Science.gov

Sample records for glucagon-like peptide-1 metabolite

  1. A sandwich ELISA for measurement of the primary glucagon-like peptide-1 metabolite.

    PubMed

    Wewer Albrechtsen, Nicolai J; Asmar, Ali; Jensen, Frederik; Törang, Signe; Simonsen, Lene; Kuhre, Rune E; Asmar, Meena; Veedfald, Simon; Plamboeck, Astrid; Knop, Filip K; Vilsbøll, Tina; Madsbad, Sten; Nauck, Michael A; Deacon, Carolyn F; Bülow, Jens; Holst, Jens J; Hartmann, Bolette

    2017-09-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from the gastrointestinal tract. It is best known for its glucose-dependent insulinotropic effects. GLP-1 is secreted in its intact (active) form (7-36NH2) but is rapidly degraded by the dipeptidyl peptidase 4 (DPP-4) enzyme, converting >90% to the primary metabolite (9-36NH2) before reaching the targets via the circulation. Although originally thought to be inactive or antagonistic, GLP-1 9-36NH2 may have independent actions, and it is therefore relevant to be able to measure it. Because reliable assays were not available, we developed a sandwich ELISA recognizing both GLP-1 9-36NH2 and nonamidated GLP-1 9-37. The ELISA was validated using analytical assay validation guidelines and by comparing it to a subtraction-based method, hitherto employed for estimation of GLP-1 9-36NH2 Its accuracy was evaluated from measurements of plasma obtained during intravenous infusions (1.5 pmol × kg(-1) × min(-1)) of GLP-1 7-36NH2 in healthy subjects and patients with type 2 diabetes. Plasma levels of the endogenous GLP-1 metabolite increased during a meal challenge in patients with type 2 diabetes, and treatment with a DPP-4 inhibitor fully blocked its formation. Accurate measurements of the GLP-1 metabolite may contribute to understanding its physiology and role of GLP-1 in diabetes. Copyright © 2017 the American Physiological Society.

  2. Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9-36 amide at the GLP-1 receptor.

    PubMed

    Li, Naichang; Lu, Jing; Willars, Gary B

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7-36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9-36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently 'compound 2' has been described as both an agonist and positive allosteric modulator of GLP-1 7-36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9-39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9-36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9-36 amide for key cellular responses including AMP generation, Ca(2+) signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.

  3. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  4. Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Landis, Margaret S; Stevens, Benjamin D; Kalgutkar, Amit S

    2014-09-01

    Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 µg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 µg/kg, systemic exposure of

  5. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    PubMed Central

    Wang, XingChun; Liu, Huan; Chen, Jiaqi; Li, Yan; Qu, Shen

    2015-01-01

    The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels. PMID:26366173

  6. Cardiovascular and hemodynamic effects of glucagon-like peptide-1.

    PubMed

    Goodwill, Adam G; Mather, Kieren J; Conteh, Abass M; Sassoon, Daniel J; Noblet, Jillian N; Tune, Johnathan D

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood pressure and vascular tone. These studies have produced consistent and reproducible results amongst numerous laboratories. However, there are obvious disparities in findings obtained in small animal models versus those of higher mammals. This species dependent discrepancy calls to question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g. obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the setting of disease. This review addresses cardiovascular and hemodynamic potential of GLP-1 based therapies with attention to species specific effects as well as the interaction between therapies and disease.

  7. Glucagon-like peptide 1 and the cardiovascular system.

    PubMed

    Fava, Stephen

    2014-01-01

    Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it.

  8. Glucagon and glucagon-like peptides 1 and 2.

    PubMed

    Holst, Jens Juul

    2010-01-01

    The glucagon gene is expressed not only in the alpha cells of the pancreatic islets but also in the endocrine cells of the intestinal epithelium (so-called L-cells), and in certain neurons of the brain stem. Whereas in the pancreas, glucagon, the hyperglycaemic hormone, is cleaved out of the 160 amino acid precursor, proglucagon, leaving behind proglucagon fragments (PG 1-30 and PG 72-158, the so-called major proglucagon fragment (MPGF)) that are probably inactive, the intestinal processing leads to the formation of glicentin (PG 1-69; action uncertain) and glucagon-like peptides 1 (PG 78-107amide, a potent incretin homone, regulating insulin secretion, glucagon secretion, gastrointestinal motility and appetite) and 2 (PG 126-158, a regulator of gut mucosal growth and integrity). The two prohormone convertases PC2 and PC1/3, respectively, are responsible for the differential processing. After their release, the hormones are eliminated mainly in the kidneys, but both GLP-2 and in particular GLP-1, but not glucagon, are metabolized both locally and in the circulation and liver by dipeptidyl peptidase 4 (DPP-4) which inactivates the peptides, suggesting that GLP-1 acts locally rather than in an endocrine manner. A number of transcription factors have been identified that can at least partly explain the differential cellular expression of the glucagon gene as well as the differential tissue-specific processing of the precursor.

  9. Bioactivity of a modified human Glucagon-like peptide-1

    PubMed Central

    Xu, Fangfang; Wang, Kevin Yueju; Wang, Nan; Li, Gangqiang; Liu, Dehu

    2017-01-01

    Diabetes has become the third largest cause of death in humans worldwide. Therefore, effective treatment for this disease remains a critical issue. Glucagon-like peptide-1 (GLP-1) plays an important role in glucose homeostasis, and therefore represents a promising candidate to use for the treatment of diabetes. Native GLP-1, however, is quickly degraded in in the circulatory system; which limits its clinical application. In the present study, a chemically-synthesized, modified analogue of human GLP-1 (mGLP-1) was designed. Our analyses indicated that, relative to native GLP-1, mGLP-1 is more resistant to trypsin and pancreatin degradation. mGLP-1 promotes mouse pancreatic β-cell proliferation by up-regulating the expression level of cyclin E, CDK2, Bcl-2 and down-regulating Bax, p21, and stimulates insulin secretion. An oral glucose tolerance test indicated that mGLP-1 significantly improved glucose tolerance in mice. Intraperitoneal injections of mGLP-1 into streptozotocin (STZ)-induced type 2 diabetic mice significantly reduced blood sugar levels and stimulated insulin secretion. Oral gavages of mGLP-1 in diabetic mice did not result in significant hypoglycemic activity. PMID:28152036

  10. Glucagon-like peptide-1: The missing link in the metabolic clock?

    PubMed

    Brubaker, Patricia L; Gil-Lozano, Manuel

    2016-04-01

    Circadian expression of clock genes in peripheral tissues is critical to the coordinated regulation of intestinal digestive and absorptive functions, insulin secretion, and peripheral tissue nutrient deposition during periods of nutrient ingestion, thereby preventing metabolic dysregulation. As glucagon-like peptide-1 is a key incretin hormone that regulates glucose-dependent insulin secretion, we hypothesized that this intestinal hormone is a player in the peripheral metabolic clock, linking nutrient ingestion to insulin secretion. We have now established that secretion of glucagon-like peptide-1 from the intestinal L cell shows a rhythmic pattern in rats and humans in vivo that is altered by circadian disruptors, such as constant light exposure, consumption of a Western diet and feeding at inappropriate times (i.e., during the light period in rodents). Interestingly, the alterations in the rhythm of the glucagon-like peptide-1 secretory responses were found to parallel the changes in the pattern of insulin responses in association with significant impairments in glucose tolerance. Furthermore, we have detected circadian clock gene expression, and showed circadian secretion of glucagon-like peptide-1 from both the murine and human L cell in vitro. These findings demonstrate that glucagon-like peptide-1 is a functional component of the peripheral metabolic clock, and suggest that altered release of glucagon-like peptide-1 might play a role in the metabolic perturbations that result from circadian disruption.

  11. Synthesis, characterization and pharmacodynamics of vitamin-B(12)-conjugated glucagon-like peptide-1.

    PubMed

    Clardy-James, Susan; Chepurny, Oleg G; Leech, Colin A; Holz, George G; Doyle, Robert P

    2013-04-01

    Clearing the way: Glucagon-like peptide-1 (GLP-1) receptor agonists are proving a potent weapon in the treatment of type II diabetes. A new vitamin B(12)-GLP-1 conjugate is investigated and shown to have insulinotropic properties similar to the unmodified peptide. These results are critical to the exploitation of the vitamin B(12) oral uptake pathway for peptide delivery.

  12. Amyloidogenicity and aggregate cytotoxicity of human glucagon-like peptide-1 (hGLP-1).

    PubMed

    Poon, S; Birkett, N R; Fowler, S B; Luisi, B F; Dobson, C M; Zurdo, J

    2009-01-01

    The potential of human glucagon-like peptide-1 (hGLP-1) as a therapeutic agent is limited by its high aggregation propensity. We show that hGLP-1 forms amyloid-like structures that are preceded by cytotoxic aggregates, suggesting that aggregation of biopharmaceuticals could present a cytotoxic risk to patients besides the reported increased risk in immunogenicity.

  13. The effect of glucagon-like peptide-1 and glucagon-like peptide-2 on microcirculation: a systematic review.

    PubMed

    Nerup, Nikolaj; Ambrus, Rikard; Lindhe, Joanna; Achiam, Michael P; Jeppesen, Palle B; Svendsen, Lars B

    2017-03-07

    Glucagon-like peptide-1 (GLP-1) and -2 (GLP-2) are gut-derived hormones used in the treatment of diabetes type-2 and short bowel syndrome, respectively. GLP-1 attenuates insulin resistance and GLP-2 reduces enterocyte apoptosis and enhances crypt cell proliferation in the small intestine. In addition, both hormones have vasoactive effects and may be useful in situations with impaired microcirculation. The aim of this systematic review was to provide an overview of the potential effects of GLP-1 and GLP-2 on microcirculation. A systematic search was performed independently by two authors in the following databases: PubMed, Embase, Cochrane library, Scopus, and Web of Science. Of 1111 screened papers, 20 studies were included in this review: 16 studies in animals, three in humans, and one in humans and rats. The studies were few and heterogeneous and had a high risk of bias. However, it seems that GLP-1 regulates the pancreatic, skeletal, and cardiac muscle flow, indicating a role in the glucose homeostasis, while GLP-2 acts primarily in the regulation of the microcirculation of the mid-intestine. These findings may be useful in gastrointestinal surgery and in situations with impaired microcirculation of the gut. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury.

    PubMed

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Stability of glucagon-like peptide 1 and glucagon in human plasma

    PubMed Central

    Wewer Albrechtsen, Nicolai J; Bak, Monika J; Hartmann, Bolette; Christensen, Louise Wulff; Kuhre, Rune E; Deacon, Carolyn F; Holst, Jens J

    2015-01-01

    To investigate the stability of glucagon-like peptide 1 (GLP-1) and glucagon in plasma under short- and long-term storage conditions. Pooled human plasma (n=20), to which a dipeptidyl peptidase 4 (DPP4) inhibitor and aprotinin were added, was spiked with synthetic GLP-1 (intact, 7–36NH2 as well as the primary metabolite, GLP-1 9–36NH2) or glucagon. Peptide recoveries were measured in samples kept for 1 and 3 h at room temperature or on ice, treated with various enzyme inhibitors, after up to three thawing–refreezing cycles, and after storage at −20 and −80 °C for up to 1 year. Recoveries were unaffected by freezing cycles or if plasma was stored on ice for up to 3 h, but were impaired when samples stood at RT for more than 1 h. Recovery of intact GLP-1 increased by addition of a DPP4 inhibitor (no ice), but was not further improved by neutral endopeptidase 24.11 inhibitor or an inhibitor cocktail. GLP-1, but not glucagon, was stable for at least 1 year. Surprisingly, the recovery of glucagon was reduced by almost 50% by freezing compared with immediate analysis, regardless of storage time. Plasma handling procedures can significantly influence results of subsequent hormone analysis. Our data support addition of DPP4 inhibitor for GLP-1 measurement as well as cooling on ice of both GLP-1 and glucagon. Freeze–thaw cycles did not significantly affect stability of GLP-1 or glucagon. Long-term storage may affect glucagon levels regardless of storage temperature and results should be interpreted with caution. PMID:25596009

  16. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  17. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion.

    PubMed

    Reimann, Frank; Gribble, Fiona M

    2016-04-01

    The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fluorescent markers under the control of the two hormone promoters, the majority (>80%) of labeled cells seems to produce only one of these hormones. Transcriptomic analysis showed a close relationship between small intestinal K- and L cells, and glucose sensing mechanisms appear similar in both cell types with a predominant role of electrogenic glucose uptake through sodium-coupled glucose transporter 1. Similarly, both cell types produce the long-chain fatty acid sensing G-protein-coupled receptors, FFAR1 (GPR40) and FFAR4 (GPR120), but differ in the expression/functionality of other lipid sensing receptors. GPR119 and FFAR2/3, for example, have clearly documented roles in glucagon-like peptide-1 secretion, whereas agonists for the endocannabinoid receptor type 1 have been found to show largely selective inhibition of glucose-dependent insulinotropic peptide secretion. In conclusion, although K- and L cell populations overlap and share key molecular nutrient-sensing mechanisms, subtle differences between the responsiveness of the different cell types might be exploited to differentially modulate glucose-dependent insulinotropic peptide or glucagon-like peptide-1 secretion.

  18. Oral Delivery of Glucagon-Like Peptide-1 and Analogs: Alternatives for Diabetes Control?

    PubMed Central

    Araújo, Francisca; Fonte, Pedro; Santos, Hélder A.; Sarmento, Bruno

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Current treatments are often associated with off-target effects and do not significantly impact disease progression. New therapies are therefore urgently needed to overcome this social burden. Glucagon-like peptide-1 (GLP-1), an incretin hormone, has been used to control T2DM symptomatology. However, the administration of peptide or proteins drugs is still a huge challenge in the pharmaceutical field, requiring administration by parenteral routes. This article reviews the main hurdles in oral administration of GLP-1 and focuses on the strategies utilized to overcome them. PMID:23294796

  19. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  20. Fasting glucagon-like peptide-1 in patients with overt hyperthyroidism and euthyroid congenital hypothyroidism.

    PubMed

    Cheng, Jian-Ping; Yue, Hong-Ni; Ma, Shao-Gang; Jin, Yue; Xu, Wei; Bai, Feng

    2013-01-01

    To investigate the influence of overt hyperthyroidism and euthyroid congenital hypothyroidism on fasting glucagon-like peptide-1 (GLP-1) levels. A total of 30 untreated overt hyperthyroidism patients, 17 euthyroid congenital hypothyroidism children, and age- and sex-matched controls were enrolled. Levels of GLP-1, insulin, glucose, and homeostasis model assessment (HOMA-IR) were measured and evaluated. Fasting GLP-1, blood glucose, insulin, and HOMR-IR levels were higher in patients with overt hyperthyroidism than in controls (p=0.030, p=0.008, p=0.004, p=0.037, respectively). These parameters in euthyroid hypothyroidism were similar to the controls. In euthyroid congenital hypothyroidism and overt hyperthyroidism patients, serum GLP-1 levels were not correlated with thyroid hormone, blood glucose, insulin, and HOMR-IR. Fasting GLP-1 levels in the peripheral circulation were significantly increased in overt hyperthyroidism, however, they were no different in euthyroid congenital hypothyroidism.

  1. Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging.

    PubMed

    Femminella, Grazia D; Edison, Paul

    2014-02-01

    There is increasing evidence to suggest that glucagon-like peptide 1 (GLP1) analogs are neuroprotective in animal models. In transgenic mice, both insulin and GLP1 analogs reduced inflammation, increased stem cell proliferation, reduced apoptosis, and increased dendritic growth. Furthermore, insulin desensitization was also observed in these animals, and reduced glucose uptake in the brain, as shown on FDG-PET imaging. In this review we discussed the role of PET and MRI in evaluating the effect of GLP1 analogs in disease progression in both Alzheimer's and Parkinson's disease. We have also discussed the potential novel PET markers that will allow us to understand the mechanism by which GLP1 exerts its effects.

  2. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS.

    PubMed

    van Bloemendaal, L; Ten Kulve, J S; la Fleur, S E; Ijzerman, R G; Diamant, M

    2014-04-01

    The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.

  3. [Effects of glucagon-like peptide-1 on appetite and body weight: preclinical and clinical data].

    PubMed

    Sesti, Giorgio

    2011-12-01

    Obesity is associated with an increased risk of developing type 2 diabetes and cardiovascular disease. Pharmacological treatments of diabetes are mostly associated with weight gain, an undesirable event due to the fact that an increase in adiposity, especially visceral, is associated with reduced insulin sensitivity, worse cardiovascular risk profile and decreased adherence to treatment. Analogues of glucagon-like peptide-1 (GLP-1) represent a new therapeutic option for type 2 diabetes, which offer the advantage of combining beneficial effects on metabolic control with a significant reduction in body weight. In this review, we discuss data of preclinical studies and clinical trials that evaluated the effects of liraglutide and exenatide, the two analogues of GLP-1 currently available in Italy, on body weight.

  4. Role of the Glucagon-Like-Peptide-1 Receptor in the Control of Energy Balance

    PubMed Central

    Hayes, Matthew R.; De Jonghe, Bart C.; Kanoski, Scott E.

    2010-01-01

    The peripheral and central glucagon-like-peptide-1 (GLP-1) systems play an essential role in glycemic and energy balance regulation. Thus, pharmacological targeting of peripheral and/or central GLP-1 receptors (GLP-1R) may represent a potential long-term treatment option for both obesity and type-II diabetes mellitus (T2DM). Uncovering and understanding the neural pathways, physiological mechanisms, specific GLP-1R populations, and intracellular signaling cascades that mediate the food intake inhibitory and incretin effects produced by GLP-1R activation are vital to the development of these potential successful therapeutics. Particular focus will be given to the essential role of the nucleus tractus solitarius (NTS) in the caudal brainstem, as well as the gut-to-brain communication by vagal afferent fibers in mediating the physiological and behavioral responses following GLP-1R activation. PMID:20226203

  5. Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology.

    PubMed

    Drucker, D J; Rosen, C F

    2011-11-01

    Type 2 diabetes mellitus is characterised by beta cell failure, which frequently develops in the setting of insulin resistance. Inflammation contributes to the pathophysiology of type 2 diabetes by impairing insulin action in peripheral tissues and via reduction of beta cell function. Inflammation may also play an important role in the development of complications that arise in patients with type 2 diabetes. Hence, the anti-inflammatory actions of commonly used glucose-lowering drugs may contribute, indirectly, to their mechanisms of action and therapeutic benefit. Herein we highlight the anti-inflammatory actions of glucagon-like peptide-1 (GLP-1), which exerts direct and indirect actions on immune function. The observations that GLP-1 receptor agonists exert anti-inflammatory actions in preclinical studies, taken together with case reports linking improvements in psoriasis with GLP-1 receptor agonist therapy, illustrates the emerging clinical implications of non-classical anti-inflammatory actions of incretin-based therapeutics.

  6. Glucagon-like peptide-1 drives energy metabolism on the synaptic highway.

    PubMed

    Liu, Ji; Pang, Zhiping P

    2016-12-01

    Glucagon-like peptide-1 (GLP-1), a gut-brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP-1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP /Kv channels, N-type Ca(2+) channels, and the readily releasable pool. In the CNS, GLP-1 signaling regulates neuronal excitability in various brain regions, including neurons in the hippocampus, hypothalamus, and mesolimbic systems. GLP-1 modulation on synaptic transmission includes both pre- and postsynaptic pathways that are either excitatory or inhibitory. Synaptic transmission conveys information flow in the brain and governs brain-mediated behaviors. The study of GLP-1 control of energy metabolism at a synaptic level may shed light on the role of GLP-1 function in the brain. Various challenges remain including defining the mechanism of GLP-1 release in the brain. © 2016 Federation of European Biochemical Societies.

  7. Pharmacokinetics and pharmacodynamics of the glucagon-like peptide-1 analog liraglutide in healthy cats.

    PubMed

    Hall, M J; Adin, C A; Borin-Crivellenti, S; Rudinsky, A J; Rajala-Schultz, P; Lakritz, J; Gilor, C

    2015-04-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that induces glucose-dependent stimulation of insulin secretion while suppressing glucagon secretion. Glucagon-like peptide-1 also increases beta cell mass and satiation while decelerating gastric emptying. Liraglutide is a fatty-acid derivative of GLP-1 with a protracted pharmacokinetic profile that is used in people for treatment of type II diabetes mellitus and obesity. The aim of this study was to determine the pharmacokinetics and pharmacodynamics of liraglutide in healthy cats. Hyperglycemic clamps were performed on days 0 (HGC) and 14 (LgHGC) in 7 healthy cats. Liraglutide was administered subcutaneously (0.6 mg/cat) once daily on days 8 through 14. Compared with the HGC (mean ± standard deviation; 455.5 ± 115.8 ng/L), insulin concentrations during LgHGC were increased (760.8 ± 350.7 ng/L; P = 0.0022), glucagon concentrations decreased (0.66 ± 0.4 pmol/L during HGC vs 0.5 ± 0.4 pmol/L during LgHGC; P = 0.0089), and there was a trend toward an increased total glucose infused (median [range] = 1.61 (1.11-2.54) g/kg and 2.25 (1.64-3.10) g/kg, respectively; P = 0.087). Appetite reduction and decreased body weight (9% ± 3%; P = 0.006) were observed in all cats. Liraglutide has similar effects and pharmacokinetics profile in cats to those reported in people. With a half-life of approximately 12 h, once daily dosing might be feasible; however, significant effects on appetite and weight loss may necessitate dosage or dosing frequency reductions. Further investigation of liraglutide in diabetic cats and overweight cats is warranted.

  8. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain

    PubMed Central

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain. PMID:27917297

  9. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain.

    PubMed

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain.

  10. Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture.

    PubMed

    Jackson Huang, T H; Brubaker, P L

    1995-07-01

    Secretion of the intestinal proglucagon-derived peptides (PGDPs) including the incretin glucagon-like peptide-1 (GLP-1) is regulated, at least in part, by the duodenal hormone glucose-dependent insulinotropic peptide (GIP) through a protein kinase (PK) A-dependent pathway. It has been demonstrated that the activation of PKA increases the synthesis of some intestinal PGDPs, particularly the glucagon-like immunoreactive (GLI) peptides glicentin and oxyntomodulin. However, the effects of GIP on GLI and GLP-1 synthesis are not known. Fetal rat intestinal cells in culture were therefore treated for up to 24 h with 5MM: dbcAMP or 10(-6) M: GIP and the changes in glicentin, oxyntomodulin, GLP-1(x-37) and GLP-1(x-36NH2) secretion and synthesis were examined by RIA and HPLC. Both dbcAMP and GIP increased the acute (2 h; to 224±21 and 256±20% of controls, respectively,P<0.001) and chronic (24 h; to 230±22 and 130±6% of controls, respectively,P<0.001) secretion of intestinal PGDPs. In contrast, the total culture content of PGDPs was increased only after 24 h of incubation (to 156±15 and 125±7% of controls for dbcAMP and GIP, respectively,P<0.01). HPLC analysis confirmed that the intestinal cultures produced the GLI peptides glicentin and oxyntomodulin, as well as the biologically active forms of GLP-1, GLP-7(7-37) and GLP-1(7-36NH2). The relative proportion of these peptides was not altered by treatment with dbcAMP or GIP. Thus, in addition to its effects on GLP-1 release from the rat intestine, GIP appears to be an important regulator of the synthesis of this insulinotropic peptide.

  11. Liraglutide: A Glucagon-Like Peptide-1 Agonist for Chronic Weight Management.

    PubMed

    Manigault, Kendra R; Thurston, Maria Miller

    2016-12-01

    To review the efficacy and safety of liraglutide 3.0 mg for weight loss. A literature search was performed using PubMed and MEDLINE from 2000 to 2016. The following key terms were used alone or in combination: glucagon-like peptide-1 agonist, liraglutide, obesity, overweight, and weight loss. Additional supporting literature was identified utilizing the reference lists of the preceding articles. Analyzed studies were published in English and investigated use of liraglutide and its impact on weight loss. Clinical studies with a primary focus of liraglutide use in weight loss were included in this review. Author consensus determined final study inclusion. Management of obesity centers on behavior modification that includes diet and exercise; however, pharmacologic therapy may be used. Several studies have indicated that GLP-1 receptor agonists promote weight loss in patients with type 2 diabetes mellitus (T2DM). The efficacy of liraglutide 3.0 mg as a weight-loss agent in patients with and without T2DM was established in three SCALE™ clinical trials. Liraglutide 3.0 mg was generally well tolerated during clinical trials. Common adverse events were typically related to the gastrointestinal system (i.e., nausea, vomiting). Based on available evidence, liraglutide 3.0 mg appears to be a safe and effective addition to the pharmacologic armamentarium available for chronic weight management in the general population. However, there are limited data within the geriatric population. Clinicians should consider liraglutide's cost, route of administration, and concomitant drug therapy when deciding which patients are appropriate candidates for liraglutide therapy. AE = Adverse events, AHA/ACC/TOS = American Heart Association/American College of Cardiology/ The Obesity Society, BMI = Body mass index, CV = Cardiovascular, FDA = Food and Drug Administration, GI = Gastrointestinal, GLP-1 = Glucagon-like peptide-1, HbA1c = Hemoglobin A1c, Kcal = Kilocalorie, LCD = Low-calorie diet

  12. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-07-02

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.

  13. Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor.

    PubMed

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel

    2013-10-01

    Bone is permanently remodeled by a complex network of local, hormonal, and neuronal factors that affect osteoclast and osteoblast biology. Among these factors, a role for gastrointestinal hormones has been proposed based on the evidence that bone resorption dramatically falls after a meal. Glucagon-like peptide-1 (GLP1) is one of these gut hormones, and despite several reports suggesting an anabolic effect of GLP1, or its stable analogs, on bone mass, little is known about the effects of GLP1/GLP1 receptor on bone strength. In this study, we investigated by three-point bending, quantitative X-ray microradiography, microcomputed tomography, qBEI, and FTIRI bone strength and bone quality in male Glp1r knockout (Glp1r KO) mice when compared with control WT animals. Animals with a deletion of Glp1r presented with a significant reduction in ultimate load, yield load, stiffness, and total absorbed and post-yield energies when compared with WT animals. Furthermore, cortical thickness and bone outer diameter were significantly decreased in deficient animals. The mineral quantity and quality were not significantly different between Glp1r KO and WT animals. On the other hand, the maturity of the collagen matrix was significantly reduced in deficient animals and associated with lowered material properties. Taken together, these data support a positive effect of GLP1R on bone strength and quality.

  14. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity

    PubMed Central

    Anandhakrishnan, Ananthi; Korbonits, Márta

    2016-01-01

    Though the pathophysiology of clinical obesity is undoubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1 (GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose (3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed anti-obesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and long-term weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need. PMID:28031776

  15. A novel glucagon-like peptide 1 peptide identified from Ophisaurus harti.

    PubMed

    Zhu, Jingjing; Huang, Xian; Gao, Hong; Bao, Qiuying; Zhao, Yun; Hu, Jin-Feng; Xia, Gang

    2013-09-01

    Glucagon-like peptide 1 receptor (GLP1R) is a promising target for the treatment of type 2 diabetes. Because of the short half-life of endogenous GLP1 peptide, other GLP1R agonists are considered to be appealing therapeutic candidates. A high-throughput assay has been established to screen for GLP1R agonists in a 60 000-well natural product compound library fractionated from 670 different herbs/materials widely used in traditional Chinese medicines (TCMs). The screening is based on primary screen of GLP1R⁺ reporter gene assay with the counter screen in GLP1R⁻ cell line. An active fraction, A089-147, was identified from the screening. Fraction A089-147 was isolated from dried Ophisaurus harti, and the fact that its GLP1R agonist activity was sensitive to trypsin treatment indicates its peptidic nature. The active ingredient of A089-147 was later identified as O. harti GLP1 through transcriptome analysis. Chemically synthesized O. harti GLP1 showed GLP1R agonist activity and sensitivity to dipeptidase IV digestion. This study illustrated a comprehensive screening strategy to identify novel GLP1R agonists from TCMs libraries and at the same time underlined the difficulty of identifying a non-peptidic GLP1R agonist. The novel O. harti GLP1 peptide yielded from this study confirmed broader application of TCMs libraries in active peptide identification. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  16. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain-Adipocyte Axis.

    PubMed

    Geloneze, Bruno; de Lima-Júnior, José Carlos; Velloso, Lício A

    2017-02-23

    The complexity of neural circuits that control food intake and energy balance in the hypothalamic nuclei explains some of the constraints involved in the prevention and treatment of obesity. Two major neuronal populations present in the arcuate nucleus control caloric intake and energy expenditure: one population co-expresses orexigenic agouti-related peptide (AgRP) and neuropeptide Y and the other expresses the anorexigenic anorectic neuropeptides proopiomelanocortin and cocaine- and amphetamine-regulated transcript (POMC/CART). In addition to integrating signals from neurotransmitters and hormones, the hypothalamic systems that regulate energy homeostasis are affected by nutrients. Fat-rich diets, for instance, elicit hypothalamic inflammation (reactive activation and proliferation of microglia, a condition named gliosis). This process generates resistance to the anorexigenic hormones leptin and insulin, contributing to the genesis of obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have increasingly been used to treat type 2 diabetes mellitus. One compound (liraglutide) was recently approved for the treatment of obesity. Although most studies suggest that GLP-1RAs promote weight loss mainly due to their inhibitory effect on food intake, other central effects that have been described for native GLP-1 and some GLP-1RAs in rodents and humans encourage future clinical trials to explore additional mechanisms that potentially underlie the beneficial effects observed with this drug class. In this article we review the most relevant data exploring the mechanisms involved in the effects of GLP-1RAs in the brain-adipocyte axis.

  17. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-05-19

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.

  19. Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets.

    PubMed Central

    Cunningham, Barbara A; Richard, Ann-Marie T; Dillon, Joseph S; Daley, Jennifer T; Civelek, Vildan N; Deeney, Jude T; Yaney, Gordon C; Corkey, Barbara E; Tornheim, Keith

    2003-01-01

    Glucose-induced insulin secretion from isolated, perifused rat islets is pulsatile with a period of about 5-10 min, similar to the insulin oscillations that are seen in healthy humans but which are impaired in Type II diabetes. We evaluated the pattern of enhancement by the potent incretin, glucagon-like peptide 1 (GLP-1). GLP-1 increased the amplitude of pulses and the magnitude of insulin secretion from the perifused islets, without affecting the average time interval between pulses. Forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine had the same effect, suggesting that the effect was due to elevated cAMP levels. The possibility that cAMP might enhance the amplitude of pulses by reducing phosphofructo-2-kinase (PFK-2) activity was eliminated when the liver isoform of PFK-2 was shown to be absent from beta-cells. The possibility that cAMP enhanced pulsatile secretion, at least in part, by stimulating lipolysis was supported by the observations that added oleate had a similar effect on secretion, and that the incretin effect of GLP-1 was inhibited by the lipase inhibitor orlistat. These data show that the physiological incretin GLP-1 preserves and enhances normal pulsatile insulin secretion, which may be essential in proposed therapeutic uses of GLP-1 or its analogues. PMID:12356335

  20. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor.

    PubMed

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye; Kulahin, Nikolaj; Iversen, Helle; Cappelen, Karen Arevad; Schäffer, Lauge; Lehtonen, Janne; Hecksher-Soerensen, Jacob; Secher, Anna; Mathiesen, Jesper Mosolff; Bräuner-Osborne, Hans; Whistler, Jennifer L; Knudsen, Sanne Moeller; Waldhoer, Maria

    2014-02-15

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood. A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLP-1 as compared to exendin-4 and liraglutide. Furthermore, a prolonged cycling of ligand-activated GLP-1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.

  1. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.

    PubMed

    Lau, Jesper; Bloch, Paw; Schäffer, Lauge; Pettersson, Ingrid; Spetzler, Jane; Kofoed, Jacob; Madsen, Kjeld; Knudsen, Lotte Bjerre; McGuire, James; Steensgaard, Dorte Bjerre; Strauss, Holger Martin; Gram, Dorte X; Knudsen, Sanne Møller; Nielsen, Flemming Seier; Thygesen, Peter; Reedtz-Runge, Steffen; Kruse, Thomas

    2015-09-24

    Liraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin in vivo and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by increasing albumin affinity and secure full stability against metabolic degradation. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue. Semaglutide was selected as the optimal once weekly candidate. Semaglutide has two amino acid substitutions compared to human GLP-1 (Aib(8), Arg(34)) and is derivatized at lysine 26. The GLP-1R affinity of semaglutide (0.38 ± 0.06 nM) was three-fold decreased compared to liraglutide, whereas the albumin affinity was increased. The plasma half-life was 46.1 h in mini-pigs following i.v. administration, and semaglutide has an MRT of 63.6 h after s.c. dosing to mini-pigs. Semaglutide is currently in phase 3 clinical testing.

  2. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.

  3. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  4. Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks.

    PubMed

    Tachibana, Tetsuya; Oikawa, Daichi; Adachi, Nami; Boswell, Tim; Furuse, Mitsuhiro

    2007-08-01

    Glucagon-like peptide-1 (GLP-1), derived from proglucagon, is thought to act as a negative regulator of energy homeostasis in mammals, since intracerebroventricular (ICV) injection of GLP-1 inhibits feeding behavior and enhances energy expenditure. The anorexigenic effect of GLP-1 is also observed in chicks, but whether brain GLP-1 enhances energy expenditure has not been investigated. The aim of the present study was to clarify the effect of ICV injection of GLP-1 on energy expenditure as well as metabolic changes in chicks. The injection of GLP-1 did not affect energy expenditure calculated from oxygen consumption and carbon dioxide production. On the other hand, the injection of GLP-1 significantly decreased respiratory quotient, suggesting that brain GLP-1 shifted the use of energy sources from carbohydrates to lipids. In support of this, ICV injection of GLP-1 increased plasma non-esterified fatty acid concentration while plasma glucose concentration was decreased. In conclusion, GLP-1 appears to act in the brain as a metabolic modulator rather than as a regulator of total energy expenditure in chicks.

  5. Glucagon like peptide-1 receptor expression in the human thyroid gland.

    PubMed

    Gier, Belinda; Butler, Peter C; Lai, Chi K; Kirakossian, David; DeNicola, Matthew M; Yeh, Michael W

    2012-01-01

    Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted.

  6. Glucagon-like peptide-1: effect on pro-atrial natriuretic peptide in healthy males.

    PubMed

    Skov, Jeppe; Holst, Jens Juul; Gøtze, Jens Peter; Frøkiær, Jørgen; Christiansen, Jens Sandahl

    2014-01-01

    The antihypertensive actions of glucagon-like peptide-1 (GLP1) receptor agonists have been linked to the release of atrial natriuretic peptide (ANP) in mice. Whether a GLP1-ANP axis exists in humans is unknown. In this study, we examined 12 healthy young males in a randomized, controlled, double-blinded, single-day, cross-over study to evaluate the effects of a 2-h native GLP1 infusion. Plasma proANP concentrations were measured by an automated mid-region-directed proANP immunoassay and N-terminal pro B-type natriuretic peptide (BNP) on Roche Modular E170. Urine was collected for measurements of sodium excretion. Although GLP1 infusion increased the urinary sodium excretion markedly, there were no significant changes in either proANP or proBNP concentrations. When GLP1 infusion was stopped, sodium excretion declined rapidly. As proANP concentration reflects ANP secretion, our data could not confirm the existence of a GLP1-ANP axis in humans. Especially, the natriuretic effects of GLP1 seem unlikely to be mediated exclusively via ANP.

  7. Glucagon-Like Peptide-1 Formulation--the Present and Future Development in Diabetes Treatment.

    PubMed

    Lee, Chooi Yeng

    2016-03-01

    Type 2 diabetes mellitus is a chronic metabolic disorder that has become the fourth leading cause of death in the developed countries. The disorder is characterized by pancreatic β-cells dysfunction, which causes hyperglycaemia leading to several other complications. Treatment by far, which focuses on insulin administration and glycaemic control, has not been satisfactory. Glucagon-like peptide-1 (GLP1) is an endogenous peptide that stimulates post-prandial insulin secretion. Despite being able to mimic the effect of insulin, GLP1 has not been the target drug in diabetes treatment due to the peptide's metabolic instability. After a decade-long effort to improve the pharmacokinetics of GLP1, a number of GLP1 analogues are currently available on the market. The current Minireview does not discuss these drugs but presents strategies that were undertaken to address the weaknesses of the native GLP1, particularly drug delivery techniques used in developing GLP1 nanoparticles and modified GLP1 molecule. The article highlights how each of the selected preparations has improved the efficacy of GLP1, and more importantly, through an overview of these studies, it will provide an insight into strategies that may be adopted in the future in the development of a more effective oral GLP1 formulation.

  8. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion.

    PubMed

    Zhang, Hongjie; Li, Jing; Liang, Xiangying; Luo, Yun; Zen, Ke; Zhang, Chen-Yu

    2012-04-01

    It is known that endogenous levels of the incretin hormone glucagon-like peptide 1 (GLP1) can be enhanced by various secretagogues, but the mechanism underlying GLP1 secretion is still not fully understood. We assessed the possible effect of uncoupling protein 2 (UCP2) on GLP1 secretion in mouse intestinal tract and NCI-H716 cells, a well-characterized human enteroendocrine L cell model. Localization of UCP2 and GLP1 in the gastrointestinal tract was assessed by immunofluorescence staining. Ucp2 mRNA levels in gut were analyzed by quantitative RT-PCR. Human NCI-H716 cells were transiently transfected with siRNAs targeting UCP2. The plasma and ileum tissue levels of GLP1 (7-36) amide were measured using an ELISA kit. UCP2 was primarily expressed in the mucosal layer and colocalized with GLP1 in gastrointestinal mucosa. L cells secreting GLP1 also expressed UCP2. After glucose administration, UCP2-deficient mice showed increased glucose-induced GLP1 secretion compared with wild-type littermates. GLP1 secretion increased after NCI-H716 cells were transfected with siRNAs targeting UCP2. UCP2 was markedly upregulated in ileum tissue from ob/ob mice, and GLP1 secretion decreased compared with normal mice. Furthermore, GLP1 secretion increased after administration of genipin by oral gavage. Taken together, these results reveal an inhibitory role of UCP2 in glucose-induced GLP1 secretion.

  9. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role.

  10. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review.

    PubMed

    Bodnaruc, Alexandra M; Prud'homme, Denis; Blanchet, Rosanne; Giroux, Isabelle

    2016-01-01

    The positive influences of glucagon-like peptide-1 (GLP-1) on blood glucose homeostasis, appetite sensations, and food intake provide a strong rationale for its therapeutic potential in the nutritional management of obesity and type 2 diabetes. To summarize GLP-1 physiology and the nutritional modulation of its secretion in the context of obesity and type 2 diabetes management. GLP-1 is mainly synthesized and secreted by enteroendocrine L-cells of the gastrointestinal tract. Its secretion is partly mediated by the direct nutrient sensing by G-protein coupled receptors which specifically bind to monosaccharides, peptides and amino-acids, monounsaturated and polyunsaturated fatty acids as well as to short chain fatty acids. Foods rich in these nutrients, such as high-fiber grain products, nuts, avocados and eggs also seem to influence GLP-1 secretion and may thus promote associated beneficial outcomes in healthy individuals as well as individuals with type 2 diabetes or with other metabolic disturbances. The stimulation of endogenous GLP-1 secretion by manipulating the composition of the diet may be a relevant strategy for obesity and type 2 diabetes management. A better understanding of the dose-dependent effects as well as the synergistic effects of nutrients and whole foods is needed in order to develop recommendations to appropriately modify the diet to enhance GLP-1 beneficial effects.

  11. Gastrointestinal actions of glucagon-like peptide-1-based therapies: glycaemic control beyond the pancreas.

    PubMed

    Smits, M M; Tonneijck, L; Muskiet, M H A; Kramer, M H H; Cahen, D L; van Raalte, D H

    2016-03-01

    The gastrointestinal hormone glucagon-like peptide-1 (GLP-1) lowers postprandial glucose concentrations by regulating pancreatic islet-cell function, with stimulation of glucose-dependent insulin and suppression of glucagon secretion. In addition to endocrine pancreatic effects, mounting evidence suggests that several gastrointestinal actions of GLP-1 are at least as important for glucose-lowering. GLP-1 reduces gastric emptying rate and small bowel motility, thereby delaying glucose absorption and decreasing postprandial glucose excursions. Furthermore, it has been suggested that GLP-1 directly stimulates hepatic glucose uptake, and suppresses hepatic glucose production, thereby adding to reduction of fasting and postprandial glucose levels. GLP-1 receptor agonists, which mimic the effects of GLP-1, have been developed for the treatment of type 2 diabetes. Based on their pharmacokinetic profile, GLP-1 receptor agonists can be broadly categorized as short- or long-acting, with each having unique islet-cell and gastrointestinal effects that lower glucose levels. Short-acting agonists predominantly lower postprandial glucose excursions, by inhibiting gastric emptying and intestinal glucose uptake, with little effect on insulin secretion. By contrast, long-acting agonists mainly reduce fasting glucose levels, predominantly by increased insulin and reduced glucagon secretion, with potential additional direct inhibitory effects on hepatic glucose production. Understanding these pharmacokinetic and pharmacodynamic differences may allow personalized antihyperglycaemic therapy in type 2 diabetes. In addition, it may provide the rationale to explore treatment in patients with no or little residual β-cell function.

  12. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  13. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1.

    PubMed

    Gromada, J; Holst, J J; Rorsman, P

    1998-04-01

    Glucagon-like peptide 1 is a gastrointestinally derived hormone with profound effects on nutrient-induced pancreatic hormone release. GLP-1 modulates insulin, glucagon and somatostatin secretion by binding to guanine nucleotide binding protein-coupled receptors resulting in the activation of adenylate cyclase and generation of cyclic adenosine monophosphate (cAMP). In the B-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion channel activity, intracellular Ca2+ handling and exocytosis of the insulin-containing granules. The stimulatory action of GLP-1 on insulin secretion, contrary to that of the currently used hypoglycaemic sulphonylureas, is glucose dependent and requires the presence of normal or elevated concentrations of the sugar. For this reason, GLP-1 attracts much interest as a possible novel principle for the treatment of human type-2 diabetes. Here we review the actions of GLP-1 on islet cell function and attempt to integrate current knowledge into a working model for the control of pancreatic hormone secretion.

  14. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  15. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1.

    PubMed

    Seino, Yusuke; Maekawa, Ryuya; Ogata, Hidetada; Hayashi, Yoshitaka

    2016-04-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the incretin hormones secreted from enteroendocrine K-cells and L-cells, respectively, by oral ingestion of various nutrients including glucose. K-cells, L-cells and pancreatic β-cells are glucose-responsive cells with similar glucose-sensing machinery including glucokinase and an adenosine triphosphate-sensitive K(+) channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate-sensitive K(+) channel in GIP secretion in K-cells and GLP-1 secretion in L-cells is not elucidated. Recently, it was reported that GIP and GLP-1-producing cells are present also in pancreatic islets, and islet-derived GIP and GLP-1 contribute to glucose-induced insulin secretion from pancreatic β-cells. In this short review, we focus on GIP and GLP-1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate-sensitive K(+) channel in GIP and GLP-1 secretion.

  16. High potency antagonists of the pancreatic glucagon-like peptide-1 receptor.

    PubMed

    Montrose-Rafizadeh, C; Yang, H; Rodgers, B D; Beday, A; Pritchette, L A; Eng, J

    1997-08-22

    GLP-1-(7-36)-amide and exendin-4-(1-39) are glucagon-like peptide-1 (GLP-1) receptor agonists, whereas exendin-(9-39) is the only known antagonist. To analyze the transition from agonist to antagonist and to identify the amino acid residues involved in ligand activation of the GLP-1 receptor, we used exendin analogs with successive N-terminal truncations. Chinese hamster ovary cells stably transfected with the rat GLP-1 receptor were assayed for changes in intracellular cAMP caused by the test peptides in the absence or presence of half-maximal stimulatory doses of GLP-1. N-terminal truncation of a single amino acid reduced the agonist activity of the exendin peptide, whereas N-terminal truncation of 3-7 amino acids produced antagonists that were 4-10-fold more potent than exendin-(9-39). N-terminal truncation of GLP-1 by 2 amino acids resulted in weak agonist activity, but an 8-amino acid N-terminal truncation inactivated the peptide. Binding studies performed using 125I-labeled GLP-1 confirmed that all bioactive peptides specifically displaced tracer with high potency. In a set of exendin/GLP-1 chimeric peptides, substitution of GLP-1 sequences into exendin-(3-39) produced loss of antagonist activity with conversion to a weak agonist. The results show that receptor binding and activation occur in separate domains of exendin, but they are more closely coupled in GLP-1.

  17. Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome

    PubMed Central

    Chatterjee, Sanjay; Ghosal, Samit; Chatterjee, Saurav

    2016-01-01

    Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome. PMID:27795818

  18. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  19. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  20. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant?

    PubMed

    Alves, Marco G; Jesus, Tito T; Sousa, Mário; Goldberg, Erwin; Silva, Branca M; Oliveira, Pedro F

    2016-01-01

    Obesity is rising to unprecedented numbers, affecting a growing number of children, adolescents and young adult men. These individuals face innumerous health problems, including subfertility or even infertility. Overweight and obese men present severe alterations in their body composition and hormonal profile, particularly in ghrelin, leptin and glucagon-like peptide-1 (GLP-1) levels. It is well known that male reproductive health is under the control of the individual's nutritional status and also of a tight network of regulatory signals, particularly hormonal signaling. However, few studies have been focused on the effects of ghrelin, leptin and GLP-1 in male reproduction and how energy homeostasis and male reproductive function are linked. These hormones regulate body glucose homeostasis and several studies suggest that they can serve as targets for anti-obesity drugs. In recent years, our understanding of the mechanisms of action of these hormones has grown significantly. Curiously, their effect on male reproductive potential, that is highly dependent of the metabolic cooperation established between testicular cells, remains a matter of debate. Herein, we review general concepts of male fertility and obesity, with a special focus on the effects of ghrelin, leptin and GLP-1 on male reproductive health. We also discuss the possible pharmacological relevance of these hormones to counteract the fertility problems that overweight and obese men face.

  1. [Glucagon-like peptide-1 (GLP-1) mimetics: a new treatment for Alzheimer's disease?].

    PubMed

    García-Casares, Natalia; García-Arnés, Juan Antonio; Gómez-Huelgas, Ricardo; Valdivielso-Felices, Pedro; García-Arias, Carlota; González-Santos, Pedro

    2014-12-01

    Introduccion. Los analogos del glucagon-like peptide-1 (GLP-1) son una opcion terapeutica establecida en los pacientes con diabetes tipo 2. Sin embargo, las propiedades de los analogos del GLP-1 van mas alla del control estrictamente metabolico del paciente diabetico. Los efectos neuroprotectores de los analogos del GLP-1 se han puesto de manifiesto en estudios recientes y han abierto nuevos campos de investigacion en trastornos neurodegenerativos como la enfermedad de Alzheimer (EA), entre otros. Objetivo. Revision sistematica de los estudios experimentales y ensayos clinicos en humanos que demuestran las propiedades neuroprotectoras de los analogos del GLP-1 en la EA. Desarrollo. Los estudios experimentales que se han llevado a cabo en modelos de roedores con EA demuestran las propiedades neuroprotectoras de los analogos del GLP-1 sobre el sistema nervioso central que reducen las placas de beta-amiloide, el estres oxidativo y la respuesta inflamatoria cerebral. Recientemente se han puesto en marcha estudios con analogos del GLP-1 en humanos con deterioro cognitivo y EA. Conclusiones. Los analogos del GLP-1 presentan propiedades neuroprotectoras. Al considerarse la diabetes tipo 2 un factor de riesgo para el deterioro cognitivo y la demencia, deben considerarse los beneficios de los analogos del GLP-1 sobre la cognicion. Del mismo modo, los analogos del GLP-1 suponen un tratamiento prometedor en la EA.

  2. Glucagon-Like Peptide-1 Receptor Expression in Normal and Neoplastic Human Pancreatic Tissues.

    PubMed

    Dal Molin, Marco; Kim, Haeryoung; Blackford, Amanda; Sharma, Rajni; Goggins, Michael

    2016-04-01

    Studies have proposed pro-oncogenic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists in the pancreas by promoting GLP-1R overactivation in pancreatic cells. However, the expression of GLP-1R in normal and neoplastic pancreatic cells remains poorly defined, and reliable methods for detecting GLP-1R in tissue specimens are needed. We used RNA in situ hybridization to quantify glp-1r RNA in surgically resected human pancreatic specimens, including pancreatic ductal adenocarcinoma (PDAC), preinvasive intraepithelial lesions (pancreatic intraepithelial neoplasia), and non-neoplastic ductal, acinar, and endocrine cells. A mixed-effect linear regression model was used to investigate the relationship between glp-1r signals and all cells, ordered by increasing grade of dysplasia. All cell types had evidence of glp-1r transcripts, with the highest expression in endocrine cells and lowest in ductal cells. The slope of the fitted line was not significantly different from zero (0.07; 95% confidence interval, -0.0094 to 0.244; P = 0.39), suggesting that progression from normal cells to PDAC is not associated with a parallel increase in glp-1r RNA. A series of pairwise comparisons between all cell types with respect to their glp-1r expression showed no significant difference in glp-1r in cancer, pancreatic intraepithelial neoplasia, and acinar and ductal cells. Our study supports the lack of evidence for GLP-1R overexpression in PDAC.

  3. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process.

  4. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats.

    PubMed

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte; Gejl, Michael; Landau, Anne M; Møller, Arne; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1

  5. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain

    PubMed Central

    Cork, Simon C.; Richards, James E.; Holt, Marie K.; Gribble, Fiona M.; Reimann, Frank; Trapp, Stefan

    2015-01-01

    Objective Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question. Methods Mice expressing Cre-recombinase under the Glp1r promoter were crossed with either a ROSA26 eYFP or tdRFP reporter strain to identify GLP-1R expressing cells. Patch-clamp recordings were performed on tdRFP-positive neurons in acute coronal brain slices from adult mice and selective targeting of GLP-1R cells in vivo was achieved using viral gene delivery. Results Large numbers of eYFP or tdRFP immunoreactive cells were found in the circumventricular organs, amygdala, hypothalamic nuclei and the ventrolateral medulla. Smaller numbers were observed in the nucleus of the solitary tract and the thalamic paraventricular nucleus. However, tdRFP positive neurons were also found in areas without preproglucagon-neuronal projections like hippocampus and cortex. GLP-1R cells were not immunoreactive for GFAP or parvalbumin although some were catecholaminergic. GLP-1R expression was confirmed in whole-cell recordings from BNST, hippocampus and PVN, where 100 nM GLP-1 elicited a reversible inward current or depolarisation. Additionally, a unilateral stereotaxic injection of a cre-dependent AAV into the PVN demonstrated that tdRFP-positive cells express cre-recombinase facilitating virally-mediated eYFP expression. Conclusions This study is a comprehensive description and phenotypic analysis of GLP-1R expression in the mouse CNS. We demonstrate the power of combining the GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance. PMID:26500843

  6. Cholecystokinin-Induced Gallbladder Emptying and Metformin Elicit Additive Glucagon-Like Peptide-1 Responses.

    PubMed

    Rohde, Ulrich; Sonne, David Peick; Christensen, Mikkel; Hansen, Morten; Brønden, Andreas; Toräng, Signe; Rehfeld, Jens Frederik; Holst, Jens Juul; Vilsbøll, Tina; Knop, Filip Krag

    2016-05-01

    Bile acids have been suggested to mediate glucagon-like peptide-1 (GLP-1) secretion. Metformin, too, has been shown to increase GLP-1 levels. The effect of gallbladder emptying, metformin, or a combination has, however, never been studied. We hypothesized that cholecystokinin (CCK)-8-induced gallbladder emptying stimulates human GLP-1 secretion and that metformin would potentiate this effect. A double-blinded, randomized study. The study was conducted at a specialized research unit. Ten healthy male subjects with no family history of diabetes (age, 22 [range, 20-32] years; body mass index, 21.7 [19.3-24.2] kg/m(2); fasting plasma glucose, 4.9 [4.7-5.3] mm; and glycosylated hemoglobin A1c, 5.1 [4.4-5.8] %). On 4 separate days, the subjects received metformin or placebo and a concomitant 60-minute intravenous infusion of saline or CCK. Blood was sampled for 4 hours, and gallbladder volume was measured by ultrasound. Plasma levels of GLP-1. CCK-induced gallbladder emptying and metformin alone (no observed effect on gallbladder emptying) both elicited significant and additive GLP-1 responses. Metformin alone or combined with gallbladder emptying elicited a significant peptide YY response. CCK-induced gallbladder emptying resulted in a short-lasting glucose-dependent insulinotropic polypeptide response independent of metformin. No effects were seen on plasma glucose, insulin, C-peptide, or gastrin. CCK-induced gallbladder emptying in healthy subjects elicits significant GLP-1 secretion, which can be potentiated by metformin.

  7. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    PubMed Central

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  8. Mechanisms of action of glucagon-like peptide 1 in the pancreas.

    PubMed

    Doyle, Máire E; Egan, Josephine M

    2007-03-01

    Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.

  9. Glucagon-Like Peptide 1/Glucagon Receptor Dual Agonism Reverses Obesity in Mice

    PubMed Central

    Pocai, Alessandro; Carrington, Paul E.; Adams, Jennifer R.; Wright, Michael; Eiermann, George; Zhu, Lan; Du, Xiaobing; Petrov, Aleksandr; Lassman, Michael E.; Jiang, Guoqiang; Liu, Franklin; Miller, Corey; Tota, Laurie M.; Zhou, Gaochao; Zhang, Xiaoping; Sountis, Michael M.; Santoprete, Alessia; Capito', Elena; Chicchi, Gary G.; Thornberry, Nancy; Bianchi, Elisabetta; Pessi, Antonello; Marsh, Donald J.; SinhaRoy, Ranabir

    2009-01-01

    OBJECTIVE Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist. RESEARCH DESIGN AND METHODS We developed a protease-resistant dual GLP1R/GCGR agonist, DualAG, and a corresponding GLP1R-selective agonist, GLPAG, matched for GLP1R agonist potency and pharmacokinetics. The metabolic effects of these two peptides with respect to weight loss, caloric reduction, glucose control, and lipid lowering, were compared upon chronic dosing in diet-induced obese (DIO) mice. Acute studies in DIO mice revealed metabolic pathways that were modulated independent of weight loss. Studies in Glp1r−/− and Gcgr−/− mice enabled delineation of the contribution of GLP1R versus GCGR activation to the pharmacology of DualAG. RESULTS Peptide DualAG exhibits superior weight loss, lipid-lowering activity, and antihyperglycemic efficacy comparable to GLPAG. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were more pronounced upon chronic treatment with DualAG than with GLPAG. Dual receptor agonism also increased fatty acid oxidation and reduced hepatic steatosis in DIO mice. The antiobesity effects of DualAG require activation of both GLP1R and GCGR. CONCLUSIONS Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity. PMID:19602537

  10. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data.

