Science.gov

Sample records for glucagon-like peptide-1 metabolite

  1. GLP-1(28-36)amide, the Glucagon-like peptide-1 metabolite: friend, foe, or pharmacological folly?

    PubMed

    Taing, Meng-Wong; Rose, Felicity J; Whitehead, Jonathan P

    2014-01-01

    The glucagon-like peptide-1 (GLP-1) axis has emerged as a major therapeutic target for the treatment of type 2 diabetes. GLP-1 mediates its key insulinotropic effects via a G-protein coupled receptor expressed on β-cells and other pancreatic cell types. The insulinotropic activity of GLP-1 is terminated via enzymatic cleavage by dipeptidyl peptidase-4. Until recently, GLP-1-derived metabolites were generally considered metabolically inactive; however, accumulating evidence indicates some have biological activity that may contribute to the pleiotropic effects of GLP-1 independent of the GLP-1 receptor. Recent reports describing the putative effects of one such metabolite, the GLP-1-derived nonapeptide GLP-1(28-36) amide, are the focus of this review. Administration of the nonapeptide elevates cyclic adenosine monophosphate (cAMP) and activates protein kinase A, β-catenin, and cAMP response-element binding protein in pancreatic β-cells and hepatocytes. In stressed cells, the nonapeptide targets the mitochondria and, via poorly defined mechanisms, helps to maintain mitochondrial membrane potential and cellular adenosine triphosphate levels and to reduce cytotoxicity and apoptosis. In mouse models of diet-induced obesity, treatment with the nonapeptide reduces weight gain and ameliorates associated pathophysiology, including hyperglycemia, hyperinsulinemia, and hepatic steatosis. Nonapeptide administration in a streptozotocin-induced model of type 1 diabetes also improves glucose disposal concomitant with elevated insulin levels and increased β-cell mass and proliferation. Collectively, these results suggest some of the beneficial effects of GLP-1 receptor analogs may be mediated by the nonapeptide. However, the concentrations required to elicit some of these effects are in the micromolar range, leading to reservations about potentially related therapeutic benefits. Moreover, although controversial, concerns have been raised about the potential for incretin

  2. Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Landis, Margaret S; Stevens, Benjamin D; Kalgutkar, Amit S

    2014-09-01

    Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 µg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 µg/kg, systemic exposure of

  3. Glucagon-like peptide 1 (GLP-1) and eating.

    PubMed

    Gutzwiller, Jean-Pierre; Degen, Lukas; Heuss, Ludwig; Beglinger, Christoph

    2004-08-01

    New information regarding gastrointestinal mechanisms that participate in the control of food intake has extended our understanding of appetite control. Although each new signaling pathway discovered in the gut is a potential target for drug development in the treatment of obesity, the growing number of such signaling molecules indicates that a highly complex process controls food intake. The present summary focuses on the role of glucagon-like peptide 1 (GLP-1) in this regulatory process. The different biological effects of GLP-1 (glucose-lowering properties, inhibition of appetite and food intake) provide a powerful impetus for development of GLP-1-based new drugs.

  4. The discovery of glucagon-like peptide 1.

    PubMed

    Lund, P Kay

    2005-06-15

    The discovery of glucagon-like peptide 1 (GLP-1) began more than two decades ago with the observations that anglerfish islet proglucagon messenger RNAs (mRNAs) contained coding sequences for two glucagon-related peptides arranged in tandem. Subsequent analyses revealed that mammalian proglucagon mRNAs encoded a precursor containing the sequence of pancreatic glucagon, intestinal glicentin and two glucagon-related peptides termed GLP-1 and GLP-2. Multidisciplinary approaches were then required to define the structure of biologically active GLP-1 7-36 amide and its role as an incretin, satiety hormone and, most recently, a neuroprotective peptide. This historial perspective outlines the use of traditional recombinant DNA approaches to derive the GLP-1 sequence and highlights the challenges and combination of clinical and basic science approaches required to define the physiology and pathophysiology of bioactive peptides discovered through genomics. PMID:15780428

  5. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    PubMed Central

    Wang, XingChun; Liu, Huan; Chen, Jiaqi; Li, Yan; Qu, Shen

    2015-01-01

    The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels. PMID:26366173

  6. Glucagon-like peptide 1 and the cardiovascular system.

    PubMed

    Fava, Stephen

    2014-01-01

    Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it.

  7. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  8. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  9. Glucagon-like peptide-1: The missing link in the metabolic clock?

    PubMed

    Brubaker, Patricia L; Gil-Lozano, Manuel

    2016-04-01

    Circadian expression of clock genes in peripheral tissues is critical to the coordinated regulation of intestinal digestive and absorptive functions, insulin secretion, and peripheral tissue nutrient deposition during periods of nutrient ingestion, thereby preventing metabolic dysregulation. As glucagon-like peptide-1 is a key incretin hormone that regulates glucose-dependent insulin secretion, we hypothesized that this intestinal hormone is a player in the peripheral metabolic clock, linking nutrient ingestion to insulin secretion. We have now established that secretion of glucagon-like peptide-1 from the intestinal L cell shows a rhythmic pattern in rats and humans in vivo that is altered by circadian disruptors, such as constant light exposure, consumption of a Western diet and feeding at inappropriate times (i.e., during the light period in rodents). Interestingly, the alterations in the rhythm of the glucagon-like peptide-1 secretory responses were found to parallel the changes in the pattern of insulin responses in association with significant impairments in glucose tolerance. Furthermore, we have detected circadian clock gene expression, and showed circadian secretion of glucagon-like peptide-1 from both the murine and human L cell in vitro. These findings demonstrate that glucagon-like peptide-1 is a functional component of the peripheral metabolic clock, and suggest that altered release of glucagon-like peptide-1 might play a role in the metabolic perturbations that result from circadian disruption. PMID:27186359

  10. Glucagon-like peptide-1 binding to rat hepatic membranes.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Trapote, M A; Alcántara, A; Clemente, F; Luque, M A; Perea, A; Valverde, I

    1995-07-01

    We have found [125I]glucagon-like peptide (GLP)-1(7-36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an M(r) of approximately 63,000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7-36)amide and by GLP-1(1-36)amide, achieving its ID50 at 3 x 10(-9) M of the peptides. GLP-1(7-36)amide did not modify the basal or the glucagon (10(-8) M)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7-36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system.

  11. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes.

    PubMed

    Sharma, Raman; McDonald, Thomas S; Eng, Heather; Limberakis, Chris; Stevens, Benjamin D; Patel, Sheena; Kalgutkar, Amit S

    2013-12-01

    Previous studies have revealed that the glucoincretin hormone glucagon-like peptide-1 (GLP-1)(7-36)amide is metabolized by dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase 24.11 (NEP) to yield GLP-1(9-36)amide and GLP-1(28-36)amide, respectively, as the principal metabolites. Contrary to the previous notion that GLP-1(7-36)amide metabolites are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with both GLP-1(9-36)amide and GLP-1(28-36)amide in animals and humans. In the present work, we examined the metabolic stability of the two GLP-1(7-36)amide metabolites in cryopreserved hepatocytes, which have been used to demonstrate the in vitro insulin-like effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis. To examine the metabolic stability of the GLP-1(7-36)amide metabolites, a liquid chromatography-tandem mass spectrometry assay was developed for the quantitation of the intact peptides in hepatocyte incubations. GLP-1(9-36)amide and GLP-1(28-36)amide were rapidly metabolized in mouse [GLP-1(9-36)amide: t(1/2) = 52 minutes; GLP-1(28-36)amide: t(1/2) = 13 minutes] and human hepatocytes [GLP-1(9-36)amide: t(1/2) = 180 minutes; GLP-1(28-36)amide: t(1/2) = 24 minutes), yielding a variety of N-terminal cleavage products that were characterized using mass spectrometry. Metabolism at the C terminus was not observed for either peptides. The DPP-IV and NEP inhibitors diprotin A and phosphoramidon, respectively, did not induce resistance in the two peptides toward proteolytic cleavage. Overall, our in vitro findings raise the intriguing possibility that the insulinomimetic effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis and oxidative stress might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from the enzymatic cleavage of the peptide backbone in the parent compounds.

  12. The mechanism of glucagon-like peptide-1 participation in the osmotic homeostasis.

    PubMed

    Natochin, Yu V; Marina, A S; Kutina, A V; Balbotkina, E V; Karavashkina, T A

    2016-07-01

    We have found the physiological mechanism of intensification of the excessive fluid removal from the body under the action of glucagon-like peptide-1 and its analog exenatide. Under the water load in rats, exenatide significantly increased the clearance of lithium, reduced fluid reabsorption in the proximal tubule of the nephron and intensified reabsorption of sodium ions in the distal parts, which contributed to the formation of sodium-free water and faster recovery of osmotic homeostasis. Blocking this pathway with a selective antagonist of glucagon-like peptide-1 receptors slowed down the elimination of excessive water from the body. PMID:27595820

  13. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion.

    PubMed

    Reimann, Frank; Gribble, Fiona M

    2016-04-01

    The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fluorescent markers under the control of the two hormone promoters, the majority (>80%) of labeled cells seems to produce only one of these hormones. Transcriptomic analysis showed a close relationship between small intestinal K- and L cells, and glucose sensing mechanisms appear similar in both cell types with a predominant role of electrogenic glucose uptake through sodium-coupled glucose transporter 1. Similarly, both cell types produce the long-chain fatty acid sensing G-protein-coupled receptors, FFAR1 (GPR40) and FFAR4 (GPR120), but differ in the expression/functionality of other lipid sensing receptors. GPR119 and FFAR2/3, for example, have clearly documented roles in glucagon-like peptide-1 secretion, whereas agonists for the endocannabinoid receptor type 1 have been found to show largely selective inhibition of glucose-dependent insulinotropic peptide secretion. In conclusion, although K- and L cell populations overlap and share key molecular nutrient-sensing mechanisms, subtle differences between the responsiveness of the different cell types might be exploited to differentially modulate glucose-dependent insulinotropic peptide or glucagon-like peptide-1 secretion. PMID:27186350

  14. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  15. Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities.

    PubMed

    Mossello, Enrico; Ballini, Elena; Boncinelli, Marta; Monami, Matteo; Lonetto, Giuseppe; Mello, Anna Maria; Tarantini, Francesca; Baldasseroni, Samuele; Mannucci, Edoardo; Marchionni, Niccolò

    2011-01-01

    Metabolic and neurodegenerative disorders have a growing prevalence in Western countries. Available epidemiologic and neurobiological evidences support the existence of a pathophysiological link between these conditions. Glucagon-like peptide 1 (GLP-1), whose activity is reduced in insulin resistance, has been implicated in central nervous system function, including cognition, synaptic plasticity, and neurogenesis. We review the experimental researches suggesting that GLP-1 dysfunction might be a mediating factor between Type 2 diabetes mellitus (T2DM) and neurodegeneration. Drug treatments enhancing GLP-1 activity hold out hope for treatment and prevention of Alzheimer's disease (AD) and cognitive decline.

  16. Oral Delivery of Glucagon-Like Peptide-1 and Analogs: Alternatives for Diabetes Control?

    PubMed Central

    Araújo, Francisca; Fonte, Pedro; Santos, Hélder A.; Sarmento, Bruno

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Current treatments are often associated with off-target effects and do not significantly impact disease progression. New therapies are therefore urgently needed to overcome this social burden. Glucagon-like peptide-1 (GLP-1), an incretin hormone, has been used to control T2DM symptomatology. However, the administration of peptide or proteins drugs is still a huge challenge in the pharmaceutical field, requiring administration by parenteral routes. This article reviews the main hurdles in oral administration of GLP-1 and focuses on the strategies utilized to overcome them. PMID:23294796

  17. The complexity of signalling mediated by the glucagon-like peptide-1 receptor.

    PubMed

    Fletcher, Madeleine M; Halls, Michelle L; Christopoulos, Arthur; Sexton, Patrick M; Wootten, Denise

    2016-04-15

    The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR that is a major therapeutic target for the treatment of type 2 diabetes. The receptor is activated by the incretin peptide GLP-1 promoting a broad range of physiological effects including glucose-dependent insulin secretion and biosynthesis, improved insulin sensitivity of peripheral tissues, preservation of β-cell mass and weight loss, all of which are beneficial in the treatment of type 2 diabetes. Despite this, existing knowledge surrounding the underlying signalling mechanisms responsible for the physiological actions downstream of GLP-1R activation is limited. Here, we review the current understanding around GLP-1R-mediated signalling, in particular highlighting recent contributions to the field on biased agonism, the spatial and temporal aspects for the control of signalling and how these concepts may influence future drug development. PMID:27068973

  18. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets.

    PubMed

    Tudurí, Eva; López, Miguel; Diéguez, Carlos; Nadal, Angel; Nogueiras, Rubén

    2016-05-01

    Glucagon-like peptide 1 (GLP-1) exerts many actions that improve glycemic control. GLP-1 stimulates glucose-stimulated insulin secretion and protects β cells, while its extrapancreatic effects include cardioprotection, reduction of hepatic glucose production, and regulation of satiety. Although an appealing antidiabetic drug candidate, the rapid degradation of GLP-1 by dipeptidyl peptidase 4 (DPP-4) means that its therapeutic use is unfeasible, and this prompted the development of two main GLP-1 therapies: long-acting GLP-1 analogs and DPP-4 inhibitors. In this review, we focus on the pancreatic effects exerted by current GLP-1 derivatives used to treat diabetes. Based on the results from in vitro and in vivo studies in humans and animal models, we describe the specific actions of GLP-1 analogs on the synthesis, processing, and secretion of insulin, islet morphology, and β cell proliferation and apoptosis. PMID:27062006

  19. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    PubMed

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  20. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  1. Pharmacokinetics and pharmacodynamics of the glucagon-like peptide-1 analog liraglutide in healthy cats.

    PubMed

    Hall, M J; Adin, C A; Borin-Crivellenti, S; Rudinsky, A J; Rajala-Schultz, P; Lakritz, J; Gilor, C

    2015-04-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that induces glucose-dependent stimulation of insulin secretion while suppressing glucagon secretion. Glucagon-like peptide-1 also increases beta cell mass and satiation while decelerating gastric emptying. Liraglutide is a fatty-acid derivative of GLP-1 with a protracted pharmacokinetic profile that is used in people for treatment of type II diabetes mellitus and obesity. The aim of this study was to determine the pharmacokinetics and pharmacodynamics of liraglutide in healthy cats. Hyperglycemic clamps were performed on days 0 (HGC) and 14 (LgHGC) in 7 healthy cats. Liraglutide was administered subcutaneously (0.6 mg/cat) once daily on days 8 through 14. Compared with the HGC (mean ± standard deviation; 455.5 ± 115.8 ng/L), insulin concentrations during LgHGC were increased (760.8 ± 350.7 ng/L; P = 0.0022), glucagon concentrations decreased (0.66 ± 0.4 pmol/L during HGC vs 0.5 ± 0.4 pmol/L during LgHGC; P = 0.0089), and there was a trend toward an increased total glucose infused (median [range] = 1.61 (1.11-2.54) g/kg and 2.25 (1.64-3.10) g/kg, respectively; P = 0.087). Appetite reduction and decreased body weight (9% ± 3%; P = 0.006) were observed in all cats. Liraglutide has similar effects and pharmacokinetics profile in cats to those reported in people. With a half-life of approximately 12 h, once daily dosing might be feasible; however, significant effects on appetite and weight loss may necessitate dosage or dosing frequency reductions. Further investigation of liraglutide in diabetic cats and overweight cats is warranted.

  2. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  3. Glucagon-Like Peptide-1 Receptor Agonist Treatment for Pediatric Obesity.

    PubMed

    Kelly, Aaron S

    2016-01-01

    Obesity is a complex and retractable disease for which effective and durable treatments are elusive. Successful treatment of severe obesity with lifestyle modification therapy alone is highly unlikely, particularly for adolescents. Pharmacotherapy, if appropriately prescribed, can be an effective tool to use in conjunction with lifestyle modification therapy to achieve better weight loss outcomes. Only a few obesity medications have been evaluated in children and adolescents with results suggesting modest efficacy. However, a new pipeline of obesity drugs has been recently approved for use among adults. Among these, glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment appears to have reasonable weight loss efficacy along with other beneficial pleiotropic effects. Although larger trials will be required to confirm the results, two small pediatric clinical trials have suggested that GLP-1RA treatment may be useful in adolescents with severe obesity. Once sufficient evidence is generated supporting the safety and efficacy of GLP-1RAs and other obesity medications in youth, the pediatric medical community needs to become less resistant to the use of pharmacotherapy. Otherwise, poor outcomes will continue to be the norm.

  4. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.

  5. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role.

  6. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity.

    PubMed

    Gong, Nian; Xiao, Qi; Zhu, Bin; Zhang, Chang-Yue; Wang, Yan-Chao; Fan, Hui; Ma, Ai-Niu; Wang, Yong-Xiang

    2014-04-01

    This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked β-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, β-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states. PMID:24719110

  7. [Glucagon-like peptide-1 (GLP-1) mimetics: a new treatment for Alzheimer's disease?].

    PubMed

    García-Casares, Natalia; García-Arnés, Juan Antonio; Gómez-Huelgas, Ricardo; Valdivielso-Felices, Pedro; García-Arias, Carlota; González-Santos, Pedro

    2014-12-01

    Introduccion. Los analogos del glucagon-like peptide-1 (GLP-1) son una opcion terapeutica establecida en los pacientes con diabetes tipo 2. Sin embargo, las propiedades de los analogos del GLP-1 van mas alla del control estrictamente metabolico del paciente diabetico. Los efectos neuroprotectores de los analogos del GLP-1 se han puesto de manifiesto en estudios recientes y han abierto nuevos campos de investigacion en trastornos neurodegenerativos como la enfermedad de Alzheimer (EA), entre otros. Objetivo. Revision sistematica de los estudios experimentales y ensayos clinicos en humanos que demuestran las propiedades neuroprotectoras de los analogos del GLP-1 en la EA. Desarrollo. Los estudios experimentales que se han llevado a cabo en modelos de roedores con EA demuestran las propiedades neuroprotectoras de los analogos del GLP-1 sobre el sistema nervioso central que reducen las placas de beta-amiloide, el estres oxidativo y la respuesta inflamatoria cerebral. Recientemente se han puesto en marcha estudios con analogos del GLP-1 en humanos con deterioro cognitivo y EA. Conclusiones. Los analogos del GLP-1 presentan propiedades neuroprotectoras. Al considerarse la diabetes tipo 2 un factor de riesgo para el deterioro cognitivo y la demencia, deben considerarse los beneficios de los analogos del GLP-1 sobre la cognicion. Del mismo modo, los analogos del GLP-1 suponen un tratamiento prometedor en la EA.

