroid garments (TMG) installed. This paper provides a detailed description of hardware and test methodologies used and lessons learned.
Detection and toxicity assessment of nitrosamines migration from latex gloves in the Chinese market.
Feng, Di; Wang, Huiping; Cheng, Xuelian; Wang, Jiedong; Ning, Lifeng; Zhou, Qingfeng; Zhou, Yue; Yang, Quanli
2009-09-01
Nitrosamines are potent carcinogens and have been found in latex products. In 2007, twenty-seven natural latex gloves including sterile gloves, examination gloves and household use gloves were sampled from the Chinese market. This study monitored the migration of nitrosamines and nitrosatable substance from these gloves, and evaluated their mutagenicity using a Salmonella typhimurium mutation assay (Ames assay) with the strains TA98, TA97, TA100 and TA102 and by a micronucleus test (MN test) using ICR mice. In addition, the cytotoxicity of these compounds was determined by a MTT assay. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosodibutylamine (NDBA) were all found in samples treated with artificial sweat for 4h at 37 degrees C, and total nitrosamines varied from 18.89 to 244.51microg/Kg. The nitrosamine mixture of NDMA, NDEA and NDBA was used in both the Ames assay and the MN test. The proportion of NDMA, NDEA and NDBA (1:10:20) was selected according to the proportion of nitrosamines migration from sample E05. In the Ames assay, the lowest dose (1.98 x 10(-3)microg per plate) produced a positive result in the TA98 strain, corresponding to nitrosamines migration from sample E05 of 0.016g (the total nitrosamines migration from glove E05 was 122.55 microg/kg). The TA100 strain responded positively at a dose of 4.96 x 10(-2)microg per plate, corresponding to nitrosamines migration from glove E05 of 0.040g. The MN test showed nitrosamine migration of 3.04 mg from 2066 pairs of sample E05 and could induce micronuclei in one mouse weighing 28g (average weight of one E05 glove was 6g). Extracts from gloves were found to be cytotoxic and there was a significant correlation between cytotoxicity (IC50) and the release level of nitrosamines. In conclusion, in view of the high content of nitrosamines in latex gloves and the potential toxicity of nitrosamines migration from these gloves, it is suggested that both an effective and feasible detection method and prescribed limits should be imposed.
Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; McFarland, Shane
2012-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design ]to hand anthropometry completed range of motion, grip/pinch strength, dexterity, and fit evaluations for each glove design in both the unpressurized and pressurized conditions. This paper provides a comparison of the test results along with a detailed description of hardware and test methodologies used.
Phalen, R N; Que Hee, Shane S
2007-02-01
The aim of this study was to investigate the surface variability of 13 powder-free, unlined, and unsupported nitrile rubber gloves using attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrophotometry at key wavelengths for analysis of captan contamination. The within-glove, within-lot, and between-lot variability was measured at 740, 1124, 1252, and 1735 cm(-1), the characteristic captan reflectance minima wavelengths. Three glove brands were assessed after conditioning overnight at relative humidity (RH) values ranging from 2 +/- 1 to 87 +/- 4% and temperatures ranging from -8.6 +/- 0.7 to 59.2 +/- 0.9 degrees C. For all gloves, 1735 cm(-1) provided the lowest background absorbance and greatest potential sensitivity for captan analysis on the outer glove surface: absorbances ranged from 0.0074 +/- 0.0005 (Microflex) to 0.0195 +/- 0.0024 (SafeSkin); average within-glove coefficients of variation (CV) ranged from 2.7% (Best, range 0.9-5.3%) to 10% (SafeSkin, 1.2-17%); within-glove CVs greater than 10% were for one brand (SafeSkin); within-lot CVs ranged from 2.8% (Best N-Dex) to 28% (SafeSkin Blue); and between-lot variation was statistically significant (p < or = 0.05) for all but two SafeSkin lots. The RH had variable effects dependent on wavelength, being minimal at 1735, 1252, and 1124 cm(-1) and highest at 3430 cm(-1) (O-H stretch region). There was no significant effect of temperature conditioning. Substantial within-glove, within-lot, and between-lot variability was observed. Thus, surface analysis using ATR-FT-IR must treat glove brands and lots as different. ATR-FT-IR proved to be a useful real-time analytical tool for measuring glove variability, detecting surface humidity effects, and choosing selective and sensitive wavelengths for analysis of nonvolatile surface contaminants.
Bartsch, Adam J; Benzel, Edward C; Miele, Vincent J; Morr, Douglas R; Prakash, Vikas
2012-05-01
In spite of ample literature pointing to rotational and combined impact dosage being key contributors to head and neck injury, boxing and mixed martial arts (MMA) padding is still designed to primarily reduce cranium linear acceleration. The objects of this study were to quantify preliminary linear and rotational head impact dosage for selected boxing and MMA padding in response to hook punches; compute theoretical skull, brain, and neck injury risk metrics; and statistically compare the protective effect of various glove and head padding conditions. An instrumented Hybrid III 50th percentile anthropomorphic test device (ATD) was struck in 54 pendulum impacts replicating hook punches at low (27-29 J) and high (54-58 J) energy. Five padding combinations were examined: unpadded (control), MMA glove-unpadded head, boxing glove-unpadded head, unpadded pendulum-boxing headgear, and boxing glove-boxing headgear. A total of 17 injury risk parameters were measured or calculated. All padding conditions reduced linear impact dosage. Other parameters significantly decreased, significantly increased, or were unaffected depending on padding condition. Of real-world conditions (MMA glove-bare head, boxing glove-bare head, and boxing glove-headgear), the boxing glove-headgear condition showed the most meaningful reduction in most of the parameters. In equivalent impacts, the MMA glove-bare head condition induced higher rotational dosage than the boxing glove-bare head condition. Finite element analysis indicated a risk of brain strain injury in spite of significant reduction of linear impact dosage. In the replicated hook punch impacts, all padding conditions reduced linear but not rotational impact dosage. Head and neck dosage theoretically accumulates fastest in MMA and boxing bouts without use of protective headgear. The boxing glove-headgear condition provided the best overall reduction in impact dosage. More work is needed to develop improved protective padding to minimize linear and rotational impact dosage and develop next-generation standards for head and neck injury risk.
Phalen, Robert N.; Wong, Weng kee
2012-01-01
Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179
Phalen, Robert N; Wong, Weng Kee
2012-05-01
The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm(-2) were about four times less likely to leak. On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break.
Bebbington, M W; Treissman, M J
1996-10-01
Our purpose was to compare the effectiveness of a surgical assist device, SutureMate, to decrease glove perforations during postdelivery vaginal repair. This was a prospective randomized trial. After delivery surgeons who needed to perform vaginal repair were randomized to use the surgical assist device or to perform the repair in the usual fashion. After the repair, gloves were collected and the operator was asked to complete a standardized data form that was submitted with the gloves. The gloves were tested for perforations within 24 hours by the Food and Drug Administration-approved hydrosufflation technique. Comparisons were made with chi(2) statistics with p < 0.01 taken as being statistically significant with the use of a Bonferoni adjustment for multiple comparisons. A total of 476 glove sets were evaluated. The use of the surgical assist device significantly reduced the overall glove perforation rate from 28.3% in the control arm to 8.4% in the study arm (p = 0.0001). Rates of perforation varied with level of training and expertise but fell in all groups that used the device. Family physicians had the highest perforation rate in the control arm and benefited most from the device. A total of 76% of perforations were located in the thumb, index, and second fingers of the nondominant hand. Perforations were recognized in only 16% of the glove sets. The level of satisfaction with the device was mixed, but overall 50% of operators indicated that they were either satisfied or very satisfied with the device. The rate of glove perforation in postdelivery vaginal repair is high. The surgical assist device significantly reduced the rate of glove perforations.
Geens, Tom; Aerts, Evelyne; Borguet, Marc; Haufroid, Vincent; Godderis, Lode
2016-04-01
Many hairdressers leave their profession due to health problems, including occupational hand eczema, which has been associated with skin exposure to sensitising hair dye components such as paraphenylenediamine (PPD) and paratoluenediamine (PTD). Since the use of protective gloves is advised but without the short-term effect being known, our main goal was to attribute a significant biomarker reduction to adequate glove use, in a real work situation. 11 hairdressers were studied over 2 weeks. In the first week, they worked as usual and (re)used their gloves. Thereafter, we intervened to improve glove use during the second week. In both weeks, workplace exposure data were collected through observations, and systemic exposure was quantified by biomonitoring of PPD and PTD. The effect of improved glove use and other exposure determinants was studied through mixed models analysis. We showed that improved glove use significantly reduced mean PTD concentrations from 24.1 before to 4.2 µg/g creatinine after the intervention (n=11, third day postshift). In addition, mean PTD concentrations increased during the first week (14 times elevated after three consecutive shifts), but not during the second week. For PPD, no effect of improved glove use and no accumulation effect were detected. Our study is the first to deliver evidence for a significant reduction in systemic exposure to PTD through improved glove use. Disposable gloves should never be reused. PTD biomonitoring is shown to be a practical tool to quantify recent dermal exposure to oxidative hair dye components. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Casanova, Lisa M; Teal, Lisa J; Sickbert-Bennett, Emily E; Anderson, Deverick J; Sexton, Daniel J; Rutala, William A; Weber, David J
2016-10-01
OBJECTIVE Ebola virus disease (EVD) places healthcare personnel (HCP) at high risk for infection during patient care, and personal protective equipment (PPE) is critical. Protocols for EVD PPE doffing have not been validated for prevention of viral self-contamination. Using surrogate viruses (non-enveloped MS2 and enveloped Φ6), we assessed self-contamination of skin and clothes when trained HCP doffed EVD PPE using a standardized protocol. METHODS A total of 15 HCP donned EVD PPE for this study. Virus was applied to PPE, and a trained monitor guided them through the doffing protocol. Of the 15 participants, 10 used alcohol-based hand rub (ABHR) for glove and hand hygiene and 5 used hypochlorite for glove hygiene and ABHR for hand hygiene. Inner gloves, hands, face, and scrubs were sampled after doffing. RESULTS After doffing, MS2 virus was detected on the inner glove worn on the dominant hand for 8 of 15 participants, on the non-dominant inner glove for 6 of 15 participants, and on scrubs for 2 of 15 participants. All MS2 on inner gloves was observed when ABHR was used for glove hygiene; none was observed when hypochlorite was used. When using hypochlorite for glove hygiene, 1 participant had MS2 on hands, and 1 had MS2 on scrubs. CONCLUSIONS A structured doffing protocol using a trained monitor and ABHR protects against enveloped virus self-contamination. Non-enveloped virus (MS2) contamination was detected on inner gloves, possibly due to higher resistance to ABHR. Doffing protocols protective against all viruses need to incorporate highly effective glove and hand hygiene agents. Infect Control Hosp Epidemiol 2016;1-6.
21 CFR 878.4460 - Surgeon's glove.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Identification. A surgeon's glove is a device made of natural or synthetic rubber intended to be worn by... used in the glove is excluded. (b) Classification. Class I (general controls). [53 FR 23872, June 24...
RoboGlove - A Robonaut Derived Multipurpose Assistive Device
NASA Technical Reports Server (NTRS)
Diftler, Myron; Ihrke, C. A.; Bridgwater, L. B.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.
2014-01-01
The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove.
The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation
NASA Technical Reports Server (NTRS)
Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar
2014-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.
The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation
NASA Technical Reports Server (NTRS)
Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar
2014-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis
Makki, D; Deierl, K; Pandit, A; Trakru, S
2014-09-01
The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon's grade, the type of procedure, the role of the assistant and the dominance of the hand. A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1-5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection.
Small, Lightweight, Collapsible Glove Box
NASA Technical Reports Server (NTRS)
James, Jerry
2009-01-01
A small, lightweight, collapsible glove box enables its user to perform small experiments and other tasks. Originally intended for use aboard a space shuttle or the International Space Station (ISS), this glove box could also be attractive for use on Earth in settings in which work space or storage space is severely limited and, possibly, in which it is desirable to minimize weight. The development of this glove box was prompted by the findings that in the original space-shuttle or ISS setting, (1) it was necessary to perform small experiments in a large general-purpose work station, so that, in effect, they occupied excessive space; and it took excessive amounts of time to set up small experiments. The design of the glove box reflects the need to minimize the space occupied by experiments and the time needed to set up experiments, plus the requirement to limit the launch weight of the box and the space needed to store the box during transport into orbit. To prepare the glove box for use, the astronaut or other user has merely to insert hands through the two fabric glove ports in the side walls of the box and move two hinges to a locking vertical position (see figure). The user could do this while seated with the glove box on the user fs lap. When stowed, the glove box is flat and has approximately the thickness of two pieces of 8-in. (.20 cm) polycarbonate.
[The risk of surgical glove perforations].
Hagen, Gerd Ødegård; Arntzen, Halvard
2007-03-29
The increasing prevalence of blood-borne viral diseases has drawn attention to the barrier between the surgical personnel's hands and the patients body fluids during surgery. At present, the typical practice is to use double gloving in orthopaedic surgery, and single gloving in other types of surgery. The main purpose of our study was to estimate and compare the perforation risk in different categories of surgery. In a series of 655 surgical operations covering 5 main categories of surgery, all detected glove perforations were recorded and analysed. Perforations were found in 203 out of 655 operations (31%). The observed perforation frequency was 44.5% in gastrointestinal surgery, 34.7% in orthopaedic surgery, 31.1% in gynaecology, 18.6% in vascular surgery and 9.2% in general surgery. In some subcategories, the frequencies were even higher. In several categories of surgery, we found high perforation frequencies. Perforations in single gloves are often not detected during operations. This may increase the risk of transmission of blood-borne infections, particularly because the time of exposure may be long. Double indicator gloves make the intra-operative detection of perforations easier. Also double gloving is known to significantly reduce the perforation risk. The use of double indicator gloves is recommended in all categories of surgery.
Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshorn, Fletcher
2011-01-01
Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.
Chan, K Y; Singh, V A; Oun, B H; To, B H Se
2006-12-01
Glove perforation during surgery has always been a matter of concern as it increases the infection rate and the risk of transmission of blood borne diseases. To determine the common causes, the site and the awareness of glove perforations in orthopaedic surgery, a prospective study was conducted to assess the rate of glove perforation during 130 consecutive orthopaedic operations. All gloves worn by the surgical team were assessed after the surgery using the water-loading test. A total of 1452 gloves were tested, and the rate of perforation was 3.58%. Most of these perforations (61.5%) were unnoticed. The main surgeons had the most perforations (76.9%), followed by first assistants (13.5%) and second assistants (9.6%). Most perforations occurred at the non-dominant hand. The commonest site of perforation was the index finger followed by the thumb. Shearing force with instruments accounted for 45% of the noticed perforations. Majority of these occurred during nailing procedures (33%) and internal fixation without the use of wires (19%). Our rate of glove perforation is similar to other series. Most of them went unnoticed and were mainly due to shearing injuries rather than perforation by sharps. Therefore, there is an increased risk of contamination and break in asepsis during surgery.
Evaluation of surgical glove integrity during surgery in a Brazilian teaching hospital.
de Oliveira, Adriana Cristina; Gama, Camila Sarmento
2014-10-01
A cross-sectional study was conducted in a large university hospital in Belo Horizonte, Minas Gerais, Brazil to evaluate surgical glove integrity after use during surgery. This 6-month study was conducted by a gastroenterological, cardiovascular, and pediatric surgical team consisting of surgeons (main surgeon and first and second assistants), medical students, and scrub nurses. The gloves used during surgery were examined postsurgery for microperforations using the watertight test as described in European Norm EN 455-1. A total of 116 medical professionals conducted the 100 surgeries monitored. Of the 1090 gloves analyzed, 131 (12%) had a perforation detected postsurgery, 39 of which (37.5%) were recognized by users at the time of occurrence. The highest incidence of perforations occurred among surgeons (P = .033) in the index finger, followed by the thumb of the nondominant hand; in outer gloves (76.9%) when double-gloving was used (P = .014); in open surgery (P = .019); and in surgeries lasting ≥ 150 minutes (P < .05). These findings reaffirm the importance of double-gloving, using a perforation indicator system, and changing gloves in surgeries of ≥ 150 minutes duration, especially in procedures involving open incisions. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Harte, Daniel; Paterson, Abby
2017-10-28
Case series. Hand injuries are the most common injury observed in hurling although compliance in wearing protective gloves is reportedly low. To devise a glove that offers comfort, protection and freedom of movement, using the bespoke capabilities of 3-dimensional (3D) printing. Each player's "catching" hand was imaged using a 3D scanner to produce a bespoke glove that they later trialed and provided feedback. Nine players provided feedback. On average, the players favorably rated the glove for the protection offered. The average response on comfort was poor, and no players reported that glove aided performance during play. This feasibility study explores the versatility of 3D printing as a potential avenue to improve player compliance in wearing protective sportswear. Feedback will help refine glove design for future prototypes. Hurling is the primary focus in this study, but knowledge gains should be transferable to other sports that have a high incidence of hand injury. 4. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vinches, L.; Peyrot, C.; Lemarchand, L.; Boutrigue, N.; Zemzem, M.; Wilkinson, K. J.; Hallé, S.; Tufenkji, N.
2015-05-01
Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health & safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling).
The effects of different materials of protective gloves on thermoregulatory responses.
Hayashi, C; Tokura, H
1999-01-01
The effects of two kinds of protecting gloves for pesticide spraying made of different materials on thermoregulatory responses during exercise were studied at ambient temperature of 28 degrees C and relative humidity of 60% in six healthy females, aged 19. One kind of gloves was made of polyurethane (A) and the other of Goretex (B) with cotton lining in each glove. Both kinds of gloves had almost the same volume. Main results of the experiment were summarised as follows: (1) during the exercise an increase of rectal temperature was inhibited more effectively in B than in A; (2) skin temperature of hand was significantly lower in B than in A; (3) absolute humidity and temperature inside the gloves were significantly lower during the period from the gripping bar exercise to the end of the experiment; (4) the number of contractions by the handgrip exercise performed immediately after the second turning of the screw was significantly smaller in A than in B. The findings presented suggest that the gloves made of Goretex material could reduce thermal strain during intermittent work in warm environmental conditions.
CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P.
A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilitiesmore » of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150°C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon with 12.9 %, Piercan Hypalon with 11.4 %, and Jung butyl‐Viton with 5.2% mass loss all at approximately 140°C. The smallest mass losses were experienced by the Jung Viton and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured in agreement with an ASTM standard. The Butyl gloves exhibited puncture resistance from 183 - 296 lbs/in for samples of 0.020 - 0.038 thick. Finally, the glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material using Dynamic Mechanical Analysis. The glass transition temperatures of the gloves were ‐60°C for butyl, ‐30°C for polyurethane, ‐ 16°C Hypalon, ‐16°C for Viton, and ‐24°C for polyurethane‐Hypalon. The glass transition was too complex for the butyl‐Hypalon and butyl‐Viton composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.« less
Gloved Human-Machine Interface
NASA Technical Reports Server (NTRS)
Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)
2015-01-01
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.
Development of a test protocol for evaluating EVA glove performance
NASA Technical Reports Server (NTRS)
Hinman, Elaine M.
1992-01-01
Testing gloved hand performance involves work from several disciplines. Evaluations performed in the course of reenabling a disabled hand, designing a robotic end effector or master controller, or hard-suit design have all yielded relevant information, and, in most cases, produced performance test methods. Most times, these test methods have been primarily oriented toward their parent discipline. For space operations, a comparative test which would provide a way to quantify pressure glove and end effector performance would be useful in dividing tasks between humans and robots. Such a test would have to rely heavily on sensored measurement, as opposed to questionnaires, to produce relevant data. However, at some point human preference would have to be taken into account. This paper presents a methodology for evaluating gloved hand performance which attempts to respond to these issues. Glove testing of a prototype glove design using this method is described.
Deierl, K; Pandit, A; Trakru, S
2014-01-01
Introduction The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. Methods During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon’s grade, the type of procedure, the role of the assistant and the dominance of the hand. Results A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1–5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Conclusions Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection. PMID:25198974
Vandenplas, O; Larbanois, A; Vanassche, F; François, S; Jamart, J; Vandeweerdt, M; Thimpont, J
2009-03-01
Natural rubber latex (NRL) has become as a major cause of occupational asthma (OA) in workers using NRL gloves. Few population-based studies have assessed the impact of changes in the patterns of glove usage on the incidence of NRL-induced OA. To characterize the time trends in incident cases of NRL-induced OA in Belgium and examine whether incidence rates were related to the types of gloves used in hospitals. Incident cases of NRL-induced OA were identified through a retrospective review of all claims submitted to the Workers' Compensation Board up to December 2004. Based on the results of diagnostic procedures, the diagnosis of NRL-induced OA was categorized as definite, probable, unlikely, or indeterminate. The patterns of glove usage were characterized through a questionnaire survey of Belgian hospitals. A total of 298 claims for NRL-induced OA were identified, including 127 subjects with definite OA and 68 with probable OA. Categorized by the year of asthma onset, the incident cases of definite and probable NRL-induced OA markedly decreased from 1999 onwards. The use of powdered NRL gloves fell from 80.9% in 1989 to 17.9% in 2004. Powdered NRL gloves were predominantly substituted with NRL-free gloves, especially in the case of non-sterile procedures. These national compensation-based data confirm that a persistent decline in the incidence of NRL-induced OA has occurred since late 1990s. This downward trend has temporally been associated with a decreasing usage of powdered NRL, further supporting a beneficial role of changes in glove policies.
NASA Technical Reports Server (NTRS)
Kilby, Melissa
2015-01-01
Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.
An Approach for Performance Based Glove Mobility Requirements
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; Benson, Elizabeth; England, Scott
2016-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves currently in development.
An Approach for Performance Based Glove Mobility Requirements
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay; Benson, Elizabeth; England, Scott
2015-01-01
The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.
Mapping From an Instrumented Glove to a Robot Hand
NASA Technical Reports Server (NTRS)
Goza, Michael
2005-01-01
An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.
Holme, Jørgen Bendix; Mortensen, Frank Viborg
2005-08-01
To test the use of a simple and cheap powder-free glove bag to extract the gallbladder during laparoscopic cholecystectomy (LC). The medical records of 142 consecutive patients who had their gallbladder removed using a powder-free glove bag were reviewed. No complications in the form of bile or stone spillage during extraction were observed. The absence of complications and the low cost make routine use of the glove bag a wise option for extracting the gallbladder during LC. The use of the glove bag seems to reduce the risk of contamination with bacteria, bile, and gallstones and may reduce contamination by malignant cells in case of unexpected gallbladder carcinoma.
Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation.
Lin, Bor-Shing; Lee, I-Jung; Yang, Shu-Yu; Lo, Yi-Chiang; Lee, Junghsi; Chen, Jean-Lon
2018-05-13
Capturing hand motions for hand function evaluations is essential in the medical field. Various data gloves have been developed for rehabilitation and manual dexterity assessments. This study proposed a modular data glove with 9-axis inertial measurement units (IMUs) to obtain static and dynamic parameters during hand function evaluation. A sensor fusion algorithm is used to calculate the range of motion of joints. The data glove is designed to have low cost, easy wearability, and high reliability. Owing to the modular design, the IMU board is independent and extensible and can be used with various microcontrollers to realize more medical applications. This design greatly enhances the stability and maintainability of the glove.
Evaluation of the flexibility of protective gloves.
Harrabi, Lotfi; Dolez, Patricia I; Vu-Khanh, Toan; Lara, Jaime
2008-01-01
Two mechanical methods have been developed for the characterization of the flexibility of protective gloves, a key factor affecting their degree of usefulness for workers. The principle of the first method is similar to the ASTM D 4032 standard relative to fabric stiffness and simulates the deformations encountered by gloves that are not tight fitted to the hand. The second method characterizes the flexibility of gloves that are worn tight fitted. Its validity was theoretically verified for elastomer materials. Both methods should prove themselves as valuable tools for protective glove manufacturers, allowing for the characterization of their existing products in terms of flexibility and the development of new ones better fitting workers' needs.
Natural rubber latex allergy after 12 years: recommendations and perspectives.
Charous, B Lauren; Blanco, Carlos; Tarlo, Susan; Hamilton, Robert G; Baur, Xaver; Beezhold, Donald; Sussman, Gordon; Yunginger, John W
2002-01-01
Natural rubber latex (NRL) allergy is a "new" illness whose prevalence reached epidemic proportions in highly exposed populations during the last decade. In children with spina bifida and in patients exposed to NRL during radiologic procedures, institution of prophylactic safety measures has had demonstrable effects in preventing allergic reactions. The risk of NRL allergy appears to be largely linked to occupational exposure, and NRL-associated occupational asthma is due almost solely to powdered latex glove use. Prevalence of NRL-allergic sensitization in the general population is quite low; several studies of young adults demonstrate rates of positive skin test results that are less than 1%. After occupational exposure, rates of sensitization and NRL-induced asthma rise dramatically in individuals using powdered NRL gloves but not in individuals using powder-free gloves. Airborne NRL is dependent on the use of powdered NRL gloves; conversion to non-NRL or nonpowdered NRL substitutes results in predictable rapid disappearance of detectable levels of aeroallergen. For these reasons, adoption of the following institutional policies designed to prevent new cases of NRL allergy and maximize safety is recommended: (1) NRL gloves should be used only as mandated by accepted Standard Precautions; (2) only nonpowdered, nonsterile NRL gloves should be used; and (3) nonpowdered, sterile NRL gloves are preferred for use. Low-protein powdered, sterile gloves may be used, but only in conjunction with an ongoing assessment for development of allergic reactions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... quality levels (AQLs) for leaks and visual defects observed during FDA testing of medical gloves. The CPG... practices regulation (21 CFR 10.115). The CPG represents FDA's current thinking on the criteria for direct...
A Case of Chromium Contact Dermatitis due to Exposure from a Golf Glove.