    PubMed

    Delzenne, Nathalie M; Cani, Patrice D; Neyrinck, Audrey M

    2007-11-01

    Inulin-type fructans have been tested for their capacity to modulate lipid and glucose metabolism in several animal models. Oligofructose (OFS) decreases food intake, fat mass development, and hepatic steatosis in normal and in obese rats; moreover, it exerts an antidiabetic effect in streptozotocin-treated rats and high-fat-fed mice. In most cases, the beneficial effects of OFS are linked to an increase of glucagon-like peptide-1 (GLP-1) level in the portal vein and of GLP-1 and proglucagon mRNA, its precursor, in the proximal colon. In this organ, OFS increases the number of GLP-1-positive L cells by promoting factors (Neurogenin 3 and NeuroD) involved in the differentiation of stem cells into L cells. The chronic administration of GLP-1 receptor antagonist exendin 9-39 totally prevents the beneficial effects of OFS (improved glucose tolerance, fasting blood glucose, glucose-stimulated insulin secretion, insulin-sensitive hepatic glucose production, and reduced body weight gain). Furthermore GLP-1 receptor knockout mice are completely insensitive to the antidiabetic actions of OFS. These findings highlight the potential interest of enhancing endogenous GLP-1 secretion by inulin-type fructans for the prevention/treatment of obesity and type 2 diabetes. Moreover, OFS is also able to modulate other gastrointestinal peptides (such as PYY and ghrelin) that could be involved in the control of food intake. Several studies in humans already support interest in OFS in the control of satiety, triglyceridemia, or steatohepatitis. The link with gut peptides production in humans remains to be proven.

  11. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat.

    PubMed

    Thomson, Scott C; Kashkouli, Ali; Singh, Prabhleen

    2013-01-15

    The incretin hormone glucagon-like peptide-1 (GLP-1) is released from the gut in response to fat or carbohydrate and contributes to negative feedback control of blood glucose by stimulating insulin secretion, inhibiting glucagon, and slowing gastric emptying. GLP-1 receptors (GLP-1R) are also expressed in the proximal tubule, and possibly elsewhere in the kidney. Presently, we examined the effect of a GLP-1R agonist on single-nephron glomerular filtration rate (GFR; SNGFR), proximal reabsorption (Jprox), tubuloglomerular feedback (TGF) responses, and urine flow rate in hydropenic male Wistar and Wistar-Froemter rats. Micropuncture and whole-kidney data were obtained before and during infusion of the GLP-1 agonist exenatide (1 nmol/h iv). SNGFR and Jprox were measured by late proximal collection at both extremes of TGF activation, which was achieved by perfusing Henle's loop at 0 or 50 nl/min. Primary changes in Jprox were revealed by analysis of covariance for Jprox with SNGFR as a covariate. Effects on TGF activation were determined in a separate set of experiments by comparing early distal and late proximal collections. Exenatide increased SNGFR by 33-50%, suppressed proximal tubular reabsorption by 20-40%, doubled early distal flow rate, and increased urine flow rate sixfold without altering the efficiency of glomerulotubular balance, TGF responsiveness, or the tonic influence of TGF. This implies that exenatide is both a proximal diuretic and a renal vasodilator. Since the natural agonist for the GLP-1R is regulated by intake of fat and carbohydrate, but not by salt or fluid, the control of salt excretion by the GLP-1R system departs from the usual negative-feedback paradigm for regulating salt balance.

  12. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors.

    PubMed

    Sirohi, Sunil; Schurdak, Jennifer D; Seeley, Randy J; Benoit, Stephen C; Davis, Jon F

    2016-07-01

    Recent data implicate glucagon-like peptide-1 (GLP-1), a potent anorexigenic peptide released in response to nutrient intake, as a regulator for the reinforcing properties of food, alcohol and psychostimulants. While, both central and peripheral mechanisms mediate effects of GLP-1R signaling on food intake, the extent to which central or peripheral GLP-1R signaling regulates reinforcing properties of drugs of abuse is unknown. Here, we examined amphetamine reinforcement, alcohol intake and hedonic feeding following peripheral administration of EX-4 (a GLP-1 analog) in FLOX and GLP-1R KD(Nestin) (GLP-1R selectively ablated from the central nervous system) mice (n=13/group). First, the effect of EX-4 pretreatment on the expression of amphetamine-induced conditioned place preference (Amp-CPP) was examined in the FLOX and GLP-1R KD(Nestin) mice. Next, alcohol intake (10% v/v) was evaluated in FLOX and GLP-1R KD(Nestin) mice following saline or EX-4 injections. Finally, we assessed the effects of EX-4 pretreatment on hedonic feeding behavior. Results indicate that Amp-CPP was completely blocked in the FLOX mice, but not in the GLP-1R KD(Nestin) mice following EX-4 pretreatment. Ex-4 pretreatment selectively blocked alcohol consumption in the FLOX mice, but was ineffective in altering alcohol intake in the GLP-1R KD(Nestin) mice. Notably, hedonic feeding was partially blocked in the GLP-1R KD(Nestin) mice, whereas it was abolished in the FLOX mice. The present study provides critical insights regarding the nature by which GLP-1 signaling controls reinforced behaviors and underscores the importance of both peripheral and central GLP-1R signaling for the regulation of addictive disorders.

  13. Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle.

    PubMed

    Amato, Antonella; Baldassano, Sara; Liotta, Rosa; Serio, Rosa; Mulè, Flavia

    2014-04-01

    Glucagon-like peptide 1 (GLP1) is a naturally occurring peptide secreted by intestinal L-cells. Though its primary function is to serve as an incretin, GLP1 reduces gastrointestinal motility. However, only a handful of animal studies have specifically evaluated the influence of GLP1 on colonic motility. Consequently, the aims of this study were to investigate the effects induced by exogenous GLP1, to analyze the mechanism of action, and to verify the presence of GLP1 receptors (GLP1Rs) in human colon circular muscular strips. Organ bath technique, RT-PCR, western blotting, and immunofluorescence were used. In human colon, exogenous GLP1 reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. This inhibitory effect was significantly reduced by exendin (9-39), a GLP1R antagonist, which per se significantly increased the spontaneous mechanical activity. Moreover, it was abolished by tetrodotoxin, a neural blocker, or Nω-nitro-l-arginine - a blocker of neuronal nitric oxide synthase (nNOS). The biomolecular analysis revealed a genic and protein expression of the GLP1R in the human colon. The double-labeling experiments with anti-neurofilament or anti-nNOS showed, for the first time, that immunoreactivity for the GLP1R was expressed in nitrergic neurons of the myenteric plexus. In conclusion, the results of this study suggest that GLP1R is expressed in the human colon and, once activated by exogenous GLP1, mediates an inhibitory effect on large intestine motility through NO neural release.

  14. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides.

    PubMed

    Liu, Can; Zhang, Mian; Hu, Meng-Yue; Guo, Hai-Fang; Li, Jia; Yu, Yun-Li; Jin, Shi; Wang, Xin-Ting; Liu, Li; Liu, Xiao-Dong

    2013-05-01

    Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2+ concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2+ channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.

  15. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas.

    PubMed

    Waser, Beatrice; Blank, Annika; Karamitopoulou, Eva; Perren, Aurel; Reubi, Jean C

    2015-03-01

    Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting.

  16. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior.

    PubMed

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-07-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r(-/-)) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r(+/+)) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r(-/-) animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r(-/-) controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine.

  17. Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries.

    PubMed

    Bayram, Zeliha; Nacitarhan, Cahit; Ozdem, Sadi S

    2014-09-01

    We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.

  18. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    PubMed Central

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  19. Exendin-4, a Glucagon-Like Peptide 1 receptor agonist, protects cholangiocytes from apoptosis

    PubMed Central

    Marzioni, Marco; Alpini, Gianfranco; Saccomanno, Stefania; Candelaresi, Cinzia; Venter, Juliet; Rychlicki, Chiara; Fava, Giammarco; Francis, Heather; Trozzi, Luciano; Benedetti, Antonio

    2008-01-01

    Background progression of chronic cholestatic disorders towards ductopenia results from the dysregulation of cholangiocyte survival, with cell death by apoptosis prevailing over compensatory proliferation. Currently, no therapy is available to sustain cholangiocyte survival in the course of those disorders. We have recently shown that cholangiocytes express the Glucagon-Like Peptide-1 receptor (GLP-1R); its activation results in enhanced proliferative reaction to cholestasis. The GLP-1R selective agonist exendin-4 sustains pancreatic β-cell proliferation and prevents cell death by apoptosis. Exendin-4 is now employed in humans as a novel therapy for diabetes. Aim to verify whether exendin-4 is effective in preventing cholangiocyte apoptosis. Methods in vitro, we tested if exendin-4 is able to prevent apoptosis of cholangiocytes isolated from normal rats induced by glycochenodeoxycholic acid (GCDCA); in vivo, animals subjected to 1 week bile duct ligation (BDL) and to a single IP injection of CCl4 were treated with exendin-4 for 3 days. Results exendin-4 prevented the GCDCA-induced Bax mitochondrial translocation, cytochrome c release and increase in caspase 3 activity. PI3K, but not cAMP/PKA or Ca2+-CamKinase inhibitors neutralized the effects of exendin-4. In vivo, exendin-4 administration prevented the increase in TUNEL positive cholangiocytes and the loss of bile ducts observed in BDL rats treated with CCl4. Summary/conclusion exendin-4 prevents cholangiocyte apoptosis both in vitro and in vivo; such an effect is due to the ability of exendin-4 to counteract the activation of the mitochondrial pathway of apoptosis. These findings support the hypothesis that exendin-4 may be effective in relenting the progression of cholangiopathies towards ductopenia. PMID:18829977

  20. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning

    PubMed Central

    Basalay, Marina V.; Mastitskaya, Svetlana; Mrochek, Aleksander; Ackland, Gareth L.; del Arroyo, Ana Gutierrez; Sanchez, Jenifer; Sjoquist, Per-Ove; Pernow, John; Gourine, Alexander V.; Gourine, Andrey

    2016-01-01

    Aims Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1). Methods and results A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) or perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9–39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ∼50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9–39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade. Conclusions These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R activation is mediated by a mechanism involving M3 muscarinic receptors. PMID:27702763

  1. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor.

    PubMed

    Sowden, Gillian L; Drucker, Daniel J; Weinshenker, David; Swoap, Steven J

    2007-02-01

    Oxyntomodulin (OXM), a postprandially released intestinal hormone, inhibits food intake via the glucagon-like peptide-1 receptor (GLP-1R). Although OXM may have clinical value in treating obesity, the cardiovascular effects of OXM are not well understood. Using telemetry to measure heart rate (HR), body temperature (Tb), and activity in conscious and freely moving mice, we tested 1) whether OXM affects HR and 2) whether this effect is mediated by the GLP-1R. We found that peripherally administered OXM significantly increased HR in wild-type mice, raising HR by >200 beats/min to a maximum of 728 +/- 11 beats/min. To determine the extent to which the sympathetic nervous system mediates the tachycardia of OXM, we delivered this hormone to mice deficient in dopamine-beta-hydroxylase [Dbh(-/-) mice], littermate controls [Dbh(+/-) mice], and autonomically blocked C57Bl mice. OXM increased HR equally in all groups (192 +/- 13, 197 +/- 21, and 216 +/- 11 beats/min, respectively), indicating that OXM elevated intrinsic HR. Intrinsic HR was also vigorously elevated by OXM in Glp-1R(-/-) mice (200 +/- 28 beats/min). In addition, peripherally administered OXM inhibited food intake and activity levels in wild-type mice and lowered Tb in autonomically blocked mice. None of these effects were observed in Glp-1R(-/-) mice. These data suggest multiple modes of action of OXM: 1) it directly elevates murine intrinsic HR through a GLP-1R-independent mechanism, perhaps via the glucagon receptor or an unidentified OXM receptor, and 2) it lowers food intake, activity, and Tb in a GLP-1R-dependent fashion.

  2. Acarbose improves hypoglycaemia following gastric bypass surgery without increasing glucagon-like peptide 1 levels.

    PubMed

    Valderas, Juan Patricio; Ahuad, Jessica; Rubio, Lorena; Escalona, Manuel; Pollak, Felipe; Maiz, Alberto

    2012-04-01

    Postprandial hypoglycaemia is a severe complication of Roux-en-Y gastric bypass (RYGBP). Acarbose, an α-glucosidase inhibitor (AGI), is employed in its treatment. Several studies have shown that AGIs increase the postprandial levels of glucagon-like peptide 1 (GLP-1). However, an excessive level of GLP-1 is one of the factors involved in the physiopathology of this condition. We analysed the effect of acarbose oral administration in eight RYBGP patients with clinically significant hypoglycaemia or dumping syndrome. Glucose, insulin and GLP-1 plasma levels in fasting and after ingestion of a standard meal (Ensure Plus®; 13 g protein, 50 g carbohydrate, 11 g fat) were measured. The test was repeated the following week with the oral administration of 100 mg of acarbose 15 min prior to the meal. Five patients developed asymptomatic hypoglycaemia during the test (glucose level <50 mg/dl) with inappropriately high insulin levels and exaggerated GLP-1 response. Acarbose ingestion avoided hypoglycaemia in all of the patients and increased the lowest plasma glucose level (46.4 ± 4.8 vs. 59.0 ± 2.6 mg/dl, p < 0.01). Acarbose ingestion decreased the area under the curve for serum insulin and GLP-1 levels at 15 min after the meal. Acarbose avoided postprandial hypoglycaemia following RYGBP by decreasing the hyperinsulinemic response. This was associated with a decrease in early GLP-1 secretion, in contrast to that observed in non-surgical subjects. This finding could be explained by the reduction of glucose load in the jejunum produced by the α-glucosidase inhibition, which is the main stimulus for GLP-1 secretion.

  3. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.

    PubMed

    Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt

    2015-07-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis.

  4. Long-term management of type 2 diabetes with glucagon-like peptide-1 receptor agonists

    PubMed Central

    Courtney, Hamish; Nayar, Rahul; Rajeswaran, Chinnadorai; Jandhyala, Ravi

    2017-01-01

    Continuously reducing excess blood glucose is a primary goal for the management of type 2 diabetes (T2D). Most patients with T2D require glucose-lowering medications to achieve and maintain adequate glycemic control; however, treatment failure may occur, limiting treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are an emerging therapeutic class that can be prescribed for patients instead of basal insulin after the failure of oral therapies. Recent studies have focused on the durability and tolerability of long-term GLP-1RA therapy. This review summarizes the key efficacy and safety findings from prospective phase 3 clinical studies of at least 76 weeks’ duration for the GLP-1RAs currently approved in the United States and the European Union (albiglutide, dulaglutide, exenatide twice daily [BID], exenatide once weekly [QW], liraglutide, and lixisenatide). Currently, most of the long-term data are from uncontrolled extension studies, and continuous patient benefit has been observed for up to 3 years with multiple GLP-1RAs. Four-year comparative data demonstrated a longer time to treatment failure for exenatide BID than for sulfonylurea, and 3-year comparative extension data demonstrated greater glycated hemoglobin (HbA1c) reductions and weight loss with exenatide QW than with insulin glargine. Currently, the longest extension study for a GLP-1RA is the DURATION-1 study of exenatide QW, with >7 years of clinical data available. Data from DURATION-1 demonstrated that continuous HbA1c reductions and weight loss were observed for the patients continuing on the treatment, with no unexpected adverse events. Taken together, these data support GLP-1RAs as a long-term noninsulin treatment option after the failure of oral therapies. PMID:28331351

  5. Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing

    PubMed Central

    Knauf, Claude; Cani, Patrice D.; Kim, Dong-Hoon; Iglesias, Miguel A.; Chabo, Chantal; Waget, Aurélie; Colom, André; Rastrelli, Sophie; Delzenne, Nathalie M.; Drucker, Daniel J.; Seeley, Randy J.; Burcelin, Remy

    2008-01-01

    OBJECTIVE—Ingested glucose is detected by specialized sensors in the enteric/hepatoportal vein, which send neural signals to the brain, which in turn regulates key peripheral tissues. Hence, impairment in the control of enteric-neural glucose sensing could contribute to disordered glucose homeostasis. The aim of this study was to determine the cells in the brain targeted by the activation of the enteric glucose-sensing system. RESEARCH DESIGN AND METHODS—We selectively activated the axis in mice using a low-rate intragastric glucose infusion in wild-type and glucagon-like peptide-1 (GLP-1) receptor knockout mice, neuropeptide Y–and proopiomelanocortin–green fluorescent protein–expressing mice, and high-fat diet diabetic mice. We quantified the whole-body glucose utilization rate and the pattern of c-Fos positive in the brain. RESULTS—Enteric glucose increased muscle glycogen synthesis by 30% and regulates c-Fos expression in the brainstem and the hypothalamus. Moreover, the synthesis of muscle glycogen was diminished after central infusion of the GLP-1 receptor (GLP-1Rc) antagonist Exendin 9-39 and abolished in GLP-1Rc knockout mice. Gut-glucose–sensitive c-Fos–positive cells of the arcuate nucleus colocalized with neuropeptide Y–positive neurons but not with proopiomelanocortin-positive neurons. Furthermore, high-fat feeding prevented the enteric activation of c-Fos expression. CONCLUSIONS—We conclude that the gut-glucose sensor modulates peripheral glucose metabolism through a nutrient-sensitive mechanism, which requires brain GLP-1Rc signaling and is impaired during diabetes. PMID:18519802

  6. New Approaches to Feline Diabetes Mellitus: Glucagon-like peptide-1 analogs.

    PubMed

    Gilor, Chen; Rudinsky, Adam J; Hall, Melanie J

    2016-09-01

    Incretin-based therapies are revolutionizing the field of human diabetes mellitus (DM) by replacing insulin therapy with safer and more convenient long-acting drugs. Incretin hormones (glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic peptide [GIP]) are secreted from the intestinal tract in response to the presence of food in the intestinal lumen. GLP-1 delays gastric emptying and increases satiety. In the pancreas, GLP-1 augments insulin secretion and suppresses glucagon secretion during hyperglycemia in a glucose-dependent manner. It also protects beta cells from oxidative and toxic injury and promotes expansion of beta cell mass. Clinical data have revealed that GLP-1 analog drugs are as effective as insulin in improving glycemic control while reducing body weight in people suffering from type 2 DM. Furthermore, the incidence of hypoglycemia is low with these drugs because of their glucose-dependent mechanism of action. Another significant advantage of these drugs is their duration of action. While insulin injections are administered at least once daily, long-acting GLP-1 analogs have been developed as once-a-week injections and could potentially be administered even less frequently than that in diabetic cats. This article reviews the physiology of incretin hormones, and the pharmacology and use of GLP-1 analogs, with emphasis on recent research in cats. Further therapies that are based on incretin hormones, such as DPP-4 inhibitors, are also briefly discussed, as are some other treatment modalities that are currently under investigation. © The Author(s) 2016.

  7. The role of glucagon-like peptide 1 in glucose homeostasis and in other aspects of human physiology.

    PubMed

    Franek, Edward; Gajos, Grzegorz; Gumprecht, Janusz; Kretowski, Adam; Zahorska-Markiewicz, Barbara; Małecki, Maciej T

    2009-11-01

    This paper reviews the structure, function, and pathophysiology of glucagon-like peptide 1 (GLP-1). It describes the physiology and pathophysiology of the incretin axis, of which GLP-1 is a component, as well as the biosynthesis, secretion, activity, and degradation of this intestinal hormone. Effects of GLP-1 on the endocrine function of the pancreas, cardiovascular system, central nervous system, and on water-electrolyte balance have been also presented.

  8. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity.

    PubMed

    Noyan-Ashraf, Mohammad Hossein; Shikatani, Eric Akihiko; Schuiki, Irmgard; Mukovozov, Ilya; Wu, Jun; Li, Ren-Ke; Volchuk, Allen; Robinson, Lisa Annette; Billia, Filio; Drucker, Daniel J; Husain, Mansoor

    2013-01-01

    Cardiac consequences of obesity include inflammation, hypertrophy, and compromised energy metabolism. Glucagon-like peptide-1 is an incretin hormone capable of cytoprotective actions that reduces inflammation and endoplasmic reticulum stress in other tissues. Here we examine the cardiac effects of the glucagon-like peptide-1 analog liraglutide in a model of obesity, independent of changes in body weight. C57Bl6 mice were placed on a 45% high-fat diet (HFD) or a regular chow diet. Mice on HFD developed 46±2% and 60±2% greater body weight relative to regular chow diet-fed mice at 16 and 32 weeks, respectively (both P<0.0001), manifesting impaired glucose tolerance, insulin resistance, and cardiac ceramide accumulation by 16 weeks. One-week treatment with liraglutide (30 µg/kg twice daily) did not reduce body weight, but reversed insulin resistance, cardiac tumor necrosis factor-α expression, nuclear factor kappa B translocation, obesity-induced perturbations in cardiac endothelial nitric oxide synthase, connexin-43, and markers of hypertrophy and fibrosis, in comparison with placebo-treated HFD controls. Liraglutide improved the cardiac endoplasmic reticulum stress response and also improved cardiac function in animals on HFD by an AMP-activated protein kinase-dependent mechanism. Supporting a direct mechanism of action, liraglutide (100 nmol/L) prevented palmitate-induced lipotoxicity in isolated mouse cardiomyocytes and primary human coronary smooth muscle cells and prevented adhesion of human monocytes to tumor necrosis factor-α-activated human endothelial cells in vitro. Weight-neutral treatment with a glucagon-like peptide-1 analog activates several cardioprotective pathways, prevents HFD-induced insulin resistance and inflammation, reduces monocyte vascular adhesion, and improves cardiac function in vivo by activating AMP-activated protein kinase. These data support a role for glucagon-like peptide-1 analogs in limiting the cardiovascular risks of obesity.

  9. [Protective effects of glucagon-like peptide-1 on beta-cells: preclinical and clinical data].

    PubMed

    Consoli, Agostino; Di Biagio, Rosamaria

    2011-12-01

    Dipartimento di Medicina Interna e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio", Chieti Continuing b-cell mass and function loss represents the key mechanism for the pathogenesis and the progression of type 2 diabetes mellitus. Drugs capable of arresting b-cell loss and eventually able to bring b-cell function close to be back to normal would then be a formidable help in type 2 diabetes mellitus treatment. The glucagon-like peptide-1 (GLP-1) receptor agonists exenatide and liraglutide can stimulate in vitro neogenesis and prevent apoptosis in b-cell-like cell lines. Consistently, treatment with GLP-1 receptor agonists ameliorates glucose metabolism, preserves b-cell mass and improves b-cell function in several animal models of diabetes. For instance, in the db/db mice, liraglutide protects the b-cell from oxidative stress and endoplasmic reticulum stress-related damage. Data in humans, in vivo, are less definitive and often based on scarcely reliable indexes of b-cell function. However, short-term treatment (14 weeks) with liraglutide increased b-cell maximal response capacity in a dose-response fashion. A longer (1 year) exenatide treatment also was able to increase b-cell maximal response capacity, but the effect was no longer there after a 4-week washout period. However, a marginal, although significant as compared to glargine treatment, improvement in another b-cell function index (disposition index) was observed after a 4-week washout period following 3-year exenatide treatment. Finally, although no clinical trials with a long enough follow-up period are presently available, durable glucose control has been obtained during 2 years of liraglutide treatment in monotherapy. Since the durability of good control is strictly dependent upon a lack of further b-cell function deterioration, these clinical data may foster hope that GLP-1 receptor antagonist treatment might help preserving b-cell function also in individuals affected by type 2

  10. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  11. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats

    PubMed Central

    DellaValle, Brian; Brix, Gitte S.; Brock, Birgitte; Gejl, Michael; Landau, Anne M.; Møller, Arne; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1

  12. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  13. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats.

    PubMed

    Yu, Ming; Moreno, Carol; Hoagland, Kimberly M; Dahly, Annette; Ditter, Katie; Mistry, Mahesh; Roman, Richard J

    2003-06-01

    Dahl salt-sensitive (Dahl S) rats exhibit many phenotypic traits associated with salt-sensitive hypertension in man. Specifically, they are salt-sensitive, insulin-resistant and hyperlipidemic. They also develop endothelial dysfunction, cardiac injury and glomerulosclerosis. Insulin resistance is linked to hypertension, renal and cardiac damage and endothelial dysfunction. Thus, an agent that has diuretic action and can improve insulin resistance, like recombinant glucagon-like peptide-1(7-36)amide (rGLP-1), may have an antihypertensive effect. To determine whether chronic administration of rGLP-1 attenuates the development of hypertension, endothelial dysfunction and/or hypertension-induced renal and cardiac end organ damage in Dahl S rats. Mean arterial pressure (MAP) and urinary excretion of protein and albumin were measured in Dahl S rats before and after they were fed a 8% NaCl diet and infused with rGLP-1 (1 micro g/kg per min, i.v.) or vehicle for 14 days. At the end of the study, the degree of renal and cardiac injury was histologically assessed and endothelium-dependent relaxing function was studied using aortic rings. In other rats, the effects of rGLP-1 on sodium and water balance and plasma glucose and insulin levels for the first 3 days following a step change in sodium intake from a 0.1% NaCl diet to 7.5 mEq/day were determined. rGLP-1 significantly attenuated the development of hypertension in Dahl S rats (136 +/- 7 versus 174 +/- 6 mmHg). This was associated with reduction in proteinuria (46 +/- 7 versus 128 +/- 15 mg/day) and albuminuria (46 +/- 7 versus 86 +/- 18 mg/day) and improvement of endothelial function and renal and cardiac damage. rGLP-1 markedly increased urine flow and sodium excretion for the first 3 days following elevation in sodium intake. It had no significant effects on plasma glucose and insulin concentrations. rGLP-1 has antihypertensive and cardiac and renoprotective effects in Dahl S rats fed a high salt diet. The

  14. Blockade of Glucagon-like Peptide 1 Receptor Corrects Post-prandial Hypoglycemia After Gastric Bypass

    PubMed Central

    Salehi, Marzieh; Gastaldelli, Amalia; D'Alessio, David A.

    2014-01-01

    Background & Aims Post-prandial glycemia excursions increase after gastric bypass surgery; this effect is even greater among individuals with recurrent hypoglycemia (blood glucose levels <50 mg/dL). These patients also have increased post-prandial levels of insulin and glucagon-like peptide 1 (GLP1). We performed a clinical trial to determine the role of GLP1 in post-prandial glycemia in patients with hyperinsulinemic hypoglycemia syndrome after gastric bypass. Methods Nine patients with recurrent hypoglycemia after gastric bypass (H-GB), 7 asymptomatic individuals with previous gastric bypass (A-GB), and 8 non-diabetic subjects who did not receive surgery (controls) were studied with a mixed-meal tolerance test (350 kcal) using a dual glucose tracer method on 2 days. On 1 day they received continuous infusion of GLP-1 receptor (GLP1R) antagonist, exendin-(9–39) (Ex-9), and on the other day, a saline control. Glucose kinetics and islet and gut hormone responses were measured before and after the meal. Results Infusion of Ex9 corrected hypoglycemia in all H-GB individuals. The reduction of post-prandial insulin secretion by Ex9 was greater in the H-GB group than other groups (H-GB, 50%±8%; A-GB, 13%±10%; and controls, 14%±10%) (P<.05). Meal-derived glucose (RaOral) was significantly greater among subjects who had undergone gastric bypass than controls, and in H-GB patients compared with A-GB subjects. Ex9 shortened the time to peak RaOral in all groups without any significant effect on the overall glucose flux. Post-prandial glucagon levels were higher among patients who had undergone gastric bypass than controls, and increased with Ex9 administration. Conclusions Hypoglycemia following gastric bypass can be corrected by administration of a GLP1R antagonist, which might be used to treat this disorder. These findings are consistent with reports that increased GLP1 activity contributes to hypoglycemia following gastric bypass. ClinicalTrials.gov number, NCT

  15. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis

    PubMed Central

    Armstrong, Matthew J.; Hull, Diana; Guo, Kathy; Barton, Darren; Hazlehurst, Jonathan M.; Gathercole, Laura L.; Nasiri, Maryam; Yu, Jinglei; Gough, Stephen C.; Newsome, Philip N.; Tomlinson, Jeremy W.

    2016-01-01

    Background & Aims Insulin resistance and lipotoxicity are pathognomonic in non-alcoholic steatohepatitis (NASH). Glucagon-like peptide-1 (GLP-1) analogues are licensed for type 2 diabetes, but no prospective experimental data exists in NASH. This study determined the effect of a long-acting GLP-1 analogue, liraglutide, on organ-specific insulin sensitivity, hepatic lipid handling and adipose dysfunction in biopsy-proven NASH. Methods Fourteen patients were randomised to 1.8 mg liraglutide or placebo for 12-weeks of the mechanistic component of a double-blind, randomised, placebo-controlled trial (ClinicalTrials.gov-NCT01237119). Patients underwent paired hyperinsulinaemic euglycaemic clamps, stable isotope tracers, adipose microdialysis and serum adipocytokine/metabolic profiling. In vitro isotope experiments on lipid flux were performed on primary human hepatocytes. Results Liraglutide reduced BMI (−1.9 vs. +0.04 kg/m2; p <0.001), HbA1c (−0.3 vs. +0.3%; p <0.01), cholesterol-LDL (−0.7 vs. +0.05 mmol/L; p <0.01), ALT (−54 vs. −4.0 IU/L; p <0.01) and serum leptin, adiponectin, and CCL-2 (all p <0.05). Liraglutide increased hepatic insulin sensitivity (−9.36 vs. −2.54% suppression of hepatic endogenous glucose production with low-dose insulin; p <0.05). Liraglutide increased adipose tissue insulin sensitivity enhancing the ability of insulin to suppress lipolysis both globally (−24.9 vs. +54.8 pmol/L insulin required to ½ maximally suppress serum non-esterified fatty acids; p <0.05), and specifically within subcutaneous adipose tissue (p <0.05). In addition, liraglutide decreased hepatic de novo lipogenesis in vivo (−1.26 vs. +1.30%; p <0.05); a finding endorsed by the effect of GLP-1 receptor agonist on primary human hepatocytes (24.6% decrease in lipogenesis vs. untreated controls; p <0.01). Conclusions Liraglutide reduces metabolic dysfunction, insulin resistance and lipotoxicity in the key metabolic organs in the pathogenesis of

  16. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier.

    PubMed

    Kastin, Abba J; Akerstrom, Victoria; Pan, Weihong

    2002-01-01

    Glucagon-like peptide-1 (GLP-1) reduces insulin requirement in diabetes mellitus and promotes satiety. GLP-1 in the periphery (outside the CNS) has been shown to act on the brain to reduce food ingestion. As GLP-1 is readily degraded in blood, we focused on the interactions of [Ser8]GLP-1, an analog with similar biological effects and greater stability, with the blood-brain barrier (BBB). The influx of radiolabeled [Ser8]GLP-1 into brain has several distinctive characteristics: 1. A rapid influx rate of 8.867 +/- 0.798 x 10(4) mL/g-min as measured by multiple-time regression analysis after iv injection in mice. 2. Lack of self-inhibition by excess doses of the unlabeled [Ser8]GLP-1 either iv or by in situ brain perfusion, indicating the absence of a saturable transport system at the BBB. 3. Lack of modulation by short-term fasting and some other ingestive peptides that may interact with GLP-1, including leptin, glucagon, insulin, neuropeptide Y, and melanin-concentrating hormone. 4. No inhibition of influx by the selective GLP-1 receptor antagonist exendin(9-39), suggesting that the GLP-1 receptor is not involved in the rapid entry into brain. Similarly, there was no efflux system for [Ser8]GLP-1 to exit the brain other than following the reabsorption of cerebrospinal fluid (CSF). The fast influx was not associated with high lipid solubility. Upon reaching the brain compartment, substantial amounts of [Ser8]GLP-1 entered the brain parenchyma, but a large proportion was loosely associated with the vasculature at the BBB. Finally, the influx rate of [Ser8]GLP-1 was compared with that of GLP-1 in a blood-free brain perfusion system; radiolabeled GLP-1 had a more rapid influx than its analog and neither peptide showed the self-inhibition indicative of a saturable transport system. Therefore, we conclude that [Ser8]GLP-1 and the endogenous peptide GLP-1 can gain access to the brain from the periphery by simple diffusion and thus contribute to the regulation of feeding.

  17. Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system.

    PubMed

    Vergès, B; Bonnard, C; Renard, E

    2011-12-01

    Glucagon-like peptide-1 (GLP-1) belongs to the incretin hormone family: in the presence of elevated blood glucose, it stimulates insulin secretion and inhibits glucagon production. In addition, GLP-1 slows gastric emptying. GLP-1 secretion has also been reported to potentially affect patients with type 2 diabetes (T2DM) compared with non-diabetics and, as enzymatic inactivation by dipeptidyl peptidase-4 (DPP-4) shortens the GLP-1 half-life to a few minutes, GLP-1 receptor agonists such as exenatide twice daily (BID) and liraglutide have been developed, and have become part of the management of patients with T2DM. This review focuses on the potential beneficial effects of these compounds beyond those associated with improvements in blood glucose control and weight loss, including changes in the cardiovascular and central nervous systems. This was a state-of-the-art review of the literature to evaluate the relationships between GLP-1, GLP-1 receptor agonists, weight and the cardiovascular system. GLP-1 receptor agonists improve glucose control and do not significantly increase the risk of hypoglycaemia. Also, this new class of antidiabetic drugs was shown to favour weight loss. Mechanisms may involve central action, direct action by reduction of food intake and probably indirect action through slowing of gastric emptying. The relative importance of each activity remains unclear. Weight loss may improve cardiovascular outcomes in patients with T2DM, although GLP-1 receptor agonists may have other direct and indirect effects on the cardiovascular system. Reductions in myocardial infarct size and improvements in cardiac function have been seen in animal models. Beneficial changes in cardiac function were also demonstrated in patients with myocardial infarcts or heart failure. Indirect effects could involve a reduction in blood pressure and potential effects on oxidation. However, the mechanisms involved in the pleiotropic effects of GLP-1 receptor agonists have yet to

  18. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans.

    PubMed

    Flint, A; Raben, A; Rehfeld, J F; Holst, J J; Astrup, A

    2000-03-01

    To investigate the effects of a near-physiological peripheral glucagon-like peptide-1 (GLP-1) infusion, during and after a breakfast of fixed energy content, on resting energy expenditure, substrate oxidation and metabolism and the desire to eat specific types of food in humans. A placebo-controlled, randomized, blinded, cross-over study. Infusion (GLP-1, 50 pmol/kg x h or saline) was started simultaneously with initiation of the test meals. 20 healthy, normal weight (body mass index 20.3-25.7 kg/m2) men of 20-31 y of age. Energy expenditure and substrate oxidations were measured before and for 4 h after standard breakfast (20% of calculated daily energy requirements, 50% of energy from carbohydrates, 37% of energy from fat and 13% of energy from protein) using a ventilated hood system. Visual analogue scales were used throughout the experiment to assess the desire to eat specific types of food and the palatability of the test meals. Blood was sampled throughout the day for analysis of plasma hormone and substrate concentrations. Diet-induced thermogenesis (DIT) was lower (47%) on the GLP-1 infusion than on the saline infusion (P < 0.0001). This was due to a lower carbohydrate oxidation (P < 0.01). No differences in fat oxidation or total 4 h protein oxidation were observed. All hormone and substrate profiles except non-esterified fatty acids (NEFA) and cholecystokinin (CCK) were significantly suppressed (GLP-2 completely suppressed) during the GLP-1 infusion, whereas profiles of NEFA and CCK differed in time course during the two treatments (treatment x time effect), P < 0.0001). GLP-1 infusion also suppressed the desire to eat all food types following the breakfast (treatment effect: P < 0.05). Peripheral GLP-1 decreased DIT and carbohydrate oxidation, probably secondary to a delayed absorption of nutrients, since substrate and hormone concentrations in plasma were suppressed during GLP-1 infusion. Endogenous secretion of GLP-1 and GLP-2 was completely suppressed

  19. Metabolomic profiling reveals differential effects of glucagon-like peptide-1 and insulin on nutrient partitioning in ovine liver.

    PubMed

    El-Sabagh, Mabrouk; Taniguchi, Dai; Sugino, Toshihisa; Obitsu, Taketo

    2016-12-01

    This study was conducted to identify the insulin-independent actions of glucagon-like peptide-1 (GLP-1 (7-36 amide)) in partitioning nutrient metabolism in ovine liver. Four Suffolk wethers (60.0 ± 6.7 kg body weight (BW)) were used in a repeated-measure design under euglycemic--hyperinsulinemic and hyper -GLP-1 clamps for 150 min with intravenous infusion of insulin (0.5 mU/kg BW/min; from 0 to 90 min), GLP-1 (0.5 µg/kg BW/min; from 60 to 150 min) and both hormones co-administered from 60 to 90 min. Liver biopsies were collected at 0, 60, 90 and 150 min to represent the metabolomic profiling of baseline, insulin, insulin plus GLP-1, and GLP-1, respectively, and were analyzed for metabolites using Capillary Electrophoresis Time-of-Flight Mass Spectrometer. Metabolomics analysis reveals 51 metabolites as being significantly altered (P < 0.05) by insulin and GLP-1 infusion compared to baseline values. Insulin infusion enhanced glycolysis, lipogenesis, oxidative stress defense and cell proliferation pathways, but reduced protein breakdown, gluconeogenesis and ketogenesis pathways. Conversely, GLP-1 infusion promoted lipolytic and ketogenic pathways accompanied by a lowered lipid clearance from the liver as well as elevated oxidative stress defense and nucleotide degradation. Despite further research still being warranted, our data suggest that GLP-1 may exert insulin-antagonistic effects on hepatic lipid and nucleotide metabolism in ruminants.

  20. Mosapride citrate increases postprandial glucagon-like peptide-1, insulin, and gene expression of sweet taste receptors.

    PubMed

    Maruoka, Daisuke; Arai, Makoto; Tanaka, Takeshi; Okimoto, Kenichiro; Oyamada, Arata; Minemura, Shoko; Tsuboi, Masaru; Matsumura, Tomoaki; Nakagawa, Tomoo; Kanda, Tatsuo; Katsuno, Tatsuro; Imazeki, Fumio; Yokosuka, Osamu

    2015-02-01

    Mosapride citrate-a prokinetic agent-improves hemoglobin A1c levels in diabetic patients; however, the underlying mechanism is unclear. We aimed to clarify this mechanism. Preprandial and postprandial (90 min after a meal) blood was obtained from 12 healthy men, and serum insulin and plasma active glucagon-like peptide-1 concentrations were measured. Measurements were also taken after the administration of 5 mg of mosapride citrate three times per day after every meal for 14 days. In addition, C57BL/6 mice were permitted free access to water containing 0.04 % domperidone (D group) or 0.02 % mosapride citrate (M group) for 2 weeks (four mice per group). T1r2 (taste receptor, type 1, member 2), T1r3, and Gnat3 (guanine nucleotide-binding protein, alpha transducing 3) mRNA expression levels of the stomach, duodenum, and proximal and mid-jejunum were evaluated. In human subjects, postprandial plasma active glucagon-like peptide-1 and serum insulin concentrations after administration of mosapride citrate were significantly higher than those pre-administration (4.8 ± 2.2 pmol/L, 45.6 ± 41.6 μIU/mL, and 3.7 ± 1.2 pmol/L, 34.1 ± 28.4 μIU/mL, respectively). The mouse expression levels of T1r2 and Gnat3 in the proximal jejunum and mid-jejunum in the M group (4.1 ± 1.8-fold, 3.1 ± 1.6-fold, and 4.6 ± 0.8-fold, 3.1 ± 0.9-fold increases, respectively), were significantly higher than those of the control group. The administration of mosapride citrate for 2 weeks enhanced postprandial plasma active glucagon-like peptide-1 and serum insulin concentration and increased the expression of sweet taste receptors in the upper intestine.

  1. Glucagon like peptide-1 and its receptor agonists: Their roles in management of Type 2 diabetes mellitus.

    PubMed

    Gupta, Ankit; Jelinek, Herbert F; Al-Aubaidy, Hayder

    This study summarizes major work which investigated the roles of glucagon like peptide-1 (GLP-1) and its receptor (GLP-1R); the use of GLP-1-R agonists and dipeptidyl peptidase 4 inhibitor in the management of type 2 diabetes mellitus. It focuses on the recent therapeutic development which has occurred in this field, and also discusses the potential treatments which can be discovered and implemented in the near future to design an effective therapy for type 2 diabetes mellitus. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  2. The development of non-peptide glucagon-like peptide-1 receptor agonist for the treatment of type 2 diabetes.

    PubMed

    Moon, Ho-Sang; Kim, Mi-Kyung; Son, Moon-Ho

    2011-07-01

    Glucagon-like peptide-1 (GLP-1) is the main member of the incretin family and stimulates insulin secretion by binding with its specific receptor on pancreatic β-cells. In addition, GLP-1 exerts broad beneficial effects on the glucose regulation by suppressing food intake and delaying stomach emptying. Now, long acting GLP-1 analogs including exenatide and liraglutide have been approved for the treatment of diabetes mellitus type 2, however long-term injection can limit their use for these chronic patients. In this report, the authors provide a review on the development of non-peptide GLP-1 receptor agonists and introduce a novel agonist DA-15864.

  3. Apelin stimulates both cholecystokinin and glucagon-like peptide 1 secretions in vitro and in vivo in rodents.

    PubMed

    Wattez, Jean-Sébastien; Ravallec, Rozenn; Cudennec, Benoit; Knauf, Claude; Dhulster, Pascal; Valet, Philippe; Breton, Christophe; Vieau, Didier; Lesage, Jean

    2013-10-01

    Apelin is an enteric peptide that exerts several digestive functions such as stimulation of cell proliferation and cholecystokinin (CCK) secretion. We investigated using murine enteroendocrine cell line (STC-1) and rats if apelin-13 stimulates both CCK and glucagon-like peptide 1 (GLP-1) secretions. We demonstrated that, in vitro and in vivo, apelin-13 increases the release of these two hormones in a dose-dependent manner. Present data suggest that apelin may modulate digestive functions, food intake behavior and glucose homoeostasis via apelin-induced release of enteric CCK but also through a new incretin-releasing activity on enteric GLP-1.

  4. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation.

    PubMed

    Wang, Xing-Chun; Gusdon, Aaron M; Liu, Huan; Qu, Shen

    2014-10-28

    Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials.

  5. Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion

    PubMed Central

    Brown, Rebecca J.; Walter, Mary; Rother, Kristina I.

    2009-01-01

    OBJECTIVE The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. RESEARCH DESIGN AND METHODS For this study, 22 healthy volunteers (mean age 18.5 ± 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. RESULTS Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 ± 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 ± 9.0 pmol/l per 180 min; P = 0.003). CONCLUSIONS Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener. PMID:19808921

  6. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion.

    PubMed

    Brown, Rebecca J; Walter, Mary; Rother, Kristina I

    2009-12-01

    The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. For this study, 22 healthy volunteers (mean age 18.5 +/- 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 +/- 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 +/- 9.0 pmol/l per 180 min; P = 0.003). Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener.

  7. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies.

    PubMed

    Yu, Yunli; Liu, Li; Wang, Xinting; Liu, Xiang; Liu, Xiaodong; Xie, Lin; Wang, Guangji

    2010-04-01

    Glucagon-like peptide (GLP)-1 is a potent glucose-dependent insulinotropic gut hormone released from intestinal L cells. Our previous studies showed that berberine increased GLP-1 secretion in streptozotocin-induced diabetic rats. The aim of this study was to investigate whether berberine affected GLP-1 release in normal rats and in NCI-H716 cells. Proglucagon and prohormone convertase 3 genes regulating GLP-1 biosynthesis were analyzed by RT-PCR. Effects of pharmacological inhibitors on berberine-mediated GLP-1 release were studied. In vivo, 5-week treatment of berberine enhanced GLP-1 secretion induced by glucose load and promoted proglucagon mRNA expression as well as L cell proliferation in intestine. In vitro, berberine concentration-dependently stimulated GLP-1 release in NCI-H716 cells. Berberine also promoted both prohormone convertase 3 and proglucagon mRNA expression. Chelerythrine (inhibitor of PKC) concentration-dependently suppressed berberine-mediated GLP-1 secretion. Compound C (inhibitor of AMPK) also inhibited berberine-mediated GLP-1 secretion. But only low concentrations of H89 (inhibitor of PKA) showed inhibitory effects on berberine-mediated GLP-1 release. The present results demonstrated that berberine showed its modulation on GLP-1 via promoting GLP-1 secretion and GLP-1 biosynthesis. Some signal pathways including PKC-dependent pathway were involved in this process. Elucidation of mechanisms controlling berberine-mediated GLP-1 secretion may facilitate the understanding of berberine's antidiabetic effects.

  8. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes.

  9. TREATMENT OF DIABETES MELLITUS IN A GOLDEN LION TAMARIN (LEONTOPITHECUS ROSALIA) WITH THE GLUCAGON-LIKE PEPTIDE-1 MIMETIC EXENATIDE.

    PubMed

    Johnson, James G; Langan, Jennifer N; Gilor, Chen

    2016-09-01

    An 8-yr-old male golden lion tamarin ( Leontopithecus rosalia ) was diagnosed with diabetes mellitus based on hyperglycemia and persistent glycosuria. Initial treatment consisted of the oral antihyperglycemic medications glipizide and metformin that resulted in decreased blood glucose concentrations; however, marked glycosuria persisted. Insufficient improvement on oral antihyperglycemic therapy and poor feasibility of daily subcutaneous insulin therapy led to an investigation into an alternative therapy with extended-release exenatide, a glucagon-like peptide-1 (GLP-1) mimetic, at a dosage of 0.13 mg/kg subcutaneously once per month. Following treatment with exenatide, the persistent glycosuria resolved, the animal maintained normal blood glucose concentrations, and had lower serum fructosamine concentrations compared to pretreatment levels. Based on these findings, extended-release exenatide could be considered as a therapeutic option in nonhuman primates with diabetes mellitus that do not respond to oral antihyperglycemics and in which daily subcutaneous insulin is not feasible.

  10. Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes? Evidence Based on Experimental and Clinical Studies

    PubMed Central

    Petersen, Karen Ekkelund; Rakipovski, Günaj; Raun, Kirsten; Lykkesfeldt, Jens

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) has shown to influence the oxidative stress status in a number of in vitro, in vivo and clinical studies. Well-known effects of GLP-1 including better glycemic control, decreased food intake, increased insulin release and increased insulin sensitivity may indirectly contribute to this phenomenon, but glucose-independent effects on ROS level, production and antioxidant capacity have been suggested to also play a role. The potential ‘antioxidant’ activity of GLP-1 along with other proposed glucose-independent modes of action related to ameliorating redox imbalance remains a controversial topic but could hold a therapeutic potential against micro- and macrovascular diabetic complications. This review discusses the presently available knowledge from experimental and clinical studies on the effects of GLP-1 on oxidative stress in diabetes and diabetes-related complications. PMID:26381142

  11. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like Peptide 1 receptor deficiency.

    PubMed

    Wilson-Pérez, Hilary E; Chambers, Adam P; Ryan, Karen K; Li, Bailing; Sandoval, Darleen A; Stoffers, Doris; Drucker, Daniel J; Pérez-Tilve, Diego; Seeley, Randy J

    2013-07-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor-deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery.

  12. Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency

    PubMed Central

    Wilson-Pérez, Hilary E.; Chambers, Adam P.; Ryan, Karen K.; Li, Bailing; Sandoval, Darleen A.; Stoffers, Doris; Drucker, Daniel J.; Pérez-Tilve, Diego; Seeley, Randy J.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptor–deficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery. PMID:23434938

  13. [Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk factors and the cardiovascular system].

    PubMed

    Fiorentino, Teresa Vanessa; Sesti, Giorgio

    2016-12-01

    The results of the cardiovascular outcome trials comparing the SGLT2 inhibitor empagliflozin and the glucagon-like peptide-1 receptor agonist liraglutide to placebo have been recently published. Interestingly, empagliflozin and liraglutide treatments significantly reduce cardiovascular events in subjects with type 2 diabetes. The mechanisms underlying the observed cardioprotective effects of empagliflozin and liraglutide are speculative and future studies are needed to better understand these results. However, since reduction in the primary outcome was evident 3 months after starting empagliflozin and 24 months after starting liraglutide, it is tempting to hypothesize that the cardiovascular benefits observed in diabetic patients treated with empagliflozin are due to its hemodynamic effects and to metabolic substrate shift induced by the mild and persistent hyperketonemia, while the positive effects of liraglutide treatment may be attributable to biologic changes of atherosclerotic lesions.

  14. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity.

    PubMed

    Linnemann, Amelia K; Davis, Dawn Belt

    2016-04-01

    Precise control of blood glucose is dependent on adequate β-cell mass and function. Thus, reductions in β-cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon-like peptide-1 regulates β-cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β-cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.

  15. Orally administered glucagon-like peptide-1 affects glucose homeostasis following an oral glucose tolerance test in healthy male subjects.

    PubMed

    Steinert, R E; Poller, B; Castelli, M C; Friedman, K; Huber, A R; Drewe, J; Beglinger, C

    2009-12-01

    Glucagon-like peptide-1 (GLP-1) exerts several effects on glucose homeostasis and reduces food intake. After its release from intestinal L cells, GLP-1 is subject to (i) rapid breakdown by dipeptidyl peptidase IV and (ii) high liver extraction. The highest concentrations of GLP-1 are found in the splanchnic blood rather than in the systemic circulation. An oral delivery system would mimic endogenous secretion. Here we investigated the pharmacokinetic/pharmacodynamic (PK/PD) effects of a single dose (2 mg) of oral GLP-1 administered prior to an oral glucose tolerance test (OGTT) in 16 healthy males. GLP-1 was rapidly absorbed from the gut, leading to tenfold higher plasma concentrations compared with controls. The PD profile was consistent with reported pharmacology; GLP-1 significantly stimulated basal insulin release (P < 0.027), with marked effects on glucose levels. The postprandial glucose peak was delayed with GLP-1, suggesting an effect on gastric emptying.

  16. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1)

    PubMed Central

    Rafferty, Eamon P.; Wylie, Alastair R.; Elliott, Chris T.; Chevallier, Olivier P.; Grieve, David J.; Green, Brian D.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66–386%; P<0.05–0.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  17. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  18. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    PubMed Central

    Thompson, Aiysha; Stephens, Jeffrey W.; Bain, Stephen C.

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B. PMID:27100083

  19. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling.

    PubMed

    Kim, Mi-Hyun; Jee, Jae-Hwan; Park, Sunyoung; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2014-02-01

    One aspect of the effects of metformin on glucagon-like peptide (GLP)-1 might be associated with the mechanism by which the cross talk between insulin and Wnt signaling enhances GLP1 secretion, due to the action of metformin as an insulin sensitizer. However, this remains completely unknown. In this study, we have investigated the mechanisms of the action of metformin on cross talk between insulin and Wnt signaling. GLP1 enhancement by meformin was determined in human NCI-H716 intestinal L-cells and hyperglycemic db/db mice treated with metformin (0.25 and 0.5 mM and/or 12.5 mg/kg body weight) for 24 h and 2 months. Metformin increased GLP1 secretion in L-cells and db/db mice. Metformin stimulated the nuclear translocation of β-catenin and TOPflash reporter activity, and gene depletion of β-catenin or enhancement of mutation of transcription factor 7-like 2 binding site offset GLP1. In addition, insulin receptor substrate 2 gene depletion blocked metformin-enhanced β-catenin translocation. These effects were preceded by an increase in glucose utilization and calcium influx, the activation of calcium-dependent protein kinase, and, in turn, the activation of insulin signaling, and the inhibition of glycogen synthase kinase 3β, a potent inhibitor of β-catenin. Furthermore, high blood glucose levels were controlled via GLP1 receptor-dependent insulinotropic pathways in db/db mice, which were evidenced by the increase in GLP1 and insulin levels at 30 min after oral glucose loading and pancreatic insulinotropic gene expression. Our findings indicate that the cooperation between Wnt and its upstream insulin signaling pathways might be a novel and important mechanism underlying the effects of metformin on GLP1 production.

  20. Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice.

    PubMed

    Riedel, Michael J; Lee, Corinna Wai Kwan; Kieffer, Timothy J

    2009-04-01

    Glucagon-like peptide (GLP)-1 is an incretin hormone with well-characterized antidiabetic properties, including glucose-dependent stimulation of insulin secretion and enhancement of beta-cell mass. GLP-1 agonists have recently been developed and are now in clinical use for the treatment of type 2 diabetes. Rapid degradation of GLP-1 by enzymes including dipeptidyl-peptidase (DPP)-IV and neutral endopeptidase (NEP) 24.11, along with renal clearance, contribute to a short biological half-life, necessitating frequent injections to maintain therapeutic efficacy. Gene therapy may represent a promising alternative approach for achieving long-term increases in endogenous release of GLP-1. We have developed a novel strategy for glucose-regulated production of GLP-1 in hepatocytes by expressing a DPP-IV-resistant GLP-1 peptide in hepatocytes under control of the liver-type pyruvate kinase promoter. Adenoviral delivery of this construct to hepatocytes in vitro resulted in production and secretion of bioactive GLP-1 as measured by a luciferase-based bioassay developed to detect the NH2-terminally modified GLP-1 peptide engineered for this study. Transplantation of encapsulated hepatocytes into CD-1 mice resulted in an increase in plasma GLP-1 levels that was accompanied by a significant reduction in fasting plasma glucose levels. The results from this study demonstrate that a gene therapy approach designed to induce GLP-1 production in hepatocytes may represent a novel strategy for long-term secretion of bioactive GLP-1 for the treatment of type 2 diabetes.