  8. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-01-01

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  9. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant?

    PubMed

    Alves, Marco G; Jesus, Tito T; Sousa, Mário; Goldberg, Erwin; Silva, Branca M; Oliveira, Pedro F

    2016-01-01

    Obesity is rising to unprecedented numbers, affecting a growing number of children, adolescents and young adult men. These individuals face innumerous health problems, including subfertility or even infertility. Overweight and obese men present severe alterations in their body composition and hormonal profile, particularly in ghrelin, leptin and glucagon-like peptide-1 (GLP-1) levels. It is well known that male reproductive health is under the control of the individual's nutritional status and also of a tight network of regulatory signals, particularly hormonal signaling. However, few studies have been focused on the effects of ghrelin, leptin and GLP-1 in male reproduction and how energy homeostasis and male reproductive function are linked. These hormones regulate body glucose homeostasis and several studies suggest that they can serve as targets for anti-obesity drugs. In recent years, our understanding of the mechanisms of action of these hormones has grown significantly. Curiously, their effect on male reproductive potential, that is highly dependent of the metabolic cooperation established between testicular cells, remains a matter of debate. Herein, we review general concepts of male fertility and obesity, with a special focus on the effects of ghrelin, leptin and GLP-1 on male reproductive health. We also discuss the possible pharmacological relevance of these hormones to counteract the fertility problems that overweight and obese men face.

  10. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  11. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  12. Glucagon-like peptide 1 and dysglycemia: Conflict in incretin science.

    PubMed

    Singh, Awadhesh Kumar

    2015-01-01

    Although GLP-1 (glucagon like peptide-1) based therapies (GLP-1 agonists and dipeptidyl peptidase-4 inhibitors) is currently playing a cornerstone role in the treatment of type 2 diabetes, dilemma does exist about some of its basic physiology. So far, we know that GLP-1 is secreted by the direct actions of luminal contents on the L cells in distal jejunum and proximal ileum. However, there is growing evidence now, which suggest that other mechanism via "neural" or "upper gut" signals may be playing a second fiddle and could stimulate GLP-1 secretion even before the luminal contents have reached into the proximities of L cells. Therefore, the contribution of direct and indirect mechanism to GLP-1 secretion remains elusive. Furthermore, no clear consensus exists about the pattern of GLP-1 secretion, although many believe it is monophasic. One of the most exciting issues in incretin science is GLP-1 level and GLP-1 responsiveness. It is not exactly known as to what happens to endogenous GLP-1 with progressive worsening of dysglycemia from normal glucose tolerance to impaired glucose to frank diabetes and furthermore with increasing duration of diabetes. Although, conventional wisdom suggests that there may be a decrease in endogenous GLP-1 level with the worsening of dysglycemia, literature showed discordant results. Furthermore, there is emerging evidence to suggest that GLP-1 response can vary with ethnicity. This mini review is an attempt to put a brief perspective on all these issues. PMID:25593851

  13. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  14. Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome

    PubMed Central

    Chatterjee, Sanjay; Ghosal, Samit; Chatterjee, Saurav

    2016-01-01

    Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome. PMID:27795818

  15. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations

    PubMed Central

    Frederiksen, Tine M.; Sønderby, Pernille; Ryberg, Line A.; Harris, Pernille; Bukrinski, Jens T.; Scharff-Poulsen, Anne M.; Elf-Lind, Maria N.; Peters, Günther H.

    2015-01-01

    The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1, liraglutide has an added fatty acid (FA) moiety that causes oligomerization of liraglutide as suggested by small-angle x-ray scattering (SAXS) and multiangle static light scattering (MALS) results. SAXS data suggested a global shape of a hollow elliptical cylinder of size hexa-, hepta-, or octamer, whereas MALS data indicate a hexamer. To elaborate further on the stability of these oligomers and the role of the FA chains, a series of molecular-dynamics simulations were carried out on 11 different hexa-, hepta-, and octameric systems. Our results indicate that interactions of the fatty acid chains contribute noticeably to the stabilization. The simulation results indicate that the heptamer with paired FA chains is the most stable oligomer when compared to the 10 other investigated structures. Theoretical SAXS curves extracted from the simulations qualitatively agree with the experimentally determined SAXS curves supporting the view that liraglutide forms heptamers in solution. In agreement with the SAXS data, the heptamer forms a water-filled oligomer of elliptical cylindrical shape. PMID:26340816

  16. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.

    PubMed

    Koehler, Jacqueline A; Baggio, Laurie L; Cao, Xiemin; Abdulla, Tahmid; Campbell, Jonathan E; Secher, Thomas; Jelsing, Jacob; Larsen, Brett; Drucker, Daniel J

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice.

  17. Diabetes and cardiovascular disease: focus on glucagon-like peptide-1 based therapies

    PubMed Central

    Stranges, Paul

    2012-01-01

    Type 2 diabetes is a well known risk factor for cardiovascular disease (CVD). While glycemic control has consistently been shown to prevent microvascular complications, large randomized trials have not demonstrated the same consistent beneficial effects of intensive glycemic control in improving cardiovascular (CV) outcomes. Thus, optimal glucose control alone is not sufficient to reduce CV risk. Aggressive management of CV risk factors such as blood pressure, lipids, and body weight is also necessary. A growing body of evidence suggests that the recently available glucagon-like peptide 1 receptor (GLP-1R) agonists have beneficial CV effects beyond glucose control. Studies have demonstrated beneficial effects in the myocardium, endothelium, vasculature and various markers of cardiovascular risk such as body weight, blood pressure and dyslipidemia. Despite the growing evidence, large, randomized, blinded clinical trials with hard CV endpoints have not been performed. Most human studies have been small, and have focused on surrogate endpoints. The findings need to be confirmed by prospective, randomized cardiovascular outcomes trials. In this review we examine the GLP-1R agonist data on weight reduction, blood pressure lowering, beneficial changes in dyslipidemia, and improvements in myocardial and endothelial function. The safety as well as potential role of these agents in treatment regimens for type 2 diabetes is also addressed. PMID:25083236

  18. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  19. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking*

    PubMed Central

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille; Iversen, Helle; Bräuner-Osborne, Hans; Knudsen, Sanne Moeller; Waldhoer, Maria

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling. PMID:25451942

  20. Role of lateral septum glucagon-like peptide 1 receptors in food intake.

    PubMed

    Terrill, Sarah J; Jackson, Christine M; Greene, Hayden E; Lilly, Nicole; Maske, Calyn B; Vallejo, Samantha; Williams, Diana L

    2016-07-01

    Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation. PMID:27194565

  1. Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries.

    PubMed

    Bayram, Zeliha; Nacitarhan, Cahit; Ozdem, Sadi S

    2014-09-01

    We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.

  2. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents.

    PubMed

    Egecioglu, Emil; Steensland, Pia; Fredriksson, Ida; Feltmann, Kristin; Engel, Jörgen A; Jerlhag, Elisabet

    2013-08-01

    Development of alcohol use disorders largely depends on the effects of alcohol on the brain reward systems. Emerging evidence indicate that common mechanisms regulate food and alcohol intake and raise the possibility that endocrine signals from the gut may play an important role for alcohol consumption, alcohol-induced reward and the motivation to consume alcohol. Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide regulating food intake and glucose homeostasis, has recently been shown to target central brain areas involved in reward and motivation, including the ventral tegmental area and nucleus accumbens. Herein we investigated the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on various measures of alcohol-induced reward as well as on alcohol intake and alcohol seeking behavior in rodents. Treatment with Ex4, at a dose with no effect per se, attenuated alcohol-induced locomotor stimulation and accumbal dopamine release in mice. Furthermore, conditioned place preference for alcohol was abolished by both acute and chronic treatment with Ex4 in mice. Finally we found that Ex4 treatment decreased alcohol intake, using the intermittent access 20% alcohol two-bottle-choice model, as well as alcohol seeking behavior, using the progressive ratio test in the operant self-administration model, in rats. These novel findings indicate that GLP-1 signaling attenuates the reinforcing properties of alcohol implying that the physiological role of GLP-1 extends beyond glucose homeostasis and food intake regulation. Collectively these findings implicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for alcohol use disorders.

  3. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    PubMed Central

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  4. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  5. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  6. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    PubMed Central

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  7. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  8. Investigating G protein signalling bias at the glucagon-like peptide-1 receptor in yeast

    PubMed Central

    Weston, C; Poyner, D; Patel, V; Dowell, S; Ladds, G

    2014-01-01

    BACKGROUND AND PURPOSE The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. EXPERIMENTAL APPROACH We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand–receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. KEY RESULTS The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. CONCLUSIONS AND IMPLICATIONS These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. PMID:24712679

  9. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  10. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  11. Protective Role of Glucagon-Like Peptide-1 Against High-Glucose-Induced Endothelial Oxidative Damage

    PubMed Central

    Guo, Lixin; Qiao, Yue; Zhang, Lina; Pan, Qi

    2015-01-01

    Abstract To investigate the protective effect of glucagon-like peptide-1 (GLP-1) against cell damage induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were divided into control group (5.5 mmol/L) and high glucose groups (19, 33, or 47 mmol/L), which were cultured with different concentrations of glucose for 48 hours, respectively. Cell viability was measured with MTT assay. Levels of intracellular reactive oxygen species (ROS) were monitored by flow cytometry and apoptotic cell death was measured by staining with Annexin V-FITC and propidium iodide. Cultured cells were detected with intercellular adhesion molecule 1 (ICAM-1), VCAM-1, and JNK on protein. Compared with the control group, cell viability was decreased by 20% and 37%, respectively, when cultured under 33 and 47 mM, while increased in different GLP-1-treated groups (0.01 L, 0.1, 1, and 10 nmol/L). The GLP-1 treatment significantly reduced the ROS level of high glucose treatment group but not impact on the control group. Meanwhile, the level of apoptosis was elevated in the high glucose treatment group. Early apoptosis was significantly reversed in the GLP-1-treated group (0.1, 1, and 10 nmol/L). Late apoptosis was uniquely decreased in the GLP-1 concentrations of 10 nmol/L. Furthermore, GLP-1 could also reduce the protein levels of ICAM-1, VCAM-1, and phospho JNK in the endothelial cells with high glucose treatment. GLP-1 could inhibit cell apoptosis and reduce ROS generation and JNK-Bax signaling pathway activation, which were induced by high glucose treatment. PMID:26632709

  12. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  13. Glucagon-like peptide-1 receptor agonist administration suppresses both water and saline intake in rats.

    PubMed

    McKay, N J; Daniels, D

    2013-10-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in energy homeostasis. Injections of GLP-1 receptor (GLP-1R) agonists suppress food intake, and endogenous GLP-1 is released when nutrients enter the gut. There is also growing evidence that the GLP-1 system is involved in the regulation of body fluid homeostasis. GLP-1R agonists suppress water intake independent of their effects on food intake. It is unknown, however, whether this suppressive effect of GLP-1R agonists extends to saline intake. Accordingly, we tested the effect of the GLP-1R agonists liraglutide (0.05 μg) and exendin-4 (0.05 μg) on water and saline intake, as stimulated either by angiotensin II (AngII) or by water deprivation with partial rehydration (WD-PR). Each agonist suppressed AngII-induced water intake; however, only exendin-4 suppressed saline intake. WD-PR-induced water and saline intakes were both attenuated by each agonist. Analysis of drinking microstructure after WD-PR found a reliable effect of the agonists on burst number. Furthermore, exendin-4 conditioned a robust taste avoidance to saccharine; however, there was no similar effect of liraglutide. To evaluate the relevance of the conditioned taste avoidance, we tested whether inducing visceral malaise by injection of lithium chloride (LiCl) suppressed fluid intake. Injection of LiCl did not suppress water or saline intakes. Overall, these results indicate that the fluid intake suppression by GLP-1R activation is not selective to water intake, is a function of post-ingestive feedback, and is not secondary to visceral malaise.

  14. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.

    PubMed

    McKay, Naomi J; Kanoski, Scott E; Hayes, Matthew R; Daniels, Derek

    2011-12-01

    Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation.

  15. The role of apolipoprotein A-IV in regulating glucagon-like peptide-1 secretion.

    PubMed

    Wang, Fei; Yang, Qing; Huesman, Sarah; Xu, Min; Li, Xiaoming; Lou, Danwen; Woods, Stephen C; Marziano, Corina; Tso, Patrick

    2015-10-15

    Both glucagon-like peptide-1 (GLP-1) and apolipoprotein A-IV (apoA-IV) are produced from the gut and enhance postprandial insulin secretion. This study investigated whether apoA-IV regulates nutrient-induced GLP-1 secretion and whether apoA-IV knockout causes compensatory GLP-1 release. Using lymph-fistula-mice, we first determined lymphatic GLP-1 secretion by administering apoA-IV before an intraduodenal Ensure infusion. apoA-IV changed neither basal nor Ensure-induced GLP-1 secretion relative to saline administration. We then assessed GLP-1 in apoA-IV-/- and wild-type (WT) mice administered intraduodenal Ensure. apoA-IV-/- mice had comparable lymph flow, lymphatic triglyceride, glucose, and protein outputs as WT mice. Intriguingly, apoA-IV-/- mice had higher lymphatic GLP-1 concentration and output than WT mice 30 min after Ensure administration. Increased GLP-1 was also observed in plasma of apoA-IV-/- mice at 30 min. apoA-IV-/- mice had comparable total gut GLP-1 content relative to WT mice under fasting, but a lower GLP-1 content 30 min after Ensure administration, suggesting that more GLP-1 was secreted. Moreover, an injection of apoA-IV protein did not reverse the increased GLP-1 secretion in apoA-IV-/- mice. Finally, we assessed gene expression of GLUT-2 and the lipid receptors, including G protein-coupled receptor (GPR) 40, GPR119, and GPR120 in intestinal segments. GLUT-2, GPR40 and GPR120 mRNAs were unaltered by apoA-IV knockout. However, ileal GPR119 mRNA was significantly increased in apoA-IV-/- mice. GPR119 colocalizes with GLP-1 in ileum and stimulates GLP-1 secretion by sensing OEA, lysophosphatidylcholine, and 2-monoacylglycerols. We suggest that increased ileal GPR119 is a potential mechanism by which GLP-1 secretion is enhanced in apoA-IV-/- mice. PMID:26294669

  16. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis

    PubMed Central

    Armstrong, Matthew J.; Hull, Diana; Guo, Kathy; Barton, Darren; Hazlehurst, Jonathan M.; Gathercole, Laura L.; Nasiri, Maryam; Yu, Jinglei; Gough, Stephen C.; Newsome, Philip N.; Tomlinson, Jeremy W.

    2016-01-01

    Background & Aims Insulin resistance and lipotoxicity are pathognomonic in non-alcoholic steatohepatitis (NASH). Glucagon-like peptide-1 (GLP-1) analogues are licensed for type 2 diabetes, but no prospective experimental data exists in NASH. This study determined the effect of a long-acting GLP-1 analogue, liraglutide, on organ-specific insulin sensitivity, hepatic lipid handling and adipose dysfunction in biopsy-proven NASH. Methods Fourteen patients were randomised to 1.8 mg liraglutide or placebo for 12-weeks of the mechanistic component of a double-blind, randomised, placebo-controlled trial (ClinicalTrials.gov-NCT01237119). Patients underwent paired hyperinsulinaemic euglycaemic clamps, stable isotope tracers, adipose microdialysis and serum adipocytokine/metabolic profiling. In vitro isotope experiments on lipid flux were performed on primary human hepatocytes. Results Liraglutide reduced BMI (−1.9 vs. +0.04 kg/m2; p <0.001), HbA1c (−0.3 vs. +0.3%; p <0.01), cholesterol-LDL (−0.7 vs. +0.05 mmol/L; p <0.01), ALT (−54 vs. −4.0 IU/L; p <0.01) and serum leptin, adiponectin, and CCL-2 (all p <0.05). Liraglutide increased hepatic insulin sensitivity (−9.36 vs. −2.54% suppression of hepatic endogenous glucose production with low-dose insulin; p <0.05). Liraglutide increased adipose tissue insulin sensitivity enhancing the ability of insulin to suppress lipolysis both globally (−24.9 vs. +54.8 pmol/L insulin required to ½ maximally suppress serum non-esterified fatty acids; p <0.05), and specifically within subcutaneous adipose tissue (p <0.05). In addition, liraglutide decreased hepatic de novo lipogenesis in vivo (−1.26 vs. +1.30%; p <0.05); a finding endorsed by the effect of GLP-1 receptor agonist on primary human hepatocytes (24.6% decrease in lipogenesis vs. untreated controls; p <0.01). Conclusions Liraglutide reduces metabolic dysfunction, insulin resistance and lipotoxicity in the key metabolic organs in the pathogenesis of

  17. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  18. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  19. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  20. [Protective effects of glucagon-like peptide-1 on beta-cells: preclinical and clinical data].