Lim, Jong Ho; Kim, Hei Sung; Park, Young Min; Lee, Jun Young; Kim, Hyung Ok
2010-02-01
Chromium is a transition metal and has been shown to elicit contact dermatitis. Although leather products have been known to be the most significant source of chromium exposure these days, the majority of reports have been related to exposure from shoe products. We herein report a professional golfer who became allergic to golf gloves made of chromium-tanned leather. A 27-year-old woman golfer presented with recurrent, pruritic, erythematous plaques that had been occurring on both hands for several years. The lesions developed whenever she had worn golf gloves for an extended period of time, especially during tournament season. To identify the causative agent, patch tests were performed and the results demonstrated a strong positive reaction to potassium dichromate 0.5% and to her own glove. The amount of chromium in her golf glove was analyzed to be 308.91 ppm and based on this, a diagnosis of allergic contact dermatitis due to a chromium-tanned leather glove was made. She was treated with oral antihistamines combined with topical steroids and advised to wear chromium-free leather gloves. There has been no evidence of recurrence during a six month follow-up period.
Retained portion of latex glove during femoral nailing. Case report.
Sadat-Ali, M; Marwah, S; al-Habdan, I
1996-11-01
A case of retained glove during Kuntscher intramedullary nailing is described. An abscess around the glove could have lead to osteomyelitis. One need to be cautious feeling the top end of the nail while femoral nailing to avoid such a complication.
Van Wicklin, Sharon A
2016-05-01
Variations in documenting surgical wound classification Key words: surgical wound classification, clean, clean-contaminated, contaminated, dirty. Wearing long-sleeved jackets while preparing and packaging items for sterilization Key words: long-sleeved jackets, organic material, sterile processing. Endoscopic transmission of prions Key words: prions, high-risk tissue, low-risk tissue, Creutzfeldt-Jakob disease (CJD), variant Creutzfeldt-Jakob disease (vCJD). Wearing gloves when handling flexible endoscopes Key words: gloves, low-protein, powder-free, natural rubber latex gloves, latex-free gloves. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Development of Wireless RFID Glove for Various Applications
NASA Astrophysics Data System (ADS)
Lee, Changwon; Kim, Minchul; Park, Jinwoo; Oh, Jeonghoon; Eom, Kihwan
Radio Frequency Identification is increasingly popular technology with many applications. The majority of applications of RFID are supply-chain management. In this paper, we proposed the development of wireless RFID Glove for various applications in real life. Proposed wireless RFID glove is composed of RFID reader of 13.56 MHz and RF wireless module. Proposed Gloves were applied to two applications. First is the interactive leaning and second is Meal aid system for blind people. The experimental results confirmed good performances.
The development of a test methodology for the evaluation of EVA gloves
NASA Technical Reports Server (NTRS)
O'Hara, John M.; Cleland, John; Winfield, Dan
1988-01-01
This paper describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: range of motion, strength, tactile perception, dexterity, fatigue, and comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure.
Aho, E.; Mikkelä, A.; Ranta, J.; Tuominen, P.; Rättö, M.; Maunula, L.
2014-01-01
Human noroviruses (HuNoVs), a leading cause of food-borne gastroenteritis worldwide, are easily transferred via ready-to-eat (RTE) foods, often prepared by infected food handlers. In this study, the transmission of HuNoV and murine norovirus (MuNoV) from virus-contaminated hands to latex gloves during gloving, as well as from virus-contaminated donor surfaces to recipient surfaces after simulated preparation of cucumber sandwiches, was inspected. Virus transfer was investigated by swabbing with polyester swabs, followed by nucleic acid extraction from the swabs with a commercial kit and quantitative reverse transcription-PCR. During gloving, transfer of MuNoV dried on the hand was observed 10/12 times. HuNoV, dried on latex gloves, was disseminated to clean pairs of gloves 10/12 times, whereas HuNoV without drying was disseminated 11/12 times. In the sandwich-preparing simulation, both viruses were transferred repeatedly to the first recipient surface (left hand, cucumber, and knife) during the preparation. Both MuNoV and HuNoV were transferred more efficiently from latex gloves to cucumbers (1.2% ± 0.6% and 1.5% ± 1.9%) than vice versa (0.7% ± 0.5% and 0.5% ± 0.4%). We estimated that transfer of at least one infective HuNoV from contaminated hands to the sandwich prepared was likely to occur if the hands of the food handler contained 3 log10 or more HuNoVs before gloving. Virus-contaminated gloves were estimated to transfer HuNoV to the food servings more efficiently than a single contaminated cucumber during handling. Our results indicate that virus-free food ingredients and good hand hygiene are needed to prevent HuNoV contamination of RTE foods. PMID:24951789
Duteille, Franck; Jeffery, Steven L A
2012-11-01
Nylon-reinforced silver sodium carboxymethylcellulose (AQUACEL(®) Ag BURN) dressings were developed to be pliable and conforming for the management of partial-thickness burns. This study evaluated the AQUACEL(®) Ag BURN glove for the management of hand burns. This 21-day, phase II, prospective, non-comparative study included 23 patients with partial-thickness hand burn of at least two fingers. The AQUACEL(®) Ag BURN glove was applied to one hand and could remain in place up to 21 days until clinically indicated to change the glove. Dressings were evaluated 1, 2, 4, 6, 8, 14, and 21 days after initial application. Safety was the primary study endpoint. Sixteen (70%) hand burns re-epithelialized fully over a mean of 15.6 days. Initial application was easy/very easy for 20 (87%) patients. Mean time for initial dressing application was 5.4 min. At final evaluation, most patients gave ratings of excellent/good for conformability (91%), overall glove performance (74%), and appropriateness of sizes (83%). Mean pain score from 0 (none) to 10 (worst imaginable) was 3.43 at baseline; during the study, mean scores were 1.15 at rest and 2.29 during movement. Of 61 glove removals, most (72%) were easy/very easy, and 12% had fallen off. Adverse events (wound site or elsewhere) occurred in 15 (65%) patients. Treatment-related adverse events were wound pain (17%), maceration (9%), and stiff fingers (4%). The AQUACEL(®) Ag BURN glove was well tolerated in the management of partial-thickness hand burn. Many patients used only one glove. When glove changes were required, they were usually quick and easy. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
Grasp Assist Device with Automatic Mode Control Logic
NASA Technical Reports Server (NTRS)
Laske, Evan (Inventor); Davis, Donald R. (Inventor); Ihrke, Chris A. (Inventor)
2018-01-01
A system includes a glove, sensors, actuator assemblies, and controller. The sensors include load sensors which measure an actual grasping force and attitude sensors which determine a glove attitude. The actuator assembly provides a grasp assist force to the glove. Respective locations of work cells in the work environment and permitted work tasks for each work cell are programmed into the controller. The controller detects the glove location and attitude. A work task is selected by the controller for the location. The controller calculates a required grasp assist force using measured actual grasping forces from the load sensors. The required grasp assist force is applied via the glove using the actuator assembly to thereby assist the operator in performing the identified work task.
75 FR 36362 - Procurement List Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... additions to the Procurement List. Glove, Mechanic's A commercial company submitted comments objecting to... provide the mechanic's gloves in compliance with the Acts cited by CamelBak in its correspondence to the... Accordingly, the following products and services are added to the Procurement List: Products Glove, Mechanic's...
[Migrants from disposable gloves and residual acrylonitrile].
Wakui, C; Kawamura, Y; Maitani, T
2001-10-01
Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.
Occult glove perforation during ophthalmic surgery.
Apt, L; Miller, K M
1992-01-01
We examined the latex surgical gloves used by 56 primary surgeons in 454 ophthalmic surgical procedures performed over a 7-month period. Of five techniques used to detect pinholes, air inflation with water submersion and compression was found to be the most sensitive, yielding a 6.80% prevalence in control glove pairs and a 21.8% prevalence in postoperative study glove pairs, for a 15.0% incidence of surgically induced perforations (P = 0.000459). The lowest postoperative perforation rate was 11.4% for cataract and intraocular lens surgery, and the highest was 41.7% for oculoplastic procedures. Factors that correlated significantly with the presence of glove perforations as determined by multiple logistic regression analysis were oculoplastic and pediatric ophthalmology and strabismus surgical procedures, surgeon's status as a fellow in training, operating time, and glove size. The thumb and index finger of the nondominant hand contained the largest numbers of pinholes. These data suggest strategies for reducing the risk of cross-infection during ophthalmic surgery. PMID:1494836
Constructing Gloved wings for aerodynamic studies
NASA Technical Reports Server (NTRS)
Bohn-Meyer, Marta R.
1988-01-01
Recently, two aircraft from the Dryden Flight Research Facility were used in the general study of natural laminar flow (NLF). The first, an F-14A aircraft on short-term loan from the Navy, was used to investigate transonic natural laminar flow. The second, an F-15A aircraft on long-term loan from the Air Force, was used to examine supersonic NLF. These tests were follow-on experiments to the NASA F-111 NLF experiment conducted in 1979. Both wings of the F-14A were gloved, in a two-phased experiment, with full-span(upper surface only) airfoil shapes constructed primarily of fiberglass, foam, and resin. A small section of the F-15A right wing was gloved in a similar manner. Each glove incorporated provisions for instrumentation to measure surface pressure distributions. The F-14A gloves also had provisions for instrumentation to measure boundary layer profiles, acoustic environments, and surface pitot pressures. Discussions of the techniques used to construct the gloves and to incorporate the required instrumentation are presented.
Mechanical counter pressure on the arm counteracts adverse effects of hypobaric exposures
NASA Technical Reports Server (NTRS)
Tanaka, Kunihiko; Limberg, Ryan; Webb, Paul; Reddig, Mike; Jarvis, Christine W.; Hargens, Alan R.
2003-01-01
INTRODUCTION: Current space suits have limited movement due to gas pressurization during exposure to the vacuum of space. Alternatively, if pressure is applied by an elastic garment vs. pneumatic garment to produce mechanical counter pressure (MCP), several advantages are possible. In this study, we investigate local microcirculatory and other effects produced with and without a prototype MCP glove and sleeve during exposure to varying levels of vacuum. METHODS: The entire arms of eight male volunteers were studied at normal ambient pressure and during 5 min exposures to -50, -100, and -150 mm Hg with and without the MCP glove and sleeve. Pressure distribution, skin microvascular flow, and temperature were measured. RESULTS: The MCP glove and sleeve generated over 200 mm Hg on the middle finger, dorsum of the hand, and the wrist. However, pressure was significantly lower on the forearm and the upper arm. Without the glove and sleeve, only two of eight subjects tolerated -100 mm Hg. Also, no subject tolerated -150 mm Hg. However, subjects tolerated all vacuum pressures wearing the glove and sleeve. Skin microvascular flow and temperature remained within control values with the glove and sleeve at a chamber pressure of -150 mm Hg. DISCUSSION: The MCP glove and sleeve counteracts adverse effects of vacuum exposures due to lower pressure differentials. Pressure levels over the hand and wrist are similar to those of the current U.S. space suit glove and sleeve, but additional development is required to increase MCP over the forearm and upper arm.
Development and Test of Robotically Assisted Extravehicular Activity Gloves
NASA Technical Reports Server (NTRS)
Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.
2017-01-01
Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.
Jurewicz, Joanna; Hanke, Wojciech; Sobala, Wojciech; Ligocka, Danuta
2009-01-01
The purpose of our study was to determine the level of skin contamination by azoxystrobin in a group of women tending cucumbers in a vegetable-growing greenhouse after restricted entry intervals expired. Exposure samples were assessed on two days during the spring: first entry on the day after spraying of azoxystrobin and second entry six days later. Dermal exposure was measured by using patches on the outside of clothing and sampling gloves underneath regular working gloves. Pesticide deposited on clothing patches and gloves as a substitute for skin deposition was determined by liquid chromatography and mass spectrometry (LC-MS/MS). The study has shown that workers in a Polish greenhouse are exposed to pesticides at re-entry into the greenhouse after pesticides were sprayed several days earlier. Azoxystrobin has been detected on hands, shoulders and chest. Higher levels of azoxystrobin were found on the cotton gloves of women tending the vegetables than on the patches. The levels decreased (by about 60%) on the patches and increased (by about 250%) on the cotton gloves between the two days of measurement. Women working in a vegetable-growing greenhouse and not directly engaged in the process of spraying experience a measurable dermal exposure to azoxystrobin. The protective gloves constitute a source of secondary exposure rather than protecting employees' hands from contact with the pesticide. More efficient personal protective gloves for proper protection of women working in vegetable greenhouses are needed.
21 CFR 878.4460 - Surgeon's glove.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgeon's glove. 878.4460 Section 878.4460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a...
21 CFR 878.4460 - Surgeon's glove.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgeon's glove. 878.4460 Section 878.4460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a...
21 CFR 878.4460 - Surgeon's glove.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgeon's glove. 878.4460 Section 878.4460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4460 Surgeon's glove. (a...
2014-01-01
Background It is thought that therapy should be functional, be highly repetitive, and promote afferent input to best stimulate hand motor recovery after stroke, yet patients struggle to access such therapy. We developed the MusicGlove, an instrumented glove that requires the user to practice gripping-like movements and thumb-finger opposition to play a highly engaging, music-based, video game. The purpose of this study was to 1) compare the effect of training with MusicGlove to conventional hand therapy 2) determine if MusicGlove training was more effective than a matched form of isometric hand movement training; and 3) determine if MusicGlove game scores predict clinical outcomes. Methods 12 chronic stroke survivors with moderate hemiparesis were randomly assigned to receive MusicGlove, isometric, and conventional hand therapy in a within-subjects design. Each subject participated in six one-hour treatment sessions three times per week for two weeks, for each training type, for a total of 18 treatment sessions. A blinded rater assessed hand impairment before and after each training type and at one-month follow-up including the Box and Blocks (B & B) test as the primary outcome measure. Subjects also completed the Intrinsic Motivation Inventory (IMI). Results Subjects improved hand function related to grasping small objects more after MusicGlove compared to conventional training, as measured by the B & B score (improvement of 3.21±3.82 vs. -0.29±2.27 blocks; P=0.010) and the 9 Hole Peg test (improvement of 2.14±2.98 vs. -0.85±1.29 pegs/minute; P=0.005). There was no significant difference between training types in the broader assessment batteries of hand function. Subjects benefited less from isometric therapy than MusicGlove training, but the difference was not significant (P>0.09). Subjects sustained improvements in hand function at a one month follow-up, and found the MusicGlove more motivating than the other two therapies, as measured by the IMI. MusicGlove games scores correlated strongly with the B & B score. Conclusions These results support the hypothesis that hand therapy that is engaging, incorporates high numbers of repetitions of gripping and thumb-finger opposition movements, and promotes afferent input is a promising approach to improving an individual’s ability to manipulate small objects. The MusicGlove provides a simple way to access such therapy. PMID:24885076
Friedman, Nizan; Chan, Vicky; Reinkensmeyer, Andrea N; Beroukhim, Ariel; Zambrano, Gregory J; Bachman, Mark; Reinkensmeyer, David J
2014-04-30
It is thought that therapy should be functional, be highly repetitive, and promote afferent input to best stimulate hand motor recovery after stroke, yet patients struggle to access such therapy. We developed the MusicGlove, an instrumented glove that requires the user to practice gripping-like movements and thumb-finger opposition to play a highly engaging, music-based, video game. The purpose of this study was to 1) compare the effect of training with MusicGlove to conventional hand therapy 2) determine if MusicGlove training was more effective than a matched form of isometric hand movement training; and 3) determine if MusicGlove game scores predict clinical outcomes. 12 chronic stroke survivors with moderate hemiparesis were randomly assigned to receive MusicGlove, isometric, and conventional hand therapy in a within-subjects design. Each subject participated in six one-hour treatment sessions three times per week for two weeks, for each training type, for a total of 18 treatment sessions. A blinded rater assessed hand impairment before and after each training type and at one-month follow-up including the Box and Blocks (B & B) test as the primary outcome measure. Subjects also completed the Intrinsic Motivation Inventory (IMI). Subjects improved hand function related to grasping small objects more after MusicGlove compared to conventional training, as measured by the B & B score (improvement of 3.21±3.82 vs. -0.29±2.27 blocks; P=0.010) and the 9 Hole Peg test (improvement of 2.14±2.98 vs. -0.85±1.29 pegs/minute; P=0.005). There was no significant difference between training types in the broader assessment batteries of hand function. Subjects benefited less from isometric therapy than MusicGlove training, but the difference was not significant (P>0.09). Subjects sustained improvements in hand function at a one month follow-up, and found the MusicGlove more motivating than the other two therapies, as measured by the IMI. MusicGlove games scores correlated strongly with the B & B score. These results support the hypothesis that hand therapy that is engaging, incorporates high numbers of repetitions of gripping and thumb-finger opposition movements, and promotes afferent input is a promising approach to improving an individual's ability to manipulate small objects. The MusicGlove provides a simple way to access such therapy.
76 FR 82279 - Procurement List; Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Micro, Light Blue, Size 5.5''. NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6''. NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5''. NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' . NSN...
21 CFR 878.4470 - Surgeon's gloving cream.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgeon's gloving cream. 878.4470 Section 878.4470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream...
21 CFR 878.4470 - Surgeon's gloving cream.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgeon's gloving cream. 878.4470 Section 878.4470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream...
21 CFR 878.4470 - Surgeon's gloving cream.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgeon's gloving cream. 878.4470 Section 878.4470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream...
21 CFR 878.4470 - Surgeon's gloving cream.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgeon's gloving cream. 878.4470 Section 878.4470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream...
21 CFR 878.4470 - Surgeon's gloving cream.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgeon's gloving cream. 878.4470 Section 878.4470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4470 Surgeon's gloving cream...
75 FR 68394 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U. S. Small Business... Flat Dipped Rubber/Plastic Gloves, under North American Industry Classification System (NAICS) code... Rule for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves under PSC 9999...
75 FR 52789 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U.S. Small... for woven and knit impregnated with flat dipped rubber/plastic gloves, under the North American... Dipped Rubber/Plastic Gloves manufacturers. If granted, the waiver would allow otherwise qualified small...
Brackenbush, L.W.; Hoenes, G.R.
A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
2009-11-19
CAPE CANAVERAL, Fla. – Alan Hayes, at microphone, chairman of Volanz Aerospace Inc., addresses the participants in the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, at the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida. Volanz Aerospace Inc., of Owings, Md., administers the competition at no cost to NASA. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, inventors tested the gloves to measure dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Glove Changing Habits in Mobile Food Vendors in New York City.
Basch, Corey H; Guerra, Laura A; MacDonald, Zerlina; Marte, Myladys; Basch, Charles E
2015-08-01
The aim of this study was to determine how often mobile food cart vendors in New York City (NYC) changed gloves after exchanging money, which is required by the current NYC health code as one of various measures to prevent foodborne illness. A total of 100 carts (10 carts in 10 zones) throughout Manhattan were observed. In the majority (56.9%, n = 1,026) of the 1,804 money exchanges, food cart vendors did not change their gloves. Not changing gloves after exchanging money was widespread regardless of food type served (46.6% for breakfast to 63.7% for lunch), and across all 10 zones. Not changing gloves after touching money may result in indirect transmission of agents of disease and pose health risks for consumers.
2009-11-19
CAPE CANAVERAL, Fla. – Paul Secor, left, of Secor Strategies LLC, addresses the participants in the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, at the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida. Secor Strategies LLC, of Titusville, Fla., is a sponsor of the event and provided local logistical services. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, inventors tested the gloves to measure dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Thermal comfort of dual-chamber ski gloves
NASA Astrophysics Data System (ADS)
Dotti, F.; Colonna, M.; Ferri, A.
2017-10-01
In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called “grip” to maximize finger flexibility and one called “warm” to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5-min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test.
Rentetzi, Maria
2017-06-01
In a nuclear laboratory, a glove box is a windowed, sealed container equipped with two flexible gloves that allow the user to manipulate nuclear materials from the outside in an ostensibly safe environment. As a routine laboratory device, it invites neglect from historians and storytellers of science. Yet, since especially the Gulf War, glove boxes have put the interdependence of science, diplomacy, and politics into clear relief. Standing at the intersection of history of science and international history, technological materials and devices such as the glove box can provide penetrating insight into the role of international diplomatic organizations to the global circulation and control of scientific knowledge. The focus here is on the International Atomic Energy Agency. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.
Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Transmission of vibration through gloves: effects of material thickness.
Md Rezali, Khairil Anas; Griffin, Michael J
2016-08-01
It might be assumed that increasing the thickness of a glove would reduce the vibration transmitted to the hand. Three material samples from an anti-vibration glove were stacked to produce three thicknesses: 6.4, 12.8 and 19.2 mm. The dynamic stiffnesses of all three thicknesses, the apparent mass at the palm and the finger and the transmission of vibration to the palm and finger were measured. At frequencies from 20 to 350 Hz, the material reduced vibration at the palm but increased vibration at the finger. Increased thickness reduced vibration at the palm but increased vibration at the finger. The measured transmissibilities could be predicted from the material dynamic stiffness and the apparent mass of the palm and finger. Reducing the dynamic stiffness of glove material may increase or decrease the transmission of vibration, depending on the material, the frequency of vibration and the location of measurement (palm or finger). Practitioner Summary: Transmission of vibration through gloves depends on the dynamic response of the hand and the dynamic stiffness of glove material, which depends on material thickness. Measuring the transmission of vibration through gloves to the palm of the hand gives a misleading indication of the transmission of vibration to the fingers.
Birnbach, David J; Rosen, Lisa F; Fitzpatrick, Maureen; Carling, Philip; Arheart, Kristopher L; Munoz-Price, L Silvia
2015-04-01
Oral flora, blood-borne pathogens, and bacterial contamination pose a direct risk of infection to patients and health care workers. We conducted a study in a simulated operating room using a newly validated technology to determine whether the use of 2 sets of gloves, with the outer set removed immediately after endotracheal intubation, may reduce this risk. Forty-one anesthesiology residents (PGY 2-4) were enrolled in a study consisting of individual or group simulation sessions. On entry to the simulated operating room, the residents were asked to perform an anesthetic induction and tracheal intubation timed to approximately 6 minutes; they were unaware of the study design. Of the 22 simulation sessions, 11 were conducted with the intubating resident wearing single gloves, and 11 with the intubating resident using double gloves with the outer pair removed after verified intubation. Before the start of the scenario, we coated the lips and inside of the mouth of the mannequin with a fluorescent marking gel as a surrogate pathogen. After the simulation, an observer examined 40 different sites using a handheld ultraviolet light in the operating room to determine the transfer of surrogate pathogens to the patient and the patient's environment. Residents who wore double gloves were instructed by a confederate nurse to remove the outer set immediately after completion of the intubation. Forty sites of potential intraoperative pathogen spread were identified and assigned a score. The difference in the rate of contamination between anesthesiology residents who wore single gloves versus those with double gloves was clinically and statistically significant. The number of sites that were contaminated in the operating room when the intubating resident wore single gloves was 20.3 ± 1.4 (mean ± SE); the number of contaminated sites when residents wore double gloves was 5.0 ± 0.7 (P < 0.001). The results of this study suggest that when an anesthesiologist wears 2 sets of gloves during laryngoscopy and intubation and then removes the outer set immediately after intubation, the contamination of the intraoperative environment is dramatically reduced.
Haptic Glove Technology: Skill Development through Video Game Play
ERIC Educational Resources Information Center
Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing
2010-01-01
This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…
12. VIEW OF THE INSPECTION MODULE (MODULE D). THE GLOVE ...
12. VIEW OF THE INSPECTION MODULE (MODULE D). THE GLOVE BOX IN THE FOREFRONT OF THE PHOTOGRAPH CONTAINS A DRILL PRESS; OTHER GLOVE BOXES ARE USED FOR PARTS INSPECTION. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
A System for Cooling inside a Glove Box
ERIC Educational Resources Information Center
Sanz, Martial
2010-01-01
An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…
The Use of Latex Gloves in the School Setting
ERIC Educational Resources Information Center
Purcell, Cathy Koeppen
2006-01-01
In 1987, when the U.S. Centers for Disease Control and Prevention recommended the use of universal precautions in response to the HIV/AIDS epidemic, the demand for medical gloves dramatically increased. Unfortunately, the manufacturing techniques for the most widely-used gloves--natural rubber latex--also changed, in order to expedite production.…
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
2009-11-19
CAPE CANAVERAL, Fla. - At the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida, the winners of the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, pose for a group photograph with their friends, family and the event organizers. From left are Caroline Homer and her father, Peter Homer, winner of the $250,000 first prize; Alan Hayes, chairman of Volanz Aerospace Inc.; Andy Petro, manager of NASA Centennial Challenges; Ted Southern, winner of the $100,000 second prize; his friend and glove tester Amy Miller; and Paul Secor, Secor Strategies LLC. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, the gloves were submitted to burst tests, joint force tests and tests to measure their dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Checchi, L; D'Achille, C; Conti, S
1991-01-01
The diffusion of transmissible diseases such as the Acquired Immunodeficiency Syndrome, well known as AIDS, has induced in the population a great sensibility to the problem of disease transmission. Dentists and patients, because of peculiar features of oral environment and dental procedures, are very exposed to these risks. For this reason every technique which reduces the risk of cross-infections patient to patient and patient to dentist to patient are absolutely necessary. From this point of view the use of gloves is very important to protect dental operator and patients. The aim of this study is: a) to stress the importance of mechanical barriers, like gloves, in dentistry in order to sensitize dental practitioners to the use of gloves; b) to underline that the quality of dental gloves in Italy is lower than in other countries which have a quality standard.
2009-11-19
CAPE CANAVERAL, Fla. – At the Astronaut Hall of Fame near NASA’s Kennedy Space Center in Florida, participants in the 2009 Astronaut Glove Challenge, part of NASA’s Centennial Challenges Program, pose for a group portrait. In the center of the front row are the winners, Ted Southern of Brooklyn, N.Y., at left, and Peter Homer of Southwest Harbor, Maine. The nationwide competition focused on developing improved pressure suit gloves for astronauts to use while working in space. During the challenge, the gloves were submitted to burst tests, joint force tests and tests to measure their dexterity and strength during operation in a glove box which simulates the vacuum of space. Centennial Challenges is NASA’s program of technology prizes for the citizen-inventor. The winning prize for the Glove Challenge is $250,000 provided by the Centennial Challenges Program. Photo credit: NASA/Kim Shiflett
Tactility as a function of grasp force: Effects of glove, orientation, pressure, load, and handle
NASA Technical Reports Server (NTRS)
Bishu, Ram R.; Bronkema, Lisa A.; Garcia, Dishayne; Klute, Glenn; Rajulu, Sudhakar
1994-01-01
One of the reasons for reduction in performance when gloves are donned is the lack of tactile sensitivity. It was argued that grasping force for a weight to be grasped will be a function of the weight to be lifted and the hand conditions. It was further reasoned that the differences in grasping force for various hand conditions will be a correlate of the tactile sensitivity of the corresponding hand conditions. The objective of this experiment, therefore, was to determine the effects of glove type, pressure, and weight of load on the initial grasping force and stable grasping force. It was hypothesized that when a person grasps an object, he/she grasps very firmly initially and then releases the grasp slightly after realizing what force is needed to maintain a steady grasp. This would seem to be particularly true when a person is wearing a glove and has lost some tactile sensitivity and force feedback during the grasp. Therefore, the ratio of initial force and stable force and the stable force itself would represent the amount of tactile adjustment that is made when picking up an object, and this adjustment should vary with the use of gloves. A dynamometer was fabricated to measure the grasping force; the tests were performed inside a glove box. Four female and four male subjects participated in the study, which measured the effects of four variables: load effect, gender effect, glove type, and pressure variance. The only significant effects on the peak and stable force were caused by gender and the weight of the load lifted. Neither gloves nor pressure altered these forces when compared to a bare-handed condition, as was suspected before the test. It is possible that gloves facilitate in holding due to coefficient of friction while they deter in peak grasp strength.