  1. Glucagon-Like Peptide 1 Receptor: A Novel Pharmacological Target for Treating Human Bronchial Hyperresponsiveness.

    PubMed

    Rogliani, Paola; Calzetta, Luigino; Capuani, Barbara; Facciolo, Francesco; Cazzola, Mario; Lauro, Davide; Matera, Maria Gabriella

    2016-12-01

    Asthma is associated with several comorbidities, such as type 2 diabetes mellitus, which may lead to bronchial hyperresponsiveness (BHR). Because glucagon-like peptide (GLP) 1 regulates glucose homeostasis, we pharmacologically investigated the influence of the GLP1 receptor (GLP1-R) agonist, exendin-4, on BHR induced in human isolated airways. The effect of exendin-4 was assessed in human isolated airways undergoing overnight passive sensitization and high-glucose stimulation, two conditions mimicking ex vivo the BHR typical of patients with asthma and diabetes, respectively. GLP1-R activation modulated the bronchial contractile tone induced by transmural stimulation (maximum effect -56.7 ± 3.6%; onset of action, 28.2 ± 4.4 min). Exendin-4 prevented BHR induced by both high-glucose stimulation and passive sensitization (-37.8 ± 7.5% and -74.9 ± 3.9%, P < 0.05 versus control, respectively) through selective activation of GLP1-R and in an epithelium-independent manner. The cAMP-dependent protein kinase A inhibitor, KT5720, reduced the protective role of exendin-4 (P > 0.05 versus passively sensitized tissues). The GLP1-R stimulation by overnight incubation with exendin-4 induced the overexpression of adenylyl cyclase isoform V (+48.4 ± 1.3%, P < 0.05 versus passively sensitized tissues) and restored the cAMP levels depleted by this procedure (+330.8 ± 63.3%, P < 0.05 versus passively sensitized tissues). In conclusion, GLP1-R may represent a novel target for treating BHR by activating the cAMP-dependent protein kinase A pathway in human airways, and GLP1-R agonists could be used as a "new" class to treat patients with asthma and patients with type 2 diabetes mellitus with BHR.

  2. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    PubMed

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.

  3. Acute effects of glucagon-like peptide-1, GLP-19-36 amide, and exenatide on mesenteric blood flow, cardiovascular parameters, and biomarkers in healthy volunteers.

    PubMed

    Bremholm, Lasse; Andersen, Ulrik B; Hornum, Mads; Hilsted, Linda; Veedfald, Simon; Hartmann, Bolette; Holst, Jens Juul

    2017-02-01

    Glucagon-like peptide-1 (GLP-1, GLP-17-36amide) and its sister peptide glucagon-like peptide 2 (GLP-2) influence numerous intestinal functions and GLP-2 greatly increases intestinal blood flow. We hypothesized that GLP-1 also stimulates intestinal blood flow and that this would impact on the overall digestive and cardiovascular effects of the hormone. To investigate the influence of GLP-1 receptor agonism on mesenteric and renal blood flow and cardiovascular parameters, we carried out a double-blinded randomized clinical trial. A total of eight healthy volunteers received high physiological subcutaneous injections of GLP-1, GLP-19-36 amide (bioactive metabolite), exenatide (stable GLP-1 agonist), or saline on four separate days. Blood flow in mesenteric, celiac, and renal arteries was measured by Doppler ultrasound. Blood pressure, heart rate, cardiac output, and stroke volume were measured continuously using an integrated system. Plasma was analyzed for glucose, GLP-1 (intact and total), exenatide and Pancreatic polypeptide (PP), and serum for insulin and C-peptide. Neither GLP-1, GLP-19-36 amide, exenatide nor saline elicited any changes in blood flow parameters in the mesenteric or renal arteries. GLP-1 significantly increased heart rate (two-way ANOVA, injection [P = 0.0162], time [P = 0.0038], and injection × time [P = 0.082]; Tukey post hoc GLP-1 vs. saline and GLP-19-36amide [P < 0.011]), and tended to increase cardiac output and decrease stroke volume compared to GLP-19-36 amide and saline. Blood pressures were not affected. As expected, glucose levels fell and insulin secretion increased after infusion of both GLP-1 and exenatide. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    PubMed

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  5. Monotreme glucagon-like peptide-1 in venom and gut: one gene – two very different functions

    PubMed Central

    Tsend-Ayush, Enkhjargal; He, Chuan; Myers, Mark A.; Andrikopoulos, Sof; Wong, Nicole; Sexton, Patrick M.; Wootten, Denise; Forbes, Briony E.; Grutzner, Frank

    2016-01-01

    The importance of Glucagon like peptide 1 (GLP-1) for metabolic control and insulin release sparked the evolution of genes mimicking GLP-1 action in venomous species (e.g. Exendin-4 in Heloderma suspectum (gila monster)). We discovered that platypus and echidna express a single GLP-1 peptide in both intestine and venom. Specific changes in GLP-1 of monotreme mammals result in resistance to DPP-4 cleavage which is also observed in the GLP-1 like Exendin-4 expressed in Heloderma venom. Remarkably we discovered that monotremes evolved an alternative mechanism to degrade GLP-1. We also show that monotreme GLP-1 stimulates insulin release in cultured rodent islets, but surprisingly shows low receptor affinity and bias toward Erk signaling. We propose that these changes in monotreme GLP-1 are the result of conflicting function of this peptide in metabolic control and venom. This evolutionary path is fundamentally different from the generally accepted idea that conflicting functions in a single gene favour duplication and diversification, as is the case for Exendin-4 in gila monster. This provides novel insight into the remarkably different metabolic control mechanism and venom function in monotremes and an unique example of how different selective pressures act upon a single gene in the absence of gene duplication. PMID:27898108

  6. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  7. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. Copyright © 2016 the American Physiological Society.

  8. Preliminary Examination of Glucagon-Like Peptide-1 Levels in Women with Purging Disorder and Bulimia Nervosa

    PubMed Central

    Dossat, Amanda M.; Bodell, Lindsay P.; Williams, Diana L.; Eckel, Lisa A.; Keel, Pamela K.

    2014-01-01

    Objective This study examined pre- and post-prandial glucagon-like peptide 1 (GLP-1) levels in women with bulimia nervosa (BN), purging disorder (PD), and non-eating disorder control women to better understand whether alterations in satiation-related hormones in BN may be linked to binge-eating episodes or other altered ingestive behaviors. Method Participants included women with BN (n = 19), PD (n = 14), or controls (n = 14). Participants provided subjective ratings for hunger and fullness and plasma samples before and after consumption of a standardized test meal. Results As expected, GLP-1 levels increased significantly following test meal consumption; however, participants with BN displayed significantly lower GLP-1 levels compared to PD and control participants both before and after consumption of the test meal. There were no significant differences between PD and control participants in GLP-1 levels, but individuals with PD displayed significantly higher levels of fullness throughout the test meal as compared to both control and BN participants. Discussion Our findings provide preliminary evidence that reduced GLP-1 levels in individuals with BN may be associated with binge-eating episodes. Additionally, increased fullness in individuals with PD does not appear to be accounted for by exaggerated post-prandial GLP-1 release. PMID:24590464

  9. Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model

    PubMed Central

    Richards, Paul; Parker, Helen E; Adriaenssens, Alice E; Hodgson, Joshua M; Cork, Simon C; Trapp, Stefan; Gribble, Fiona M; Reimann, Frank

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with widespread actions on metabolism. Therapies based on GLP-1 are highly effective because they increase glucose-dependent insulin secretion in people with type 2 diabetes, but many reports suggest that GLP-1 has additional beneficial, or in some cases potentially dangerous, actions on other tissues, including the heart, vasculature, exocrine pancreas, liver and central nervous system. Identifying which tissues express the GLP-1 receptor (GLP1R) is critical for the development of GLP-1 based therapies. Our objective was to identify and characterise the targets of GLP-1 in mice, using a method independent of GLP1R antibodies. Using newly-generated glp1r-cre mice crossed with fluorescent reporter strains, we show that major sites of glp1r expression include pancreatic β and δ-cells, vascular smooth muscle, cardiac atrium, gastric antrum/pylorus, enteric neurones and vagal and dorsal root ganglia. In the central nervous sytem, glp1r-fluorescent cells were abundant in the area postrema, arcuate nucleus, paraventricular nucleus and ventromedial hypothalamus. Sporadic glp1r-fluorescent cells were found in pancreatic ducts. No glp1r-fluorescence was observed in ventricular cardiomyocytes. Glp1r-positive enteric and vagal neurons were activated by GLP-1, and may contribute to intestinal and central responses to locally-released GLP-1, such as regulation of intestinal secretomotor activity and appetite. PMID:24296712

  10. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs.

    PubMed

    McKnight, Leslie L; Eyre, Ryan; Gooding, Margaret A; Davenport, Gary M; Shoveller, Anna Kate

    2015-06-16

    There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure.

  12. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  13. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Sørensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  15. New Potential Targets of Glucagon-Like Peptide 1 Receptor Agonists in Pancreatic β-Cells and Hepatocytes

    PubMed Central

    2017-01-01

    It is well known that both insulin resistance and decreased insulin secretory capacity are important factors in the pathogenesis of type 2 diabetes mellitus (T2DM). In addition to genetic factors, obesity and lipotoxicity can increase the risk of T2DM. Glucagon-like peptide 1 (GLP-1) receptor agonists are novel antidiabetic drugs with multiple effects. They can stimulate glucose-dependent insulin secretion, inhibit postprandial glucagon release, delay gastric emptying, and induce pancreatic β-cell proliferation. They can also reduce the weight of patients with T2DM and relieve lipotoxicity at the cellular level. Many intracellular targets of GLP-1 have been found, but more remain to be identified. Elucidating these targets could be a basis for developing new potential drugs. My colleagues and I have investigated new targets of GLP-1, with a particular focus on pancreatic β-cell lines and hepatic cell lines. Herein, I summarize the recent work from my laboratory, with profound gratitude for receiving the prestigious 2016 Namgok Award. PMID:28181428

  16. Glucagon-Like Peptide-1-Mediated Modulation of Inflammatory Pathways in the Diabetic Brain: Relevance to Alzheimer's Disease.

    PubMed

    Qin, LiMei; Chong, Thomas; Rodriguez, Richard; Pugazhenthi, Subbiah

    2016-01-01

    Neuroinflammation has emerged as an important cause of cognitive decline during aging and in Alzheimer's disease (AD). Chronic low-grade inflammation is observed in obesity and diabetes, which are important risk factors for AD. Therefore, we examined the markers of inflammation in the brain hippocampal samples of Zucker diabetic fatty (ZDF) rats. Pathway-specific gene expression profiling revealed significant increases in the expression of oxidative stress and inflammatory genes. Western blot analysis further showed the activation of NF-kB, defective CREB phosphorylation, and decreases in the levels of neuroprotective CREB target proteins, including Bcl-2, BDNF, and BIRC3 in the diabetic rat brain samples, all of which are related to AD pathology. As therapies based on glucagon-like peptide-1 (GLP-1) are effective in controlling blood glucose levels in type 2 diabetic patients, we tested the in vivo actions of GLP-1 in the diabetic brain by a 10-wk treatment of ZDF rats with alogliptin, an inhibitor of dipeptidyl peptidase. Alogliptin increased the circulating levels of GLP-1 by 125% and decreased blood glucose in diabetic rats by 59%. Normalization of defective signaling to CREB in the hippocampal samples of treated diabetic rats resulted in the increased expression of CREB targets. Dual actions of GLP-1 in the pancreatic beta cells and in the brain suggest that incretin therapies may reduce cognitive decline in the aging diabetic patients and also have the potential to be used in treating Alzheimer's patients.

  17. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides.

    PubMed

    Rehfeld, J F

    2011-04-01

    Gastrin and cholecystokinin (CCK) are homologous hormone systems known to regulate gastric acid secretion, gallbladder emptying, and cell growth in the pancreas and stomach. They are, however, also involved in the development and secretory functions of pancreatic islet cells. For instance, foetal and neonatal islets express significant amounts of gastrin, and human as well as porcine islet cells express the gastrin/CCK-B receptor abundantly. Therefore, exogenous gastrin and CCK peptides stimulate insulin and glucagon secretion in man. Accordingly, endogenous hypergastrinaemia is accompanied by islet cell hyperplasia and increased insulin secretion. Conventionally, the effect of gastrointestinal hormones on insulin secretion (the incretin effect) has been defined and quantified in relation to oral versus intravenous glucose loadings. Under these unphysiological conditions, the release of gastrin and CCK and, hence, their effect on insulin secretion are modest in comparison with the effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 (GLP-1). Consequently, the interest of CCK and gastrin in incretin research has for decades been limited. A few years ago, however, it was suggested that gastrin together with epidermal growth factor or later GLP-1 might stimulate beta cell growth and secretion. Recent studies have shown that the combination of gastrin and GLP-1 actually restores normoglycaemia in diabetic mice. Therefore, a short review of the incretin system in a broader functional context that includes gastrin and CCK peptides may be timely.

  18. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.

    PubMed

    Clara, Rosmarie; Langhans, Wolfgang; Mansouri, Abdelhak

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Cellai, Ilaria; Squecco, Roberta; Monici, Monica; Cialdai, Francesca; Luciani, Giorgia; Danza, Giovanna; Di Stefano, Chiara; Francini, Fabio; Peri, Alessandro

    2010-11-01

    Glucagon-like peptide-1 (GLP-1) is an insulinotropic peptide with neurotrophic properties, as assessed in animal cell models. Exendin-4, a GLP-1 analogue, has been recently approved for the treatment of type 2 diabetes mellitus. The aim of this study was to morphologically, structurally, and functionally characterize the differentiating actions of exendin-4 using a human neuronal cell model (i.e., SH-SY5Y cells). We found that exendin-4 increased the number of neurites paralleled by dramatic changes in intracellular actin and tubulin distribution. Electrophysiological analyses showed an increase in cell membrane surface and in stretch-activated-channels sensitivity, an increased conductance of Na(+) channels and amplitude of Ca(++) currents (T- and L-type), typical of a more mature neuronal phenotype. To our knowledge, this is the first demonstration that exendin-4 promotes neuronal differentiation in human cells. Noteworthy, our data support the claimed favorable role of exendin-4 against diabetic neuropathy as well as against different neurodegenerative diseases.

  20. An update in incretin-based therapy: a focus on glucagon-like peptide-1 receptor agonists.

    PubMed

    Edwards, Krystal L; Stapleton, Megan; Weis, Jessica; Irons, Brian K

    2012-10-01

    The glucagon-like peptide-1 receptor agonists, exenatide and liraglutide, offer a unique mechanism in the treatment of type 2 diabetes mellitus (T2DM) as part of the incretin system. Their mechanism of action is to increase insulin secretion, decrease glucagon release, reduce food intake, and slow gastric emptying. They target postprandial blood glucose values and have some effect on fasting levels as well. In addition, they promote weight loss and may help to preserve β-cell function, both major problems in T2DM patients. Changes in hemoglobin A1c are similar to those produced by other T2DM agents, including thiazolidinediones, low-dose metformin, and sulfonylureas, and better than those caused by α-reductase inhibitors and dipeptidyl peptidase-4 inhibitors. These agents have been safely studied in combination with metformin, sulfonylureas, meglitinides, thiazolidinediones, and insulin therapy. Overall, data are limited for head-to-head comparisons, but it appears that liraglutide may have better efficacy and tolerability compared with exenatide; however, more studies are needed. They are overall well tolerated, with the main adverse events being similar to those with metformin (gastrointestinal intolerances that are transient and dose dependent). However, patients must be monitored for pancreatitis as a rare but possible side effect. For T2DM patients willing to use an injectable agent, exenatide and liraglutide offer another therapeutic option to control hyperglycemia with the potential for weight loss and may be combined with other agents safely.

  1. Insulin dose adjustments with add-on glucagon-like peptide-1 receptor (GLP-1R) agonists in clinical practice.

    PubMed

    Artigas, Carla Francés; Stokes, Victoria; Tan, Garry D; Theodorakis, Michael J

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are gaining ground as therapeutic modalities in combination with insulin in patients with type 2 diabetes mellitus. Exploiting the multiple benefits of incretin-based therapies in certain patient populations, especially in those who would benefit most from potential weight loss or prevention of body weight gain, has provided a valuable add-on option in diabetes management. However, caution needs to be exercised when initiating such a double injectable therapy, as evidence indicates that, in most instances, the insulin dose needs to be re-adjusted. The majority of published studies suggest reduction of insulin dose, especially related to the 'bolus' component; however, some have also recommended that insulin dose should actually be increased, but we found no credible evidence to support the latter. An important determinant of the titration process is the insulin formulation already in use at baseline. As more potent and long-acting GLP-1RAs are introduced, optimal insulin dose scaling is a major challenge, especially in a primary setting. We provide an overview of the current knowledge in this rapidly changing field. Based on currently reported evidence, a reduction of basal insulin by 10% and a decrease of prandial insulin by 30 - 40% is recommended on addition of GLP-1RAs.

  2. Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).

    PubMed

    Yang, Dehua; de Graaf, Chris; Yang, Linlin; Song, Gaojie; Dai, Antao; Cai, Xiaoqing; Feng, Yang; Reedtz-Runge, Steffen; Hanson, Michael A; Yang, Huaiyu; Jiang, Hualiang; Stevens, Raymond C; Wang, Ming-Wei

    2016-06-17

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to the secretin-like (class B) family of G protein-coupled receptors. Members of the class B family are distinguished by their large extracellular domain, which works cooperatively with the canonical seven-transmembrane (7TM) helical domain to signal in response to binding of various peptide hormones. We have combined structure-based site-specific mutational studies with molecular dynamics simulations of a full-length model of GLP-1R bound to multiple peptide ligand variants. Despite the high sequence similarity between GLP-1R and its closest structural homologue, the glucagon receptor (GCGR), nearly half of the 62 stably expressed mutants affected GLP-1R in a different manner than the corresponding mutants in GCGR. The molecular dynamics simulations of wild-type and mutant GLP-1R·ligand complexes provided molecular insights into GLP-1R-specific recognition mechanisms for the N terminus of GLP-1 by residues in the 7TM pocket and explained how glucagon-mimicking GLP-1 mutants restored binding affinity for (GCGR-mimicking) GLP-1R mutants. Structural analysis of the simulations suggested that peptide ligand binding mode variations in the 7TM binding pocket are facilitated by movement of the extracellular domain relative to the 7TM bundle. These differences in binding modes may account for the pharmacological differences between GLP-1 peptide variants.

  3. Integrative function of adrenaline receptors for glucagon-like peptide-1 exocytosis in enteroendocrine L cell line GLUTag.

    PubMed

    Harada, Kazuki; Kitaguchi, Tetsuya; Tsuboi, Takashi

    2015-05-15

    Adrenaline reacts with three types of adrenergic receptors, α1, α2 and β-adrenergic receptors (ARs), inducing many physiological events including exocytosis. Although adrenaline has been shown to induce glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells, the precise molecular mechanism by which adrenaline regulates GLP-1 secretion remains unknown. Here we show by live cell imaging that all types of adrenergic receptors are stimulated by adrenaline in enteroendocrine L cell line GLUTag cells and are involved in GLP-1 exocytosis. We performed RT-PCR analysis and found that α1B-, α2A-, α2B-, and β1-ARs were expressed in GLUTag cells. Application of adrenaline induced a significant increase of intracellular Ca(2+) and cAMP concentration ([Ca(2+)]i and [cAMP]i, respectively), and GLP-1 exocytosis in GLUTag cells. Blockade of α1-AR inhibited adrenaline-induced [Ca(2+)]i increase and exocytosis but not [cAMP]i increase, while blockade of β1-AR inhibited adrenaline-induced [cAMP]i increase and exocytosis but not [Ca(2+)]i increase. Furthermore, overexpression of α2A-AR suppressed the adrenaline-induced [cAMP]i increase and exocytosis. These results suggest that the fine-turning of GLP-1 secretion from enteroendocrine L cells is established by the balance between α1-, α2-, and β-ARs activation.

  4. The influences of juvenile diabetes on memory and hippocampal plasticity in rats: improving effects of glucagon-like peptide-1.

    PubMed

    Iwai, Takashi; Suzuki, Manabu; Kobayashi, Kazuma; Mori, Kazuhiro; Mogi, Yasuyuki; Oka, Jun-Ichiro

    2009-05-01

    Previous studies in children with diabetes found that hyperglycemia induces memory dysfunction. In this study, we investigated memory and synaptic plasticity in streptozotocine (STZ)-induced diabetic rats during the juvenile period. We further investigated the effects of glucagon-like peptide-1 (GLP-1) on the diabetes-induced profiles. STZ (85 mg/kg, i.p.) was administered to 17-day-old Wistar rats to induce type-1 juvenile diabetes mellitus (JDM). In the Y-maze test, JDM rats showed significant impairment of learning and memory, which were improved by GLP-1 (7-36) amide (1 microg/5 microl/rat, i.c.v.). Extracellular recording at Schaffer collateral synapses in the CA1 region of hippocampal slices showed that long-term potentiation and paired-pulse facilitation in JDM rats were similar to age-matched control rats. However, the input-output relation was strengthened, and long-term depression (LTD) and responses of N-methyl d-aspartic acid through NR2B subunits were weakened in the JDM rats. GLP-1 (7-36) amide (100 nM) increased the magnitude of LTD and the responses through NR2B in the JDM rats. These results indicate that the lack of LTD and NR2B responses may contribute to impairment of memory associated with JDM, suggesting the potential usefulness of GLP-1 in the treatment of memory dysfunction in JDM.

  5. Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system.

    PubMed

    Shigemori, Tomohiro; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-09-10

    Glucagon-like peptide-1 (GLP1) is a 30-amino acid peptide hormone activating the GLP1 receptor (GLP1R), a class B G-protein coupled receptor (GPCR), and is considered to be effective for treating diabetes and other metabolic diseases. Phage display is the first innovative technology in order to prepare and screen a large polypeptide library including GLP1R agonists, but this methodology is not as effective in discovering functional peptides such as activators for GPCRs. Here, we report a novel functional screening system for GPCR-acting peptides, which integrates a yeast peptide secretion system into a biological detection system with GPCR-producing mammalian cells. Using this screening system, we found attractive GLP1R agonists with several substitutions from a random mutant GLP1 library which was secreted by yeast, Saccharomyces cerevisiae. This system established here not only enables peptides to be analyzed in the soluble form but also needs no chemical synthesis, purification, and condensation of peptides of interests, and therefore, can be widely applied to the discovery of novel bioactive peptides acting on GPCRs.

  6. Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists.

    PubMed

    Finan, Brian; Clemmensen, Christoffer; Müller, Timo D

    2015-12-15

    Obesity is a pathogenic gateway to the metabolic syndrome and the complications thereof, thus interventions aimed at preventing or reversing the metabolic derangements underlying obesity hold great therapeutic promise. However, the complexity of energy balance regulation, combined with the heterologous pathophysiology of human obesity, renders effective medicinal intervention very difficult. Indeed, the search for the silver bullet in anti-obesity medicines has been laden with drugs of underwhelming efficacy and unacceptable side effects. This can partly be the consequence that many of these drug interventions have been historically directed at single molecular targets. New multi-molecular combination therapies have shown promising clinical outcomes in terms of weight loss, yet multi-functional single molecules may offer even more advantages than adjunctive co-treatments. Single molecules with integrated activities derived from multiple hormones involved in the physiological control of metabolism have emerged as one of the more promising candidates for reversing obesity. The inclusion of glucagon-like peptide-1 (GLP-1) as one of the constituents is a unifying factor amongst the majority of these unimolecular multi-agonists. The scope of this review is to summarize the current preclinical and clinical landscape of GLP-1-based therapies, focusing on combinatorial therapies with a particular emphasis on single molecule compounds displaying multi-agonist properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Glucagon-like Peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation

    PubMed Central

    Xie, Xiao-Yun; Mo, Zhao-Hui; Chen, Ke; He, Hong-Hui; Xie, Yan-Hong

    2011-01-01

    Summary Background Glucagon-like peptide-1(GLP-1), released from enteroendocrine cells of the intestine, exerted cardiovascular protective effect. Circulating endothelial progenitor cells (EPCs) play an important role in maintaining endothelial integrity regulating neovascularization and reendothelialization after endothelial injury. Vascular endothelial growth factor (VEGF) is an important cytokine in the process of EPCs vascular differentiation and proliferation. Material/Methods This study was designed to investigate the association between VEGF changes and the proliferation/differentiation function of EPCs in the presence of GLP-1. Results We demonstrated that GLP-1 markedly enhanced the EPCs proliferation and expression of EC-specific markers, and simultaneously upregulated VEGF secretion in EPCs. Exogenous VEGF augmented EPCs proliferation/differentiation abilities in a dose-dependent manner. However, all of the beneficial effects of GLP-1 were suppressed by anti-VEGFmAb or the KDR-specific tyrosine kinase inhibitor SU1498. Conclusions These findings suggest that GLP-1 improves VEGF generation, which contributed to improvement of EPCs biological function, partly by tyrosine kinase KDR. VEGF is a necessary intermediate, mediating the effects of GLP-1 on EPCs. These changes offer a novel explanation that upregulation EPCs bioactivities may be one of the mechanisms of GLP-1 cardiovascular protective effect. PMID:21278683

  8. Stimulation of glucagon-like peptide-1 secretion downstream of the ligand-gated ion channel TRPA1

    PubMed Central

    Emery, Edward C.; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M.; Bevan, Stuart; Fischer, Michael J. M.; Reimann, Frank; Gribble, Fiona M.

    2015-01-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis, and could be targeted for the treatment of type-2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L-cells producing glucagon-like peptide-1 (GLP-1). By microarray and qPCR analysis we identified trpa1 as an L-cell enriched transcript in the small intestine. Calcium imaging of primary L-cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (AITC, mustard oil), carvacrol and polyunsaturated fatty acids, that were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells; an effect that was abolished in cultures from trpa1−/− mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L-cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes. PMID:25325736

  9. Clinical Application of Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus

    PubMed Central

    Cho, Young Min; Wideman, Rhonda D.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. It also slows gastric emptying, which contributes to decreased postprandial glycemic excursions. In the 1990s, chronic subcutaneous infusion of GLP-1 was found to lower blood glucose levels in patients with type 2 diabetes. However, GLP-1's very short half-life, arising from cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4) and glomerular filtration by the kidneys, presented challenges for clinical use. Hence, DPP-4 inhibitors were developed, as well as several GLP-1 analogs engineered to circumvent DPP-4-mediated breakdown and/or rapid renal elimination. Three categories of GLP-1 analogs, are being developed and/or are in clinical use: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different plasma half-lives, molecular size, and homology to native GLP-1, and consequently different characteristic effects on glucose metabolism. In this article, we review current clinical data derived from each class of GLP-1 analogs, and consider the clinical effects reported for each category in recent head to head comparison studies. Given the relatively brief clinical history of these compounds, we also highlight several important efficacy and safety issues which will require further investigation. PMID:24396690

  10. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  11. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  12. Berberine promotes glucagon-like peptide-1 (7-36) amide secretion in streptozotocin-induced diabetic rats.

    PubMed

    Lu, Shou-Si; Yu, Yun-Li; Zhu, Hao-Jie; Liu, Xiao-Dong; Liu, Li; Liu, Yao-Wu; Wang, Ping; Xie, Lin; Wang, Guang-Ji

    2009-02-01

    Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and beta-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as beta-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

  13. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia.

    PubMed

    Teramoto, Shinichiro; Miyamoto, Nobukazu; Yatomi, Kenji; Tanaka, Yasutaka; Oishi, Hidenori; Arai, Hajime; Hattori, Nobutaka; Urabe, Takao

    2011-08-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia-reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke.

  14. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation.

    PubMed

    Shiraishi, Daisuke; Fujiwara, Yukio; Komohara, Yoshihiro; Mizuta, Hiroshi; Takeya, Motohiro

    2012-08-24

    It is known that glucagon-like peptide-1 (GLP-1) is a hormone secreted postprandially from the L-cells of the small intestine and regulates glucose homeostasis. GLP-1 is now used for the treatment of diabetes because of its beneficial role against insulin resistance. The GLP-1 receptor (GLP-1R) is expressed on many cell types, including macrophages, and GLP-1 suppresses the development of atherosclerosis by inhibiting macrophage function. However, there have so far been few studies that have investigated the significance of GLP-1/GLP-1R signaling in macrophage activation. In the present study, we examined the effect of GLP-1 and exenatide, a GLP-1R agonist, on human monocyte-derived macrophage (HMDM) activation. We found that GLP-1 induced signal transducer and activator of transcription 3 (STAT3) activation. Silencing of GLP-1R suppressed the GLP-1-induced STAT3 activation. In addition, alternatively activated (M2) macrophage-related molecules, such as IL-10, CD163, and CD204 in HMDM, were significantly upregulated by GLP-1. Furthermore, the co-culture of 3T3-L1 adipocytes with GLP-1-treated RAW 264.7 macrophages increased the secretion of adiponectin compared to co-culture of the 3T3-L1 adipocytes with untreated RAW 264.7 macrophages. Our results demonstrate that GLP-1 induces macrophage polarization toward the M2 phenotype, which may contribute to the protective effects of GLP-1 against diabetes and cardiovascular diseases.

  15. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding

    PubMed Central

    Grill, Harvey J.

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons. PMID:24944243

  16. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation.

    PubMed

    Chen, S; An, F-M; Yin, L; Liu, A-R; Yin, D-K; Yao, W-B; Gao, X-D

    2014-01-03

    We have previously demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist ameliorated neurodegenerative changes in rat models of diabetes-related Alzheimer's disease (AD), and protected neurons from glucose toxicity in vitro. Herein, we investigated the effects of GLP-1 receptor mediates on cell toxicity and tau hyperphosphorylation induced by advanced glycation end products (AGEs), which are associated with glucose toxicity, and the molecular mechanism in PC12 cells and the primary hippocampal neurons. Our study demonstrated that the similar protection effects of GLP-1 existed in PC12 cells treated with glucose-bovine serum albumin (BSA) in hyperglycemic conditions or with glycoaldehyde-BSA alone. Additionally, glucose-BSA alone did not induce significant cytotoxicity in PC12 cells, but resulted in tau hyperphosphorylation in primary hippocampal neurons in 24h. And we found that GLP-1 could reduce cell tau phosphorylation induced by high glucose or glucose-BSA. Furthermore, our data in the present study suggested that GLP-1 regulated tau phosphorylation induced by AGEs through a signaling pathway involving glycogen synthase kinase 3β (GSK-3β), similarly to the GSK-3β inhibitor, lithium chloride. Our findings suggest that GLP-1 can protect neurons from diabetes-associated AGE insults in vitro, and provide new evidence for a potential therapeutic value of GLP-1 receptor agonist in the treatment of AD especially diabetes-related AD.

  17. Diuretic and Natriuretic Effects of Dipeptidyl Peptidase-4 Inhibitor Teneligliptin: The Contribution of Glucagon-like Peptide-1.

    PubMed

    Moroi, Masao; Kubota, Tetsuya

    2015-08-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents; however, their mechanisms of action are different. GLP-1R and DPP-4 are also expressed in the renal proximal tubular brush border, where they regulate Na reabsorption. We investigated whether the DPP-4 inhibitor, teneligliptin, has diuretic and natriuretic effects and whether these are associated with the stimulation of the GLP-1R in rats. Oral administration of teneligliptin resulted in a reduction of plasma DPP-4 activity over 6 hours, as well as an induction of diuresis and natriuresis. Although teneligliptin did not change the increase in blood glucose levels by glucose loading, percentage of urine volume and Na/K ratio with teneligliptin to vehicle were augmented by glucose loading. Peak levels of plasma GLP-1 did not change after oral administration of teneligliptin when glucose was not loaded but increased at least 2-fold with glucose loading. Furthermore, the natriuretic effect of teneligliptin was inhibited by the GLP-1R antagonist, exendin9-39, whereas the diuresis was not affected. These results suggest that the mechanism of natriuresis was different from that of diuresis, and the natriuresis is associated with the stimulation of GLP-1R. There may be mechanistic differences in DPP-4 inhibition between diuresis and natriuresis.

  18. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage.

    PubMed

    Knauf, Claude; Cani, Patrice D; Perrin, Christophe; Iglesias, Miguel A; Maury, Jean François; Bernard, Elodie; Benhamed, Fadilha; Grémeaux, Thierry; Drucker, Daniel J; Kahn, C Ronald; Girard, Jean; Tanti, Jean François; Delzenne, Nathalie M; Postic, Catherine; Burcelin, Rémy

    2005-12-01

    Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.

  19. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells.

    PubMed

    Krause, Gabriele Catyana; Lima, Kelly Goulart; Dias, Henrique Bregolin; da Silva, Elisa Feller Gonçalves; Haute, Gabriela Viegas; Basso, Bruno Souza; Gassen, Rodrigo Benedetti; Marczak, Elisa Simon; Nunes, Rafaela Sole Bach; de Oliveira, Jarbas Rodrigues

    2017-08-15

    It has been reported that glucagon-like peptide-1 (GLP-1) agents have been associated with both the increased risk of cancer and inhibition of tumor growth and metastases. The aim of this study is to evaluate the effect of liraglutide on hepatocellular carcinoma cells - HepG2. Cytometry was used to evaluate mechanism related to decreased cell proliferation. Nuclear staining and morphometric analysis were also used to verify the process that was taking place after treatment with liraglutide, and in order to better understand the mechanism, TGF-β1 was performed. HepG2 cells decreased proliferation after liraglutide treatment without altering oxidative stress levels. Liraglutide was able to induce autophagy and senescence through the increase of TGF-β1 which possibly explains the growth decrease. We have demonstrated that liraglutide has an antiproliferative effect in HepG2 cells inducing autophagy and senescence by the increase of TGF-β1. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats.

    PubMed

    Darsalia, Vladimer; Mansouri, Shiva; Ortsäter, Henrik; Olverling, Anna; Nozadze, Nino; Kappe, Camilla; Iverfeldt, Kerstin; Tracy, Linda M; Grankvist, Nina; Sjöholm, Åke; Patrone, Cesare

    2012-05-01

    Diabetes is a strong risk factor for premature and severe stroke. The GLP-1R (glucagon-like peptide-1 receptor) agonist Ex-4 (exendin-4) is a drug for the treatment of T2D (Type 2 diabetes) that may also have neuroprotective effects. The aim of the present study was to determine the efficacy of Ex-4 against stroke in diabetes by using a diabetic animal model, a drug administration paradigm and a dose that mimics a diabetic patient on Ex-4 therapy. Furthermore, we investigated inflammation and neurogenesis as potential cellular mechanisms underlying the Ex-4 efficacy. A total of seven 9-month-old Type 2 diabetic Goto–Kakizaki rats were treated peripherally for 4 weeks with Ex-4 at 0.1, 1 or 5 μg/kg of body weight before inducing stroke by transient middle cerebral artery occlusion and for 2–4 weeks thereafter. The severity of ischaemic damage was measured by evaluation of stroke volume and by stereological counting of neurons in the striatum and cortex. We also quantitatively evaluated stroke-induced inflammation, stem cell proliferation and neurogenesis. We show a profound anti-stroke efficacy of the clinical dose of Ex-4 in diabetic rats, an arrested microglia infiltration and an increase of stroke-induced neural stem cell proliferation and neuroblast formation, while stroke-induced neurogenesis was not affected by Ex-4. The results show a pronounced anti-stroke, neuroprotective and anti-inflammatory effect of peripheral and chronic Ex-4 treatment in middle-aged diabetic animals in a preclinical setting that has the potential to mimic the clinical treatment. Our results should provide strong impetus to further investigate GLP-1R agonists for their neuroprotective action in diabetes, and for their possible use as anti-stroke medication in non-diabetic conditions.

  1. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion.

  2. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms.

    PubMed

    Lotfy, Mohamed; Singh, Jaipaul; Rashed, Hameed; Tariq, Saeed; Zilahi, Erika; Adeghate, Ernest

    2014-11-01

    Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P < 0.05) reduction in body weight gain and blood glucose level. GLP-1 (10(-12)-10(-6) M) induced significant (P < 0.01) dose-dependent increases in insulin release from the pancreas of normal and diabetic rats compared to basal. Diabetes-induced abnormal liver (aspartate aminotransferase and alanine aminotransferase) and kidney (blood urea nitrogen and uric acid) parameters were corrected in GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P < 0.05) elevation in the expression of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P < 0.05) increased the number of insulin-, glutathione reductase- and catalase-immunoreactive islet cells. The results of this study show that GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.

  3. Endogenous glucagon-like peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in rats.

    PubMed

    McKay, Naomi J; Galante, Daniela L; Daniels, Derek

    2014-12-03

    Glucagon-like peptide-1 (GLP-1) is produced in the ileum and the nucleus of the solitary tract. It is well known that GLP-1 controls food intake, but there is a growing literature indicating that GLP-1 also is involved in fluid intake. It is not known, however, if the observed effects are pharmacological or if endogenous GLP-1 and its receptor contribute to physiological fluid intake control. Accordingly, we blocked endogenous GLP-1 by application of a receptor antagonist and measured subsequent drinking. Furthermore, we measured changes in GLP-1-associated gene expression after water intake, and compared the effects of fluid intake to those caused by food intake. Rats injected with the antagonist exendin-9 (Ex-9) drank more fluid in response to either subcutaneous hypertonic saline or water deprivation with partial rehydration than did vehicle-treated rats. Analysis of licking behavior showed that Ex-9 increased fluid intake by increasing the number of licking bursts, without having an effect on the number of licks per burst, suggesting that endogenous GLP-1 suppresses fluid intake by influencing satiety. Subsequent experiments showed that water intake had a selective effect on central GLP-1-related gene expression, unlike food intake, which affected both central and peripheral GLP-1. Although water and food intakes both affected central GLP-1-relevant gene expression, there were notable differences in the timing of the effect. These results show a novel role of the endogenous GLP-1 system in fluid intake, and indicate that elements of the GLP-1 system can be engaged separately by different forms of ingestive behavior.

  4. Glucagon-Like Peptide-1 Receptor Agonists for Type 2 Diabetes:A Clinical Update of Safety and Efficacy

    PubMed Central

    Drab, Scott R.

    2016-01-01

    Abstract: Introduction Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly being used for the treatment of type 2 diabetes mellitus, but consideration of benefits and potential adverse events is required. This review examines the state of glycemic control, weight loss, blood pressure, and tolerability, as well as the current debate about the safety of GLP-1 RAs, including risk of pancreatitis, pancreatic cancer, and thyroid cancer. Methods A MEDLINE search (2010-2015) identified publications that discussed longer-acting GLP-1 RAs. Search terms included GLP-1 receptor agonists, liraglutide, exenatide, lixisenatide, semaglutide, dulaglutide, albiglutide, efficacy, safety, pancreatitis, pancreatic cancer, and thyroid cancer. Abstracts from the American Diabetes Association, European Association for the Study of Diabetes, and American Association of Clinical Endocrinologists from 2010 to 2015 were also searched. Efficacy and safety studies, pooled analyses, and meta-analyses were prioritized. Results Research has confirmed that GLP-1 RAs provide robust glycemic control, weight loss, and blood pressure re-duction. Current studies do not prove increased risk of pancreatitis, pancreatic cancer, or thyroid cancer but more trials are needed since publications that indicate safety or suggest increased risk have methodological flaws that prevent firm conclusions to be drawn about these rare, long-term events. Conclusion GLP-1 RA therapy in the context of individualized, patient-centered care continues to be supported by current literature. GLP-1 RA therapy provides robust glycemic control, blood pressure reduction, and weight loss, but studies are still needed to address concerns about tolerability and safety, including pancreatitis and cancer. PMID:26694823

  5. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed*

    PubMed Central

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  6. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

    PubMed Central

    Salcedo, Isidro; Tweedie, David; Li, Yazhou; Greig, Nigel H

    2012-01-01

    Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders. PMID:22519295

  7. Chronic liraglutide therapy induces an enhanced endogenous glucagon-like peptide-1 secretory response in early type 2 diabetes.

    PubMed

    Kramer, Caroline K; Zinman, Bernard; Choi, Haysook; Connelly, Philip W; Retnakaran, Ravi

    2017-02-09

    Sustained exogenous stimulation of a hormone-specific receptor can affect endogenous hormonal regulation. In this context, little is known about the impact of chronic treatment with glucagon-like peptide-1 (GLP-1) agonists on the endogenous GLP-1 response. We therefore evaluated the impact of chronic liraglutide therapy on endogenous GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) response to an oral glucose challenge. A total of 51 people with type 2 diabetes of 2.6 ± 1.9 years' duration were randomized to daily subcutaneous liraglutide or placebo injection and followed for 48 weeks, with an oral glucose tolerance test (OGTT) every 12 weeks. GLP-1 and GIP responses were assessed according to their respective area under the curve (AUC) from measurements taken at 0, 30, 60, 90 and 120 minutes during each OGTT. There were no differences in AUCGIP between the groups. By contrast, although fasting GLP-1 was unaffected, the liraglutide arm had ~2-fold higher AUCGLP-1 at 12 weeks ( P  < .001), 24 weeks ( P  < .001), 36 weeks ( P  = .03) and 48 weeks ( P  = .03), as compared with placebo. Thus, chronic liraglutide therapy induces a previously unrecognized, robust and durable enhancement of the endogenous GLP-1 response, highlighting the need for further study of the long-term effects of incretin mimetics on L-cell physiology.

  8. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice.

    PubMed

    Valdecantos, M Pilar; Pardo, Virginia; Ruiz, Laura; Castro-Sánchez, Luis; Lanzón, Borja; Fernández-Millán, Elisa; García-Monzón, Carmelo; Arroba, Ana I; González-Rodríguez, Águeda; Escrivá, Fernando; Álvarez, Carmen; Rupérez, Francisco J; Barbas, Coral; Konkar, Anish; Naylor, Jacqui; Hornigold, David; Santos, Ana Dos; Bednarek, Maria; Grimsby, Joseph; Rondinone, Cristina M; Valverde, Ángela M

    2017-03-01

    Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49.

  10. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    PubMed

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists.

  11. Central Nervous System Regulation of Intestinal Lipoprotein Metabolism by Glucagon-Like Peptide-1 via a Brain-Gut Axis.

    PubMed

    Farr, Sarah; Baker, Christopher; Naples, Mark; Taher, Jennifer; Iqbal, Jahangir; Hussain, Mahmood; Adeli, Khosrow

    2015-05-01

    Intestinal overproduction of atherogenic chylomicron particles postprandially is an important component of diabetic dyslipidemia in insulin-resistant states. In addition to enhancing insulin secretion, peripheral glucagon-like peptide-1 (GLP-1) receptor stimulation has the added benefit of reducing this chylomicron overproduction in patients with type 2 diabetes mellitus. Given the presence of central GLP-1 receptors and GLP-1-producing neurons, we assessed whether central GLP-1 exerts an integral layer of neuronal control during the production of these potentially atherogenic particles. Postprandial production of triglyceride-rich lipoproteins was assessed in Syrian hamsters administered a single intracerebroventricular injection of the GLP-1 receptor agonist exendin-4. Intracerebroventricular exendin-4 reduced triglyceride-rich lipoprotein-triglyceride and -apolipoprotein B48 accumulation relative to vehicle-treated controls. This was mirrored by intracerebroventricular MK-0626, an inhibitor of endogenous GLP-1 degradation, and prevented by central exendin9-39, a GLP-1 receptor antagonist. The effects of intracerebroventricular exendin-4 were also lost during peripheral adrenergic receptor and central melanocortin-4 receptor inhibition, achieved using intravenous propranolol and phentolamine and intracerebroventricular HS014, respectively. However, central exendin9-39 did not preclude the effects of peripheral exendin-4 treatment on chylomicron output. Central GLP-1 is a novel regulator of chylomicron production via melanocortin-4 receptors. Our findings point to the relative importance of central accessibility of GLP-1-based therapies and compel further studies examining the status of this brain-gut axis in the development of diabetic dyslipidemia and chylomicron overproduction. © 2015 American Heart Association, Inc.

  12. Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats.

    PubMed

    Hira, Tohru; Ikee, Asuka; Kishimoto, Yuka; Kanahori, Sumiko; Hara, Hiroshi

    2015-07-14

    Glucagon-like peptide-1 (GLP-1), which is produced and released from enteroendocrine L cells, plays pivotal roles in postprandial glycaemia. The ingestion of resistant maltodextrin (RMD), a water-soluble non-digestible saccharide, improves the glycaemic response. In the present study, we examined whether the continuous feeding of RMD to rats affected GLP-1 levels and glycaemic control. Male Sprague-Dawley rats (6 weeks of age) were fed an American Institute of Nutrition (AIN)-93G-based diet containing either cellulose (5 %) as a control, RMD (2.5 or 5 %), or fructo-oligosaccharides (FOS, 2.5 or 5 %) for 7 weeks. During the test period, an intraperitoneal glucose tolerance test (IPGTT) was performed after 6 weeks. Fasting GLP-1 levels were significantly higher in the 5 % RMD group than in the control group after 6 weeks. The IPGTT results showed that the glycaemic response was lower in the 5 % RMD group than in the control group. Lower caecal pH, higher caecal tissue and content weights were observed in the RMD and FOS groups. Proglucagon mRNA levels were increased in the caecum and colon of both RMD and FOS groups, whereas caecal GLP-1 content was increased in the 5 % RMD group. In addition, a 1 h RMD exposure induced GLP-1 secretion in an enteroendocrine L-cell model, and single oral administration of RMD increased plasma GLP-1 levels in conscious rats. The present study demonstrates that continuous ingestion of RMD increased GLP-1 secretion and production in normal rats, which could be stimulated by its direct and indirect (enhanced gut fermentation) effects on GLP-1-producing cells, and contribute to improving glucose tolerance.

  13. Evidence for a gut-brain axis used by glucagon-like peptide-1 to elicit hyperglycaemia in fish.

    PubMed

    Polakof, S; Míguez, J M; Soengas, J L

    2011-06-01

    In mammals, glucagon-like peptide-1 (GLP-1) produces changes in glucose and energy homeostasis through a gut-pancreas-brain axis. In fish, the effects of GLP-1 are opposed to those described in other vertebrates, such as stimulation of hyperglycaemia and the lack of an effect of incretin. In the present study conducted in a teleost fish such as the rainbow trout, we present evidence of a gut-brain axis used by GLP-1 to exert its actions on glucose and energy homeostasis. We have assessed the effects of GLP-1 on glucose metabolism in the liver as well as the glucose-sensing potential in the hypothalamus and hindbrain. We confirm that peripheral GLP-1 administration elicits sustained hyperglycaemia, whereas, for the first time in a vertebrate species, we report that central GLP-1 treatment increases plasma glucose levels. We have observed (using capsaicin) that at least part of the action of GLP-1 on glucose homeostasis was mediated by vagal and splanchnic afferents. GLP-1 has a direct effect in parameters involved in glucose sensing in the hindbrain, whereas, in the hypothalamus, changes occurred indirectly through hyperglycaemia. Moreover, in the hindbrain, GLP-1 altered the expression of peptides involved in the control of food intake. We have elaborated a model for the actions of GLP-1 in fish in which this peptide uses a mammalian-like ancestral gut-brain axis to elicit the regulation of glucose homeostasis in different manner than the model described in mammals. Finally, it is worth noting that the hyperglycaemia induced by this peptide and the lack of incretin function could be related to the glucose intolerance observed in carnivorous teleost fish species such as the rainbow trout.

  14. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes.

    PubMed

    Chen, Quan; Pinon, Delia I; Miller, Laurence J; Dong, Maoqing

    2009-12-04

    The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg(131)-Lys(136) segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu(133) by radiochemical sequencing. Similarly, nearby residue Glu(125) within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members.

  15. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats

    PubMed Central

    Zheng, H.; Stornetta, R. L.; Agassandian, K.

    2017-01-01

    The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions. PMID:25012114

  16. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats.

    PubMed

    Zheng, H; Stornetta, R L; Agassandian, K; Rinaman, Linda

    2015-09-01

    The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.

  17. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects.

    PubMed

    Törrönen, Riitta; Sarkkinen, Essi; Niskanen, Tarja; Tapola, Niina; Kilpi, Kyllikki; Niskanen, Leo

    2012-05-01

    Berries are often consumed with sucrose. They are also rich sources of polyphenols which may modulate glycaemia after carbohydrate ingestion. The present study investigated the postprandial glucose, insulin and glucagon-like peptide 1 (GLP-1) responses to sucrose ingested with berries, in comparison with a similar sucrose load without berries. A total of twelve healthy subjects were recruited to a randomised, single-blind, placebo-controlled crossover study. They participated in two meal tests on separate days. The berry meal was a purée (150 g) made of bilberries, blackcurrants, cranberries and strawberries with 35 g sucrose. The control meal included the same amount of sucrose and available carbohydrates in water. Fingertip capillary and venous blood samples were taken at baseline and at 15, 30, 45, 60, 90 and 120 min after starting to eat the meal. Glucose, insulin and GLP-1 concentrations were determined from the venous samples, and glucose also from the capillary samples. Compared to the control meal, ingestion of the berry meal resulted in lower capillary and venous plasma glucose and serum insulin concentrations at 15 min (P = 0·021, P < 0·007 and P = 0·028, respectively), in higher concentrations at 90 min (P = 0·028, P = 0·021 and P = 0·042, respectively), and in a modest effect on the GLP-1 response (P = 0·05). It also reduced the maximum increases of capillary and venous glucose and insulin concentrations (P = 0·009, P = 0·011 and P = 0·005, respectively), and improved the glycaemic profile (P < 0·001 and P = 0·003 for capillary and venous samples, respectively). These results suggest that the glycaemic control after ingestion of sucrose can be improved by simultaneous consumption of berries.

  18. β-Cell Glucagon-Like Peptide-1 Receptor Contributes to Improved Glucose Tolerance After Vertical Sleeve Gastrectomy.

    PubMed

    Garibay, Darline; McGavigan, Anne K; Lee, Seon A; Ficorilli, James V; Cox, Amy L; Michael, M Dodson; Sloop, Kyle W; Cummings, Bethany P

    2016-09-01

    Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible for this remain incompletely defined. Glucagon-like peptide-1 (GLP-1) is a gut hormone that contributes to the maintenance of glucose homeostasis and is elevated after VSG. VSG-induced increases in postprandial GLP-1 secretion have been proposed to contribute to the glucoregulatory benefits of VSG; however, previous work has been equivocal. In order to test the contribution of enhanced β-cell GLP-1 receptor (GLP-1R) signaling we used a β-cell-specific tamoxifen-inducible GLP-1R knockout mouse model. Male β-cell-specific Glp-1r(β-cell+/+) wild type (WT) and Glp-1r(β-cell-/-) knockout (KO) littermates were placed on a high-fat diet for 6 weeks and then switched to high-fat diet supplemented with tamoxifen for the rest of the study. Mice underwent sham or VSG surgery after 2 weeks of tamoxifen diet and were fed ad libitum postoperatively. Mice underwent oral glucose tolerance testing at 3 weeks and were euthanized at 6 weeks after surgery. VSG reduced body weight and food intake independent of genotype. However, glucose tolerance was only improved in VSG WT compared with sham WT, whereas VSG KO had impaired glucose tolerance relative to VSG WT. Augmentation of glucose-stimulated insulin secretion during the oral glucose tolerance test was blunted in VSG KO compared with VSG WT. Therefore, our data suggest that enhanced β-cell GLP-1R signaling contributes to improved glucose regulation after VSG by promoting increased glucose-stimulated insulin secretion.

  19. Synaptotagmin-7 as a positive regulator of glucose-induced glucagon-like peptide-1 secretion in mice.

    PubMed

    Gustavsson, N; Wang, Y; Kang, Y; Seah, T; Chua, S; Radda, G K; Han, W

    2011-07-01

    Glucagon-like peptide-1 (GLP-1), a hormone with potent antihyperglycaemic effects, is produced and secreted from highly specialised gut endocrine L-cells. It regulates glucose homeostasis by promoting glucose-dependent insulin secretion, suppressing glucagon secretion and enhancing insulin sensitivity. Similar to islet alpha and beta cells, L-cells are electrically excitable, and express calcium channels and ATP-sensitive potassium channels. GLP-1 is also stored in secretory granules, the exocytosis of which is triggered by increased intracellular calcium levels. Although the calcium dependence of GLP-1 granule exocytosis is well established, the identities of calcium-sensing proteins in GLP-1 secretion remain elusive. Here we tested whether synaptotagmin-7, a calcium sensor in pancreatic alpha and beta cells, regulates GLP-1 secretion. We studied GLP-1 secretion using synaptotagmin-7 knockout (KO) mice and GLUTag cells with lentiviral-mediated synaptotagmin-7 silencing. We found that synaptotagmin-7 was co-localised with GLP-1 in intestinal L-cells. GLP-1 secretion was impaired in synaptotagmin-7 KO mice when they were challenged by glucose ingestion. Lentiviral knockdown (KD) of synaptotagmin-7 in GLUTag cells led to similar reductions in GLP-1 secretion, as determined by biochemical assays and by membrane capacitance measurements. Calcium response was not altered in synaptotagmin-7 KD cells. These results demonstrate that synaptotagmin-7 functions as a positive regulator of GLP-1 secretion in intestinal L-cells and GLUTag cells, consistent with its proposed role as a calcium sensor in GLP-1 secretion.

  20. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents.

    PubMed

    Oguma, Takahiro; Nakayama, Keiko; Kuriyama, Chiaki; Matsushita, Yasuaki; Yoshida, Kumiko; Hikida, Kumiko; Obokata, Naoyuki; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Shiotani, Masaharu

    2015-09-01

    The sodium glucose cotransporter (SGLT) 1 plays a major role in glucose absorption and incretin hormone release in the gastrointestinal tract; however, the impact of SGLT1 inhibition on plasma glucagon-like peptide-1 (GLP-1) levels in vivo is controversial. We analyzed the effects of SGLT1 inhibitors on GLP-1 secretion in normoglycemic and hyperglycemic rodents using phloridzin, CGMI [3-(4-cyclopropylphenylmethyl)-1-(β-d-glucopyranosyl)-4-methylindole], and canagliflozin. These compounds are SGLT2 inhibitors with moderate SGLT1 inhibitory activity, and their IC50 values against rat SGLT1 and mouse SGLT1 were 609 and 760 nM for phloridzin, 39.4 and 41.5 nM for CGMI, and 555 and 613 nM for canagliflozin, respectively. Oral administration of these inhibitors markedly enhanced and prolonged the glucose-induced plasma active GLP-1 (aGLP-1) increase in combination treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, in normoglycemic mice and rats. CGMI, the most potent SGLT1 inhibitor among them, enhanced glucose-induced, but not fat-induced, plasma aGLP-1 increase at a lower dose compared with canagliflozin. Both CGMI and canagliflozin delayed intestinal glucose absorption after oral administration in normoglycemic rats. The combined treatment of canagliflozin and a DPP4 inhibitor increased plasma aGLP-1 levels and improved glucose tolerance compared with single treatment in both 8- and 13-week-old Zucker diabetic fatty rats. These results suggest that transient inhibition of intestinal SGLT1 promotes GLP-1 secretion by delaying glucose absorption and that concomitant inhibition of intestinal SGLT1 and DPP4 is a novel therapeutic option for glycemic control in type 2 diabetes mellitus. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Glucagon-like peptide-1 preserves coronary microvascular endothelial function after cardiac arrest and resuscitation: potential antioxidant effects.