    PubMed

    Consoli, Agostino; Di Biagio, Rosamaria

    2011-12-01

    Dipartimento di Medicina Interna e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio", Chieti Continuing b-cell mass and function loss represents the key mechanism for the pathogenesis and the progression of type 2 diabetes mellitus. Drugs capable of arresting b-cell loss and eventually able to bring b-cell function close to be back to normal would then be a formidable help in type 2 diabetes mellitus treatment. The glucagon-like peptide-1 (GLP-1) receptor agonists exenatide and liraglutide can stimulate in vitro neogenesis and prevent apoptosis in b-cell-like cell lines. Consistently, treatment with GLP-1 receptor agonists ameliorates glucose metabolism, preserves b-cell mass and improves b-cell function in several animal models of diabetes. For instance, in the db/db mice, liraglutide protects the b-cell from oxidative stress and endoplasmic reticulum stress-related damage. Data in humans, in vivo, are less definitive and often based on scarcely reliable indexes of b-cell function. However, short-term treatment (14 weeks) with liraglutide increased b-cell maximal response capacity in a dose-response fashion. A longer (1 year) exenatide treatment also was able to increase b-cell maximal response capacity, but the effect was no longer there after a 4-week washout period. However, a marginal, although significant as compared to glargine treatment, improvement in another b-cell function index (disposition index) was observed after a 4-week washout period following 3-year exenatide treatment. Finally, although no clinical trials with a long enough follow-up period are presently available, durable glucose control has been obtained during 2 years of liraglutide treatment in monotherapy. Since the durability of good control is strictly dependent upon a lack of further b-cell function deterioration, these clinical data may foster hope that GLP-1 receptor antagonist treatment might help preserving b-cell function also in individuals affected by type 2

  1. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    PubMed

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  2. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  3. Multifunctional Antibody Agonists Targeting Glucagon-like Peptide-1, Glucagon, and Glucose-Dependent Insulinotropic Polypeptide Receptors.

    PubMed

    Wang, Ying; Du, Jintang; Zou, Huafei; Liu, Yan; Zhang, Yuhan; Gonzalez, Jose; Chao, Elizabeth; Lu, Lucy; Yang, Pengyu; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-09-26

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), glucagon (GCG) receptor (GCGR), and glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP-1R, GCGR, and GIPR were fused to the N-terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100-fold longer plasma half-lives. The GLP-1R mono agonist and GLP-1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter. PMID:27595986

  4. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes.

  5. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes.

  6. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25326836

  7. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25437458

  8. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    PubMed Central

    Thompson, Aiysha; Stephens, Jeffrey W.; Bain, Stephen C.

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B. PMID:27100083

  9. The insulinotropic effect of exogenous glucagon-like peptide-1 is not affected by acute vagotomy in anaesthetized pigs.

    PubMed

    Veedfald, Simon; Hansen, Marie; Christensen, Louise Wulff; Larsen, Sara Agnete Hjort; Hjøllund, Karina Rahr; Plamboeck, Astrid; Hartmann, Bolette; Deacon, Carolyn Fiona; Holst, Jens Juul

    2016-07-01

    What is the central question of this study? We investigated whether intestinal vagal afferents are necessary for the insulinotropic effect of glucagon-like peptide-1 (GLP-1) infused into a mesenteric artery or a peripheral vein before and after acute truncal vagotomy. What is the main finding and its importance? We found no effect of truncal vagotomy on the insulinotropic effect of exogenous GLP-1 and speculate that high circulating concentrations of GLP-1 after i.v. and i.a. infusion might have overshadowed any neural signalling component. We propose that further investigations into the possible vagal afferent signalling of GLP-1 would best be pursued using enteral stimuli to provide high subepithelial levels of endogenous GLP-1. Glucagon-like peptide 1 (GLP-1) is secreted from the gut in response to luminal stimuli and stimulates insulin secretion in a glucose-dependent manner. As a result of rapid enzymatic degradation of GLP-1 by dipeptidyl peptidase-4, a signalling pathway involving activation of intestinal vagal afferents has been proposed. We conducted two series of experiments in α-chloralose-anaesthetized pigs. In protocol I, pigs (n = 14) were allocated for either i.v. or i.a. (mesenteric) GLP-1 infusions (1 and 2 pmol kg(-1)  min(-1) , 30 min) while maintaining permissive glucose concentrations at 6 mmol l(-1) by i.v. glucose infusion. The GLP-1 infusions were repeated after acute truncal vagotomy. In protocol II, pigs (n = 27) were allocated into six groups. Glucagon-like peptide 1 was infused i.v. or i.a. (mesenteric) for 1 h at 3 or 30 pmol kg(-1)  min(-1) . During the steady state (21 min into the GLP-1 infusion), glucose (0.2 g kg(-1) , i.v.) was administered over 9 min to stimulate β-cell secretion. Thirty minutes after the glucose infusion, GLP-1 infusions were discontinued. Following a washout period, the vagal trunks were severed in four of six groups (vagal trunks were left intact in two of six groups), whereupon all

  10. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  11. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  12. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  13. An Emerging Role of Glucagon-Like Peptide-1 in Preventing Advanced-Glycation-End-Product-Mediated Damages in Diabetes

    PubMed Central

    Puddu, Alessandra; Mach, François; Nencioni, Alessio; Viviani, Giorgio Luciano; Montecucco, Fabrizio

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the intestinal epithelial endocrine L cells by differential processing of the proglucagon gene. Released in response to the nutrient ingestion, GLP-1 plays an important role in maintaining glucose homeostasis. GLP-1 has been shown to regulate blood glucose levels by stimulating glucose-dependent insulin secretion and inhibiting glucagon secretion, gastric emptying, and food intake. These antidiabetic activities highlight GLP-1 as a potential therapeutic molecule in the clinical management of type 2 diabetes, (a disease characterized by progressive decline of beta-cell function and mass, increased insulin resistance, and final hyperglycemia). Since chronic hyperglycemia contributed to the acceleration of the formation of Advanced Glycation End-Products (AGEs, a heterogeneous group of compounds derived from the nonenzymatic reaction of reducing sugars with free amino groups of proteins implicated in vascular diabetic complications), the administration of GLP-1 might directly counteract diabetes pathophysiological processes (such as pancreatic β-cell dysfunction). This paper outlines evidence on the protective role of GLP-1 in preventing the deleterious effects mediated by AGEs in type 2 diabetes. PMID:23365488

  14. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling.

    PubMed

    MacLusky, N J; Cook, S; Scrocchi, L; Shin, J; Kim, J; Vaccarino, F; Asa, S L; Drucker, D J

    2000-02-01

    Glucagon-like peptide-1 (GLP-1), a potent regulator of glucose homeostasis, is also produced in the central nervous system, where GLP-1 has been implicated in the neuroendocrine control of hypothalamic-pituitary function, food intake, and the response to stress. The finding that intracerebroventricular GLP-1 stimulates LH, TSH, corticosterone, and vasopressin secretion in rats prompted us to assess the neuroendocrine consequences of disrupting GLP-1 signaling in mice in vivo. Male GLP-1 receptor knockout (GLP-1R-/-) mice exhibit reduced gonadal weights, and females exhibit a slight delay in the onset of puberty; however, male and female GLP-1R-/- animals reproduce successfully and respond appropriately to fluid restriction. Although adrenal weights are reduced in GLP-1R-/- mice, hypothalamic CRH gene expression and circulating levels of corticosterone, thyroid hormone, testosterone, estradiol, and progesterone are normal in the absence of GLP-1R-/- signaling. Intriguingly, GLP-1R-/- mice exhibit paradoxically increased corticosterone responses to stress as well as abnormal responses to acoustic startle that are corrected by glucocorticoid treatment. These findings suggest that although GLP-1R signaling is not essential for development and basal function of the murine hypothalamic-pituitary-adrenal axis, abrogation of GLP-1 signaling is associated with impairment of the behavioral and neuroendocrine responses to stress.

  15. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points.

    PubMed

    Yabe, Daisuke; Kuwata, Hitoshi; Usui, Ryota; Kurose, Takeshi; Seino, Yutaka

    2015-01-01

    Assessment of the benefits of anti-diabetic drugs for type 2 diabetes requires analysis of composite end-points, taking HbA1c, bodyweight, hypoglycemia and other metabolic parameters into consideration; continuous, optimal glycemic control as well as bodyweight, blood pressure and lipid levels are critical to prevent micro- and macro-vascular complications. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now established as an important total treatment strategy for type 2 diabetes, exerting glucose-lowering effects with little hypoglycemia risk and also ameliorating bodyweight, blood pressure and lipid levels, which are therapeutic targets for prevention of complications of the disease. The available data strongly suggest only beneficial effects of GLP-1RAs; however, long-term evaluation of the relevant composite end-points including health-related quality of life and cost-effectiveness remain to be investigated in adequately powered, prospective, controlled clinical trials. In the meantime, healthcare professionals need to be scrupulously attentive for potential, rare adverse events in patients using GLP-1RAs. PMID:25916903

  16. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Sørensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.

  17. Subthreshold α₂-adrenergic activation counteracts glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion.

    PubMed

    Pan, Minglin; Yang, Guang; Cui, Xiuli; Yang, Shao-Nian

    2011-01-01

    The pancreatic β cell harbors α₂-adrenergic and glucagon-like peptide-1 (GLP-1) receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α₂-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α₂-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX-) sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α₂-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  18. Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets.

    PubMed

    Kelly, Amy C; Steyn, Leah V; Kitzmann, Jenna P; Anderson, Miranda J; Mueller, Kate R; Hart, Nathaniel J; Lynch, Ronald M; Papas, Klearchos K; Limesand, Sean W

    2014-01-01

    The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P < 0.05) and had a half maximal inhibitory concentration of 60 nm in porcine islets (95% confidence interval of 45-830 nm). The epinephrine action was inhibited by the ADRα2A antagonist yohimbine. Our findings demonstrate that porcine islets express and are responsive to both stimulatory and inhibitory membrane localized receptors, which can be used as imaging targets after transplantation or to modify insulin secretion.

  19. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men.

    PubMed

    Gutzwiller, Jean-Pierre; Tschopp, Stefan; Bock, Andreas; Zehnder, Carlos E; Huber, Andreas R; Kreyenbuehl, Monika; Gutmann, Heike; Drewe, Jürgen; Henzen, Christoph; Goeke, Burkhard; Beglinger, Christoph

    2004-06-01

    Glucagon-like peptide-1-(7-36)-amide (GLP-1) is involved in satiety control and glucose homeostasis. Animal studies suggest a physiological role for GLP-1 in water and salt homeostasis. This study's aim was to define the effects of GLP-1 on water and sodium excretion in both healthy and obese men. Fifteen healthy subjects and 16 obese men (mean body mass index, 36 kg/m2) were examined in a double-blind, placebo-controlled, crossover study to demonstrate the effects of a 3-h infusion of GLP-1 on urinary sodium excretion, urinary output, and the glomerular filtration rate after an i.v. 9.9-g salt load. Infusion of GLP-1 evoked a dose-dependent increase in urinary sodium excretion in healthy subjects (from 74 +/- 8 to 143 +/- 18 mmol/180 min, P = 0.0013). In obese men, there was a significant increase in urinary sodium excretion (from 59 to 96 mmol/180 min, P = 0.015), a decrease in urinary H+ secretion (from 1.1 to 0.3 pmol/180 min, P = 0.013), and a 6% decrease in the glomerular filtration rate (from 151 +/- 8 to 142 +/- 8 ml/min, P = 0.022). Intravenous infusions of GLP-1 enhance sodium excretion, reduce H+ secretion, and reduce glomerular hyperfiltration in obese men. These findings suggest an action at the proximal renal tubule and a potential renoprotective effect.

  20. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ojima, Ayako; Nishino, Yuri; Nakashima, Sae; Maeda, Sayaka; Yamagishi, Sho-ichi

    2012-11-01

    There is a growing body of evidence that renin-angiotensin system plays a role in diabetic nephropathy. Recently, we have found that glucagon-like peptide-1 (GLP-1), one of the incretins, a gut hormone secreted from L cells in the intestine in response to food intake, inhibits advanced glycation end product-induced monocyte chemoattractant protein-1 gene expression in mesangial cells thorugh the interaction with the receptor of GLP-1. However, effects of GLP-1 on angiotensin II-exposed mesangial cells are unknown. This study investigated whether and how GLP-1 blocked the angiotensin II-induced mesangial cell damage in vitro. GLP-1 completely blocked the angiotensin II-induced superoxide generation, NF-κB activation, up-regulation of mRNA levels of intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 in mesangial cells, all of which were prevented by the treatments with H-89, an inhibitor of protein kinase A. The present results demonstrated for the first time that GLP-1 blocked the angiotensin II-induced mesangial cell injury by inhibiting superoxide-mediated NF-κB activation via protein kinase C pathway. Our present study suggests that strategies to enhance the biological actions of GLP-1 may be a promising strategy for the treatment of diabetic nephropathy.

  1. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin.

    PubMed

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  2. The inactivation of extracellular signal-regulated kinase by glucagon-like peptide-1 contributes to neuroprotection against oxidative stress.

    PubMed

    Nakajima, Shingo; Numakawa, Tadahiro; Adachi, Naoki; Yoon, Hyung Shin; Odaka, Haruki; Ooshima, Yoshiko; Kunugi, Hiroshi

    2016-03-11

    Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival. PMID:26827720

  3. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  4. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs.

    PubMed

    McKnight, Leslie L; Eyre, Ryan; Gooding, Margaret A; Davenport, Gary M; Shoveller, Anna Kate

    2015-01-01

    There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  5. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin

    PubMed Central

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  6. Transient Receptor Potential Vanilloid 1 Activation Enhances Gut Glucagon-Like Peptide-1 Secretion and Improves Glucose Homeostasis

    PubMed Central

    Wang, Peijian; Yan, Zhencheng; Zhong, Jian; Chen, Jing; Ni, Yinxing; Li, Li; Ma, Liqun; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is rapidly prevailing as a serious global health problem. Current treatments for T2DM may cause side effects, thus highlighting the need for newer and safer therapies. We tested the hypothesis that dietary capsaicin regulates glucose homeostasis through the activation of transient receptor potential vanilloid 1 (TRPV1)-mediated glucagon-like peptide-1 (GLP-1) secretion in the intestinal cells and tissues. Wild-type (WT) and TRPV1 knockout (TRPV1−/−) mice were fed dietary capsaicin for 24 weeks. TRPV1 was localized in secretin tumor cell-1 (STC-1) cells and ileum. Capsaicin stimulated GLP-1 secretion from STC-1 cells in a calcium-dependent manner through TRPV1 activation. Acute capsaicin administration by gastric gavage increased GLP-1 and insulin secretion in vivo in WT but not in TRPV1−/− mice. Furthermore, chronic dietary capsaicin not only improved glucose tolerance and increased insulin levels but also lowered daily blood glucose profiles and increased plasma GLP-1 levels in WT mice. However, this effect was absent in TRPV1−/− mice. In db/db mice, TRPV1 activation by dietary capsaicin ameliorated abnormal glucose homeostasis and increased GLP-1 levels in the plasma and ileum. The present findings suggest that TRPV1 activation–stimulated GLP-1 secretion could be a promising approach for the intervention of diabetes. PMID:22664955

  7. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons

    PubMed Central

    Yamamoto, Hiroshi; Lee, Charlotte E.; Marcus, Jacob N.; Williams, Todd D.; Overton, J. Michael; Lopez, Marisol E.; Hollenberg, Anthony N.; Baggio, Laurie; Saper, Clifford B.; Drucker, Daniel J.; Elmquist, Joel K.

    2002-01-01

    Glucagon-like peptide-1 (GLP-1) released from the gut functions as an incretin that stimulates insulin secretion. GLP-1 is also a brain neuropeptide that controls feeding and drinking behavior and gastric emptying and elicits neuroendocrine responses including development of conditioned taste aversion. Although GLP-1 receptor (GLP-1R) agonists are under development for the treatment of diabetes, GLP-1 administration may increase blood pressure and heart rate in vivo. We report here that centrally and peripherally administered GLP-1R agonists dose-dependently increased blood pressure and heart rate. GLP-1R activation induced c-fos expression in the adrenal medulla and neurons in autonomic control sites in the rat brain, including medullary catecholamine neurons providing input to sympathetic preganglionic neurons. Furthermore, GLP-1R agonists rapidly activated tyrosine hydroxylase transcription in brainstem catecholamine neurons. These findings suggest that the central GLP-1 system represents a regulator of sympathetic outflow leading to downstream activation of cardiovascular responses in vivo. PMID:12093887

  8. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh K; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety.

  9. Glucagon-Like Peptide-1 as Predictor of Body Mass Index and Dentate Gyrus Neurogenesis: Neuroplasticity and the Metabolic Milieu

    PubMed Central

    Coplan, Jeremy D.; Perera, Tarique D.; Fulton, Sasha L.; Banerji, Mary Ann; Dwork, Andrew J.; Kral, John G.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) regulates carbohydrate metabolism and promotes neurogenesis. We reported an inverse correlation between adult body mass and neurogenesis in nonhuman primates. Here we examine relationships between physiological levels of the neurotrophic incretin, plasma GLP-1 (pGLP-1), and body mass index (BMI) in adolescence to adult neurogenesis and associations with a diabesity diathesis and infant stress. Morphometry, fasting pGLP-1, insulin resistance, and lipid profiles were measured in early adolescence in 10 stressed and 4 unstressed male bonnet macaques. As adults, dentate gyrus neurogenesis was assessed by doublecortin staining. High pGLP-1, low body weight, and low central adiposity, yet peripheral insulin resistance and high plasma lipids, during adolescence were associated with relatively high adult neurogenesis rates. High pGLP-1 also predicted low body weight with, paradoxically, insulin resistance and high plasma lipids. No rearing effects for neurogenesis rates were observed. We replicated an inverse relationship between BMI and neurogenesis. Adolescent pGLP-1 directly predicted adult neurogenesis. Two divergent processes relevant to human diabesity emerge—high BMI, low pGLP-1, and low neurogenesis and low BMI, high pGLP-1, high neurogenesis, insulin resistance, and lipid elevations. Diabesity markers putatively reflect high nutrient levels necessary for neurogenesis at the expense of peripheral tissues. PMID:25506432

  10. The influence of restricted feeding on glucagon-like peptide-1 (GLP-1)-containing cells in the chicken small intestine.