Brackenbush, Larry W.; Hoenes, Glenn R.
1981-01-01
According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.
In-Situ Leak Testing And Replacement Of Glovebox Isolator, Or Containment Unit Gloves
Castro, Julio M.; Macdonald, John M.; Steckle, Jr., Warren P.
2004-11-02
A test plug for in-situ testing a glove installed in a glovebox is provided that uses a top plate and a base plate, and a diametrically expandable sealing mechanism fitting between the two plates. The sealing mechanism engages the base plate to diametrically expand when the variable distance between the top plate and the bottom plate is reduced. An inlet valve included on the top plate is used to introducing a pressurized gas to the interior of the glove, and a pressure gauge located on the top plate is used to monitor the interior glove pressure.
Mutsuga, M; Wakui, C; Kawamura, Y; Maitani, T
2002-11-01
In Japan, disposable gloves made from nitrile-butadiene rubber (NBR) are frequently used in contact with foods. In a previous paper, we investigated substances migrating from various gloves made of polyvinyl chloride, polyethylene, natural rubber and NBR. Zinc di-n-butyldithiocarbamate (ZDBC), diethyldithiocarbamate (ZDEC) used as vulcanization accelerators, di(2-ethylhexyl)phthalate (DEHP) used as a plasticizer and many unknown compounds that migrated from NBR gloves into n-heptane were detected by GC/MS. In this paper, six unknown compounds were obtained from one kind of NBR glove by n-hexane extraction and each was isolated by silica gel chromatography. From the results of NMR and mass spectral analysis of the six unknown compounds, their structures are proposed as 1,4-dione-2,5-bis(1,1-dimethylpropyl)cyclohexadiene (1), 2-(1,1-dimethylethyl)-4-(1,1,3,3-tetra methylbutyl)phenol (2), 2,6-bis(1,1-dimethylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol (3), 2,4-bis(1,1,3,3-tetramethylbutyl)phenol (4), 2-(1,1-dimethylethyl)4,6-bis(1,1,3,3-tetramethylbutyl)phenol (5) and 2,4,6-tris(1,1,3,3-tetramethylbutyl)phenol (6). Compound 1 was observed in five of the seven kinds of NBR gloves, and compounds 2-4 and 6, which are not listed in Chemical Abstract (CA), were present in four kinds of gloves.
Nathan, Dominic E; Johnson, Michelle J; McGuire, John R
2009-01-01
Hand and arm impairment is common after stroke. Robotic stroke therapy will be more effective if hand and upper-arm training is integrated to help users practice reaching and grasping tasks. This article presents the design, development, and validation of a low-cost, functional electrical stimulation grasp-assistive glove for use with task-oriented robotic stroke therapy. Our glove measures grasp aperture while a user completes simple-to-complex real-life activities, and when combined with an integrated functional electrical stimulator, it assists in hand opening and closing. A key function is a new grasp-aperture prediction model, which uses the position of the end-effectors of two planar robots to define the distance between the thumb and index finger. We validated the accuracy and repeatability of the glove and its capability to assist in grasping. Results from five nondisabled subjects indicated that the glove is accurate and repeatable for both static hand-open and -closed tasks when compared with goniometric measures and for dynamic reach-to-grasp tasks when compared with motion analysis measures. Results from five subjects with stroke showed that with the glove, they could open their hands but without it could not. We present a glove that is a low-cost solution for in vivo grasp measurement and assistance.
Janota, Jan; Šebková, Sylva; Višňovská, Magda; Kudláčková, Jana; Hamplová, Drahomíra; Zach, Jiří
2014-10-01
To assess the impact of a hand hygiene protocol, using hand washing, alcohol hand rub and gloves when caring for preterm infants born after 31 weeks of gestation, on the incidence of neonatal late onset sepsis (LOS). All babies delivered between 32 + 0 and 36 + 6 weeks gestation and admitted to the neonatal intensive care unit during a 14-month period were included. We followed a hand hygiene protocol with hand washing and alcohol hand rub (hand rub period) for the first 7 months and a protocol of hand washing, alcohol hand rub and gloves (gloves period) for the second 7 months. The hand rub and gloves groups consisted of 111 and 89 patients, respectively. Five patients were diagnosed with a total of six episodes of LOS in the hand rub group, and the incidence of LOS during the hand rub period was 2.99/1000 hospital days and 54.1/1000 admissions. There were no patients diagnosed with LOS during the gloves period (significant decrease, p = 0.028). Using a hand hygiene protocol with hand washing, hand rub and gloves significantly reduced the incidence of LOS in preterm newborns, and the results suggest that it may produce a sustained improvement in the infection rate. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
76 FR 62391 - Procurement List; Proposed Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Blue, Size 5.5'' NSN: 6515-00-NIB-0722--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6'' NSN: 6515-00-NIB-0723--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 6.5'' NSN: 6515-00-NIB-0724--Gloves, Surgical, Powder-free, Esteem Micro, Light Blue, Size 7'' NSN: 6515-00-NIB-0725...
9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ...
9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ANION EXCHANGE PROCESS IN ROOM 149. THE GLOVE BOXES ON THE LEFT CONTAIN MIXER STIRRERS THAT AID IN THE DISSOLUTION PROCESS THAT OCCURRED PRIOR TO ANION EXCHANGE. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE ...
3. VIEW OF CHAINVEYOR. AN ENCLOSED CHAIN CONVEYOR CONNECTED GLOVE BOXES WITHIN AND BETWEEN MODULAR WORK AREAS. LEADED GLOVES WERE AFFIXED TO PORTS ALONG THE CHAINVEYOR PATHWAY TO ALLOW OPERATOR ACCESS. (1/25/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
Glove permeation by semiconductor processing mixtures containing glycol-ether derivatives.
Zellers, E T; Ke, H Q; Smigiel, D; Sulewski, R; Patrash, S J; Han, M W; Zhang, G Z
1992-02-01
Results of permeation tests of several glove materials challenged with semiconductor processing formulations containing glycolether derivatives are described. Commercial glove samples of nitrile rubber (Edmont), natural rubber (Edmont and Baxter), butyl rubber (North), PVC Baxter), a natural rubber/neoprene/nitrile blend (Pioneer), and a natural rubber/neoprene blend (Playtex) were tested according to the ASTM F739-85 permeation test method (open-loop configuration). The liquid formulations examined included a positive photoresist thinner containing 2-ethoxyethyl acetate (2-EEA), n-butyl acetate, and xylene; a positive photoresist containing 2-EEA, n-butyl acetate, xylene, polymer resins, and photoactive compounds; a negative photoresist containing 2-methoxyethanol (2-ME), xylene, and cyclized poly(isoprene); and pure 2-methoxyethyl acetate (2-MEA), which is the solvent used in a commercial electron-beam resist. With the exception of the negative photoresist, butyl rubber provided the highest level of protection against the solvent mixtures tested, with no breakthrough observed after 4 hr of continuous exposure at 25 degrees C. Nitrile rubber provided the highest level of protection against the negative photoresist and reasonably good protection against initial exposure to the other solvent mixtures. Gloves consisting of natural rubber or natural rubber blends provided less protection against the mixtures than either nitrile or butyl rubber. For most of the glove samples, permeation of the glycol-ether derivatives contained in the mixtures was faster than that predicted from the permeation of the pure solvents. Increasing the exposure temperature from 25 to 37 degrees C did not significantly affect the performance of the butyl rubber glove. For the other gloves, however, exposures at 37 degrees C resulted in decreases in breakthrough times of 25-75% and increases in steady-state permeation rates of 80-457% relative to values obtained at 25 degrees C. Repeated exposure of nitrile rubber samples resulted in shorter breakthrough times for all mixture components. In fact, exposure for as little as one-half of the nominal breakthrough time followed by air drying overnight resulted in measurable quantities of one or more of the component solvents at the inner surface of the gloves at the beginning of the next exposure. This effect was not observed with the butyl rubber samples. With the exception of the negative photoresist, heating previously exposed nitrile rubber samples at 70 degrees C for 20 hr prior to retesting reduced or eliminated the effects of residual solvents, permitting reuse of the gloves. The use of thin PVC or natural rubber gloves adjacent to the nitrile gloves provided moderate increases in permeation resistance.(ABSTRACT TRUNCATED AT 400 WORDS)
Birnbach, David J; Rosen, Lisa F; Fitzpatrick, Maureen; Carling, Philip; Arheart, Kristopher L; Munoz-Price, L Silvia
2015-11-01
Anesthesiologists may contribute to postoperative infections by means of the transmission of blood and pathogens to the patient and the environment in the operating room (OR). Our primary aims were to determine whether contamination of the IV hub, the anesthesia work area, and the patient could be reduced after induction of anesthesia by removing the risk associated with contaminants on the laryngoscope handle and blade. Therefore, we conducted a study in a simulated OR where some of the participants sheathed the laryngoscope handle and blade in a glove immediately after it was used to perform an endotracheal intubation. Forty-five anesthesiology residents (postgraduate year 2-4) were enrolled in a study consisting of identical simulation sessions. On entry to the simulated OR, the residents were asked to perform an anesthetic, including induction and endotracheal intubation timed to approximately 6 minutes. Of the 45 simulation sessions, 15 were with a control group conducted with the intubating resident wearing single gloves, 15 with the intubating resident using double gloves with the outer pair removed and discarded after verified intubation, and 15 wearing double gloves and sheathing the laryngoscope in one of the outer gloves after intubation. Before the start of the scenario, the lips and inside of the mouth of the mannequin were coated with a fluorescent marking gel. After each of the 45 simulations, an observer examined the OR using an ultraviolet light to determine the presence of fluorescence on 25 sites: 7 on the patient and 18 in the anesthesia environment. Of the 7 sites on the patient, ultraviolet light detected contamination on an average of 5.7 (95% confidence interval, 4.4-7.2) sites under the single-glove condition, 2.1 (1.5-3.1) sites with double gloves, and 0.4 (0.2-1.0) sites with double gloves with sheathing. All 3 conditions were significantly different from one another at P < 0.001. Of the 18 environmental sites, ultraviolet light detected fluorescence on an average of 13.2 (95% confidence interval, 11.3-15.6) sites under the single-glove condition, 3.5 (2.6-4.7) with double gloves, and 0.5 (0.2-1.0) with double gloves with sheathing. Again, all 3 conditions were significantly different from one another at P < 0.001. The results of this study suggest that when an anesthesiologist in a simulated OR sheaths the laryngoscope immediately after endotracheal intubation, contamination of the IV hub, patient, and intraoperative environment is significantly reduced.
An Investigation of the Hypoalgesic Effects of TENS Delivered by a Glove Electrode
Cowan, Stephen; McKenna, Joanne; McCrum-Gardner, Evie; Johnson, Mark I.; Sluka, Kathleen A.; Walsh, Deirdre M.
2009-01-01
This randomized, placebo-controlled, blinded study investigated the hypoalgesic effects of high-frequency transcutaneous electrical nerve stimulation (TENS) delivered via a glove electrode compared with standard self-adhesive electrodes. Fifty-six TENS-naïve, healthy individuals (18 to 50 years old; 28 men, 28 women) were randomly allocated to 1 of 4 groups (n = 14 per group): glove electrode; placebo TENS using a glove electrode; standard electrode; and no treatment control. Active TENS (continuous stimulus, 100 Hz, strong but comfortable intensity) was applied to the dominant forearm/hand for 30 minutes. Placebo TENS was applied using a burst stimulus, 100-Hz frequency, 5-second cycle time for 42 seconds, after which the current amplitude was automatically reset to 0 mA. Pressure pain thresholds (PPTs) were recorded from 3 points on the dominant and nondominant upper limbs before and after TENS. Statistical analyses of dominant PPT data using between-within groups ANOVA showed significant differences between groups at all 3 recording points (P = .01). Post hoc Scheffe tests indicated no significant difference between the standard electrode and glove electrode groups. There was a significant hypoalgesic effect in the standard electrode group compared with the control group and between the glove electrode group and both the control and placebo TENS groups. There was no significant interactive effect between time and group at any of the recording points (P > .05). Perspective This study presents a comparison of the hypoalgesic effects of 2 different types of TENS electrode, a novel glove electrode and standard self-adhesive rectangular electrodes. The glove electrode provides a larger contact area with the skin, thereby stimulating a greater number of nerve fibers. The results show that both electrodes have similar hypoalgesic effects and therefore give the clinician another choice in electrode. PMID:19398378
Impact of universal gowning and gloving on health care worker clothing contamination.
Williams, Calvin; McGraw, Patty; Schneck, Elyse E; LaFae, Anna; Jacob, Jesse T; Moreno, Daniela; Reyes, Katherine; Cubillos, G Fernando; Kett, Daniel H; Estrella, Ronald; Morgan, Daniel J; Harris, Anthony D; Drees, Marci
2015-04-01
To determine whether gowning and gloving for all patient care reduces contamination of healthcare worker (HCW) clothing, compared to usual practice. Cross-sectional surveys. Five study sites were recruited from intensive care units (ICUs) randomized to the intervention arm of the Benefits of Universal Gown and Glove (BUGG) study. All HCWs performing direct patient care in the study ICUs were eligible to participate. Surveys were performed first during the BUGG intervention study period (July-September 2012) with universal gowning/gloving and again after BUGG study conclusion (October-December 2012), with resumption of usual care. During each phase, HCW clothing was sampled at the beginning and near the end of each shift. Cultures were performed using broth enrichment followed by selective media. Acquisition was defined as having a negative clothing culture for samples taken at the beginning of a shift and positive clothing culture at for samples taken at the end of the shift. A total of 348 HCWs participated (21-92 per site), including 179 (51%) during the universal gowning/gloving phase. Overall, 51 (15%) HCWs acquired commonly pathogenic bacteria on their clothing: 13 (7.1%) HCWs acquired bacteria during universal gowning/gloving, and 38 (23%) HCWs acquired bacteria during usual care (odds ratio [OR], 0.3; 95% confidence interval [CI], 0.2-0.6). Pathogens identified included S. aureus (25 species, including 7 methicillin-resistant S. aureus [MRSA]), Enterococcus spp. (25, including 1 vancomycin-resistant Enterococcus [VRE]), Pseudomonas spp. (4), Acinetobacter spp. (4), and Klebsiella (2). Nearly 25% of HCWs practicing usual care (gowning and gloving only for patients with known resistant bacteria) contaminate their clothing during their shift. This contamination was reduced by 70% by gowning and gloving for all patient interactions.
Ineffective hand washing and the contamination of carrots after using a field latrine.
Monaghan, J M; Hutchison, M L
2016-04-01
A study was undertaken to simulate the likely effects of a field worker with poor hygienic practices that had returned to work too soon after recovering from an infection by an enteric pathogen. The studies simulated a variety of hand-washing practices from no washing to washing with soap and water followed by an application of alcohol gel after using a field latrine. The numbers of generic Escherichia coli isolated from workers' hands declined with increasing thoroughness of hand-washing treatments with unwashed hands > water > water and soap > water, soap and alcohol gel. Where gloves were worn the counts obtained for the treatments were significantly reduced, but it was observed that unwashed hands contaminated gloves during the process of putting them on. Hand contamination following the use of a field latrine transferred contamination to carrots. These results suggest that if no gloves are worn it would be best practice to wash hands with water and soap and apply alcohol gel after using a field latrine. Wearing gloves reduced the risk of contaminating handled produce but workers should still wash their hands after using a field latrine before applying gloves. This study shows that inadequate hand hygiene in the field following the use of a field latrine can transfer bacterial contamination to hand-harvested carrots. Where fresh produce crops are to be handled by workers, wearing gloves reduces the risk of contaminating produce but workers should still wash their hands after using a field latrine before applying gloves. If no gloves are worn it would be best practice to wash hands with water and soap and apply alcohol gel after using a field latrine. © 2016 The Society for Applied Microbiology.
Survey of dermal protection in Washington State collision repair industry.
Ceballos, Diana M; Fent, Kenneth W; Whittaker, Stephen G; Gaines, Linda G T; Thomasen, Jennifer M; Flack, Sheila L; Nylander-French, Leena A; Yost, Michael G; Reeb-Whitaker, Carolyn K
2011-09-01
Substantial exposure to isocyanates may occur during spray painting in autobody shops, yet information is lacking on the efficacy of the protective clothing used during spray painting. We investigated the personal and workplace factors associated with painters' dermal protection use during a large-scale exposure assessment study. Survey data indicated that 69% of painters always used gloves, with latex gloves (47%) and nitrile gloves (34%) used most frequently. Among latex glove users, 53% used thin latex (0.05-0.13 mm), 6% used medium latex (0.15-0.20 mm), and 12% used thick latex (> 0.20 mm). Among nitrile glove users, 27% used thin nitrile and 45% used medium nitrile. Sixty-three percent of painters always used coveralls, 44% preferring one particular brand. Although overspray presents an opportunity for dermal exposure to the neck and face, only 19% of painters protected these areas with personal protective equipment. Painters who always used coveralls were more likely to use gloves (odds ratio = 7.9, p = 0.061). Painters who reported ever having smoked cigarettes used gloves (p = 0.05) and coveralls (p = 0.04) more frequently. Painters who sprayed more than 34 clear coat jobs per month used coveralls most frequently (p = 0.038). Exact logistic regressions along with random sample calculations indicated that the survey results were independent of the shops. Because of the small sample size in this study, future research is warranted to corroborate these results. Studying the effectiveness of gloves and coveralls against polyurethane paints and understanding the underlying motivators and preferences for painters and business owners is needed for the development of best practices for the selection and use of dermal protection.
Glove Changing When Handling Money: Observational and Microbiological Analysis.
Basch, Corey H; Wahrman, Miryam Z; Shah, Jay; Guerra, Laura A; MacDonald, Zerlina; Marte, Myladys; Basch, Charles E
2016-04-01
The purpose of this study was to determine the rate of glove changing by mobile food vendors after monetary transactions, and the presence of bacterial contamination on a sample of dollar bills obtained from 25 food vendors near five hospitals in Manhattan, New York City. During 495 monetary transactions observed there were only seven glove changes performed by the workers. Eleven of 34 food workers wore no gloves at all while handling money and food. Nineteen of 25 one-dollar bills collected (76 %) had 400 to 42,000 total bacterial colony-forming units. Colonies were of varied morphology and size. Of these 19 samples, 13 were selected (based on level of growth), and tested for the presence of coliform bacteria, which was found in 10 of the 13 samples. Effective strategies to monitor and increase glove wearing and changing habits of mobile food vendors are needed to reduce risk of foodborne illness.
EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)
NASA Technical Reports Server (NTRS)
Coss, F. A.
1976-01-01
A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.
Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow
2017-06-01
In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.
Energy evaluation of protection effectiveness of anti-vibration gloves.
Hermann, Tomasz; Dobry, Marian Witalis
2017-09-01
This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.
Control of a Glove-Based Grasp Assist Device
NASA Technical Reports Server (NTRS)
Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Sanders, Adam M (Inventor); Askew, R. Scott (Inventor); Laske, Evan (Inventor); Ensley, Kody (Inventor)
2015-01-01
A grasp assist system includes a glove and sleeve. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. The glove contains a tendon connected at a first end to the digit. The sleeve has an actuator assembly connected to a second end of the tendon and a controller in communication with the sensor. The controller includes a configuration module having selectable operating modes and a processor that calculates a tensile force to apply to the tendon for each of the selectable operating modes to assist the grasping force in a manner that differs for each of the operating modes. A method includes measuring the grasping force, selecting the mode, calculating the tensile force, and applying the tensile force to the tendon using the actuator assembly.
Tactile sensitivity of gloved hands in the cold operation.
Geng, Q; Kuklane, K; Holmér, I
1997-11-01
In this study, tactile sensitivity of gloved hand in the cold operation has been investigated. The relations among physical properties of protective gloves and hand tactile sensitivity and cold protection were also analysed both objectively and subjectively. Subjects with various gloves participated in the experimental study during cold exposure at different ambient temperatures of -12 degrees C and -25 degrees C. Tactual performance was measured using an identification task with various sizes of objects over the percentage of misjudgment. Forearm, hand and finger skin temperatures were also recorded throughout. The experimental data were analysed using analysis of variance (ANOVA) model and the Tukey's multiple range test. The results obtained indicated that the tactual performance was affected both by gloves and by hands/fingers cooling. Effect of object size on the tactile discrimination was significant and the misjudgment increased when similar sizes of objects were identified, especially at -25 degrees C.
Glove-based approach to online signature verification.
Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A
2008-06-01
Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
5. VIEW OF A GLOVE BOX FIREWALL DETAIL. THE FIREWALL ...
5. VIEW OF A GLOVE BOX FIREWALL DETAIL. THE FIREWALL WAS A SAFETY FEATURE TO PREVENT THE SPREAD OF FIRE BETWEEN INTERCONNECTED GLOVE BOXES. PLUTONIUM IS PYROPHORIC, AND MAY IGNITE IN THE PRESENCE OF OXYGEN. (5/8/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
Composite Material Hazard Assessment at Crash Sites
2015-01-01
advanced composite materials. All personnel involved in rescue in close crash-site proximity are required to wear self -contained breathing apparatus...close crash-site proximity are required to wear self -contained breathing apparatus, chemical protective clothing, leather gloves, and neoprene...Take extra precaution when handling these materials. Nitrile rubber gloves can be worn underneath the leather gloves to provide chemical hazard
Construct-a-Glove. Science by Design Series.
ERIC Educational Resources Information Center
Pulis, Lee
This book is one of four books in the Science-by-Design Series created by TERC and funded by the National Science Foundation (NSF). It offers high school students a challenging, hands-on opportunity to compare the function and design of many types of handwear from a hockey mitt to a surgical glove, and design and test a glove to their own…
The research of a new data glove based on MARG sensor and magnetic localization technology
NASA Astrophysics Data System (ADS)
Ding, Yi; Gao, Tongyue; Wu, Ye; Zhu, Shihao
2018-04-01
The human hand gesture can record and reproduce the posture and action information of the hand, which is of great significance to people's production and life. This paper has improved the existing data gloves based on micro inertial technology, and integrates the magnetic field localization method into finger gesture measurements. The strap down inertial navigation technology and the magnetic localization technology are combined in this paper to make the advantages complement each other, and a low cost and high degree of freedom of data gloves are put forward to realize the way of data gloves in the past.
Decrease the Number of Glovebox Glove Breaches and Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtle, Jackie C.
2013-12-24
Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and Junemore » 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.« less
NASA Astrophysics Data System (ADS)
Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.
2010-09-01
The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.
Permeation of Comite through protective gloves.
Zainal, Hanaa; Que Hee, Shane S
2006-09-01
The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were < 10 min. The second steady state rate (P(s)) was on average four times the rate of the first period, and the second steady state period t(l) was about three times as long as that of the first steady state period, and about the same t(l) as for the aqueous solution. Sol-Vex gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest concentration for spraying.
Wilke, A; Skudlik, C; Sonsmann, F K
2018-05-02
The dermatologist's procedure is a pivotal tool for early recognition of occupational contact dermatitis (OCD), for reporting OCD cases to the statutory accident insurance and for treating the diseases. The employer is in charge of implementing skin protection measures at the workplace. However, in terms of an individual prevention approach it may be necessary to propose targeted skin protection recommendations in specific patient cases. The patient's own skin protection behavior significantly contributes to regenerating and maintaining healthy skin. This behavior includes the use of occupational skin products, and in particular the correct use of appropriately selected protective gloves. Protective gloves are the most important personal protective measure in the prevention of OCD. Prevention services, occupational health and safety specialists, occupational physicians and centers specialized in occupational dermatology can support the identification of suitable protective measures. Nowadays, suitable protective gloves exist for (almost) every occupational activity and exposure. However, improper use in practice can become a risk factor by itself for the skin (e. g., incorrectly used gloves). Therefore, it is of utmost importance to identify application errors, to educate patients in terms of skin protection and to motivate them to perform an appropriate skin protection behavior. With particular focus on protective gloves, this article gives an overview of various types, materials and potentially glove-related allergens, presents strategies for reducing occlusion effects and discusses some typical application errors and solutions.
Weistenhöfer, Wobbeke; Uter, Wolfgang; Drexler, Hans
2017-01-01
Wearing of occlusive gloves during the whole working shift is considered a risk factor for developing hand eczema, similar to wet work. Moreover, the increased hydration due to glove occlusion may lead to brittle nails. Two hundred and seventy clean room workers, wearing occlusive gloves for prolonged periods, and 135 administrative employees not using gloves were investigated. This included a dermatological examination of the nails and the hands, using the Hand Eczema ScoRe for Occupational Screening (HEROS), measurement of transepidermal water loss (TEWL), and a standardized interview. Of the clean room workers, 39%, mainly women, reported nail problems, mostly brittle nails with onychoschisis. Skin score values showed no significant differences between HEROS values of both groups. TEWL values of exposed subjects were similar to TEWL values of controls 40 min after taking off the occlusive gloves. In a multiple linear regression analysis, male gender and duration of employment in the clean room were associated with a significant increase in TEWL values. The effect of occlusion on TEWL seems to be predominantly transient and not be indicative of a damaged skin barrier. This study confirmed the results of a previous investigation showing no serious adverse effect of wearing of occlusive gloves on skin condition without exposure to additional hazardous substances. However, occlusion leads to softened nails prone to mechanical injury. Therefore, specific prevention instructions are required to pay attention to this side effect of occlusion.