    PubMed

    Dokken, Betsy B; Piermarini, Charles V; Teachey, Mary K; Gura, Michael T; Dameff, Christian J; Heller, Brian D; Krate, Jonida; Ashgar, Aeen M; Querin, Lauren; Mitchell, Jennifer L; Hilwig, Ronald W; Kern, Karl B

    2013-02-15

    Glucagon-like peptide-1 (GLP-1) has protective effects in the heart. We hypothesized that GLP-1 would mitigate coronary microvascular and left ventricular (LV) dysfunction if administered after cardiac arrest and resuscitation (CAR). Eighteen swine were subjected to ventricular fibrillation followed by resuscitation. Swine surviving to return of spontaneous circulation (ROSC) were randomized to receive an intravenous infusion of either human rGLP-1 (10 pmol·kg(-1)·min(-1); n = 8) or 0.9% saline (n = 8) for 4 h, beginning 1 min after ROSC. CAR caused a decline in coronary flow reserve (CFR) in control animals (pre-arrest, 1.86 ± 0.20; 1 h post-ROSC, 1.3 ± 0.05; 4 h post-ROSC, 1.25 ± 0.06; P < 0.05). GLP-1 preserved CFR for up to 4 h after ROSC (pre-arrest, 1.31 ± 0.17; 1 h post-ROSC, 1.5 ± 0.01; 4 h post-ROSC, 1.55 ± 0.22). Although there was a trend toward improvement in LV relaxation in the GLP-1-treated animals, overall LV function was not consistently different between groups. 8-iso-PGF(2α), a measure of reactive oxygen species load, was decreased in post-ROSC GLP-1-treated animals [placebo, control (NS): 38.1 ± 1.54 pg/ml; GLP-1: 26.59 ± 1.56 pg/ml; P < 0.05]. Infusion of GLP-1 after CAR preserved coronary microvascular and LV diastolic function. These effects may be mediated through a reduction in oxidative stress.

  2. Indirect effects of glucagon-like peptide-1 receptor agonist exendin-4 on the peripheral circadian clocks in mice.

    PubMed

    Ando, Hitoshi; Ushijima, Kentarou; Fujimura, Akio

    2013-01-01

    Circadian clocks in peripheral tissues are powerfully entrained by feeding. The mechanisms underlying this food entrainment remain unclear, although various humoral and neural factors have been reported to affect peripheral clocks. Because glucagon-like peptide-1 (GLP-1), which is rapidly secreted in response to food ingestion, influences multiple humoral and neural signaling pathways, we suggest that GLP-1 plays a role in the food entrainment of peripheral clocks. To test this, we compared the effects of exendin-4, a GLP-1 receptor agonist, on mRNA expression of the clock genes (Clock, Bmal1, Nr1d1, Per1, Per2, and Cry1) with those of refeeding. In addition, we investigated whether exendin-4 could affect the rhythms of the peripheral clocks. In male C57BL/6J mice, although refeeding rapidly (within 2 h) altered mRNA levels of Per1 and Per2 in the liver and that of Per1 in adipose tissue, a single i.p. injection of exendin-4 did not cause such changes. However, unlike the GLP-1 receptor antagonist exendin-(9-39), exendin-4 significantly influenced Per1 mRNA levels in the liver at 12 h after injection. Moreover, pretreatment with exendin-4 affected the rapid-feeding-induced change in Per1 not only in the liver, but also in adipose tissue, without effect on food intake. Furthermore, during light-phase restricted feeding, repeated dosing of exendin-4 at the beginning of the dark phase profoundly influenced both the food intake and daily rhythms of clock gene expression in peripheral tissues. Thus, these results suggest that exendin-4 modulates peripheral clocks via multiple mechanisms different from those of refeeding.

  3. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice.

    PubMed

    Gou, Si; Zhu, Tao; Wang, Wei; Xiao, Min; Wang, Xi-chen; Chen, Zhong-hua

    2014-10-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality and poor prognosis. Previous studies confirmed that NF-κB plays a critical role in the pathogenesis of pulmonary fibrosis and glucagon like peptide-1 (GLP-1) has a property of anti-inflammation by inactivation of NF-κB. Furthermore, the GLP-1 receptor was detected in the lung tissues. Our aim was to investigate the potential value and mechanisms of GLP-1 on BLM-induced pulmonary fibrosis in mice. Mice with BLM-induced pulmonary fibrosis were treated with or without GLP-1 administration. 28 days after BLM infusion, the number of total cells, macrophages, neutrophils, lymphocytes, and the content of TGF-β1 in BALF were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. RT-qPCR and western blot were used to evaluate the expression of α-SMA and VCAM-1. The phosphorylation of NF-κB p65 was also assessed by western blot. DNA binding of NF-κB p65 was measured through Trans(AM) p65 transcription factor ELISA kit. GLP-1 reduced inflammatory cell infiltration and the content of TGF-β1 in BLAF in mice with BLM injection. The Ashcroft score and hydroxyproline content were decreased by GLP-1 administration. Meanwhile, BLM-induced overexpression of α-SMA and VCAM-1 were blocked by GLP-1 treatment in mice. GLP-1 also reduced the ratio of phosphor-NF-κB p65/total-NF-κB p65 and NF-κB p65 DNA binding activity in BLM-induced pulmonary fibrosis in mice. Our data found that BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner.

    PubMed

    Zhao, S; Kanoski, S E; Yan, J; Grill, H J; Hayes, M R

    2012-12-01

    The physiological control of feeding behavior involves modulation of the intake inhibitory effects of gastrointestinal satiation signaling via endogenous hindbrain leptin receptor (LepR) and glucagon-like-peptide-1 receptor (GLP-1R) activation. Using a variety of dose-combinations of hindbrain delivered (4th intracerebroventricular; i.c.v.) leptin and the GLP-1R agonist exendin-4, experiments demonstrate that hindbrain LepR and GLP-1R signaling interact to control food intake and body weight in an additive manner. In addition, the maximum intake suppressive response that could be achieved by 4th i.c.v. leptin alone in non-obese rats (∼33%) was shown to be further suppressed when exendin-4 was co-administered. Importantly, it was determined that the interaction between hindbrain LepR signaling and GLP-1R signaling is relevant to endogenous food intake control, as hindbrain GLP-1R blockade by the selective antagonist exendin-(9-39) attenuated the intake inhibitory effects of hindbrain leptin delivery. Collectively, the findings reported here show that hindbrain LepR and GLP-1R activation interact in at least an additive manner to control food intake and body weight. As evidence is accumulating that combination pharmacotherapies offer greater sustained food intake and body weight suppression in obese individuals when compared with mono-drug therapies or lifestyle modifications alone, these findings highlight the need for further examination of combined central nervous system GLP-1R and LepR signaling as a potential drug target for obesity treatment.

  5. Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4

    PubMed Central

    Jessen, Lene; Aulinger, Benedikt A.; Hassel, Jonathan L.; Roy, Kyle J.; Smith, Eric P.; Greer, Todd M.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    Administration of the glucagon-like peptide-1 (GLP-1) receptor agonists GLP-1 and exendin-4 (Ex-4) directly into the central nervous system decreases food intake. But although Ex-4 potently suppresses food intake after peripheral administration, the effects of parenteral GLP-1 are variable and not as strong. A plausible explanation for these effects is the rapid inactivation of circulating GLP-1 by dipeptidyl peptidase-4 (DPP-4), an enzyme that does not alter Ex-4 activity. To test this hypothesis, we assessed the relative potency of Ex-4 and GLP-1 under conditions in which DPP-4 activity was reduced. Outbred rats, wild-type mice, and mice with a targeted deletion of DPP-4 (Dpp4−/−) were treated with GLP-1 alone or in combination with the DPP-4 inhibitor vildagliptin, Ex-4, or saline, and food intake was measured. GLP-1 alone, even at high doses, did not affect feeding in wild-type mice or rats but did reduce food intake when combined with vildagliptin or given to Dpp4−/− mice. Despite plasma clearance similar to DPP-4-protected GLP-1, equimolar Ex-4 caused greater anorexia than vildagliptin plus GLP-1. To determine whether supraphysiological levels of endogenous GLP-1 would suppress food intake if protected from DPP-4, rats with Roux-en-Y gastric bypass and significantly elevated postprandial plasma GLP-1 received vildagliptin or saline. Despite 5-fold greater postprandial GLP-1 in these animals, vildagliptin did not affect food intake in Roux-en-Y gastric bypass rats. Thus, in both mice and rats, peripheral GLP-1 reduces food intake significantly less than Ex-4, even when protected from DPP-4. These findings suggest distinct potencies of GLP-1 receptor agonists on food intake that cannot be explained by plasma pharmacokinetics. PMID:23033273

  6. ROLE OF CENTRAL GLUCAGON-LIKE PEPTIDE-1 IN HYPOTHALAMO-PITUITARY-ADRENOCORTICAL FACILITATION FOLLOWING CHRONIC STRESS

    PubMed Central

    Tauchi, Miyuki; Zhang, Rong; D’Alessio, David A.; Seeley, Randy J; Herman, James P

    2008-01-01

    Central glucagon-like peptide-1 (GLP-1) regulates food intake, glucose homeostasis, and behavioral and neuroendocrine responses to acute stress. Given its pronounced role in acute stress regulation, the GLP-1 system is a prime candidate for mediating the prolonged drive of the hypothalamo-pituitary-adrenocortical axis by chronic stress. To test this hypothesis, we evaluated the necessity and sufficiency of GLP-1 for production of chronic stress-induced changes in HPA axis function. Exogenous GLP-1 or the GLP-1 receptor antagonist, dHG-exendin, were delivered into the 3rd ventricle of control animals or animals exposed to chronic variable stress (CVS) for 7 days. Animals in the CVS groups received GLP-1 or dHG-exendin immediately prior to each stress exposure. Prior to and at the end of the 7-day trial, chronically stressed animals were subjected to a novel stressor to test for HPA axis facilitation. Neither GLP-1 nor dHG-exendin affected CVS-associated increases in adrenal weight or decreases in basal plasma glucose levels. In addition, neither exogenous GLP-1 nor dHG-exendin altered any index of HPA axis activity in unstressed rats. However, GLP-1 enhanced CVS-induced facilitation of corticosterone (but not ACTH) response to an acute stress, whereas dHG-exendin inhibited facilitation. In addition, GLP-1 decreased body weight in chronically-stressed animals. dHG-exendin increased food intake and body weight in unstressed animals, consistent with a tonic role for GLP-1 in body weight regulation. Overall, our data suggest that brain GLP-1 modulates HPA axis activity within the context of chronic stress, perhaps at the level of the adrenal gland. PMID:18177641

  7. Distinct effects of dipeptidyl peptidase-4 inhibitor and glucagon-like peptide-1 receptor agonist on islet morphology and function.

    PubMed

    Morita, Asuka; Mukai, Eri; Hiratsuka, Ayano; Takatani, Tomozumi; Iwanaga, Toshihiko; Lee, Eun Young; Miki, Takashi

    2016-03-01

    Although the two anti-diabetic drugs, dipeptidyl peptidase-4 inhibitors (DPP4is) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1RAs), have distinct effects on the dynamics of circulating incretins, little is known of the difference in their consequences on morphology and function of pancreatic islets. We examined these in a mouse model of β cell injury/regeneration. The model mice were generated so as to express diphtheria toxin (DT) receptor and a fluorescent protein (Tomato) specifically in β cells. The mice were treated with a DPP4i (MK-0626) and a GLP1RA (liraglutide), singly or doubly, and the morphology and function of the islets were compared. Prior administration of MK-0626 and/or liraglutide similarly protected β cells from DT-induced cell death, indicating that enhanced GLP-1 signaling can account for the cytoprotection. However, 2-week intervention of MK-0626 and/or liraglutide in DT-injected mice resulted in different islet morphology and function: β cell proliferation and glucose-stimulated insulin secretion (GSIS) were increased by MK-0626 but not by liraglutide; α cell mass was decreased by liraglutide but not by MK-0626. Although liraglutide administration nullified MK-0626-induced β cell proliferation, their co-administration resulted in increased GSIS, decreased α cell mass, and improved glucose tolerance. The pro-proliferative effect of MK-0626 was lost by co-administration of the GLP-1 receptor antagonist exendin-(9-39), indicating that GLP-1 signaling is required for this effect. Comparison of the effects of DPP4is and/or GLP1RAs treatment in a single mouse model shows that the two anti-diabetic drugs have distinct consequences on islet morphology and function.

  8. Dipeptidylpeptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) receptor agonists: yes.

    PubMed

    Scheen, André J

    2012-03-01

    The pharmacological treatment of type 2 diabetes (T2DM) is becoming increasingly complex, especially since the availability of incretin-based therapies. Compared with other glucose-lowering strategies, these novel drugs offer some advantages such as an absence of weight gain and a negligible risk of hypoglycaemia and, possibly, better cardiovascular and β-cell protection. The physician has now multiple choices to manage his/her patient after secondary failure of metformin, and the question whether it is preferable to add an oral dipeptidylpeptidase-4 (DPP-4) inhibitor (gliptin) or an injectable glucagon-like peptide-1 (GLP-1) receptor agonist will emerge. Obviously, DPP-4 inhibitors offer several advantages compared with GLP-1 receptor agonists, especially regarding easiness of use, tolerance profile and cost. However, because they can only increase endogenous GLP-1 concentrations to physiological (rather than pharmacological) levels, they are less potent to improve glucose control, promote weight reduction ("weight neutrality") and reduce blood pressure compared to GLP-1 receptor agonists. Of note, none of the two classes have proven long-term safety and positive impact on diabetic complications yet. The role of DPP-4 inhibitors and GLP-1 receptor agonists in the therapeutic armamentarium of T2DM is rapidly evolving, but their respective potential strengths and weaknesses should be better defined in long-term head-to-head comparative controlled trials. Instead of trying to answer the question whether DPP-4 inhibitors are favourable to GLP-1 receptor agonists (or vice versa), it is probably more clinically relevant to look at which T2DM patient will benefit more from one or the other therapy considering all his/her individual clinical characteristics ("personalized medicine").

  9. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    PubMed

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion.

  10. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration.

    PubMed

    Duarte, A I; Candeias, E; Correia, S C; Santos, R X; Carvalho, C; Cardoso, S; Plácido, A; Santos, M S; Oliveira, C R; Moreira, P I

    2013-04-01

    According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.

  11. The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes.

    PubMed

    Ali, Eunüs S; Hua, Jin; Wilson, Claire H; Tallis, George A; Zhou, Fiona H; Rychkov, Grigori Y; Barritt, Greg J

    2016-09-01

    The release of Ca(2+) from the endoplasmic reticulum (ER) and subsequent replenishment of ER Ca(2+) by Ca(2+) entry through store-operated Ca(2+) channels (SOCE) play critical roles in the regulation of liver metabolism by adrenaline, glucagon and other hormones. Both ER Ca(2+) release and Ca(2+) entry are severely inhibited in steatotic hepatocytes. Exendin-4, a slowly-metabolised glucagon-like peptide-1 (GLP-1) analogue, is known to reduce liver glucose output and liver lipid, but the mechanisms involved are not well understood. The aim of this study was to determine whether exendin-4 alters intracellular Ca(2+) homeostasis in steatotic hepatocytes, and to evaluate the mechanisms involved. Exendin-4 completely reversed lipid-induced inhibition of SOCE in steatotic liver cells, but did not reverse lipid-induced inhibition of ER Ca(2+) release. The action of exendin-4 on Ca(2+) entry was rapid in onset and was mimicked by GLP-1 or dibutyryl cyclic AMP. In steatotic liver cells, exendin-4 caused a rapid decrease in lipid (half time 6.5min), inhibited the accumulation of lipid in liver cells incubated in the presence of palmitate plus the SOCE inhibitor BTP-2, and enhanced the formation of cyclic AMP. Hormone-stimulated accumulation of extracellular glucose in glycogen replete steatotic liver cells was inhibited compared to that in non-steatotic cells, and this effect of lipid was reversed by exendin-4. It is concluded that, in steatotic hepatocytes, exendin-4 reverses the lipid-induced inhibition of SOCE leading to restoration of hormone-regulated cytoplasmic Ca(2+) signalling. The mechanism may involve GLP-1 receptors, cyclic AMP, lipolysis, decreased diacylglycerol and decreased activity of protein kinase C. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials.

    PubMed

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Chappard, Daniel

    2014-05-01

    Patients with type 2 diabetes mellitus (T2DM) are at a higher risk of bone fractures independent of the use of antidiabetic medications. Furthermore, antidiabetic medications could directly affect bone metabolism. Recently, the use of dipeptidyl peptidase-4 inhibitors has been associated with a lower rate of bone fracture. The aim of the present meta-analysis was to assess whether patients with T2DM treated with glucagon-like peptide-1 receptor agonists (GLP-1Ra) present a lower incidence of bone fracture compared with patients using other antidiabetic drugs. A search on Medline, Embase, and http://www.clinicaltrials.gov, as well as a manual search for randomized clinical trials of T2DM treated with either a GLP-1Ra or another antidiabetic drug for a duration of ≥24 weeks was conducted by two authors (GM, AM) independently. Although 28 eligible studies were identified, only seven trials reported the occurrence of at least a bone fracture in one arm of the trial. The total number of fractures was 19 (13 and six with GLP-1Ra and comparator, respectively). The pooled Mantel-Haenszel odds ratio for GLP-1Ra was 0.75 (95% confidence interval 0.28-2.02, P = 0.569) in trials versus other antidiabetic agents. Although preliminary, our study highlighted that the use of GLP-1Ra does not modify the risk of bone fracture in T2DM compared with the use of other antidiabetic medications. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  13. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts.

  14. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  15. Predictors of weight-loss response with glucagon-like peptide-1 receptor agonist treatment among adolescents with severe obesity.

    PubMed

    Nathan, B M; Rudser, K D; Abuzzahab, M J; Fox, C K; Coombes, B J; Bomberg, E M; Kelly, A S

    2016-02-01

    In two previous, separate clinical trials, we demonstrated significant reductions in body mass index (BMI) with exenatide in adolescents with severe obesity. In the present study, we pooled data from these near identical trials to evaluate factors that may predict BMI reduction at 3 months. Data from 32 patients (mean age 14.3 ± 2.2 years; 69% female; mean BMI 39.8 ± 5.8 kg m(-2)) were included. Exenatide treatment consisted of 5 mcg twice daily for 1 month, followed by an increase to 10 mcg twice daily for 2 additional months. Predictor variables included baseline BMI, BMI percent change at 1 month, incidence of nausea or vomiting and baseline appetite and satiety measures. Treatment effects of percent change in BMI from baseline were estimated within predictor subgroups using generalized estimating equations with exchangeable working correlation and robust variance estimation for confidence intervals and P-values to account for paired observations. The pooled data treatment effect on absolute BMI at 3 months was -3.42% (95% confidence interval: -5.41%, -1.42%) compared to placebo. Within treated participants, appetite at baseline (treatment effect in high [-4.28%] vs. low [1.02%], P = 0.028) and sex (treatment effect in female [-4.78%] vs. male [0.76%], P = 0.007) were significant predictors of change in BMI at 3 months. Baseline BMI, BMI percent change at 1 month, age, incidence of nausea, vomiting, or other gastrointestinal symptoms and satiety scores did not predict 3-month responses. Sex and measures of appetite may serve as useful predictors of glucagon-like peptide-1 receptor agonist treatment response among adolescents with severe obesity.

  16. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion

    PubMed Central

    Riz, Michela; Pedersen, Morten Gram

    2015-01-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  17. The Glucagon-Like Peptide-1 Receptor Regulates Endogenous Glucose Production and Muscle Glucose Uptake Independent of Its Incretin Action

    PubMed Central

    Ayala, Julio E.; Bracy, Deanna P.; James, Freyja D.; Julien, Brianna M.; Wasserman, David H.; Drucker, Daniel J.

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) diminishes postmeal glucose excursions by enhancing insulin secretion via activation of the β-cell GLP-1 receptor (Glp1r). GLP-1 may also control glucose levels through mechanisms that are independent of this incretin effect. The hyperinsulinemic-euglycemic clamp (insulin clamp) and exercise were used to examine the incretin-independent glucoregulatory properties of the Glp1r because both perturbations stimulate glucose flux independent of insulin secretion. Chow-fed mice with a functional disruption of the Glp1r (Glp1r−/−) were compared with wild-type littermates (Glp1r+/+). Studies were performed on 5-h-fasted mice implanted with arterial and venous catheters for sampling and infusions, respectively. During insulin clamps, [3-3H]glucose and 2[14C]deoxyglucose were used to determine whole-body glucose turnover and glucose metabolic index (Rg), an indicator of glucose uptake. Rg in sedentary and treadmill exercised mice was determined using 2[3H]deoxyglucose. Glp1r−/− mice exhibited increased glucose disappearance, muscle Rg, and muscle glycogen levels during insulin clamps. This was not associated with enhanced muscle insulin signaling. Glp1r−/− mice exhibited impaired suppression of endogenous glucose production and hepatic glycogen accumulation during insulin clamps. This was associated with impaired liver insulin signaling. Glp1r−/− mice became significantly hyperglycemic during exercise. Muscle Rg was normal in exercised Glp1r−/− mice, suggesting that hyperglycemia resulted from an added drive to stimulate glucose production. Muscle AMP-activated protein kinase phosphorylation was higher in exercised Glp1r−/− mice. This was associated with increased relative exercise intensity and decreased exercise endurance. In conclusion, these results show that the endogenous Glp1r regulates hepatic and muscle glucose flux independent of its ability to enhance insulin secretion. PMID:19008308

  18. Role of phosphodiesterase and adenylate cyclase isozymes in murine colonic glucagon-like peptide 1 secreting cells

    PubMed Central

    Friedlander, Ronn S; Moss, Catherine E; Mace, Jessica; Parker, Helen E; Tolhurst, Gwen; Habib, Abdella M; Wachten, Sebastian; Cooper, Dermot M; Gribble, Fiona M; Reimann, Frank

    2011-01-01

    BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine L-cells after food intake. Increasing GLP-1 signalling either through inhibition of the GLP-1 degrading enzyme dipeptidyl-peptidase IV or injection of GLP-1-mimetics has recently been successfully introduced for the treatment of type 2 diabetes. Boosting secretion from the L-cell has so far not been exploited, due to our incomplete understanding of L-cell physiology. Elevation of cyclic adenosine monophosphate (cAMP) has been shown to be a strong stimulus for GLP-1 secretion and here we investigate the activities of adenylate cyclase (AC) and phosphodiesterase (PDE) isozymes likely to shape cAMP responses in L-cells. EXPERIMENTAL APPROACH Expression of AC and PDE isoforms was quantified by RT-PCR. Single cell responses to stimulation or inhibition of AC and PDE isoforms were monitored with real-time cAMP probes. GLP-1 secretion was assessed by elisa. KEY RESULTS Quantitative PCR identified expression of protein kinase C- and Ca2+-activated ACs, corresponding with phorbolester and cytosolic Ca2+-stimulated cAMP elevation. Inhibition of PDE2, 3 and 4 were found to stimulate GLP-1 secretion from murine L-cells in primary culture. This corresponded with cAMP elevations monitored with a plasma membrane targeted cAMP probe. Inhibition of PDE3 but not PDE2 was further shown to prevent GLP-1 secretion in response to guanylin, a peptide secreted into the gut lumen, which had not previously been implicated in L-cell secretion. CONCLUSIONS AND IMPLICATIONS Our results reveal several mechanisms shaping cAMP responses in GLP-1 secreting cells, with some of the molecular components specifically expressed in L-cells when compared with their epithelial neighbours, thus opening new strategies for targeting these cells therapeutically. PMID:21054345

  19. Effect of the Glucagon-like Peptide-1 Analogue Exenatide Extended Release in Cats with Newly Diagnosed Diabetes Mellitus.

    PubMed

    Riederer, A; Zini, E; Salesov, E; Fracassi, F; Padrutt, I; Macha, K; Stöckle, T M; Lutz, T A; Reusch, C E

    2016-01-01

    Exenatide extended release (ER) is a glucagon-like peptide-1 analogue that increases insulin secretion, inhibits glucagon secretion and induces satiation in humans with type 2 diabetes mellitus. The use of exenatide ER is safe and stimulates insulin secretion in healthy cats. The objective of this study is to assess the safety of exenatide ER and its effect on body weight, remission and metabolic control in newly diagnosed diabetic cats receiving insulin and a low-carbohydrate diet. Thirty client-owned cats. Prospective placebo-controlled clinical trial. Cats were treated with exenatide ER or 0.9% saline, administered SC, once weekly. Both groups received insulin glargine and a low-carbohydrate diet. Exenatide ER was administered for 16 weeks, or in cats that achieved remission it was given for 4 weeks after discontinuing insulin treatment. Nonparametric tests were used for statistical analysis. Cats in the exenatide ER and placebo groups had transient adverse signs including decreased appetite (60% vs. 20%, respectively, P = .06) and vomiting (53% vs. 40%, respectively, P = .715). Body weight increased significantly in the placebo group (P = .002), but not in cats receiving exenatide ER. Cats on exenatide ER achieved remission or good metabolic control in 40% or 89%, respectively, whereas in control cats percentages were 20% or 58% (P = .427 and P = .178, respectively). Exenatide ER is safe in diabetic cats and does not result in weight gain. Our pilot study suggests that, should there be an additional clinically relevant beneficial effect of exenatide ER in insulin-treated cats on rate of remission and good metabolic control, it would likely approximate 20% and 30%, respectively. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    PubMed

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  1. The low level of glucagon-like peptide-1 (glp-1) is a risk factor of type 2 diabetes mellitus.

    PubMed

    Lastya, Agus; Saraswati, Made Ratna; Suastika, Ketut

    2014-11-26

    Glucagon like peptide-1 (GLP-1), an incretin hormone, regulates glucose metabolism by inducing insulin secretion and suppressing glucagon secretion. The aim of the study is to assess the levels of fasting and post-prandial GLP-1 and their risk for T2DM. A case control study was conducted at the diabetes clinic Sanglah Hospital Denpasar Bali, involving 40 subjects who were native Indonesian citizens and 18-70 years of age. Twenty subjects were allocated as the case group (subjects with T2DM) and 20 subjects were allocated as the control group (subjects with normal glucose tolerance [NGT]). Both fasting intact GLP-1 (FGLP-1) and 60 minutes post-75 gram glucose loading intact GLP-1 (1hGLP-1) levels were measured. Both fasting and post-prandial GLP-1 levels were significantly lower in subjects with T2DM than those with NGT (2.06 ± 0.43 vs. 2.87 ± 0.67 pg/L, p < 0.01; and 2.49 ± 0.60 vs. 3.42 ± 0.85 pg/L, p = 0.02; respectively). Low levels of FGLP-1 (OR, 13.5; p = 0.001) and 1hGLP-1 (OR, 5.667, p = 0.018), with no response after glucose loading (∆GLP-1), were a significant risk for T2DM. According to the ∆GLP-1, there was a tendency of decreasing response of GLP-1 after glucose loading among subjects with T2DM (∆ = 0.43 pg/L) compared to subjects with NGT (∆ = 0.55 pg/L). From this study it can be concluded that levels of intact GLP-1 are an important risk factor for T2DM in the Indonesian population.

  2. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors.

    PubMed

    Nauck, Michael A; Meier, Juris J; Cavender, Matthew A; Abd El Aziz, Mirna; Drucker, Daniel J

    2017-08-29

    Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the

  3. Overview of Glucagon-Like Peptide-1 Receptor Agonists for the Treatment of Patients with Type 2 Diabetes.

    PubMed

    Tran, Kelvin Lingjet; Park, Young In; Pandya, Shalin; Muliyil, Navin John; Jensen, Brandon David; Huynh, Kovin; Nguyen, Quang T

    2017-06-01

    It is estimated that 29.1 million people or 9.3% of the US population have diabetes, which contributes to considerable medical and financial burden. Type 2 diabetes mellitus is characterized by insulin resistance and insulin secretion impairment leading to hyperglycemia. The presence of insulin resistance is strongly correlated with obesity. This article reviews the available glucagon-like peptide-1 (GLP-1) receptor agonists and their role in the management of patients with diabetes, to help guide the selection of the most suitable agent for the individualized treatment of patients with type 2 diabetes. This article reviews the evidence from phase 3 clinical trials for each of the 5 GLP-1 receptor agonists by comparing them against one another and with other existing therapies, including metformin, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sulfonylureas. Incretin-based therapies have emerged as attractive agents for the treatment of type 2 diabetes. They target the GLP-1 hormone, which is partly responsible for insulin release and for attenuating hyperglycemia during meals (ie, the incretin effect). The 2 classes of incretin-based therapy currently available are GLP-1 receptor agonists and DPP-4 inhibitors, which prevent the breakdown of GLP-1. Both classes are attractive options, given their glucose-lowering effects without the adverse effects of hypoglycemia and weight gain. The different mechanisms of action of these therapies result in generally greater efficacy with GLP-1 receptor agonists, albeit at the expense of slightly increased gastrointestinal symptoms. These agents exert their effects by improving glucose-dependent insulin release, suppressing glucagon release, suppressing hepatic glucose output, and decreasing the rate of gastric emptying, thereby reducing appetite. Currently, 5 GLP-1 receptor agonists are available, including exenatide, liraglutide, albiglutide, dulaglutide, and lixisenatide; semaglutide may soon become available as the newest

  4. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice

    PubMed Central

    Selwyn, Felcy Pavithra; Csanaky, Iván L.; Zhang, Youcai

    2015-01-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein–coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non–12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid–binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non–12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1. PMID:26199423

  5. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

    PubMed

    Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C

    2015-12-01

    Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly

  6. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  7. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize.

    PubMed

    Bamford, N J; Baskerville, C L; Harris, P A; Bailey, S R

    2015-07-01

    The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the

  8. GLP-1 and exendin-4 for imaging endocrine pancreas. A review. Labelled glucagon-like peptide-1 analogues: past, present and future.

    PubMed

    Hubalewska-Dydejczyk, A; Sowa-Staszczak, A; Tomaszuk, M; Stefańska, A

    2015-06-01

    Glucagon-like peptide 1 (GLP-1) receptors expression has been found on many types of cancer cells. In case of benign insulinoma the density of those receptors is even higher than the density of somatostatin receptors. This article presents the results of clinical trials proving the utility of GLP-1 receptors imaging. Scintigraphy or positron emission tomography with the use of GLP-1 analogues labelled with appropriate radioisotopes (111In, 99mTc, 68Ga, 18F or 64Cu) seem to be superior compared with other available techniques in diagnosis of hardly detectable benign insulinoma. While surgery is the only effective therapy for insulinoma patients, therefore proper preoperative localization of the tumor allows sparing operation. Glucagon-like peptide 1 receptors might become also a target for imaging of other tumors such as gastrinoma, pheochromocytoma and medullary thyroid cancer (MTC), which also were shown to overexpress this type of receptors. However, studies with larger groups of patients are required to prove the clinical usefulness of this indication. Moreover GLP-1 receptor imaging seems to be a potential tool to evaluate pancreatic beta cell mass (BCM). It may be useful in the early diagnosis of beta cell loss in preclinical phases of diabetes. The panceratic beta cells imaging may influence the prophylaxis of diabetes and management of diabetic patients. Presented results of clinical trials prove that glucagon-like peptide 1 receptor imaging might become helpful diagnostic strategy particularly in case of patients with benign insulinoma tumors, but also patients with gastrinoma, pheochromocytoma, medullary thyroid cancer and diabetes.

  9. Calorie restriction and not glucagon-like peptide-1 explains the acute improvement in glucose control after gastric bypass in Type 2 diabetes.

    PubMed

    Steven, S; Hollingsworth, K G; Small, P K; Woodcock, S A; Pucci, A; Aribasala, B; Al-Mrabeh, A; Batterham, R L; Taylor, R

    2016-12-01

    To compare directly the impact of glucagon-like peptide-1 secretion on glucose metabolism in individuals with Type 2 diabetes listed for Roux-en-Y gastric bypass surgery, randomized to be studied before and 7 days after undergoing Roux-en-Y gastric bypass or after following a very-low-calorie diet. A semi-solid meal test was used to investigate glucose, insulin and glucagon-like peptide-1 response. Insulin secretion in response to intravenous glucose and arginine stimulus was measured. Hepatic and pancreatic fat content was quantified using magnetic resonance imaging. The decrease in fat mass was almost identical in the Roux-en-Y gastric bypass and the very-low-calorie diet groups (3.0±0.3 and 3.0±0.7kg). The early rise in plasma glucose level and in acute insulin secretion were greater after Roux-en-Y gastric bypass than after a very-low-calorie diet; however, the early rise in glucagon-like peptide-1 was disproportionately greater (sevenfold) after Roux-en-Y gastric bypass than after a very-low-calorie diet. This did not translate into a greater improvement in fasting glucose level or area under the curve for glucose. The reduction in liver fat was greater after Roux-en-Y gastric bypass (29.8±3.7 vs 18.6±4.0%) and the relationships between weight loss and reduction in liver fat differed between the Roux-en-Y gastric bypass group and the very-low-calorie diet group. This study shows that gastroenterostomy increases the rate of nutrient absorption, bringing about a commensurately rapid rise in insulin level; however, there was no association with the large post-meal rise in glucagon-like peptide-1, and post-meal glucose homeostasis was similar in the Roux-en-Y gastric bypass and very-low-calorie diet groups. (Clinical trials registry number: ISRCTN11969319.). © 2016 Diabetes UK.

  10. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats

    PubMed Central

    Maniscalco, James W.; Zheng, Huiyuan; Gordon, Patrick J.

    2015-01-01

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast “silences” GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the “metabolic tuning” of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats

  11. The Clinical Efficacy and Safety of Glucagon-Like Peptide-1 (GLP-1) Agonists in Adults with Type 2 Diabetes Mellitus

    PubMed Central

    Brice, Kira R.; Tzefos, Maria K.

    2011-01-01

    Objective: To review the efficacy and safety of glucagon-like peptide-1 (GLP-1) agonists to determine their role in type 2 diabetes mellitus (T2DM). Data sources: A Medline search was conducted using the keywords exenatide, liraglutide, glucagon-like peptide-1, type 2 diabetes mellitus, hyperglycemia, pharmacokinetics, pharmacology and safety. Study selection: All identified articles written in English were evaluated with priority given to controlled, randomized trials including human data. References of identified published trials were reviewed for additional trials to be included in the review. Data synthesis: Exenatide and liraglutide are GLP-1 agonists approved for the treatment of T2DM. Several randomized, active and placebo controlled trials examining the efficacy and safety of exenatide and liraglutide both as monotherapy and in combination therapy have been conducted. Both agents have demonstrated improved glycemic control in addition to weight loss and increased beta-cell function. The most common adverse effects are gastrointestinal in nature and appear to be transient. Conclusion: It appears exenatide and liraglutide are safe and effective in the treatment of T2DM and may exhibit effects that make them preferred over other anti-diabetic medications. PMID:22879790

  12. Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells

    PubMed Central

    Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2003-01-01

    Glucagon-like peptide (GLP) 1 is produced through posttranslational processing of proglucagon and acts as a regulator of various homeostatic events. Among its analogs, however, the function of GLP-1-(1–37), synthesized in small amounts in the pancreas, has been unclear. Here, we find that GLP-1-(1–37) induces insulin production in developing and, to a lesser extent, adult intestinal epithelial cells in vitro and in vivo, a process mediated by up-regulation of the Notch-related gene ngn3 and its downstream targets, which are involved in pancreatic endocrine differentiation. These cells became responsive to glucose challenge in vitro and reverse insulin-dependent diabetes after implantation into diabetic mice. Our findings suggest that efficient induction of insulin production in intestinal epithelial cells by GLP-1-(1–37) could represent a new therapeutic approach to diabetes mellitus. PMID:12702762

  13. Physiologic and weight-focused treatment strategies for managing type 2 diabetes mellitus: the metformin, glucagon-like peptide-1 receptor agonist, and insulin (MGI) approach.

    PubMed

    Nadeau, Daniel A

    2013-05-01

    The prevalence of type 2 diabetes mellitus (T2DM) is rising in association with an increase in obesity rates. Current treatment options for patients with T2DM include lifestyle modifications and numerous antidiabetic medications. Despite the availability of effective and well-tolerated treatments, many patients do not achieve recommended glycemic targets. Lack of efficacy is complicated by the wide range of available agents and little specificity in treatment guidelines, thus challenging clinicians to understand the relative benefits and risks of individual options for each patient. In this article, lifestyle intervention strategies and current antidiabetic agents are evaluated for their efficacy, safety, and weight-loss potential. Because of the heterogeneous and progressive nature of T2DM, physicians should advocate approaches that emphasize weight management, limit the risk of hypoglycemia and adverse events, and focus on the core pathophysiologic defects in patients with T2DM. A healthy, plant-based diet that is low in saturated fat and refined carbohydrates but high in whole grains, vegetables, legumes, and fruits, coupled with resistance and aerobic exercise regimens, are recommended for patients with T2DM. When necessary, drug intervention, described in this article as the MGI (metformin, glucagon-like peptide-1 receptor agonist, and insulin) approach, should begin with metformin and progress to the early addition of glucagon-like peptide-1 receptor agonists because of their weight loss potential and ability to target multiple pathophysiologic defects in patients with T2DM. For most patients, treatments that induce weight gain and hypoglycemia should be avoided. Long-acting insulin should be initiated if glycemic control is not achieved with metformin and glucagon-like peptide-1 receptor agonist combination therapy, focusing on long-acting insulin analogs that induce the least weight gain and have the lowest hypoglycemic risk. Ultimately, a patient

  14. The value of short- and long-acting glucagon-like peptide-1 agonists in the management of type 2 diabetes mellitus: experience with exenatide.

    PubMed

    Guo, Xiao-Hui

    2016-01-01

    Only about half of patients with type 2 diabetes treated with antihyperglycemic drugs achieve glycemic control (HbA1c <7%), most commonly due to poor treatment adherence. Glucagon-like peptide-1 (GLP-1) receptor agonists act on multiple targets involved in glucose homeostasis and have a low risk of causing hypoglycemia. While GLP-1 receptor (GLP-1R) agonists share the same mechanism of action, clinical profiles of individual agents differ, particularly between short- and long-acting agents. In this article, recent findings regarding the pharmacology of GLP-1 agonists are reviewed, and the clinical effects of short- versus long-acting agents are compared. Relevant articles were identified through a search of PubMed using the keywords glucagon-like peptide-1, GLP-1, glucagon-like peptide-1 receptor agonist, GLP-1R agonist, and exenatide for publications up to 22 May 2015. Supporting data were obtained from additional searches for albiglutide, dulaglutide, liraglutide and lixisenatide as well as from the bibliographies of key articles. Short-acting GLP-1R agonists produce greater reductions in postprandial glucose levels by slowing gastric emptying, whereas long-acting GLP-1R agonists produce greater reductions in fasting blood glucose by stimulating insulin secretion from the pancreas. These characteristics can be exploited to provide individualized treatment to patients. A large body of evidence supports the benefits of short- and long-acting exenatide as add-on therapy in patients with inadequate glycemic control despite maximum tolerated doses of metformin and/or sulfonylurea. Exenatide is generally well tolerated and no new safety concerns were identified during long-term follow-up of up to 5 years. A limitation of this review of short-and long-acting GLP-1 receptor agonists is that it focuses on exenatide rather than all the drugs in this class. However, the focus on a single molecule helps to avoid any confusion that may be introduced as a result of differences

  15. RANTES (CCL5) reduces glucose-dependent secretion of glucagon-like peptides 1 and 2 and impairs glucose-induced insulin secretion in mice.

    PubMed

    Pais, Ramona; Zietek, Tamara; Hauner, Hans; Daniel, Hannelore; Skurk, Thomas

    2014-08-01

    Type 2 diabetes is associated with elevated circulating levels of the chemokine RANTES and with decreased plasma levels of the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 is a peptide secreted from intestinal L-cells upon nutrient ingestion. It enhances insulin secretion from pancreatic β-cells and protects from β-cell loss but also promotes satiety and weight loss. In search of chemokines that may reduce GLP-1 secretion we identified RANTES and show that it reduces glucose-stimulated GLP-1 secretion in the human enteroendocrine cell line NCI-H716, blocked by the antagonist Met-RANTES, and in vivo in mice. RANTES exposure to mouse intestinal tissues lowers transport function of the intestinal glucose transporter SGLT1, and administration in mice reduces plasma GLP-1 and GLP-2 levels after an oral glucose load and thereby impairs insulin secretion. These data show that RANTES is involved in altered secretion of glucagon-like peptide hormones most probably acting through SGLT1, and our study identifies the RANTES-receptor CCR1 as a potential target in diabetes therapy.

  16. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes.

    PubMed

    Graaf, Chris de; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M; Miller, Laurence J; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M; Yang, Dehua; Brown, Alastair J H; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-10-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. Copyright © 2016 by The Author(s).

  17. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  18. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue.

  19. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone.

  20. A continued saga of Boc5, the first non-peptidic glucagon-like peptide-1 receptor agonist with in vivo activities.

    PubMed

    He, Min; Guan, Ni; Gao, Wei-wei; Liu, Qing; Wu, Xiao-yan; Ma, Da-wei; Zhong, Da-fang; Ge, Guang-bo; Li, Chuan; Chen, Xiao-yan; Yang, Ling; Liao, Jia-yu; Wang, Ming-wei

    2012-02-01

    Glucagon-like peptide-1 (GLP-1)-based therapy presents a promising option for treating type 2 diabetes. However, there are several limitations relative to the peptidic GLP-1 mimetics currently on the market or under development. This concern has led to a continued interest in the search for non-peptidic agonists for GLP-1 receptor (GLP-1R). Here, we briefly review the discovery, characterization and current status of a novel class of cyclobutane-derivative-based non-peptidic agonists for GLP-1R, including Boc5 and its newly discovered analogue WB4-24. Although the oral bioavailability of such compounds still poses great challenges, the progress made so far encourages us to identify a truly 'druggable' small molecule agonist for GLP-1R.

  1. Involvement of Glucagon-Like Peptide-1 in the Regulation of Selective Excretion of Sodium or Chloride Ions by the Kidneys.

    PubMed

    Marina, A S; Kutina, A V; Shakhmatoba, E I; Natochin, Yu V

    2017-02-01

    An increase of total glucagon-like peptide-1 (GLP-1) concentration in the plasma in rats was revealed 5 min after oral, but not intraperitoneal administration of NaCl or Trizma HCl solutions. The increase in GLP-1 level was similar to that after oral glucose administration. After intraperitoneal administration of 2.5% NaCl, GLP-1 mimetic exenatide accelerated natriuresis and urinary chloride excretion. Under conditions of normonatriemia and hyperchloremia induced by injection of 6.7% Trizma HCl, exenatide stimulated chloride excretion and reabsorption of sodium ions in the kidneys. These findings suggest that GLP-1 participates in selective regulation of the balance of sodium and chloride ions.

  2. A strategy for fusion expression and preparation of functional glucagon-like peptide-1 (GLP-1) analogue by introducing an enterokinase cleavage site.

    PubMed

    Liu, Yang; Ren, Limei; Ge, Lingmiao; Cui, Qingxin; Cao, Xiaofang; Hou, Yuanyuan; Bai, Fang; Bai, Gang

    2014-08-01

    KGLP-1, a 31-amino acid glucagon-like peptide-1 (GLP-1) analogue, has a great therapeutic potential for anti-diabetes. In this work, a strategy for expression and purification of functional KGLP-1 peptide has been established. KGLP-1 cDNA was fused with glutathione S-transferase (GST), with an enterokinase cleavage site in the fusion junction. The recombinant fusion protein GST-KGLP-1 was affinity purified via the GST-tag, and then digested with enterokinase. The resulting GST part as well as the enzymes were eliminated by ultra-filtration followed by size exclusion chromatograph. The yield of purified KGLP-1 was approximately 12.1 mg/L, with purity of 96.18 %. The recombinant KGLP-1 was shown to have similar bioactivity as native GLP-1 when evaluated in a Chinese hamster ovary cell line expressing a GLP-1 receptor-egfp reporter gene.

  3. An adaptive, dose-finding, seamless phase 2/3 study of a long-acting glucagon-like peptide-1 analog (dulaglutide): trial design and baseline characteristics.

    PubMed

    Geiger, Mary Jane; Skrivanek, Zachary; Gaydos, Brenda; Chien, Jenny; Berry, Scott; Berry, Donald

    2012-11-01

    Dulaglutide (dula, LY2189265) is a once-weekly glucagon-like peptide-1 analog in development for the treatment of type 2 diabetes mellitus. An adaptive, dose-finding, inferentially seamless phase 2/3 study was designed to support the development of this novel diabetes therapeutic. The study is divided into two stages based on two randomization schemes: a Bayesian adaptive scheme (stage 1) and a fixed scheme (stage 2). Stage 1 of the trial employs an adaptive, dose-finding design to lead to a dula dose-selection decision or early study termination due to futility. If dose selection occurs, the study proceeds to stage 2 to allow continued evaluation of the selected dula doses. At completion, the entire study will serve as a confirmatory phase 3 trial. The final study design is discussed, along with specifics pertaining to the actual execution of this study and selected baseline characteristics of the participants. © 2012 Diabetes Technology Society.

  4. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  5. Effects of the once-weekly glucagon-like peptide-1 receptor agonist dulaglutide on ambulatory blood pressure and heart rate in patients with type 2 diabetes mellitus.

    PubMed

    Ferdinand, Keith C; White, William B; Calhoun, David A; Lonn, Eva M; Sager, Philip T; Brunelle, Rocco; Jiang, Honghua H; Threlkeld, Rebecca J; Robertson, Kenneth E; Geiger, Mary Jane

    2014-10-01

    Glucagon-like peptide-1 receptor agonists, used to treat type 2 diabetes mellitus, are associated with small reductions in systolic blood pressure (SBP) and increases in heart rate. However, findings based on clinic measurements do not adequately assess a drug's 24-hour pharmacodynamic profile. The effects of dulaglutide, a once-weekly glucagon-like peptide-1 receptor agonist, on BP and heart rate were investigated using ambulatory BP monitoring. Patients (n=755; 56±10 years; 81% white; 48% women), with type 2 diabetes mellitus, taking ≥1 oral antihyperglycemic medication, with a clinic BP between 90/60 and 140/90 mm Hg were randomized to dulaglutide (1.5 or 0.75 mg) or placebo subcutaneously for 26 weeks. Ambulatory BP monitoring was performed at baseline and at 4, 16, and 26 weeks. The primary end point was change from baseline to week 16 in mean 24-hour SBP, a tree gatekeeping strategy compared the effects of dulaglutide to placebo. Both doses of dulaglutide were noninferior to placebo for changes in 24-hour SBP and diastolic blood pressure, and dulaglutide 1.5 mg significantly reduced SBP (least squares mean difference [95% confidence interval]), -2.8 mm Hg [-4.6, -1.0]; P≤0.001). Dulaglutide 0.75 mg was noninferior to placebo (1.6 bpm; [0.3, 2.9]; P≤0.02) for 24-hour heart rate (least squares mean difference [95% confidence interval]), but dulaglutide 1.5 mg was not (2.8 bpm [1.5, 4.2]). Dulaglutide 1.5 mg was associated with a reduction in 24-hour SBP and an increase in 24-hour heart rate. The mechanisms responsible for the observed effects remain to be clarified. © 2014 American Heart Association, Inc.

  6. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals.

    PubMed

    Hirano, Tsutomu; Mori, Yusaku

    2016-04-01

    We reported that native incretins, liraglutide and dipeptidyl peptidase-4 inhibitors (DPP-4i) all confer an anti-atherosclerotic effect in apolipoprotein E-null (Apoe (-/-)) mice. We confirmed the anti-atherogenic property of incretin-related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP-4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol-fed rabbits. DPP-4i showed an anti-atherosclerotic effect in Apoe (-/-) mice mainly through the actions of glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP-4i on atherosclerosis in diabetic Apoe (-/-) mice, suggesting an incretin-independent mechanism. Exendin-4 and glucose-dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules, such as interleukin-1β, interleukin-6 and tumor necrosis factor-α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8-bromo-cyclic adenosine monophosphate or forskolin. DPP-4i substantially suppressed the lipopolysaccharide-induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP-4i more strongly suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation in a receptor-dependent manner, which was associated with the downregulation of acyl-coenzyme A cholesterol acyltransferase-1 and CD36, as

  7. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice

    PubMed Central

    Chen, Desu; Liao, Jiayu; Li, Na; Zhou, Caihong; Liu, Qing; Wang, Guangxing; Zhang, Rui; Zhang, Song; Lin, Lilin; Chen, Kaixian; Xie, Xin; Nan, Fajun; Young, Andrew A.; Wang, Ming-Wei

    2007-01-01

    Peptidic mimics of the gut hormone glucagon-like peptide (GLP) 1, exemplified by the recently approved drug exenatide, show promise as therapies for type 2 diabetes. Such “incretin mimetics” regulate glucose appearance in the plasma and can restore glucose-stimulated insulin secretion without excess risk of hypoglycemia. The need for injection, which may limit the use of peptidic GLP-1 receptor (GLP-1R) agonists, has driven largely unsuccessful efforts to find smaller molecules. The failure to identify orally effective agonists has instead promoted the indirect approach of inhibiting the GLP-1-degrading enzyme dipeptidyl peptidase IV. Here we report a nonpeptidic GLP-1R agonist with sufficient activity to evoke effects in whole animals, including antidiabetic efficacy in db/db mice. Two substituted cyclobutanes (S4P and Boc5) were developed after screening a compound library against a cell line stably cotransfected with GLP-1R and a cAMP-responsive reporter. Each bound to GLP-1R and increased intracellular cAMP. Agonist effects were blocked by the GLP-1R antagonist exendin(9–39). Boc5 amplified glucose-stimulated insulin secretion in isolated rat islets. Both i.p. and oral administration of Boc5 dose-dependently inhibited food intake in mice, an effect that could be blocked by pretreatment with exendin(9–39). Daily injections of Boc5 into db/db mice reduced HbA1c to nondiabetic values, an effect not observed in ad libitum-fed or pair-fed diabetic controls. Thus, Boc5 behaved as a full GLP-1 mimetic in vitro and in vivo. The chemical genus represented by Boc5 may prompt the exploration of orally available GLP-1R agonists with potential utility in diabetes and obesity. PMID:17213311

  8. Evaluating preferences for profiles of glucagon-like peptide-1 receptor agonists among injection-naive type 2 diabetes patients in Japan

    PubMed Central

    Gelhorn, Heather L; Bacci, Elizabeth D; Poon, Jiat Ling; Boye, Kristina S; Suzuki, Shuichi; Babineaux, Steven M

    2016-01-01

    Objective The objective of this study was to use a discrete choice experiment (DCE) to estimate patients’ preferences for the treatment features, safety, and efficacy of two specific glucagon-like peptide-1 receptor agonists, dulaglutide and liraglutide, among patients with type 2 diabetes mellitus (T2DM) in Japan. Methods In Japan, patients with self-reported T2DM and naive to treatment with self-injectable medications were administered a DCE through an in-person interview. The DCE examined the following six attributes of T2DM treatment, each described by two levels: “dosing frequency”, “hemoglobin A1c change”, “weight change”, “type of delivery system”, “frequency of nausea”, and “frequency of hypoglycemia”. Part-worth utilities were estimated using logit models and were used to calculate the relative importance (RI) of each attribute. A chi-square test was used to determine the differences in preferences for the dulaglutide versus liraglutide profiles. Results The final evaluable sample consisted of 182 participants (mean age: 58.9 [standard deviation =10.0] years; 64.3% male; mean body mass index: 26.1 [standard deviation =5.0] kg/m2). The RI values for the attributes in rank order were dosing frequency (44.1%), type of delivery system (26.3%), frequency of nausea (15.1%), frequency of hypoglycemia (7.4%), weight change (6.2%), and hemoglobin A1c change (1.0%). Significantly more participants preferred the dulaglutide profile (94.5%) compared to the liraglutide profile (5.5%; P<0.0001). Conclusion This study elicited the preferences of Japanese T2DM patients for attributes and levels representing the actual characteristics of two existing glucagon-like peptide-1 receptor agonists. In this comparison, dosing frequency and type of delivery system were the two most important characteristics, accounting for >70% of the RI. These findings are similar to those of a previous UK study, providing information about patients’ preferences that

  9. Prophylactic effects of the glucagon-like Peptide-1 analog liraglutide on hyperglycemia in a rat model of type 2 diabetes mellitus associated with chronic pancreatitis and obesity.

    PubMed

    Nagakubo, Dai; Shirai, Mitsuyuki; Nakamura, Yuki; Kaji, Noriyuki; Arisato, Chika; Watanabe, Sena; Takasugi, Ayami; Asai, Fumitoshi

    2014-04-01

    The objective of this study was to investigate the effects of liraglutide, an analog of human glucagon-like peptide 1 (GLP1), on WBN/Kob-Lepr(fa) (fa/fa) rats, which spontaneously develop type 2 diabetes mellitus with pancreatic disorder and obesity. Male fa/fa rats (age, 7 wk) were allocated into 4 groups and received liraglutide (37.5, 75, 150 μg/kg SC) or saline (control group) once daily for 4 wk. All rats in the control group became overweight and developed hyperglycemia as they aged. Although the rats given liraglutide showed a dose-dependent reduction in food intake, no significant effects on body weight or fat content occurred. In the liraglutide groups, the development of hyperglycemia was suppressed, even as plasma insulin concentrations increased in a dose-dependent manner. Intravenous glucose tolerance testing of the liraglutide-treated rats confirmed improvement of glucose tolerance and enhanced insulin secretion. Histologic examination revealed increased numbers of pancreatic β-cell type islet cells and increased proliferation of epithelial cells of the small ducts in the liraglutide-treated groups. Although our study did not reveal a significant decrease in obesity after liraglutide administration, the results suggest a marked antidiabetic effect characterized by increased insulin secretion in fa/fa rats with pancreatic disorders.