    PubMed

    Monir, M M; Hiramatsu, K; Yamasaki, A; Nishimura, K; Watanabe, T

    2014-04-01

    The influence of restricted feeding on the distribution of glucagon-like peptide-1 (GLP-1)-containing endocrine cells in the chicken small intestine was investigated using immunohistochemical and morphometrical techniques. This study demonstrated that the restricted feeding had an influence on the activity of GLP-1-immunoreactive cells in the chicken small intestine. There were differences in the localization and the frequency of occurrence of GLP-1-immunoreactive cells in the small intestine between control and restricted groups, especially 25% feed supply group provided with 25% of the intake during the adapting period. GLP-1-immunoreactive cells in the control chickens were mainly located in epithelium from crypts to the lower part of intestinal villi. Those in restricted groups, however, tended to be located from crypts to the middle part of intestinal villi. The frequency of occurrence of GLP-1-immunoreactive cells was lowest in the control group, medium in 50% feed supply group and highest in 25% feed supply group at each intestinal region examined in this study, that is, increased with the advancement of restricting the amount of feed supply. These data show that the quantity of food intake is one of signals that have an influence on the secretion of GLP-1 from L cells in the chicken small intestine.

  11. Albiglutide, an albumin-based fusion of glucagon-like peptide 1 for the potential treatment of type 2 diabetes.

    PubMed

    Tomkin, Gerald H

    2009-10-01

    Albiglutide, under development by GlaxoSmithKline plc for the treatment of type 2 diabetes mellitus (T2DM), is an albumin-fusion peptide. The compound is a mimetic of glucagon-like peptide 1 (GLP-1), a hormone that decreases glucose levels, but has a short half-life because of degradation by dipeptidyl peptidase (DPP)-4. Albiglutide has a longer half-life as a result of its fusion with albumin and its resistance to degradation by DPP-4, caused by an amino acid substitution (Ala to Glu) at the DPP-4-sensitive hydrolysis site. Data from phase II clinical trials in patients with T2DM revealed that albiglutide was well tolerated and that the drug significantly reduced HbA1c levels compared with placebo. At the time of publication, phase III trials assessing albiglutide alone and in combination with other antidiabetic drugs were recruiting patients with T2DM. Albiglutide represents a promising new drug for the treatment of patients with T2DM; the results of long-term trials are awaited with interest.

  12. Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction.

    PubMed

    Delgado-Aros, S; Vella, A; Camilleri, M; Low, P A; Burton, D D; Thomforde, G M; Stephens, D

    2003-08-01

    Glucagon-like peptide-1 (GLP-1) increases gastric volume in humans possibly through the vagus nerve. Gastric volume response to feeding is preserved after vagal denervation in animals. We evaluated gastric volume responses to GLP-1 and placebo in seven diabetic patients with vagal neuropathy in a crossover study. We also compared gastric volume response to feeding in diabetes with that in healthy controls. We measured gastric volume using SPECT imaging. Data are median (interquartile range). In diabetic patients, GLP-1 did not increase gastric volume during fasting [5 mL (-3; 30)] relative to placebo [4 mL (-14; 50) P = 0.5], or postprandially [Delta postprandial minus fasting volume 469 mL (383; 563) with GLP-1 and 452 mL (400; 493) with placebo P = 0.3]. Change in gastric volume over fasting in diabetic patients on placebo was comparable to that of healthy controls [452 mL (400; 493)], P = 0.5. In contrast to effects in health, GLP-1 did not increase gastric volume in diabetics with vagal neuropathy, suggesting GLP-1's effects on stomach volume are vagally mediated. Normal gastric volume response to feeding in diabetics with vagal neuropathy suggests that other mechanisms compensate for vagal denervation.

  13. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  14. Metformin ameliorates lipotoxicity-induced mesangial cell apoptosis partly via upregulation of glucagon like peptide-1 receptor (GLP-1R).

    PubMed

    Kim, Dong-il; Park, Min-jung; Heo, Young-ran; Park, Soo-hyun

    2015-10-15

    Glucagon like peptide-1 receptor (GLP-1R), known to be expressed in pancreatic beta cells, is also expressed in glomerular mesangial cells and its agonist has protective effects in diabetic nephropathy. However, its regulatory mechanisms by lipotoxicity in glomerular mesangial cells are not understood. We found that palmitate-mediated lipotoxicity increased apoptosis and decreased GLP-1R expression in a rat mesangial cell line. Silencing GLP-1R expression also increased mesangial cell apoptosis. Interestingly, metformin, one of the biguanide drugs that has anti-diabetic effects, attenuated lipotoxicity-induced mesangial cell apoptosis and restored GLP-1R expression. Moreover, this treatment alleviated GLP-1R knockdown-induced mesangial cell apoptosis. To further evaluate in vivo, diabetic obese db/db mice were administered metformin. Glomerular GLP-1R expression was diminished in db/db mice, as compared with db/m control mice. However, this decrease significantly recovered on metformin administration. Together, these data provide novel evidence that lipotoxicity decreases the mesangial GLP-1R expression in intact cells and in vivo. The decrease induced mesangial cell apoptosis. Furthermore, we provided the evidence that metformin treatment has a renal protective effect partly via increased mesangial GLP-1R expression. Our data suggested that regulation of GLP-1R expression could be a promising approach to treat diabetic nephropathy and the novel mechanism of metformin mediated GLP-1R regulation.

  15. Clinical Application of Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus

    PubMed Central

    Cho, Young Min; Wideman, Rhonda D.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. It also slows gastric emptying, which contributes to decreased postprandial glycemic excursions. In the 1990s, chronic subcutaneous infusion of GLP-1 was found to lower blood glucose levels in patients with type 2 diabetes. However, GLP-1's very short half-life, arising from cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4) and glomerular filtration by the kidneys, presented challenges for clinical use. Hence, DPP-4 inhibitors were developed, as well as several GLP-1 analogs engineered to circumvent DPP-4-mediated breakdown and/or rapid renal elimination. Three categories of GLP-1 analogs, are being developed and/or are in clinical use: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different plasma half-lives, molecular size, and homology to native GLP-1, and consequently different characteristic effects on glucose metabolism. In this article, we review current clinical data derived from each class of GLP-1 analogs, and consider the clinical effects reported for each category in recent head to head comparison studies. Given the relatively brief clinical history of these compounds, we also highlight several important efficacy and safety issues which will require further investigation. PMID:24396690

  16. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway.

  17. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  18. Prediction of the effect on antihyperglycaemic action of sitagliptin by plasma active form glucagon-like peptide-1

    PubMed Central

    Kushiyama, Akifumi; Kikuchi, Takako; Tanaka, Kentaro; Tahara, Tazu; Takao, Toshiko; Onishi, Yukiko; Yoshida, Yoko; Kawazu, Shoji; Iwamoto, Yasuhiko

    2016-01-01

    AIM: To investigate whether active glucagon-like peptide-1 (GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus (GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c (HbA1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of HbA1c (7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of HbA1c (7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significant explanatory variable for an HbA1c decrease of ≥ 0.5%, and its odds ratio is 4.5 (1.40-17.6) (P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for HbA1c level before administration, patients’ medical history, medications, insulin secretion and insulin resistance. CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin. PMID:27326345

  19. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment

    PubMed Central

    Dong, Zhenhua; Chai, Weidong; Wang, Wenhui; Zhao, Lina; Fu, Zhuo; Cao, Wenhong

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser1177 and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes. PMID:23193054

  20. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  1. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs

    PubMed Central

    McKnight, Leslie L.; Eyre, Ryan; Gooding, Margaret A.; Davenport, Gary M.; Shoveller, Anna Kate

    2015-01-01

    Simple Summary There is increased interest in the use of nutraceuticals for weight management in companion animals. A nutraceutical can broadly be considered a food (or a part of) that provides a health benefit. Mannoheptulose (MH), a sugar found in avocados, is being investigated as a nutraceutical for dogs. In this study, dogs fed a diet containing MH had increased concentrations of blood biomarkers related to energy intake. In addition, dogs fed MH were less physically active than dogs fed a control diet. These findings suggest that dietary MH has the ability to alter energy intake and lower daily energy expenditure. Abstract There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  2. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control?

    PubMed Central

    Grieve, David J; Cassidy, Roslyn S; Green, Brian D

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. It has wide-ranging effects on glucose metabolism, including stimulation of insulin release, inhibition of glucagon secretion, reduction of gastric emptying and augmentation of satiety. Importantly, the insulinotropic actions of GLP-1 are uniquely dependent on ambient glucose concentrations, and it is this particular characteristic which has led to its recent emergence as a treatment for type 2 diabetes. Although the major physiological function of GLP-1 appears to be in relation to glycaemic control, there is growing evidence to suggest that it may also play an important role in the cardiovascular system. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature of both rodents and humans, and recent studies have demonstrated that GLP-1R agonists have wide-ranging cardiovascular actions, such as modulation of heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, it appears that these agents may also have beneficial effects in the setting of cardiovascular disease (CVD). For example, GLP-1 has been found to exert cardioprotective actions in experimental models of dilated cardiomyopathy, hypertensive heart failure and myocardial infarction (MI). Preliminary clinical studies also indicate that GLP-1 infusion may improve cardiac contractile function in chronic heart failure patients with and without diabetes, and in MI patients after successful angioplasty. This review will discuss the current understanding of GLP-1 biology, examine its emerging cardiovascular actions in both health and disease and explore the potential use of GLP-1 as a novel treatment for CVD. PMID:19681866

  3. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration.

    PubMed

    Duarte, A I; Candeias, E; Correia, S C; Santos, R X; Carvalho, C; Cardoso, S; Plácido, A; Santos, M S; Oliveira, C R; Moreira, P I

    2013-04-01

    According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.

  4. Endogenous glucagon-like peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in rats.

    PubMed

    McKay, Naomi J; Galante, Daniela L; Daniels, Derek

    2014-12-01

    Glucagon-like peptide-1 (GLP-1) is produced in the ileum and the nucleus of the solitary tract. It is well known that GLP-1 controls food intake, but there is a growing literature indicating that GLP-1 also is involved in fluid intake. It is not known, however, if the observed effects are pharmacological or if endogenous GLP-1 and its receptor contribute to physiological fluid intake control. Accordingly, we blocked endogenous GLP-1 by application of a receptor antagonist and measured subsequent drinking. Furthermore, we measured changes in GLP-1-associated gene expression after water intake, and compared the effects of fluid intake to those caused by food intake. Rats injected with the antagonist exendin-9 (Ex-9) drank more fluid in response to either subcutaneous hypertonic saline or water deprivation with partial rehydration than did vehicle-treated rats. Analysis of licking behavior showed that Ex-9 increased fluid intake by increasing the number of licking bursts, without having an effect on the number of licks per burst, suggesting that endogenous GLP-1 suppresses fluid intake by influencing satiety. Subsequent experiments showed that water intake had a selective effect on central GLP-1-related gene expression, unlike food intake, which affected both central and peripheral GLP-1. Although water and food intakes both affected central GLP-1-relevant gene expression, there were notable differences in the timing of the effect. These results show a novel role of the endogenous GLP-1 system in fluid intake, and indicate that elements of the GLP-1 system can be engaged separately by different forms of ingestive behavior.

  5. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes

    PubMed Central

    Selis, Fabio; Schrepfer, Rodolfo; Sanna, Riccardo; Scaramuzza, Silvia; Tonon, Giancarlo; Dedoni, Simona; Onali, Pierluigi; Orsini, Gaetano; Genovese, Stefano

    2012-01-01

    Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q23-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat β-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q23-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q23-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients. PMID:25755995

  6. Novel Glucagon-Like Peptide-1 Analog Delivered Orally Reduces Postprandial Glucose Excursions in Porcine and Canine Models

    PubMed Central

    Eldor, Roy; Kidron, Miriam; Greenberg-Shushlav, Yael; Arbit, Ehud

    2010-01-01

    Background Glucagon-like peptide-1 (GLP-1) and its analogs are associated with a gamut of physiological processes, including induction of insulin release, support of normoglycemia, β-cell function preservation, improved lipid profiles, and increased insulin sensitivity. Thus, GLP-1 harbors significant therapeutic potential for regulating type 2 diabetes mellitus, where its physiological impact is markedly impaired. To date, GLP-1 analogs are only available as injectable dosage forms, and its oral delivery is expected to provide physiological portal/peripheral concentration ratios while fostering patient compliance and adherence. Methods Healthy, fasting, enterically cannulated pigs and beagle canines were administered a single dose of the exenatide-based ORMD-0901 formulation 30 min before oral glucose challenges. Blood samples were collected every 15 min for evaluation of ORMD-0901 safety and efficacy in regulating postchallenge glucose excursions. Results Enterically delivered ORMD-0901 was well tolerated by all animals. ORMD-0901 formulations RG3 and AG2 led to reduced glucose excursions in pigs when delivered prior to a 5 g/kg glucose challenge, where area under the curve (AUC)0–120 values were up to 43% lower than in control sessions. All canines challenged with a glucose load with no prior exposure to exenatide, demonstrated higher AUC0–150 values than in their exenatide-treated sessions. Subcutaneous exenatide delivery amounted to a 51% reduction in mean glucose AUC0–150, while formulations AG4 and AG3 prompted 43% and 29% reductions, respectively. Conclusions When delivered enterically, GLP-1 (ORMD-0901) is absorbed from the canine and porcine gastrointestinal tracts and retains its biological activity. Further development of this drug class in an oral dosage form is expected to enhance diabetes control and patient compliance. PMID:21129350

  7. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. PMID:26968794

  8. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed*

    PubMed Central

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  9. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

    PubMed Central

    Salcedo, Isidro; Tweedie, David; Li, Yazhou; Greig, Nigel H

    2012-01-01

    Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders. PMID:22519295

  10. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms.

    PubMed

    Lotfy, Mohamed; Singh, Jaipaul; Rashed, Hameed; Tariq, Saeed; Zilahi, Erika; Adeghate, Ernest

    2014-11-01

    Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P < 0.05) reduction in body weight gain and blood glucose level. GLP-1 (10(-12)-10(-6) M) induced significant (P < 0.01) dose-dependent increases in insulin release from the pancreas of normal and diabetic rats compared to basal. Diabetes-induced abnormal liver (aspartate aminotransferase and alanine aminotransferase) and kidney (blood urea nitrogen and uric acid) parameters were corrected in GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P < 0.05) elevation in the expression of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P < 0.05) increased the number of insulin-, glutathione reductase- and catalase-immunoreactive islet cells. The results of this study show that GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.

  11. 64Cu Labeled Sarcophagine Exendin-4 for MicroPET Imaging of Glucagon like Peptide-1 Receptor Expression

    PubMed Central

    Wu, Zhanhong; Liu, Shuanglong; Nair, Indu; Omori, Keiko; Scott, Stephen; Todorov, Ivan; Shively, John E.; Conti, Peter S.; Li, Zibo; Kandeel, Fouad

    2014-01-01

    The Glucagon-like peptide 1 receptor (GLP-1R) has become an important target for imaging due to its elevated expression profile in pancreatic islets, insulinoma, and the cardiovascular system. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), several studies have conjugated different chelators to a more stable analog of GLP-1 (such as exendin-4) as PET or SPECT imaging agents with various advantages and disadvantages. Based on the recently developed Sarcophagin chelator, here, we describe the construction of GLP-1R targeted PET probes containing monomeric and dimeric exendin-4 subunit. The in vitro binding affinity of BarMalSar-exendin-4 and Mal2Sar-(exendin-4)2 was evaluated in INS-1 cells, which over-express GLP-1R. Mal2Sar-(exendin-4)2 demonstrated around 3 times higher binding affinity compared with BaMalSar-exendin-4. After 64Cu labeling, microPET imaging of 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 were performed on subcutaneous INS-1 tumors, which were clearly visualized with both probes. The tumor uptake of 64Cu-Mal2Sar-(exendin-4)2 was significantly higher than that of 64Cu-BaMaSarl-exendin-4, which could be caused by polyvalency effect. The receptor specificity of these probes was confirmed by effective blocking of the uptake in both tumor and normal positive organs with 20-fold excess of unlabeled exendin-4. In conclusion, sarcophagine cage conjugated exendin-4 demonstrated persistent and specific uptake in INS-1 insulinoma model. Dimerization of exendin-4 could successfully lead to increased tumor uptake in vivo. Both 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 hold a great potential for GLP-1R targeted imaging. PMID:24955138

  12. Dipeptidylpeptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) receptor agonists: yes.

    PubMed

    Scheen, André J

    2012-03-01

    The pharmacological treatment of type 2 diabetes (T2DM) is becoming increasingly complex, especially since the availability of incretin-based therapies. Compared with other glucose-lowering strategies, these novel drugs offer some advantages such as an absence of weight gain and a negligible risk of hypoglycaemia and, possibly, better cardiovascular and β-cell protection. The physician has now multiple choices to manage his/her patient after secondary failure of metformin, and the question whether it is preferable to add an oral dipeptidylpeptidase-4 (DPP-4) inhibitor (gliptin) or an injectable glucagon-like peptide-1 (GLP-1) receptor agonist will emerge. Obviously, DPP-4 inhibitors offer several advantages compared with GLP-1 receptor agonists, especially regarding easiness of use, tolerance profile and cost. However, because they can only increase endogenous GLP-1 concentrations to physiological (rather than pharmacological) levels, they are less potent to improve glucose control, promote weight reduction ("weight neutrality") and reduce blood pressure compared to GLP-1 receptor agonists. Of note, none of the two classes have proven long-term safety and positive impact on diabetic complications yet. The role of DPP-4 inhibitors and GLP-1 receptor agonists in the therapeutic armamentarium of T2DM is rapidly evolving, but their respective potential strengths and weaknesses should be better defined in long-term head-to-head comparative controlled trials. Instead of trying to answer the question whether DPP-4 inhibitors are favourable to GLP-1 receptor agonists (or vice versa), it is probably more clinically relevant to look at which T2DM patient will benefit more from one or the other therapy considering all his/her individual clinical characteristics ("personalized medicine").