Liss, G M; Tarlo, S M
2001-10-01
Exposure to natural rubber latex (NRL) has been recognized as a cause of occupational asthma (OA), especially among health care workers (HCWs) associated with use of gloves. Little or no population-based data are available which chart the changes over time in the number of cases of OA as this problem was increasingly recognized and then interventions instituted. We obtained the numbers of allowed asthma claims with exposure to latex by year in the province of Ontario, Canada from the Ontario Workplace Safety and Insurance Board; details of the cases from the largest teaching hospital were reviewed. Interventions included: (1) in 1996, the Board recommended in its focus for accommodation of sensitized workers, the reduction of aerosols of latex proteins and that hospital facilities use powder-free, low-protein or nonlatex gloves; and (2) hospitals instituted latex policies and glove changes at various dates. For example, at the largest teaching hospital, interventions included education and voluntary medical surveillance in 1994; substitution of low protein, "powder-free" NRL gloves for non-sterile powdered gloves in 1995; and replacement of powdered sterile NRL gloves by lower protein, "powder-free" NRL gloves in 1997. Through 1999, there were 60 allowed claims for asthma in Ontario with exposure to latex; of these 49 (82%) were among HCWs. The number of claims among HCWs changed from 0 to 2 per year up to 1990; increased to 7 to 11 per year between 1991-1994; and declined to 3 per year in 1995-1996 and 1 to 2 per year in 1997-1999. Of the ten institutions having two or more OA latex claims, all claims occurred in 1996 or earlier at 8 (80%). At the largest hospital, there were five accepted claims with year of diagnosis in 1993 (1 case), 1994 (3 cases), and 1995 (1 case). These findings suggest that, despite the effect of increasing recognition, the introduction of gloves with reduced powder and/or protein, as well as other interventions have been associated temporally with declines in the number of cases of latex OA. Copyright 2001 Wiley-Liss, Inc.
Henriks-Eckerman, Maj-Len; Mäkelä, Erja A; Suuronen, Katri
2015-10-01
Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material, and this can be done by using this simple test method. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Glove perforation rate in open lung surgery.
Hollaus, P H; Lax, F; Janakiev, D; Wurnig, P N; Pridun, N S
1999-04-01
In open lung surgery the surgical access is encircled by the ribs, which should result in a high glove perforation rate compared with other surgical specialities. Prospectively the surgeon, first and second assistant and the scrub nurse wore double standard latex gloves during 100 thoracotomies. Parameters recorded were: procedure performed, number of perforations, localization of perforation, the seniority of the surgeon, manoeuvre performed at the moment of perforation, immediate cause of perforation, operation time, performance of rib resection during thoracotomy and time of occurrence of the first three perforations. One thousand, six hundred and seventy-three gloves (902 outer, 771 inner) were tested. In 78 operations perforations occurred. There were 150 outer glove perforations (8.9%, 0-8, mean 1.23), 19 inner glove perforations (1.13%, 0-2, mean 0.19). Cutaneous blood exposure was prevented in 78% of all operations and in 87% of all perforations. The perforation rate for the surgeon, the scrub nurse, the first and the second assistant were 61.2, 40.4, 9.7 and 3.1% of all operations, respectively. Rib resection and a duration of more than 2 h resulted in a significant rise of glove perforation rate (P<0.05). The personal experience of the surgeon and the type of operation did not correlate with glove perforation. The immediate cause leading to perforation was named in only 17 cases (13.7%) and comprised contact with bone (seven), a needle stitch (seven) and a production flaw (three). Leaks were localized mostly on the first finger (18%),second finger, (39%) palm and dorsum of the hand (16%). The average occurrence of all first perforations was 38.7 min (range 3-190) after the beginning of surgery, the second after 63.2 min (range 10-195). Fifty-four first perforations (50.5%) were found during the first 30 min of the operation. The reported perforation rate of 78% lies in the highest range of reported perforation rates in different surgical specialities. Double gloving effectively prevented cutaneous blood exposure and thus should become a routine for the thoracic surgeon to prevent transmission of infectious diseases from the patient to the surgeon.
NASA Technical Reports Server (NTRS)
Wingard, Doug
2009-01-01
The Advanced Crew Escape Suit (ACES) is a pressurized suit normally worn by astronauts during launch and landing phases of Space Shuttle operations. In 2008, a large tear (0.5 -1 in. long, between the pinky and ring finger) in the ACES left-hand glove made of neoprene latex rubber was found during training for Shuttle flight STS-124. An investigation to help determine the cause(s) of the glove tear was headed by the NASA Johnson Space Center (JSC) in Houston, Texas. Efforts at JSC to reproduce the actual glove tear pattern by cutting/tearing or rupturing were unsuccessful. Chemical and material property data from JSC such as GC-MS, FTIR, DSC and TGA mostly showed little differences between samples from the torn and control gloves. One possible cause for the glove tear could be a wedding ring/band worn by a male astronaut. Even with a smooth edge, such a ring could scratch the material and initiate the tear observed in the left-hand glove. A decision was later made by JSC to not allow the wearing of such a ring during training or actual flight. Another possible cause for the ACES glove tear is crystallinity induced by strain in the neoprene rubber over a long period of time and use. Neoprene is one several elastomeric materials known to be susceptible to crystallization, and such a process is accelerated with exposure of the material to cold temperatures plus strain. When the temperature is lowered below room temperature, researchers have shown that neoprene crystallization may be maintained at temperatures as high as 45-50 F, with a maximum crystallization rate near 20-25 F (1). A convenient conditioning temperature for inducing neoprene crystallization is a typical freezer that is held near 0 F. For work at the NASA Marshall Space Flight Center (MSFC), samples were cut from several areas/locations (pinky/ring finger crotch, index finger and palm) on each of two pairs of unstrained ACES gloves for DSC and DMA thermal analysis testing. The samples were conditioned in a freezer for various times up to about 14 days. Some rectangular conditioned samples were unstrained, while most were subjected to strains up to 250% with the aid of two slotted aluminum blocks and two aluminum clamps per sample. Trends were observed to correlate DSC data (heat of fusion) and DMA data (linear CTE and stress for iso-strain testing) with: (a) sample location on each glove; and (b) level of strain during conditioning. Control samples cut as is from each glove location were also tested by DSC and DMA.
Ding, Li; Han, Long-zhu; Yang, Chun-xin; Yang, Feng; Yuan, Xiu-gan
2005-02-01
To observe the effects of active heating system for spacesuit gloves on extravehicular working performance. After analyzing the factors with gloves influence on the working performance, the effects of active heating system for gloves were studied experimentally with aspects to fatigue, hand strength, dexterity and tactile sensing. 1) Heating-system had not influence to grip; 2) Heating-system had 17% influence to fatigue except specific person; 3) Nut assembly and nipping pin showed that heating-system had little influence to dexterity; 4) Apperceiving shape of object and two-point distance showed heating-system had little influence to tactility. The active heating method is rational and has little influence on working performance.
NASA Technical Reports Server (NTRS)
1995-01-01
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental 'glove' undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
Ma, Zhou; Ben-Tzvi, Pinhas; Danoff, Jerome
2016-12-01
This paper presents a hand rehabilitation learning system, the SAFE Glove, a device that can be utilized to enhance the rehabilitation of subjects with disabilities. This system is able to learn fingertip motion and force for grasping different objects and then record and analyze the common movements of hand function including grip and release patterns. The glove is then able to reproduce these movement patterns in playback fashion to assist a weakened hand to accomplish these movements, or to modulate the assistive level based on the user's or therapist's intent for the purpose of hand rehabilitation therapy. Preliminary data have been collected from healthy hands. To demonstrate the glove's ability to manipulate the hand, the glove has been fitted on a wooden hand and the grasping of various objects was performed. To further prove that hands can be safely driven by this haptic mechanism, force sensor readings placed between each finger and the mechanism are plotted. These experimental results demonstrate the potential of the proposed system in rehabilitation therapy.
The Effects of Extravehicular Activity (EVA) Glove Pressure on Tactility
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Miranda, Mesloh; England, Scott; Benson, Elizabeth; Rajulu, Sudhakar
2010-01-01
The purpose of the current study was to quantify finger tactility, while wearing a Phase VI Extravehicular Activity (EVA) glove. Subjects were fully suited in an Extravehicular Mobility Unit (EMU) suit. Data was collected under three conditions: bare-handed, gloved at 0 psi, and gloved at 4.3 psi. In order to test tactility, a series of 30 tactile stimuli (bumps) were created that varied in both height and width. With the hand obscured, subjects applied pressure to each bump until detected tactilely. The amount of force needed to detect each bump was recorded using load cells located under a force-plate. The amount of force needed to detect a bump was positively related to width, but inversely related to height. In addition, as the psi of the glove increased, more force was needed to detect the bump. In terms of application, it was possible to determine the optimal width and height a bump needs to be for a specific amount of force applied for tactility.
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Instrumented Glove Measures Positions Of Fingers
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.
NASA Technical Reports Server (NTRS)
1976-01-01
Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.
Glove-related rhinopathy among hospital personnel.
Kujala, V M; Reijula, K E
1996-08-01
Hypersensitivity to natural rubber latex (NRL) in health care personnel exposed to powdered latex gloves appears as conjunctivitis, rhinitis, nasal congestion, cough, dyspnea, or bronchial asthma in approximately 30% of all cases with latex allergy while most of the patients have contact urticaria. The purpose of the present study was to determine the prevalence of latex-induced allergic rhinitis in health care workers using NRL gloves on a daily basis. Clinical examination accompanied by skin prick test (SPT) with latex glove extracts and common aeroallergens, measurements of specific IgE to NRL, and lung function tests were performed in 25 symptomatic workers and 11 latex-exposed asymptomatic controls. Sensitization to NRL was detected using SPT in one (4%) of 25 symptomatic workers but not in any of the asymptomatic controls. Positive SPT to aeroallergens was demonstrated in 8/25 symptomatic workers and 6/11 controls. Measurements of forced vital capacity, forced expiratory volume in I sec, and bronchial methacholine challenge did not show any significant differences between the study groups. In conclusion, NRL-aeroallergen-induced occupational rhinitis may occur among physicians and nurses who have a frequent use of latex gloves on a daily basis at hospital work. However, a relatively low prevalence of NRL-induced occupational rhinitis is associated with profuse consumption of no-powder sterile gloves.
Nawong, Chairat; Umsakul, Kamontam; Sermwittayawong, Natthawan
2018-02-03
An increasing production of natural rubber (NR) products has led to major challenges in waste management. In this study, the degradation of rubber latex gloves in a mineral salt medium (MSM) using a bacterial consortium, a mixed culture of the selected bacteria and a pure culture were studied. The highest 18% weight loss of the rubber gloves were detected after incubated with the mixed culture. The increased viable cell counts over incubation time indicated that cells used rubber gloves as sole carbon source leading to the degradation of the polymer. The growth behavior of NR-degrading bacteria on the latex gloves surface was investigated using the scanning electron microscope (SEM). The occurrence of the aldehyde groups in the degradation products was observed by Fourier Transform Infrared Spectroscopy analysis. Rhodococcus pyridinivorans strain F5 gave the highest weight loss of rubber gloves among the isolated strain and posses latex clearing protein encoded by lcp gene. The mixed culture of the selected strains showed the potential in degrading rubber within 30 days and is considered to be used efficiently for rubber product degradation. This is the first report to demonstrate a strong ability to degrade rubber by Rhodococcus pyridinivorans. Copyright © 2018. Published by Elsevier Editora Ltda.
Glove thermal insulation: local heat transfer measures and relevance.
Sari, Hayet; Gartner, Maurice; Hoeft, Alain; Candas, Victor
2004-09-01
When exposed to cold, the hands need to be protected against heat loss not only in order to reduce thermal discomfort, but also to keep their efficiency. Although gloves are usually the most common protection, their thermal insulation is generally unknown. The aim of this study was to measure the heat losses from a gloved hand with a special interest in local variations. Using a calorimetric hand placed in a cold box, several types of gloves were tested. The results indicated that depending on the glove and on the area covered the heat loss reduction may vary from almost 60% to 90%. When the least efficient pair of gloves was excluded, heat exchange coefficients varied from 1.8 to 4.8 W/m2 per degrees C for the palm and from 4.2 to 6.2 W/m2 per degrees C for the back of the hand. The three medium fingers seemed to be equally treated, with a heat exchange coefficient variation of 6.3-9.0 W/m2 per degrees C. The thumb and the little finger, which require better insulation, exhibited higher local heat transfer coefficients of 8.3-12.7 W/m2 per degrees C. Some practical aspects are evoked.
JOVE Pilot Research Study in Astronomy and Microgravity Sciences
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Hmelo, Anthony; Peterson, Steven
1996-01-01
The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. The first task was to measure finger joint angles inside space suit gloves. A preliminary survey identified three potential systems which could be used in the proposed study. In response to the current market situation, a glove for measuring the positions of the hand inside a space suit has been developed. A prototype of the glove has been constructed to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. Along gage is used to average the strain generated in the sensor due to bending This average strain produces an output signal proportional to the angle of the bend. The force sensor consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. The resistance of the ink is sensitive to pressure.
NASA Technical Reports Server (NTRS)
McFarland, Shane
2016-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity. When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of NASA's Lifetime Surveillance of Astronaut Health's injury database reveals that 76 percent of astronaut hand and arm injuries from training between 1993 and 2010 occurred either to the fingernail, finger crotch, metacarpophalangeal joint, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure forces acting on the fingers and hand within pressurized gloves and other variables such as skin temperature, humidity, and fingernail strain of a NASA crewmember during typical NBL (Neutral Buoyancy Laboratory) training activity. During the 5-hour exercise, the crewmember seemed to exhibit very large forces on some fingers, resulting in higher strain than seen in previous glove-box testing. In addition, vital information was collected on the glove cavity environment with respect to temperature and humidity. All of this information gathered during testing will be carried forward into future testing, potentially in glove-box- or 1G- (1 gravitational force) or NBL-suited environments, to better characterize and understand the possible causes of hand injury amongst NASA crew.
[Hand burns in children and Aquacel(®) Burn gloves, an alternative to prolonged hospital stays].
Ridel, P; Perrot, P; Truffandier, M V; Bellier-Waast, F; Duteille, F
2015-04-01
Occlusive dressings for second-degree hand burns in children must prevent infection and promote healing. For good management of analgesia, these treatments often require children to be hospitalized. Our goal was to find an alternative to conventional care protocol that would reduce the number of dressings and therefore the length of hospitalization. We report our experience with the use of Aquacel(®) Burn. Non-randomized monocentric prospective study was conducted from 2012 to 2014. The glove was used in the operating room within 72hours after the burn in children younger than 15 years old with isolated superficial to deep 2nd degree hand burns. Once the glove was perfectly stuck to the burn, the children could go back home. We saw them 10 to 12 days after the accident to be sure there was no indication of skin graft. Twenty gloves were used in 16 children aged from 16 months to 13 years. The average length of stay (ALOS) was five days to put the glove on and one day to remove it. Four hands were grafted. Once we get used to the product, Aquacel(®) Burn gloves have reduced the ALOS before skin graft in cases of isolated hand burns in children. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Outcomes of a natural rubber latex control program in an Ontario teaching hospital.
Tarlo, S M; Easty, A; Eubanks, K; Parsons, C R; Min, F; Juvet, S; Liss, G M
2001-10-01
Allergy to natural rubber latex (NRL) has been frequently reported in health care workers. However, there is little published evidence of the outcome of hospital intervention programs to reduce exposure and detect cases of sensitization early. This study assesses the effects of intervention to reduce NRL allergy in an Ontario teaching hospital with approximately 8000 employees. A retrospective review assessed annual numbers of employees visiting the occupational health clinic, allergy clinic, or both for manifestations of NRL allergy compared with the timing of introduction of intervention strategies, such as worker education, voluntary medical surveillance, and hospital conversion to low-protein, powder-free NRL gloves. The number of workers identified with NRL allergy rose annually, from 1 in 1988 to 6 in 1993. When worker education and voluntary medical surveillance were introduced in 1994, a further 25 workers were identified. Nonsterile gloves were changed to low-protein, powder-free NRL gloves in 1995: Diagnoses fell to 8 workers that year, and 2 of the 3 nurses who had been off work because of asthma-anaphylaxis were able to return to work with personal avoidance of NRL products. With a change to lower protein, powder-free NRL sterile gloves in 1997, allergy diagnoses fell to 3, and only 1 new case was identified subsequently up to May 1999. No increased glove costs were incurred as a result of consolidated glove purchases. This program to reduce NRL allergy in employees was effectively achieved without additional glove costs while reducing expenses from time off work and workers' compensation claims.
PLAY HANDS PROTECTIVE GLOVES: TECHNICAL NOTE ON DESIGN AND CONCEPT.
Houston-Hicks, Michele; Lura, Derek J; Highsmith, M Jason
2016-09-01
Cerebral Palsy (CP) is the leading cause of childhood motor disability, with a global incidence of 1.6 to 2.5/1,000 live births. Approximately 23% of children with CP are dependent upon assistive technologies. Some children with developmental disabilities have self-injurious behaviors such as finger biting but also have therapeutic needs. The purpose of this technical note is to describe design considerations for a protective glove and finger covering that maintains finger dexterity for children who exhibit finger and hand chewing (dermatophagia) and require therapeutic range of motion and may benefit from sensory stimulation resulting from constant contact between glove and skin. Protecting Little and Adolescent Youth (PLAY) Hands are protective gloves for children with developmental disorders such as CP who injure themselves by biting their hands due to pain or sensory issues. PLAY Hands will be cosmetically appealing gloves that provide therapeutic warmth, tactile sensory feedback, range of motion for donning/ doffing, and protection to maximize function and quality of life for families of children with developmental disorders. The technology is either a per-finger protective orthosis or an entire glove solution designed from durable 3D-printed biodegradable/bioabsorbable materials such as thermoplastics. PLAY Hands represent a series of protective hand wear interventions in the areas of self-mutilating behavior, kinematics, and sensation. They will be made available in a range of protective iterations from single- or multi-digit finger orthoses to a basic glove design to a more structurally robust and protective iteration. To improve the quality of life for patients and caregivers, they are conceptualized to be cosmetically appealing, protective, and therapeutic.
Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat
2013-03-01
Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.
Cryotherapy for docetaxel-induced hand and nail toxicity: randomised control trial.
McCarthy, Alexandra L; Shaban, Ramon Z; Gillespie, Kerri; Vick, Joanne
2014-05-01
This study investigated the efficacy and safety of cryotherapy, in the form of frozen gel gloves, in relation to docetaxel-induced hand and fingernail toxicities. After piloting with 21 patients, a consecutive series sample of patients (n=53) prescribed docetaxel every 3 weeks, for a minimum of three cycles, was enrolled in this randomised control trial. Participants acted as their own control, with the frozen gel glove worn on one randomised hand for 15 min prior to infusion, for the duration of the infusion, and for 15 min of after completion of treatment. Hand and nail toxicities were evaluated by two blinded assessors according to CTCAE.v4 criteria. To assess the potential for cross-infection of multi-use gloves, microbial culture and sensitivity swabs were taken of each glove at every tenth use. Of the 53 participants enrolled in the main study, 21 provided evaluable data. There was a 60 % withdrawal rate due to patient discomfort with the intervention. The mean incidence and severity of toxicities in all evaluable cycles in control and intervention hands respectively were erythroderma grade 1 (5/5 %), nail discolouration grade 1 (81/67 %), nail loss grade 1 (19/19 %) and nail ridging grade 1 (57/57 %). No significant differences were determined between hand conditions in terms of time to event, nor in terms of toxicity in gloved and non-gloved hands. While cryotherapy in the form of frozen gloves for the cutaneous toxicities associated with docetaxel is safe, its limited efficacy, patient discomfort and some logistical issues preclude its use in our clinical setting.
Preclinical cadaveric study of transanal endoscopic da Vinci® surgery.
Hompes, R; Rauh, S M; Hagen, M E; Mortensen, N J
2012-08-01
Single-port platforms are increasingly being used for transanal surgery and may be associated with a shorter learning curve than transanal endoscopic microsurgery. However, these procedures remain technically challenging, and robotic technology could overcome some of the limitations and increase intraluminal manoeuvrability. An initial experimental experience with transanal endoscopic da Vinci(®) surgery (TEdS) using a glove port on human cadavers is reported. After initial dry laboratory experiments, the feasibility of TEdS and ideal set-up were further evaluated in human cadavers. For transanal access a glove port was constructed on-table by using a circular anal dilator, a standard wound retractor and a surgical glove. A da Vinci(®) Si HD system was used in combination with the glove port for transanal endoscopic resections. It was possible to perform all necessary tasks to complete a full-thickness excision and closure of the rectal wall, with cadavers in both prone and supine positions. The stable magnified view, combined with the EndoWrist(®) technology of the robotic instruments, made every task straightforward. Intraluminal manoeuvrability could be improved further by intersecting the robotic instruments. The glove port proved to be very reliable and the inherent flexibility of the glove facilitated docking of the robotic arms in a narrow confined space. Using a reliable and universally available glove port, TEdS was feasible and a preferred set-up was determined. Further clinical trials will be necessary to assess the safety and efficacy of this technique. Copyright © 2012 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Mahbub, Md H; Yokoyama, Kenjiro; Laskar, Md S; Inoue, Masaiwa; Takahashi, Yukio; Yamamoto, Shinji; Harada, Noriaki
2007-05-01
This study was designed to assess the influence of an antivibration glove on digital vascular responses in healthy subjects exposed to short-term grasping of a vibrating handle. To measure finger blood flow (FBF) and finger skin temperature (FST) once at the end of every min, a blood flowmeter sensor was attached to the dorsum and a thermistor sensor was attached to the medial surface of the subject's middle phalanx of the third finger of the right hand. After 5 min of baseline measurements without or with an antivibration glove meeting ISO standard 10819, worn on the right hand, subjects gripped a vibrating handle with the same hand for a period of 5 min. Vibration was generated at two frequencies of 31.5 Hz and 250 Hz with a frequency weighted rms acceleration of 5.5 m/s(2). FBF and FST continued to be recorded for a further 5 min after release of the vibrating handle. Statistical analysis showed no significant change after vibration exposure in either FST or FBF at 250 Hz, compared to baseline (control) measurements while using the antivibration glove. At 31.5 Hz, FBF data exhibited a significant difference between before and after grasping of vibrating handle, which was less under the condition of wearing the antivibration glove than under the condition of bare hand. The results provide evidence that the antivibration glove considerably influenced finger vascular changes in healthy subjects induced by vibration exposure, especially against high frequency vibration. Further studies are required to assess finger vascular responses to hand-transmitted vibration with antivibration gloves of different manufacturers.
[Study of mechanical effects of the EVA glove on finger base with finite element modeling].
Li, Zhuoyou; Ding, Li; Yue, Guodong
2013-08-01
The hand strength of astronauts, when they are outside the space capsule, is highly influenced by the residual pressure (the pressure difference between inside pressure and outside one of the suit) of extravehicular activity spacesuit glove and the pressure exerted by braided fabric. The hand strength decreases significantly on extravehicular activity, severely reducing the operation efficiency. To measure mechanical influence caused by spacesuit glove on muscle-tendon and joints, the present paper analyzes the movement anatomy and biomechanical characteristics of gripping, and then proposes a grip model. With phalangeal joint simplified as hinges, seven muscles as a finger grip energy unit, the Hill muscle model was used to compute the effects. We also used ANSYS in this study to establish a 3-D finite element model of an index finger which included both bones and muscles with glove, and then we verified the model. This model was applied to calculate the muscle stress in various situations of bare hands or hands wearing gloves in three different sizes. The results showed that in order to achieve normal grip strength with the influence caused by superfluous press, the finger's muscle stress should be increased to 5.4 times of that in normal situation, with most of the finger grip strength used to overcome the influence of superfluous pressure. When the gap between the finger surface and the glove is smaller, the mechanical influence which superfluous press made will decrease. The results would provide a theoretical basis for the design of the EVA Glove.
Chang, H; Lin, C; Shih, T; Chan, H; Chou, J; Huang, Y
2004-01-01
Aims: To evaluate the protective effectiveness of gloves from occupational exposure to 2-methoxyethanol (2-ME); and to examine the association of 2-methoxyacetic acid (MAA) in urine and plasma collected simultaneously from low 2-ME exposure and high 2-ME exposure workers in a semiconductor copper laminate circuit board manufacturing plant. Methods: Eight hour time weighted breathing zone monitoring was performed to verify the 2-ME exposure classification between workers in regular and special operations. Urine and plasma samples were simultaneously collected from 74 exposed and 80 non-exposed workers. MAA concentrations in the urine (UMAA) and plasma (PMAA) were measured using previously published methods. Three types of gloves worn by workers (cotton, rubber, and no gloves) were recorded by direct observations in the workplace and validated by person-to-person interview. Protective effectiveness indices (PEI) were used to evaluate the glove effectiveness. Results: There was no detectable 2-ME/MAA in the air, or in urine and plasma samples in non-exposed workers. The average UMAA and PMAA in special operations were 72.63 mg/g Cr. and 29.72 mg/l, significantly higher than values in regular operations (5.44 mg/g Cr. and 2.58 mg/l, respectively). PMAA showed satisfactory correlation to UMAA in all participants from both regular and special operations. The rubber gloves provided significant reduction in 2-ME uptake, whereas cotton gloves provided little protection with fluctuating effectiveness, based on PEI estimates. Conclusions: PMAA, similar to UMAA, could serve as a specific biomarker for 2-ME exposure. Wearing impermeable rubber gloves during high risk tasks can reduce major 2-ME exposure. Other improvements, including engineering control, should be provided to diminish worker exposure to 2-ME in occupational environments. PMID:15258277
Allmers, Henning; Schmengler, Jörg; Skudlik, Christoph
2002-08-01
The development of occupational asthma and allergic skin reactions caused by natural rubber latex (NRL) allergy are risks for health care workers. There are few published studies to suggest that intervention programs to reduce exposure will lead to primary prevention of sensitization. This study assesses the effects of intervention to reduce the incidence of NRL allergy in personnel working in health care facilities insured by the German statutory accident insurance company for health care workers, Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege, with approximately 3 million insured employees, by switching to powder-free NRL gloves. The timing of introduction of intervention strategies, such as education of both physicians and administrators, together with regulations demanding that health care facilities only purchase low-protein, powder-free NRL gloves are reported. We reviewed the annual numbers of reported suspected cases of NRL-caused occupational allergies and the amount and type of gloves used in German acute-care hospitals since 1986. The purchase of powder-free NRL examination gloves exceeded that of powdered gloves for the first time in 1998. This only became true for powder-free NRL sterile gloves 2 years later in 2000. The incidence of suspected occupational NRL allergy cases rose until 1998 and has declined steadily since. There was a 2-year lag between the beginning of the decline in the purchase of powdered NRL examination gloves and the beginning of a decline in suspected NRL-caused occupational asthma cases. Despite the effect of increased recognition of NRL allergies, education about NRL allergies in health care facilities combined with the introduction of powder-free gloves with reduced protein levels has been associated with a decline in the number of suspected cases of occupational allergies caused by NRL in Germany on a nationwide scale. These results clearly indicate that primary prevention of occupational NRL allergies can be achieved if these straightforward and practical interventions are properly carried out and maintained.