  10. Effects of exogenous glucagon-like peptide-1 on the blood pressure, heart rate, mesenteric blood flow, and glycemic responses to intraduodenal glucose in healthy older subjects.

    PubMed

    Trahair, Laurence G; Horowitz, Michael; Hausken, Trygve; Feinle-Bisset, Christine; Rayner, Christopher K; Jones, Karen L

    2014-12-01

    Studies relating to the cardiovascular effects of glucagon-like peptide-1 (GLP-1) and its agonists, which slow gastric emptying, have not discriminated between fasting and postprandial, blood pressure (BP) and heart rate (HR). To determine whether exogenous GLP-1 modulates the effects of an intraduodenal (ID) glucose infusion on BP, HR, and splanchnic blood flow in healthy older subjects. A double-blind randomized trial was conducted. Community-dwelling residents attended a clinical research laboratory. Ten healthy "older" subjects (9 male, 1 female; age 73.2 ± 1.5 y) were studied. Intravenous infusion of GLP-1 (0.9 pmol/kg/min), or saline (0.9%) for 90 min (t = -30-60 min). Between t = 0-60 min, ID glucose was infused at 3 kcal/min. BP, HR, superior mesenteric artery (SMA) flow, blood glucose, and serum insulin were measured. During the fasting period (t = -30-0 min), GLP-1 had no effect on BP or HR. In response to ID glucose (t = 0-60 min), systolic BP decreased (P < .001), and both HR (P < .001) and SMA flow (P < .05) increased, on both days. GLP-1 attenuated the maximum decrease in systolic BP (P < .05), tended to increase HR (P = .09), and increased SMA flow (P < .01). GLP-1 diminished the glycemic response (P < .05). In healthy older subjects, acute administration of GLP-1 attenuates the hypotensive response to ID glucose, and potentiates the increase in SMA flow.

  11. Glucagon-like peptide-1 protects human islets against cytokine-mediated β-cell dysfunction and death: a proteomic study of the pathways involved.

    PubMed

    Rondas, Dieter; Bugliani, Marco; D'Hertog, Wannes; Lage, Kasper; Masini, Mathilde; Waelkens, Etienne; Marchetti, Piero; Mathieu, Chantal; Overbergh, Lut

    2013-09-06

    Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.

  12. Acute effects of the glucagon-like peptide-1 receptor agonist, exenatide, on blood pressure and heart rate responses to intraduodenal glucose infusion in type 2 diabetes.

    PubMed

    Thazhath, Sony S; Marathe, Chinmay S; Wu, Tongzhi; Chang, Jessica; Khoo, Joan; Kuo, Paul; Checklin, Helen L; Bound, Michelle J; Rigda, Rachael S; Horowitz, Michael; Jones, Karen L; Rayner, Christopher K

    2017-01-01

    To evaluate the effects of the glucagon-like peptide-1 receptor agonist, exenatide, on blood pressure and heart rate during an intraduodenal glucose infusion in type 2 diabetes. Nine subjects with type 2 diabetes were randomised to receive intravenous exenatide or saline control in a crossover design. Glucose (3 kcal min(-1)) was infused via an intraduodenal manometry catheter for 60 min. Blood pressure, heart rate, and the frequency and amplitude of duodenal pressure waves were measured at regular intervals. Gastrointestinal symptoms were monitored using 100 mm visual analogue scales. During intraduodenal glucose infusion (0-60 min), diastolic (p(0-60) = 0.03) and mean arterial (p(0-60) = 0.03) blood pressures and heart rate (p(0-60) = 0.06; p(0-120) = 0.03)) were higher with exenatide compared to placebo. The increase in the area under the curve for diastolic blood pressure and mean arterial blood pressure was related directly to the suppression of the duodenal motility index with exenatide compared to control (p = 0.007 and 0.04, respectively). In type 2 diabetes, intravenous exenatide increases mean arterial blood pressure and heart rate during an intraduodenal glucose infusion, supporting the need for further research with exenatide for its potential use in postprandial hypotension. © The Author(s) 2016.

  13. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide.

    PubMed

    Milicevic, Z; Anglin, G; Harper, K; Konrad, R J; Skrivanek, Z; Glaesner, W; Karanikas, C A; Mace, K

    2016-05-01

    Therapeutic administration of peptides may result in anti-drug antibody (ADA) formation, hypersensitivity adverse events (AEs) and reduced efficacy. As a large peptide, the immunogenicity of once-weekly glucagon-like peptide-1 (GLP-1) receptor agonist dulaglutide is of considerable interest. The present study assessed the incidence of treatment-emergent dulaglutide ADAs, hypersensitivity AEs, injection site reactions (ISRs), and glycaemic control in ADA-positive patients in nine phase II and phase III trials (dulaglutide, N = 4006; exenatide, N = 276; non-GLP-1 comparators, N = 1141). Treatment-emergent dulaglutide ADAs were detected using a solid-phase extraction acid dissociation binding assay. Neutralizing ADAs were detected using a cell-based assay derived from human endothelial kidney cells (HEK293). A total of 64 dulaglutide-treated patients (1.6% of the population) tested ADA-positive versus eight (0.7%) from the non-GLP-1 comparator group. Of these 64 patients, 34 (0.9%) had dulaglutide-neutralizing ADAs, 36 (0.9%) had native-sequence GLP-1 (nsGLP-1) cross-reactive ADAs and four (0.1%) had nsGLP-1 neutralization ADAs. The incidence of hypersensitivity AEs and ISRs was similar in the dulaglutide versus placebo groups. No dulaglutide ADA-positive patient reported hypersensitivity AEs. Because of the low incidence of ADAs, it was not possible to establish their effect on glycaemic control.

  14. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner.

    PubMed

    Zhao, Hejun; Wei, Rui; Wang, Liang; Tian, Qing; Tao, Ming; Ke, Jing; Liu, Ye; Hou, Wenfang; Zhang, Lin; Yang, Jin; Hong, Tianpei

    2014-06-15

    Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.

  15. Glucagon-like peptide-1 cleavage product GLP-1(9-36) amide rescues synaptic plasticity and memory deficits in Alzheimer's disease model mice.

    PubMed

    Ma, Tao; Du, Xueliang; Pick, Joseph E; Sui, Guangzhi; Brownlee, Michael; Klann, Eric

    2012-10-03

    Glucagon-like peptide-1 (GLP-1) is an endogenous intestinal peptide that enhances glucose-stimulated insulin secretion. Its natural cleavage product GLP-1(9-36)(amide) possesses distinct properties and does not affect insulin secretion. Here we report that pretreatment of hippocampal slices with GLP-1(9-36)(amide) prevented impaired long-term potentiation (LTP) and enhanced long-term depression induced by exogenous amyloid β peptide Aβ((1-42)). Similarly, hippocampal LTP impairments in amyloid precursor protein/presenilin 1 (APP/PS1) mutant mice that model Alzheimer's disease (AD) were prevented by GLP-1(9-36)(amide). In addition, treatment of APP/PS1 mice with GLP-1(9-36)(amide) at an age at which they display impaired spatial and contextual fear memory resulted in a reversal of their memory defects. At the molecular level, GLP-1(9-36)(amide) reduced elevated levels of mitochondrial-derived reactive oxygen species and restored dysregulated Akt-glycogen synthase kinase-3β signaling in the hippocampus of APP/PS1 mice. Our findings suggest that GLP-1(9-36)(amide) treatment may have therapeutic potential for AD and other diseases associated with cognitive dysfunction.

  16. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases.

    PubMed

    Calsolaro, Valeria; Edison, Paul

    2015-12-01

    The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the incretin family, and its receptors (GLP-1Rs) can be found in pancreatic cells and in vascular endothelium. Interestingly, GLP-1Rs are found in the neuronal cell body and dendrites in the central nervous system (CNS), in particular in the hypothalamus, hippocampus, cerebral cortex and olfactory bulb. Several studies have shown the importance of both insulin and GLP-1 signalling on cognitive function, and many preclinical studies have been performed to evaluate the potential protective role of GLP-1 on the brain. Here we review the underlying mechanism of insulin and GLP-1 signalling in the CNS, as well as the preclinical data for the use of GLP-1 analogues such as liraglutide, exenatide and lixisenatide in neurodegenerative diseases.

  17. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    PubMed

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.

  18. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  19. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    PubMed Central

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  20. [Construction of yeast strains expressing long-acting glucagon-like peptide-1 (GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model].

    PubMed

    Ri, Wu; Chao, Ma; Xiaodan, Li; Huikun, Duan; Yanli, Ji; Yu, Wang; Pingzhe, Jiang; Haisong, Wang; Peipei, Tu; Miao, Li; Ganggang, Ni; Baicheng, Ma; Minggang, Li

    2015-02-01

    Probiotics, i.e., bacteria expressing therapeutic peptides (protein), are used as a new type of orally administrated biologic drugs to treat diseases. To develop yeast strains which could effectively prevent and treat type 2 diabetes mellitus, we firstly constructed the yeast integrating plasmid pNK1-PGK which could successfully express green fluorescent protein (GFP) in Saccharomyces cerevisiae. The gene encoding ten tandem repeats of glucagon-like peptide-1(10 × GLP-1) was cloned into the vector pNK1-PGK and the resulting plasmids were then transformed into the S. cerevisiae INVSc1. The long-acting GLP-1 hypoglycemic yeast (LHY) which grows rapidly and expresses 10 × GLP-1 stably was selected by nutrition screening and Western blotting. The amount of 10 × GLP-1 produced by LHY reached 1.56 mg per gram of wet cells. Moreover, the oral administration of LHY significantly reduced blood glucose level in type 2 diabetic mice induced by streptozotocin plus high fat and high sugar diet.

  1. Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity.

    PubMed

    Huotari, Anne; Xu, Wujun; Mönkäre, Juha; Kovalainen, Miia; Herzig, Karl-Heinz; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2013-09-15

    Recently, mesoporous silicon (PSi) microparticles have been shown to extend the duration of action of peptides, reducing the need for frequent injections. Glucagon-like peptide 1 (GLP-1) is a potential novel treatment for type 2 diabetes. The aim of this study was to evaluate whether GLP-1 loading into PSi microparticles reduce blood glucose levels over an extended period. GLP-1 (pI 5.4) was loaded and released from the negatively charged thermally oxidized (TOPSi, pI 1.8) and thermally carbonized (TCPSi, pI 2.6) PSi microparticles and from the novel positively charged amine modified microparticles, designated as TOPSi-NH2-D (pI 8.8) and TCPSi-NH2-D (pI 8.8), respectively. The adsorption of GLP-1 onto the PSi microparticles could be increased 3-4-fold by changing the PSi surface charge from negative to positive, indicating that the positive surface charge of PSi promoted an electrostatic interaction between the negatively charged peptide. All the GLP-1 loaded PSi microparticles lowered the blood glucose levels after a single s.c. injection but surprisingly, TOPSi-NH2-D and TCPSi-NH2-D were not able to prolong the effect when compared to TOPSi, TCPSi or GLP-1 solution. However, TOPSi-NH2-D and TCPSi-NH2-D microparticles were able to carry improved payloads of active GLP-1 encouraging continuing further attempts to achieve sustained release.

  2. Effect of Sodium Glucose Cotransporter 2 Inhibitors With Low SGLT2/SGLT1 Selectivity on Circulating Glucagon-Like Peptide 1 Levels in Type 2 Diabetes Mellitus

    PubMed Central

    Takebayashi, Kohzo; Inukai, Toshihiko

    2017-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that improve glycemic control by inhibiting reabsorption of glucose filtered through the renal glomerulus. Use of drugs in this class has increased because of their effect of decreasing body weight and a low risk for hypoglycemia, in addition to a relatively strong glucose-lowering effect. SGLT2 inhibitors such as canagliflozin and sotagliflozin (a SGLT1/SGLT2 dual inhibitor) also have a mild or moderate intestinal and renal SGLT1 inhibitory effect because of their relatively weak selectivity for SGLT2 over SGLT1. Recent evidence shows that these SGLT2 inhibitors with low SGLT2/SGLT1 selectivity elevate the level of circulating glucagon like peptide-1 (GLP-1), an incretin hormone that promotes insulin secretion in pancreatic β cells. This effect probably occurs partly via inhibition of intestinal SGLT1, and the elevation of active GLP-1 levels is especially apparent when these drugs are co-administered with dipeptidyl peptidase 4 (DPP4) inhibitors. These findings suggest that a combination of canagliflozin or sotagliflozin and a DPP4 inhibitor can provide a beneficial effect associated with elevation of circulating active GLP-1 and may serve as a treatment for patients with type 2 diabetes. PMID:28811850

  3. Effect of Sodium Glucose Cotransporter 2 Inhibitors With Low SGLT2/SGLT1 Selectivity on Circulating Glucagon-Like Peptide 1 Levels in Type 2 Diabetes Mellitus.

    PubMed

    Takebayashi, Kohzo; Inukai, Toshihiko

    2017-09-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that improve glycemic control by inhibiting reabsorption of glucose filtered through the renal glomerulus. Use of drugs in this class has increased because of their effect of decreasing body weight and a low risk for hypoglycemia, in addition to a relatively strong glucose-lowering effect. SGLT2 inhibitors such as canagliflozin and sotagliflozin (a SGLT1/SGLT2 dual inhibitor) also have a mild or moderate intestinal and renal SGLT1 inhibitory effect because of their relatively weak selectivity for SGLT2 over SGLT1. Recent evidence shows that these SGLT2 inhibitors with low SGLT2/SGLT1 selectivity elevate the level of circulating glucagon like peptide-1 (GLP-1), an incretin hormone that promotes insulin secretion in pancreatic β cells. This effect probably occurs partly via inhibition of intestinal SGLT1, and the elevation of active GLP-1 levels is especially apparent when these drugs are co-administered with dipeptidyl peptidase 4 (DPP4) inhibitors. These findings suggest that a combination of canagliflozin or sotagliflozin and a DPP4 inhibitor can provide a beneficial effect associated with elevation of circulating active GLP-1 and may serve as a treatment for patients with type 2 diabetes.

  4. Application of Adaptive Design Methodology in Development of a Long-Acting Glucagon-Like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

    PubMed Central

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda

    2012-01-01

    Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775

  5. Effects of insulin and the glucagon-like peptide 1 receptor agonist liraglutide on the kidney proteome in db/db mice.

    PubMed

    Liljedahl, Leena; Norlin, Jenny; McGuire, James N; James, Peter

    2017-03-01

    Diabetes mellitus (DM) is a worldwide disease that affects 9% of the adult world population and type 2 DM accounts for 90% of those. A common consequence of DM is kidney complications, which could lead to kidney failure. We studied the potential effects of treatment with insulin and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide on the diabetic kidney proteome through the use of the db/db mouse model system and mass spectrometry (MS). Multivariate analyses revealed distinct effects of insulin and liraglutide on the db/db kidney proteome, which was seen on the protein levels of, for example, pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α (PCBD1), neural precursor cell expressed developmentally down-regulated-8 (NEDD8), transcription elongation factor-B polypeptide-1 (ELOC) and hepcidin (HEPC). Furthermore, the separation of the insulin, liraglutide and vehicle db/db mouse groups in multivariate analyses was not mainly related to the albumin excretion rate (AER) or the level of glycated hemoglobin A1c (HbA1c%) in the mice. In summary, we show that insulin and liraglutide give rise to separate protein profiles in the db/db mouse kidney.

  6. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors

    PubMed Central

    Mietlicki-Baase, Elizabeth G.; Ortinski, Pavel I.; Rupprecht, Laura E.; Olivos, Diana R.; Alhadeff, Amber L.; Pierce, R. Christopher

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation in the ventral tegmental area (VTA) is physiologically relevant for the control of palatable food intake. Here, we tested whether the food intake-suppressive effects of VTA GLP-1R activation are mediated by glutamatergic signaling within the VTA. Intra-VTA injections of the GLP-1R agonist exendin-4 (Ex-4) reduced palatable high-fat food intake in rats primarily by reducing meal size; these effects were mediated in part via glutamatergic AMPA/kainate but not NMDA receptor signaling. Additional behavioral data indicated that GLP-1R expressed specifically within the VTA can partially mediate the intake- and body weight-suppressive effects of systemically administered Ex-4, offering the intriguing possibility that this receptor population may be clinically relevant for food intake control. Intra-VTA Ex-4 rapidly increased tyrosine hydroxylase levels within the VTA, suggesting that GLP-1R activation modulates VTA dopaminergic signaling. Further evidence for this hypothesis was provided by electrophysiological data showing that Ex-4 increased the frequency of AMPA-mediated currents and reduced the paired/pulse ratio in VTA dopamine neurons. Together, these data provide novel mechanisms by which GLP-1R agonists in the mesolimbic reward system control for palatable food intake. PMID:24105414

  7. Magnitude and Variability of the Glucagon-Like Peptide-1 Response in Patients With Type 2 Diabetes up to 2 Years Following Gastric Bypass Surgery

    PubMed Central

    Van der Schueren, Bart J.; Homel, Peter; Alam, Mariam; Agenor, Keesandra; Wang, Gary; Reilly, David; Laferrère, Blandine

    2012-01-01

    OBJECTIVE To characterize the magnitude and variance of the change of glucose and glucagon-like peptide-1 (GLP-1) concentrations, and to identify determinants of glucose control up to 2 years after gastric bypass (GBP). RESEARCH DESIGN AND METHODS Glucose and GLP-1 concentrations were measured during an oral glucose challenge before and 1, 12, and 24 months after GBP in 15 severely obese patients with type 2 diabetes. RESULTS Glucose area under the curve from 0 to 180 min (AUC0–180) started decreasing in magnitude (P < 0.05) 1 month after surgery. GLP-1 AUC0–180 increased in magnitude 1 month after GBP (P < 0.05), with increased variance only after 1 year (Pσ2 ≤ 0.001). GLP-1 AUC0–180 was positively associated with insulin AUC0–180 (P = 0.025). CONCLUSIONS The increase in variance of GLP-1 at 1 and 2 years after GBP suggests mechanisms other than proximal gut bypass to explain the enhancement of GLP-1 secretion. The association between GLP-1 and insulin concentrations supports the idea that the incretins are involved in glucose control after GBP. PMID:22124715

  8. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects.

    PubMed

    Lin, J; Hodge, R J; O'Connor-Semmes, R L; Nunez, D J

    2015-10-01

    We investigated the effects of a long-duration glucagon-like peptide-1 (GLP-1) receptor agonist, GSK2374697, on postprandial endogenous total GLP-1 and peptide YY (PYY). Two cohorts of healthy subjects, one normal/overweight and one obese, were randomized to receive GSK2374697 2 mg (n = 8 each) or placebo (n = 4 and n = 2) subcutaneously on days 1, 4 and 7. Samples for plasma endogenous GLP-1 and PYY were collected after breakfast on days -1 and 12. Weighted mean area under the curve (0-4 h) of total GLP-1 and PYY in treated subjects was reduced compared with placebo. The least squares mean difference for change from baseline was -1.24 pmol/l [95% confidence interval (CI) -2.33, -0.16] and -4.47 pmol/l (95% CI -8.74, -0.20) for total GLP-1 and PYY, respectively, in normal/overweight subjects (p < 0.05 for both), and -1.56 (95% CI -2.95, -0.16) and -3.02 (95% CI -8.58, 2.55), respectively, in obese subjects (p < 0.05 for GLP-1). In healthy subjects, GSK2374697 reduced postprandial total GLP-1 and PYY levels, suggesting feedback suppression of enteroendocrine L-cell secretion of these peptides.

  9. New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1).

    PubMed

    Yu, Zhiwen; Jin, Tianru

    2010-01-01

    The proglucagon gene (gcg) encodes both glucagon and glucagon-like peptide-1 (GLP-1), produced in pancreatic alpha cells and intestinal endocrine L cells, respectively. The incretin hormone GLP-1 stimulates insulin secretion and pro-insulin gene transcription. GLP-1 also enhances pancreatic beta-cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. A long-term effective GLP-1 receptor agonist, Byetta, has now been developed as the drug in treating type II diabetes and potentially other metabolic disorders. The expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP, and the crosstalk between PKA and the Wnt signaling pathway, are involved in cAMP-stimulated gcg transcription and GLP-1 production as well. Finally, functions of GLP-1 in pancreatic beta cells are also mediated by PKA, Epac, as well as the effector of the Wnt signaling pathway. Together, these novel findings bring us a new insight into the role of cAMP in the production and function of the incretin hormone GLP-1.

  10. Synthesis and Evaluation of a Series of Long-Acting Glucagon-Like Peptide-1 (GLP-1) Pentasaccharide Conjugates for the Treatment of Type 2 Diabetes.

    PubMed

    Irwin, Nigel; Patterson, Steven; de Kort, Martin; Moffett, R Charlotte; Wisse, Jeffry A J; Dokter, Wim H A; Bos, Ebo S; Miltenburg, André M M; Flatt, Peter R

    2015-08-01

    The present study details the development of a family of novel D-Ala(8) glucagon-like peptide-1 (GLP-1) peptide conjugates by site specific conjugation to an antithrombin III (ATIII) binding carrier pentasaccharide through tetraethylene glycol linkers. All conjugates were found to possess potent insulin-releasing activity. Peptides with short linkers (<25 atoms) conjugated at Lys(34) and Lys(37) displayed strong GLP-1 receptor (GLP-1-R) binding affinity. All D-Ala(8) GLP-1 conjugates exhibited prominent glucose-lowering action. Biological activity of the Lys(37) short-linker peptide was evident up to 72 h post-injection. In agreement, the pharmacokinetic profile of this conjugate (t1/2 , 11 h) was superior to that of the GLP-1-R agonist, exenatide. Once-daily injection of the Lys(37) short-linker peptide in ob/ob mice for 21 days significantly decreased food intake and improved HbA1c and glucose tolerance. Islet size was decreased, with no discernible change in islet number. The beneficial effects of the Lys(37) short-linker peptide were similar to or better than either exenatide or liraglutide, another GLP-1-R agonist. In conclusion, GLP-1 peptides conjugated to an ATIII binding carrier pentasaccharide have a substantially prolonged bioactive profile compatible for possible once-weekly treatment of type 2 diabetes in humans.

  11. Self-inducible secretion of glucagon-like peptide-1 (GLP-1) that allows MIN6 cells to maintain insulin secretion and insure cell survival.

    PubMed

    Nakashima, Koji; Shimoda, Masashi; Hamamoto, Sumiko; Tatsumi, Fuminori; Hirukawa, Hidenori; Tawaramoto, Kazuhito; Kanda, Yukiko; Kaku, Kohei

    2012-02-26

    Based on the hypothesis that MIN6 cells could produce glucagon-like peptide-1 (GLP-1) to maintain cell survival, we analyzed the effects of GLP-1 receptor agonist, exendin-4 (Ex4), and antagonist, exendin-(9-39) (Ex9) on cell function and cell differentiation. MIN6 cells expressed proglucagon mRNAs and produced GLP-1, which was accelerated by Ex4 and suppressed by Ex9. Moreover, Ex4 further enhanced glucose-stimulated GLP-1 secretion, suggesting autocrine loop-contributed amplification of the GLP-1 signal. Ex4 up-regulated cell differentiation- and cell function-related CREBBP, Pdx-1, Pax6, proglucagon, and PC1/3 gene expressions. The confocal laser scanning images revealed that GLP-1 positive cells were dominant in the early stage of cells, but positive for insulin were more prominent in the mature stage of cells. Ex4 accelerated cell viability, while Ex9 and anti-GLP-1 receptor antibody enhanced cell apoptosis. MIN6 cells possess a mechanism of GLP-1 signal amplification in an autocrine fashion, by which the cells maintained insulin production and cell survival.

  12. Insulinotropic toxins as molecular probes for analysis of glucagon-like peptide-1 receptor-mediated signal transduction in pancreatic β-cells

    PubMed Central

    Holz, George G.; Leech, Colin A.; Habener, Joel F.

    2010-01-01

    Cholera toxin, pertussis toxin, mastoparan, maitotoxin, and α-latrotoxin are complex protein or polyether-based toxins of bacterial, insect, or phytoplankton origin that act with high potency at the endocrine pancreas to stimulate secretion of insulin from β-cells located in the islets of Langerhans. The remarkable insulinotropic properties of these toxins have attracted considerable attention by virtue of their use as selective molecular probes for analyses of β-cell stimulus-secretion coupling. Targets of the toxins include heptahelical cell surface receptors, GTP-binding proteins, ion channels, Ca2+ stores, and the exocytotic secretory apparatus. Here we review the value of insulinotropic toxins from the perspective of their established use in the study of signal transduction pathways activated by the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). Our analysis of one insulinotropic toxin (α-latrotoxin) leads us to conclude that there exists a process of molecular mimicry whereby the ‘lock and key’analogy inherent to hormone-receptor interactions is reproduced by a toxin related in structure to GLP-1. PMID:11086221

  13. Involvement of glucagon-like peptide 1 in the glucose homeostasis regulation in obese and pituitary-dependent hyperadrenocorticism affected dogs.

    PubMed

    Miceli, D D; Cabrera Blatter, M F; Gallelli, M F; Pignataro, O P; Castillo, V A

    2014-10-01

    The incretin glucagon-like peptide 1 (GLP-1) enhances insulin secretion. The aim of this study was to assess GLP-1, glucose and insulin concentrations, Homeostatic Model Assessment (HOMA insulin sensitivity and HOMA β-cell function) in dogs with pituitary-dependent hyperadrenocorticism (PDH), and compare these values with those in normal and obese dogs. The Oral Glucose Tolerance Test was performed and the glucose, GLP-1 and insulin concentrations were evaluated at baseline, and after 15, 30, 60 and 120 minutes. Both basal concentration and those corresponding to the subsequent times, for glucose, GLP-1 and insulin, were statistically elevated in PDH dogs compared to the other groups. Insulin followed a similar behaviour together with variations of GLP-1. HOMA insulin sensitivity was statistically decreased and HOMA β-cell function increased in dogs with PDH. The higher concentrations of GLP-1 in PDH could play an important role in the impairment of pancreatic β-cells thus predisposing to diabetes mellitus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Glucagon-Like Peptide-1 Receptor in the Ventromedial Hypothalamus Reduces Short-Term Food Intake in Male Mice by Regulating Nutrient Sensor Activity.

    PubMed

    Burmeister, Melissa A; Brown, Jacob D; Ayala, Jennifer E; Stoffers, Doris A; Sandoval, Darleen A; Seeley, Randy J; Ayala, Julio E

    2017-08-15

    Pharmacological activation of the glucagon-like peptide 1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent upon AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR). We found that pharmacological inhibition of glycolysis and, thus, activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not ACC, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and CHOK1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH Glp1r conferred no changes in energy balance in either chow- or high fat diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally-dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  15. Application of adaptive design methodology in development of a long-acting glucagon-like peptide-1 analog (dulaglutide): statistical design and simulations.

    PubMed

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H; Gaydos, Brenda

    2012-11-01

    Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm-including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. © 2012 Diabetes Technology Society.

  16. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells.

    PubMed

    Perry, TracyAnn; Lahiri, Debomoy K; Chen, Demao; Zhou, Jie; Shaw, Karen T Y; Egan, Josephine M; Greig, Nigel H

    2002-03-01

    The insulinotropic hormone glucagon-like peptide-1 (7-36)-amide (GLP-1) has potent effects on glucose-dependent insulin secretion, insulin gene expression, and pancreatic islet cell formation and is presently in clinical trials as a therapy for type 2 diabetes mellitus. We report on the effects of GLP-1 and two of its long-acting analogs, exendin-4 and exendin-4 WOT, on neuronal proliferation and differentiation, and on the metabolism of two neuronal proteins in the rat pheochromocytoma (PC12) cell line, which has been shown to express the GLP-1 receptor. We observed that GLP-1 and exendin-4 induced neurite outgrowth in a manner similar to nerve growth factor (NGF), which was reversed by coincubation with the selective GLP-1 receptor antagonist exendin (9-39). Furthermore, exendin-4 could promote NGF-initiated differentiation and may rescue degenerating cells after NGF-mediated withdrawal. These effects were induced in the absence of cellular dysfunction and toxicity as quantitatively measured by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays, respectively. Our findings suggest that such peptides may be used in reversing or halting the neurodegenerative process observed in neurodegenerative diseases, such as the peripheral neuropathy associated with type 2 diabetes mellitus and Alzheimer's and Parkinson's diseases. Due to its novel twin action, GLP-1 and exendin-4 have therapeutic potential for the treatment of diabetic peripheral neuropathy and these central nervous system disorders.

  17. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    PubMed

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  18. Desensitization of glucagon-like peptide 1 receptors in insulin-secreting beta TC3 cells: role of PKA-independent mechanisms.

    PubMed Central

    Gromada, J.; Dissing, S.; Rorsman, P.

    1996-01-01

    1. The cellular processes involved in the desensitization of the glucagon-like peptide 1 receptors were investigated by measurements of the glucagon-like peptide 1(7-36)amide (GLP-1(7-36)amide)-induced increases in intracellular free Ca2+ concentration ([Ca2+]i) in insulin-secreting beta TC3 cells. 2. In the presence of 11.2 mM glucose, stimulation with GLP-1(7-36)amide led to a small membrane depolarization (< 10 mV), induction of electrical activity and a rapid increase in [Ca2+]i. The increase in [Ca2+]i was not observed in the presence of the L-type Ca(2+)-channel antagonist nifedipine. However, nifedipine was ineffective when applied after addition of GLP-1(7-36)amide. 3. The increase in [Ca2+]i evoked by GLP-1-(7-36)amide was transient and even in the continued presence of the agonist, [Ca2+]i returned to the basal value within 4-5 min. The latter process was slowed, but not prevented, by inhibition of protein kinase C (PKC) by staurosporine and Ro31-8220. 4. Short pretreatment of the cells with the phorbol ester, 4-beta-phorbol-12-beta-myristate-13-alpha-acetate (PMA), an activator of PKC, reduced the GLP-1(7-36)amide-evoked increase in [Ca2+]i by 75%. This effect of PMA was fully reversed by staurosporine and Ro31-8220. 5. The ability of GLP-1(7-36)amide to increase [Ca2+]i disappeared upon pre-exposure of the cells to the hormone (desensitization). This process was maximal within 5 min of exposure to the agonist. Following removal of the agonist from the medium, the ability to respond to subsequent stimulation by GLP-1(7-36)amide recovered gradually with time; half and complete recovery requiring > 20 min and 60 min, respectively. The desensitizing action of GLP-1(7-36)amide persisted in the presence of either staurosporine or forskolin and did not require an elevation of [Ca2+]i. 6. Our data suggest that the GLP-1(7-36)amide-evoked increase in [Ca2+]i is initiated by Ca(2+)-influx though voltage-dependent and nifedipine-sensitive L-type Ca2+ channels but

  19. l-Glutamine and Whole Protein Restore First-Phase Insulin Response and Increase Glucagon-Like Peptide-1 in Type 2 Diabetes Patients

    PubMed Central

    Samocha-Bonet, Dorit; Chisholm, Don J.; Holst, Jens J.; Greenfield, Jerry R.

    2015-01-01

    l-glutamine triggers glucagon-like peptide-1 (GLP-1) release from L cells in vitro and when ingested pre-meal, decreases postprandial glycaemia and increases circulating insulin and GLP-1 in type 2 diabetes (T2D) patients. We aimed to evaluate the effect of oral l-glutamine, compared with whole protein low in glutamine, on insulin response in well-controlled T2D patients. In a randomized study with a crossover design, T2D patients (n = 10, 6 men) aged 65.1 ± 5.8, with glycosylated hemoglobin (HbA1c) 6.6% ± 0.7% (48 ± 8 mmol/mol), received oral l-glutamine (25 g), protein (25 g) or water, followed by an intravenous glucose bolus (0.3 g/kg) and hyperglycemic glucose clamp for 2 h. Blood was frequently collected for analyses of glucose, serum insulin and plasma total and active GLP-1 and area under the curve of glucose, insulin, total and active GLP-1 excursions calculated. Treatments were tested 1–2 weeks apart. Both l-glutamine and protein increased first-phase insulin response (p ≤ 0.02). Protein (p = 0.05), but not l-glutamine (p = 0.2), increased second-phase insulin response. Total GLP-1 was increased by both l-glutamine and protein (p ≤ 0.02). We conclude that oral l-glutamine and whole protein are similarly effective in restoring first-phase insulin response in T2D patients. Larger studies are required to further investigate the utility of similar approaches in improving insulin response in diabetes. PMID:25811109

  20. Glucagon-like peptide-1 analogue, liraglutide, in experimental cerebral malaria: implications for the role of oxidative stress in cerebral malaria.

    PubMed

    DellaValle, Brian; Hempel, Casper; Staalsoe, Trine; Johansen, Flemming Fryd; Kurtzhals, Jørgen Anders Lindholm

    2016-08-24

    Cerebral malaria from Plasmodium falciparum infection is major cause of death in the tropics. The pathogenesis of the disease is complex and the contribution of reactive oxygen and nitrogen species (ROS/RNS) in the brain is incompletely understood. Insulinotropic glucagon-like peptide-1 (GLP-1) mimetics have potent neuroprotective effects in animal models of neuropathology associated with ROS/RNS dysfunction. This study investigates the effect of the GLP-1 analogue, liraglutide against the clinical outcome of experimental cerebral malaria (ECM) and Plasmodium falciparum growth. Furthermore the role of oxidative stress on ECM pathogenesis is evaluated. ECM was induced in Plasmodium berghei ANKA-infected C57Bl/6j mice. Infected Balb/c (non-cerebral malaria) and uninfected C57Bl/6j mice were included as controls. Mice were treated twice-daily with vehicle or liraglutide (200 μg/kg). ROS/RNS were quantified with in vivo imaging and further analyzed ex vivo. Brains were assayed for cAMP, activation of cAMP response element binding protein (CREB) and nitrate/nitrite. Plasmodium falciparum was cultivated in vitro with increasing doses of liraglutide and growth and metabolism were quantified. The development and progression of ECM was not affected by liraglutide. Indeed, although ROS/RNS were increased in peripheral organs, ROS/RNS generation was not present in the brain. Interestingly, CREB was activated in the ECM brain and may protect against ROS/RNS stress. Parasite growth was not adversely affected by liraglutide in mice or in P. falciparum cultures indicating safety should not be a concern in type-II diabetics in endemic regions. Despite the breadth of models where GLP-1 is neuroprotective, ECM was not affected by liraglutide providing important insight into the pathogenesis of ECM. Furthermore, ECM does not induce excess ROS/RNS in the brain potentially associated with activation of the CREB system.

  1. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-05

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μM OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling*

    PubMed Central

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 μm OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7–36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7–36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7–36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  3. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor.

    PubMed

    Coopman, K; Wallis, R; Robb, G; Brown, A J H; Wilkinson, G F; Timms, D; Willars, G B

    2011-10-01

    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.

  4. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY).

    PubMed

    Steinert, R E; Gerspach, A C; Gutmann, H; Asarian, L; Drewe, J; Beglinger, C

    2011-08-01

    Enteroendocrine cells are thought to directly sense nutrients via α-gustducin coupled taste receptors (originally identified in the oral epithelium) to modulate the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We measured mRNA expression of α-gustducin and T1R3 along the human gut; immunohistochemistry was used to confirm co-localization with GLP-1. Functional implication of sweet taste receptors in glucose-stimulated secretion of GLP-1 and PYY was determined by intragastric infusion of glucose with or without lactisole (a sweet taste receptor antagonist) in 16 healthy subjects. α-gustducin was expressed in a region-specific manner (predominantly in the proximal gut and less in ileum and colon, P < 0.05). Both, T1R3 and α-gustducin were co-localized with GLP-1. Glucose-stimulated secretions of GLP-1 (P = 0.026) and PYY (P = 0.034) were reduced by blocking sweet receptors with lactisole. Key proteins implicated in taste signaling are present in the human gut and co-localized with GLP-1 suggesting that these proteins are functionally linked to peptide secretion from enteroendocrine cells. Glucose-stimulated secretion of GLP-1 and PYY is reduced by a sweet taste antagonist, suggesting the functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of both peptides in humans. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  6. The pivotal role of high glucose-induced overexpression of PKCβ in the appearance of glucagon-like peptide-1 resistance in endothelial cells.

    PubMed

    Pujadas, Gemma; De Nigris, Valeria; La Sala, Lucia; Testa, Roberto; Genovese, Stefano; Ceriello, Antonio

    2016-11-01

    Recently, it has been demonstrated that Glucagon-like peptide-1 (GLP-1) has a protective effect on endothelial cells. Our hypothesis is that this GLP-1 protective effect is partly lost when the cells are exposed to sustained high glucose concentrations. Human umbilical vein endothelial cells (HUVECs) were cultured for 21 days in normal glucose (5 mmol/L, NG) or high glucose (25 mmol/L glucose, HG). GLP-1 (7-37) and Ruboxistaurin were added at 50 and 500 nM, respectively, alone or in combination, 1 h before cell harvesting. Analysis of GLP-1 receptor protein levels, as well as of the gene expression of different ER stress-related genes, proliferation markers, antioxidant cell response-related genes, and PKA subunits, was performed. ROS production was also measured in HUVECs exposed to mentioned treatments. GLP-1 receptor expression was reduced in HUVECs exposed to chronic high glucose concentrations but was partially restored by a chemical PKCβ-specific inhibitor. GLP-1, added as an acute treatment in endothelial cells, had the capacity to induce the expression of Nrf2-detoxifying enzyme targets, to increase transcription levels of scavenger genes, to attenuate the expression of high glucose-induced PKA subunits, ER stress and also the apoptotic phenotype of HUVECs; these effects occured only when high glucose-induced PKCβ overexpression was reduced by Ruboxistaurin. In a similar manner, ROS production induced by high glucose was reduced by GLP-1 in the presence of PKCβ inhibitor. This study suggests that an increase in PKCβ, induced by high glucose, could have a role in endothelial GLP-1 resistance, reducing GLP-1 receptor levels and disrupting the GLP-1 canonical pathway.

  7. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    PubMed

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats.

    PubMed

    Kato, Masaki; Nakanishi, Takenori; Tani, Tsubasa; Tsuda, Takanori

    2017-01-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted by enteroendocrine L cells. Stimulating endogenous GLP-1 secretion by dietary factors is a promising strategy to increase GLP-1 action. Several studies have examined the specific physiological function of wheat protein hydrolysate. Some reports suggested that intake of wheat protein ameliorates hyperglycemia. We hypothesized that wheat protein hydrolysate reduces blood glucose concentration via stimulation of GLP-1 secretion. In this study, we investigated whether wheat protein hydrolysate stimulates GLP-1 secretion and its molecular mechanism in an enteroendocrine L cell line (GLUTag cells), and we examined the effect on glucose tolerance via stimulation of GLP-1 secretion followed by induction of insulin secretion in rats. The low-molecular fraction of wheat protein hydrolysate (LWP) significantly increased GLP-1 secretion, whereas the high-molecular fraction did not. This increase was found to involve activation of the Ca(2+)/calmodulin-dependent kinase II pathway mediated by G protein-coupled receptor family C group 6 subtype A. Moreover, preadministration of LWP ameliorated hyperglycemia via the stimulation of GLP-1 secretion followed by induction of insulin secretion in rats. Furthermore, this LWP-induced glucose-lowering effect was significantly attenuated by the administration of a GLP-1 receptor antagonist. These results demonstrate that LWP significantly increased GLP-1 secretion through activation of the Ca(2+)/calmodulin-dependent kinase II pathway mediated by G protein-coupled receptor family C group 6 subtype A in GLUTag cells. Moreover, preadministration of LWP ameliorated hyperglycemia via the stimulation of GLP-1 secretion followed by induction of insulin secretion in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  10. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis.

    PubMed

    Svegliati-Baroni, Gianluca; Saccomanno, Stefania; Rychlicki, Chiara; Agostinelli, Laura; De Minicis, Samuele; Candelaresi, Cinzia; Faraci, Graziella; Pacetti, Deborah; Vivarelli, Marco; Nicolini, Daniele; Garelli, Paolo; Casini, Alessandro; Manco, Melania; Mingrone, Geltrude; Risaliti, Andrea; Frega, Giuseppe N; Benedetti, Antonio; Gastaldelli, Amalia

    2011-10-01

    High-fat dietary intake and low physical activity lead to insulin resistance, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Recent studies have shown an effect of glucagon-like peptide-1 (GLP-1) on hepatic glucose metabolism, although GLP-1 receptors (GLP-1r) have not been found in human livers. The aim of this study was to investigate the presence of hepatic GLP-1r and the effect of exenatide, a GLP-1 analogue, on hepatic signalling. The expression of GLP-1r was evaluated in human liver biopsies and in the livers of high-fat diet-treated rats. The effect of exenatide (100 nM) was evaluated in hepatic cells of rats fed 3 months with the high-fat diet. GLP-1r is expressed in human hepatocytes, although reduced in patients with NASH. Similarly, in rats with NASH resulted from 3 months of the high-fat diet, we found a decreased expression of GLP-1r and peroxisome proliferator-activated receptor γ (PPARγ), and reduced peroxisome proliferator-activated receptor α (PPARα) activity. Incubation of hepatocytes with exenatide increased PPARγ expression, which also exerted an insulin-sensitizing action by reducing JNK phosphorylation. Moreover, exenatide increased protein kinase A (PKA) activity, Akt and AMPK phosphorylation and determined a PKA-dependent increase of PPARα activity. GLP-1 has a direct effect on hepatocytes, by activating genes involved in fatty acid β-oxidation and insulin sensitivity. GLP-1 analogues could be a promising treatment approach to improve hepatic insulin resistance in patients with NAFLD/NASH. © 2011 John Wiley & Sons A/S.

  11. Effect of exercise combined with glucagon-like peptide-1 receptor agonist treatment on cardiac function: A randomised double-blinded placebo-controlled clinical trial.

    PubMed

    Jørgensen, Peter G; Jensen, Magnus T; Mensberg, Pernille; Storgaard, Heidi; Nyby, Signe; Jensen, Jan S; Knop, Filip K; Vilsbøll, Tina

    2017-02-11

    In patients with type 2 diabetes, both supervised exercise and treatment with the glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1RA) liraglutide may improve cardiac function. We evaluated cardiac function before and after 16 weeks of treatment with the GLP-1RA liraglutide or placebo combined with supervised exercise in 33 dysregulated patients with type 2 diabetes on diet and/or metformin. Early diastolic myocardial tissue velocity was improved by exercise in the placebo group (-7.1 ± 1.6 cm/s (mean ± standard deviation) to -7.7 ± 1.8 cm/s, p = 0.01), but not in the liraglutide group (-7.1 ± 1.4 to -7.0 ± 1.4 cm/s, p = 0.60; between groups: p = 0.02). Similarly, the ratio of early and atrial mitral annular tissue velocities improved in the placebo group (1.0 ± 0.4 to 1.2 ± 0.4, p = 0.003), but not in the liraglutide group (1.0 ± 0.3 to 1.0 ± 0.3, p = 0.87; between groups: p = 0.03). We found no significant differences in heart rate, left ventricular structure or function within or between the groups. In conclusion, addition of liraglutide to exercise in sedentary patients with dysregulated type 2 diabetes may blunt the suggested beneficial effect of exercise on left ventricular diastolic function.

  12. Glucagon-like peptide-1 (GLP-1) increases in plasma and colon tissue prior to estrus and circulating levels change with increasing age in reproductively competent Wistar rats.

    PubMed

    Johnson, Michelle L; Saffrey, M Jill; Taylor, Victoria J

    2017-02-22

    There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32-44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females.

  13. The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction.

    PubMed

    Shannon, Maeve; Green, Brian; Willars, Gary; Wilson, Jodie; Matthews, Natalie; Lamb, Joanna; Gillespie, Anna; Connolly, Lisa

    2017-01-04

    Monosodium glutamate (MSG) is a suspected obesogen with epidemiological evidence positively correlating consumption to increased body mass index and higher prevalence of metabolic syndrome. ELISA and high content analysis (HCA) were employed to examine the disruptive effects of MSG on the secretion of enteroendocrine hormone glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R), respectively. Following 3h MSG exposure of the enteroendocrine pGIP/neo: STC-1 cell line model (500μg/ml) significantly increased GLP-1 secretion (1.8 fold; P≤0.001), however, 72h exposure (500μg/ml) caused a 1.8 fold decline (P≤0.05). Also, 3h MSG exposure (0.5-500μg/ml) did not induce any cytotoxicity (including multiple pre-lethal markers) but 72h exposure at 250-500μg/ml, decreased cell number (11.8-26.7%; P≤0.05), increased nuclear area (23.9-29.8%; P≤0.001) and decreased mitochondrial membrane potential (13-21.6%; P≤0.05). At 500μg/ml, MSG increased mitochondrial mass by 16.3% (P≤0.01). MSG did not agonise or antagonise internalisation of the GLP-1R expressed recombinantly in U2OS cells, following GLP-1 stimulation. In conclusion, 72h exposure of an enteroendocrine cell line at dietary levels of MSG, results in pre-lethal cytotoxicity and decline in GLP-1 secretion. These adverse events may play a role in the pathogenesis of obesity as outlined in the obesogen hypothesis by impairing GLP-1 secretion, related satiety responses and glucose-stimulated insulin release.

  14. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study.

    PubMed

    Luo, Yaping; Pan, Qingqing; Yao, Shaobo; Yu, Miao; Wu, Wenming; Xue, Huadan; Kiesewetter, Dale O; Zhu, Zhaohui; Li, Fang; Zhao, Yupei; Chen, Xiaoyuan

    2016-05-01

    Preoperative localization of insulinoma is a clinical dilemma. We aimed to investigate whether glucagon-like peptide-1 receptor (GLP-1R) PET/CT with (68)Ga-NOTA-MAL-cys(40)-exendin-4 ((68)Ga-NOTA-exendin-4) is efficient in detecting insulinoma. In our prospective cohort study, patients with endogenous hyperinsulinemic hypoglycemia were enrolled. CT, MRI, endoscopic ultrasound, and (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT were done according to standard protocols. GLP-1R PET/CT was performed 30-60 min after the injection of (68)Ga-NOTA-exendin-4. The gold standard for diagnosis was the histopathologic results after surgery. Of 52 recruited patients, 43 patients with histopathologically proven insulinomas were included for the imaging studies. Nine patients did not undergo surgical intervention. (68)Ga-NOTA-exendin-4 PET/CT correctly detected insulinomas in 42 of 43 patients with high tumor uptake (mean SUVavg ± SD, 10.2 ± 4.9; mean SUVmax ± SD, 23.6 ± 11.7), resulting in sensitivity of 97.7%. In contrast, (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT showed a low sensitivity of 19.5% (8/41) in this group of patients; however, it successfully localized the tumor that was false-negative with GLP-1R PET/CT. The sensitivities of CT, MR, and endoscopic ultrasonography were 74.4% (32/43), 56.0% (14/25), and 84.0% (21/25), respectively. (68)Ga-NOTA-exendin-4 PET/CT is a highly sensitive imaging technique for the localization of insulinoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with {sup 18}F-Al labeled Cys{sup 39}-exendin-4

    SciTech Connect

    Mi, Baoming; Xu, Yuping; Pan, Donghui; Wang, Lizhen; Yang, Runlin; Yu, Chunjing; Wan, Weixing; Wu, Yiwei; Yang, Min

    2016-02-26

    Purpose: Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, {sup 18}F-Al labeled exendin-4 analog, {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. Methods: The targeting of {sup 18}F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. Results: The pancreas of healthy rats was readily visualized after administration of {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. Conclusion: The favorable preclinical data indicated that {sup 18}F-Al-NOTA-MAL-Cys{sup 39}-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells.

  16. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  17. Black widow spider α-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones

    PubMed Central

    Holz, George G.; Habener, Joel F.

    2010-01-01

    α-Latrotoxin is a presynaptic neurotoxin isolated from the venom of the black widow spider Latrodectus tredecimguttatus. It exerts toxic effects in the vertebrate central nervous system by depolarizing neurons, by increasing [Ca2+]i and by stimulating uncontrolled exocytosis of neurotransmitters from nerve terminals. The actions of α-latrotoxin are mediated, in part, by a GTP-binding protein-coupled receptor referred to as CIRL or latrophilin. Exendin-4 is also a venom toxin, and it is derived from the salivary gland of the Gila monster Heloderma suspectum. It acts as an agonist at the receptor for glucagon-like peptide-1(7-36)-amide (GLP-1), thereby stimulating secretion of insulin from pancreatic β-cells of the islets of Langerhans. Here is reported a surprising structural homology between α-latrotoxin and exendin-4 that is also apparent amongst all members of the GLP-1-like family of secretagogic hormones (GLP-1, glucagon, vasoactive intestinal polypeptide, secretin, pituitary adenylyl cyclase activating polypeptide). On the basis of this homology, we report the synthesis and initial characterization of a chimeric peptide (Black Widow GLP-1) that stimulates Ca2+ signaling and insulin secretion in human β-cells and MIN6 insulinoma cells. It is also reported here that the GTP-binding protein-coupled receptors for α-latrotoxin and exendin-4 share highly significant structural similarity in their extracellularly-oriented amino-termini. We propose that molecular mimicry has generated conserved structural motifs in secretagogic toxins and their receptors, thereby explaining the evolution of defense or predatory strategies that are shared in common amongst distantly related species including spiders, lizards, and snakes. Evidently, the toxic effects of α-latrotoxin and exendin-4 are explained by their ability to interact with GTP-binding protein-coupled receptors that normally mediate the actions of endogenous hormones or neuropeptides. PMID:9972293

  18. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study

    PubMed Central

    Luo, Yaping; Pan, Qingqing; Yao, Shaobo; Yu, Miao; Wu, Wenming; Xue, Huadan; Kiesewetter, Dale O.; Zhu, Zhaohui; Li, Fang; Zhao, Yupei; Chen, Xiaoyuan

    2017-01-01

    Preoperative localization of insulinoma is a clinical dilemma. We aimed to investigate whether glucagon-like peptide-1 receptor (GLP-1R) PET/CT with 68Ga-NOTA-MAL-cys40-exendin-4 (68Ga-NOTA-exendin-4) is efficient in detecting insulinoma. Methods In our prospective cohort study, patients with endogenous hyperinsulinemic hypoglycemia were enrolled. CT, MRI, endoscopic ultrasound, and 99mTc-hydrazinonicotinamide-TOC SPECT/CT were done according to standard protocols. GLP-1R PET/CT was performed 30–60 min after the injection of 68Ga-NOTA-exendin-4. The gold standard for diagnosis was the histopathologic results after surgery. Results Of 52 recruited patients, 43 patients with histopathologically proven insulinomas were included for the imaging studies. Nine patients did not undergo surgical intervention. 68Ga-NOTA-exendin-4 PET/CT correctly detected insulinomas in 42 of 43 patients with high tumor uptake (mean SUVavg ± SD, 10.2 ± 4.9; mean SUVmax ± SD, 23.6 ± 11.7), resulting in sensitivity of 97.7%. In contrast, 99mTc-hydrazinonicotinamide-TOC SPECT/CT showed a low sensitivity of 19.5% (8/41) in this group of patients; however, it successfully localized the tumor that was false-negative with GLP-1R PET/CT. The sensitivities of CT, MR, and endoscopic ultrasonography were 74.4% (32/43), 56.0% (14/25), and 84.0% (21/25), respectively. Conclusion 68Ga-NOTA-exendin-4 PET/CT is a highly sensitive imaging technique for the localization of insulinoma. PMID:26795291

  19. Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action.

    PubMed

    Scrocchi, L A; Hill, M E; Saleh, J; Perkins, B; Drucker, D J

    2000-09-01

    Leptin and glucagon-like peptide 1 (GLP-1) exhibit opposing actions in the endocrine pancreas. GLP-1 stimulates insulin biosynthesis, secretion, and islet growth, whereas leptin inhibits glucose-dependent insulin secretion and insulin gene transcription. In contrast, GLP-1 and leptin actions overlap in the central nervous system, where leptin has been shown to activate GLP-1 circuits that inhibit food intake. To determine the physiological importance of GLP-1 receptor (GLP-1R)-leptin interactions, we studied islet function and feeding behavior in ob/ob:GLP-1R(-/-) mice. Although GLP-1R actions are thought to be essential for glucose-dependent insulin secretion, the levels of fasting glucose, glycemic excursion after glucose loading, glucose-stimulated insulin, and pancreatic insulin RNA content were similar in ob/ob:GLP-1R(+/+) versus ob/ob:GLP-1R(-/-) mice. Despite evidence linking GLP-1R signaling to the regulation of islet neogenesis and proliferation, ob/ob:GLP-1R(-/-) mice exhibited significantly increased islet numbers and area and an increase in the number of large islets compared with GLP-1R(+/+) or (-/-) mice (P < -0.01 to 0.05). Similarly, growth rates and both shortand long-term control of food intake were comparable in ob/ob:GLP-1R(+/+) versus ob/ob:GLP-1R4(-/-) mice. Furthermore, leptin produced a similar inhibition of food intake in GLP-1R(-/-), ob/ob:GLP-1R(+/+), and ob/ob:GLP1R4(-/-) mice. These findings illustrate that although leptin and GLP-1 actions overlap in the brain and endocrine pancreas, disruption of GLP-1 signaling does not modify the response to leptin or the phenotype of leptin deficiency in the ob/ob mouse, as assessed by long-term control of body weight or the adaptive beta-cell response to insulin resistance in vivo.

  20. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice.

    PubMed

    Koehler, Jacqueline A; Baggio, Laurie L; Lamont, Benjamin J; Ali, Safina; Drucker, Daniel J

    2009-09-01

    Clinical reports link use of the glucagon-like peptide-1 receptor (GLP-1R) agonists exenatide and liraglutide to pancreatitis. However, whether these agents act on the exocrine pancreas is poorly understood. We assessed whether the antidiabetic agents exendin (Ex)-4, liraglutide, the dipeptidyl peptidase-4 inhibitor sitagliptin, or the biguanide metformin were associated with changes in expression of genes associated with the development of experimental pancreatitis. The effects of Ex-4 when administered before or after the initiation of caerulein-induced experimental pancreatitis were determined. The importance of endogenous GLP-1R signaling for gene expression in the exocrine pancreas and the severity of pancreatitis was assessed in Glp1r(-/-) mice. Acute administration of Ex-4 increased expression of egr-1 and c-fos in the exocrine pancreas. Administration of Ex-4 or liraglutide for 1 week increased pancreas weight and induced expression of mRNA transcripts encoding the anti-inflammatory proteins pancreatitis-associated protein (PAP) (RegIIIbeta) and RegIIIalpha. Chronic Ex-4 treatment of high-fat-fed mice increased expression of PAP and reduced pancreatic expression of mRNA transcripts encoding for the proinflammatory monocyte chemotactic protein-1, tumor necrosis factor-alpha, and signal transducer and activator of transcription-3. Sitagliptin and metformin did not significantly change pancreatic gene expression profiles. Ex-4 administered before or after caerulein did not modify the severity of experimental pancreatitis, and levels of pancreatic edema and serum amylase were comparable in caerulein-treated Glp1r(-/-) versus Glp1r(+/+) mice. These findings demonstrate that GLP-1 receptor activation increases pancreatic mass and selectively modulates the expression of genes associated with pancreatitis. However, activation or genetic elimination of GLP-1R signaling does not modify the severity of experimental pancreatitis in mice.