  13. Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats.

    PubMed

    Hira, Tohru; Ikee, Asuka; Kishimoto, Yuka; Kanahori, Sumiko; Hara, Hiroshi

    2015-07-14

    Glucagon-like peptide-1 (GLP-1), which is produced and released from enteroendocrine L cells, plays pivotal roles in postprandial glycaemia. The ingestion of resistant maltodextrin (RMD), a water-soluble non-digestible saccharide, improves the glycaemic response. In the present study, we examined whether the continuous feeding of RMD to rats affected GLP-1 levels and glycaemic control. Male Sprague-Dawley rats (6 weeks of age) were fed an American Institute of Nutrition (AIN)-93G-based diet containing either cellulose (5 %) as a control, RMD (2.5 or 5 %), or fructo-oligosaccharides (FOS, 2.5 or 5 %) for 7 weeks. During the test period, an intraperitoneal glucose tolerance test (IPGTT) was performed after 6 weeks. Fasting GLP-1 levels were significantly higher in the 5 % RMD group than in the control group after 6 weeks. The IPGTT results showed that the glycaemic response was lower in the 5 % RMD group than in the control group. Lower caecal pH, higher caecal tissue and content weights were observed in the RMD and FOS groups. Proglucagon mRNA levels were increased in the caecum and colon of both RMD and FOS groups, whereas caecal GLP-1 content was increased in the 5 % RMD group. In addition, a 1 h RMD exposure induced GLP-1 secretion in an enteroendocrine L-cell model, and single oral administration of RMD increased plasma GLP-1 levels in conscious rats. The present study demonstrates that continuous ingestion of RMD increased GLP-1 secretion and production in normal rats, which could be stimulated by its direct and indirect (enhanced gut fermentation) effects on GLP-1-producing cells, and contribute to improving glucose tolerance.

  14. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    PubMed

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  15. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  16. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation.

  17. Molecular Basis of Glucagon-like Peptide 1 Docking to Its Intact Receptor Studied with Carboxyl-terminal Photolabile Probes*

    PubMed Central

    Chen, Quan; Pinon, Delia I.; Miller, Laurence J.; Dong, Maoqing

    2009-01-01

    The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg131–Lys136 segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu133 by radiochemical sequencing. Similarly, nearby residue Glu125 within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members. PMID:19815559

  18. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus

    PubMed Central

    McCarty, Delilah J.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) has been evaluated for use in the treatment of type 2 diabetes mellitus (T2DM) due to its role in glucose regulation. Four GLP-1 receptor agonists (RAs) are currently indicated for T2DM in the USA. Exenatide and liraglutide are short-acting and require twice-daily and daily dosing, respectively. Two longer acting agents, exenatide long-acting release (LAR) and albiglutide, were formulated to allow for once-weekly dosing. All four GLP-1 RAs have demonstrated reductions in hemoglobin A1c, fasting blood glucose, and body weight both as monotherapy and in combination with first- and second-line diabetes agents including metformin, sulfonylureas, thiazolidinediones, and insulin. Greater glycemic control was seen with liraglutide compared with the other GLP-1 treatment options; however, the two long-acting agents were superior to exenatide twice daily. All agents were well tolerated with most adverse events being mild or moderate in nature. The most common adverse event was transient nausea which typically resolved 4–8 weeks after treatment initiation. Long-acting agents had lower rates of nausea but an increased incidence of injection site reactions. Trials have suggested GLP-1 RAs may improve cardiovascular risk factors including blood pressure, lipid parameters and inflammatory markers. Future trials are needed to confirm the clinical outcomes of these agents. Overall, GLP-1 RAs will provide benefit for patients with T2DM intolerable to or not reaching glycemic goals with first-line agents, especially in patients in need of weight loss. PMID:25678952

  19. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  20. β-Cell Glucagon-Like Peptide-1 Receptor Contributes to Improved Glucose Tolerance After Vertical Sleeve Gastrectomy.

    PubMed

    Garibay, Darline; McGavigan, Anne K; Lee, Seon A; Ficorilli, James V; Cox, Amy L; Michael, M Dodson; Sloop, Kyle W; Cummings, Bethany P

    2016-09-01

    Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible for this remain incompletely defined. Glucagon-like peptide-1 (GLP-1) is a gut hormone that contributes to the maintenance of glucose homeostasis and is elevated after VSG. VSG-induced increases in postprandial GLP-1 secretion have been proposed to contribute to the glucoregulatory benefits of VSG; however, previous work has been equivocal. In order to test the contribution of enhanced β-cell GLP-1 receptor (GLP-1R) signaling we used a β-cell-specific tamoxifen-inducible GLP-1R knockout mouse model. Male β-cell-specific Glp-1r(β-cell+/+) wild type (WT) and Glp-1r(β-cell-/-) knockout (KO) littermates were placed on a high-fat diet for 6 weeks and then switched to high-fat diet supplemented with tamoxifen for the rest of the study. Mice underwent sham or VSG surgery after 2 weeks of tamoxifen diet and were fed ad libitum postoperatively. Mice underwent oral glucose tolerance testing at 3 weeks and were euthanized at 6 weeks after surgery. VSG reduced body weight and food intake independent of genotype. However, glucose tolerance was only improved in VSG WT compared with sham WT, whereas VSG KO had impaired glucose tolerance relative to VSG WT. Augmentation of glucose-stimulated insulin secretion during the oral glucose tolerance test was blunted in VSG KO compared with VSG WT. Therefore, our data suggest that enhanced β-cell GLP-1R signaling contributes to improved glucose regulation after VSG by promoting increased glucose-stimulated insulin secretion. PMID:27501183

  1. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  2. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice

    PubMed Central

    Kim, Ki-Suk; Jung Yang, Hea; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Jeong, Hyeon-Soo; Kim, Yoomi; Seok Ahn, Kwang; Na, Yun-Cheol; Jang, Hyeung-Jin

    2015-01-01

    Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model. PMID:26675132

  3. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice.

    PubMed

    Kim, Ki-Suk; Jung Yang, Hea; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Jeong, Hyeon-Soo; Kim, Yoomi; Ahn, Kwang Seok; Na, Yun-Cheol; Jang, Hyeung-Jin

    2015-01-01

    Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust(-/-) mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model. PMID:26675132

  4. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men.

    PubMed

    Asmar, Ali; Simonsen, Lene; Asmar, Meena; Madsbad, Sten; Holst, Jens J; Frandsen, Erik; Moro, Cedric; Jonassen, Thomas; Bülow, Jens

    2015-04-15

    The present experiments were performed to elucidate the acute effects of intravenous infusion of glucagon-like peptide (GLP)-1 on central and renal hemodynamics in healthy men. Seven healthy middle-aged men were examined on two different occasions in random order. During a 3-h infusion of either GLP-1 (1.5 pmol·kg⁻¹·min⁻¹) or saline, cardiac output was estimated noninvasively, and intraarterial blood pressure and heart rate were measured continuously. Renal plasma flow, glomerular filtration rate, and uptake/release of hormones and ions were measured by Fick's Principle after catheterization of a renal vein. Subjects remained supine during the experiments. During GLP-1 infusion, both systolic blood pressure and arterial pulse pressure increased by 5±1 mmHg (P=0.015 and P=0.002, respectively). Heart rate increased by 5±1 beats/min (P=0.005), and cardiac output increased by 18% (P=0.016). Renal plasma flow and glomerular filtration rate as well as the clearance of Na⁺ and Li⁺ were not affected by GLP-1. However, plasma renin activity decreased (P=0.037), whereas plasma levels of atrial natriuretic peptide were unaffected. Renal extraction of intact GLP-1 was 43% (P<0.001), whereas 60% of the primary metabolite GLP-1 9-36amide was extracted (P=0.017). In humans, an acute intravenous administration of GLP-1 leads to increased cardiac output due to a simultaneous increase in stroke volume and heart rate, whereas no effect on renal hemodynamics could be demonstrated despite significant extraction of both the intact hormone and its primary metabolite. PMID:25670826

  5. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice.

    PubMed

    Selwyn, Felcy Pavithra; Csanaky, Iván L; Zhang, Youcai; Klaassen, Curtis D

    2015-10-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein-coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non-12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid-binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non-12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1.

  6. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice

    PubMed Central

    Selwyn, Felcy Pavithra; Csanaky, Iván L.; Zhang, Youcai

    2015-01-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein–coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non–12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid–binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non–12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1. PMID:26199423

  7. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  8. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease

    PubMed Central

    Harkavyi, Alexander; Abuirmeileh, Amjad; Lever, Rebecca; Kingsbury, Ann E; Biggs, Christopher S; Whitton, Peter S

    2008-01-01

    Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in

  9. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize.

    PubMed

    Bamford, N J; Baskerville, C L; Harris, P A; Bailey, S R

    2015-07-01

    The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the

  10. Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency.

    PubMed

    Sebokova, Elena; Christ, Andreas D; Wang, Haiyan; Sewing, Sabine; Dong, Jesse Z; Taylor, John; Cawthorne, Michael A; Culler, Michael D

    2010-06-01

    Taspoglutide is a novel analog of human glucagon-like peptide-1 [hGLP-1(7-36)NH2] in clinical development for the treatment of type 2 diabetes. Taspoglutide contains alpha-aminoisobutyric acid substitutions replacing Ala(8) and Gly(35) of hGLP-1(7-36)NH2. The binding affinity [radioligand binding assay using [(125)I]hGLP-1(7-36)NH2], potency (cAMP production in CHO cells stably overexpressing hGLP-1 receptor), and in vitro plasma stability of taspoglutide compared with hGLP-1(7-36)NH2 have been evaluated. Effects on basal and glucose-stimulated insulin secretion were determined in vitro in INS-1E cells and in vivo in normal rats. Taspoglutide has comparable affinity (affinity constant 1.1 +/- 0.2 nm) to the natural ligand (affinity constant 1.5 +/- 0.3 nm) for the hGLP-1 receptor and exhibits comparable potency in stimulating cAMP production (EC(50) Taspo 0.06 nm and EC(50) hGLP-1(7-36)NH2 0.08 nm). Taspoglutide exerts insulinotropic action in vitro and in vivo and retains the glucoincretin property of hGLP-1(7-36)NH2. Stimulation of insulin secretion is concentration dependent and evident in the presence of high-glucose concentrations (16.7 mm) with a taspoglutide concentration as low as 0.001 nm. Taspoglutide is fully resistant to dipeptidyl peptidase-4 cleavage (during 1 h incubation at room temperature with purified enzyme) and has an extended in vitro plasma half-life relative to hGLP-1(7-36)NH2 (9.8 h vs. 50 min). In vitro, taspoglutide does not inhibit dipeptidyl peptidase-4 activity. This study provides the biochemical and pharmacological basis for the sustained plasma drug levels and prolonged therapeutic activity seen in early clinical trials of taspoglutide. Excellent stability and potency with substantial glucoincretin effects position taspoglutide as a promising new agent for treatment of type 2 diabetes.

  11. Exploration of structure-activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis.

    PubMed

    Haque, Tasir S; Martinez, Rogelio L; Lee, Ving G; Riexinger, Douglas G; Lei, Ming; Feng, Ming; Koplowitz, Barry; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Huang, Christine; Ewing, William R; Krupinski, John

    2010-07-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.

  12. Identification of potent 11mer glucagon-like peptide-1 receptor agonist peptides with novel C-terminal amino acids: Homohomophenylalanine analogs.

    PubMed

    Haque, Tasir S; Lee, Ving G; Riexinger, Douglas; Lei, Ming; Malmstrom, Sarah; Xin, Li; Han, Songping; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Ewing, William R; Krupinski, John

    2010-05-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.

  13. The putative signal peptide of glucagon-like peptide-1 receptor is not required for receptor synthesis but promotes receptor expression

    PubMed Central

    Ge, Yunjun; Yang, Dehua; Dai, Antao; Zhou, Caihong; Zhu, Yue; Wang, Ming-Wei

    2014-01-01

    GLP-1R (glucagon-like peptide-1 receptor) mediates the ‘incretin effect’ and many other anti-diabetic actions of its cognate ligand, GLP-1 (glucagon-like peptide-1). It belongs to the class B family of GPCRs (G protein-coupled receptors) and possesses an N-terminal putative SP (signal peptide). It has been reported that this sequence is required for the synthesis of GLP-1R and is cleaved after receptor synthesis. In the present study, we conducted an in-depth exploration towards the role of the putative SP in GLP-1R synthesis. A mutant GLP-1R without this sequence was expressed in HEK293 cells (human embryonic kidney 293 cells) and displayed normal functionality with respect to ligand binding and activation of adenylate cyclase. Thus the putative SP does not seem to be required for receptor synthesis. Immunoblotting analysis shows that the amount of GLP-1R synthesized in HEK293 cells is low when the putative SP is absent. This indicates that the role of the sequence is to promote the expression of GLP-1R. Furthermore, epitopes tagged at the N-terminal of GLP-1R are detectable by immunofluorescence and immunoblotting in our experiments. In conclusion, the present study points to different roles of SP in GLP-1R expression which broadens our understanding of the functionality of this putative SP of GLP-1R and possibly other Class B GPCRs. PMID:25330813

  14. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  15. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone.

  16. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue.

  17. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone. PMID:27311248

  18. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. PMID:23332622

  19. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  20. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy.

    PubMed

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-01

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic beta cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  1. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes.

    PubMed

    Graaf, Chris de; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M; Miller, Laurence J; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M; Yang, Dehua; Brown, Alastair J H; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-10-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  2. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  3. Differential effects of glucagon-like peptide-1 on microvascular recruitment and glucose metabolism in short- and long-term insulin resistance

    PubMed Central

    Sjøberg, Kim A; Rattigan, Stephen; Jeppesen, Jacob F; Lundsgaard, Anne-Marie; Holst, Jens J; Kiens, Bente

    2015-01-01

    Abstract Acute infusion of glucagon-like peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. A high fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether this could be reversed by GLP-1. Using contrast-enhanced ultrasound, microvascular recruitment was assessed by continuous real-time imaging of gas-filled microbubbles in the microcirculation after acute (5 days) and prolonged (8 weeks) high fat diet (HF)-induced insulin resistance in rats. A euglycaemic hyperinsulinaemic clamp (3 mU min−1 kg−1), with or without a co-infusion of GLP-1 (100 pmol l−1), was performed in anaesthetized rats. Consumption of HF attenuated the insulin-mediated MVR in both 5 day and 8 week HF interventions which was associated with a 50% reduction in insulin-mediated glucose uptake compared to controls. Acute administration of GLP-1 restored the normal microvascular response by increasing the MVR after both 5 days and 8 weeks of HF intervention (P < 0.05). This effect of GLP-1 was associated with a restoration of both whole body insulin sensitivity and increased insulin-mediated glucose uptake in skeletal muscle by 90% (P < 0.05) after 5 days of HF but not after 8 weeks of HF. The present study demonstrates that GLP-1 increases MVR in rat skeletal muscle and can reverse early stages of high fat diet-induced insulin resistance in vivo. Key points Acute glucagon-like peptide-1 (GLP-1) infusion reversed the high fat diet-induced microvascular insulin resistance that occurred after both 5 days and 8 weeks of a high fat diet intervention. When GLP-1 was co-infused with insulin it had overt effects on whole body insulin sensitivity as well as insulin-mediated skeletal muscle glucose uptake after 5 days of a high fat diet, but not after 8 weeks of high fat diet intervention. Acute GLP-1 infusion did not have an additive

  4. Evaluating preferences for profiles of glucagon-like peptide-1 receptor agonists among injection-naive type 2 diabetes patients in Japan

    PubMed Central

    Gelhorn, Heather L; Bacci, Elizabeth D; Poon, Jiat Ling; Boye, Kristina S; Suzuki, Shuichi; Babineaux, Steven M

    2016-01-01

    Objective The objective of this study was to use a discrete choice experiment (DCE) to estimate patients’ preferences for the treatment features, safety, and efficacy of two specific glucagon-like peptide-1 receptor agonists, dulaglutide and liraglutide, among patients with type 2 diabetes mellitus (T2DM) in Japan. Methods In Japan, patients with self-reported T2DM and naive to treatment with self-injectable medications were administered a DCE through an in-person interview. The DCE examined the following six attributes of T2DM treatment, each described by two levels: “dosing frequency”, “hemoglobin A1c change”, “weight change”, “type of delivery system”, “frequency of nausea”, and “frequency of hypoglycemia”. Part-worth utilities were estimated using logit models and were used to calculate the relative importance (RI) of each attribute. A chi-square test was used to determine the differences in preferences for the dulaglutide versus liraglutide profiles. Results The final evaluable sample consisted of 182 participants (mean age: 58.9 [standard deviation =10.0] years; 64.3% male; mean body mass index: 26.1 [standard deviation =5.0] kg/m2). The RI values for the attributes in rank order were dosing frequency (44.1%), type of delivery system (26.3%), frequency of nausea (15.1%), frequency of hypoglycemia (7.4%), weight change (6.2%), and hemoglobin A1c change (1.0%). Significantly more participants preferred the dulaglutide profile (94.5%) compared to the liraglutide profile (5.5%; P<0.0001). Conclusion This study elicited the preferences of Japanese T2DM patients for attributes and levels representing the actual characteristics of two existing glucagon-like peptide-1 receptor agonists. In this comparison, dosing frequency and type of delivery system were the two most important characteristics, accounting for >70% of the RI. These findings are similar to those of a previous UK study, providing information about patients’ preferences that

  5. Involvement of glucagon-like peptide 1 in the glucose homeostasis regulation in obese and pituitary-dependent hyperadrenocorticism affected dogs.