Biologically Active Zone Enhancement (BAZE) for In Situ RDX Degradation in Ground Water
2010-01-01
geotechnical laboratory testing, will be performed in Level D protection with the addition of chemical resistant gloves. The level of protection for...splash hazards), • Chemical- resistant boots (PVC, Neoprene, Rubber) or work boots with covers ( steel-toed as appropriate), • Inner gloves (latex or...vinyl), • Outer, chemical- resistant gloves (nitrile, PVC, Neoprene), • Safety glasses or goggles, • Hard hat (as required by OSHA), and • Splash
The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz
2009-01-01
With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.
NASA Technical Reports Server (NTRS)
Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.
2017-01-01
The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a grasp-assist device that can improve astronaut performance and reduce the risk of injury by offsetting neuromuscular effort. Modifications to the experimental protocol are needed, however, to improve the outcome of the neuromuscular fatigue metrics and determine the effectiveness of SSRG in increasing astronaut endurance. Nevertheless, these findings will improve the understanding of astronaut-spacesuit interaction and provide direction toward designing improved spacesuit gloves and robotic-assist devices, like the SSRG.
Anthropomorphic teleoperation: Controlling remote manipulators with the DataGlove
NASA Technical Reports Server (NTRS)
Hale, J. P., II
1992-01-01
A two phase effort was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real-time based on hand shape, orientation, and movement. The first phase was a period for system integration, checkout, and familiarization in a virtual environment. The second phase was a formal experiment using the DataGlove as input device to control the protoflight manipulator arm (PFMA) - a large telerobotic arm with an 8-ft reach. The first phase was used to explore and understand how the DataGlove functions in a virtual environment, build a virtual PFMA, and consider and select a reasonable teleoperation control methodology. Twelve volunteers (six males and six females) participated in a 2 x 3 (x 2) full-factorial formal experiment using the DataGlove to control the PFMA in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0, 1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible), were manipulated. Gender served as a blocking variable. A main effect of time delay was found for slewing and total task times. Correlations among questionnaire responses, and between questionnaire responses and session mean scores and gender were computed. The experimental data were also compared with data collected in another study that used a six degree-of-freedom handcontroller to control the PFMA in the same task. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface. From an operational point of view, it compares favorably with other 'standard' telerobotic input devices and should be considered in future trades in teleoperation systems' designs.
Suitt, Halley
2003-09-01
It was five minutes before show time, and only 15 people had wandered into the conference room to hear Lancaster-Webb CEO Will Somerset introduce the company's latest line of surgical gloves. More important, sales prospect Samuel Taylor, medical director of the Houston Clinic, had failed to show. Will walked out of the ballroom to steady his nerves and noticed a spillover crowd down the hall. He made a "What's up?" gesture to Judy Chen, Lancaster-Webb's communications chief. She came over to him. "It's Glove Girl. You know, the blogger," Judy said, as if this explained anything. "I think she may have stolen your crowd." "Who is she?" Will asked. Glove Girl was a factory worker at Lancaster-Webb whose always outspoken, often informative postings on her Web log had developed quite a following. Will was new to the world of blogging, but he quickly learned about its power in a briefing with his staff. After Glove Girl had raved about Lancaster-Webb's older SteriTouch disposable gloves, orders had surged. More recently, though, Glove Girl had questioned the Houston Clinic's business practices, posting damaging information at her site about its rate of cesarean deliveries--to Sam Taylor's consternation. This fictional case study considers the question of whether a highly credible, but sometimes inaccurate and often indiscreet, on-line diarist is more of a liability than an asset to her employer. What, if anything, should Will Somerset do about Glove Girl? Four commentators--David Wein-berger, author of Small Pieces Loosely Joined; Pamela Samuelson, a professor of law and information management at the University of California, Berkeley; Ray Ozzie, CEO and chairman of Groove Networks; and Erin Motameni, vice president of human resources at EMC-offer expert advice.
Salkin, J A; Stuchin, S A; Kummer, F J; Reininger, R
1995-11-01
Five types of commercial glove liners (within double latex gloves) were compared to single and double latex gloves for cut and puncture resistance and for relative manual dexterity and degree of sensibility. An apparatus was constructed to test glove-pseudofinger constructs in either a cutting or puncture mode. Cutting forces, cutting speed, and type of blade (serrated or scalpel blade) were varied and the time to cut-through measured by an electrical conductivity circuit. Penetration forces were similarly determined with a scalpel blade and a suture needle using a spring scale loading apparatus. Dexterity was measured with an object placement task among a group of orthopedic surgeons. Sensibility was assessed with Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry using standard techniques and rating scales. A subjective evaluation was performed at the end of testing. Time to cut-through for the liners ranged from 2 to 30 seconds for a rapid oscillating scalpel and 4 to 40 seconds for a rapid oscillating serrated knife under minimal loads. When a 1 kg load was added, times to cut-through ranged from 0.4 to 1.0 second. In most cases, the liners were superior to double latex. On average, 100% more force was required to penetrate the liners with a scalpel and 50% more force was required to penetrate the liners with a suture needle compared to double latex. Object placement task times were not significantly liners compared to double latex gloves. Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry showed no difference in sensibility among the various liners and double latex gloves. Subjects felt that the liners were minimally to moderately impairing. An acclimation period may be required for their effective use.
Inspection In Overhead Spaces Containing Asbestos
NASA Technical Reports Server (NTRS)
Bell, Jacque; Hartwick, George; Hutcherson, Jerry
1989-01-01
Procedure for inspection in spaces above dropped ceilings that contain asbestos saves time and effort without sacrificing safety. With new method, only items of safety equipment needed are glove bag, storage bag, and roll of adhesive tape. Inspector tapes glove bag tightly to support grid around ceiling tile to be removed. With hands in gloves inspector lifts tile gently and places it aside. Extending head and shoulders into bag, inspector examines space above ceiling with help of flashlight.
NASA Technical Reports Server (NTRS)
Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen
2015-01-01
The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.
Glove box on vehicular instrument panel
Atarashi, Kazuya
1985-01-01
A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.
Permeation of limonene through disposable nitrile gloves using a dextrous robot hand
Banaee, Sean; S Que Hee, Shane
2017-01-01
Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415
Snyder, Graham M.; Thom, Kerri A.; Furuno, Jon P.; Perencevich, Eli N.; Roghmann, Mary-Claire; Strauss, Sandra M.; Netzer, Giora; Harris, Anthony D.
2008-01-01
Objective To assess the frequency of detection and risk factors for detection of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) by healthcare workers on infection control protective gown and gloves. Design We observed interactions between healthcare workers and patients during routine clinical activities. Cultures were taken of healthcare workers’ hands prior to entering the room, disposable infection control gown and gloves after completing patient care activities, and of hands immediately following removal of infection control protective gown and gloves. Setting A 29-bed medical intensive care unit at an urban tertiary-care academic hospital, the University of Maryland Medical Center. Results Seventeen percent (24/137, 95%CI ± 6.4%) of healthcare workers caring for a patient with MRSA and/or VRE acquired that organism on their gloves, gown or both. Contacting an endotracheal tube or tracheostomy (P < 0.05), contacting the head and/or neck of a patient (P < 0.05), and the presence of a percutaneous endoscopic gastrostomy/jejunostomy tube (P < 0.05) were associated with increased risk of detection of antibiotic-resistant organisms. Conclusions Gloves and gowns are frequently contaminated with MRSA and VRE during routine care duties. Contact with the head or neck, care for an endotracheal tube or tracheostomy, and the presence of an endotracheal tube or tracheostomy may increase the risk of detection of antibiotic-resistant organisms. PMID:18549314
Risk of surgical glove perforation in oral and maxillofacial surgery.
Kuroyanagi, N; Nagao, T; Sakuma, H; Miyachi, H; Ochiai, S; Kimura, Y; Fukano, H; Shimozato, K
2012-08-01
Oral and maxillofacial surgery, which involves several sharp instruments and fixation materials, is consistently at a high risk for cross-contamination due to perforated gloves, but it is unclear how often such perforations occur. This study aimed to address this issue. The frequency of the perforation of surgical gloves (n=1436) in 150 oral and maxillofacial surgeries including orthognathic surgery (n=45) was assessed by the hydroinsufflation technique. Orthognathic surgery had the highest perforation rate in at least 1 glove in 1 operation (91.1%), followed by cleft lip and palate surgery (55.0%), excision of oral soft tumour (54.5%) and dental implantation (50.0%). The perforation rate in scrub nurses was 63.4%, followed by 44.4% in surgeons and first assistants, and 16.3% in second assistants. The odds ratio for the perforation rate in orthognathic surgery versus other surgeries was 16.0 (95% confidence interval: 5.3-48.0). The protection rate offered by double gloving in orthognathic surgery was 95.2%. These results suggest that, regardless of the surgical duration and blood loss in all fields of surgery, orthognathic surgery must be categorized in the highest risk group for glove perforation, following gynaecological and open lung surgery, due to the involvement of sharp objects. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Zondervan, Daniel K; Friedman, Nizan; Chang, Enoch; Zhao, Xing; Augsburger, Renee; Reinkensmeyer, David J; Cramer, Steven C
2016-01-01
Individuals with chronic stroke have limited options for hand rehabilitation at home. Here, we sought to determine the feasibility and efficacy of home-based MusicGlove therapy. Seventeen participants with moderate hand impairment in the chronic phase of stroke were randomized to 3 wk of home-based exercise with either the MusicGlove or conventional tabletop exercises. The primary outcome measure was the change in the Box and Blocks test score from baseline to 1 mo posttreatment. Both groups significantly improved their Box and Blocks test score, but no significant difference was found between groups. The MusicGlove group did exhibit significantly greater improvements than the conventional exercise group in motor activity log quality of movement and amount of use scores 1 mo posttherapy (p = 0.007 and p = 0.04, respectively). Participants significantly increased their use of MusicGlove over time, completing 466 gripping movements per day on average at study end. MusicGlove therapy was not superior to conventional tabletop exercises for the primary end point but was nevertheless feasible and led to a significantly greater increase in self-reported functional use and quality of movement of the impaired hand than conventional home exercises. ClinicalTrials.gov; "Influence of Timing on Motor Learning"; NCT01769326; https://clinicaltrials.gov/ct2/show/NCT01769326.
Naing, L; Nordin, R; Musa, R
2001-09-01
Increasing risk of HIV infections among health care workers has been a continuing concern. The study was designed to identify the compliance of glove utilization, and factors related to non-compliance. A sample of 150 staff nurses were recruited from the study population of 550 nurses in Hospital Universiti Sains Malaysia. Data were collected by using a structured self-administered questionnaires. The response rate was 98.4%. The study revealed a low compliance (13.5%) of glove utilization (for all 9 procedures), which varied among different procedures (27-97%). Younger nurses and those with shorter duration of working experience had better knowledge of Universal Precautions. Nurses in intensive care unit and operation theatre were better in both knowledge and compliance of glove utilization. The three commonest misconceptions were identified as "selective use of gloves for high risk groups and suspected cases", and "tendency to depend on HIV prevalence". Nurses reported practical problems including administrative and personal related such as "stock irregularity" (46%), "glove not available at the emergency sites" (44%), and "reduction of tactile sensation" (39%). It was concluded that poor knowledge and practical problems were possible responsible factors for the low compliance. A good training for nurses comprising principle and practice of Universal Precautions, updated knowledge of blood and body fluid borne infections and risk and its management, will probably improve the compliance.
The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength
NASA Technical Reports Server (NTRS)
Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar
2010-01-01
The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.
... the treated areas. Wash your hands well with soap and water after applying or touching mechlorethamine gel. ... disposable nitrile gloves and wash hands well with soap and water after removing the gloves. If a ...
The manufacture of gloves from natural rubber latex.
Yip, Esah; Cacioli, Paul
2002-08-01
Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content.
Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz
2016-01-01
Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889
Design and Dynamic Modeling of Flexible Rehabilitation Mechanical Glove
NASA Astrophysics Data System (ADS)
Lin, M. X.; Ma, G. Y.; Liu, F. Q.; Sun, Q. S.; Song, A. Q.
2018-03-01
Rehabilitation gloves are equipment that helps rehabilitation doctors perform finger rehabilitation training, which can greatly reduce the labour intensity of rehabilitation doctors and make more people receive finger rehabilitation training. In the light of the defects of the existing rehabilitation gloves such as complicated structure and stiff movement, a rehabilitation mechanical glove is designed, which provides driving force by using the air cylinder and adopts a rope-spring mechanism to ensure the flexibility of the movement. In order to fit the size of different hands, the bandage ring which can adjust size is used to make the mechanism fixed. In the interest of solve the complex problem of dynamic equation, dynamic simulation is carried out by using Adams to obtain the motion curve, which is easy to optimize the structure of ring position.
Latex allergy: epidemiological study of 1351 hospital workers.
Liss, G M; Sussman, G L; Deal, K; Brown, S; Cividino, M; Siu, S; Beezhold, D H; Smith, G; Swanson, M C; Yunginger, J; Douglas, A; Holness, D L; Lebert, P; Keith, P; Wasserman, S; Turjanmaa, K
1997-05-01
To determine the prevalence of latex sensitisation among a large group of healthcare workers, study the occupational and non-occupational factors associated with latex allergy, and characterise latex exposure in air and by gloves. All 2062 employees of a general hospital in Hamilton, Ontario, Canada who regularly used latex gloves were invited to participate in a cross sectional survey, representing the baseline phase of a prospective cohort morbidity study. Attempts were made to recruit employees who were diagnosed with latex allergy before the survey. Glove extracts were assayed for antigenic protein, and area and personal air samples were obtained on two occasions (summer and winter) to estimate exposure to airborne latex protein. A questionnaire on medical and occupational information was administered by an interviewer. Skin prick tests were performed with latex reagents, three common inhalants, and six foods. The mean (SD) latex protein concentrations were 324 (227) micrograms/g in powdered surgical gloves and 198 (104) micrograms/g in powdered examination gloves. Personal latex aeroallergen concentrations ranged from 5 to 616 ng/m3. There was a total of 1351 (66%) participants. The prevalence of positive latex skin tests was 12.1% (95% confidence interval (95% CI) 10.3% to 13.9%). This prevalence did not vary by sex, age, hospital, or smoking status but subjects who were latex positive were significantly more likely to be atopic (P < 0.01). Participants who were latex positive were also significantly more likely to have positive skin tests to one or more foods (Mantel-Haenszel odds ratio (OR) adjusted for atopy 12.1, 95% CI 7.6 to 19.6, P < 10(-9)). Work related symptoms were more often reported among latex positive people, and included hives (OR 6.3, 95% CI 3.2 to 12.5), eye symptoms (OR 1.9, 95% CI 1.2 to 2.8), and wheezy or whistling chest (OR 4.7, 95% CI 2.8 to 7.9). The prevalence of latex sensitivity was highest among laboratory workers (16.9%), and nurses and physicians (13.3%). When the glove consumption per healthcare worker for each department was grouped into tertiles, the prevalence of latex skin test positivity was greater in the higher tertiles of glove use for sterile (surgical) gloves (P < 0.005) but not for examination gloves. In this large, cross sectional study of healthcare workers, the prevalence of latex sensitisation was 12.1% (9.5% among all those eligible), and there were significant associations with atopy, positive skin tests to certain foods, work related symptoms, and departmental use of gloves per healthcare worker. This cohort is being followed up prospectively and will be retested to determine the incidence of development of latex sensitivity.
... condition should prevent the calluses from returning. Wear gloves to protect your hands during activities that cause ... with changing to better-fitting shoes or wearing gloves. Call your provider if: You have diabetes and ...
16 CFR 1630.4 - Test procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a fire-retardant treatment, or is made of fibers which have had a fire-retardant treatment, the...) Gloves. Nonhygroscopic gloves (such as rubber polyethylene) for handling the sample after drying, and...
16 CFR 1631.4 - Test procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a fire-retardant treatment, or is made of fibers which have had a fire-retardant treatment, the... gel desiccant. (7) Gloves. Nonhygroscopic gloves (such as rubber or polyethylene) for handling the...
16 CFR 1630.4 - Test procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... a fire-retardant treatment, or is made of fibers which have had a fire-retardant treatment, the...) Gloves. Nonhygroscopic gloves (such as rubber polyethylene) for handling the sample after drying, and...
16 CFR 1631.4 - Test procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... a fire-retardant treatment, or is made of fibers which have had a fire-retardant treatment, the... gel desiccant. (7) Gloves. Nonhygroscopic gloves (such as rubber or polyethylene) for handling the...
... to anything that can irritate your skin. Wear cotton gloves under plastic gloves to soak up sweat ... make your eczema worse. Wear clothes made of cotton or a cotton blend. Wool and some synthetic ...
Surface sampling for endotoxin assessment using electrostatic wiping cloths.
Thorne, Peter S; Metwali, Nervana; Avol, Ed; McConnell, Rob S
2005-07-01
Much of the cost of exposure assessment for studies of residential cohorts is in scheduling and travel time for field staff. One way to reduce costs is to simplify methods such that subjects can sample their own residence. Analysis of settled dust is being widely used for assessment of exposures to allergens, lead and pesticides and can also be used for endotoxins. While vacuum sampling is the most common surface sampling method, wipe sampling has the advantage that it can be readily performed by the resident when convenient and samples can then be mailed to researchers. Thus, we evaluated the feasibility of wipe sampling for endotoxin environmental assessment using electrostatic wipes with or without the use of disposable examination gloves. Multiple lots of six types of commercial wipes and eight types of gloves were extracted and analyzed for endotoxin content using the kinetic chromogenic Limulus amebocyte lysate assay. Wipes were compared across brands, between lots, within lots, between pairs depending on proximity to cardboard packaging, and in wipe tests with or without gloves. Collected dust samples of known concentration were also tested in spiking assays for endotoxin recovery. The most striking finding was the high variability of endotoxin contamination of both wipes and gloves across brands and between various lots. The content of endotoxin in unused gloves ranged from <1.5 to 5810 endotoxin units (EU). The range for unused wipes was 3.6-87.8 EU. Surfaces of equal loading and area were sampled using three types of cloths that had low initial endotoxin contamination. The cloths were very good at collecting dust and endotoxin could be assayed from aqueous extracts of the wipes. Samples collected using cloths with bare washed hands yielded higher endotoxin loading per mass of collected dust versus samples collected wearing endotoxin-free gloves. This demonstrated additional endotoxin loading from the subject's hand. This study shows that wipe sampling while wearing medical gloves can be an effective method for collecting and assessing endotoxin on surfaces, so long as each lot of wipes and gloves have been tested and determined to be low in endotoxin.
Niazi, Sadia Ambreen; Vincer, Louise; Mannocci, Francesco
2016-08-01
The opportunistic Propionibacterium acnes recovered frequently from failed endodontic treatments might be the result of nosocomial endodontic infections. The study was aimed to determine if gloves worn by dentists could be one of the sources of these nosocomial infections and to investigate the P. acnes phylotypes involved. The cultivable microbiota of gloves (n = 8) at 4 time points (T1, immediately after wearing gloves; T2, after access cavity preparation; T3, after taking a working length/master cone radiograph; and T4, before sealing the cavity) were identified using 16S ribosomal RNA gene sequencing. recA gene sequencing of P. acnes isolates was done. The phylogenetic relationship was determined using MEGA 6 (http://www.megasoftware.net/fixedbugs.html; Megasoftware, Tempe, AZ). Data distributions were compared using the Fisher exact test; means were compared using the Mann-Whitney U test in SPSSPC (version 21; IBM, Armonk, NY). The quantitative viable counts at T4 (aerobically [2.93 ± 0.57], anaerobically [3.35 ± 0.43]) were greater (P < .001) than at T1 [(aerobically [0.48 ± 0.73], anaerobically [0.66 ± 0.86]) and T2 (aerobically [1.80 ± 0.54], anaerobically [2.41 ± 0.71]). Eighty cultivable bacterial taxa (5 phyla) were identified. The most prevalent ones were P. acnes and Staphylococcus epidermidis (100%). recA gene sequencing (n = 88) revealed 2 phylogenetic lineages with type I split into type IA and type IB. Type II was prevalent on gloves. Contamination of the gloves was detected at the final stages of the treatment. P. acnes and S. epidermidis are the prevalent taxa on gloves and are opportunistic endodontic pathogens. Changing gloves frequently, after gaining access into the pulp space and also after taking the working length/master gutta-percha point radiographs, is likely to reduce the risk of root canal reinfection. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Yap, Hong Kai; Lim, Jeong Hoon; Nasrallah, Fatima; Yeow, Chen-Hua
2017-01-01
Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper has demonstrated the possibility of using soft wearable exoskeletons that are more wearable, lightweight, and suitable to be used on a daily basis for hand function assistance of stroke survivors during activities of daily living. PMID:29062267
Pettit holds MSG Glove in the Columbus Laboratory
2012-01-17
ISS030-E-049556 (17 Jan. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, holds a Microgravity Science Glovebox (MSG) glove in the Columbus laboratory of the International Space Station.
Yap, Hong Kai; Sebastian, Frederick; Wiedeman, Christopher; Yeow, Chen-Hua
2017-07-01
We present the design of low-cost fabric-based Hat pneumatic actuators for soft assistive glove application. The soft assistive glove is designed to assist hand impaired patients in performing activities of daily living and rehabilitation. The actuators consist of flexible materials such as fabric and latex bladder. Using zero volume actuation concept, the 2D configuration of the actuators simplifies the manufacturing process and allows the actuators to be more compact. The actuators achieve bi-directional flexion and extension motions. Compared to previously developed inflatable soft actuators, the actuators generate sufficient force and torque to assist in both finger flexion and extension at lower air pressure. Preliminary evaluation results show that the glove is able to provide both active finger flexion and extension assistance for activities of daily living and rehabilitative training.
Powered glove with electro-pneumatic actuation unit for the disabled
NASA Astrophysics Data System (ADS)
Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu
2007-12-01
Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.
[Identification of migrants from nitrile-butadiene rubber gloves].
Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio
2003-04-01
Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
Ben-Tzvi, Pinhas; Ma, Zhou
2015-11-01
This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.
Estimation of shelf life of natural rubber latex exam-gloves based on creep behavior.
Das, Srilekha Sarkar; Schroeder, Leroy W
2008-05-01
Samples of full-length glove-fingers cut from chlorinated and nonchlorinated latex medical examination gloves were aged for various times at several fixed temperatures and 25% relative humidity. Creep testing was performed using an applied stress of 50 kPa on rectangular specimens (10 mm x 8 mm) of aged and unaged glove fingers as an assessment of glove loosening during usage. Variations in creep curves obtained were compared to determine the threshold aging time when the amount of creep became larger than the initial value. These times were then used in various models to estimate shelf lives at lower temperatures. Several different methods of extrapolation were used for shelf-life estimation and comparison. Neither Q-factor nor Arrhenius activation energies, as calculated from 10 degrees C interval shift factors, were constant over the temperature range; in fact, both decreased at lower temperatures. Values of Q-factor and activation energies predicted up to 5 years of shelf life. Predictions are more sensitive to values of activation energy as the storage temperature departs from the experimental aging data. Averaging techniques for prediction of average activation energy predicted the longest shelf life as the curvature is reduced. Copyright 2007 Wiley Periodicals, Inc.
Weimann, Stefanie; Skudlik, Christoph; John, Swen Malte
2010-10-01
A 44-year-old metalworker suffered from severe hand eczema in spite of treatment with corticosteroid ointments. He had been using protective cotton gloves with blue PVC anti-slip dots on the finger tips. On clinical examination, the backs of both hands were erythematous and thickened while the finger tips showed vesicles. There was a positive patch test reaction to the blue PVC dots of an unworn cotton glove at 72, 96, 120 hours. To identify the causative chemicals, we carried out further patch tests using ingredients of the glove and cupric sulfate. The patient reacted to the blue dye VYNAMON(®) Blue BX FW (PB 15) at two concentrations - 10% at 72 and 96 hours, and 50% at 48 and 72 hours. This dye is a very strong and brilliant blue with red-copper tones and resistant to fire and weathering. The cupric-phthalocyanine complexes are used as pigments in cosmetics (e. g. CI 74160, 74180, 74260). To the best of our knowledge, no allergic reactions to this dye have been described, particularly not in gloves. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
7. Process areas room. Incinerator and glove boxes (hoods) to ...
7. Process areas room. Incinerator and glove boxes (hoods) to the right. Filter boxes to the left. Looking south. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA
1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...
1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO
Mäkelä, Erja A; Vainiotalo, Sinikka; Peltonen, Kimmo
2003-06-01
Standard test methods ASTM F739 and EN 374 were compared by assessing the permeation of 70% isopropyl alcohol (2-propanol) through seven brands of surgical gloves. The two standards differ in the flow rates of the collection medium and in the chemical permeation rate at which the breakthrough time (BTT) is detected, the EN detection level being 10 times higher than the permeation rate used by ASTM. In a departure from the EN standard method, a 4 h testing time was used instead of 8 h. All of the tested gloves were from the same manufacturer and were made from either natural rubber (NR) (six brands) or chloroprene rubber (CR) (one brand). Two of the NR glove brands were double layered. For the thin NR gloves (0.22, 0.28 and 0.27 mm) the permeation rates were higher throughout the tests with a flow rate of 474 ml/min (EN) of the collection medium (nitrogen) compared with the permeation rates obtained with a flow rate of 52 ml/min (ASTM). These resulted in BTTs of 4.6, 6.5 and 7.6 min (EN) and 4.8, 6.5 and 9.1 min (ASTM), respectively. No statistical difference could be observed between the BTT values obtained with the two standard methods for any of the thin gloves. Thus, although the ASTM standard has a lower criterion for the detection of permeation, it does not necessarily produce shorter BTTs. For the better barriers the methods yielded more equivalent permeation rate curves and thus the EN BTTs were longer than the ASTM BTTs: the EN results were 21, 80, 122 and >240 min compared with the ASTM results of 12, 32, 38 and 103 min for glove thicknesses of 0.37 (NR), 0.22 + 0.22 (double layered NR), 0.31 + 0.29 (double layered NR) and 0.19 mm (CR), respectively.