  1. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.

  2. Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight.

    PubMed

    Anderberg, Rozita H; Richard, Jennifer E; Eerola, Kim; López-Ferreras, Lorena; Banke, Elin; Hansson, Caroline; Nissbrandt, Hans; Berqquist, Filip; Gribble, Fiona M; Reimann, Frank; Wernstedt Asterholm, Ingrid; Lamy, Christophe M; Skibicka, Karolina P

    2017-04-01

    Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.

  3. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6.

    PubMed

    Shirazi, Rozita; Palsdottir, Vilborg; Collander, Jim; Anesten, Fredrik; Vogel, Heike; Langlet, Fanny; Jaschke, Alexander; Schürmann, Annette; Prévot, Vincent; Shao, Ruijin; Jansson, John-Olov; Skibicka, Karolina Patrycja

    2013-10-01

    Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1β (IL-1β) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1β in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.

  4. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  5. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with (18)F-Al labeled Cys(39)-exendin-4.

    PubMed

    Mi, Baoming; Xu, Yuping; Pan, Donghui; Wang, Lizhen; Yang, Runlin; Yu, Chunjing; Wan, Weixing; Wu, Yiwei; Yang, Min

    2016-02-26

    Glucagon-like peptide-1 receptor (GLP-1R) is abundantly expressed on beta cells and may be an ideal target for the pancreas imaging. Monitoring the GLP-1R of pancreas could be benefit for understanding the pathophysiology of diabetes. In the present study, (18)F-Al labeled exendin-4 analog, (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, was evaluated for PET imaging GLP-1R in the pancreas. The targeting of (18)F-Al labeled exendin-4 analog was examined in healthy and streptozotocin induced diabetic rats. Rats were injected with (18)F-Al-NOTA-MAL-Cys(39)-exendin-4 and microPET imaging was performed at 1 h postinjection, followed by ex vivo biodistribution. GLP-1R expression in pancreas was determined through post mortern examinations. The pancreas of healthy rats was readily visualized after administration of (18)F-Al-NOTA-MAL-Cys(39)-exendin-4, whereas the pancreas of diabetic rats, as well as those from rats co-injected with excess of unlabeled peptides, was barely visible by microPET. At 60 min postinjection, the pancreatic uptakes were 1.02 ± 0.15%ID/g and 0.23 ± 0.05%ID/g in healthy and diabetic rats respectively. Under block, the pancreatic uptakes of non-diabetic rats reduced to 0.21 ± 0.07%ID/g at the same time point. Biodistribution data and IHC staining confirmed the findings of the microPET imaging. The favorable preclinical data indicated that (18)F-Al-NOTA-MAL-Cys(39)-exendin-4may be suitable for non-invasive monitoring functional pancreatic beta cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants.

    PubMed

    Huang, G; Li, J; Fu, H; Yan, Z; Bu, G; He, X; Wang, Y

    2012-07-01

    Glucagon-like peptide 1 (GLP1) receptor plays a critical role in mediating the biological actions of GLP1 in mammals and fish; however, the gene structure, expression, and functionality of GLP1 receptor (GLP1R) remain largely unknown in birds. In this study, the full-length cDNA of chicken GLP1R (cGLP1R) was first cloned from brain tissue by reverse transcription PCR. The putative cGLP1R is 459 amino acids in length and shares high amino acid sequence identity with that of human (79%), rat (80%), and Xenopus (75%). Using a pGL3-CRE luciferase reporter system, we found that cGLP1R expressed in Chinese hamster ovary cells could be potently activated by cGLP1 (EC(50), 0.11 nM) but not by other structurally related peptides, indicating that cGLP1R is a functional receptor specific to cGLP1. Interestingly, in addition to identification of the transcript encoding cGLP1R of 459 amino acids, eight transcript variants, which were generated by alternative mRNA splicing and predicted to encode either C-terminally or N-terminally truncated cGLP1Rs, were also identified from chicken brain or testis. In line with this finding, multiple cGLP1R transcripts were detected to be expressed in most chicken tissues examined, including pancreas, gastrointestinal tract, and various brain regions by reverse transcription PCR. Using the dual-luciferase reporter assay system, we further found that the 5'-flanking region of cGLP1R gene displays promoter activities in cultured HepG2 and HEK293 cells, suggesting that it may control cGLP1R gene transcription in chicken tissues, including nonpancreatic tissues. Taken together, the results from the present study establish a molecular basis to investigate the roles of GLP1 in chickens.

  7. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.

    PubMed

    Miller, Laurence J; Chen, Quan; Lam, Polo C-H; Pinon, Delia I; Sexton, Patrick M; Abagyan, Ruben; Dong, Maoqing

    2011-05-06

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.

  8. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity.

    PubMed

    Chen, Quan; Pinon, Delia I; Miller, Laurence J; Dong, Maoqing

    2010-08-06

    Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7-36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr(145), adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr(205), within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.

  9. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis.

    PubMed

    Driessen, Johanna H M; Henry, Ronald M A; van Onzenoort, Hein A W; Lalmohamed, Arief; Burden, Andrea M; Prieto-Alhambra, Daniel; Neef, Cees; Leufkens, Hubert G M; de Vries, Frank

    2015-08-01

    Glucagon-like Peptide-1 receptor agonists (GLP1-ra) are a relatively new class of anti-hyperglycemic drugs which may positively affect bone metabolism and thereby decrease (osteoporotic) bone fracture risk. Data on the effect of GLP1-ra on fracture risk are scarce and limited to clinical trial data only. The aim of this study was to investigate, in a population-based cohort, the association between the use of GLP1-ra and bone fracture risk. We conducted a population-based cohort study, with the use of data from the Clinical Practice Research Datalink (CPRD) database (2007-2012). The study population (N = 216,816) consisted of all individuals with type 2 diabetes patients with at least one prescription for a non-insulin anti-diabetic drug and were over 18 years of age. Cox proportional hazards models were used to estimate the hazard ratio of fracture in GLP1-ra users versus never-GLP1-ra users. Time-dependent adjustments were made for age, sex, lifestyle, comorbidity and the use of other drugs. There was no decreased risk of fracture with current use of GLP1-ra compared to never-GLP1-ra use (adjusted HR 0.99, 95 % CI 0.82-1.19). Osteoporotic fracture risk was also not decreased by current GLP1-ra use (adjusted HR 0.97; 95 % CI 0.72-1.32). In addition, stratification according to cumulative dose did not show a decreased bone fracture risk with increasing cumulative GLP1-ra dose. We showed in a population-based cohort study that GLP1-ra use is not associated with a decreased bone fracture risk compared to users of other anti-hyperglycemic drugs. Future research is needed to elucidate the potential working mechanisms of GLP1-ra on bone.

  10. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells.

    PubMed

    Peyot, Marie-Line; Gray, Joshua P; Lamontagne, Julien; Smith, Peter J S; Holz, George G; Madiraju, S R Murthy; Prentki, Marc; Heart, Emma

    2009-07-13

    Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic beta-cells, in particular cAMP, Ca(2+) and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors. GLP-1 or Ex-4 at high glucose caused release (approximately 20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on beta-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca(2+)](i) and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered. The results indicate that GLP-1 barely affects beta-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the beta-cell, and that the beta-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a "push" (fuel substrate driven) process, rather than a "pull" mechanism secondary to enhanced insulin release as well as to Ca(2+), cAMP and PKB signaling.

  11. All-cause mortality in patients with diabetes under glucagon-like peptide-1 agonists: A population-based, open cohort study.

    PubMed

    Toulis, K A; Hanif, W; Saravanan, P; Willis, B H; Marshall, T; Kumarendran, B; Gokhale, K; Ghosh, S; Cheng, K K; Narendran, P; Thomas, G N; Nirantharakumar, K

    2017-06-01

    The glucagon-like peptide-1 receptor agonist (GLP1a) liraglutide has been described to benefit patients with type 2 diabetes mellitus (T2DM) at high cardiovascular risk. However, there are still uncertainties relating to these cardiovascular benefits: whether they also apply to an unselected diabetic population that includes low-risk patients, represent a class-effect, and could be observed in a real-world setting. We conducted a population-based, retrospective open cohort study using data derived from The Health Improvement Network database between Jan 2008 to Sept 2015. Patients with T2DM exposed to GLP1a (n=8345) were compared to age, gender, body mass index, duration of T2DM and smoking status-matched patients with T2DM unexposed to GLP1a (n=16,541). Patients with diabetes receiving GLP1a were significantly less likely to die from any cause compared to matched control patients with diabetes (adjusted incidence rate ratio [aIRR]: 0.64, 95% CI: 0.56-0.74, P-value<0.0001). Similar findings were observed in low-risk patients (aIRR: 0.64, 95% CI: 0.53-0.76, P -value=0.0001). No significant difference in the risk of incident CVD was detected in the low-risk patients (aIRR: 0.93, 95% CI: 0.83-1.12). Subgroup analyses suggested that effect is persistent in the elderly or across glycated haemoglobin categories. GLP1a treatment in a real-world setting may confer additional mortality benefit in patients with T2DM irrespective of their baseline CVD risk, age or baseline glycated haemoglobin and was sustained over the observation period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats

    PubMed Central

    Kreisler, Alison D.

    2016-01-01

    Published research supports a role for central glucagon-like peptide 1 (GLP-1) signaling in suppressing food intake in rodent species. However, it is unclear whether GLP-1 neurons track food intake and contribute to satiety, and/or whether GLP-1 signaling contributes to stress-induced hypophagia. To examine whether GLP-1 neurons track intake volume, rats were trained to consume liquid diet (LD) for 1 h daily until baseline intake stabilized. On test day, schedule-fed rats consumed unrestricted or limited volumes of LD or unrestricted volumes of diluted (calorically matched to LD) or undiluted Ensure. Rats were perfused after the test meal, and brains processed for immunolocalization of cFos and GLP-1. The large majority of GLP-1 neurons expressed cFos in rats that consumed satiating volumes, regardless of diet type, with GLP-1 activation proportional to intake volume. Since GLP-1 signaling may limit intake only when such large proportions of GLP-1 neurons are activated, a second experiment examined the effect of central GLP-1 receptor (R) antagonism on 2 h intake in schedule-fed rats. Compared with baseline, intracerebroventricular vehicle (saline) suppressed Ensure intake by ∼11%. Conversely, intracerebroventricular injection of vehicle containing GLP-1R antagonist increased intake by ∼14% compared with baseline, partly due to larger second meals. We conclude that GLP-1 neural activation effectively tracks liquid diet intake, that intracerebroventricular injection suppresses intake, and that central GLP-1 signaling contributes to this hypophagic effect. GLP-1 signaling also may contribute to satiety after large volumes have been consumed, but this potential role is difficult to separate from a role in the hypophagic response to intracerebroventricular injection. PMID:26936779

  13. The Role of the Pharmacist in Managing Type 2 Diabetes with Glucagon-Like Peptide-1 Receptor Agonists as Add-On Therapy.

    PubMed

    Meece, Jerry

    2017-02-16

    The prevalence and associated clinical burden of type 2 diabetes (T2D) is increasing in the USA and other countries. As a consequence, the role of the pharmacist in managing T2D is expanding, and it is becoming increasingly important for pharmacists to have a complete understanding of the disease course and treatment options. Pharmacists have a key role in the use of injectable therapies, including incretin-based treatment with glucagon-like peptide-1 receptor agonists (GLP-1RAs). This article discusses the role of the pharmacist in the management of patients with T2D, particularly with respect to the use of GLP-1RAs to achieve glycemic control. GLP-1RAs are a class of injectable agents used as an adjunct to diet and exercise to improve glycemic control in adults with T2D. GLP-1RAs have been shown to lower glucose levels, slow gastric emptying, enhance satiety, and reduce body weight without increasing the risk of hypoglycemia. GLP-1RAs currently approved in the USA include exenatide twice daily, liraglutide once daily, and albiglutide, dulaglutide, and exenatide once weekly. Pharmacists can work with physicians to help identify patients for whom GLP-1RA therapy is appropriate. In addition, pharmacists can educate patients regarding medication storage, preparation, and injection techniques, glycated hemoglobin (HbA1c) targets, pre- and post-meal blood glucose goals, adverse events and management strategies, and the long-term benefits of reducing HbA1c. As members of the diabetes care team, pharmacists play an important role in improving patient outcomes.

  14. Mosapride citrate, a 5-HT₄ receptor agonist, increased the plasma active and total glucagon-like peptide-1 levels in non-diabetic men.

    PubMed

    Aoki, Kazutaka; Kamiyama, Hiroshi; Masuda, Kiyomi; Togashi, Yu; Terauchi, Yasuo

    2013-01-01

    Mosapride citrate, a selective agonist of the 5-hydroxytryptaine (5-HT)₄ receptor, is typically used to treat heartburn, nausea, and vomiting associated with chronic gastritis or to prepare for a barium enema X-ray examination. Mosapride citrate reportedly improves insulin sensitivity in patients with type 2 diabetes. As mosapride citrate activates the motility of the gastrointestinal tract, we hypothesized that mosapride citrate affects incretin secretion. We examined the effect of the administration of mosapride citrate on the plasma glucose, serum insulin, plasma glucagon, and plasma incretin levels before breakfast and at 60, 120, and 180 min after breakfast in men with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) to exclude gastropathy. Mosapride citrate was administered according to two different intake schedules (C: control (no drug), M: mosapride citrate 20 mg) in each of the subject groups. The area under the curve (AUC) of the plasma glucose levels was smaller in the M group than in the C group. The time profiles for the serum insulin levels at 60 and 120 min after treatment with mosapride citrate tended to be higher, although the difference was not statistically significant. The AUCs of the plasma active and total glucagon-like peptide-1 (GLP-1) levels were significantly larger in the M group than in the C group. No significant difference in the AUC of the plasma glucose-dependent insulinotropic polypeptide (GIP) level was observed between the two groups. Our results suggest that mosapride citrate may have an antidiabetic effect by increasing GLP-1 secretion.

  15. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors.

    PubMed

    Dickson, Suzanne L; Shirazi, Rozita H; Hansson, Caroline; Bergquist, Filip; Nissbrandt, Hans; Skibicka, Karolina P

    2012-04-04

    The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures-ventral tegmental area and nucleus accumbens-without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior.

  16. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice.

    PubMed

    Viby, Niels-Erik; Isidor, Marie S; Buggeskov, Katrine B; Poulsen, Steen S; Hansen, Jacob B; Kissow, Hannelouise

    2013-12-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P < .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P < .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.

  17. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    PubMed

    Dods, Rachel L; Donnelly, Dan

    2015-11-23

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.

  18. Expression of cholecystokinin2-receptor in rat and human L cells and the stimulation of glucagon-like peptide-1 secretion by gastrin treatment.

    PubMed

    Cao, Yang; Cao, Xun; Liu, Xiao-Min

    2015-03-01

    Gastrin is a gastrointestinal hormone secreted by G cells. Hypergastrinemia can improve blood glucose and glycosylated hemoglobin levels. These positive effects are primarily due to the trophic effects of gastrin on β-cells. In recent years, many receptors that regulate secretion of glucagon-like peptide 1 (GLP-1) have been identified in enteroendocrine L cell lines. This led us to hypothesize that, in addition to the trophic effects of gastrin on β-cells, L cells also express cholecystokinin2-receptor (CCK2R), which may regulate GLP-1 secretion and have synergistic effects on glucose homeostasis. Our research provides a preliminary analysis of CCK2R expression and the stimulating effect of gastrin treatment on GLP-1 secretion in a human endocrine L cell line, using RT-PCR, Western blot, immunocytochemistry, and ELISA analyses. The expression of proglucagon and prohormone convertase 3, which regulate GLP-1 biosynthesis, were also analyzed by real-time PCR. Double immunofluorescence labeling was utilized to assess the intracellular localization of CCK2R and GLP-1 in L cells harvested from rat colon tissue. Our results showed that CCK2R was expressed in both the human L cell line and the rat L cells. We also showed that treatment with gastrin, a CCK2R agonist, stimulated the secretion of GLP-1, and that this effect was likely due to increased expression of proglucagon and PCSK1 (also known as prohormone convertase 3 (PC3 gene)). These results not only provide a basis for the role gastrin may play in intestinal L cells, and may also provide the basis for the development of a method of gastrin-mediated glycemic regulation.

  19. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.

    PubMed

    Han, Ling; Hölscher, Christian; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang

    2016-01-06

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration.

  20. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.

    PubMed

    Koole, Cassandra; Wootten, Denise; Simms, John; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2012-02-03

    The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.

  1. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  2. The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice.

    PubMed

    Burmeister, Melissa A; Ayala, Jennifer E; Smouse, Hannah; Landivar-Rocha, Adriana; Brown, Jacob D; Drucker, Daniel J; Stoffers, Doris A; Sandoval, Darleen A; Seeley, Randy J; Ayala, Julio E

    2017-02-01

    Pharmacological activation of the hypothalamic glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) promotes weight loss and improves glucose tolerance. This demonstrates that the hypothalamic GLP-1R is sufficient but does not show whether it is necessary for the effects of exogenous GLP-1R agonists (GLP-1RA) or endogenous GLP-1 on these parameters. To address this, we crossed mice harboring floxed Glp1r alleles to mice expressing Nkx2.1-Cre to knock down Glp1r expression throughout the hypothalamus (GLP-1RKD(ΔNkx2.1cre)). We also generated mice lacking Glp1r expression specifically in two GLP-1RA-responsive hypothalamic feeding nuclei/cell types, the paraventricular nucleus (GLP-1RKD(ΔSim1cre)) and proopiomelanocortin neurons (GLP-1RKD(ΔPOMCcre)). Chow-fed GLP-1RKD(ΔNkx2.1cre) mice exhibited increased food intake and energy expenditure with no net effect on body weight. When fed a high-fat diet, these mice exhibited normal food intake but elevated energy expenditure, yielding reduced weight gain. None of these phenotypes were observed in GLP-1RKD(ΔSim1cre) and GLP-1RKD(ΔPOMCcre) mice. The acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA exendin-4 and liraglutide were preserved in all mouse lines. Chronic liraglutide treatment reduced body weight in chow-fed GLP-1RKD(ΔNkx2.1cre) mice, but this effect was attenuated with high-fat diet feeding. In sum, classic homeostatic control regions are sufficient but not individually necessary for the effects of GLP-1RA on nutrient homeostasis. © 2017 by the American Diabetes Association.

  3. Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4.

    PubMed

    Raufman, J P; Singh, L; Singh, G; Eng, J

    1992-10-25

    To find mammalian analogues of exendin-4, a peptide from Helodermatidae venoms that interacts with newly discovered exendin receptors on dispersed acini from guinea pig pancreas, we examined the actions of recent additions to the vasoactive intestinal peptide/secretin/glucagon family of regulatory peptides. In every respect tested, the truncated form of glucagon-like peptide-1, GLP-1(7-36)NH2, mimicked the actions of exendin-4. Like exendin-4, GLP-1(7-36)NH2 caused an increase in acinar cAMP without stimulating amylase release. GLP-1(7-36)NH2-induced increases in cAMP were inhibited progressively by increasing concentrations of the specific exendin-receptor antagonist, exendin(9-39)NH2. In dispersed acini from guinea pig and rat pancreas, concentrations of GLP-1(7-36)NH2 that stimulated increases in cAMP caused potentiation of cholecystokinin-induced amylase release. Binding of 125I-[Y39]exendin-4 or 125I-GLP-1(7-36)NH2 to dispersed acini from guinea pig pancreas was inhibited by adding increasing concentrations of unlabeled exendin-4 or GLP-1(7-36)NH2. We conclude that the mammalian peptide GLP-1(7-36)NH2 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Exendin(9-39)NH2, a competitive antagonist of the actions of GLP-1(7-36)NH2 in pancreatic acini, may be a useful tool for examining the physiological actions of this peptide.

  4. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.

    PubMed

    Xu, Weijie; Yang, Yan; Yuan, Gang; Zhu, Wenjun; Ma, Delin; Hu, Shuhong

    2015-02-01

    Impaired insulin signaling pathway in the brain in type 2 diabetes (T2D) is a risk factor for Alzheimer disease (AD). Glucagon-like peptide-1 (GLP-1) and its receptor agonist are widely used for treatment of T2D. Here we studied whether the effects of exendin-4 (EX-4), a long-lasting GLP-1 receptor agonist, could reduce the risk of AD in T2D. Type 2 diabetes rats were injected with EX-4 for 28 consecutive days. Blood glucose and insulin levels, as well as GLP-1 and insulin in cerebrospinal fluid, were determined during the experiment. The phosphorylation level of tau at individual phosphorylation sites, the activities of phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase-3β (GSK-3β) were analyzed with Western blots. The levels of phosphorylated tau protein at site Ser199/202 and Thr217 level in the hippocampus of T2D rats were found to be raised notably and evidently decreased after EX-4 intervention. In addition, brain insulin signaling pathway was ameliorated after EX-4 treatment, and this result was reflected by a decreased activity of PI3K/AKT and an increased activity of GSK-3β in the hippocampus of T2D rats as well as a rise in PI3K/AKT activity and a decline in GSK-3β activity after 4 weeks intervention of EX-4. These results demonstrate that multiple days with EX-4 appears to prevent the hyperphosphorylation of AD-associated tau protein due to increased insulin signaling pathway in the brain. These findings support the potential use of GLP-1 for the prevention and treatment of AD in individuals with T2D.

  5. Population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (recombinant exendin-4, rE-4) in Chinese patients with type 2 diabetes mellitus
.

    PubMed

    Zang, Yan-Nan; Zhang, Min-Jie; Wang, Yi-Tong; Wang, Chen; Wang, Qian; Zheng, Qing-Shan; Ji, Li-Nong; Guo, Wei; Fang, Yi

    2017-08-01

    To investigate the population pharmacokinetics of lyophilized recombinant glucagon-like peptide-1 receptor agonist (rE-4) in Chinese patients with type 2 diabetes mellitus (T2DM) for plasma concentration estimation and individualized treatment. Twelve patients with T2DM were enrolled to receive subcutaneous injections of rE-4 at 5 µg twice daily for 84 days. Administration dosage was adjusted from 5 µg to 10 µg twice daily at day 29 in case of glycated albumin (GA) ≥ 17%. The population pharmacokinetic model was developed in the nonlinear mixed-effects modeling software NONMEM. The data were best described by a two-compartment model with first-order absorption and elimination. The outcome parameters were as follows: apparent clearance (CL/F) 6.67 L/h, apparent distribution volume of central compartment (Vc/F) 19.4 L, absorption rate constant (Ka) 1.39 h-1, apparent distribution volume of peripheral compartment (Vp/F) 22.6 L, intercompartmental clearance (Q/F) 1.28 L/h. The interindividual variabilities for CL/F, Vc/F, Ka, and Q/F were 64.4%, 57.7%, 45.5%, and 153.3%, respectively. The intra-individual variability of proportional error model was 41.7%. No covariate was screened out that showed significant influence on the model parameters. The established two-compartment model with first-order absorption and elimination successfully described the pharmacokinetic characteristics of rE-4 in Chinese patients with T2DM.
.

  6. Effects of sleeve gastrectomy and medical treatment for obesity on glucagon-like peptide 1 levels and glucose homeostasis in non-diabetic subjects.

    PubMed

    Valderas, Juan Patricio; Irribarra, Veronica; Rubio, Lorena; Boza, Camilo; Escalona, Manuel; Liberona, Yessica; Matamala, Andrea; Maiz, Alberto

    2011-07-01

    The effects of medical and surgical treatments for obesity on glucose metabolism and glucagon-like peptide 1 (GLP-1) levels independent of weight loss remain unclear. This study aims to assess plasma glucose levels, insulin sensitivity and secretion, and GLP-1 levels before and after sleeve gastrectomy (SG) or medical treatment (MED) for obesity. This study is a prospective, controlled, non-randomised study. Two groups of non-diabetic obese patients with similar BMIs, including a SG group (BMI, 35.5 ± 0.9 kg/m(2); n = 6) and a MED group (BMI, 37.7 ± 1.9 kg/m(2); n = 6) and a group of lean subjects (BMI, 21.7 ± 0.7 kg/m(2); n = 8). Plasma glucose, insulin, and total GLP-1 levels at fasting and after the intake of a standard liquid meal at baseline and at 2 months post-intervention. At baseline, total GLP-1 levels were similar, but obese patients had lower insulin sensitivity and higher insulin secretion than lean subjects. At 2 months post-intervention, SG and MED patients achieved similar weight loss (14.4 ± 0.8%, 15.3 ± 0.9%, respectively). Insulin sensitivity increased in SG and MED patients; however, postprandial insulin secretion decreased after MED, but not after SG. The incremental area under the curve of GLP-1 increased after SG (P = 0.04), but not after MED. Weight loss by medical or surgical treatment improved insulin sensitivity. However, only MED corrected the hyperinsulinemic postprandial state associated to obesity. Postprandial GLP-1 levels increased significantly after SG without duodenal exclusion, which may explain why insulin secretion did not decrease following this surgery.

  7. The activity of the rectal gland of the North Pacific spiny dogfish Squalus suckleyi is glucose dependent and stimulated by glucagon-like peptide-1.

    PubMed

    Deck, Courtney A; Anderson, W Gary; Conlon, J Michael; Walsh, Patrick J

    2017-04-25

    Elasmobranchs possess a specialised organ, the rectal gland, which is responsible for excreting sodium chloride via the posterior intestine. Previous work has indicated that the gland may be activated by a number of hormones, some of which are likely related to the salt or volume loads associated with feeding. Furthermore, evidence exists for the gland being glucose dependent which is atypical for an elasmobranch tissue. In this study, the presence of sodium-glucose co-transporters (SGLTs) in the rectal gland and their regulation by feeding were investigated. In addition, the hypothesis of glucose dependence was examined through the use of glucose transporter (GLUT and SGLT) inhibitors, phlorizin, Indinavir, and STF-31 and their effect on secretion by the rectal gland. Finally, the effects on rectal gland activity of insulin, glucagon, and glucagon-like peptide-1, hormones typically involved in glucoregulation, were examined. The results showed that sglt1 mRNA is present in the gland, and there was a significant reduction in sglt1 transcript abundance 24 h post-feeding. An almost complete suppression of chloride secretion was observed when glucose uptake was inhibited, confirming the organ's glucose dependence. Finally, perfusion with dogfish GLP-1 (10 nmol L(-1)), but not dogfish glucagon, was shown to markedly stimulate the activity of the gland, increasing chloride secretion rates above baseline by approximately 16-fold (p < 0.001). As GLP-1 is released from the intestine upon feeding, we propose that this may be the primary signal for activation of the rectal gland post-feeding.

  8. An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury.

    PubMed

    Ihara, Madoka; Asanuma, Hiroshi; Yamazaki, Satoru; Kato, Hisakazu; Asano, Yoshihiro; Shinozaki, Yoshihiro; Mori, Hidezo; Minamino, Tetsuo; Asakura, Masanori; Sugimachi, Masaru; Mochizuki, Naoki; Kitakaze, Masafumi

    2015-05-15

    Dipeptidyl peptidase 4 (DPP4) inhibitors suppress the metabolism of the potent antihyperglycemic hormone glucagon-like peptide-1 (GLP-1). DPP4 was recently shown to provide cardioprotection through a reduction of infarct size, but the mechanism for this remains elusive. Known interactions between DPP4 and adenosine deaminase (ADA) suggest an involvement of adenosine signaling in DPP4 inhibitor-mediated cardioprotection. We tested whether the protective mechanism of the DPP4 inhibitor alogliptin against myocardial ischemia-reperfusion injury involves GLP-1- and/or adenosine-dependent signaling in canine hearts. In anesthetized dogs, the coronary artery was occluded for 90 min followed by reperfusion for 6 h. A 4-day pretreatment with alogliptin reduced the infarct size from 43.1 ± 2.5% to 17.1 ± 5.0% without affecting collateral flow and hemodynamic parameters, indicating a potent antinecrotic effect. Alogliptin also suppressed apoptosis as demonstrated by the following analysis: 1) reduction in the Bax-to-Bcl2 ratio; 2) cytochrome c release, 3) an increase in Bad phosphorylation in the cytosolic fraction; and 4) terminal deoxynucleotidyl transferase dUTP nick end labeling assay. This DPP4 inhibitor did not affect blood ADA activity or adenosine concentrations. In contrast, the nonselective adenosine receptor blocker 8-(p-sulfophenyl)theophylline (8SPT) completely blunted the effect of alogliptin. Alogliptin did not affect Erk1/2 phosphorylation, but it did stimulate phosphorylation of Akt, glycogen synthase kinase-3β, and cAMP response element-binding protein (CREB). Only 8SPT prevented alogliptin-induced CREB phosphorylation. In conclusion, the DPP4 inhibitor alogliptin suppresses ischemia-reperfusion injury via adenosine receptor- and CREB-dependent signaling pathways.

  9. Model-Based Quantification of Glucagon-Like Peptide-1–Induced Potentiation of Insulin Secretion in Response to a Mixed Meal Challenge

    PubMed Central

    Dalla Man, Chiara; Micheletto, Francesco; Sathananthan, Matheni; Vella, Adrian

    2016-01-01

    Abstract Background: Glucagon-like peptide-1 (GLP-1) is a powerful insulin secretagogue that is secreted in response to meal ingestion. The ability to quantify the effect of GLP-1 on insulin secretion could provide insights into the pathogenesis and treatment of diabetes. We used a modification of a model of GLP-1 action on insulin secretion using data from a hyperglycemic clamp with concomitant GLP-1 infusion. We tested this model using data from a mixed meal test (MMT), thereby measuring GLP-1-induced potentiation of insulin secretion in response to a meal. Materials and Methods: The GLP-1 model is based on the oral C-peptide minimal model and assumes that over-basal insulin secretion depends linearly on GLP-1 concentration through the parameter Π, representing the β-cell sensitivity to GLP-1. The model was tested on 62 subjects across the spectrum of glucose tolerance (age, 53 ± 1 years; body mass index, 29.7 ± 0.6 kg/m2) studied with an MMT and provided a precise estimate of both β-cell responsivity and Π indices. By combining Π with a measure of L-cell responsivity to glucose, one obtains a potentiation index (PI) (i.e., a measure of the L-cell's function in relation to prevailing β-cell sensitivity to GLP-1). Results: Model-based measurement of GLP-1-induced insulin secretion demonstrates that the PI is significantly reduced in people with impaired glucose tolerance, compared with those with normal glucose tolerance. Conclusions: We describe a model that can quantitate the GLP-1-based contribution to insulin secretion in response to meal ingestion. This methodology will allow a better understanding of β-cell function at various stages of glucose tolerance. PMID:26756104

  10. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.

  11. Natural sweetener agave inhibits gastric emptying in rats by a cholecystokinin-2- and glucagon like peptide-1 receptor-dependent mechanism.

    PubMed

    Bihter Gürler, E; Özbeyli, Dilek; Buzcu, Hülya; Bayraktar, Sezin; Carus, İrem; Dağ, Beyza; Geriş, Yasemin; Jeral, Seda; Yeğen, Berrak Ç

    2017-02-22

    Low-calorie sweeteners are considered to be beneficial in calorie control, but the impact of these sweeteners on gastric emptying is not well described. The purpose of this study was to compare the gastric emptying rate of agave nectar with those of glucose and fructose, and to evaluate the interaction of cholecystokinin (CCK)-1, CCK-2 and glucagon-like peptide-1 (GLP-1) receptors in agave-induced alterations in gastric emptying. Female Sprague-Dawley rats were fitted with gastric cannulas. Following the recovery, the gastric emptying rates of glucose, fructose and agave at 12.5%, 15% or 50% concentrations were measured and compared with that of saline. GLP-1 receptor antagonist exendin fragment 9-39 (30 μg kg(-1)), CCK-1 receptor antagonist devazepide (1 mg kg(-1)) or gastrin/CCK-2 receptor antagonist YM022 (1 mg kg(-1)) was injected subcutaneously 1 min before the emptying of glucose, fructose or agave at their 50% concentrations. When compared with saline emptying, gastric emptying of glucose was significantly delayed at its 25% and 50% concentrations, but the emptying of 12.5% glucose was not different from that of saline. Agave emptying, which was delayed with respect to saline emptying, was not altered by CCK-1 receptor blockade; but agave emptied from the stomach as rapidly as saline following the blockade of either CCK-2 or GLP-1 receptors. The findings demonstrate that the inhibitory effect of agave on gastric emptying is mediated by both CCK-2 and GLP-1 receptors, suggesting that natural sweeteners including agave may have satiating effects through the inhibition of gastric motility via enteroendocrine mechanisms.

  12. Chronic Psychological Stress Accelerates Vascular Senescence and Impairs Ischemia-Induced Neovascularization: The Role of Dipeptidyl Peptidase-4/Glucagon-Like Peptide-1-Adiponectin Axis.

    PubMed

    Piao, Limei; Zhao, Guangxian; Zhu, Enbo; Inoue, Aiko; Shibata, Rei; Lei, Yanna; Hu, Lina; Yu, Chenglin; Yang, Guang; Wu, Hongxian; Xu, Wenhu; Okumura, Kenji; Ouchi, Noriyuki; Murohara, Toyoaki; Kuzuya, Masafumi; Cheng, Xian Wu

    2017-09-28

    Exposure to psychosocial stress is a risk factor for cardiovascular disease, including vascular aging and regeneration. Given that dipeptidyl peptidase-4 (DPP4) regulates several intracellular signaling pathways associated with the glucagon-like peptide-1 (GLP-1) metabolism, we investigated the role of DPP4/GLP-1 axis in vascular senescence and ischemia-induced neovascularization in mice under chronic stress, with a special focus on adiponectin -mediated peroxisome proliferator activated receptor-γ/its co-activator 1α (PGC-1α) activation. Seven-week-old mice subjected to restraint stress for 4 weeks underwent ischemic surgery and were kept under immobilization stress conditions. Mice that underwent ischemic surgery alone served as controls. We demonstrated that stress impaired the recovery of the ischemic/normal blood-flow ratio throughout the follow-up period and capillary formation. On postoperative day 4, stressed mice showed the following: increased levels of plasma and ischemic muscle DPP4 and decreased levels of GLP-1 and adiponectin in plasma and phospho-AMP-activated protein kinase α (p-AMPKα), vascular endothelial growth factor, peroxisome proliferator activated receptor-γ, PGC-1α, and Sirt1 proteins and insulin receptor 1 and glucose transporter 4 genes in the ischemic tissues, vessels, and/or adipose tissues and numbers of circulating endothelial CD31(+)/c-Kit(+) progenitor cells. Chronic stress accelerated aortic senescence and impaired aortic endothelial sprouting. DPP4 inhibition and GLP-1 receptor activation improved these changes; these benefits were abrogated by adiponectin blocking and genetic depletion. These results indicate that the DPP4/GLP-1-adiponectin axis is a novel therapeutic target for the treatment of vascular aging and cardiovascular disease under chronic stress conditions. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity.

  14. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  15. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel.

    PubMed

    Thiebaud, Nicolas; Llewellyn-Smith, Ida J; Gribble, Fiona; Reimann, Frank; Trapp, Stefan; Fadool, Debra Ann

    2016-05-15

    The gut hormone called glucagon-like peptide 1 (GLP-1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP-1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP-synthesizing cells in the olfactory bulb. GLP-1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage-dependent K channels (Kv1.3). Modifying GLP-1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state-dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP-1. This might be of relevance for the action of GLP-1 mimetics now widely used in the treatment of diabetes. The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU-yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon-like peptide (GLP-1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first-order neurons. A MC target for the peptide was determined using GLP-1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence-labelled GLP-1 analogue exendin-4. Using patch clamp recording of olfactory bulb slices in the whole-cell configuration, we report that GLP-1 and its stable analogue exendin-4 increase the action potential

  16. The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release

    PubMed Central

    Ong, WK; Gribble, FM; Reimann, F; Lynch, MJ; Houslay, MD; Baillie, GS; Furman, BL; Pyne, NJ

    2009-01-01

    Background and purpose: Increases in intracellular cyclic AMP (cAMP) augment the release/secretion of glucagon-like peptide-1 (GLP-1). As cAMP is hydrolysed by cAMP phosphodiesterases (PDEs), we determined the role of PDEs and particularly PDE4 in regulating GLP-1 release. Experimental approach: GLP-1 release, PDE expression and activity were investigated using rats and GLUTag cells, a GLP-1-releasing cell line. The effects of rolipram, a selective PDE4 inhibitor both in vivo and in vitro and stably overexpressed catalytically inactive PDE4D5 (D556A-PDE4D5) mutant in vitro on GLP-1 release were investigated. Key results: Rolipram (1.5 mg·kg−1 i.v.) increased plasma GLP-1 concentrations approximately twofold above controls in anaesthetized rats and enhanced glucose-induced GLP-1 release in GLUTag cells (EC50∼1.2 nmol·L−1). PDE4D mRNA transcript and protein were detected in GLUTag cells using RT-PCR with gene-specific primers and Western blotting with a specific PDE4D antibody respectively. Moreover, significant PDE activity was inhibited by rolipram in GLUTag cells. A GLUTag cell clone (C1) stably overexpressing the D556A-PDE4D5 mutant, exhibited elevated intracellular cAMP levels and increased basal and glucose-induced GLP-1 release compared with vector-transfected control cells. A role for intracellular cAMP/PKA in enhancing GLP-1 release in response to overexpression of D556A-PDE4D5 mutant was demonstrated by the finding that the PKA inhibitor H89 reduced both basal and glucose-induced GLP-1 release by 37% and 39%, respectively, from C1 GLUTag cells. Conclusions and implications: PDE4D may play an important role in regulating intracellular cAMP linked to the regulation of GLP-1 release. British Journal of Pharmacology (2009) 157, 633–644; doi:10.1111/j.1476-5381.2009.00194.x; published online 9 April 2009 PMID:19371330

  17. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell.

    PubMed

    Lauffer, Lina M; Iakoubov, Roman; Brubaker, Patricia L

    2009-05-01

    Intestinal L-cells secrete the incretin glucagon-like peptide-1 (GLP-1) in response to ingestion of nutrients, especially long-chain fatty acids. The Galphas-coupled receptor GPR119 binds the long-chain fatty acid derivate oleoylethanolamide (OEA), and GPR119 agonists enhance GLP-1 secretion. We therefore hypothesized that OEA stimulates GLP-1 release through a GPR119-dependent mechanism. Murine (m) GLUTag, human (h) NCI-H716, and primary fetal rat intestinal L-cell models were used for RT-PCR and for cAMP and GLP-1 radioimmunoassay. Anesthetized rats received intravenous or intraileal OEA, and plasma bioactive GLP-1, insulin, and glucose levels were determined by enzyme-linked immunosorbent assay or glucose analyzer. GPR119 messenger RNA was detected in all L-cell models. OEA treatment (10 micromol/l) of mGLUTag cells increased cAMP levels (P < 0.05) and GLP-1 secretion (P < 0.001) in all models, with desensitization of the secretory response at higher concentrations. GLP-1 secretion was further enhanced by prevention of OEA degradation using the fatty acid amide hydrolase inhibitor, URB597 (P < 0.05-0.001 vs. OEA alone), and was abolished by H89-induced inhibition of protein kinase A. OEA-induced cAMP levels and GLP-1 secretion were significantly reduced in mGLUTag cells transfected with GPR119-specific small interfering RNA (P < 0.05). Application of OEA (10 micromol/l) directly into the rat ileum, but not intravenously, increased plasma bioactive GLP-1 levels in euglycemic animals by 1.5-fold (P < 0.05) and insulin levels by 3.9-fold (P < 0.01) but only in the presence of hyperglycemia. The results of these studies demonstrate, for the first time, that OEA increases GLP-1 secretion from intestinal L-cells through activation of the novel GPR119 fatty acid derivate receptor in vitro and in vivo.

  18. Glucagon-like peptide 1 stimulates insulin secretion via inhibiting RhoA/ROCK signaling and disassembling glucotoxicity-induced stress fibers.

    PubMed

    Kong, Xiangchen; Yan, Dan; Sun, Jiangming; Wu, Xuerui; Mulder, Hindrik; Hua, Xianxin; Ma, Xiaosong

    2014-12-01

    Chronic hyperglycemia leads to pancreatic β-cell dysfunction characterized by diminished glucose-stimulated insulin secretion (GSIS), but the precise cellular processes involved are largely unknown. Here we show that pancreatic β-cells chronically exposed to a high glucose level displayed substantially increased amounts of stress fibers compared with β-cells cultured at a low glucose level. β-Cells at high glucose were refractory to glucose-induced actin cytoskeleton remodeling and insulin secretion. Importantly, F-actin depolymerization by either cytochalasin B or latrunculin B restored glucotoxicity-diminished GSIS. The effects of glucotoxicity on increasing stress fibers and reducing GSIS were reversed by Y-27632, a Rho-associated kinase (ROCK)-specific inhibitor, which caused actin depolymerization and enhanced GSIS. Notably, glucagon-like peptide-1-(7-36) amide (GLP-1), a peptide hormone that stimulates GSIS at both normal and hyperglycemic conditions, also reversed glucotoxicity-induced increase of stress fibers and reduction of GSIS. In addition, GLP-1 inhibited glucotoxicity-induced activation of RhoA/ROCK and thereby resulted in actin depolymerization and potentiation of GSIS. Furthermore, this effect of GLP-1 was mimicked by cAMP-increasing agents forskolin and 3-isobutyl-1-methylxanthine as well as the protein kinase A agonist 6-Bnz-cAMP-AM whereas it was abolished by the protein kinase A inhibitor Rp-Adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt. To establish a clinical relevance of our findings, we examined the association of genetic variants of RhoA/ROCK with metabolic traits in homeostasis model assessment index of insulin resistance. Several single-nucleotide polymorphisms in and around RHOA were associated with elevated fasting insulin and homeostasis model assessment index of insulin resistance, suggesting a possible role in metabolic dysregulation. Collectively these findings unravel a novel mechanism whereby GLP-1

  19. Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease.

    PubMed

    Nathanson, D; Zethelius, B; Berne, C; Holst, J J; Sjöholm, A; Nyström, T

    2010-02-01

    Besides the insulinotropic effects of glucagon-like peptide-1 (GLP-1) mimetics, their effects on endothelial dysfunction and myocardial ischaemia are of interest. No previous study has investigated associations between plasma levels of GLP-1 and CHD. We investigated longitudinal relationships of fasting GLP-1 with the dynamic GLP-1 response after OGTT (difference between 60 min OGTT-stimulated and fasting GLP-1 levels [DeltaGLP-1]) and CHD in a population-based cohort of 71-year-old men. In the same cohort, we also cross-sectionally investigated the association between stimulated GLP-1 levels and: (1) cardiovascular risk factors (blood pressure, lipids, urinary albumin, waist circumference and insulin sensitivity index [M/I] assessed by euglycaemic-hyperinsulinaemic clamp); and (2) impaired glucose tolerance (IGT) and type 2 diabetes mellitus. During the follow-up period (maximum 13.8 years), of 294 participants with normal glucose tolerance (NGT), 69 experienced a CHD event (13.8 years), as did 42 of 141 with IGT and 32 of 74 with type 2 diabetes mellitus. DeltaGLP-1 did not predict CHD (HR 1.0, 95% CI 0.52-2.28). The prevalence of IGT was associated with DeltaGLP-1, lowest vs highest quartile (OR 0.3, 95% CI 0.12-0.58), with no such association for type 2 diabetes mellitus (OR 1.0, 95% CI 0.38-2.86). M/I was significantly associated with DeltaGLP-1 in the type 2 diabetes mellitus group (r = 0.38, p < 0.01), but not in the IGT (r = 0.11, p = 0.28) or NGT (r = 0.10, p = 0.16) groups. Impaired GLP-1 secretion is associated with IGT, but not with type 2 diabetes mellitus. This finding in the latter group might be confounded by oral glucose-lowering treatment. GLP-1 does not predict CHD. Although DeltaGLP-1 was associated with insulin sensitivity in the type 2 diabetes mellitus group, GLP-1 does not seem to be a predictor of CHD in insulin-resistant patients.

  20. Relation of the rs6923761 gene variant in glucagon-like peptide 1 receptor with weight, cardiovascular risk factor, and serum adipokine levels in obese female subjects.

    PubMed

    de Luis, Daniel Antonio; Aller, Rocío; de la Fuente, B; Primo, D; Conde, Rosa; Izaola, Olatz; Sagrado, Manuel Gonzalez

    2015-03-01

    Studies of the glucagon-like peptide 1 (GLP-1) receptor have been directed at identifying polymorphisms in the GLP-1 receptor gene that may be a contributing factor in the pathogenesis of diabetes mellitus and cardiovascular risk factors. Nevertheless, the role of GLP-1 variants on body weight, cardiovascular risk factors, and adipokines remains unclear in obese patients. Our aim was to analyze the effects of rs6923761 GLP-1 receptor polymorphism on body weight, cardiovascular risk factors, and serum adipokine levels in nondiabetic obese females. A sample of 645 obese nondiabetic Caucasian females was enrolled in a prospective way. Basal fasting glucose, c-reactive protein (CRP), insulin, insulin resistance (homeostasis model assessment (HOMA)), total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides concentration, and adipokines were measured. Weights, body mass index (BMI), waist circumference, fat mass by bioimpedance, and blood pressure measures were measured. Three hundred and twenty-seven participants (50.7%) had the genotype GG and 318 (49.3%) study subjects had the next genotypes; GA (270 study subjects, 41.9%) or AA (48 study subjects, 7.4%) (second group). In wild group (GG genotype), BMI (1.8 ± 2.3 kg/m(2) ; P < 0.05), weight (3.1 ± 1.3 kg; P < 0.05), fat mass (2.4 ± 1.1 kg; P < 0.05), waist circumference (2.7 ± 1.9 cm; P < 0.05), triglyceride levels (10.4 ± 5.3 mg/dl; P < 0.05), interleukin 6 (IL-6) (1.5 ± 0.9 ng/dl; P < 0.05), resistin (1.1 ± 0.3 ng/dl; P < 0.05), and leptin (30.1 ± 10.3 ng/dl; P < 0.05) levels were higher than mutant group (GA + AA). Data from our study revealed an association with decreased metabolic and cardiovascular markers in obese females. BMI weight, fat mass, waist circumference, triglycerides, leptin, resistin, and IL-6 serum levels were lower in subjects with A allele than non-A allele subjects. © 2014 Wiley Periodicals, Inc.

  1. Exogenous glucagon-like peptide-1 attenuates the glycaemic response to postpyloric nutrient infusion in critically ill patients with type-2 diabetes

    PubMed Central

    2011-01-01

    Introduction Glucagon-like peptide-1 (GLP-1) attenuates the glycaemic response to small intestinal nutrient infusion in stress-induced hyperglycaemia and reduces fasting glucose concentrations in critically ill patients with type-2 diabetes. The objective of this study was to evaluate the effects of acute administration of GLP-1 on the glycaemic response to small intestinal nutrient infusion in critically ill patients with pre-existing type-2 diabetes. Methods Eleven critically ill mechanically-ventilated patients with known type-2 diabetes received intravenous infusions of GLP-1 (1.2 pmol/kg/minute) and placebo from t = 0 to 270 minutes on separate days in randomised double-blind fashion. Between t = 30 to 270 minutes a liquid nutrient was infused intraduodenally at a rate of 1 kcal/min via a naso-enteric catheter. Blood glucose, serum insulin and C-peptide, and plasma glucagon were measured. Data are mean ± SEM. Results GLP-1 attenuated the overall glycaemic response to nutrient (blood glucose AUC30-270 min: GLP-1 2,244 ± 184 vs. placebo 2,679 ± 233 mmol/l/minute; P = 0.02). Blood glucose was maintained at < 10 mmol/l in 6/11 patients when receiving GLP-1 and 4/11 with placebo. GLP-1 increased serum insulin at 270 minutes (GLP-1: 23.4 ± 6.7 vs. placebo: 16.4 ± 5.5 mU/l; P < 0.05), but had no effect on the change in plasma glucagon. Conclusions Exogenous GLP-1 in a dose of 1.2 pmol/kg/minute attenuates the glycaemic response to small intestinal nutrient in critically ill patients with type-2 diabetes. Given the modest magnitude of the reduction in glycaemia the effects of GLP-1 at higher doses and/or when administered in combination with insulin, warrant evaluation in this group. Trial registration ANZCTR:ACTRN12610000185066 PMID:21255422

  2. Glucagon-like peptide-1 receptor agonists and heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies.

    PubMed

    Li, Ling; Li, Sheyu; Liu, Jiali; Deng, Ke; Busse, Jason W; Vandvik, Per Olav; Wong, Evelyn; Sohani, Zahra N; Bala, Malgorzata M; Rios, Lorena P; Malaga, German; Ebrahim, Shanil; Shen, Jiantong; Zhang, Longhao; Zhao, Pujing; Chen, Qunfei; Wang, Yingqiang; Guyatt, Gordon H; Sun, Xin

    2016-05-11

    The effect of glucagon-like peptide-1(GLP-1) receptor agonists on heart failure remains uncertain. We therefore conducted a systematic review to assess the possible impact of GLP-1 agonists on heart failure or hospitalization for heart failure in patients with type 2 diabetes. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov to identify randomized controlled trials (RCTs) and observational studies that addressed the effect of GLP-1 receptor agonists in adults with type 2 diabetes, and explicitly reported heart failure or hospitalization for heart failure. Two paired reviewers screened reports, collected data, and assessed the risk of bias. We pooled data from RCTs and observational studies separately, and used the GRADE approach to rate the quality of evidence. We identified 25 studies that were eligible for our review; 21 RCTs (n = 18,270) and 4 observational studies (n = 111,029). Low quality evidence from 20 RCTs suggested, if anything, a lower incidence of heart failure between GLP-1 agonists versus control (17/7,441 vs. 19/4,317; odds ratio (OR) 0.62, 95 % confidence interval (CI) 0.31 to 1.22; risk difference (RD) 19 fewer, 95 % CI 34 fewer to 11 more per 1000 over 5 years). Three cohort studies comparing GLP-1 agonists to alternative agents provided very low quality evidence that GLP-1 agonists do not increase the incidence of heart failure. One RCT provided moderate quality evidence that GLP-1 agonists were not associated with hospitalization for heart failure (lixisenatide vs placebo: 122/3,034 vs. 127/3,034; adjusted hazard ratio 0.96, 95 % CI 0.75 to 1.23; RD 4 fewer, 95 % CI 25 fewer to 23 more per 1000 over 5 years) and a case-control study provided very low quality evidence also suggesting no association (GLP-1 agonists vs. other anti-hyperglycemic drugs: 1118 cases and 17,626 controls, adjusted OR 0.67, 95 % CI 0.32 to 1.42). The current evidence suggests that GLP-1 agonists do not

  3. Effect of meal composition on postprandial glucagon-like peptide-1, insulin, glucagon, C-peptide, and glucose responses in overweight/obese subjects.

    PubMed

    Shah, Meena; Franklin, Brian; Adams-Huet, Beverley; Mitchell, Joel; Bouza, Brooke; Dart, Lyn; Phillips, Melody

    2017-04-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone, is released in response to food intake. It is unclear how meals high in protein (HP) and monounsaturated fat (HMF) affect GLP-1 response. To examine the effect of a HP versus a HMF meal on GLP-1 response. Twenty-four overweight/obese participants consumed two meals (HP: 31.9 % energy from protein; HMF: 35.2 % fat and 20.7 % monounsaturated fat) in a random order. Both meals contained the same energy and carbohydrate content. GLP-1, insulin, glucagon, C-peptide, and glucose were assessed from blood drawn in the fasting and postprandial states. The effect of meal condition on hormone and glucose responses and appetite ratings were assessed by repeated measures analysis. Statistically significant (p < 0.01) time by meal condition effect was observed on active GLP-1, total GLP-1, insulin, C-peptide, and glucagon, but not glucose (p = 0.83). Area under the curve was significantly higher during the HP versus the HMF meal conditions for active GLP-1 (23.7 %; p = 0.0007), total GLP-1 (12.2 %; p < 0.0001), insulin (54.4 %; p < 0.0001), C-peptide (14.8 %; p < 0.0001), and glucagon (40.7 %; p < 0.0001). Blood glucose was not different between the HP versus HMF conditions (-4.8 %; p = 0.11). Insulin sensitivity was higher during the HMF versus HP conditions (Matsuda index mean difference: 16.3 %; p = 0.007). Appetite ratings were not different by meal condition. GLP-1 and insulin responses were higher during the HP condition. However, no difference was found in blood glucose between conditions, and insulin sensitivity was higher during the HMF condition, indicating that a HMF meal may be optimal at regulating blood glucose in overweight/obese individuals without type 2 diabetes.

  4. Effect of glucagon-like peptide-1 on beta- and alpha-cell function in isolated islet and whole pancreas transplant recipients.