    PubMed

    Miceli, D D; Cabrera Blatter, M F; Gallelli, M F; Pignataro, O P; Castillo, V A

    2014-10-01

    The incretin glucagon-like peptide 1 (GLP-1) enhances insulin secretion. The aim of this study was to assess GLP-1, glucose and insulin concentrations, Homeostatic Model Assessment (HOMA insulin sensitivity and HOMA β-cell function) in dogs with pituitary-dependent hyperadrenocorticism (PDH), and compare these values with those in normal and obese dogs. The Oral Glucose Tolerance Test was performed and the glucose, GLP-1 and insulin concentrations were evaluated at baseline, and after 15, 30, 60 and 120 minutes. Both basal concentration and those corresponding to the subsequent times, for glucose, GLP-1 and insulin, were statistically elevated in PDH dogs compared to the other groups. Insulin followed a similar behaviour together with variations of GLP-1. HOMA insulin sensitivity was statistically decreased and HOMA β-cell function increased in dogs with PDH. The higher concentrations of GLP-1 in PDH could play an important role in the impairment of pancreatic β-cells thus predisposing to diabetes mellitus.

  6. Changes in the concentrations of glucagon-like peptide-1(7-36)amide and gastric inhibitory polypeptide during the lactation cycle in goats.

    PubMed

    Faulkner, A; Martin, P A

    1998-08-01

    Plasma concentrations of glucagon-like peptide-1(7-36)amide (GLP) and gastric inhibitory polypeptide (GIP) were determined at fortnightly intervals for over a year throughout the pregnancy-lactation cycle of goats. Both GIP and GLP concentrations were elevated during lactation and fell rapidly when milk secretion was terminated. At the onset of lactation GLP concentrations rose rapidly whereas GIP concentrations showed a delayed response. GLP concentrations remained high throughout lactation but those of GIP declined linearly as milk yields fell. Serum insulin concentrations correlated positively with plasma glucose concentrations but not with either GIP or GLP concentrations. Negative correlations were found between serum insulin concentrations and milk yield and plasma non-esterified fatty acid concentrations. The results are consistent with plasma GIP and GLP concentrations being determined by other factors in addition to nutrient intake and absorption. Changes in GIP concentrations mirrored reported changes in the hypertrophy and atrophy of the intestine in ruminants while GLP concentrations may be more dependent on the neural and endocrine factors associated with lactation. The elevated concentrations of both peptides indicated a specific role in lactation independent of their normal anabolic and insulinotropic effects.

  7. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects.

    PubMed

    Lin, J; Hodge, R J; O'Connor-Semmes, R L; Nunez, D J

    2015-10-01

    We investigated the effects of a long-duration glucagon-like peptide-1 (GLP-1) receptor agonist, GSK2374697, on postprandial endogenous total GLP-1 and peptide YY (PYY). Two cohorts of healthy subjects, one normal/overweight and one obese, were randomized to receive GSK2374697 2 mg (n = 8 each) or placebo (n = 4 and n = 2) subcutaneously on days 1, 4 and 7. Samples for plasma endogenous GLP-1 and PYY were collected after breakfast on days -1 and 12. Weighted mean area under the curve (0-4 h) of total GLP-1 and PYY in treated subjects was reduced compared with placebo. The least squares mean difference for change from baseline was -1.24 pmol/l [95% confidence interval (CI) -2.33, -0.16] and -4.47 pmol/l (95% CI -8.74, -0.20) for total GLP-1 and PYY, respectively, in normal/overweight subjects (p < 0.05 for both), and -1.56 (95% CI -2.95, -0.16) and -3.02 (95% CI -8.58, 2.55), respectively, in obese subjects (p < 0.05 for GLP-1). In healthy subjects, GSK2374697 reduced postprandial total GLP-1 and PYY levels, suggesting feedback suppression of enteroendocrine L-cell secretion of these peptides.

  8. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  9. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide.

    PubMed

    Milicevic, Z; Anglin, G; Harper, K; Konrad, R J; Skrivanek, Z; Glaesner, W; Karanikas, C A; Mace, K

    2016-05-01

    Therapeutic administration of peptides may result in anti-drug antibody (ADA) formation, hypersensitivity adverse events (AEs) and reduced efficacy. As a large peptide, the immunogenicity of once-weekly glucagon-like peptide-1 (GLP-1) receptor agonist dulaglutide is of considerable interest. The present study assessed the incidence of treatment-emergent dulaglutide ADAs, hypersensitivity AEs, injection site reactions (ISRs), and glycaemic control in ADA-positive patients in nine phase II and phase III trials (dulaglutide, N = 4006; exenatide, N = 276; non-GLP-1 comparators, N = 1141). Treatment-emergent dulaglutide ADAs were detected using a solid-phase extraction acid dissociation binding assay. Neutralizing ADAs were detected using a cell-based assay derived from human endothelial kidney cells (HEK293). A total of 64 dulaglutide-treated patients (1.6% of the population) tested ADA-positive versus eight (0.7%) from the non-GLP-1 comparator group. Of these 64 patients, 34 (0.9%) had dulaglutide-neutralizing ADAs, 36 (0.9%) had native-sequence GLP-1 (nsGLP-1) cross-reactive ADAs and four (0.1%) had nsGLP-1 neutralization ADAs. The incidence of hypersensitivity AEs and ISRs was similar in the dulaglutide versus placebo groups. No dulaglutide ADA-positive patient reported hypersensitivity AEs. Because of the low incidence of ADAs, it was not possible to establish their effect on glycaemic control. PMID:26847401

  10. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed.

    PubMed

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-08-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  11. Application of Adaptive Design Methodology in Development of a Long-Acting Glucagon-Like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

    PubMed Central

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda

    2012-01-01

    Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775

  12. Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7-36)amide on rat liver and adipose tissue.

    PubMed

    Márquez, L; Trapote, M A; Luque, M A; Valverde, I; Villanueva-Peñacarrillo, M L

    1998-03-01

    Insulin-like effects of glucagon-like peptide-1(7-36)amide (GLP-1) in rat liver, skeletal muscle and fat, and also the presence of GLP-1 receptors in these extrapancreatic tissues, have been documented. In skeletal muscle and liver, the action of GLP-1 is not associated with an activation of adenylate cyclase, and in cultured murine myocytes and hepatoma cell lines, it was found that GLP-1 provokes the generation of inositolphosphoglycan molecules (IPGs), which are considered second messengers of insulin action. In the present work, we document in isolated normal rat adipocytes and hepatocytes that GLP-1 exerts a rapid decrease of the radiolabelled glycosylphosphatidylinositols (GPIs)--precursors of IPGs--in the same manner as insulin, indicating their hydrolysis and the immediate short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1 actions in adipose tissue and liver, as well as in skeletal muscle, through GLP-1 receptors which are, at least functionally, different from that of the pancreatic B-cell.

  13. Presence and characterization of glucagon-like peptide-1(7-36) amide receptors in solubilized membranes of rat adipose tissue.

    PubMed

    Valverde, I; Mérida, E; Delgado, E; Trapote, M A; Villanueva-Peñacarrillo, M L

    1993-01-01

    Specific binding of [125I]glucagon-like peptide-1(7-36)amide ([125I]GLP-1(7-36)amide) to solubilized rat adipose tissue membranes was found to be dependent on temperature, time, and membrane protein concentration and readily dissociated. GLP-1(1-36)amide, GLP-2, or glucagon (10(-6) M) did not compete with [125I]GLP-1(7-36)amide binding. Half-maximal binding was achieved with 8 x 10(-10) M unlabeled GLP-1(7-36)amide, and the Scatchard plot revealed the presence of high and low affinity binding sites with Kd values of approximately 0.6 and 20 nM, respectively. The binding capacity of [125I]GLP-1(7-36)amide was about 3 times higher than that of [125I]glucagon, while the high affinity Kd and the half-maximal binding of the two peptides were similar. The presence and abundance of GLP-1(7-36)amide receptors in fat tissue together with the previous findings that the peptide stimulates glycerol and cAMP production in rat adipocytes and stimulates fatty acid synthesis in explants of rat adipose tissue open the possibility that this insulinotropic intestinal peptide may also be involved in the regulation of lipid metabolism in health and disease.

  14. The cytoplasmic domain close to the transmembrane region of the glucagon-like peptide-1 receptor contains sequence elements that regulate agonist-dependent internalisation.

    PubMed

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-07-01

    In order to gain better insight into the molecular events involved in the signal transduction generated through glucagon-like peptide-1 (GLP-1) receptors, we tested the effect of deletions and point mutations within the cytoplasmic tail of this receptor with a view to establishing relationships between signal transduction desensitisation and receptor internalisation. Wild-type and truncated (deletion of the last 27 amino acids (GLPR 435R) and deletion of 44 amino acids (GLPR 418R)) GLP-1 receptors bound the agonist with similar affinity. Deletion of the last 27 amino acids decreased the internalisation rate by 78%, while deletion of 44 amino acids containing all the phosphorylation sites hitherto described in this receptor decreased the internalisation rate by only 47%. Binding of the ligand to both receptors stimulated adenylyl cyclase. In contrast, deletion of the region containing amino acids 419 to 435 (GLPR 419delta435) increased the internalisation rate by 268%, and the replacement of EVQ(408-410) by alanine (GLPR A(408-410)) increased this process to 296%. In both receptors, the efficacy in stimulating adenylate cyclase was decreased. All the receptors studied were internalised by coated pits, except for the receptor with a deletion of the last 44 amino acids, which also had a faster resensitisation rate. Our findings indicate that the neighbouring trans-membrane domain of the carboxyl-terminal tail of the GLP-1 receptor contains sequence elements that regulate agonist-dependent internalisation and transmembrane signalling.

  15. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: Understanding How Data Can Inform Clinical Practice in Korea

    PubMed Central

    Chon, Suk; Ahn, Kyu Jeong; Jeong, In-Kyung; Kim, Byung-Joon; Kang, Jun Goo

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) reduce glycosylated hemoglobin (HbA1c, 0.5% to 1.0%), and are associated with moderate weight loss and a relatively low risk of hypoglycemia. There are differences between Asian and non-Asian populations. We reviewed available data on GLP-1RAs, focusing on Korean patients, to better understand their risk/benefit profile and help inform local clinical practice. Control of postprandial hyperglycemia is important in Asians in whom the prevalence of post-challenge hyperglycemia is higher (vs. non-Asians). The weight lowering effects of GLP-1RAs are becoming more salient as the prevalence of overweight and obesity among Korean patients increases. The higher rate of gastrointestinal adverse events amongst Asian patients in clinical trials may be caused by higher drug exposure due to the lower body mass index of the participants (vs. non-Asian studies). Data on the durability of weight loss, clinically important health outcomes, safety and optimal dosing in Korean patients are lacking. Use of GLP-1RAs is appropriate in several patient groups, including patients whose HbA1c is uncontrolled, especially if this is due to postprandial glucose excursions and patients who are overweight or obese due to dietary problems (e.g., appetite control). The potential for gastrointestinal adverse events should be explained to patients at treatment initiation to facilitate the promotion of better compliance. PMID:26124987

  16. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection

    PubMed Central

    Amiram, M.; Luginbuhl, K. M.; Li, X.; Feinglos, M. N.; Chilkoti, A.

    2013-01-01

    Peptide drugs are an exciting class of pharmaceuticals for the treatment of a variety of diseases; however, their short half-life dictates multiple and frequent injections causing undesirable side-effects. Herein, we describe a novel peptide delivery system that seeks to combine the attractive features of prolonged circulation time with a prolonged release formulation. This system consists of glucagon-like peptide-1, a type-2 diabetes drug fused to a thermally responsive, elastin-like-polypeptide (ELP) that undergoes a soluble-insoluble phase transition between room temperature and body temperature, thereby forming an injectable depot. We synthesized a set of GLP-1-ELP fusions and verified their proteolytic stability and potency in vitro. Significantly, a single injection of depot forming GLP-1-ELP fusions reduced blood glucose levels in mice for up to 5 days, 120 times longer than an injection of the native peptide. These findings demonstrate the unique advantages of using ELPs to release peptide-ELP fusions from a depot combined with enhanced systemic circulation to create a tunable peptide delivery system. PMID:23928357

  17. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    PubMed

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  18. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice.

    PubMed

    Fujii, Yoshie; Osaki, Noriko; Hase, Tadashi; Shimotoyodome, Akira

    2015-01-01

    The widespread prevalence of diabetes, caused by impaired insulin secretion and insulin resistance, is now a worldwide health problem. Glucagon-like peptide 1 (GLP-1) is a major intestinal hormone that stimulates glucose-induced insulin secretion from β cells. Prolonged activation of the GLP-1 signal has been shown to attenuate diabetes in animals and human subjects. Therefore, GLP-1 secretagogues are attractive targets for the treatment of diabetes. Recent epidemiological studies have reported that an increase in daily coffee consumption lowers diabetes risk. The present study examined the hypothesis that the reduction in diabetes risk associated with coffee consumption may be mediated by the stimulation of GLP-1 release by coffee polyphenol extract (CPE). GLP-1 secretion by human enteroendocrine NCI-H716 cells was augmented in a dose-dependent manner by the addition of CPE, and was compatible with the increase in observed active GLP-1(7-36) amide levels in the portal blood after administration with CPE alone in mice. CPE increased intracellular cyclic AMP (cAMP) levels in a dose-dependent manner, but this was not mediated by G protein-coupled receptor 119 (GPR119). The oral administration of CPE increased diet (starch and glyceryl trioleate)-induced active GLP-1 secretion and decreased glucose-dependent insulinotropic polypeptide release. Although CPE administration did not affect diet-induced insulin secretion, it decreased postprandial hyperglycaemia, which indicates that higher GLP-1 levels after the ingestion of CPE may improve insulin sensitivity. We conclude that dietary coffee polyphenols augment gut-derived active GLP-1 secretion via the cAMP-dependent pathway, which may contribute to the reduced risk of type 2 diabetes associated with daily coffee consumption.

  19. Correlation of Glypican-4 Level with Basal Active Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Koh, Gwanpyo; Cho, Suk Ju; Yoo, So-Yeon; Chin, Sang Ouk

    2016-01-01

    Background Previous studies have reported that glypican-4 (GPC4) regulates insulin signaling by interacting with insulin receptor and through adipocyte differentiation. However, GPC4 has not been studied with regard to its effects on clinical factors in patients with type 2 diabetes mellitus (T2DM). We aimed to identify factors associated with GPC4 level in T2DM. Methods Between January 2010 and December 2013, we selected 152 subjects with T2DM and collected serum and plasma into tubes pretreated with aprotinin and dipeptidyl peptidase-4 inhibitor to preserve active gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). GPC4, active GLP-1, active GIP, and other factors were measured in these plasma samples. We performed a linear regression analysis to identify factors associated with GPC4 level. Results The subjects had a mean age of 58.1 years, were mildly obese (mean body mass index [BMI], 26.1 kg/m2), had T2DM of long-duration (mean, 101.3 months), glycated hemoglobin 7.5%, low insulin secretion, and low insulin resistance (mean homeostatic model assessment of insulin resistance [HOMA-IR], 1.2). Their mean GPC4 was 2.0±0.2 ng/mL. In multivariate analysis, GPC4 was independently associated with age (β=0.224, P=0.009), and levels of active GLP-1 (β=0.171, P=0.049) and aspartate aminotransferase (AST; β=–0.176, P=0.043) after being adjusted for other clinical factors. Conclusion GPC4 was independently associated with age, active GLP-1, and AST in T2DM patients, but was not associated with HOMA-IR and BMI, which are well known factors related to GPC4. Further study is needed to identify the mechanisms of the association between GPC4 and basal active GLP-1 levels. PMID:27704740

  20. Expression and Distribution of Glucagon-Like Peptide-1 Receptor mRNA, Protein and Binding in the Male Nonhuman Primate (Macaca mulatta) Brain

    PubMed Central

    Heppner, Kristy M.; Kirigiti, Melissa; Secher, Anna; Paulsen, Sarah Juel; Buckingham, Rikley; Pyke, Charles; Knudsen, Lotte B.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent. PMID:25380238

  1. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  2. Glucagon-Like Peptide 1 Protects against Hyperglycemic-Induced Endothelial-to-Mesenchymal Transition and Improves Myocardial Dysfunction by Suppressing Poly(ADP-Ribose) Polymerase 1 Activity

    PubMed Central

    Yan, Fei; Zhang, Guang-hao; Feng, Min; Zhang, Wei; Zhang, Jia-ning; Dong, Wen-qian; Zhang, Cheng; Zhang, Yun; Chen, Li; Zhang, Ming-Xiang

    2015-01-01

    Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation. PMID:25715248

  3. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.

    PubMed

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y; Angers, Stéphane; Sloop, Kyle W; Dai, Feihan F; Wheeler, Michael B

    2014-11-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1.

  4. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients.

  5. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells.