Calculating and Mitigating the Risk of a Cut Glove to a Space Walking Astronaut
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2013-01-01
One of the high risk operations on the International Space Station (ISS) is conducting a space walk, or an Extra Vehicular Activity (EVA). Threats to the space walking crew include airlock failures, space suit failures, and strikes from micro ]meteoroids and orbital debris (MM/OD). There are risks of becoming untethered from the space station, being pinched between the robotic arm and a piece of equipment, tearing your suit on a sharp edge, and other human errors that can be catastrophic. For decades NASA identified and tried to control sharp edges on external structure and equipment by design; however a new and unexpected source of sharp edges has since become apparent. Until recently, one of the underappreciated environmental risks was damage to EVA gloves during a spacewalk. The ISS has some elements which have been flying in the environment of space for over 14 years. It has and continues to be bombarded with MM/OD strikes that have created small, sharp craters all over the structure, including the dedicated EVA handrails and surrounding structure. These craters are capable of cutting through several layers of the EVA gloves. Starting in 2006, five EVA crewmembers reported cuts in their gloves so large they rendered the gloves unusable and in some cases cut the spacewalk short for the safety of the crew. This new hazard took engineers and managers by surprise. NASA has set out to mitigate this risk to safety and operations by redesigning the spacesuit gloves to be more resilient and designing a clamp to isolate MM/OD strikes on handrails, and is considering the necessity of an additional tool to repair strikes on non ]handrail surfaces (such as a file). This paper will address how the ISS Risk Team quantified an estimate of the MM/OD damage to the ISS, and the resulting likelihood of sustaining a cut glove in order to measure the effectiveness of the solutions being investigated to mitigate this risk to the mission and crew.
Gupta, R C; Masthay, M B; Canerdy, T D; Acosta, T M; Provost, R J; Britton, D M; Atieh, B H; Keller, R J
2005-01-01
This study was undertaken to determine selamectin residue in dog's blood and in gloves worn while petting dogs after Revolution application. Revolution contains the active ingredient selamectin (a semisynthetic avermectin), which controls endoparasites and ectoparasites, including adult fleas, flea eggs, ticks, heartworms, ear mites, and sarcoptic mange in dogs, for 30 days. Revolution was applied topically on a group of six adult house hold dogs (240 mg selamectin/dog). The gloves worn for 5 min while petting the dogs were collected in glass jars and the blood samples (5 mL/dog) were collected in EDTA tubes at 0 h, 24 h, and 72 h, and at 1, 2, 3, 4, and 5 weeks post-Revolution application for selamectin residue determination. At no time during the study did the dogs show any signs of toxicity, weight loss, or change in body temperature. Extracts of the blood and the gloves were analyzed for selamectin residue using RP-HPLC coupled with a UV detector (246 nm). Selamectin standard used for peak identification and quantitation was purified from Revolution. Selamectin residue was detected in the blood (10.26 +/- 1.06 ng/mL) only at 72 h post-Revolution application, probably due to its poor dermal absorption and rapid elimination from the circulation. In the glove extracts, the highest concentration of selamectin (518.90 +/- 66.80 ppm) was detected 24 h after Revolution application. Transferable residue of selamectin in gloves from dog's coat was detected at a lesser magnitude after 1 week of Revolution application, and that was followed by a further descending trend during the second, third, and fourth weeks. No selamectin residue was detected in the glove extracts after the fifth week. In spite of selamectin's binding to the sebaceous glands of the skin, gloves contained significant transferable residue. Thus, these findings suggest that repeated exposure to selamectin can pose potential health risks, especially to veterinarians, veterinary technologists, dog trainers/handlers, and pet owners.
Modeling Transfer of Vibrio Parahaemolyticus During Peeling of Raw Shrimp.
Xiao, Xingning; Pang, Haiying; Wang, Wen; Fang, Weihuan; Fu, Yingchun; Li, Yanbin
2018-03-01
This study aimed to qualify the transfer of Vibrio parahaemolyticus during the shrimp peeling process via gloves under 3 different scenarios. The 1st 2 scenarios provided quantitative information for the probability distribution of bacterial transfer rates from (i) contaminated shrimp (6 log CFU/g) to non-contaminated gloves (Scenario 1) and (ii) contaminated gloves (6 log CFU/per pair) to non-contaminated shrimp (Scenario 2). In Scenario 3, bacterial transfer from contaminated shrimp to non-contaminated shrimp in the shrimp peeling process via gloves was investigated to develop a predictive model for describing the successive bacterial transfer. The range of bacterial transfer rate (%) in Scenarios 1 and 2 was 7% to 91.95% and 0.04% to 12.87%, respectively, indicating that the bacteria can be transferred from shrimp to gloves much easier than that from gloves to shrimp. A Logistic (1.59, 0.14) and Triangle distribution (-1.61, 0.12, 1.32) could be used to describe the bacterial transfer rate in Scenarios 1 and 2, respectively. In Scenario 3, a continuously decay patterning with fluctuations as the peeling progressed has been observed at all inoculation levels of the 1st shrimp (5, 6, and 7 log CFU/g). The bacteria could be transferred easier at 1st few peels, and the decreasing bacterial transfer was found in later phase. Two models (exponential and Weibull) could describe the successive bacterial transfer satisfactorily (pseudo-R 2 > 0.84, RMSE < 1.23, SEP < 10.37). The result of this study can provide information regarding cross-contamination events in the seafood factory. This study presented that Vibrio parahaemolyticus cross-contamination could be caused by gloves during the shrimp peeling process. The bacterial transfer rate distribution and predictive model derived from this work could be used in risk assessment of V. parahaemolyticus to ensure peeled shrimp safety. © 2018 Institute of Food Technologists®.
Mechanisms to improve the mechanical performance of surgical gloves
NASA Astrophysics Data System (ADS)
Watkins, Michelle Hoyt
1997-11-01
The use of gloves as a barrier to cross infection in the medical industry has increased substantially due to the heightened awareness of viral transmission, especially the human immunodeficiency virus and the hepatitis B virus. The glove must allow for tactile sensation, comfort and long use times, while providing equally critical mechanical performance. The majority of surgical gloves are made of natural rubber latex which do not give a critical level of cut-resistance or puncture-resistance. Natural rubber latex gloves are also known to cause latex allergy with hypersensitivity reactions ranging from mild skin rashes to more severe bronchial asthma, anaphylactic reactions, and even death. It has been postulated natural rubber latex (NRL) proteins cause these allergic reactions. The research that has been conducted comprises two approaches that have been explored for improving the cut-resistance of surgical gloves. The first method involves an integral fiber-latex structure that possesses the combination of high reversible extensibility, barrier performance and retention of tactile sense. Improvement in mechanical properties in excess of 85% has been achieved as well as an improvement in cut-resistance. The second method involves the incorporation of a low concentration of ultra high molecular weight (UHMW) polyacrylamide. Although the initial premise for using a UHMW polymer was that it would bridge the latex compound particulates to improve strength, an entirely different mechanism for the enhancement of strength was explored through a parallel investigation of the release of proteins from cured natural rubber. However, no mechanism was conclusively identified. To address the allergy aspects of NRL, a thorough examination of the release of naturally-occurring latex proteins from cured natural rubber latex glove material was conducted in order to identify mechanisms for eliminating and/or reducing the potential allergens. The initial study examined the release of loaded proteins from cured NR and NR that contained PA in the initial latex compound and the results showed the likelihood of binding between proteins and PA.
... the material touches the skin. This is called contact dermatitis. Red, itchy bumps or blisters usually appear within ... powdered gloves are used and avoid all direct contact with latex. ... to get a skin rash reaction to latex, latex gloves made without additional ...
Human-computer interface glove using flexible piezoelectric sensors
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min
2017-05-01
In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.
Method for forming a glove attachment
NASA Technical Reports Server (NTRS)
Dawn, Frederic S. (Inventor); Guy, Walter W. (Inventor); Kosmo, Joseph (Inventor); Drennan, Arthur P. (Inventor); Tschirch, Richard P. (Inventor)
1995-01-01
An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.
Milosevic, Matija; McConville, Kristiina M Valter
2012-01-01
Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.
Human Grasp Assist Device With Exoskeleton
NASA Technical Reports Server (NTRS)
Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Bridgwater, Lyndon B. J. (Inventor)
2014-01-01
A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove.
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
One of the concerns of Space Station designers was making sure that the suited crewmembers' gloved fingers are not trapped in the holes that may be present in the structures during EVA activities. A study was conducted on 11 subjects to determine the minimum and maximum possible hole sizes that would eliminate the possibility of finger entrapment. Subjects wore pressurized gloves and attempted to insert their fingers into holes of various sizes. Based on the experimental results, it is recommended that the smallest diameter should be less than 13.0 mm and the largest diameter should be greater than 35.0 mm in order to eliminate the possibility of finger entrapment while wearing gloves. It is also recommended that the current requirements specified by the MSIS-STD-3000 (Section 6.3.3.4) should be modified accordingly.
Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels
NASA Technical Reports Server (NTRS)
Bishu, Ram R.; Klute, Glenn K.
1993-01-01
The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.
Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Holden, Kritina L.
2007-01-01
A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.
Human Grasp Assist Device Soft Goods
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Bergelin, Bryan (Inventor); Bridgwater, Lyndon B. J. (Inventor); Bibby, Heather (Inventor); Schroeder, Judy (Inventor); Linn, Douglas Martin (Inventor); Erkkila, Craig (Inventor)
2015-01-01
A grasp assist system includes a glove and a flexible sleeve. The glove includes a digit such as a finger or thumb, a force sensor configured to measure a grasping force applied to an object by an operator wearing the glove, and adjustable phalange rings positioned with respect to the digit. A saddle is positioned with respect to the finger. A flexible tendon is looped at one end around the saddle. A conduit contains the tendon. A conduit anchor secured within a palm of the glove receives the conduit. The sleeve has pockets containing an actuator assembly connected to another end of the tendon and a controller. The controller is in communication with the force sensor, and calculates a tensile force in response to the measured grasping force. The controller commands the tensile force from the actuator assembly to tension the tendon and thereby move the finger.
Influence on grip of knife handle surface characteristics and wearing protective gloves.
Claudon, Laurent
2006-11-01
Ten subjects were asked to apply maximum torques on knife handles with either their bare hand or their hand wearing a Kevlar fibre protective glove. Four knife handles (2 roughnesses, 2 hardnesses) were tested. Surface electromyograms of 6 upper limb and shoulder muscles were recorded and subject opinions on both knife handle hardness and friction in the hand were also assessed. The results revealed the significant influence of wearing gloves (p<0.0001), knife type (p<0.0005) and handle hardness (p<0.005) on the applied torque. Wearing Kevlar fibre gloves greatly increased the torque independently of the other two parameters. Under the bare hand condition, a 90 degrees ShA slightly rough handle provided the greatest torque. Subject opinion agreed with the observed effects on recorded torque values except for the hardness factor, for which a preference for the 70 degrees ShA value over the 90 degrees ShA value emerged.
Assessment of dermal exposure of greenhouse workers to the pesticide bupirimate.
Jongen, M J; Engel, R; Leenheers, L H
1992-01-01
An HPLC method was developed for estimation of dermal exposure of greenhouse workers to the pesticide bupirimate. Chromatography was performed on a cyano-modified silica column with methanol-water (6:4 by volume) containing 5 g/L ammonium sulfate as eluent. UV detection at 310 nm was used for quantitation. Dermal exposure was assessed by letting the workers wear cotton gloves and by measuring foliar dislodgable residues in the greenhouses as potential exposure. The analytical procedure was validated for measurement of bupirimate on cotton gloves and in solutions used for the estimation of foliar dislodgable residues. Gloves were extracted with methanol. Recovery of bupirimate from fortified gloves was complete. Methanol extracts with one volume of water added and solutions containing dislodgable residues were injected directly onto the HPLC system. The limit of detection was 30 micrograms/L. Between-day coefficients of variation were 7 and 4% at concentrations of 0.6 and 28 mg/L, respectively.
Lee, Inae; Kim, Sunmi; Kim, Ki-Tae; Kim, Sungkyoon; Park, Suhyun; Lee, Hyojin; Jeong, Yunsun; Lim, Jae-Eun; Moon, Hyo-Bang; Choi, Kyungho
2018-05-16
Bisphenol A (BPA) is one of the most widely used chemicals in various consumer products. In thermal papers such as receipts and tickets, BPA is used as a heat-activated developer. Cashiers are therefore suspected to be a vulnerable group of exposure to BPA, but neither contribution of receipt handling to the total body burden of BPA among cashiers, nor related health effects are well characterized. Female cashiers (n = 54) were recruited from seven retail shops of a major supermarket chain in Korea, and urinary levels of BPA and metabolic syndrome (MetS) related biomarkers were measured. In order to estimate the contribution of receipt handling to the body burden of BPA, an intervention was designed on the use of gloves: the subjects were asked not to wear gloves during the work for one week, and in the following week, to wear gloves. Urine samples were collected at pre-shift and post-shift for the first two consecutive days in each week, and urinary BPA concentrations were measured. In cashiers without gloves, about a two-fold increase in urinary BPA concentrations was observed after work-shift. When the cashiers wore gloves, however, urinary BPA levels showed no changes. Higher urinary BPA concentrations were associated with greater levels of fasting insulin and insulin resistance. Our observation shows that receipt handling among the cashiers could double the BPA exposure levels at post-shift compared to those at pre-shift, and use of simple protective equipment such as gloves could effectively reduce the BPA exposure levels. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E; George, Gerald L; Dodge, Robert L
Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. In these environments, low-energy photons, i.e., those less than 250 keY, are encountered.more » Shielding glove box gloves are traditionally composed of lead-based materials, but these are now considered hazardous waste. This has prompted the development of new, nonhazardous- shielding gJovebox gloves. No studies, however, have investigated the effectiveness of these new glovebox gloves. We examined both leaded and nonhazardous- shielding glovebox gloves and compared their attenuation effectiveness over the energy range of interest at TA-55. All measurements are referenced to lead sheets, allowing direct comparisons to the common industry standard of 0.1 mm lead equivalent material. The attenuation properties of both types of glovebox gloves vary with energy, making it difficult for manufacturers to claim lead equivalency across the entire energy range used at TA-55. The positions of materials' photon energy absorption edges, which are particularly important to improved attenuation performance, depending upon the choice of radiation energy range, are discussed. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.« less
A randomized control hands-on defibrillation study-Barrier use evaluation.
Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig
2016-06-01
Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Occupational exposure of electrical utility linemen to pentachlorophenol.
Thind, K S; Karmali, S; House, R A
1991-12-01
Occupational exposure to pentachlorophenol (PCP) for a crew of electrical utility linemen was monitored over a 6-month period by using total PCP in urine per gram of creatinine as a biological monitoring parameter. Urine samples were collected from three groups: A, B, and control, at a 4-week frequency during 1989. Group A was required to use new gloves after each 4-week work period; Group B changed gloves on a need basis as per normal operating procedure. The control group consisted of members of the administrative office staff who were not occupationally exposed. The used gloves returned by Group A were monitored for contamination. On the basis of analysis of the collected data the following conclusions were noted. (1) The linemen experienced a seasonal exposure pattern with exposures peaking in July and August. This seasonal effect was also observed with glove contamination data. (2) The glove contamination levels were significantly associated with urine PCP concentrations when both these variables were expressed as geometric means for the individuals in Group A. Inclusion of work experience as an additional variable enhances this association. Less experienced linemen tended to perform more activities with higher current exposure and had higher urine and glove PCP measurements and higher correlations between these variables than more experienced linemen. (3) Over the study period, the difference in long-term exposures of Group A and Group B linemen was not statistically significant. (4) The long-term individual exposures, calculated as the geometric mean of each individual's sequential sample readings, were all below the biological monitoring guideline value of 1000 micrograms PCP/g creatinine.
Strategies to Prevent MRSA Transmission in Community-Based Nursing Homes: A Cost Analysis.
Roghmann, Mary-Claire; Lydecker, Alison; Mody, Lona; Mullins, C Daniel; Onukwugha, Eberechukwu
2016-08-01
OBJECTIVE To estimate the costs of 3 MRSA transmission prevention scenarios compared with standard precautions in community-based nursing homes. DESIGN Cost analysis of data collected from a prospective, observational study. SETTING AND PARTICIPANTS Care activity data from 401 residents from 13 nursing homes in 2 states. METHODS Cost components included the quantities of gowns and gloves, time to don and doff gown and gloves, and unit costs. Unit costs were combined with information regarding the type and frequency of care provided over a 28-day observation period. For each scenario, the estimated costs associated with each type of care were summed across all residents to calculate an average cost and standard deviation for the full sample and for subgroups. RESULTS The average cost for standard precautions was $100 (standard deviation [SD], $77) per resident over a 28-day period. If gown and glove use for high-risk care was restricted to those with MRSA colonization or chronic skin breakdown, average costs increased to $137 (SD, $120) and $125 (SD, $109), respectively. If gowns and gloves were used for high-risk care for all residents in addition to standard precautions, the average cost per resident increased substantially to $223 (SD, $127). CONCLUSIONS The use of gowns and gloves for high-risk activities with all residents increased the estimated cost by 123% compared with standard precautions. This increase was ameliorated if specific subsets (eg, those with MRSA colonization or chronic skin breakdown) were targeted for gown and glove use for high-risk activities. Infect Control Hosp Epidemiol 2016;37:962-966.
Factors associated with hand hygiene practices in two neonatal intensive care units.
Cohen, Bevin; Saiman, Lisa; Cimiotti, Jeannie; Larson, Elaine
2003-06-01
To determine whether hand hygiene practices differ between levels of contact with neonates; to characterize the hand hygiene practices of different types of personnel; and to compare hand hygiene practices in neonatal intensive care units (NICUs) using different products. Research assistants observed staff hand hygiene practices during 38 sessions in two NICUs. Patient touches were categorized as touching within the neonates' environment but only outside the Isolette (Level 1), touching within the Isolette but not the neonate directly (Level 2) or directly touching the neonate (Level 3). Hand hygiene practices for each touch were categorized into five groups: cleaned hands and new gloves; uncleaned hands and new gloves; used gloves; clean hands and no gloves; uncleaned hands and no gloves. Research assistants observed 1472 touches. On average each neonate or his or her immediate environment was touched 78 times per shift. Nurses (P = 0.001), attending physicians (P = 0.02) and physicians-in-training (P = 0.03) were more likely to use appropriate practices during Level 3 touches, but only 22.8% of all touches were with cleaned and/or newly gloved hands. The mean number of direct touches by staff members with cleaned hands was greater in the NICU using an alcohol-based hand rub than in the NICU using antimicrobial soap (P < 0.01). Hand hygiene was suboptimal in this high risk setting; administrative action and improved products may be needed to assure acceptable practice. In this study use of an alcohol-based product was associated with significantly improved hand hygiene and should be encouraged, as recommended in the new CDC hand hygiene guideline.
NASA Technical Reports Server (NTRS)
Bekdash, Omar; Norcross, Jason; McFarland, Shane
2015-01-01
Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.
Indirect latex glove contamination and its inhibitory effect on vinyl polysiloxane polymerization.
Kimoto, Katsuhiko; Tanaka, Kinya; Toyoda, Minoru; Ochiai, Kent T
2005-05-01
The inhibitory effect of indirect latex contamination on the polymerization of vinyl polysiloxane (VPS) impression material has been previously reported. However, the transfer of specific elements that cause inhibition has not been confirmed, nor has the removal of such contaminants been reported. This study examined the surfaces of materials commonly used in restorative procedures that were contaminated by indirect latex glove contact and then evaluated for inhibition of polymerization of VPS. The effect of selected cleansing procedures was then studied. Four experimental groups (n = 8) were prepared: (1) clean vinyl gloves (control), (2) clean gingival retraction cords (control), (3) contaminated vinyl gloves, and (4) contaminated gingival retraction cord. Microscopic evaluation of the appearance and the characterization of surface particulate contamination were performed for each. Three cleansing protocols were then evaluated for efficacy in cleaning vinyl glove surfaces contaminated by latex contact (n = 10): (1) brushing with water, (2) brushing with soap/rinsing with water, (3) cleansing with rubbing alcohol. The subsequent degree of VPS polymerization inhibition was evaluated subjectively. A chi-square test was used for data analysis (alpha=.05). Particulate sulfur elements and sulfur-chloride compounds were present on the contaminated substrates. None of the 3 cleansing procedures eliminated polymerization inhibition (P =.33). Residual elemental sulfur remained on all tested surfaces. Particulate sulfur and sulfur-chloride compounds were identified as the particulate contamination that resulted in polymerization inhibition of the tested VPS dental impression material. Removal of these contaminants from the tested vinyl gloves and gingival retraction cord was not possible with the 3 cleansing protocols tested in this study.
Compression under a mechanical counter pressure space suit glove
NASA Technical Reports Server (NTRS)
Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.
2002-01-01
Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.
Compression under a mechanical counter pressure space suit glove.
Waldie, James M A; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W; Hargens, Alan R
2002-12-01
Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.
Hamilton, R G; Adkinson, N F
1996-11-01
Nonammoniated latex, ammoniated latex, and rubber glove extracts are the only sources of natural rubber (Hevea brasiliensis) latex that have potential for use as skin testing reagents in the diagnosis of latex allergy. Their diagnostic sensitivity and specificity as skin test reagents are unknown. We conducted a phase 1/2 clinical study to examine the safety and diagnostic accuracy (sensitivity and specificity) of nonammoniated latex, ammoniated latex, and rubber glove extracts as skin test extracts to identify the most efficacious source material for future skin test reagent development. Twenty-four adults not allergic to latex, 19 adults with hand dermatitis or pruritus, and 59 adults with a latex allergy were identified by clinical history. All provided blood and then received puncture skin tests and intradermal skin tests with nonammoniated latex, ammoniated latex, and rubber glove extracts from Malaysian H. brasiliensis latex by use of sequential titration. A glove provocation test and IgE anti-latex RAST were used to clarify positive history-negative skin test response and negative history-positive skin test response mismatches. All three extracts were biologically safe and sterile. After normalization to 1 mg/ml of total protein, all three extracts produced equivalent diagnostic sensitivity and specificity in puncture skin tests and intradermal skin tests at various extract concentrations. Optimal diagnostic accuracy was safely achieved at 100 micrograms/ml for intradermal skin tests (e.g., nonammoniated latex: puncture skin test sensitivity 96%, specificity 100%; intradermal skin test sensitivity 93%, specificity 96%). The presence of IgE antibody in skin was highly correlated with IgE anti-latex in serum (nonammoniated latex: r = 0.98, p < 0.001; ammoniated latex: r = 0.94, p < 0.001; rubber glove extract: r = 0.96, p < 0.001). All five available subjects with a positive history, negative skin test response, and absence of IgE antibody in serum had a negative glove provocation test response, indicating no clinical evidence of latex allergy. No systemic or large local allergic reactions were observed with puncture skin tests or intradermal skin tests. Equivalent diagnostic sensitivity and specificity were observed with the nonammoniated latex, ammoniated latex, and rubber glove extract skin test reagents after normalization for total protein; nonammoniated latex may be considered the reagent of choice on the basis of practical quality control and reproducibility considerations.
... on the toilet. You may use clean disposable gloves, if you prefer not to use your bare hands. The gloves do not need to be sterile, unless your ... Jelly or other gel to the tip and top 2 inches (5 centimeters) of the catheter. (Some ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan A.
2015-12-02
This code implements the GloVe algorithm for learning word vectors from a text corpus. It uses a modern C++ approach. This algorithm is described in the open literature in the referenced paper by Pennington, Jeffrey, Richard Socher, and Christopher D. Manning.
PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS
In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...
Setting standards for product selection: allergy prevention.
White, I R
1997-01-01
It is axiomatic to state that if products made of natural rubber latex were not used in health care settings then there would be no problems of acquired hypersensitivity from such products. Although synthetic materials are available they do not currently possess the same technical qualities of elasticity and comfort, nor do they deliver the desired degree of protection against biological agents as gloves made out of natural rubber latex. Selection of gloves either for non-sterile procedures or sterile surgical use should be based on this understanding, and gloves with minimal levels of extractable latex proteins should be used.
Development of a Pre-Prototype Power Assisted Glove End Effector for Extravehicular Activity
NASA Technical Reports Server (NTRS)
1986-01-01
The purpose of this program was to develop an EVA power tool which is capable of performing a variety of functions while at the same time increasing the EVA crewmember's effectiveness by reducing hand fatigue associated with gripping tools through a pressurized EMU glove. The Power Assisted Glove End Effector (PAGE) preprototype hardware met or exceeded all of its technical requirements and has incorporated acoustic feedback to allow the EVA crewmember to monitor motor loading and speed. If this tool is to be developed for flight use, several issues need to be addressed. These issues are listed.
Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.
Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D
2003-01-01
Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.
1992-01-01
The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.
Telepresence master glove controller for dexterous robotic end-effectors
NASA Technical Reports Server (NTRS)
Fisher, Scott S.
1987-01-01
This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.
Fels, S S; Hinton, G E
1998-01-01
Glove-TalkII is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-TalkII uses several input devices (including a Cyberglove, a ContactGlove, a three-space tracker, and a foot pedal), a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. One subject has trained to speak intelligibly with Glove-TalkII. He speaks slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.