    PubMed

    Rickels, Michael R; Mueller, Rebecca; Markmann, James F; Naji, Ali

    2009-01-01

    Glucose-dependent insulin secretion is often impaired after islet transplantation where reduced beta-cell secretory capacity indicates a low functional beta-cell mass. We sought to determine whether glucagon-like peptide-1 (GLP-1) enhanced glucose-dependent insulin secretion and glucagon suppression in islet recipients, and whether GLP-1 effects were dependent on functional beta-cell mass by simultaneously studying recipients of whole pancreas transplants. The study was performed in a clinical and translational research center. Five intraportal islet and six portally drained pancreas transplant recipients participated in the study. Subjects underwent glucose-potentiated arginine testing with GLP-1 (1.5 pmol . kg(-1) . min(-1)) or placebo infused on alternate randomized occasions, with 5 g arginine injected under basal and hyperglycemic clamp conditions. Basal glucose was lower with increases in insulin and decreases in glucagon during GLP-1 vs. placebo in both groups. During the hyperglycemic clamp, a significantly greater glucose infusion rate was required with GLP-1 vs. placebo in both groups (P < 0.05), an effect more pronounced in the pancreas vs. islet group (P < 0.01). The increased glucose infusion rate was associated with significant increases in second-phase insulin secretion in both groups (P < 0.05) that also tended to be greater in the pancreas vs. islet group (P = 0.08), whereas glucagon was equivalently suppressed by the hyperglycemic clamp during GLP-1 and placebo infusions in both groups. The GLP-1-induced increase in second-phase insulin correlated with the beta-cell secretory capacity (P < 0.001). The proinsulin secretory ratio (PISR) during glucose-potentiated arginine was significantly greater with GLP-1 vs. placebo infusion in both groups (P < 0.05). GLP-1 induced enhancement of glucose-dependent insulin secretion, but not glucagon suppression, in islet and pancreas transplant recipients, an effect dependent on the functional beta-cell mass

  5. Racial differences in glucagon-like peptide-1 (GLP-1) concentrations and insulin dynamics during oral glucose tolerance test in obese subjects

    PubMed Central

    Velasquez-Mieyer, PA; Cowan, PA; Umpierrez, GE; Lustig, RH; Cashion, AK; Burghen, GA

    2006-01-01

    Obese African-American (AA) subjects have higher resting and stimulated insulin concentrations than obese Caucasians (C), which could not be explained by the severity of obesity or the degree of insulin sensitivity. We investigated whether differences in glucagon-like peptide-1 (GLP-1), the most potent incretin that regulates insulin secretion, might explain racial differences in insulin response. Accordingly, we measured fasting and stimulated glucose, insulin, and GLP-1 levels during a 3-h oral glucose tolerance test (OGTT) in 26 obese C (age 38 ± 2 y, body mass index 44 ± 1 kg/m2) and 16 obese AA (age 36 ± 2 y, BMI 46 ± 2 kg/m2) subjects. Corrected insulin response (CIR30), a measure of β-cell activity, whole body insulin sensitivity index (WBISI), and area under the curve (AUC) for insulin, GLP-1, and C-peptide/insulin ratio were computed from the OGTT. Glucose levels, fasting and during the OGTT, were similar between racial groups; 32% of the C and 31% of the AA subjects had impaired glucose tolerance. With a similar WBISI, AAs had significantly higher CIR30 (2.3 ± 0.4 vs 1.01 ± 0.1), insulin response (IAUC: 23 974 ± 4828 vs 14 478 ± 1463), and lower insulin clearance (0.07 ± 0.01 vs 0.11 ± 0.01) than C (all, P<0.01). Obese AAs also had higher fasting GLP-1 (6.7 ± 2.5 vs 4.5 ± 1.1) and GLP-1AUC (1174.7 ± 412 vs 822.4 ± 191) than C (both, P<0.02). Our results indicate that obese AAs had higher concentrations of GLP-1 both at fasting and during the OGTT than obese C. The increased GLP-1 concentration could explain the greater insulin concentration and the increased prevalence of hyperinsulinemia-associated disorders including obesity and type 2 diabetes in AAs. PMID:14574347

  6. Improved Glycaemia Correlates with Liver Fat Reduction in Obese, Type 2 Diabetes, Patients Given Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists

    PubMed Central

    Cuthbertson, Daniel J.; Irwin, Andrew; Gardner, Chris J.; Daousi, Christina; Purewal, Tej; Furlong, Niall; Goenka, Niru; Thomas, E. Louise; Adams, Valerie L.; Pushpakom, Sudeep P.; Pirmohamed, Munir; Kemp, Graham J.

    2012-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM) because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with T2DM, we determined the impact of 6 months’ GLP-1 RA therapy on intrahepatic lipid (IHL) in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in glycosylated haemoglobin (HbA1c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT and SAT). We prospectively studied 25 (12 male) patients, age 50±10 years, BMI 38.4±5.6 kg/m2 (mean ± SD) with baseline IHL of 28.2% (16.5 to 43.1%) and HbA1c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n = 19; liraglutide, n = 6). IHL was quantified by liver proton magnetic resonance spectroscopy (1H MRS) and VAT and SAT by whole body magnetic resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA1c reduction of 1·6% (17 mmol/mol) (0·8,2·4%) and a 42% relative reduction in IHL (−59.3, −16.5%). The relative reduction in IHL correlated with that in HbA1c (ρ = 0.49; p = 0.01) but was not significantly correlated with that in total body weight, VAT or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed to determine potential direct effects of GLP-1 RA on human liver lipid metabolism. PMID:23236362

  7. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers.

    PubMed

    Nauck, Michael A; Heimesaat, Markus M; Behle, Kai; Holst, Jens J; Nauck, Markus S; Ritzel, Robert; Hüfner, Michael; Schmiegel, Wolff H

    2002-03-01

    Glucagon-like peptide 1 (GLP-1) and analogues are being evaluated as a new therapeutic principle for the treatment of type 2 diabetes. GLP-1 suppresses glucagon secretion, which could lead to disturbances of hypoglycemia counterregulation. This has, however, not been tested. Nine healthy volunteers with normal oral glucose tolerance received infusions of regular insulin (1 mU x kg(-1) x min(-1)) over 360 min on two occasions in the fasting state. Capillary glucose concentrations were clamped at plateaus of 4.3, 3.7, 3.0, and 2.3 mmol/liter for 90 min each (stepwise hypoglycemic clamp); on one occasion, GLP-1 (1.2 pmol x kg(-1) x min(-1)) was administered i.v. (steady-state concentration, approximately 125 pmol/liter); on the other occasion, NaCl was administered as placebo. Glucagon, cortisol, GH (immunoassays), and catecholamines (radioenzymatic assay) were determined, autonomous and neuroglucopenic symptoms were assessed, and cognitive function was tested at each plateau. Insulin secretion rates were estimated by deconvolution (two-compartment model of C-peptide kinetics). At insulin concentrations of approximately 45 mU/liter, glucose infusion rates were similar with and without GLP-1 (P = 0.26). Only during the euglycemic plateau (4.3 mmol/liter), GLP-1 suppressed glucagon concentrations (4.1 +/- 0.4 vs. 6.5 +/- 0.7 pmol/liter; P = 0.012); at all hypoglycemic plateaus, glucagon increased similarly with GLP-1 or placebo, to maximum values greater than 20 pmol/liter (P = 0.97). The other counterregulatory hormones and autonomic or neuroglucopenic symptom scores increased, and cognitive functions decreased with decreasing glucose concentrations, but there were no significant differences comparing experiments with GLP-1 or placebo, except for a significant reduction of GH responses during hypoglycemia with GLP-1 (P = 0.04). GLP-1 stimulated insulin secretion only at plasma glucose concentrations of at least 4.3 mmol/liter. In conclusion, the suppression of glucagon

  8. Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.

    PubMed

    Vella, A; Shah, P; Basu, R; Basu, A; Holst, J J; Rizza, R A

    2000-04-01

    Although it is well established that glucagon-like peptide 1(7-36) amide (GLP-1) is a potent stimulator of insulin secretion, its effects on insulin action and glucose effectiveness are less clear. To determine whether GLP-1 increases insulin action and glucose effectiveness, subjects with type 2 diabetes were studied on two occasions. Insulin was infused during the night on both occasions to ensure that baseline glucose concentrations were comparable. On the morning of study, either GLP-1 (1.2 pmol x kg(-1) x min(-1)) or saline were infused along with somatostatin and replacement amounts of glucagon. Glucose also was infused in a pattern mimicking that typically observed after a carbohydrate meal. Insulin concentrations were either kept constant at basal levels (n = 6) or varied so as to create a prandial insulin profile (n = 6). The increase in glucose concentration was virtually identical on the GLP-1 and saline study days during both the basal (1.21 +/- 0.15 vs. 1.32 +/- 0.19 mol/l per 6 h) and prandial (0.56 +/- 0.14 vs. 0.56 +/- 0.10 mol/l per 6 h) insulin infusions. During both the basal and prandial insulin infusions, glucose disappearance promptly increased after initiation of the glucose infusion to rates that did not differ on the GLP-1 and saline study days. Suppression of endogenous glucose production also was comparable on the GLP-1 and saline study days during both the basal (-2.7 +/- 0.3 vs. -3.1 +/- 0.2 micromol/kg) and prandial (-3.1 +/- 0.4 vs. -3.0 +/- 0.6 pmol/kg) insulin infusions. We conclude that when insulin and glucagon concentrations are matched, GLP-1 has negligible effects on either insulin action or glucose effectiveness in people with type 2 diabetes. These data strongly support the concept that GLP-1 improves glycemic control in people with type 2 diabetes by increasing insulin secretion, by inhibiting glucagon secretion, and by delaying gastric emptying rather than by altering extrapancreatic glucose metabolism.

  9. The glucagon-like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients.

    PubMed

    Imamura, Shigeki; Hirai, Keiji; Hirai, Aizan

    2013-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Glucagon-like peptide-1 (GLP-1) is one of the incretins, gut hormones released from the intestine in response to food intake. GLP-1 receptor (GLP-1R) agonists have been used to treat type 2 diabetes. Here, we studied the effect of the administration of a GLP-1R agonist, liraglutide, on proteinuria and the progression of overt DN in type 2 diabetic patients. Twenty-three type 2 diabetic patients with overt DN, who had already been treated with blockade of renin-angiotensin system under dietary sodium restriction, were given liraglutide for a period of 12 months. Treatment with liraglutide caused a significant decrease in HbA1c from 7.4 ± 0.2% to 6.9 ± 0.3% (p = 0.04), and in body mass index (BMI) from 27.6 ± 0.9 kg/m² to 26.5 ± 0.8 kg/m² after 12 months (p < 0.001), while systolic blood pressure did not change. The progression of DN was determined as the rate of decline in estimated glomerular filtration rate (eGFR). The 12-month administration of liraglutide caused a significant decrease in proteinuria from 2.53 ± 0.48 g/g creatinine to 1.47 ± 0.28 g/g creatinine (p = 0.002). The administration of liraglutide also substantially diminished the rate of decline in eGFR from 6.6 ± 1.5 mL/min/1.73 m²/year to 0.3 ± 1.9 mL/min/1.73 m²/year (p = 0.003). Liraglutide can be used not only for reducing HbA1c and BMI, but also for attenuating the progression of nephropathy in type 2 diabetic patients.

  10. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake.

    PubMed

    Verhoef, Sanne P M; Meyer, Diederick; Westerterp, Klaas R

    2011-12-01

    In rats, oligofructose has been shown to stimulate satiety hormone secretion, reduce energy intake and promote weight loss. The present study aimed to examine the effect of oligofructose supplementation on appetite profiles, satiety hormone concentrations and energy intake in human subjects. A total of thirty-one healthy subjects (ten men and twenty-one women) aged 28 (SEM 3) years with a BMI of 24·8 (SEM 0·3) kg/m(2) were included in a randomised double-blind, cross-over study. The subjects received 10 g oligofructose, 16 g oligofructose or 16 g placebo (maltodextrin) daily for 13 d, with a 2-week washout period between treatments. Appetite profile, active glucagon-like peptide 1 (GLP-1) and peptide YY3-36 (PYY) concentrations and energy intake were assessed on days 0 and 13 of the treatment period. Time × treatment interaction revealed a trend of reduction in energy intake over days 0-13 by oligofructose (P = 0·068). Energy intake was significantly reduced (11 %) over time on day 13 compared with day 0 with 16 g/d oligofructose (2801 (SEM 301) v. 3217 (SEM 320) kJ, P < 0·05). Moreover, energy intake was significantly lower with 16 g/d oligofructose compared with 10 g/d oligofructose on day 13 (2801 (SEM 301) v. 3177 (SEM 276) kJ, P < 0·05). Area under the curve (AUC) for GLP-1 on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose (45 (SEM 4) v. 41 (SEM 3) pmol/l × h, P < 0·05). In the morning until lunch, AUC(0-230 min) for PYY on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose and placebo (409 (SEM 35) v. 222 (SEM 19) and 211 (SEM 20) pg/ml × h, P < 0·01). In conclusion, 16 g/d and not 10 g/d oligofructose may be an effective dose to reduce energy intake, possibly supported by higher GLP-1 and PYY concentrations.

  11. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery.

    PubMed

    Svane, M S; Jørgensen, N B; Bojsen-Møller, K N; Dirksen, C; Nielsen, S; Kristiansen, V B; Toräng, S; Wewer Albrechtsen, N J; Rehfeld, J F; Hartmann, B; Madsbad, S; Holst, J J

    2016-11-01

    Exaggerated postprandial secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) may explain appetite reduction and weight loss after Roux-en-Y gastric bypass (RYGB), but causality has not been established. We hypothesized that food intake decreases after surgery through combined actions from GLP-1 and PYY. GLP-1 actions can be blocked using the GLP-1 receptor antagonist Exendin 9-39 (Ex-9), whereas PYY actions can be inhibited by the administration of a dipeptidyl peptidase-4 (DPP-4) inhibitor preventing the formation of PYY3-36. Appetite-regulating gut hormones and appetite ratings during a standard mixed-meal test and effects on subsequent ad libitum food intake were evaluated in two studies: in study 1, nine patients with type 2 diabetes were examined prospectively before and 3 months after RYGB with and without Ex-9. In study 2, 12 RYGB-operated patients were examined in a randomized, placebo-controlled, crossover design on four experimental days with: (1) placebo, (2) Ex-9, (3) the DPP-4 inhibitor, sitagliptin, to reduce formation of PYY3-36 and (4) Ex-9/sitagliptin combined. In study 1, food intake decreased by 35% following RYGB compared with before surgery. Before surgery, GLP-1 receptor blockage increased food intake but no effect was seen postoperatively, whereas PYY secretion was markedly increased. In study 2, combined GLP-1 receptor blockage and DPP-4 inhibitor mediated lowering of PYY3-36 increased food intake by ~20% in RYGB patients, whereas neither GLP-1 receptor blockage nor DPP-4 inhibition alone affected food intake, perhaps because of concomitant marked increases in the unblocked hormone. Blockade of actions from only one of the two L-cell hormones, GLP-1 and PYY3-36, resulted in concomitant increased secretion of the other, probably explaining the absent effect on food intake on these experimental days. Combined blockade of GLP-1 and PYY actions increased food intake after RYGB, supporting that these hormones have a role in

  12. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Li, Zhixia; Zhang, Yuan; Quan, Xiaochi; Yang, Zhirong; Zeng, Xiantao; Ji, Linong

    2016-01-01

    Objective To synthesize current evidence of the impact of Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on hypoglycemia, treatment discontinuation and glycemic level in patients with type 2 diabetes. Design Systematic review and network meta-analysis. Data Sources Literature search (Medline, Embase, the Cochrane library), website of clinical trial, bibliographies of published systematic reviews. Eligibility Criteria Randomized controlled trials with available data comparing GLP-1 RAs with placebo or traditional anti-diabetic drugs in patients with type 2 diabetes. Data Synthesis Traditional pairwise meta-analyses within DerSimonian-Laird random effects model and network meta-analysis within a Bayesian framework were performed to calculate odds ratios for the incidence of hypoglycemia, treatment discontinuation, HbA1c<7.0% and HbA1c<6.5%. Ranking probabilities for all treatments were estimated to obtain a treatment hierarchy using the surface under the cumulative ranking curve (SUCRA) and mean ranks. Results 78 trials with 13 treatments were included. Overall, all GLP-1 RAs except for albiglutide increased the risk of hypoglycemia when compared to placebo. Reduction in the incidence of hypoglycemia was found for all GLP-1 RAs versus insulin (except for dulaglutide) and sulphonylureas. For the incidence of treatment discontinuation, increase was found for exenatide, liraglutide, lixisenatide and taspoglutide versus placebo, insulin and sitagliptin. For glycemic level, decrease was found for all GLP-1 RAs versus placebo. Dulaglutide, exenatide long-acting release (exe_lar), liraglutide and taspoglutide had significant lowering effect when compared with sitagliptin (HbA1c<7.0%) and insulin (HbA1c<6.5%). Finally, according to SUCRAs, placebo, thiazolidinediones and albiglutide had the best decrease effect on hypoglycemia; sulphanylureas, sitagliptin and insulin decrease the incidence of treatment discontinuation most; exe_lar and dulaglutide had the highest

  13. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling.

    PubMed

    Takada, Shingo; Masaki, Yoshihiro; Kinugawa, Shintaro; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Takahashi, Masashige; Harashima, Shinichi; Matsushima, Shouji; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2016-09-01

    Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI). MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps). A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle

  14. Glucagon-like peptide-1 cleavage product GLP-1 (9-36) amide enhances hippocampal long-term synaptic plasticity in correlation with suppression of Kv4.2 expression and eEF2 phosphorylation.

    PubMed

    Day, Stephen M; Yang, Wenzhong; Ewin, Sarah; Zhou, Xueyan; Ma, Tao

    2017-08-18

    Glucagon-like peptide-1 (GLP-1) is an endogenous gut hormone and a key regulator in maintaining glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36), used to be considered a "bio-inactive" metabolite mainly because of its lack of insulinotropic effects and low affinity for GLP-1 receptors, possesses unique properties such as anti-oxidant and cardiovascular protection. Little is known about the role of GLP-1 (9-36) in central nervous system. Here we report that chronic, systemic application of GLP-1 (9-36) in adult mice facilitated both the induction and maintenance phases of hippocampal long-term potentiation (LTP), a major form of synaptic plasticity. In contrast, spatial learning and memory, as assessed by the Morris water maze test, was not altered by GLP-1 (9-36) administration. At the molecular level, GLP-1 (9-36) reduced protein levels of the potassium channel Kv4.2 in hippocampus, which is linked to elevated dendritic membrane excitability. Moreover, GLP-1(9-36) treatment inhibited phosphorylation of mRNA translational factor eEF2, which is associated with increased capacity for de novo protein synthesis. Finally, we showed that the LTP-enhancing effects by GLP-1 (9-36) treatment in vivo were blunted by application of exendin(9-39)amide [EX(9-39)], the GLP-1 receptor (GLP-1R) antagonist, suggesting its role as a GLP-1R agonist. These findings demonstrate that GLP-1 (9-36), which was considered a "bio-inactive" peptide, clearly exerts physiological effects on neuronal plasticity in the hippocampus, a brain region critical for learning and memory. © 2017 Wiley Periodicals, Inc.

  15. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction.

    PubMed

    Evans, Sarah; Pamuklar, Zehra; Rosko, Jonathan; Mahaney, Patrick; Jiang, Ning; Park, Chan; Torquati, Alfonso

    2012-04-01

    The effects of gastric bypass surgery on the secretion of the anorexigenic gut-derived hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), independent of caloric restriction and due to different dietary macronutrients, is not well characterized. This study examines the effects of a mixed-nutrient or high-fat liquid meal on the postprandial stimulation of GLP-1 and PYY following gastric bypass or equivalent hypocaloric diet. Total PYY and active GLP-1 were measured fasting and at multiple points after standardized mixed-nutrient and high-fat liquid meals in two matched groups of obese subjects. The meal stimulation tests were performed before and 14.6 ± 3.3 days after gastric bypass (GBP, n = 10) and before and after a 7-day hypocaloric liquid diet matching the post-GBP diet (control, n = 10). Mixed-nutrient and high-fat postprandial GLP-1 levels increased following GBP (mixed-nutrient peak: 85.0 ± 28.6-323 ± 51 pg/ml, P < 0.01; high-fat peak: 81.8 ± 9.6-278 ± 49 pg/ml, P < 0.01), but not after diet (mixed-nutrient peak: 104.4 ± 9.4-114.9 ± 15.8 pg/ml, P = NS; high-fat peak: 118.1 ± 16.4-104.4 ± 10.8 pg/ml, P = NS). The postprandial PYY response also increased after GBP but not diet, though the increase in peak PYY did not reach statistical significance (GBP mixed-nutrient peak: 134.8 ± 26.0-220.7 ± 52.9 pg/ml, P = 0.09; GBP high-fat peak: 142.1 ± 34.6-197.9 ± 12.7 pg/ml, P = 0.07; diet mixed-nutrient peak: 99.8 ± 8.0-101.1 ± 13.3 pg/ml, P = NS; diet high-fat peak: 105.0 ± 8.8-103.1 ± 11.8 pg/ml, P = NS). The postprandial GLP-1 response was not affected by the macronutrient content of the meal. However, following GBP the mixed-nutrient PYY total area under the curve (AUC(0-120)) was significantly greater than the high-fat PYY AUC(0-120) (22,081 ± 5,662 pg/ml min vs. 18,711 ± 1,811 pg/ml min, P = 0.04). Following GBP there is an increase in the postprandial stimulation of PYY and GLP-1 that is independent of caloric restriction. The

  16. GASTRIC BYPASS SURGERY RESTORES MEAL STIMULATION OF THE ANOREXIGENIC GUT HORMONES GLUCAGON-LIKE PEPTIDE-1 AND PEPTIDE YY INDEPENDENTLY OF CALORIC RESTRICTION

    PubMed Central

    Evans, Sarah; Pamuklar, Zehra; Rosko, Jonathan; Mahaney, Patrick; Jiang, Ning; Park, Chan; Torquati, Alfonso

    2011-01-01

    Background The effects of gastric bypass surgery on the secretion of the anorexogenic gut-derived hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), independent of caloric restriction and due to different dietary macronutrients, is not well-characterized. This study examines the effects of a mixed-nutrient or high-fat liquid meal on the postprandial stimulation of GLP-1 and PYY following gastric bypass or equivalent hypocaloric diet. Methods Total PYY and active GLP-1 were measured fasting and at multiple points after standardized mixed-nutrient and high-fat liquid meals in two matched groups of obese subjects. The meal stimulation tests were performed before and 14.6±3.3 days after gastric bypass (GBP, n=10) and before and after a 7-day hypocaloric liquid diet matching the post-GBP diet (Control, n=10). Results Mixed-nutrient and high-fat postprandial GLP-1 levels increased following GBP (mixed-nutrient peak: 85.0±28.6 pg/ml to 323±51 pg/ml, p<0.01; high-fat peak: 81.8±9.6 pg/ml to 278±49 pg/ml, p<0.01), but not after diet (mixed-nutrient peak: 104.4±9.4 pg/ml to 114.9±15.8 pg/ml, p=NS; high-fat peak: 118.1±16.4 pg/ml to 104.4±10.8 pg/ml, p=NS). The postprandial PYY response also increased after GBP but not diet, though the increase in peak PYY did not reach statistical significance (GBP mixed-nutrient peak: 134.8±26.0 pg/ml to 220.7±52.9 pg/ml, p=0.09; GBP high-fat peak: 142.1±34.6 pg/ml to 197.9±12.7 pg/ml, p=0.07; diet mixed-nutrient peak: 99.8±8.0 pg/ml to 101.1±13.3 pg/ml, p=NS; diet high-fat peak: 105.0±8.8 pg/ml to 103.1±11.8 pg/ml, p=NS). The postprandial GLP-1 response was not affected by the macronutrient content of the meal. However, following GBP the mixed-nutrient PYY AUC0–120 was significantly greater than the high-fat PYY AUC0–120 (22081±5662 pg/ml•min versus 18711±1811 pg/ml•min, p=0.04). Conclusions Following GBP there is an increase in the postprandial stimulation of PYY and GLP-1 that is independent from

  17. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia.

    PubMed

    Tan, Tricia M; Field, Benjamin C T; McCullough, Katherine A; Troke, Rachel C; Chambers, Edward S; Salem, Victoria; Gonzalez Maffe, Juan; Baynes, Kevin C R; De Silva, Akila; Viardot, Alexander; Alsafi, Ali; Frost, Gary S; Ghatei, Mohammad A; Bloom, Stephen R

    2013-04-01

    Glucagon and glucagon-like peptide (GLP)-1 are the primary products of proglucagon processing from the pancreas and gut, respectively. Giving dual agonists with glucagon and GLP-1 activity to diabetic, obese mice causes enhanced weight loss and improves glucose tolerance by reduction of food intake and by increase in energy expenditure (EE). We aimed to observe the effect of a combination of glucagon and GLP-1 on resting EE and glycemia in healthy human volunteers. In a randomized, double-blinded crossover study, 10 overweight or obese volunteers without diabetes received placebo infusion, GLP-1 alone, glucagon alone, and GLP-1 plus glucagon simultaneously. Resting EE--measured using indirect calorimetry--was not affected by GLP-1 infusion but rose significantly with glucagon alone and to a similar degree with glucagon and GLP-1 together. Glucagon infusion was accompanied by a rise in plasma glucose levels, but addition of GLP-1 to glucagon rapidly reduced this excursion, due to a synergistic insulinotropic effect. The data indicate that drugs with glucagon and GLP-1 agonist activity may represent a useful treatment for type 2 diabetes and obesity. Long-term studies are required to demonstrate that this combination will reduce weight and improve glycemia in patients.

  18. The Melanocortin-4 Receptor is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-Like Peptide 1 In Vivo

    PubMed Central

    Panaro, Brandon L.; Tough, Iain R.; Engelstoft, Maja Storm; Matthews, Robert T.; Digby, Gregory J.; Møller, Cathrine Laustrup; Svendsen, Berit; Gribble, Fiona; Reimann, Frank; Holst, Jens J.; Holst, Birgitte; Schwartz, Thue W.; Cox, Helen M.; Cone, Roger D.

    2014-01-01

    SUMMARY The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves, and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly expressed GPCR in peptide YY (PYY) and glucagon-like peptide one (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent anti-secretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells, and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions. PMID:25453189

  19. Effects of calcium salts of long-chain fatty acids and rumen-protected methionine on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide and pancreatic hormones in lactating cows.

    PubMed

    Fukumori, R; Sugino, T; Shingu, H; Moriya, N; Hasegawa, Y; Kojima, M; Kangawa, K; Obitsu, T; Kushibiki, S; Taniguchi, K

    2012-02-01

    Our objective was to determine the effects of calcium salts of long-chain fatty acids (CLFAs) and rumen-protected methionine (RPM) on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide, and pancreatic hormones in lactating cows. Four Holstein cows in midlactation were used in a 4 by 4 Latin square experiment in each 2-wk period. Cows were fed corn silage-based diets with supplements of CLFAs (1.5% added on dry matter basis), RPM (20 g/d), CLFAs plus RPM, and without supplement. Jugular blood samples were taken from 1 h before to 2 h after morning feeding at 10-min intervals on day 12 of each period. CLFAs decreased dry matter intake, but RPM did not affect dry matter intake. Both supplements of CLFAs and RPM did not affect metabolizable energy intake and milk yield and composition. Plasma concentrations of NEFAs, triglyceride (TG), and total cholesterol (T-Cho) were increased with CLFAs alone, but increases of plasma concentrations of TG and T-Cho were moderated by CLFAs plus RPM. Calcium salts of long-chain fatty acids increased plasma ghrelin concentration, and the ghrelin concentration with CLFAs plus RPM was the highest among the treatments. Plasma concentrations of glucagon-like peptide-1, glucagon, and insulin were decreased with CLFAs, whereas adding RPM moderated the decrease of plasma glucagon concentration by CLFAs. These results indicate that the addition of methionine to cows given CLFAs increases plasma concentrations of ghrelin and glucagon associated with the decrease in plasma concentrations of TG and T-Cho.

  20. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Price, David A; Liras, Spiros; Craik, David J

    2016-07-22

    Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats

    PubMed Central

    Hoelmkjaer, Kirsten M.; Wewer Albrechtsen, Nicolai J.; Holst, Jens J.; Cronin, Anna M.; Nielsen, Dorte H.; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R.

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  2. Reduction of hepatic insulin clearance after oral glucose ingestion is not mediated by glucagon-like peptide 1 or gastric inhibitory polypeptide in humans.

    PubMed

    Meier, Juris J; Holst, Jens J; Schmidt, Wolfgang E; Nauck, Michael A

    2007-09-01

    Changes in hepatic insulin clearance can occur after oral glucose or meal ingestion. This has been attributed to the secretion and action of gastric inhibitory polypeptide (GIP) and glucagon-like peptide (GLP)-1. Given the recent availability of drugs based on incretin hormones, such clearance effects may be important for the future treatment of type 2 diabetes. Therefore, we determined insulin clearance in response to endogenously secreted and exogenously administered GIP and GLP-1. Insulin clearance was estimated from the molar C-peptide-to-insulin ratio calculated at basal conditions and from the respective areas under the curve after glucose, GIP, or GLP-1 administration. Oral glucose administration led to an approximately 60% reduction in the C-peptide-to-insulin ratio (P < 0.0001), whereas intravenous glucose administration had no effect (P = 0.09). The endogenous secretion of GIP or GLP-1 was unrelated to the changes in insulin clearance. The C-peptide-to-insulin ratio was unchanged after the intravenous administration of GIP or GLP-1 in the fasting state (P = 0.27 and P = 0.35, respectively). Likewise, infusing GLP-1 during a meal course did not alter insulin clearance (P = 0.87). An inverse nonlinear relationship was found between the C-peptide-to-insulin ratio and the integrated insulin levels after oral and during intravenous glucose administration. Insulin clearance is reduced by oral but not by intravenous glucose administration. Neither GIP nor GLP-1 has significant effects on insulin extraction. An inverse relationship between insulin concentrations and insulin clearance suggests that the secretion of insulin itself determines the rate of hepatic insulin clearance.

  3. Intrameal Hepatic Portal and Intraperitoneal Infusions of Glucagon-Like Peptide-1 Reduce Spontaneous Meal Size in the Rat via Different Mechanisms

    PubMed Central

    Rüttimann, Elisabeth B.; Arnold, Myrtha; Hillebrand, Jacquelien J.; Geary, Nori; Langhans, Wolfgang

    2009-01-01

    Peripheral administration of glucagon-like peptide (GLP)-1 reduces food intake in animals and humans, but the sites and mechanism of this effect and its physiological significance are not yet clear. To investigate these issues, we prepared rats with chronic catheters and infused GLP-1 (0.2 ml/min; 2.5 or 5.0 min) during the first spontaneous dark-phase meals. Infusions were remotely triggered 2–3 min after meal onset. Hepatic portal vein (HPV) infusion of 1.0 or 3.0 (but not 0.33) nmol/kg GLP-1 reduced the size of the ongoing meal compared with vehicle without affecting the subsequent intermeal interval, the size of subsequent meals, or cumulative food intake. In double-cannulated rats, HPV and vena cava infusions of 1.0 nmol/kg GLP-1 reduced meal size similarly. HPV GLP-1 infusions of 1.0 nmol/kg GLP-1 also reduced meal size similarly in rats with subdiaphragmatic vagal deafferentations and in sham-operated rats. Finally, HPV and ip infusions of 10 nmol/kg GLP-1 reduced meal size similarly in sham-operated rats, but only HPV GLP-1 reduced meal size in subdiaphragmatic vagal deafferentation rats. These data indicate that peripherally infused GLP-1 acutely and specifically reduces the size of ongoing meals in rats and that the satiating effect of ip, but not iv, GLP-1 requires vagal afferent signaling. The findings suggest that iv GLP-1 infusions do not inhibit eating via hepatic portal or hepatic GLP-1 receptors but may act directly on the brain. PMID:18948395

  4. Preserved glucagon-like peptide-1 responses to oral glucose, but reduced incretin effect, insulin secretion and sensitivity in young Asians with type 2 diabetes mellitus

    PubMed Central

    Yeow, Toh Peng; Pacini, Giovanni; Tura, Andrea; Lim, Shueh Lin; Tan, Florence Hui Sieng; Tong, Chin Voon; Hong, Janet Yeow Hua; Md Zain, Fuziah; Holst, Jens Juul; Wan Mohamud, Wan Nazaimoon

    2017-01-01

    Objective Youth onset type 2 diabetes mellitus (YT2DM) is a globally rising phenomenon with substantial Asians representation. The understanding of its pathophysiology is derived largely from studies in the obese African-American and Caucasian populations, while studies on incretin effect are scarce. We examined the insulin resistance, β-cell function (BC), glucagon-like peptide (GLP)-1 hormone and incretin effect in Asian YT2DM. Research design and methods This case–control study recruited 25 Asian YT2DM and 15 healthy controls, matched for gender, ethnicity and body mass index. Serum glucose, insulin, C peptide and GLP-1 were sampled during 2-hour oral glucose tolerance tests (OGTTs) and 1-hour intravenous glucose tolerance tests (IVGTTs). Insulin sensitivity was derived from the Quantitative Insulin Sensitivity Check Index (QUICKI), Oral Glucose Insulin Sensitivity Index (OGIS) in OGTT and surrogate index of SI from the minimal model (calculated SI, CSI). Acute insulin response (AIR) was obtained from IVGTT. Total BC was computed as incremental area under the curve of insulin/incremental area under the curve of glucose, during OGTT (BCOG) and IVGTT (BCIV), respectively. Disposition index (DI) was calculated using the product of insulin sensitivity and insulin secretion. GLP-1 response to oral glucose was calculated as incremental area under the curve of GLP-1 (ΔAUCGLP-1). Per cent incretin effect was estimated as 100×(BCOG−BCIV)/BCOG). Results The YT2DM had marked impairment in BC (>80% reduction in AIR and BCOG, p<0.001) and lower QUICKI (p<0.001), OGIS (p<0.001) and CSI (p=0.015) compared with controls. There was no difference in GLP-1 at all time points and ΔAUCGLP-1 but the per cent incretin effect was reduced in the YT2DM compared with controls (12.1±8.93 vs 70.0±4.03, p<0.001). Conclusions Asian YT2DM showed similar GLP-1 response to oral glucose as controls but reduced incretin effect, BC and insulin sensitivity. The lack of compensatory

  5. Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione Core.

    PubMed

    Nance, Kellie D; Days, Emily L; Weaver, C David; Coldren, Anastasia; Farmer, Tiffany D; Cho, Hyekyung P; Niswender, Colleen M; Blobaum, Anna L; Niswender, Kevin D; Lindsley, Craig W

    2017-02-23

    A duplexed, functional multiaddition high throughput screen and subsequent optimization effort identified the first orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonist. Antagonist 5d not only blocked exendin-4-stimulated insulin release in islets but also lowered insulin levels while increasing blood glucose in vivo.

  6. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  7. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not.

    PubMed

    Raun, Kirsten; von Voss, Pia; Gotfredsen, Carsten F; Golozoubova, Valeria; Rolin, Bidda; Knudsen, Lotte Bjerre

    2007-01-01

    Metabolic effects of the glucagon-like peptide-1 analog liraglutide and the dipeptidyl peptidase-IV inhibitor vildagliptin were compared in rats made obese by supplementary candy feeding. Female Sprague-Dawley rats were randomized to 12-week diets of chow or chow plus candy. The latter were randomized for 12 further weeks to continue their diet while receiving 0.2 mg/kg liraglutide twice daily subcutaneously, 10 mg/kg vildagliptin twice daily orally, or vehicle or to revert to chow-only diet. Energy expenditure was measured, and oral glucose tolerance tests (OGTTs) were performed. Body composition was determined by dual-energy X-ray absorptiometry scanning, and pancreatic beta-cell mass was determined by histology. Candy feeding increased weight, fat mass, and feeding-associated energy expenditure. Liraglutide or reversal to chow diet fully reversed weight and fat gains. Liraglutide was associated with decreased calorie intake and shifted food preference (increased chow/decreased candy consumption). Despite weight loss, liraglutide-treated rats did not decrease energy expenditure compared with candy-fed controls. Vildagliptin affected neither weight, food intake, nor energy expenditure. OGTTs, histology, and blood analyses indirectly suggested that both drugs increased insulin sensitivity. Liraglutide and vildagliptin inhibited obesity-associated increases in beta-cell mass. This was associated with weight and fat mass normalization with liraglutide, but not vildagliptin, where the ratio of beta-cell to body mass was low.

  8. Glucagon-like peptide-1 receptor agonists as insulin add-on therapy in patients with inadequate glycemic control in type 2 diabetes mellitus: lixisenatide as a new therapeutic option.

    PubMed

    Gómez-Huelgas, Ricardo; Azriel, Sharona; Puig-Domingo, Manel; Vidal, Josep; de Pablos-Velasco, Pedro

    2015-03-01

    Despite the variety of therapeutic options for the management of type 2 diabetes mellitus, many patients fail to meet glycated hemoglobin (HbA1c) targets. The relative contribution of postprandial plasma glucose (PPG) to overall HbA1c is estimated at 40-60%, with the effect of PPG on HbA1c being prominent in patients on basal insulin. The development of glucagon-like peptide-1 receptor agonists (GLP-1RAs) has been an important achievement in diabetes management and has become an established treatment. Of available GLP-1RAs, lixisenatide is a once-daily prandial GLP-1RA that has been shown to produce a reduction in HbA1c with a pronounced postprandial effect, suggesting a complementary effect between lixisenatide and basal insulin on PPG and fasting plasma glucose, resulting in a beneficial effect on body weight in all populations. Therefore, lixisenatide will make an important addition to current options for treating diabetes, especially for patients not achieving glycemic targets with basal insulin therapy.

  9. Glucagon-Like Peptide-1 Receptor Imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-Exendin-4 for the Diagnosis of Recurrence or Dissemination of Medullary Thyroid Cancer: A Preliminary Report

    PubMed Central

    Pach, D.; Sowa-Staszczak, A.; Jabrocka-Hybel, A.; Stefańska, A.; Tomaszuk, M.; Mikołajczak, R.; Janota, B.; Trofimiuk-Müldner, M.; Przybylik-Mazurek, E.; Hubalewska-Dydejczyk, A.

    2013-01-01

    Introduction. Epidemiological studies on medullary thyroid cancer (MTC) have shown that neither a change in stage at diagnosis nor improvement in survival has occurred during the past 30 years. In patients with detectable serum calcitonin and no clinically apparent disease, a careful search for local recurrence, and nodal or distant metastases, should be performed. Conventional imaging modalities will not show any disease until basal serum calcitonin is at least 150 pg/mL. The objective of the study was to present the first experience with labelled glucagon-like peptide-1 (GLP-1) analogue [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 in the visualisation of MTC in humans. Material and Method. Four patients aged 22–74 years (two with sporadic and two with MEN2 syndrome-related disseminated MTC) were enrolled in the study. In all patients, GLP-1 receptor imaging was performed. Results. High-quality images were obtained in all patients. All previously known MTC lesions have been confirmed in GLP-1 scintigraphy. Moreover, one additional liver lesion was detected in sporadic MTC male patient. Conclusions. GLP-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is able to detect MTC lesions. GLP-1 scintigraphy can serve as a confirmatory test in MTC patients, in whom other imaging procedures are inconsistent. PMID:23606839

  10. Acute effect on satiety, resting energy expenditure, respiratory quotient, glucagon-like peptide-1, free fatty acids, and glycerol following consumption of a combination of bioactive food ingredients in overweight subjects.

    PubMed

    Rondanelli, Mariangela; Opizzi, Annalisa; Perna, Simone; Faliva, Milena; Solerte, Sebastiano Bruno; Fioravanti, Marisa; Klersy, Catherine; Edda, Cava; Maddalena, Paolini; Luciano, Scavone; Paola, Ceccarelli; Emanuela, Castellaneta; Claudia, Savina; Donini, Lorenzo Maria

    2013-01-01

    A combination of bioactive food ingredients (capsaicinoids, epigallocatechin gallate, piperin, and l-carnitine, CBFI) may promote satiety and thermogenesis. The study was conducted in order to assess whether there is any effect on satiety, resting energy expenditure (REE), respiratory quotient, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and glycerol release, following a standardized mixed meal with or without single consumption of a CBFI. An 8-week randomized double-blind placebo-controlled trial. Dietetic and Metabolic Unit, Azienda di Servizi alla Persona, University of Pavia and "Villa delle Querce" Clinical Rehabilitation Institute, Rome, Italy. Thirty-seven overweight adults (body mass index [BMI]: 25-35). Nineteen overweight subjects were included in the supplemented group (14 women, 5 men; age 46.4 ± 6.4; BMI: 30.5 ± 3.3) and 18 in the placebo group (13 women, 5 men; age 40.8 ± 11.5; BMI: 30.1 ± 2.6). Satiety was assessed using 100-mm visual analogue scales (VAS) and the area under the curve was calculated. All measured parameters increased significantly in comparison with baseline in response to meal, both with CBFI and with placebo. However, throughout the study day, the supplemented group experienced a significantly greater increase than the placebo group in their sensation of satiety following acute administration of the supplement. CBFI may therefore be of great value in the treatment of overweight patients by increasing satiety and stimulating thermogenesis.

  11. Antidiabetic drug voglibose is protective against ischemia-reperfusion injury through glucagon-like peptide 1 receptors and the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathway in rabbits.

    PubMed

    Iwasa, Masamitsu; Kobayashi, Hiroyuki; Yasuda, Shinji; Kawamura, Itta; Sumi, Shohei; Yamada, Yoshihisa; Shiraki, Takeru; Yamaki, Takahiko; Ushikoshi, Hiroaki; Aoyama, Takuma; Nishigaki, Kazuhiko; Takemura, Genzou; Fujiwara, Takako; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2010-06-01

    Glucagon-like peptide 1 (GLP-1) reportedly exerts a protective effect against cardiac ischemia. We hypothesized that the alpha-glucosidase inhibitor voglibose, an unabsorbable antidiabetic drug with cardioprotective effects, may act through stimulation of GLP-1 receptors. The results of the present study suggest oral administration of voglibose reduces myocardial infarct size and mitigates cardiac dysfunction in rabbits after 30 minutes of coronary occlusion and 48 hours of reperfusion. Voglibose increased basal and postprandial plasma GLP-1 levels and reduced postprandial plasma glucose levels. The infarct size-reducing effect of voglibose was abolished by treatment with exendin(9-39), wortmannin, Nomega-nitro-L-arginine methylester, or 5-hydroxydecanoate), which inhibit GLP-1 receptors, phosphoinositide 3-kinase, nitric oxide synthase, and K(ATP) channels, respectively. Western blot analysis showed that treatment with voglibose upregulated myocardial levels of phospho-Akt, phosphoendothelial nitric oxide synthase after myocardial infarction. The upregulation of phospho-Akt was inhibited by exendin(9-39) and wortmannin. These findings suggest that voglibose reduces myocardial infarct size through stimulation of GLP-1 receptors, activation of the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathways, and the opening of mitochondrial K(ATP) channels. These findings may provide new insight into therapeutic strategies for the treatment of patients with coronary artery disease.

  12. Effects of E2HSA, a Long-Acting Glucagon Like Peptide-1 Receptor Agonist, on Glycemic Control and Beta Cell Function in Spontaneous Diabetic db/db Mice.

    PubMed

    Hou, Shaocong; Li, Caina; Huan, Yi; Liu, Shuainan; Liu, Quan; Sun, Sujuan; Jiang, Qian; Jia, Chunming; Shen, Zhufang

    2015-01-01

    Glucagon like peptide-1 (GLP-1) receptor agonists such as exendin-4 have been widely used but their short half-life limits their therapeutic value. The recombinant protein, E2HSA, is a novel, long-acting GLP-1 receptor agonist generated by the fusion of exendin-4 with human serum albumin. In mouse pancreatic NIT-1 cells, E2HSA activated GLP-1 receptor with similar efficacy as exendin-4. After single-dose administration in ICR mice, E2HSA showed prolonged glucose lowering effects which lasted up to four days and extended inhibition on gastric emptying for at least 72 hours. Chronic E2HSA treatment in db/db mice significantly improved glucose tolerance, reduced elevated nonfasting and fasting plasma glucose levels, and also decreased HbA1c levels. E2HSA also increased insulin secretion and decreased body weight and appetite. Furthermore, immunofluorescence analysis showed that E2HSA increased β-cell area, improved islet morphology, and reduced β-cell apoptosis. In accordance with the promotion of β-cell function and survival, E2HSA upregulated genes such as Irs2, Pdx-1, Nkx6.1, and MafA and downregulated the expression levels of FoxO1 and proapoptotic Bcl-2 family proteins. In conclusion, with prolonged glucose lowering effects and promoting β-cell function and survival, the fusion protein, E2HSA, is a promising new therapeutic for once weekly treatment of type 2 diabetes.

  13. Chronic treatment with exendin(9-39)amide indicates a minor role for endogenous glucagon-like peptide-1 in metabolic abnormalities of obesity-related diabetes in ob/ob mice.

    PubMed

    Green, B D; Irwin, N; Gault, V A; Bailey, C J; O'Harte, F P M; Flatt, P R

    2005-05-01

    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic hormone proposed to play a role in both the pathophysiology and treatment of type 2 diabetes. This study has employed the GLP-1 receptor antagonist, exendin-4(9-39)amide (Ex(9-39)) to evaluate the role of endogenous GLP-1 in genetic obesity-related diabetes and related metabolic abnormalities using ob/ob and normal mice. Acute in vivo antagonistic potency of Ex(9-39) was confirmed in ob/ob mice by blockade of the insulin-releasing and anti-hyperglycaemic actions of intraperitoneal GLP-1. In longer term studies, ob/ob mice were given once daily injections of Ex(9-39) or vehicle for 11 days. Feeding activity, body weight, and both basal and glucose-stimulated insulin secretion were not significantly affected by chronic Ex(9-39) treatment. However, significantly elevated basal glucose concentrations and impaired glucose tolerance were evident at 11 days. These disturbances in glucose homeostasis were independent of changes of insulin sensitivity and reversed by discontinuation of the Ex(9-39) for 9 days. Similar treatment of normal mice did not affect any of the parameters measured. These findings illustrate the physiological extrapancreatic glucose-lowering actions of GLP-1 in ob/ob mice and suggest that the endogenous hormone plays a minor role in the metabolic abnormalities associated with obesity-related diabetes.

  14. The effect of glucose when added to a fat load on the response of glucagon-like peptide-1 (GLP-1) and apolipoprotein B-48 in the postprandial phase.

    PubMed

    Zemánková, K; Mrázková, J; Piťha, J; Kovář, J

    2015-01-01

    Increased and prolonged postprandial lipemia has been identified as a risk factor of cardiovascular disease. However, there is no consensus on how to test postprandial lipemia, especially with respect to the composition of an experimental meal. To address this question of how glucose, when added to a fat load, affects the selected parameters of postprandial lipemia, we carried out a study in 30 healthy male volunteers. Men consumed an experimental meal containing either 75 g of fat + 25 g of glucose (F+G meal) or 75 g of fat (F meal) in a control experiment. Blood was taken before the meal and at selected time points within the following 8 h. Glucose, when added to a fat load, induced an increase of glycemia and insulinemia and, surprisingly, a 20 % reduction in the response of both total and active glucagon-like peptide-1 (GLP-1) concentration. The addition of glucose did not affect the magnitude of postprandial triglyceridemia and TRL-C and TRL-TG concentrations but stimulated a faster response of chylomicrons to the test meal, evaluated by changes in apolipoprotein B-48 concentrations. The addition of glucose induced the physiological response of insulin and the lower response of GLP-1 to the test meal during the early postprandial phase, but had no effect on changes of TRL-cholesterol and TRL-TG within 8 h after the meal.

  15. Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes.

    PubMed

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N; Jacobsen, Siv H; Worm, Dorte; Hansen, Dorte L; Kristiansen, Viggo B; Naver, Lars; Madsbad, Sten; Holst, Jens J

    2013-09-01

    β-Cell function improves in patients with type 2 diabetes in response to an oral glucose stimulus after Roux-en-Y gastric bypass (RYGB) surgery. This has been linked to the exaggerated secretion of glucagon-like peptide 1 (GLP-1), but causality has not been established. The aim of this study was to investigate the role of GLP-1 in improving β-cell function and glucose tolerance and regulating glucagon release after RYGB using exendin(9-39) (Ex-9), a GLP-1 receptor (GLP-1R)-specific antagonist. Nine patients with type 2 diabetes were examined before and 1 week and 3 months after surgery. Each visit consisted of two experimental days, allowing a meal test with randomized infusion of saline or Ex-9. After RYGB, glucose tolerance improved, β-cell glucose sensitivity (β-GS) doubled, the GLP-1 response greatly increased, and glucagon secretion was augmented. GLP-1R blockade did not affect β-cell function or meal-induced glucagon release before the operation but did impair glucose tolerance. After RYGB, β-GS decreased to preoperative levels, glucagon secretion increased, and glucose tolerance was impaired by Ex-9 infusion. Thus, the exaggerated effect of GLP-1 after RYGB is of major importance for the improvement in β-cell function, control of glucagon release, and glucose tolerance in patients with type 2 diabetes.

  16. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1

    PubMed Central

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H.; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  17. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity.

    PubMed

    Hwang, Injae; Park, Yoon Jeong; Kim, Yeon-Ran; Kim, Yo Na; Ka, Sojeong; Lee, Ho Young; Seong, Je Kyung; Seok, Yeong-Jae; Kim, Jae Bum

    2015-06-01

    Firmicutes and Bacteroidetes, 2 major phyla of gut microbiota, are involved in lipid and bile acid metabolism to maintain systemic energy homeostasis in host. Recently, accumulating evidence has suggested that dietary changes promptly induce the alteration of abundance of both Firmicutes and Bacteroidetes in obesity and its related metabolic diseases. Nevertheless, the metabolic roles of Firmicutes and Bacteroidetes on such disease states remain unclear. The aim of this study was to determine the effects of antibiotic-induced depletion of Firmicutes and Bacteroidetes on dysregulation of energy homeostasis in obesity. Treatment of C57BL/6J mice with the antibiotics (vancomycin [V] and bacitracin [B]), in the drinking water, before diet-induced obesity (DIO) greatly decreased both Firmicutes and Bacteroidetes in the gut as revealed by pyrosequencing of the microbial 16S rRNA gene. Concomitantly, systemic glucose intolerance, hyperinsulinemia, and insulin resistance in DIO were ameliorated via augmentation of GLP-1 secretion (active form; 2.03-fold, total form; 5.09-fold) independently of obesity as compared with untreated DIO controls. Furthermore, there were increases in metabolically beneficial metabolites derived from the gut. Together, our data suggest that Firmicutes and Bacteroidetes potentially mediate insulin resistance through modulation of GLP-1 secretion in obesity. © FASEB.

  18. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence

    PubMed Central

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-01-01

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case–control analysis (N=908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N=3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N=81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N=22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P=0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P=0.033). The 168Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD. PMID:26080318

  19. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men.

    PubMed

    Kameyama, Noriko; Maruyama, Chizuko; Matsui, Sadako; Araki, Risa; Yamada, Yuichiro; Maruyama, Taro

    2014-05-01

    The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0-180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone.

  20. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus).

    PubMed

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Valenciano, Ana Isabel; Delgado, María Jesús; Unniappan, Suraj

    2017-07-01

    Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.

    PubMed

    Tang, Song-Tao; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Su, Huan; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-07-01

    Interaction between advanced glycation endproducts (AGEs) and receptor for AGEs (RAGE) as well as downstream pathways leads to vascular endothelial dysfunction in diabetes. Glucagon-like peptide-1 (GLP-1) has been reported to attenuate endothelial dysfunction in the models of atherosclerosis. However, whether GLP-1 exerts protective effects on aortic endothelium in diabetic animal model and the underlying mechanisms are still not well defined. Experimental diabetes was induced through administration with combination of high-fat diet and intraperitoneal injection of streptozotocin. Rats were randomly divided into four groups, including controls, diabetes, diabetes + sitagliptin (30 mg/kg/day), diabetes + exenatide (3 μg/kg/12 h). Eventually, endothelial damage, markers of inflammation and oxidative stress, were measured. After 12 weeks administration, diabetic rats received sitagliptin and exenatide showed significant elevation of serum NO level and reduction of ET-1 as well as inflammatory cytokines levels. Moreover, sitagliptin and exenatide significantly inhibited aortic oxidative stress level and improved aortic endothelial function in diabetic rats. Importantly, these drugs inhibited the protein expression level in AGE/RAGE-induced RhoA/ROCK/NF-κB/IκBα signaling pathways and activated AMPK in diabetic aorta. Finally, the target proteins of p-eNOS, iNOS, and ET-1, which reflect endothelial function, were also changed by these drugs. Our present study indicates that sitagliptin and exenatide administrations can improve endothelial function in diabetic aorta. Of note, RAGE/RhoA/ROCK and AMPK mediated NF-κB signaling pathways may be the intervention targets of these drugs to protect aortic endothelium.

  2. Concurrent pharmacological modification of cannabinoid-1 and glucagon-like peptide-1 receptor activity affects feeding behavior and body weight in rats fed a free-choice, high-carbohydrate diet.

    PubMed

    Radziszewska, Elżbieta; Wolak, Monika; Bojanowska, Ewa

    2014-02-01

    To extend preliminary studies on the effects on food intake of the combined use of cannabinoid (CB) 1 and glucagon-like peptide-1 (GLP-1) receptor agonists and antagonists, the effect of these drugs on the feeding behavior in rats maintained on a free-choice, high-carbohydrate diet was investigated over a longer period of time. Rats were fed a standard diet for 3 days and then fed with both the standard and the high-sucrose chow. After 4 days of the high-calorie diet, the following combination treatments were administered daily by an intraperitoneal injection for the next 3 days: 1 mg/kg AM 251 (a CB1 receptor antagonist) or 1 mg/kg WIN 55,212-2 (a CB1 receptor agonist) together with 3 µg/kg exendin-4 (Ex-4, a GLP-1 receptor agonist) or 160 µg/kg exendin (9-39) [Ex (9-39), a GLP-1 receptor antagonist]. The total daily caloric intake and body weight were significantly reduced in rats treated with Ex-4 and AM 251 or WIN 55,212-2 compared with either of the drugs injected alone and the saline-injected controls. Both drug combinations selectively inhibited ingestion of the high-sucrose chow. Although Ex (9-39) administration did not significantly affect food consumption, it resulted in a marked body weight gain, indicating that the GLP-1 receptor antagonist caused a positive energy balance. It is concluded that AM 251 or WIN 55,212-2 and Ex-4, injected together, exert additive, inhibitory effects on the consumption of high-sugar food.

  3. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2.

    PubMed

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5-4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. WIN 55,212-2 administered at low doses (0.5-2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists.

  4. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium-glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents.

    PubMed

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Hikida, Kumiko; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Minami, Masabumi; Shiotani, Masaharu

    2016-12-01

    We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(β-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB), TA-1887, and canagliflozin-were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1) elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial.

    PubMed

    Bottin, Jeanne H; Swann, Jonathan R; Cropp, Eleanor; Chambers, Edward S; Ford, Heather E; Ghatei, Mohammed A; Frost, Gary S

    2016-07-01

    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.

  6. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice.