    PubMed Central

    Tsuboi, Takashi; da Silva Xavier, Gabriela; Holz, George G; Jouaville, Laurence S; Thomas, Andrew P; Rutter, Guy A

    2003-01-01

    Glucagon-like peptide-1 (GLP-1) is a potent regulator of glucose-stimulated insulin secretion whose mechanisms of action are only partly understood. In the present paper, we show that at low (3 mM) glucose concentrations, GLP-1 increases the free intramitochondrial concentrations of both Ca(2+) ([Ca(2+)](m)), and ATP ([ATP](m)) in clonal MIN6 beta-cells. Suggesting that cAMP-mediated release of Ca(2+) from intracellular stores is responsible for these effects, increases in [ATP](m) that were induced by GLP-1 were completely blocked by the Rp isomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), or by chelation of intracellular Ca(2+). Furthermore, inhibition of Ins(1,4,5) P (3) (IP(3)) receptors with xestospongin C, or application of ryanodine, partially inhibited GLP-1-induced [ATP](m) increases, and the simultaneous blockade of both IP(3) and ryanodine receptors (RyR) completely eliminated the rise in [ATP](m). GLP-1 appeared to prompt Ca(2+)-induced Ca(2+) release through IP(3) receptors via a protein kinase A (PKA)-mediated phosphorylation event, since ryanodine-insensitive [ATP](m) increases were abrogated with the PKA inhibitor, H89. In contrast, the effects of GLP-1 on RyR-mediated [ATP](m) increases were apparently mediated by the cAMP-regulated guanine nucleotide exchange factor cAMP-GEFII, since xestospongin C-insensitive [ATP](m) increases were blocked by a dominant-negative form of cAMP-GEFII (G114E,G422D). Taken together, these results demonstrate that GLP-1 potentiates glucose-stimulated insulin release in part via the mobilization of intracellular Ca(2+), and the stimulation of mitochondrial ATP synthesis. PMID:12410638

  6. Glucagon-like peptide-1 attenuates advanced oxidation protein product-mediated damage in islet microvascular endothelial cells partly through the RAGE pathway

    PubMed Central

    Zhang, Zhen; Yang, Lei; Lei, Lei; Chen, Rongping; Chen, Hong; Zhang, Hua

    2016-01-01

    Advanced oxidation protein products (AOPPs) are knownt to play a role in the pathogenesis of diseases and related complications. However, whether AOPPs affect the survival of islet microvascular endothelial cells (IMECs) has not been reported to date, at least to the best of our knowledge. In this study, we aimed to investigate the mechanisms underlying AOPP-mediated damage in IMECs and the protective role of glucagon-like peptide-1 (GLP-1), which has been suggested to exert beneficial effects on the cardiovascular system. IMECs were treated with AOPPs (0–200 µg/ml) for 0–72 h in the presence or absence of GLP-1 (100 nmol/l). Apoptosis, cell viability and reactive oxygen species (ROS) production were examined, the expression levels of p53, Bax, receptor for advanced glycation end-products (RAGE) and NAD(P)H oxidase subunit were determined, and the activity of NAD(P)H oxidase, caspase-9 and caspase-3 was also determined. The results revealed that AOPPs increased the expression of RAGE, p47phox and p22phox; induced NAD(P)H oxidase-dependent ROS generation, increased p53 and Bax expression, enhanced the activity of caspase-9 and caspase-3, and induced cell apoptosis. Treatment with GLP-1 decreased the expression of RAGE, inhibited NAD(P)H oxidase activity, decreased cell apoptosis and increased cell viability. On the whole, our findings indicate that AOPPs induce the apoptosis of IMECs via the RAGE-NAD(P) H oxidase-dependent pathway and that treatment with GLP-1 effectively reverses these detrimental effects by decreasing AOPP-induced RAGE expression and restoring the redox balance. Our data may indicate that GLP-1 may prove to be beneficial in attenuating the progression of diabetes mellitus. PMID:27574116

  7. Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men.

    PubMed

    Luscombe-Marsh, Natalie D; Hutchison, Amy T; Soenen, Stijn; Steinert, Robert E; Clifton, Peter M; Horowitz, Michael; Feinle-Bisset, Christine

    2016-01-04

    This study determined the effects of increasing loads of intraduodenal (ID) dairy protein on plasma amino acid (AA) concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1) and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1), 6.3 (P6.3) or 12.5 (P12.5) kJ/min (encompassing the range of nutrient emptying from the stomach), or saline control (C). Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0-60 min) of each AA profile was strong for essential AAs (R² range, 0.61-0.67), but more variable for non-essential (0.02-0.54) and conditional (0.006-0.64) AAs. The AUC0-60 min for each AA was correlated directly with the AUC0-60 min of insulin (R² range 0.3-0.6), GLP-1 (0.2-0.6) and energy intake (0.09-0.3) (p < 0.05, for all), with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1.

  8. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    PubMed

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. PMID:26992957

  9. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart

    PubMed Central

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R.; Willette, Robert N.; Lepore, John J.; Jucker, Beat M.

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner. PMID:26098939

  10. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart.

    PubMed

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R; Willette, Robert N; Lepore, John J; Jucker, Beat M

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.

  11. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity. PMID:25827219

  12. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  13. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity.

  14. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  15. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels

    PubMed Central

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  16. Spatial Approximations between Residues 6 and 12 in the Amino-terminal Region of Glucagon-like Peptide 1 and Its Receptor

    PubMed Central

    Chen, Quan; Pinon, Delia I.; Miller, Laurence J.; Dong, Maoqing

    2010-01-01

    Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists. PMID:20529866

  17. Refinement of Glucagon-like Peptide 1 Docking to Its Intact Receptor Using Mid-region Photolabile Probes and Molecular Modeling*

    PubMed Central

    Miller, Laurence J.; Chen, Quan; Lam, Polo C.-H.; Pinon, Delia I.; Sexton, Patrick M.; Abagyan, Ruben; Dong, Maoqing

    2011-01-01

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7–36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu141 above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp297 within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region. PMID:21454562

  18. Split Ssp DnaB mini-intein-mediated production of recombinant human glucagon-like peptide-1/7-36.

    PubMed

    Jiang, Aiqin; Jin, Wenbo; Zhao, Feng; Tang, Yanchun; Sun, Ziyong; Liu, Jian-Ning

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in the regulation of postprandial insulin release. Here, we used the split DnaB mini-intein system to produce recombinant human GLP-1/7-36 (rhGLP-1) in Escherichia coli. The C-terminal domain of DnaB mini-intein (IntC) was genetically fused at the N-terminus of rhGLP-1 to produce IntC-GLP-1. IntC-GLP-1 and N-terminal domain of DnaB mini-intein (IntN) protein were prepared in a denatured buffer of pH 8.0. IntC-GLP-1 was diluted 1:8 into the phosphate buffer of pH 6.6. IntN was added into the diluted solution of IntC-GLP-1 at the molar ratio of 1:2. Then, rhGLP-1 was released from IntC-GLP-1 via inducible C-terminal peptide-bond cleavage by shifting pH from 8.0 to 6.6 at 25 °C for 24-H incubation. Then, the supernatant was applied to a Ni-Sepharose column, and the pass through fraction was collected. About 5.34 mg of rhGLP-1 with the purity of 97% was obtained from 1 L of culture medium. Mass spectrometry showed the molecular weight of 3,300.45 Da, which was equal to the theoretical value of GLP-1/7-36. The glucose-lowering activity of rhGLP-1 was confirmed by the glucose tolerance test in mice. In conclusion, the reported method was an efficient strategy to produce rhGLP-1 without using enzyme or chemical reagents, which could also be used for other similar peptides.

  19. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  20. Satiation and Stress-Induced Hypophagia: Examining the Role of Hindbrain Neurons Expressing Prolactin-Releasing Peptide or Glucagon-Like Peptide 1

    PubMed Central

    Maniscalco, James W.; Kreisler, Alison D.; Rinaman, Linda

    2013-01-01

    Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake. PMID:23346044

  1. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway.

    PubMed

    Zhang, Hua; Xiong, Zhouyi; Wang, Jiao; Zhang, Shuangshuang; Lei, Lei; Yang, Li; Zhang, Zhen

    2016-02-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy.

  2. Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity.

    PubMed

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-04-01

    Several G-protein-coupled receptors contain cysteine residues in the C-terminal tail that may modulate receptor function. In this work we analysed the substitution of Cys438 by alanine in the glucagon-like peptide-1 (GLP-1) receptor (GLPR), which led to a threefold decrease in cAMP production, although endocytosis and cellular redistribution of GLP-1 receptor agonist-induced processes were unaffected. Additionally, cysteine residues in the C-terminal tail of several G-protein-coupled receptors were found to act as substrates for palmitoylation, which might modify the access of protein kinases to this region. His-tagged GLP-1 receptors incorporated 3H-palmitate. Nevertheless, substitution of Cys438 prevented the incorporation of palmitate. Accordingly, we also investigated the effect of substitution of the consensus sequence by protein kinase C (PKC) Ser431/432 in both wild-type and Ala438 GLP-1 receptors. Substitution of Ser431/432 by alanine did not modify the ability of wild-type receptors to stimulate adenylate cyclase or endocytosis and recycling processes. By contrast, the substitution of Ser431/432 by alanine in the receptor containing Ala438 increased the ability to stimulate adenylate cyclase. All types of receptors were mainly internalised through coated pits. Thus, cysteine 438 in the cytoplasmic tail of the GLP-1 receptor would regulate its interaction with G-proteins and the stimulation of adenylyl cyclase. Palmitoylation of this residue might control the access of PKC to Ser431/432.

  3. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways. PMID:26530153

  4. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  5. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.

  6. Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic β Cells*

    PubMed Central

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D.; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S.; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y.; Angers, Stéphane; Sloop, Kyle W.; Dai, Feihan F.; Wheeler, Michael B.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor–PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  7. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  8. Association of Anti-Diabetic Medications Targeting the Glucagon-Like Peptide-1 Pathway and Heart Failure Events in Patients with Diabetes

    PubMed Central

    Velez, Mauricio; Peterson, Edward L.; Wells, Karen; Swadia, Tanmay; Sabbah, Hani N.; Williams, L. Keoki; Lanfear, David E.

    2014-01-01

    Background Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors (GLP-1 agents) may be protective in heart failure (HF). We set out to determine whether GLP-1 agent use is associated with HF risk in diabetics. Methods and Results Retrospective cohort study of members of a large health system. We identified >19,000 adult diabetics from January 1, 2000–July 1, 2012. GLP-1 agent users were matched 1:2 to controls using propensity matching based on age, race, gender, coronary disease, HF, diabetes duration, and number of anti-diabetic medications. The association of GLP-1 agents with time to HF hospitalization was tested with multivariable Cox regression. All-cause hospitalization and mortality were secondary endpoints. We identified 1,426 users of GLP-1 agents and 2,798 controls. Both were similar except for angiotensin-converting enzyme inhibitors/angiotensin receptor blocker (ACEi/ARB) use, number of anti-diabetic medications and age. There were 199 hospitalizations, of which 128 were for HF, and 114 deaths. GLP-1 agents were associated with reduced risk of HF hospitalization (adjusted hazard ratio [aHR] 0.51; 95% confidence interval [CI] 0.34–0.77, p=0.002), all-cause hospitalization (aHR 0.54; 95% CI 0.38–0.74, p=0.001), and death (aHR 0.31; 95% CI 0.18–0.53, p=0.001). Conclusions GLP-1 agents may reduce the risk of HF events in diabetics. PMID:25451709

  9. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1

    PubMed Central

    Qu, Wei; Li, Yong; Hovgaard, Lars; Li, Song; Dai, Wenbin; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2012-01-01

    Background Glucagon-like peptide-1 (GLP-1) (7–36) is a peptide incretin hormone released from the endocrine L-cells of the intestinal mucosa with unique antidiabetic potential. Due to low absorption efficiency and instability in the gastrointestinal tract, the introduction of orally active GLP-1 is a large challenge. Here we developed a novel silica-based pH-sensitive nanomatrix of GLP-1 (SPN-GLP-1) in order to provide a strategy for oral peptide delivery. Methods SPN-GLP-1 composed of silica nanoparticles and pH-sensitive Eudragit® was prepared and characterized by dynamic light scattering, scanning electron microscope, transmission electron microscope, high-performance liquid chromatography, surface analysis, drug release, and so on. Its permeability across the Caco-2 cell monolayer and intestinal mucosa, proteolytic stability against the intestinal enzymes, pharmacokinetics, hypoglycemic effect in the intraperitoneal glucose tolerance test (IPGTT), and primary toxicity were then evaluated. Results It was indicated that the nanomatrix system obtained had a unique nanoscale structure and pH-sensitivity in drug release. It displayed a five-fold intestinal mucosa permeability and significantly higher proteolytic stability compared to native GLP-1 (P < 0.001). A longer half-life was observed after oral administration of SPN-GLP-1, and its relative bioavailability was 35.67% in comparison to intraperitoneal GLP-1. Oral delivery of SPN-GLP-1 significantly reduced the blood glucose level and its hypoglycemic effect over intraperitoneal GLP-1 reached 77%. There was no evident toxicity of SPN-GLP-1 found from both animal status and histochemical analysis of gastrointestinal tissues. Conclusion The silica-based pH-sensitive nanomatrix designed and prepared here might be considered as a potential oral delivery system not only for GLP-1, but also for other peptide or macromolecular drugs. PMID:23028226

  10. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  11. Circulating concentrations of glucagon-like peptide 1, glucose-dependent insulinotropic peptide, peptide YY, and insulin in client-owned lean, overweight, and diabetic cats.

    PubMed

    McMillan, C J; Zapata, R C; Chelikani, P K; Snead, E C R; Cosford, K

    2016-01-01

    Our objectives were to measure plasma concentrations of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and peptide YY (PYY) in client-owned newly diagnosed diabetic cats and nondiabetic lean or overweight cats and to determine whether circulating concentrations of these hormones differed between study groups and if they increased postprandially as seen in other species. A total of 31 cats were recruited and placed into 1 of 3 study groups: lean (body condition score 4-5 on a scale of 1-9; n = 10), overweight (body condition score 6-8; n = 11), or diabetic (n = 10). Diabetics were newly diagnosed and had not had prior insulin therapy. Preprandial (fasting) and postprandial (60 min after meal) plasma hormone and glucose concentrations were measured at baseline and 2 and 4 wk. All cats were exclusively fed a commercially available high-protein and low-carbohydrate diet commonly prescribed to feline diabetic patients for 2 wk before the 2-wk assessment and continued through the 4-wk assessment. Results showed that plasma concentrations of GLP-1, GIP, PYY, and insulin increased in general after a meal in all study groups. Plasma PYY concentrations did not differ (P > 0.10) between study groups. Diabetics had greater plasma concentrations of GLP-1 and GIP compared with the other study groups at baseline (P < 0.05), and greater preprandial and postprandial GLP-1 concentrations than lean cats at 2 and 4 wk (P < 0.05). Preprandial plasma GIP concentrations were greater in diabetics than obese and lean (P < 0.05) cats at week 4. Postprandial plasma GIP concentrations in diabetics were greater than lean (P < 0.05) at week 2 and obese and lean cats (P < 0.05) at week 4. Together, our findings suggest that diabetic status is an important determinant of circulating concentrations of GLP-1 and GIP, but not PYY, in cats. The role of GLP-1, GIP, and PYY in the pathophysiology of feline obesity and diabetes remains to be determined.

  12. Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men

    PubMed Central

    Luscombe-Marsh, Natalie D.; Hutchison, Amy T.; Soenen, Stijn; Steinert, Robert E.; Clifton, Peter M.; Horowitz, Michael; Feinle-Bisset, Christine

    2016-01-01

    This study determined the effects of increasing loads of intraduodenal (ID) dairy protein on plasma amino acid (AA) concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1) and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1), 6.3 (P6.3) or 12.5 (P12.5) kJ/min (encompassing the range of nutrient emptying from the stomach), or saline control (C). Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0–60 min) of each AA profile was strong for essential AAs (R2 range, 0.61–0.67), but more variable for non-essential (0.02–0.54) and conditional (0.006–0.64) AAs. The AUC0–60 min for each AA was correlated directly with the AUC0–60 min of insulin (R2 range 0.3–0.6), GLP-1 (0.2–0.6) and energy intake (0.09–0.3) (p < 0.05, for all), with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1. PMID:26742062

  13. Dissociated effects of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide-1 on beta-cell secretion and insulin clearance in mice.

    PubMed

    Pacini, Giovanni; Thomaseth, Karl; Ahrén, Bo

    2010-07-01

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) potently augment insulin response to glucose. It is less known what their effects are insulin clearance, which also contributes to peripheral hyperinsulinemia observed after administration of incretins together with glucose. The aims of this study were the quantification of C-peptide secretion and the evaluation of insulin clearance after administration of GIP with glucose. This allows the assessment of GIP's effects on hyperinsulinemia. In addition, GIP's effects were compared with those of GLP-1. Anesthetized female NMRI mice were injected intravenously with glucose alone (1 g/kg, n = 35) or glucose together with GIP (50 microg/kg, n = 12). Samples were taken through the following 50 minutes, and C-peptide and insulin concentrations were used to reconstruct C-peptide secretion rate and insulin clearance. In a previous study, GLP-1 (10 microg/kg) was used in 12 mice; and we used those GLP-1 results to compare GIP effects with those of GLP-1. C-peptide secretion rate peaked at 1 minute after glucose injection, and the immediate part of the insulin-releasing process was markedly augmented by both incretin hormones (1-minute suprabasal increment secretory rate was 20 +/- 2 pmol/min for GIP and 28 +/- 2 pmol/min for GLP-1, vs only 9 +/- 1 pmol/min for glucose alone; P < .001). Until 10 minutes after administration, C-peptide secretion remained higher with incretins (P < .0001), whereas starting from 20 minutes, the 3 patterns were undistinguishable (P > .2). Insulin clearance, previously shown to be abridged by 46% with GLP-1, was reduced only by a nonsignificant (P = .27) 21% with GIP. This study thus shows that the 2 incretins markedly augment glucose-stimulated insulin secretion in mice by a preferential action on the immediate response to glucose of insulin secretion. However, the action of GIP is less effective than that of GLP-1. Insulin clearance with GIP is not significantly

  14. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake.

    PubMed

    Verhoef, Sanne P M; Meyer, Diederick; Westerterp, Klaas R

    2011-12-01

    In rats, oligofructose has been shown to stimulate satiety hormone secretion, reduce energy intake and promote weight loss. The present study aimed to examine the effect of oligofructose supplementation on appetite profiles, satiety hormone concentrations and energy intake in human subjects. A total of thirty-one healthy subjects (ten men and twenty-one women) aged 28 (SEM 3) years with a BMI of 24·8 (SEM 0·3) kg/m(2) were included in a randomised double-blind, cross-over study. The subjects received 10 g oligofructose, 16 g oligofructose or 16 g placebo (maltodextrin) daily for 13 d, with a 2-week washout period between treatments. Appetite profile, active glucagon-like peptide 1 (GLP-1) and peptide YY3-36 (PYY) concentrations and energy intake were assessed on days 0 and 13 of the treatment period. Time × treatment interaction revealed a trend of reduction in energy intake over days 0-13 by oligofructose (P = 0·068). Energy intake was significantly reduced (11 %) over time on day 13 compared with day 0 with 16 g/d oligofructose (2801 (SEM 301) v. 3217 (SEM 320) kJ, P < 0·05). Moreover, energy intake was significantly lower with 16 g/d oligofructose compared with 10 g/d oligofructose on day 13 (2801 (SEM 301) v. 3177 (SEM 276) kJ, P < 0·05). Area under the curve (AUC) for GLP-1 on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose (45 (SEM 4) v. 41 (SEM 3) pmol/l × h, P < 0·05). In the morning until lunch, AUC(0-230 min) for PYY on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose and placebo (409 (SEM 35) v. 222 (SEM 19) and 211 (SEM 20) pg/ml × h, P < 0·01). In conclusion, 16 g/d and not 10 g/d oligofructose may be an effective dose to reduce energy intake, possibly supported by higher GLP-1 and PYY concentrations.