Micheloni, G; Baruffini, Adriana
2008-01-01
The choice of gloves in the healthcare settings is very important because of the high biological and chemical risks present in these workplaces. In order to rationalize and optimize this choice we must balance cost, quality, security and comfort. The aim of this study was to analyse the rules in force and to point out the relevant role of the Occupational Health Physician in the right choice and purchase of sanitary gloves. We reviewed the rules in force and the most relevant studies on these topics. The regulations in force provide that the manufacturers must perform tests to supply evidence for the quality of the products but they do not indicate which analytical method should be used and they do not require that the results are reported in the technical sheets. Thus the manufacturers have only to declare to be "in accordance with the rules". Therefore purchasers should require the manufacturing companies to give detailed information and verify their reliability. Moreover rules could be adapted to higher quality standards. The Occupational Health Physician should suggest the purchase of gloves with high biocompatibility, assuring the protection from the risks of specific tasks and suitable for preventing the onset of new glove-related diseases and the relapses in workers with already diagnosed occupational diseases.
Sommerstein, Rami; Führer, Urs; Lo Priore, Elia; Casanova, Carlo; Meinel, Dominik M; Seth-Smith, Helena MB; Kronenberg, Andreas; Koch, Daniel; Senn, Laurence; Widmer, Andreas F; Egli, Adrian; Marschall, Jonas
2017-01-01
We describe an outbreak of Burkholderia stabilis associated with contaminated washing gloves, a commercially available Class I medical device. Triggered by an increase in Burkholderia cepacia complex (BCC) bacteremias and the detection of BCC in unopened packages of washing gloves, an ad hoc national outbreak committee comprising representatives of a public health organisation, a regulatory agency, and an expert association convened and commissioned an outbreak investigation. The investigation included retrospective case finding across Switzerland and whole genome sequencing (WGS) of isolates from cases and gloves. The investigation revealed that BCC were detected in clinical samples of 46 cases aged 17 to 91 years (33% females) from nine institutions between May 2015 and August 2016. Twenty-two isolates from case patients and 16 from washing gloves underwent WGS. All available outbreak isolates clustered within a span of < 19 differing alleles, while 13 unrelated clinical isolates differed by > 1,500 alleles. This BCC outbreak was rapidly identified, communicated, investigated and halted by an ad hoc collaboration of multiple stakeholders. WGS served as useful tool for confirming the source of the outbreak. This outbreak also highlights current regulatory limitations regarding Class I medical devices and the usefulness of a nationally coordinated outbreak response. PMID:29233255
The magic glove: a gesture-based remote controller for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark
2012-01-01
This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.
Henriks-Eckerman, Maj-Len; Mäkelä, Erja
2015-03-01
Reported cases of allergic contact dermatitis caused by methylenediphenyl diisocyanate (MDI) have increased and thereby increased the need for adequate skin protection. Current standardized permeation and penetration test methods give information about efficacy of protective materials against individual components of the polyurethane systems. They do not give information of what kind of clothing materials workers should wear against splashes when handling mixed MDI-polyurethane formulations, which contain MDI, its oligomers, and polyols. The aim of this study was to develop and validate a sensitive penetration test method that can be used to select clothing that is protective enough against uncured splashes of MDI-polyurethane, still easy to use, and also, to find affordable glove materials that provide adequate protection during a short contact. The penetration of MDI through eight representative glove or clothing materials was studied with the developed test procedure. One MDI hardener and two polymeric MDI (PMDI)-polyol formulations representing different curing times were used as test substances. The materials tested included work clothing (woven) fabric, arm shields (nonwoven fabric), old T-shirt, winter gloves, and gloves of nitrile rubber, leather, vinyl (PVC), and natural rubber. A drop (50 µl) of test substance was added to the outer surface of the glove/clothing material, which had Tape Fixomull attached to the inner surface as a collection medium. After penetration times of 5 or 20min, the collecting material was removed and immediately immersed into acetonitrile containing 1-(2-methoxyphenyl)-piperazine for derivatization. The formed urea derivatives of 2,4'-MDI and 4,4'-MDI were analysed using liquid chromatography with mass spectrometric and UV detection. The precision of the test method was good for the material with high penetration (work clothing fabric) of MDI, as the relative standard deviation (RSD) was 14 and 20%. For the arm shield with a low penetration (the nonwoven fabric), the precision was lower with RSDs of 35 and 50%. For two clothing materials, the penetration was high (134-577 µg cm(-2)). Low penetration (<0.5 µg cm(-2)) was shown by the arm shield and the natural rubber glove. Three glove materials showed no detectable MDI penetration (<0.002 µg cm(-2)). Two affordable glove materials (natural rubber and nitrile rubber) and one clothing material (dust proof arm shield) that can provide adequate protection during short contact with solvent free PMDI formulations were found. The new test procedure should be standardized in order to get a new international penetration standard. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing
NASA Technical Reports Server (NTRS)
1997-01-01
The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
Home Healthcare Workers: How to Prevent Latex Allergies
... delayed hypersensitivity) This skin reaction looks like the rash from contact with poison ivy and usually shows up 24– ... after using gloves. • Recognize symptoms of latex allergy (rash; hives; flushing; ... Avoid direct contact with latex gloves and other latex-containing products ...
INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...
INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
8. Front (east) side of incinerator and glove boxes. Ash ...
8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA
Field protection effectiveness of chemical protective suits and gloves evaluated by biomonitoring
Chang, F K; Chen, M L; Cheng, S F; Shih, T S; Mao, I F
2007-01-01
Objectives To determine the effectiveness of protective suits and gloves by biomonitoring. Methods Fifteen male spray painters at a ship coating factory were studied for two weeks. Workers wore no protective clothing during the first week and wore protective suits and gloves during the second week. Sampling was conducted on four consecutive working days each week. Ethyl benzene and xylene in the air were collected by using 3M 3500 organic vapour monitors. Urine was collected before and after each work shift. Results Urinary mandelic acid (MA) and methyl hippuric acid (MHA) levels were divided by the personal exposure concentrations of ethyl benzene and xylene, respectively. Mean (SE) corrected MA and MHA concentrations in the first week were 1.07 (0.18) and 2.66 (0.68) (mg/g creatinine)/(mg/m3), and concentrations in the second week were 0.50 (0.12) and 1.76 (0.35) (mg/g creatinine)/(mg/m3) in the second week, respectively. Both MA and MHA concentrations in the second week (when spray painters wore protective suits and gloves) were lower than in the first week, respectively (p<0.001, p = 0.011). Mean decrease in MA and MHA biomarkers were 69% and 49%, respectively. Conclusion This study successfully evaluated the effectiveness of chemical protective suits and gloves by using biomarkers as urinary MA and MHA. This method is feasible for determining the performance of workers wearing personal protective equipment. Moreover, the experimental results suggest that dermal exposure may be the major contributor to total body burden of solvents in spray painters without protective suits and gloves. PMID:17522137
Iwamuro, B T; Fischer, H C; Kamper, D G
2011-01-01
The purpose of this study was to investigate whether active range of finger motion could be increased through the introduction of passive, external extension joint torques in stroke survivors. Five chronic stroke survivors with severe hand impairment resulting from hemiparesis took part in the study. Participants completed 2 experimental sessions in which hand movement and function were assessed. In one session, they wore a custom orthotic glove (X-Glove) that passively supplied extension torques to the joints of the fingers. In the second session, they performed the same tasks as in the other session, but without the glove. Outcome measures consisted of active range of motion, distance of the fingertip from the hand, selected tasks from the Graded Wolf Motor Function Test (GWMFT), and the Box and Blocks (BB) test. Primary results with and without the glove were compared using paired t tests with a Bonferroni correction. Active range of motion improved significantly by over 50%, from 4.4 cm to 6.7 cm, when the X-Glove was worn (P = .011). The distance of the fingertip from the metacarpophalangeal joint increased by an average of 2.2 cm for 4 of the subjects, although this change was not significant across all 5 subjects (P = .123). No significant differences were observed in the BB or GWMFT whether the X-Glove was worn or not. Introduction of passive extension torque can improve active range of motion for the fingers, even in chronic stroke survivors with substantial hand impairment. The increased range of motion would facilitate therapeutic training of the hand, potentially even in the home environment, although the bulk of the orthosis should be minimized to facilitate interactions with real objects.
Latex allergy: a follow up study of 1040 healthcare workers
Filon, F Larese; Radman, G
2006-01-01
Background Natural rubber latex allergy can cause skin and respiratory symptoms The aim of this study was to evaluate the prevalence and incidence of latex related symptoms and sensitisation among a large group of healthcare workers in Trieste hospitals, followed for three years before and after the introduction of powder‐free gloves with low latex release. Methods In the years 1997–99 the authors evaluated 1040 healthcare workers exposed to latex allergen for latex related symptoms and sensitisation by means of a questionnaire, a medical examination, skin prick tests, and IgE specific antibody assay. The second evaluation was carried out in the years 2000–02, subsequent to the changeover to a powder‐free environment. Results Glove related symptoms were seen in 21.8% of the nurses (227), mostly consisting of mild dermatitis: 38 (3.6%) complaining of contact urticaria and 24 (2.3%) of asthma and/or rhinitis. These symptoms were significantly related to skin prick tests positive to latex (OR = 9.70; 95% CI 5.5 to 17) and to personal atopy (OR = 2.29; 95% CI 1.6 to 3.2). Follow up was completed in 960 subjects (92.3%): 19 new subjects (2.4%) complained of itching erythema when using gloves, but none was prick positive to latex. Symptoms significantly improved and in most cases disappeared (p<0.0001). Conclusions Simple measures such as the avoidance of unnecessary glove use, the use of non‐powdered latex gloves by all workers, and use of non‐latex gloves by sensitised subjects can stop the progression of latex symptoms and can avoid new cases of sensitisation. PMID:16421390
Bettin, K; Clabots, C; Mathie, P; Willard, K; Gerding, D N
1994-11-01
To compare liquid soap versus 4% chlorhexidine gluconate in 4% alcohol for the decontamination of bare or gloved hands inoculated with an epidemic strain of Clostridium difficile. C difficile (6.7 log10 colony-forming units [CFU], 47% spores), was seeded onto bare or latex gloved hands of ten volunteers and allowed to dry. Half the volunteers initially washed with soap and half with chlorhexidine, followed by the other agent 1 week later. Cultures were done with Rodac plates at three sites on the hand: finger/thumbtips, the palmar surfaces of the fingers, and the palm. Statistical comparison was by paired Student's t test. On bare hands, soap and chlorhexidine did not differ in residual bacterial counts on the finger/thumbtips (log10 CFU, 2.0 and 2.1, P = NS) and fingers (log10 CFU, 2.4 and 2.5, P = NS). Counts were too high on bare palms to quantitate. On gloved hands, soap was more effective than chlorhexidine on fingers (log10 CFU 1.3 and 1.7, P < .01) and palms (log10 CFU 1.5 and 2.0, P < .01), but not finger/thumbtips (log10 CFU 1.6 with each, P = NS). Residual C difficile counts were lower on gloved hands than bare hands (P < 0.01 to < 0.0001). The two agents did not differ significantly in residual counts of C difficile on bare hands, but on gloved hands residual counts were lower following soap wash than following chlorhexidine wash. These observations support the use of either soap or chlorhexidine as a handwash for removal of C difficile, but efficacy in the prevention of C difficile transmission must be determined by prospective clinical trials.
Determination of an Ergonomically Sound Glovebox Glove Port Center Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christman, Marissa St; Land, Whitney Morgan
2016-11-30
Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.
40 CFR 170.112 - Entry restrictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of work clothing are not considered personal protective equipment for the purposes of this section... such work clothing be worn during some activities. (iii) When “chemical-resistant” personal protective... fingers. Work gloves made from lightweight cotton or poly-type material are considered to be glove liners...
PREDICTING THE EFFECTIVENESS OF CHEMICAL-PROTECTIVE CLOTHING MODEL AND TEST METHOD DEVELOPMENT
A predictive model and test method were developed for determining the chemical resistance of protective polymeric gloves exposed to liquid organic chemicals. The prediction of permeation through protective gloves by solvents was based on theories of the solution thermodynamics of...
Talimogene Laherparepvec Injection
... sure to replace them right away. You should use rubber or latex gloves when bandaging the injection sites. You should be sure to put all cleaning materials, gloves, and bandages that were used for the injection sites into a sealed plastic bag and throw them away into the garbage.you ...
NASA Astrophysics Data System (ADS)
Iervolino, Onorio; Meo, Michele
2017-04-01
Sign language is a method of communication for deaf-mute people with articulated gestures and postures of hands and fingers to represent alphabet letters or complete words. Recognizing gestures is a difficult task, due to intrapersonal and interpersonal variations in performing them. This paper investigates the use of Spiral Passive Electromagnetic Sensor (SPES) as a motion recognition tool. An instrumented glove integrated with wearable multi-SPES sensors was developed to encode data and provide a unique response for each hand gesture. The device can be used for recognition of gestures; motion control and well-defined gesture sets such as sign languages. Each specific gesture was associated to a unique sensor response. The gloves encode data regarding the gesture directly in the frequency spectrum response of the SPES. The absence of chip or complex electronic circuit make the gloves light and comfortable to wear. Results showed encouraging data to use SPES in wearable applications.
Rosin-Rammler Distributions in ANSYS Fluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
In Health Physics monitoring, particles need to be collected and tracked. One method is to predict the motion of potential health hazards with computer models. Particles released from various sources within a glove box can become a respirable health hazard if released into the area surrounding a glove box. The goal of modeling the aerosols in a glove box is to reduce the hazards associated with a leak in the glove box system. ANSYS Fluent provides a number of tools for modeling this type of environment. Particles can be released using injections into the flow path with turbulent properties. Themore » models of particle tracks can then be used to predict paths and concentrations of particles within the flow. An attempt to understand and predict the handling of data by Fluent was made, and results iteratively tracked. Trends in data were studied to comprehend the final results. The purpose of the study was to allow a better understanding of the operation of Fluent for aerosol modeling for future application in many fields.« less
Control of a powered prosthetic device via a pinch gesture interface
NASA Astrophysics Data System (ADS)
Yetkin, Oguz; Wallace, Kristi; Sanford, Joseph D.; Popa, Dan O.
2015-06-01
A novel system is presented to control a powered prosthetic device using a gesture tracking system worn on a user's sound hand in order to detect different grasp patterns. Experiments are presented with two different gesture tracking systems: one comprised of Conductive Thimbles worn on each finger (Conductive Thimble system), and another comprised of a glove which leaves the fingers free (Conductive Glove system). Timing tests were performed on the selection and execution of two grasp patterns using the Conductive Thimble system and the iPhone app provided by the manufacturer. A modified Box and Blocks test was performed using Conductive Glove system and the iPhone app provided by Touch Bionics. The best prosthetic device performance is reported with the developed Conductive Glove system in this test. Results show that these low encumbrance gesture-based wearable systems for selecting grasp patterns may provide a viable alternative to EMG and other prosthetic control modalities, especially for new prosthetic users who are not trained in using EMG signals.
Paulig, Jakobine; Jabusch, Hans-Christian; Großbach, Michael; Boullet, Laurent; Altenmüller, Eckart
2014-01-01
Musician’s dystonia (MD) is a task-specific movement disorder that causes loss of voluntary motor control while playing the instrument. A subgroup of patients displays the so-called sensory trick: alteration of somatosensory input, e.g., by wearing a latex glove, may result in short-term improvement of motor control. In this study, the glove-effect in pianists with MD was quantified and its potential association with MD-severity and outcome after treatment was investigated. Thirty affected pianists were included in the study. Music instrument digital interface-based scale analysis was used for assessment of fine motor control. Therapeutic options included botulinum toxin, pedagogical retraining and anticholinergic medication (trihexyphenidyl). 19% of patients showed significant improvement of fine motor control through wearing a glove. After treatment, outcome was significantly better in patients with a significant pre-treatment sensory trick. We conclude that the sensory trick may have a prognostic value for the outcome after treatment in pianists with MD. PMID:25295014
Ginn, T Adam; Smith, Adam M; Snyder, Jon R; Koman, L Andrew; Smith, Beth P; Rushing, Julia
2005-07-01
Repetitive trauma to the hand is a concern for baseball players. The present study investigated the effects of repetitive trauma and the prevalence of microvascular pathological changes in the hands of minor league professional baseball players. In contrast to previous investigators, we documented the presence of abnormalities in younger, asymptomatic individuals. Thirty-six baseball players on active minor league rosters underwent a history and physical examination of both hands as well as additional specialized tests, including Doppler ultrasound, a timed Allen test, determination of digital brachial pressure indices, and ring sizing of fingers. Data were compared between gloved hands and throwing hands, hitters and nonhitters, and players at four different positions (catcher [nine subjects], outfielder [seven subjects], infielder [five subjects], and pitcher [fifteen subjects]). Digital brachial indices in the ring fingers of the gloved (p < 0.05) and throwing hands (p < 0.02) of catchers were significantly diminished compared with those in all other players. Doppler testing showed a significantly greater prevalence of abnormal flow in the ulnar artery at Guyon's canal when catchers were compared with other position players (p < 0.01). Doppler abnormalities were significantly more common in the gloved hand compared with the throwing hand (p < 0.05). Seven of nine catchers (and only catchers) were found to have index finger hypertrophy (average change, two ring sizes; p < 0.01); the hypertrophy occurred at the proximal phalanx and the proximal interphalangeal joint of the gloved hand. Catchers had a significantly higher prevalence of subjective hand symptoms (specifically, weakness in the gloved hand) compared with pitchers and infielders/outfielders (44% compared with 7% and 17%, respectively; p < 0.05). Microvascular changes are present in the hands of otherwise healthy professional baseball players in all positions, with a significantly higher prevalence in catchers, prior to the development of clinically important ischemia. Repetitive trauma resulting from the impact of the baseball also leads to digital hypertrophy in the index finger of the gloved hand of catchers. Gloves currently used by professional catchers do not adequately protect the hand from repetitive trauma.
14. VIEW OF THE OUTSIDE OF A GLOVE BOX THAT ...
14. VIEW OF THE OUTSIDE OF A GLOVE BOX THAT CONTAINS ELECTROREFINING EQUIPMENT. ELECTROREFINING WAS ONE OF THE PROCESSES USED TO PURIFY PLUTONIUM THAT DID NOT MEET PURITY SPECIFICATIONS. (10/25/66) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO
21 CFR 878.4460 - Surgeon's glove.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgeon's glove. 878.4460 Section 878.4460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... operating room personnel to protect a surgical wound from contamination. The lubricating or dusting powder...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ACM from straight runs of piping and elbows and other connections with the following specifications... or other device used to prevent collapse of bag during removal shall run continually during the... pressure glove box systems. Negative pressure glove boxes may be used to remove ACM or PACM from pipe runs...
Friedman, Nizan; Chan, Vicky; Zondervan, Danny; Bachman, Mark; Reinkensmeyer, David J
2011-01-01
People with stroke typically must perform much of their hand exercise at home without professional assistance as soon as two weeks after the stroke. Without feedback and encouragement, individuals often lose motivation to practice using the affected hand, and this disuse contributes to further declines in hand function. We developed the MusicGlove as a way to facilitate and motivate at home practice of hand movement. This low-cost device uses music as an interactive and motivating medium to guide hand exercise and to quantitatively assess hand movement recovery. It requires the user to practice functional movements, including pincer grip, key-pinch grip, and finger-thumb opposition, by using those movements to play different musical notes, played along to songs displayed by an interactive computer game. We report here the design of the glove and the results of a single-session experiment with 10 participants with chronic stroke. We found that the glove is well suited for use by people with an impairment level quantified by a Box and Blocks score of at least around 7; that the glove can be used to obtain a measure of hand dexterity (% of notes hit) that correlates strongly with the Box and Blocks score; and that the incorporation of music into training significantly improved both objective measures of hand motor performance and self-ratings of motivation for training in the single session.
Tsakirakis, Angelos N; Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Charistou, Agathi N; Gerritsen-Ebben, Rianda; Glass, C Richard; Machera, Kyriaki
2018-05-20
In the present study, the dermal transfer rate of pesticides to agricultural workers occurring via contact with sprayed hard surfaces was investigated. Cotton gloves were used as dosimeters to collect residues from hard surfaces contaminated by pesticides in greenhouses. Dosimeters, either dry or moistened, were in contact with wood, metal and plastic surfaces previously sprayed. The experimental approach applied mimicked the typical hand contact. Moistened cotton gloves were used to simulate hand moisture from dew/condensation or rainfall. The effect of total duration of contact on the final hand exposure via transfer was investigated. The higher duration contact tested (50-sec) resulted in the higher transfer rates for metal and plastic surfaces; no such effect was noted in case of the wood surface. The pesticide amount transferred from the metal and plastic surfaces to wet gloves was greater than the one transferred to dry gloves. Such trend was not observed for the wood surface. Transfer rates varied from 0.46-77.62% and 0.17-16.90% for wet and dry samples, respectively. The current study has generated new data to quantify the proportion of pesticide deposits dislodged from three different non-crop surfaces when in contact with dry or wet gloves. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Reid, Christopher R.; McFarland, Shane M.
2015-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.
Wu, John Z; Wimer, Bryan M; Welcome, Daniel E; Dong, Ren G
2012-04-01
Air-cushioned gloves have the advantages of lighter weight, lower cost, and unique mechanical performance, compared to gloves made of conventional engineering materials. The goal of this study is to analyze the contact interaction between fingers and object when wearing an air-cushioned glove. The contact interactions between the the fingertip and air bubbles, which is considered as a cell of a typical air-cushioned glove, has been analyzed theoretically. Two-dimensional finite element models were developed for the analysis. The fingertip model was assumed to be composed of skin layers, subcutaneous tissue, bone, and nail. The air bubbles were modeled as air sealed in the container of nonelastic membrane. We simulated two common scenarios: a fingertip in contact with one single air bubble and with two air cushion bubbles simultaneously. Our simulation results indicated that the internal air pressure can modulate the fingertip-object contact characteristics. The contact stiffness reaches a minimum when the initial air pressure is equal to 1.3 and 1.05 times of the atmosphere pressure for the single air bubble and the double air bubble contact, respectively. Furthermore, the simulation results indicate that the double air bubble contact will result in smaller volumetric tissue strain than the single air bubble contact for the same force. Published by Elsevier Ltd.
Study on functional relationships between ergonomics indexes of manual performance
NASA Astrophysics Data System (ADS)
Hu, Hui-Min; Ding, Li; Chen, Shou-Ping; Yang, Chun-Xin; Yuan, Xiu-Gan
This paper investigates functional relationships between some of the key ergonomics indexes in manual performance, and attempts to condense the ergonomics appraisal indexes system and thus evaluate hand performance wearing EVA (extravehicular activity) glove, design and improve EVA glove's performance. Four types of ergonomics indexes were studied, i.e., dexterity, tactile sensibility (TS), strength and fatigue. Two test items of insert sticks into a holes-board (ISIHB) and nuts-bolts assembly task (NBAT) were used to measure dexterity, while shape discrimination (SD) was employed for TS, and grip force (GF) for strength and fatigue. The variables measured in this investigation included accomplishing time (AT) of ISIHB and NBAT, correct rate (CR) of SD, maximal grip force (MGF), instant grip force (IGF) and endurance time of grip force (ETGF). Experiments were conducted on 31 undergraduates (eight female and 23 male) with two experiment conditions of bare-hand group and gloved hand group. Results demonstrated that dexterity and TS performance of gloved hand group declined significantly compared with those of bare-hand group (p<0.001). There were not significant differences in strength and fatigue between two conditions (p>0.05). Four effective functional relationships were developed between four pairs of ergonomics indexes in bare-hand group. In gloved hand group, in addition to above-mentioned four pairs of relationships, another formula was found, which was y^=0.02061+0.01233x ( p<0.01, dexterity and TS).
Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers.
Zander, Joanna; Morrison, James
2008-09-01
Cold water immersion and protective gloves are associated with decreased manual performance. Although neoprene gloves slow hand cooling, there is little information on whether they provide sufficient protection when diving in cold water. Nine divers wearing three-fingered neoprene gloves and dry suits were immersed in water at 25 and 4 degrees C, at depths of 0.4 msw (101 kPa altitude adjusted) and 40 msw (497 kPa) in a hyperbaric chamber. Skin temperatures were measured at the fingers, hand, forearm, chest and head. Grip strength, tactile sensitivity and manual dexterity were measured at three time intervals. There was an exponential decay in finger and back of hand skin temperatures with exposure time in 4 degrees C water. Finger and back of hand skin temperatures were lower at 40 msw than at 0.4 msw (P < 0.05). There was no effect of pressure or temperature on grip strength. Tactile sensitivity decreased linearly with finger skin temperature at both pressures. Manual dexterity was not affected by finger skin temperature at 0.4 msw, but decreased with fall in finger skin temperature at 40 msw. Results show that neoprene gloves do not provide adequate thermal protection in 4 degrees C water and that impairment of manual performance is dependent on the type of task, depth and exposure time.
9 CFR 93.308 - Quarantine requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-storage and clothes-changing area must be provided with each shower area. There must also be one or more... nonquarantine areas of the facility. (P) Ventilation and climate control. The facility must be constructed with... after removing gloves; and (5) Change protective clothing, footwear, and gloves when they become soiled...
9 CFR 93.308 - Quarantine requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-storage and clothes-changing area must be provided with each shower area. There must also be one or more... nonquarantine areas of the facility. (P) Ventilation and climate control. The facility must be constructed with... after removing gloves; and (5) Change protective clothing, footwear, and gloves when they become soiled...
30 CFR 77.1710 - Protective clothing; requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...
30 CFR 77.1710 - Protective clothing; requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...
30 CFR 77.1710 - Protective clothing; requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...
30 CFR 77.1710 - Protective clothing; requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...
40 CFR 721.3435 - Butoxy-substituted ether alkane.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contaminated with the PMN substance shall be disposed of after every work shift. (ii) Hazard communication... during normal and expected duration and conditions of exposure within the work area by testing the... gloves may be exposed in the work area. There must be no permeation of the gloves by the chemical...
21 CFR 880.6250 - Patient examination glove.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient examination glove. 880.6250 Section 880.6250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... contamination between patient and examiner. (b) Classification. Class I (general controls). [45 FR 69682-69737...
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2013 CFR
2013-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2012 CFR
2012-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2014 CFR
2014-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
9 CFR 93.308 - Quarantine requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-storage and clothes-changing area must be provided with each shower area. There must also be one or more... nonquarantine areas of the facility. (P) Ventilation and climate control. The facility must be constructed with... after removing gloves; and (5) Change protective clothing, footwear, and gloves when they become soiled...