    PubMed

    Gault, Victor A; Bhat, Vikas K; Irwin, Nigel; Flatt, Peter R

    2013-12-06

    Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA(2)]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA(2)]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA(2)]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA(2)]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA(2)]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA(2)]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA(2)]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.

  7. Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket.

    PubMed

    Mann, Rosalind J; Al-Sabah, Suleiman; de Maturana, Rakel López; Sinfield, John K; Donnelly, Dan

    2010-12-01

    G protein-coupled receptors (GPCRs) are seven transmembrane α-helical (7TM) integral membrane proteins that play a central role in both cell signaling and in the action of many pharmaceuticals. The crystal structures of several Family A GPCRs have shown the presence of a disulfide bond linking transmembrane helix 3 (TM3) to the second extracellular loop (ECL2), enabling ECL2 to stabilize and contribute to the ligand binding pocket. Family B GPCRs share no significant sequence identity with those in Family A but nevertheless share two conserved cysteines in topologically equivalent positions. Since there are no available crystal structures for the 7TM domain of any Family B GPCR, we used mutagenesis alongside pharmacological analysis to investigate the role of ECL2 and the conserved cysteine residues. We mutated Cys-226, at the extracellular end of TM3 of the glucagon-like peptide-1 (GLP-1) receptor, to alanine and observed a 38-fold reduction in GLP-1 potency. Interestingly, this potency loss was restored by the additional substitution of Cys-296 in ECL2 to alanine. Alongside the complete conservation of these cysteine residues in Family B GPCRs, this functional coupling suggested the presence of a disulfide bond. Further mutagenesis demonstrated that the low potency observed at the C226A mutant, compared with the C226A-C296A double mutant, was the result of the bulky nature of the released Cys-296 side chain. Since this suggested that ECL2 was in close proximity to the agonist activation pocket, an alanine scan of ECL2 was carried out which confirmed the important role of this loop in agonist-induced receptor activation.

  8. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression.

    PubMed

    Ojima, Ayako; Ishibashi, Yuji; Matsui, Takanori; Maeda, Sayaka; Nishino, Yuri; Takeuchi, Masayoshi; Fukami, Kei; Yamagishi, Sho-ichi

    2013-01-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, contributes to diabetic nephropathy. We have found that glucagon-like peptide-1 (GLP-1) inhibits the AGE-induced inflammatory reactions in endothelial cells. However, effects of GLP-1 on the AGE-RAGE-ADMA axis are unknown. This study examined the effects of GLP-1 on reactive oxygen species (ROS) generation, gene expression of protein arginine methyltransfetase-1 (PRMT-1), an enzyme that mainly generates ADMA, and ADMA levels in human proximal tubular cells. Streptozotocin-induced diabetic rats received continuous i.p. infusion of 0.3 μg of vehicle or 1.5 μg of the GLP-1 analog exendin-4 per kilogram of body weight for 2 weeks. We further investigated whether and how exendin-4 treatment reduced ADMA levels and renal damage in streptozotocin-induced diabetic rats. GLP-1 inhibited the AGE-induced RAGE and PRMT-1 gene expression, ROS, and ADMA generation in tubular cells, which were blocked by small-interfering RNAs raised against GLP-1 receptor. Exendin-4 treatment decreased gene expression of Rage, Prmt-1, Icam-1, and Mcp-1 and ADMA level; reduced urinary excretions of 8-hydroxy-2'-deoxyguanosine and albumin; and improved histopathologic changes of the kidney in diabetic rats. Our present study suggests that GLP-1 receptor agonist may inhibit the AGE-RAGE-mediated ADMA generation by suppressing PRMT-1 expression via inhibition of ROS generation, thereby protecting against the development and progression of diabetic nephropathy.

  9. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists.

    PubMed

    Nakashima, Ryutaro; Yano, Tatsuya; Ogawa, Junko; Tanaka, Naomi; Toda, Narihiro; Yoshida, Masao; Takano, Rieko; Inoue, Masahiro; Honda, Takeshi; Kume, Shoen; Matsumoto, Koji

    2014-08-15

    G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). The GPR40-mediated effects of DS-1558 on glucose-stimulated insulin secretion were evaluated in isolated islets from GPR40 knock-out and wild-type (littermate) mice. The GPR40-mediated effects on glucose tolerance and insulin secretion were also confirmed by an oral glucose tolerance test in these mice. Furthermore, oral administration of DS-1558 (0.03, 0.1 and 0.3mg/kg) significantly and dose-dependently improved hyperglycemia and increased insulin secretion during the oral glucose tolerance test in Zucker fatty rats, the model of insulin resistance and glucose intolerance. Next, we examined the combination effects of DS-1558 with glucagon like peptide-1 (GLP-1). DS-1558 not only increased the glucose-stimulated insulin secretion by GLP-1 but also potentiated the maximum insulinogenic effects of GLP-1 after an intravenous glucose injection in normal Sprague Dawley rats. Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.

  10. Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP-1)-(7-36) amide and the small-molecule ago-allosteric agent "compound 2" at the GLP-1 receptor.

    PubMed

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J; Wilkinson, Graeme F; Willars, Gary B

    2010-09-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca(2+) signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Galpha(s) in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca(2+)] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes.

  11. Genetically-Encoded Photocrosslinkers Determine the Biological Binding Site of Exendin-4 in the N-Terminal Domain of the Intact Human Glucagon-Like Peptide-1 Receptor (GLP-1R).

    PubMed

    Koole, Cassandra; Reynolds, Christopher A; Mobarec, Juan C; Hick, Caroline; Sexton, Patrick M; Sakmar, Thomas P

    2017-03-10

    The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, functional receptor-ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length, functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocrosslinking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Crosslinking data were compared directly to the crystal structure of the isolated N-terminal extracellular domain (ECD) of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocrosslinking constraints highlights the potential influence of environmental conditions on the conformation of the receptor-peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide-receptor interactions, and should be combined with additional experimental constraints to reveal peptide-receptor interactions occurring in the dynamic, native, full-length receptor state.

  12. Glucagon-like peptide-1 analogue liraglutide ameliorates atherogenesis via inhibiting advanced glycation end product-induced receptor for advanced glycosylation end product expression in apolipoprotein-E deficient mice.

    PubMed

    Li, Peicheng; Tang, Zhaosheng; Wang, Lin; Feng, Bo

    2017-09-01

    Glucagon-like peptide-1 (GLP-1) can protect arteriosclerotic lesions in apolipoprotein-E deficient (ApoE-/-) mice. Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) interaction serves a key role in the development of diabetic vascular complications. The present study examined whether the GLP-1 analogue liraglutide can ameliorate atherogenesis via inhibiting AGEs-induced RAGE expression. Male ApoE-/- mice (age, 10 weeks) were divided into control, GLP-1, AGEs and AGEs+GLP-1 group. All mice were fed a high-fat diet. The AGEs and AGEs+GLP-1 groups were treated with intraperitoneal injection of AGEs (30 mg/kg/day). The GLP-1 and AGEs+GLP-1 groups were treated with subcutaneous injections of liraglutide (0.4 mg/kg/day). After 9 weeks, blood was drawn and the aortas were rapidly procured. The serum levels of AGEs, soluble RAGE (sRAGE), stromal cell-derived factor-1α (SDF-1α), total cholesterol and triacylglycerol were measured. Atherosclerotic plaque area was determined by Sudan IV staining. The mRNA and protein expression levels of RAGE were determined using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that AGEs treatment increased serum AGEs levels, increased the expression of RAGE in the aorta, and aggravated atherosclerotic lesions compared with the control. Liraglutide treatment reduced serum AGEs levels, reduced the expression of RAGE in aorta, and relieved atherosclerotic lesions compared with the control. In conclusion, these data suggested that liraglutide serves an anti-atherosclerotic effect via inhibiting AGEs-induced RAGE expression in ApoE-/- mice. These findings provide novel evidence for the use of GLP-1-type agents for the treatment of diabetic vascular complications.

  13. Long-acting glucagon-like peptide-1 receptor agonists have direct access to and effects on pro-opiomelanocortin/cocaine- and amphetamine-stimulated transcript neurons in the mouse hypothalamus.

    PubMed

    Knudsen, Lotte Bjerre; Secher, Anna; Hecksher-Sørensen, Jacob; Pyke, Charles

    2016-04-01

    Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide reduces bodyweight, and has recently also been approved for the obesity indication. Acutely, GLP-1 markedly reduces gastric emptying, and this effect was previously believed to at least partly explain the effect on bodyweight loss. However, recent studies in both humans and animals have shown that GLP-1R agonists, such as liraglutide, that lead to pharmacological concentrations for 24 h/day only have a minor effect on gastric emptying; such an effect is unlikely to have lasting effects on appetite reduction. Liraglutide has been shown to have direct effects in the arcuate nucleus of the rodent brain, activating pro-opiomelanocortin neurons and increasing levels of the cocaine- and amphetamine-stimulated transcript neuropeptide messenger ribonucleic acid, which correlate nicely to clinical studies where liraglutide was shown to increase feelings of satiety. However, despite the lack of a GLP-1R on agouti-related peptide/neuropeptide Y neurons, liraglutide also was able to prevent a hunger associated increase in agouti-related peptide and neuropeptide Y neuropeptide messenger ribonucleic acid, again with a strong correlation to clinical studies that document reduced hunger feelings in patients while taking liraglutide. Studies using fluorescent labeled liraglutide, as well as other GLP-1R agonists, and analysis using single-plane illumination microscopy show that such medium-sized peptide-based compounds can directly access not only circumventricular organs of the brain, but also directly access discrete regions in the hypothalamus. The direct effects of long-acting GLP-1R agonists in the hypothalamus are likely to be an important new pathway in understanding GLP-1R agonist mediated weight loss.

  14. Safety and efficacy of a glucagon-like peptide-1 receptor agonist added to basal insulin therapy versus basal insulin with or without a rapid-acting insulin in patients with type 2 diabetes: results of a meta-analysis.

    PubMed

    Wysham, Carol H; Lin, Jay; Kuritzky, Louis

    2017-05-01

    To consolidate the evidence from randomized controlled trials evaluating the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) as add-on to basal insulin therapy in type 2 diabetes (T2D) patients. We searched the EMBASE® and NCBI PubMed (Medline) databases and relevant congress abstracts for randomized controlled trials evaluating the efficacy and safety of GLP-1 RAs as add-on to basal insulin compared with basal insulin with or without rapid-acting insulin (RAI) through 23 May 2016. The pooled data were analyzed using a random-effects meta-analysis model. A subanalysis was performed for trials investigating basal insulin plus GLP-1 RAs versus basal insulin plus RAI. Of the 2617 retrieved records, 19 randomized controlled trials enrolling 7,053 patients with T2D were included. Compared with basal insulin ± RAI, reduction in glycated hemoglobin (HbA1c) from baseline (difference in means: -0.48% [95% confidence interval (CI), -0.67 to -0.30]; p < 0.0001) and weight loss (-2.60 kg [95% CI, -3.32 to -1.89]; p < 0.0001) were significantly greater with basal insulin plus GLP-1 RA. The subanalysis similarly showed significant results for change in HbA1c from baseline and for weight loss, as well as a significantly lower risk of symptomatic hypoglycemia in patients treated with basal insulin plus GLP-1 RA versus basal insulin plus RAI (odds ratio, 0.52 [95% CI, 0.42 to 0.64]; p < 0.0001). Addition of GLP-1 RA to basal insulin provided improved glycemic control, led to weight reduction and similar hypoglycemia rates versus an intensified insulin strategy; however, symptomatic hypoglycemia rates were significantly lower when compared with a basal insulin plus RAI.

  15. Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells.

    PubMed

    Takeda, Yukari; Shimayoshi, Takao; Holz, George G; Noma, Akinori

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate receptor (IP3R)-regulated Ca(2+) stores. However, a quantitative model has yet to be provided that explains the molecular mechanisms and dynamic processes linking GLP-1-stimulated cAMP production to Ca(2+) mobilization. Here, we performed simulation studies to investigate how GLP-1 alters the abilities of Ca(2+) and IP3 to act as coagonists at IP3R Ca(2+) release channels. A new dynamic model was constructed based on the Kaftan model, which demonstrates dual steady-state allosteric regulation of the IP3R by Ca(2+) and IP3. Data obtained from β-cells were then analyzed to understand how GLP-1 facilitates IP3R-mediated Ca(2+) mobilization when UV flash photolysis is used to uncage Ca(2+) and IP3 intracellularly. When the dynamic model for IP3R activation was incorporated into a minimal cell model, the Ca(2+) transients and oscillations induced by GLP-1 were successfully reconstructed. Simulation studies indicated that transient and oscillatory responses to GLP-1 were produced by sequential positive and negative feedback regulation due to fast activation and slow inhibition of the IP3R by Ca(2+). The slow rate of Ca(2+)-dependent inhibition was revealed to provide a remarkable contribution to the time course of the decay of cytosolic Ca(2+) transients. It also served to drive and pace Ca(2+) oscillations that are significant when evaluating how GLP-1 stimulates insulin secretion.

  16. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  17. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.

  18. Effects of exogenous glucagon-like peptide-1 on blood pressure, heart rate, gastric emptying, mesenteric blood flow and glycaemic responses to oral glucose in older individuals with normal glucose tolerance or type 2 diabetes.

    PubMed

    Trahair, Laurence G; Horowitz, Michael; Stevens, Julie E; Feinle-Bisset, Christine; Standfield, Scott; Piscitelli, Diana; Rayner, Christopher K; Deane, Adam M; Jones, Karen L

    2015-08-01

    A postprandial fall in BP occurs frequently in older individuals and in patients with type 2 diabetes. The magnitude of this decrease in BP is related to the rate of gastric emptying (GE). Intravenous administration of glucagon-like peptide-1 (GLP-1) attenuates the hypotensive response to intraduodenal glucose in healthy older individuals. We sought to determine the effects of exogenous GLP-1 on BP, GE, superior mesenteric artery (SMA) flow and glycaemic response to oral ingestion of glucose in healthy older individuals and patients with type 2 diabetes. Fourteen older volunteers (six men, eight women; age 72.1 ± 1.1 years) and ten patients with type 2 diabetes (six men, four women; age 68.7 ± 3.4 years; HbA1c 6.6 ± 0.2% [48.5 ± 2.0 mmol/mol]; nine with blood glucose managed with metformin, two with a sulfonylurea and one with a dipeptidyl-peptidase 4 inhibitor) received an i.v. infusion of GLP-1 (0.9 pmol kg(-1) min(-1)) or saline (154 mmol/l NaCl) for 150 min (t = -30 min to t = 120 min) in randomised order. At t = 0 min, volunteers consumed a radiolabelled 75 g glucose drink. BP was assessed with an automated device, GE by scintigraphy and SMA flow by ultrasonography. Blood glucose and serum insulin were measured. GLP-1 attenuated the fall in diastolic BP after the glucose drink in older individuals (p < 0.05) and attenuated the fall in systolic and diastolic BP in patients with type 2 diabetes (p < 0.05). GE was faster in patients with type 2 diabetes than in healthy individuals (p < 0.05). In both groups, individuals had slower GE (p < 0.001), decreased SMA flow (p < 0.05) and a lower degree of glycaemia (p < 0.001) when receiving GLP-1. Intravenous GLP-1 attenuates the hypotensive response to orally administered glucose and decreases SMA flow, probably by slowing GE. GLP-1 and 'short-acting' GLP-1 agonists may be useful in the management of postprandial hypotension.

  19. Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS.

    PubMed

    Wang, Yan; Roth, Jonathan D; Taylor, Steven W

    2014-04-15

    Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (247±15pg/mL of AC3174 and 1306±48pg/mL of AC170222), or in combination (222±32pg/mL and 1136±47pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC

  20. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  1. Real-world medication persistence and outcomes associated with basal insulin and glucagon-like peptide 1 receptor agonist free-dose combination therapy in patients with type 2 diabetes in the US

    PubMed Central

    Lin, Jay; Lingohr-Smith, Melissa; Fan, Tao

    2017-01-01

    Background Free-dose combination treatment with basal insulin and short-acting glucagon-like peptide-1 receptor agonists (GLP-1 RAs) reduces hyperglycemia via complementary targeting of fasting and postprandial blood glucose levels, however, in the real world, due to injection burden and clinical inertia, the full efficacy may not be able to translate into clinical and economic benefits. Objective The aim of the study was to evaluate treatment persistence and associated outcomes in patients with type 2 diabetes (T2D) treated with a GLP-1 RA in free-dose combination with basal insulin. Methods Claims data were extracted on US adults with T2D with ≥1 prescription claim for both a GLP-1 RA and a basal insulin from July 1, 2008 to June 30, 2013, and continuous health plan coverage for 6 months prior to (baseline) and 12 months after the index date (follow-up period). Outcomes analyzed for patients stratified by treatment persistence included glycemic control, hypoglycemia, and health care costs and resource utilization. Multivariate analyses were used to examine factors associated with persistence or hypoglycemia. Results The analysis included 7,320 patients, of whom 16.9% were persistent with free-dose combination treatment. The median time to treatment discontinuation was 133 days. Compared with nonpersistent patients, persistent patients had greater glycated hemoglobin A1c (A1C) reductions (−0.80% vs −0.42%; P=0.032), were more likely to achieve A1C <7.0% (39% vs 22%; P<0.001), and were less likely to experience hypoglycemia (9.5% vs 6.8%; P=0.002). Persistent patients also had significantly fewer hospitalizations and shorter hospital stays. While prescription costs were significantly higher (all-cause: $14,691 vs $10,791; P<0.001; diabetes-related: $8,142 vs $5,124; P<0.001), total medical charges were significantly lower (all-cause: $28,405 vs $40,292; P=0.001; diabetes-related: $11,114 vs $15,203; P=0.003) for persistent patients compared with nonpersistent

  2. The Noncaloric Sweetener Rebaudioside A Stimulates Glucagon-Like Peptide 1 Release and Increases Enteroendocrine Cell Numbers in 2-Dimensional Mouse Organoids Derived from Different Locations of the Intestine.

    PubMed

    van der Wielen, Nikkie; Ten Klooster, Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk Fj; Witkamp, Renger F; Meijerink, Jocelijn

    2016-12-01

    Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is modulated by nutrients. Preparations from the Stevia rebaudiana plant, including rebaudioside A, are increasingly being used as noncaloric sweeteners. We investigated the effects of rebaudioside A on enteroendocrine cells by assessing both cell numbers as well as their secretory capacity in an organoid model. A 2-dimensional organoid model derived from duodenal, jejunal, and ileal crypts of a C57BL/6J mouse was developed and characterized with the use of gene expression and immunofluorescence. We stimulated these organoids with 10 mmol/L rebaudioside A for 1 h and measured their GLP-1, PYY, and cholecystokinin release. We also analyzed the effects of rebaudioside A on gene expression in enteroendocrine cells after an 18-h incubation. The 2-dimensional organoids contained crypt cells and differentiated villus cells, including enterocytes and goblet and enteroendocrine cells. These enteroendocrine cells stained positive for GLP-1, PYY, and serotonin. The cultured 2-dimensional organoids maintained their location-specific gene expression patterns. Compared with the control, rebaudioside A induced GLP-1 secretion 1.7-fold in the duodenum (P < 0.01), 2.2-fold in the jejunum (P < 0.01), and 4.3-fold in the ileum (P < 0.001). PYY release was increased by rebaudioside A 3-fold in the ileum compared with the control (P < 0.05). Long-term (18-h) stimulation with the sweetener induced the expression of the enteroendocrine-specific markers chromogranin A, glucagon, Pyy, and cholecystokinin 3.5- (P < 0.001), 3.5- (P < 0.001), 3.8- (P < 0.05), and 6.5-fold (P < 0.001), respectively. These results show novel ex vivo effects of rebaudioside A on enteroendocrine cells of the mouse small intestine

  3. Inhibition of plaque progression and promotion of plaque stability by glucagon-like peptide-1 receptor agonist: Serial in vivo findings from iMap-IVUS in Watanabe heritable hyperlipidemic rabbits.

    PubMed

    Sudo, Mitsumasa; Li, Yuxin; Hiro, Takafumi; Takayama, Tadateru; Mitsumata, Masako; Shiomi, Masashi; Sugitani, Masahiko; Matsumoto, Taro; Hao, Hiroyuki; Hirayama, Atsushi

    2017-10-01

    Glucagon-like peptide-1 (GLP-1) is thought to inhibit development of aortic atherosclerosis and plaque formation. However, whether GLP-1 stabilizes fully developed atherosclerotic plaque or alters the complicated plaque composition remains unclarified. Ten Watanabe heritable hyperlipidemic (WHHL) rabbits were divided into GLP-1 receptor agonist treatment group and control group. After confirmation of atherosclerotic plaques in brachiocephalic arteries by iMap intravascular ultrasound (iMAP-IVUS), GLP-1 receptor agonist lixisenatide was administered to WHHL rabbits at 30 nmoL/kg/day for 12 weeks by osmotic pump. An equal volume of normal saline was administered in a control group. After evaluation by iMAP-IVUS at 12 weeks, brachiocephalic arteries were harvested for pathological histological analysis. iMAP-IVUS analysis revealed larger fibrotic plaque components and smaller necrotic and calcified plaque components in the GLP-1 group than in the control group; %fibrotic area: 66.30 ± 2.06% vs. 75.14 ± 2.62%, p < 0.01, %necrotic area: 23.25 ± 1.87% vs. 16.17 ± 2.27%, p = 0.02, %calcified area: 2.15 ± 0.24% vs. 1.00 ± 0.18%, p < 0.01), indicating that GLP-1 receptor agonist might modify plaque composition and increase plaque stability. Histological analysis confirmed that GLP-1 receptor agonist treatment improved smooth muscle cell (SMC)-rich plaque with increased fibrotic content. Furthermore, plaque macrophage infiltration and calcification were significantly reduced by GLP-1 receptor agonist treatment; %SMC area: 6.93 ± 0.31% vs. 8.14 ± 0.48%, p = 0.02; %macrophage area: 9.11 ± 0.80% vs. 6.19 ± 0.85%, p < 0.01; %fibrotic area: 54.75 ± 1.63% vs. 69.60 ± 2.12%, p = 0.02; %calcified area: 3.25 ± 0.67% vs. 0.75 ± 0.15%, p = 0.02). GLP-1 receptor agonist inhibited plaque progression and promoted plaque stabilization by inhibiting plaque growth and modifying plaque composition. Copyright © 2017 Elsevier B.V. All

  4. Comparative Effectiveness of Dipeptidyl Peptidase-4 (DPP-4) Inhibitors and Human Glucagon-Like Peptide-1 (GLP-1) Analogue as Add-On Therapies to Sulphonylurea among Diabetes Patients in the Asia-Pacific Region: A Systematic Review

    PubMed Central

    Wong, Martin C. S.; Wang, Harry H. X.; Kwan, Mandy W. M.; Zhang, Daisy D. X.; Liu, Kirin Q. L.; Chan, Sky W. M.; Fan, Carmen K. M.; Fong, Brian C. Y.; Li, Shannon T. S.; Griffiths, Sian M.

    2014-01-01

    The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options

  5. Glucagon-like peptide 1 receptor agonist ameliorates the insulin resistance function of islet β cells via the activation of PDX-1/JAK signaling transduction in C57/BL6 mice with high-fat diet-induced diabetes.

    PubMed

    Hao, Tao; Zhang, Hongtao; Li, Sheyu; Tian, Haoming

    2017-04-01

    Long-term exposure to a high-fat diet (HFD) causes glucotoxicity and lipotoxicity in islet β cells and leads to the development of metabolic dysfunctions. Reductions in pancreatic and duodenal homeobox-1 (PDX-1) expression have been shown to induce type 2 diabetes mellitus by causing impairments to islet β cells. Glucagon-like peptide 1 (GLP-1) treatment reduces endogenous insulin resistance in HFD-induced type 2 diabetes mellitus. In the present study, the underlying mechanism by which GLP-1 exerts its function in type 2 diabetes mellitus was investigated. The effect of liraglutide (GLP-1 receptor agonist) administration on glucose tolerance, insulin release, and glucose-dependent insulinotropic polypeptide level was detected in a HFD-induced diabetes C57/BL6 mouse model. Moreover, the role of liraglutide administration on the activity of PDX-1 was quantified to demonstrate the association between the two indicators. The results showed that administration of liraglutide could ameliorate the impairments to β cells due to HFD consumption. Liraglutide restored the insulin capacity and stimulated glucose disposal by improving the function and increasing the number of islet β cells. Furthermore, the hyperplasia and redundant function of islet α cells were inhibited by liraglutide treatment as well. At the molecular level, administration of liraglutide induced the expression of PDX-1, MafA, p-JAK2 and p-Stat3 in HFD model to relatively normal levels. It was suggested that the effect of liraglutide-induced activation of GLP-1 was exerted via activation of PDX-1 rather than its function in decreasing body weight. The study demonstrated that GLP-1 played an essential role in type 2 diabetes mellitus.

  6. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells.

    PubMed

    Gomez, Edith; Pritchard, Catrin; Herbert, Terence P

    2002-12-13

    Glucagon like peptide-1 (GLP1) is a G(s)-coupled receptor agonist that exerts multiple effects on pancreatic beta-cells, including the stimulation of insulin gene expression and secretion. In this report, we show that treatment of the mouse pancreatic beta-cell line MIN6 with GLP1 leads to the glucose-dependent activation of Erk. These effects are mimicked by forskolin, a direct activator of adenylate cyclase, and blocked by H89, an inhibitor of cAMP-dependent protein kinase. Additionally, we provide evidence that GLP1-stimulated activation of Erk requires an influx of calcium through L-type voltage-gated calcium channels and the activation of calcium/calmodulin-dependent protein kinase II. GLP1-stimulated activation of Erk is blocked by inhibitors of MEK, but GLP1 does not induce the activation of A-Raf, B-Raf, C-Raf, or Ras. Additionally, dominant negative forms of Ras(N17) and Rap1(N17) fail to block GLP1-stimulated activation of Erk. In conclusion, our results indicate that, in the presence of stimulatory concentrations of glucose, GLP1 stimulates the activation of Erk through a mechanism dependent on MEK but independent of both Raf and Ras. This requires 1) the activation of cAMP-dependent protein kinase, 2) an influx of extracellular Ca(2+) through L-type voltage-gated calcium channels, and 3) the activation of CaM kinase II.

  7. Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide-1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes.

    PubMed

    Nielsen, Lotte B; Ploug, Kenneth B; Swift, Peter; Ørskov, Cathrine; Jansen-Olesen, Inger; Chiarelli, Francesco; Holst, Jens J; Hougaard, Philip; Pörksen, Sven; Holl, Reinhard; de Beaufort, Carine; Gammeltoft, Steen; Rorsman, Patrik; Mortensen, Henrik B; Hansen, Lars

    2007-06-01

    The ATP-dependent K+-channel (K(ATP)) is critical for glucose sensing and normal glucagon and insulin secretion from pancreatic endocrine alpha- and beta-cells. Gastrointestinal endocrine L- and K-cells are also glucose-sensing cells secreting glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic polypeptide (GIP) respectively. The aims of this study were to 1) investigate the expression and co-localisation of the K(ATP) channel subunits, Kir6.2 and SUR1, in human L- and K-cells and 2) investigate if a common hyperactive variant of the Kir6.2 subunit, Glu23Lys, exerts a functional impact on glucose-sensing tissues in vivo that may affect the overall glycaemic control in children with new-onset type 1 diabetes. Western blot and immunohistochemical analyses were performed for expression and co-localisation studies. Meal-stimulated C-peptide test was carried out in 257 children at 1, 6 and 12 months after diagnosis. Genotyping for the Glu23Lys variant was by PCR-restriction fragment length polymorphism. Kir6.2 and SUR1 co-localise with GLP-1 in L-cells and with GIP in K-cells in human ileum tissue. Children with type 1 diabetes carrying the hyperactive Glu23Lys variant had higher HbA1C at diagnosis (coefficient = 0.61%, P = 0.02) and 1 month after initial insulin therapy (coefficient = 0.30%, P = 0.05), but later disappeared. However, when adjusting HbA1C for the given dose of exogenous insulin, the dose-adjusted HbA1C remained higher throughout the 12 month study period (coefficient = 0.42%, P = 0.03). Kir6.2 and SUR1 co-localise in the gastrointestinal endocrine L- and K-cells. The hyperactive Glu23Lys variant of the K(ATP) channel subunit Kir6.2 may cause defective glucose sensing in several tissues and impaired glycaemic control in children with type 1 diabetes.

  8. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  9. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    USDA-ARS?s Scientific Manuscript database

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiotaderived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine...

  10. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion.

    PubMed

    Jafri, Laila; Saleem, Samreen; Calderwood, Danielle; Gillespie, Anna; Mirza, Bushra; Green, Brian D

    2016-04-01

    Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men.

    PubMed

    Asmar, Ali; Asmar, Meena; Simonsen, Lene; Madsbad, Sten; Holst, Jens J; Hartmann, Bolette; Sorensen, Charlotte M; Bülow, Jens

    2017-02-01

    In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg(-1) min(-1)) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the (133)Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.

  12. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus.

    PubMed

    Shughrue, P J; Lane, M V; Merchenthaler, I

    1996-11-01

    GLP-1 has been shown to dramatically reduce food intake in fasted rats and is thought to exert its effects by modulating neuronal function in the hypothalamus. To date, little is known about the distribution of GLP1-R and its mRNA in the rodent hypothalamus. The purpose of the present study was to utilize in situ hybridization histochemistry to determine the anatomical distribution of GLP1-R mRNA in the rat hypothalamus. The results of these studies revealed an extensive distribution of GLP1-R mRNA throughout the rostral-caudal extent of the hypothalamus; with a dense accumulation of labeled cells in the supraoptic, paraventricular, and arcuate nuclei. Additional labeled cells were also detected in medial and lateral preoptic areas, periventricular nucleus, ventral division of the bed nucleus of the stria terminalis, lateral hypothalamus, and dorsomedial nucleus. The results of these in situ hybridization histochemical studies have provided detailed and novel information about the distribution of GLP1-R mRNA in the rat hypothalamus. In addition, this morphological data provides important information about the neuronal systems modulated by GLP-1 and their potential role in feeding behavior.

  13. Use of Glucagon-Like Peptide-1 Agonists to Improve Islet Graft Performance

    PubMed Central

    Wang, Yong; Qi, Meirigeng; McGarrigle, James J.; Rady, Brian; Davis, Maureen; Vaca, Pilar

    2013-01-01

    Human islet transplantation is an effective and promising therapy for Type I diabetes. However, long-term insulin independence is both difficult to achieve and inconsistent. De novo or early administration of incretin-based drugs is being explored for improving islet engraftment. In addition to its glucose-dependent insulinotropic effects, incretins also lower postprandial glucose excursion by inhibiting glucagon secretion, delaying gastric emptying, and can protect beta-cell function. Incretin therapy has so far proven clinically safe and tolerable with little hypoglycemic risk. The present review aims at highlighting the new frontiers in research involving incretins from both in vitro and in vivo animal studies in the field of islet transplant. It also provides an overview of the current clinical status of incretin usage in islet transplantation in the management of Type I diabetes. PMID:23925432

  14. Investigational glucagon-like peptide-1 agonists for the treatment of obesity.

    PubMed

    Tomlinson, Brian; Hu, Miao; Zhang, Yuzhen; Chan, Paul; Liu, Zhong-Min

    2016-10-01

    Obesity is a worldwide problem predisposing to type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease, cancer and other comorbidities. Lifestyle modification is the first line intervention but adjunctive pharmacotherapy is often required. The GLP-1 receptor agonists (GLP-1RAs) were developed primarily for T2DM and they also reduce body weight. Liraglutide was approved for the treatment of obesity and other GLP-1RAs are likely to be suitable for this indication. This review describes the GLP-1RAs that have been approved for the treatment of T2DM as potential candidates for the treatment of obesity and the new agents currently under development which may have advantages in patient adherence. The GLP-1RAs offer a welcome addition to obesity pharmacotherapy. They appear to be free of serious adverse effects although uncertainty remains about possible risks of pancreatitis and neoplasms. However, they have frequent gastrointestinal side effects, particularly nausea, which limits their tolerability. Cardiovascular outcome studies in T2DM support their use and this is likely to increase in both T2DM and obesity. Other GLP-1RAs which can be given by subcutaneous injection once weekly or less frequently or by oral administration would have advantages especially if nausea is less frequent than with liraglutide.

  15. Glucagon-Like Peptide 2 Increases Efficacy of Distraction Enterogenesis

    PubMed Central

    Sueyoshi, Ryo; Ralls, Mathew W.; Teitelbaum, Daniel H.

    2013-01-01

    Background Application of distractive forces to small bowel induces intestinal growth, or enterogenesis. This emerging area of research may provide treatment for short bowel syndrome (SBS). Glucagon-like peptide 2(GLP-2) has also been reported to induce small bowel growth after bowel resection. We hypothesized that exogenous GLP-2 will result in enhanced distraction-induced enterogenesis. Methods Distraction-induced model was performed in 10-week-old C57B6 mice using osmotic forces with high molecular weight polyethylene glycol (PEG-stretch). Four groups were studied: Control group (PEG−/GLP-2−); PEG-stretch (PEG+/GLP-2−); GLP-2 control (PEG−/GLP-2+); and GLP-2 stretch (PEG+/GLP-2+). GLP-2 was given via subcutaneous osmotic pump over the 5 days of experiment. Morphology was measured by histomicrography. Epithelial cell (EC) proliferation was measured with PCNA immunofluorescent staining. Total intestinal growth and blood vessel volume was assessed with Micro CT volumetry. VEGF, FGF1 and 2, and PDGF were measured by RT-PCR. Results EC proliferation increased significantly in all groups compared to Controls, but was greatest in the GLP-2 stretch group. Diameter and length significantly increased in the PEG stretch and GLP-2 stretch groups. Moreover, there was statistically greater diameter, crypt depth and EC proliferation in the GLP-2 stretch vs. PEG stretch groups. GLP-2 stretch vessel volume was greater than all other groups and was significantly increased compared to controls. The relative expression of PDGF increased significantly in the PEG stretch group vs. the control group. Conclusions GLP-2 had an additive effect on EC proliferation, tissue growth, histomorphology and vascularization. The combination of enterogenesis and GLP-2 may yield an improved approach to treat SBS. PMID:23639355

  16. Glucagon-like peptide 2 function in domestic animals.

    PubMed

    Burrin, D G; Stoll, B; Guan, X

    2003-03-01

    Glucagon-like peptide 2 (GLP-2) is a member of family of peptides derived from the proglucagon gene expressed in the intestines, pancreas and brain. Tissue-specific posttranslational processing of proglucagon leads to GLP-2 and GLP-1 secretion from the intestine and glucagon secretion from the pancreas. GLP-2 and GLP-1 are co-secreted from the enteroendocrine L-cells located in distal intestine in response to enteral nutrient ingestion, especially carbohydrate and fat. GLP-2 secretion is mediated by direct nutrient stimulation of the L-cells and indirect action from enteroendocrine and neural inputs, including GIP, gastrin-releasing peptide (GRP) and the vagus nerve. GLP-2 is secreted as a 33-amino acid peptide and is rapidly cleaved by dipeptidylpeptidase IV (DPP-IV) to a truncated peptide which acts as a weak agonist with competitive antagonistic properties. GLP-2 acts to enhance nutrient absorption by inhibiting gastric motility and secretion and stimulating nutrient transport. GLP-2 also suppresses food intake when infused centrally. The trophic actions of GLP-2 are specific for the intestine and occur via stimulation of crypt cell proliferation and suppression of apoptosis in mucosal epithelial cells. GLP-2 reduces gut permeability, bacterial translocation and proinflammatory cytokine expression under conditions of intestinal inflammation and injury. The effects of GLP-2 are mediated by a G-protein-linked receptor that is localized to the intestinal mucosa and hypothalamus. The intestinal localization of the GLP-2R to neural and endocrine cells, but not enterocytes, suggests that its actions are mediated indirectly via a secondary signaling mechanism. The implications of GLP-2 in domestic animal production are largely unexplored. However, GLP-2 may have therapeutic application in treatment of gastrointestinal injury and diarrheal diseases that occur in developing neonatal and weanling animals.

  17. Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation.

    PubMed

    Jha, Narendra Nath; Anoop, A; Ranganathan, Srivastav; Mohite, Ganesh M; Padinhateeri, Ranjith; Maji, Samir K

    2013-12-10

    Glycosaminoglycans (GAGs) have been reported to play a significant role in amyloid formation of a wide range of proteins/peptides either associated with diseases or native biological functions. The exact mechanism by which GAGs influence amyloid formation is not clearly understood. Here, we studied two closely related peptides, glucagon-like peptide 1 (GLP1) and glucagon-like peptide 2 (GLP2), for their amyloid formation in the presence and absence of the representative GAG heparin using various biophysical and computational approaches. We show that the aggregation and amyloid formation by these peptides follow distinct mechanisms: GLP1 follows nucleation-dependent aggregation, whereas GLP2 forms amyloids without any significant lag time. Investigating the role of heparin, we also found that heparin interacts with GLP1, accelerates its aggregation, and gets incorporated within its amyloid fibrils. In contrast, heparin neither affects the aggregation kinetics of GLP2 nor gets embedded within its fibrils. Furthermore, we found that heparin preferentially influences the stability of the GLP1 fibrils over GLP2 fibrils. To understand the specific nature of the interaction of heparin with GLP1 and GLP2, we performed all-atom MD simulations. Our in silico results show that the basic-nonbasic-basic (B-X-B) motif of GLP1 (K28-G29-R30) facilitates the interaction between heparin and peptide monomers. However, the absence of such a motif in GLP2 could be the reason for a significantly lower strength of interaction between GLP2 and heparin. Our study not only helps to understand the role of heparin in inducing protein aggregation but also provides insight into the nature of heparin-protein interaction.

  18. Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice.

    PubMed

    Rachmany, Lital; Tweedie, David; Li, Yazhou; Rubovitch, Vardit; Holloway, Harold W; Miller, Jonathan; Hoffer, Barry J; Greig, Nigel H; Pick, Chaim G

    2013-10-01

    Mild traumatic brain injury (mTBI) represents a major and increasing public health concern and is both the most frequent cause of mortality and disability in young adults and a chief cause of morbidity in the elderly. Albeit mTBI patients do not show clear structural brain defects and, generally, do not require hospitalization, they frequently suffer from long-lasting cognitive, behavioral, and emotional problems. No effective pharmaceutical therapy is available, and existing treatment chiefly involves intensive care management after injury. The diffuse neural cell death evident after mTBI is considered mediated by oxidative stress and glutamate-induced excitotoxicity. Prior studies of the long-acting GLP-1 receptor agonist, exendin-4 (Ex-4), an incretin mimetic approved for type 2 diabetes mellitus treatment, demonstrated its neurotrophic/protective activity in cellular and animal models of stroke, Alzheimer's and Parkinson's diseases, and, consequent to commonalities in mechanisms underpinning these disorders, Ex-4 was assessed in a mouse mTBI model. In neuronal cultures in this study, Ex-4 ameliorated H2O2-induced oxidative stress and glutamate toxicity. To evaluate in vivo translation, we administered steady-state Ex-4 (3.5 pM/kg/min) or saline to control and mTBI mice over 7 days starting 48 h prior to or 1 h post-sham or mTBI (30 g weight drop under anesthesia). Ex-4 proved well-tolerated and fully ameliorated mTBI-induced deficits in novel object recognition 7 and 30 days post-trauma. Less mTBI-induced impairment was evident in Y-maze, elevated plus maze, and passive avoidance paradigms, but when impairment was apparent Ex-4 induced amelioration. Together, these results suggest that Ex-4 may act as a neurotrophic/neuroprotective drug to minimize mTBI impairment.

  19. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes.

    PubMed

    Lu, Nan; Sun, Hanxiao; Yu, JingJia; Wang, Xiaojing; Liu, Dongmei; Zhao, Lin; Sun, Lihao; Zhao, Hongyan; Tao, Bei; Liu, Jianmin

    2015-01-01

    Recently, a number of studies have demonstrated the potential beneficial role for novel anti-diabetic GLP-1 receptor agonists (GLP-1RAs) in the skeleton metabolism in diabetic rodents and patients. In this study, we evaluated the impacts of the synthetic GLP-1RA Liraglutide on bone mass and quality in osteoporotic rats induced by ovariectomy (OVX) but without diabetes, as well as its effect on the adipogenic and osteoblastogenic differentiation of bone marrow stromal cells (BMSCs). Three months after sham surgery or bilateral OVX, eighteen 5-month old female Wistar rats were randomly divided into three groups to receive the following treatments for 2 months: (1) Sham + normal saline; (2) OVX + normal saline; and (3) OVX + Liraglutide (0.6 mg/day). As revealed by micro-CT analysis, Liraglutide improved trabecular volume, thickness and number, increased BMD, and reduced trabecular spacing in the femurs in OVX rats; similar results were observed in the lumbar vertebrae of OVX rats treated with Liraglutide. Following in vitro treatment of rat and human BMSCs with 10 nM Liraglutide, there was a significant increase in the mRNA expression of osteoblast-specific transcriptional factor Runx2 and the osteoblast markers alkaline phosphatase (ALP) and collagen α1 (Col-1), but a significant decrease in peroxisome proliferator-activated receptor γ (PPARγ). In conclusion, our results indicate that the anti-diabetic drug Liraglutide can exert a bone protective effect even in non-diabetic osteoporotic OVX rats. This protective effect is likely attributable to the impact of Liraglutide on the lineage fate determination of BMSCs.

  20. Thyroidectomy stimulates glucagon-like peptide-1 secretion and attenuates hepatic steatosis in high-fat fed rats.

    PubMed

    Kang, Jong Yeon; Kim, Mikyung; Kang, Yuna; Lee, Wonmok; Ha, Tae Kyung; Seo, Ji Hae; Son, Young Gil; Ha, Eunyoung

    2017-09-01

    Thyroid hormones (THs) as a therapeutic intervention to treat obesity has been tried but the effect of THs on body weight and the mechanistic details of which are far from clear. This study was designed to determine and elucidate the mechanistic details of metabolic action of THs in high-fat diet (HFD) fed Sprague Dawley (SD) rats. Rats were made surgically hypothyroid (thyroidectomy, Thx). Body weights and food and water intake profoundly decreased in HFD fed thyroidectomized group (HN Thx). Results showed that delayed insulin response, increased total cholesterol, high-density lipoprotein, and low-density lipoprotein in HN Thx. Unexpectedly, however, Thx reduced serum and hepatic triglyceride concentrations. Further studies revealed that Thx dramatically increased circulating GLP-1 as well as increased expressions of GLP-1 in small intestine. Diminished hepatic expressions of lipogenic genes, were observed in HN Thx group. Beta-catenin and glutamine synthetase, a known target of β-catenin, were up-regulated in the liver of HN Thx group. The expressions of gluconeogenic genes G6P and PCK were reduced in the liver of HN Thx group. The results may suggest that surgery-induced hypothyroidism increases GLP-1, the actions of which may in part be responsible for the reduction in water intake, appetite and hepatic steatosis. Copyright © 2017. Published by Elsevier Inc.

  1. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    PubMed Central

    2014-01-01

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies. PMID:24990862

  2. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis.

    PubMed

    Guan, Xinfu

    2014-09-15

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies.

  3. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  4. Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut

    USDA-ARS?s Scientific Manuscript database

    Damage to the intestinal epithelium caused by diarrhea reduces nutrient absorption and growth rate, and may have long-term effects on the young animal. Glucagon-like peptide 2 (GLP-2) is an intestinotropic hormone that improves gut integrity and nutrient absorption, and has antioxidant effects in th...

  5. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    USDA-ARS?s Scientific Manuscript database

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  6. Glucagon-like peptide 2 may mediate growth and development of the bovine gastrointestinal tract

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, promotes growth, reduces apoptosis, and enhances blood flow, nutrient absorption, and barrier function in intestinal epithelium of monogastric species. Regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) are u...

  7. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  8. Glucagon-like peptide 2 in colon carcinogenesis: possible target for anti-cancer therapy?

    PubMed

    Kannen, Vinicius; Garcia, Sergio Britto; Stopper, Helga; Waaga-Gasser, Ana Maria

    2013-07-01

    The role of glucagon-like peptide 2 (GLP2) in colon tissue has been studied extensively, from the time it was discovered that GLP2 promotes intestinal growth. A large number of studies have shown potential applications for GLP2 in human therapy. However, recent data have suggested the notion that GLP2 plays a key role in colon carcinogenesis. Questions have been arisen regarding the pro-proliferative effects of GLP2 and whether they might promote intestinal healing or advance colon tumor growth. Here, we provide striking evidence to show that the physiological activities of GLP2 are closely related to cancer-related molecular pathways that have been shown to circumvent drug desensitization. We further explore the different pathways of GLP2-signaling to suggest suitable GLP2-based therapeutic strategies in colon cancer.

  9. Glucagon-like peptide-2: update of the recent clinical trials.

    PubMed

    Jeppesen, Palle Bekker

    2006-02-01

    Although long-term parenteral nutrition is lifesaving in patients with intestinal failure, it is expensive and associated with serious complications such as catheter sepsis, venous occlusions, and liver failure and severely impairs the quality of life in the short bowel patients. Therefore, treatments that increase the absolute intestinal absorption, thereby eliminating or minimizing the need for parenteral support, are needed. In this respect, glucagon-like peptide 2 (GLP-2) has received attention. In this review, the nature of the short bowel syndrome is described, and the antisecretory, transit-modulating, but also intestinotrophic effects of GLP-2 are presented. As illustrated in 2 pilot studies, one using native GLP-2 and the other a degradation-resistant analogue, teduglutide, these new agents may prove important in optimizing remnant intestinal function, thereby eliminating the need for parenteral support and improving quality of life in short bowel patients with intestinal failure.

  10. Glucagon-like peptide 2 therapy reduces the negative impacts the proinflammatory response in the gut of calves with coccidiosis

    USDA-ARS?s Scientific Manuscript database

    Damage to the intestinal epithelium reduces nutrient absorption and animal growth, and can have negative long-term health effects on livestock. The intestinotropic hormone glucagon-like peptide 2 (GLP-2) contributes to gut integrity, reduces inflammation, and improves nutrient absorption. The presen...

  11. Comparative physiology of glucagon-like peptide 2 - Implications and applications for production and health of ruminants

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide 2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  12. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    USDA-ARS?s Scientific Manuscript database

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  13. Glucagon-like peptide-2 (GLP-2) increases small intestinal blood flow and mucosal growth in ruminating calves

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide-2 (GLP-2), increases small intestinal mass and blood flow in non-ruminants, but its effect in ruminants is unknown. Eight Holstein calves with an ultrasonic flow probe around the superior mesenteric artery (SMA), and catheters in the carotid artery and mesenteric vein, were pa...

  14. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    USDA-ARS?s Scientific Manuscript database

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  15. The glucagon-like peptide 2 pathway may mediate growth and development of the bovine gastrointestinal tract

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has a number of physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorp...

  16. Glucagon-like peptide-2 increases splanchnic blood flow acutely in calves but loses effectiveness with chronic exposure

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid hormone secreted from the gastrointestinal tract that rapidly increases small intestinal blood flow. No experiments have been conducted evaluating the blood flow response to GLP-2 after extended administration, nor have investigations been performed...

  17. Comparative physiology of glucagon-like peptide-2 – Implications and applications for production and health of ruminants

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  18. The Effect of Glucagon-Like Peptide-2 Receptor Agonists on Colonic Anastomotic Wound Healing

    PubMed Central

    Redstone, Heather A.; Buie, William D.; Hart, David A.; Wallace, Laurie; Hornby, Pamela J.; Sague, Sarah; Holst, Jen J.; Sigalet, David L.

    2010-01-01

    Background. Glucagon-like peptide 2 (GLP-2) is an intestinal specific trophic hormone, with therapeutic potential; the effects on intestinal healing are unknown. We used a rat model of colonic healing, under normoxic, and stress (hypoxic) conditions to examine the effect of GLP-2 on intestinal healing. Methods. Following colonic transection and reanastomosis, animals were randomized to one of six groups (n = 8/group): controls, native GLP-2, long-acting GLP-2 (GLP-2- MIMETIBODY, GLP-2-MMB), animals were housed under normoxic or hypoxic (11%  O2) conditions. Animals were studied five days post-operation for anastomotic strength and wound characteristics. Results. Anastomotic bursting pressure was unchanged by GLP-2 or GLP-2-MMB in normoxic or hypoxic animals; both treatments increased crypt cell proliferation. Wound IL-1β increased with GLP-2; IFNγ with GLP-2 and GLP-2-MMB. IL-10 and TGF-β were decreased; Type I collagen mRNA expression increased in hypoxic animals while Type III collagen was reduced with both GLP-2 agonists. GLP-2 MMB, but not native GLP-2 increased TIMP 1-3 mRNA levels in hypoxia. Conclusions. The effects on CCP, cytokines and wound healing were similar for both GLP-2 agonists under normoxic and hypoxic conditions; anastomotic strength was not affected. This suggests that GLP-2 (or agonists) could be safely used peri-operatively; direct studies will be required. PMID:20953406

  19. Alveolar Rhabdomyosarcoma in a 69-Year-Old Woman Receiving Glucagon-Like Peptide-2 Therapy

    PubMed Central

    Zyczynski, Laura E.; McHugh, Jonathan B.; Gribbin, Thomas E.; Schuetze, Scott M.

    2015-01-01

    A 69-year-old woman was diagnosed with alveolar rhabdomyosarcoma (ARMS) of the nasopharynx. She has a history of catastrophic thromboembolic event in the abdomen that caused short-gut syndrome and dependence on total parenteral nutrition (TPN) twelve hours per day. She was treated for short-gut syndrome with teduglutide, a glucagon-like peptide-2 (GLP-2) analog, which led to reduction of TPN requirements. However, a few months later, she developed metastatic alveolar rhabdomyosarcoma. Though a causative relationship is unlikely between the peptide and ARMS due to the brief time course between teduglutide therapy and sarcoma diagnosis, neoplastic growth may have been accelerated by the GLP-2 analog, causing release of IGF-1. The transmembrane receptor for IGF-1 is frequently overexpressed in ARMS and is implicated in cell proliferation and metastatic behavior. This case describes a rare incidence of metastatic alveolar rhabdomyosarcoma in a sexagenarian and possibly the first case reported associated with the use of teduglutide. Teduglutide was discontinued due to a potential theoretical risk of acceleration of sarcoma growth, and the patient's rhabdomyosarcoma is in remission following sarcoma chemotherapy. PMID:26266067

  20. Intracerebroventricular administration of chicken glucagon-like peptide-2 potently suppresses food intake in chicks.

    PubMed

    Honda, Kazuhisa; Saneyasu, Takaoki; Shimatani, Tomohiko; Aoki, Koji; Yamaguchi, Takuya; Nakanishi, Kiwako; Kamisoyama, Hiroshi

    2015-03-01

    Glucagon-related peptides, such as glucagon-like peptide (GLP)-1, GLP-2 and oxyntomodulin (OXM), are processed from an identical precursor proglucagon. In mammals, all of these peptides are suggested to be involved in the central regulation of food intake. We previously showed that intracerebroventricular administration of chicken OXM and GLP-1 significantly suppressed food intake in chicks. Here, we show that central administration of chicken GLP-2 potently suppresses food intake in chicks. Male 8-day-old chicks (Gallus gallus domesticus) were used in all experiments. Intracerebroventricular administration of chicken GLP-2 significantly suppressed food intake in chicks. Plasma glucose concentration was significantly decreased by chicken GLP-2, whereas plasma nonesterified fatty acid concentration was significantly increased. Intracerebroventricular administration of chicken GLP-2 did not affect plasma corticosterone concentration. In addition, the anorexigenic effect of GLP-2 was not reversed by the corticotropin-releasing factor (CRF) receptor antagonist α-helical CRF, suggesting that CRF is not a downstream mediator of the anorexigenic pathway of GLP-2 in chicks. Intracerebroventricular administration of an equimolar amount of GLP-1 and GLP-2, but not OXM, significantly suppressed food intake in both broiler and layer chicks. All our findings suggest that GLP-2 functions as a potent anorexigenic peptide in the brain, as well as GLP-1, in chicks.

  1. Alveolar Rhabdomyosarcoma in a 69-Year-Old Woman Receiving Glucagon-Like Peptide-2 Therapy.

    PubMed

    Zyczynski, Laura E; McHugh, Jonathan B; Gribbin, Thomas E; Schuetze, Scott M

    2015-01-01

    A 69-year-old woman was diagnosed with alveolar rhabdomyosarcoma (ARMS) of the nasopharynx. She has a history of catastrophic thromboembolic event in the abdomen that caused short-gut syndrome and dependence on total parenteral nutrition (TPN) twelve hours per day. She was treated for short-gut syndrome with teduglutide, a glucagon-like peptide-2 (GLP-2) analog, which led to reduction of TPN requirements. However, a few months later, she developed metastatic alveolar rhabdomyosarcoma. Though a causative relationship is unlikely between the peptide and ARMS due to the brief time course between teduglutide therapy and sarcoma diagnosis, neoplastic growth may have been accelerated by the GLP-2 analog, causing release of IGF-1. The transmembrane receptor for IGF-1 is frequently overexpressed in ARMS and is implicated in cell proliferation and metastatic behavior. This case describes a rare incidence of metastatic alveolar rhabdomyosarcoma in a sexagenarian and possibly the first case reported associated with the use of teduglutide. Teduglutide was discontinued due to a potential theoretical risk of acceleration of sarcoma growth, and the patient's rhabdomyosarcoma is in remission following sarcoma chemotherapy.

  2. Angioplastic necrolytic migratory erythema. Unique association of necrolytic migratory erythema, extensive angioplasia, and high molecular weight glucagon-like polypeptide

    SciTech Connect

    Franchimont, C.; Pierard, G.E.; Luyckx, A.S.; Gerard, J.; Lapiere, C.M.

    1982-12-01

    A diabetic patient developed necrolytic migratory erythema with extensive angioplasia and high molecular weight glucagon-like polypeptide. There was no associated neoplasm such as glucagonoma. Lesions in the skin were studied by standard optical microscopy and by radioautography after incorporation of tritiated thymidine. Alterations in the skin begin as focal necrosis in the epidermis and in epithelial structures of adnexa, followed by marked angioplasia and a superficial and deep perivascular dermatitis.

  3. Glucagon-Like Peptide-2 Improves Both Acute and Late Experimental Radiation Enteritis in the Rat

    SciTech Connect

    Torres, Sandra

    2007-12-01

    Purpose: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. Methods and Materials: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. Results: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. Conclusion: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.

  4. Glucagon-like