18. DETAILED VIEW OF A GLOVE BOX DAMAGED IN A ...
18. DETAILED VIEW OF A GLOVE BOX DAMAGED IN A FIRE THAT OCCURRED ON MAY 11, 1969. THE FIRE OCCURRED FROM THE SPONTANEOUS IGNITION OF A BRIQUETTE OF SCRAP PLUTONIUM ALLOY METAL. (5/18/69) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO
Synthesis of Bis(1,2-Dimethylimidazole)Copper(I)Hexafluorophosphate: An Experiment Using a Glove Box
ERIC Educational Resources Information Center
Niewahner, J. H.; Walters, Keith A.
2007-01-01
A detailed description of the synthesis of bis(1,2-dimethylimidazole)copper(I) hexafluorophosphate by using techniques in a glove box is presented. The results shows that the synthesis of the copper complex has a distinct color change indicating by-product oxidation by oxygen.
Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing
NASA Technical Reports Server (NTRS)
1997-01-01
A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort
NASA Technical Reports Server (NTRS)
Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.
2015-01-01
Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44 injured during 11,704 ground EVA training events. Of the 196 glove related injury incidents, 106 related to EVA and 90 to EVA training. Over these 196 incidents, 277 total injuries (126 flight; 151 training) were reported and were then grouped into 23 types of injuries. Of EVA flight injuries, 65% were commonly reported to the hand (in general), metacarpophalangeal (MCP) joint, and finger (not including thumb) with fatigue, abrasion, and paresthesia being the most common injury types (44% of total flight injuries). Training injuries totaled to more than 70% being distributed to the fingernail, MCP joint, and finger crotch with 88% of the specific injuries listed as pain, erythema, and onycholysis. Of these training injuries, when reporting pain or erythema, the most common location was the index finger, but when reporting onycholysis, it was the middle finger. Predictor variables specific to increased risk of onycholysis included: female sex (OR=2.622), older age (OR=1.065), increased duration in hours of the flight or training event (OR=1.570), middle finger length differences in inches between the finger and the EVA glove (OR=7.709), and use of the Phase VI glove (OR=8.535). Differentiation between training and flight and injury reporting during 2002-2004 were significant control variables. For likelihood of time to first onycholysis injury, there was a 24% reduction in rate of reporting for each year increase in age. Also, more experienced crewmembers, based on number of EVA flight or training events completed, were less likely to report an onycholysis injury (3% less for every event). Longer duration events also found reporting rates to occur 2.37 times faster for every hour of length. Crewmembers with larger hand size reported onycholysis 23% faster than those with smaller hand size. Finally, for every 1/10th of an inch increase in difference between the middle finger length and the glove, the rate of reporting increased by 60%. DISCUSSION: One key finding was that the Series 4000 glove had a lower injury risk than the Phase VI, which provides a platform for further evaluation. General interventions that reduce hand overexertion and repetitive use exposure through tool development, procedural changes and shorter exposures may be one mitigation path, but due to the way the training event times were reported, we cannot provide a guideline for a specific event duration change. When the finger length was different from the glove length, the risk of injury increased indicating that the use of larger finger take-ups could be contributing to injury and therefore may not be recommended. Prior to this investigation, there was one previous investigation indicating hand anthropometry may be related to onycholysis. We found different hand anthropometry variables indicated by this investigation as compared to the prior, specifically differences in middle finger length compared to glove finger length, which point more towards a sizing issue than a specific anthropometry issue. Additionally, although this investigation has identified sizing as an issue, the force and environmental-related variables of the EVA glove that could also cause injury were not accounted for.
Sensory substitution for space gloves and for space robots
NASA Technical Reports Server (NTRS)
Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.
1987-01-01
Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
A Wearable Mobile Sensor Platform to Assist Fruit Grading
Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.
2013-01-01
Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134
Student Perceptions and Effectiveness of an Innovative Learning Tool: Anatomy Glove Learning System
ERIC Educational Resources Information Center
Lisk, Kristina; McKee, Pat; Baskwill, Amanda; Agur, Anne M. R.
2015-01-01
A trend in anatomical education is the development of alternative pedagogical approaches to replace or complement experiences in a cadaver laboratory; however, empirical evidence on their effectiveness is often not reported. This study aimed to evaluate the effectiveness of Anatomy Glove Learning System (AGLS), which enables students to learn the…
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Astronaut Joseph Tanner checks gloves during during launch/entry training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Joseph R. Tanner, mission specialist, checks his gloves during a rehearsal for the launch and entry phases of the scheduled November 1994 flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
76 FR 6683 - Information Related to Risks and Benefits of Powdered Gloves; Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...) that contain or use donning or dusting powder. FDA is interested in the potential health effects from.... 360f). In their submissions to FDA, the petitioners highlight the adverse health effects that can result from powdered glove use, including allergic reactions, irritation, and foreign body reactions...
Suitability of Potential Alternatives to Pyrotechnic Distress Signals
2012-02-01
the following convolution : )()()( tqtIti Equation (1) Given that 2 )( ta a tq Equation (2) Where a = 0.2 for night time use...military five-finger gloves, equipped with a three-layer laminate insert. The back of the gloves is made from five-color camouflage fabric; the
The "White Glove Pulpit": A History of Policy Influence by First Ladies.
ERIC Educational Resources Information Center
Watson, Robert P.
2001-01-01
Focuses on the public policy influence exerted by the early first ladies, whose endeavors comprise a "White Glove Pulpit," a feminine means of asserting power in the realm of strict gender confines. Discusses four roles (spouse and partner, hostess, advocate, and public figure and campaigner) through which the First Ladies influenced…
The chain of cross-contamination: link-by-link.
Schwartz, Jeanne
2002-01-01
Conscious efforts must be made to break the chain of cross-contamination--link-by-link. Pay attention to detail Avoid being careless Avoid touching objects while wearing soiled gloves Frequently wash hands (15-second hand washing) to remove pathogens--before and after gloving, and before handling food or drink Wear all PPE, and change accordingly.
21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Absorbable powder for lubricating a surgeon's glove. 878.4480 Section 878.4480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...
21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable powder for lubricating a surgeon's glove. 878.4480 Section 878.4480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...
21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Absorbable powder for lubricating a surgeon's glove. 878.4480 Section 878.4480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...
21 CFR 878.4480 - Absorbable powder for lubricating a surgeon's glove.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Absorbable powder for lubricating a surgeon's glove. 878.4480 Section 878.4480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...
A Haptic Glove as a Tactile-Vision Sensory Substitution for Wayfinding.
ERIC Educational Resources Information Center
Zelek, John S.; Bromley, Sam; Asmar, Daniel; Thompson, David
2003-01-01
A device that relays navigational information using a portable tactile glove and a wearable computer and camera system was tested with nine adults with visual impairments. Paths traversed by subjects negotiating an obstacle course were not qualitatively different from paths produced with existing wayfinding devices and hitting probabilities were…
Luan, Shiwei; Gude, Dana; Prakash, Punit; Warren, Steve
2014-01-01
Behavior tracking with severely disabled children can be a challenge, since dealing directly with a child's behavior is more immediately pressing than the need to record an event for tracking purposes. By the time a paraeducator (`para') is able to break away and record events, behavior counts can be forgotten. This paper presents a paraeducator glove design that can help to track behaviors with minimal distraction by allowing a paraeducator to touch their thumb to one of their other four fingers, where each finger represents a different behavior. Count data are packaged by a microcontroller board on the glove and then sent wirelessly to a smart phone via a Bluetooth Low Energy (BLE) link. A customized BLE profile was designed for this application to promote real-time recording. These data can be forwarded to a database for further analysis. This para glove design addresses basic needs of a wearable device that employs BLE, including local data collection, BLE data transmission, and remote data recording. More functional sensors can be added to this platform to support other wearable scenarios.
Effects of EVA gloves on grip strength and fatigue under low temperature and low pressure.
Tian, Yinsheng; Ding, Li; Liu, Heqing; Li, Yan; Li, Deyu; Wang, Li
2016-03-01
To study the effects of wearing extravehicular activity (EVA) gloves on grip strength and fatigue in low temperature, low pressure and mixing of two factors (low temperature and low pressure). The maximum grip strength and fatigue tests were performed with 10 healthy male subjects wearing gloves in a variety of simulated environments. The data was analysed using the normalization method. The results showed that wearing gloves significantly affected the maximum grip strength and fatigue. Pressure (29.6, 39.2 kPa) had more influence on the maximum grip compared with control group while low temperatures (-50, -90, -110 °C) had no influence on grip but affected fatigue dramatically. The results also showed that the maximum grip strength and fatigue were influenced significantly in a compound environment. Space environment remarkably reduced strength and endurance of the astronauts. However, the effects brought by the compound environment cannot be understood as the superimposition of low temperature and pressure effects. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S
2017-07-01
Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.
[Dispersal of Staphylococcus aureus from nasal carriers].
Iskandar, Aline; Nguyen, Ngan; Kolmos, Hans Jørn
2009-02-02
Staphylococcus aureus (Sa) is an important cause of hospital-acquired infections, and nasal carriage of Sa is common among health care workers. This study was designed to measure the airborne dispersal of Sa and other bacteria from such carriers and to investigate whether the use of cap, gown, gloves, and mask could reduce this dispersal. A total of 13 nasal Sa carriers were identified among 63 persons screened for Sa nasal carriage. The volunteers were studied for airborne dispersal of Sa in four different situations: quiet breathing, movements of the arms, whispering and loud talking. These activities were performed with and without gown, gloves, mask and cap upon street clothes. The study showed that the highest number of Sa and bacteria in total was dispersed into the air when the volunteers were moving and wearing only their street clothes. The dispersal of Sa into the air was reduced into a minimum by wearing cap, gown and gloves, and no further significant decrease was achieved by wearing a mask. This applied for all volunteers except for one, who had to wear a mask in order to reduce his dispersal of Sa to a minimum. The total dispersal of bacteria was significantly reduced by wearing cap, gown and gloves; however, to reduce this dispersal to a minimum, volunteers also had to wear a mask. Our study supports the rational basis that gown, cap, gloves and mask should be used not only in the operating theatre, but also while e.g. inserting central venous catheters.
ANTIVIBRATION GLOVES: EFFECTS ON VASCULAR AND SENSORINEURAL FUNCTION, AN ANIMAL MODEL
Krajnak, K.; Waugh, S.; Johnson, C.; Miller, R. G.; Welcome, D.; Xu, X.; Warren, C.; Sarkisian, S.; Andrew, M.; Dong, R. G.
2015-01-01
Anti-vibration gloves have been used to block the transmission of vibration from powered hand tools to the user, and to protect users from the negative health consequences associated with exposure to vibration. However, there are conflicting reports as to the efficacy of gloves in protecting workers. The goal of this study was to use a characterized animal model of vibration-induced peripheral vascular and nerve injury to determine whether antivibration materials reduced or inhibited the effects of vibration on these physiological symptoms. Rats were exposed to 4 h of tail vibration at 125 Hz with an acceleration 49 m/s2. The platform was either bare or covered with antivibrating glove material. Rats were tested for tactile sensitivity to applied pressure before and after vibration exposure. One day following the exposure, ventral tail arteries were assessed for sensitivity to vasodilating and vasoconstricting factors and nerves were examined histologically for early indicators of edema and inflammation. Ventral tail artery responses to an α2C-adrenoreceptor agonist were enhanced in arteries from vibration-exposed rats compared to controls, regardless of whether antivibration materials were used or not. Rats exposed to vibration were also less sensitive to pressure after exposure. These findings are consistent with experimental findings in humans suggesting that antivibration gloves may not provide protection against the adverse health consequences of vibration exposure in all conditions. Additional studies need to be done examining newer antivibration materials. PMID:25965192
Analysis of Crossflow Transition Flight Experiment aboard the Pegasus Launch Vehicle
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Li, Fei; Choudhan, Meelan
2007-01-01
The Pegasus wing-glove flight experiment was designed to provide crossflow transition data at high Mach numbers, specifically to help validate stability based predictions for transition onset in a flight environment. This paper provides an analysis of the flight experiment, with emphasis on computational results for crossflow disturbances and the correlation of disturbance growth factors with in-flight transition locations via the e(sup N) method. Implications of the flight data for attachment line stability are also examined. Analysis of the thermocouple data reveals that transition (from turbulent to laminar flow) was first detected during the ascending flight of the rocket when the free stream Mach number exceeded about 4. Therefore, computations have been performed for flight Mach numbers of 4.13, 4.35, 4.56 and 4.99. Due to continually decreasing unit Reynolds number at higher altitudes, the entire wing-glove boundary layer became laminar at the highest flight Mach number computed above. In contrast, the boundary layer flow over the inboard tile region remained transitional up to and somewhat beyond the time of laminarization over the instrumented glove region. Linear stability predictions confirmed that the tile boundary layer is indeed more unstable to crossflow disturbances than the much colder stainless steel glove boundary layer. The transition locations based on thermocouple data from both the glove and the tile regions are found to correlate with stationary-crossflow N-factors within the range of 7 to 12.4 and with traveling mode N-factors between 7.6 and 14.1. Data from the thermocouples and hot film sensors indicates that transition from turbulent to laminar flow (i.e., laminarization) at a fixed point over the glove is generally completed within a flight time interval of 3 seconds. However, the times at which transition begins and ends as inferred from the hot film sensors are found to differ by about 2 seconds from the corresponding estimates based on the thermocouple data.
The ergonomics of women in surgery.
Sutton, Erica; Irvin, Myra; Zeigler, Craig; Lee, Gyusung; Park, Adrian
2014-04-01
Among surgeons who regularly perform minimally invasive surgery, as many as 87 % report injuries or symptoms related to job performance. Operating room and instrument design have traditionally favored surgeons who are taller and who possess hands that are, in general, large and strong. We hypothesize that women may be experiencing more ergonomic difficulties than men for whom the operating room and surgical instruments, although uniformly perilous, more traditionally have accommodated. A 23-item web-based survey was offered via email to 2,000 laparoscopic surgeons and fellows currently practicing. The survey addressed four categories: demographics, physical symptoms, ergonomics, and environment/equipment. Key questions allowed us to identify which body part experienced which symptoms. There was a 15.7 % overall response rate. Among respondents, 17 % (54/314) were female. Women were significantly younger, shorter, had smaller glove size, and fewer years in practice than men surveyed (all p values < 0.0001). Of women reporting, 86.5 %—comparable to men—attribute physical discomfort to laparoscopic operating. Female surgeons are more likely to receive treatment for their hands, which includes the wrist, thumb, and fingers (odds ratio 3.5, p = 0.028). When men and women of the same glove size were compared, women with a larger glove size (7–8.5) reported more cases of treatment for their hands than men of the same glove size. (21 vs. 3 %, p = 0.016). Women who wore a size 5.5–6.5 surgical glove reported significantly more cases of discomfort in their shoulder area (neck, shoulder, upper back) than men who wore the same size surgical glove (77 vs. 27 %, p = 0.004). Women surgeons are experiencing more discomfort and treatment in their hands than male surgeons. Redesign of laparoscopic instrument handles and improvements to table height comprise the most promising solutions to these ergonomic challenges.
NASA Technical Reports Server (NTRS)
1996-01-01
A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)
THERMOGRAVIMETRIC CHARACTERIZATION OF GLOVEBOX GLOVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korinko, P.
An experimental project was initiated to characterize mass loss when heating different polymer glovebox glove material samples to three elevated temperatures, 90, 120, and 150 C. Samples from ten different polymeric gloves that are being considered for use in the tritium gloveboxes were tested. The intent of the study was to determine the amount of material lost. These data will be used in a subsequent study to characterize the composition of the material lost. One goal of the study was to determine which glove composition would least affect the glovebox atmosphere stripper system. Samples lost most of the mass inmore » the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The most mass loss was experienced by Jung butyl-Hypalon{reg_sign} at 146 C with 12.9% mass loss followed by Piercan Hypalon{reg_sign} at 144 C with 11.4 % mass loss and Jung butyl-Viton{reg_sign} at 140 C with 5.2% mass loss. The least mass loss was experienced by the Jung Viton{reg_sign} and the Piercan polyurethane. Unlike the permeation testing (1) the vendor and fabrication route influences the amount of gaseous species that is evolved. Additional testing to characterize these products is recommended. Savannah River Site (SRS) has many gloveboxes deployed in the Tritium Facility. These gloveboxes are used to protect the workers and to ensure a suitable environment in which to handle tritium gas products. The gas atmosphere in the gloveboxes is purified using a stripper system. The process gas strippers collect molecules that may have hydrogen or its isotopes attached, e.g., waters of hydration, acids, etc. Recently, sulfur containing compounds were detected in the stripper system and the presence of these compounds accelerates the stripper system's aging process. This accelerated aging requires the strippers to be replaced more often which can impact the facility's schedule and operational cost. It was posited that sulfur bearing and other volatile compounds were derived from glove off-gassing. Due to the large number of gloves in the facility, small mass loss from each glove could result in a significant total mass of undesirable material entering the glovebox atmosphere and subsequently the stripper system. A thermogravimetric analysis (TGA) study was conducted to determine the amount of low temperature volatiles that may be expected to offgas from the gloves. The data were taken on relatively small samples but are normalized with respect to the sample's surface area. Additional testing is needed to determine the composition of the off-gassing species. The TGA study was conducted to ascertain the magnitude of the issue and to determine if further experimentation is warranted or necessary.« less
2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, ...
2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, 1957, A FIRE STARTED. THE FIRE SPREAD TO THE REST OF THE BUILDING, RESULTING IN THE TRANSFER OF PLUTONIUM FOUNDRY, FABRICATION, AND ASSEMBLY OPERATIONS TO BUILDING 776/777. (9/16/57) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
An Intelligent Computer-Based System for Sign Language Tutoring
ERIC Educational Resources Information Center
Ritchings, Tim; Khadragi, Ahmed; Saeb, Magdy
2012-01-01
A computer-based system for sign language tutoring has been developed using a low-cost data glove and a software application that processes the movement signals for signs in real-time and uses Pattern Matching techniques to decide if a trainee has closely replicated a teacher's recorded movements. The data glove provides 17 movement signals from…
Whitson, Poindexter and Walheim in the A/L
2008-02-15
S122-E-009101 (15 Feb. 2008) --- Astronaut Alan Poindexter, STS-122 pilot, inspects the gloves of astronaut Rex Walheim, mission specialist, following the ingress of astronauts Walheim and Stanley Love (partially out of frame at left) following the final space walk of a busy week. Astronaut Peggy Whitson, the International Space Station's Expedition 16 commander, checks Love's gloves.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.
2018-04-01
In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.
STS-53 MS Clifford, in EMU, dons gloves with technicians' assistance at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Michael R.U. Clifford, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons gloves with assistance from two technicians. Clifford is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-53 MS Voss,in EMU, dons gloves with technicians' assistance at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James S. Voss, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons his gloves with assistance from two technicians. Voss is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
Bradman, Asa; Salvatore, Alicia L.; Boeniger, Mark; Castorina, Rosemary; Snyder, John; Barr, Dana B.; Jewell, Nicholas P.; Kavanagh-Baird, Geri; Striley, Cynthia; Eskenazi, Brenda
2015-01-01
The U.S. EPA Worker Protection Standard requires pesticide safety training for farmworkers. Combined with re-entry intervals, these regulations are designed to reduce pesticide exposure. Little research has been conducted on whether additional steps may reduce farmworker exposure and the potential for take-home exposure to their families. We conducted an intervention with 44 strawberry harvesters (15 control and 29 intervention group members) to determine whether education, encouragement of handwashing, and the use of gloves and removable coveralls reduced exposure. Post-intervention, we collected foliage and urine samples, as well as hand rinse, lower-leg skin patch, and clothing patch samples. Post-intervention loading of malathion on hands was lower among workers who wore gloves compared to those who did not (median = 8.2 vs 777.2 μg/pair, respectively (p<0.001)); similarly, median MDA levels in urine were lower among workers who wore gloves (45.3 vs 131.2 μg/g creatinine, p<0.05). Malathion was detected on clothing (median = 0.13 μg/cm2), but not on skin. Workers who ate strawberries had higher MDA levels in urine (median=114.5 vs 39.4 μg/g creatinine, p<0.01). These findings suggest that wearing gloves reduces pesticide exposure to workers contacting strawberry foliage containing dislodgeable residues. Additionally, wearing gloves and removing work clothes before returning home could reduce transport of pesticides to worker homes. Behavioral interventions are needed to reduce consumption of strawberries in the field. PMID:18368011
Bergamini, M; Cucchi, A; Stefanati, A; Cavallaro, A; Gabutti, G
2009-06-01
Exposure to biological agents is the most common occupational risk for nursing staff. This study verified changes in attitudes and knowledge occurred in the nursing students after the first year of degree. The survey was conducted in academic year 2006/07 among the students of the Professional Nursing Course at University of Ferrara (Italy) using a structured questionnaire. Students were 85 at the beginning and 80 at the end of the courses. The rate of subjects using gloves for intramuscular injections and fingertip puncture was unsatisfactory. A high percentage of students performed recap of needles. The use of gloves in case of washing of surgical instruments was high. The compliance in the use of gloves in handling test tubes remained low. Only 2/3 of the students washes their hands coming in ward. Incorrect attitudes have been observed in changing or wearing gloves. The students considered vaccination against hepatitis-B necessary, vaccination against flu unnecessary. A high percentage of students had not performed any prophylaxis for tuberculosis. Students intend the use of gloves mainly to perform self-protection. The concept of self-protection is contradicted by the large percentage of students that recap used needles. A significant percentage of students have not yet gained the critical thinking necessary to consider the importance of universal precautions as a means not only of self-protection but also of prevention of hospital infections. Students consider the basic standard measures for the control of infectious diseases only like self-protection and not to prevent hospital infections.
The Construction of the UCSC Econo-Box: An Inexpensive Yet Effective Glove Box
NASA Astrophysics Data System (ADS)
Suri, Jeff T.
2001-11-01
An inexpensive, acrylic dry (glove) box has been fabricated and utilized in the handling of water- and air-sensitive materials. Working drawings are provided and a complete layout of material costs is presented. The box was experimentally determined to be moisture-free for three days and critically oxygen-free for 20 minutes under an inert gas atmosphere.
Microgravity Science Glovebox - Glove
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
40 CFR 721.9825 - Phenyl substituted triazolinones.
Code of Federal Regulations, 2010 CFR
2010-07-01
... triazolinones (PMNs P-93-204, P-94-1870, P-94-1871, P-94-1872, P-94-1873, and P-94-1874) are subject to... data to the Agency and must receive written Agency approval for each type of glove tested prior to use... exposure within the work area. Gloves that have been damaged or are defective shall not be used. For PMNs P...
1987-04-22
NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.
Fels, S S; Hinton, G E
1997-01-01
Glove-Talk II is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-Talk II uses several input devices, a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. With Glove-Talk II, the subject can speak slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.
Factors associated with personal protection equipment use and hand hygiene among hemodialysis staff.
Shimokura, Gayle; Weber, David J; Miller, William C; Wurtzel, Heather; Alter, Miriam J
2006-04-01
Because exposure to blood by health care workers is frequent during hemodialysis, gloves are required for all contact with patients and their equipment, followed by hand hygiene. In this study, we investigated factors associated with performing these practices as recommended. Staff members from a sample of 45 US hemodialysis facilities were surveyed using an anonymous self-administered questionnaire. Factors independently associated with reporting increased compliance with recommended hand hygiene and glove use practices during patient care were identified with multivariate modeling. Of 605 eligible staff members, 420 (69%) responded: registered nurses, 41%; dialysis technicians, 51%; and licensed practical nurses, 8%. Only 35% reported that dialysis patients were at risk for bloodborne virus infections, and only 36% reported always following recommended hand hygiene and glove use practices. Independent factors associated with more frequent compliance were being a technician (versus a registered nurse) and reporting always doing what was needed to protect themselves from infection. Compliance with recommended hand hygiene and glove use practices by hemodialysis staff was low. The rationale for infection control practices specific to the hemodialysis setting was poorly understood by all staff. Infection control training should be tailored to this setting and should address misconceptions.
Development of hand exoskeleton for rehabilitation of post-stroke patient
NASA Astrophysics Data System (ADS)
Zaid, Amran Mohd; Chean, Tee Chu; Sukor, Jumadi Abdul; Hanafi, Dirman
2017-10-01
Degenerative muscle diseases characterized by loss of strength in human hand significantly affect the physical of affected individuals. A soft assistive exoskeleton glove is designed to help post-stroke patient with their rehabilitation process. The glove uses soft bending actuator which has a rubber like tender characteristic. Due to its rubber like characteristic, flexion of finger can be achieved easily through pneumatic air without considering other hand motions. The application involves a post-stroke patient to wear the soft exoskeleton glove on his paralyzed hand and control the actuation of the glove by using pneumatic air source. The fabrication of the soft bending actuator involves silicone rubber Mold Star® 15 SLOW which falls within the soft category of shore A hardness scale. The soft bending actuator is controlled by Arduino Mega 2560 as main controller board and relay module is used to trigger the 3/2-way single solenoid valve by switching on the 24VDC power supply. The actuation of the soft bending actuator can be manipulated by setting delay ON and OFF for the relay switching. Thus, the repetition of the bending motion can be customized to fulfil the rehabilitation needs of the patient.
Analytical and Experimental Verification of a Flight Article for a Mach-8 Boundary-Layer Experiment
NASA Technical Reports Server (NTRS)
Richards, W. Lance; Monaghan, Richard C.
1996-01-01
Preparations for a boundary-layer transition experiment to be conducted on a future flight mission of the air-launched Pegasus(TM) rocket are underway. The experiment requires a flight-test article called a glove to be attached to the wing of the Mach-8 first-stage booster. A three-dimensional, nonlinear finite-element analysis has been performed and significant small-scale laboratory testing has been accomplished to ensure the glove design integrity and quality of the experiment. Reliance on both the analysis and experiment activities has been instrumental in the success of the flight-article design. Results obtained from the structural analysis and laboratory testing show that all glove components are well within the allowable thermal stress and deformation requirements to satisfy the experiment objectives.
F-16XL Ship #2 in hangar for Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.
F-16XL Ship #2 Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.
A knitted glove sensing system with compression strain for finger movements
NASA Astrophysics Data System (ADS)
Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun
2018-05-01
Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.