  15. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Li, Zhixia; Zhang, Yuan; Quan, Xiaochi; Yang, Zhirong; Zeng, Xiantao; Ji, Linong

    2016-01-01

    Objective To synthesize current evidence of the impact of Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on hypoglycemia, treatment discontinuation and glycemic level in patients with type 2 diabetes. Design Systematic review and network meta-analysis. Data Sources Literature search (Medline, Embase, the Cochrane library), website of clinical trial, bibliographies of published systematic reviews. Eligibility Criteria Randomized controlled trials with available data comparing GLP-1 RAs with placebo or traditional anti-diabetic drugs in patients with type 2 diabetes. Data Synthesis Traditional pairwise meta-analyses within DerSimonian-Laird random effects model and network meta-analysis within a Bayesian framework were performed to calculate odds ratios for the incidence of hypoglycemia, treatment discontinuation, HbA1c<7.0% and HbA1c<6.5%. Ranking probabilities for all treatments were estimated to obtain a treatment hierarchy using the surface under the cumulative ranking curve (SUCRA) and mean ranks. Results 78 trials with 13 treatments were included. Overall, all GLP-1 RAs except for albiglutide increased the risk of hypoglycemia when compared to placebo. Reduction in the incidence of hypoglycemia was found for all GLP-1 RAs versus insulin (except for dulaglutide) and sulphonylureas. For the incidence of treatment discontinuation, increase was found for exenatide, liraglutide, lixisenatide and taspoglutide versus placebo, insulin and sitagliptin. For glycemic level, decrease was found for all GLP-1 RAs versus placebo. Dulaglutide, exenatide long-acting release (exe_lar), liraglutide and taspoglutide had significant lowering effect when compared with sitagliptin (HbA1c<7.0%) and insulin (HbA1c<6.5%). Finally, according to SUCRAs, placebo, thiazolidinediones and albiglutide had the best decrease effect on hypoglycemia; sulphanylureas, sitagliptin and insulin decrease the incidence of treatment discontinuation most; exe_lar and dulaglutide had the highest

  16. Demonstration of the innate electrophilicity of 4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP), a small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Edmonds, David J; Fortin, Jean-Philippe; Li, Xianping; Stevens, Benjamin D; Griffith, David A; Limberakis, Chris; Nolte, Whitney M; Price, David A; Jackson, Margaret; Kalgutkar, Amit S

    2013-08-01

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation after oral administration of a 10-mg/kg dose in rats was consistent with the lack of an insulinotropic effect of orally administered BETP in this species. Likewise, systemic concentrations of BETP in the rat upon i.v. administration (1 mg/kg) were minimal (and sporadic). In vitro incubations in bovine serum albumin, plasma, and liver microsomes from rodents and humans indicated a facile degradation of BETP. Failure to detect metabolites in plasma and liver microsomal incubations in the absence of NADP was suggestive of a covalent interaction between BETP and a protein amino acid residue(s) in these matrices. Incubations of BETP with glutathione (GSH) in buffer revealed a rapid nucleophilic displacement of the ethylsulfoxide functionality by GSH to yield adduct M1, which indicated that BETP was intrinsically electrophilic. The structure of M1 was unambiguously identified by comparison of its chromatographic and mass spectral properties with an authentic standard. The GSH conjugate of BETP was also characterized in NADPH- and GSH-supplemented liver microsomes and in plasma samples from the pharmacokinetic studies. Unlike BETP, M1 was inactive as an allosteric modulator of the GLP-1R. PMID:23653442

  17. Glucagon-like peptide-1 receptor agonists versus insulin glargine for type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Li, Wei-Xin; Gou, Jian-Feng; Tian, Jin-Hui; Yan, Xiang; Yang, Lin

    2010-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of hypoglycemic drugs, including exenatide, liraglutide, albiglutide, lixisenatide, and taspoglutide. Insulin glargine is a standard agent used to supplement basal insulin in type 2 diabetes mellitus (T2DM). Objective: The aim of this study was to review the efficacy and safety profiles of GLP-1 receptor agonists versus insulin glargine in type 2 diabetic patients who have not achieved treatment goals with oral hypoglycemic agents. Methods: The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and the database of ongoing trials were searched from inception through April 2010. Additional data were sought from relevant Web sites, the American Diabetes Association, reference lists of included trials and related (systematic) reviews, and industry. Randomized controlled trials (RCTs) were selected if they were ≥3 months in duration, compared GLP-1 receptor agonists with insulin glargine in patients with T2DM, and included ≥1 of the following outcomes: mortality, complications of T2DM, glycemie control, weight, lipids, blood pressure, adverse effects, and health-related quality of life. Quasirandomized controlled trials were excluded. The quality of the eligible studies was assessed on the basis of the following aspects: randomization procedure, allocation concealment, blinding, incomplete outcome data (intent-to-treat [ITT] analysis), selective outcome reporting, and publication bias. Results: A total of 410 citations were retrieved; 5 multicenter RCTs that met the inclusion criteria were identified. They were all open-label designs with an insulin glargine arm, predefined outcomes reported, and ITT analysis. One trial had an unclear randomization procedure and allocation concealment. Publication bias was not able to be determined. No data wete found with regard to mortality or diabetes-associated complications, and few data were found on quality of life. The results of

  18. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial

    PubMed Central

    Liu, Chia-Yu; Huang, Chien-Jung; Huang, Lin-Huang; Chen, I-Ju; Chiu, Jung-Peng; Hsu, Chung-Hua

    2014-01-01

    The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation. Trial Registration ClinicalTrials.gov NCT01360567 PMID:24614112

  19. The Melanocortin-4 Receptor is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-Like Peptide 1 In Vivo

    PubMed Central

    Panaro, Brandon L.; Tough, Iain R.; Engelstoft, Maja Storm; Matthews, Robert T.; Digby, Gregory J.; Møller, Cathrine Laustrup; Svendsen, Berit; Gribble, Fiona; Reimann, Frank; Holst, Jens J.; Holst, Birgitte; Schwartz, Thue W.; Cox, Helen M.; Cone, Roger D.

    2014-01-01

    SUMMARY The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves, and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly expressed GPCR in peptide YY (PYY) and glucagon-like peptide one (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent anti-secretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells, and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions. PMID:25453189

  20. The Incretins and Pancreatic beta-Cells: Use of Glucagon-Like Peptide-1 and Glucose-Dependent Insulinotropic Polypeptide to Cure Type 2 Diabetes Mellitus.

    PubMed

    Kim, Mi-Hyun; Lee, Moon-Kyu

    2010-02-01

    Type 2 diabetes mellitus (T2DM) is increasing in prevalence worldwide. The complications associated with T2DM result in increased mortality and financial cost for those affected. T2DM has long been known to be associated with insulin resistance in peripheral tissues and a relative degree of insulin deficiency. However, the concept that insulin secretion and insulin sensitivity are not linked through a hyperbolic relationship in T2DM has continuously been demonstrated in many clinical trials. Thus, in order to prevent and treat T2DM, it is necessary to identify the substance(s) that will improve the function and survival of the pancreatic beta-cells in both normal and pathologic conditions, so that production and secretion of insulin can be enhanced. Incretin hormones, such as glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP), have been shown to lower the postprandial and fasting glucose and the glycated hemoglobin levels, suppress the elevated glucagon level, and stimulate glucose-dependent insulin synthesis and secretion. In this report, we will review the biological actions and mechanisms associated with the actions of incretin hormones, GLP-1 and GIP, on beta-cell health and compare the differences between GLP-1 and GIP.

  1. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats.

    PubMed

    Hoelmkjaer, Kirsten M; Wewer Albrechtsen, Nicolai J; Holst, Jens J; Cronin, Anna M; Nielsen, Dorte H; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  2. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats

    PubMed Central

    Hoelmkjaer, Kirsten M.; Wewer Albrechtsen, Nicolai J.; Holst, Jens J.; Cronin, Anna M.; Nielsen, Dorte H.; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R.

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  3. Intrameal Hepatic Portal and Intraperitoneal Infusions of Glucagon-Like Peptide-1 Reduce Spontaneous Meal Size in the Rat via Different Mechanisms

    PubMed Central

    Rüttimann, Elisabeth B.; Arnold, Myrtha; Hillebrand, Jacquelien J.; Geary, Nori; Langhans, Wolfgang

    2009-01-01

    Peripheral administration of glucagon-like peptide (GLP)-1 reduces food intake in animals and humans, but the sites and mechanism of this effect and its physiological significance are not yet clear. To investigate these issues, we prepared rats with chronic catheters and infused GLP-1 (0.2 ml/min; 2.5 or 5.0 min) during the first spontaneous dark-phase meals. Infusions were remotely triggered 2–3 min after meal onset. Hepatic portal vein (HPV) infusion of 1.0 or 3.0 (but not 0.33) nmol/kg GLP-1 reduced the size of the ongoing meal compared with vehicle without affecting the subsequent intermeal interval, the size of subsequent meals, or cumulative food intake. In double-cannulated rats, HPV and vena cava infusions of 1.0 nmol/kg GLP-1 reduced meal size similarly. HPV GLP-1 infusions of 1.0 nmol/kg GLP-1 also reduced meal size similarly in rats with subdiaphragmatic vagal deafferentations and in sham-operated rats. Finally, HPV and ip infusions of 10 nmol/kg GLP-1 reduced meal size similarly in sham-operated rats, but only HPV GLP-1 reduced meal size in subdiaphragmatic vagal deafferentation rats. These data indicate that peripherally infused GLP-1 acutely and specifically reduces the size of ongoing meals in rats and that the satiating effect of ip, but not iv, GLP-1 requires vagal afferent signaling. The findings suggest that iv GLP-1 infusions do not inhibit eating via hepatic portal or hepatic GLP-1 receptors but may act directly on the brain. PMID:18948395

  4. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  5. The effect of glucose when added to a fat load on the response of glucagon-like peptide-1 (GLP-1) and apolipoprotein B-48 in the postprandial phase.

    PubMed

    Zemánková, K; Mrázková, J; Piťha, J; Kovář, J

    2015-01-01

    Increased and prolonged postprandial lipemia has been identified as a risk factor of cardiovascular disease. However, there is no consensus on how to test postprandial lipemia, especially with respect to the composition of an experimental meal. To address this question of how glucose, when added to a fat load, affects the selected parameters of postprandial lipemia, we carried out a study in 30 healthy male volunteers. Men consumed an experimental meal containing either 75 g of fat + 25 g of glucose (F+G meal) or 75 g of fat (F meal) in a control experiment. Blood was taken before the meal and at selected time points within the following 8 h. Glucose, when added to a fat load, induced an increase of glycemia and insulinemia and, surprisingly, a 20 % reduction in the response of both total and active glucagon-like peptide-1 (GLP-1) concentration. The addition of glucose did not affect the magnitude of postprandial triglyceridemia and TRL-C and TRL-TG concentrations but stimulated a faster response of chylomicrons to the test meal, evaluated by changes in apolipoprotein B-48 concentrations. The addition of glucose induced the physiological response of insulin and the lower response of GLP-1 to the test meal during the early postprandial phase, but had no effect on changes of TRL-cholesterol and TRL-TG within 8 h after the meal. PMID:26680669

  6. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    PubMed

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  7. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1

    PubMed Central

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H.; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  8. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity.

    PubMed

    Hwang, Injae; Park, Yoon Jeong; Kim, Yeon-Ran; Kim, Yo Na; Ka, Sojeong; Lee, Ho Young; Seong, Je Kyung; Seok, Yeong-Jae; Kim, Jae Bum

    2015-06-01

    Firmicutes and Bacteroidetes, 2 major phyla of gut microbiota, are involved in lipid and bile acid metabolism to maintain systemic energy homeostasis in host. Recently, accumulating evidence has suggested that dietary changes promptly induce the alteration of abundance of both Firmicutes and Bacteroidetes in obesity and its related metabolic diseases. Nevertheless, the metabolic roles of Firmicutes and Bacteroidetes on such disease states remain unclear. The aim of this study was to determine the effects of antibiotic-induced depletion of Firmicutes and Bacteroidetes on dysregulation of energy homeostasis in obesity. Treatment of C57BL/6J mice with the antibiotics (vancomycin [V] and bacitracin [B]), in the drinking water, before diet-induced obesity (DIO) greatly decreased both Firmicutes and Bacteroidetes in the gut as revealed by pyrosequencing of the microbial 16S rRNA gene. Concomitantly, systemic glucose intolerance, hyperinsulinemia, and insulin resistance in DIO were ameliorated via augmentation of GLP-1 secretion (active form; 2.03-fold, total form; 5.09-fold) independently of obesity as compared with untreated DIO controls. Furthermore, there were increases in metabolically beneficial metabolites derived from the gut. Together, our data suggest that Firmicutes and Bacteroidetes potentially mediate insulin resistance through modulation of GLP-1 secretion in obesity.

  9. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence.

    PubMed

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-06-16

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case-control analysis (N = 908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N = 3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N = 81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N = 22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P = 0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P = 0.033). The 168 Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD.

  10. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns.

    PubMed

    Elliott, R M; Morgan, L M; Tredger, J A; Deacon, S; Wright, J; Marks, V

    1993-07-01

    The acute effects of different macronutrients on the secretion of glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) and glucose-dependent insulinotropic polypeptide (GIP) were compared in healthy human subjects. Circulating levels of the two hormones were measured over a 24-h period during which subjects consumed a mixed diet. In the first study, eight subjects consumed three equicaloric (375 kcal) test meals of carbohydrate, fat and protein. Small increases in plasma GLP-1(7-36) amide were found after all meals. Levels reached a maximum 30 min after the carbohydrate and 150 min after the fat load. Ingestion of both carbohydrate and fat induced substantial rises in GIP secretion, but the protein meal had no effect. In a second study, eight subjects consumed 75 g glucose or the equivalent portion of complex carbohydrate as boiled brown rice or barley. Plasma GIP, insulin and glucose levels increased after all three meals, the largest increase being observed following glucose and the smallest following the barley meal. Plasma GLP-1(7-36)amide levels rose only following the glucose meal. In the 24-h study, plasma GLP-1(7-36)amide and GIP concentrations were increased following every meal and remained elevated throughout the day, only falling to fasting levels at night. The increases in circulating GLP-1(7-36)amide and GIP levels following carbohydrate or a mixed meal are consistent with their role as incretins. The more sustained rises observed in the daytime during the 24-h study are consistent with an anabolic role in lipid metabolism.

  11. Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells.

    PubMed

    Takeda, Yukari; Shimayoshi, Takao; Holz, George G; Noma, Akinori

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate receptor (IP3R)-regulated Ca(2+) stores. However, a quantitative model has yet to be provided that explains the molecular mechanisms and dynamic processes linking GLP-1-stimulated cAMP production to Ca(2+) mobilization. Here, we performed simulation studies to investigate how GLP-1 alters the abilities of Ca(2+) and IP3 to act as coagonists at IP3R Ca(2+) release channels. A new dynamic model was constructed based on the Kaftan model, which demonstrates dual steady-state allosteric regulation of the IP3R by Ca(2+) and IP3. Data obtained from β-cells were then analyzed to understand how GLP-1 facilitates IP3R-mediated Ca(2+) mobilization when UV flash photolysis is used to uncage Ca(2+) and IP3 intracellularly. When the dynamic model for IP3R activation was incorporated into a minimal cell model, the Ca(2+) transients and oscillations induced by GLP-1 were successfully reconstructed. Simulation studies indicated that transient and oscillatory responses to GLP-1 were produced by sequential positive and negative feedback regulation due to fast activation and slow inhibition of the IP3R by Ca(2+). The slow rate of Ca(2+)-dependent inhibition was revealed to provide a remarkable contribution to the time course of the decay of cytosolic Ca(2+) transients. It also served to drive and pace Ca(2+) oscillations that are significant when evaluating how GLP-1 stimulates insulin secretion. PMID:26741144

  12. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence

    PubMed Central

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-01-01

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case–control analysis (N=908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N=3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N=81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N=22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P=0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P=0.033). The 168Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD. PMID:26080318

  13. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    PubMed

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  14. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  15. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures

    PubMed Central

    Reynolds, Christopher A.; Koole, Cassandra; Smith, Kevin J.; Mobarec, Juan C.; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G. B.; Miller, Laurence J.; Christopoulos, Arthur; Sexton, Patrick M.

    2016-01-01

    The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190, N3.43240, Q7.49394, and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190, N3.43240, and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364A, N3.43240Q, Q7.49394N, and N3.43240Q/Q7.49394N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394, but not R2.60190/E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events. PMID:26700562

  16. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    PubMed Central

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  17. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists.

    PubMed

    Nakashima, Ryutaro; Yano, Tatsuya; Ogawa, Junko; Tanaka, Naomi; Toda, Narihiro; Yoshida, Masao; Takano, Rieko; Inoue, Masahiro; Honda, Takeshi; Kume, Shoen; Matsumoto, Koji

    2014-08-15

    G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). The GPR40-mediated effects of DS-1558 on glucose-stimulated insulin secretion were evaluated in isolated islets from GPR40 knock-out and wild-type (littermate) mice. The GPR40-mediated effects on glucose tolerance and insulin secretion were also confirmed by an oral glucose tolerance test in these mice. Furthermore, oral administration of DS-1558 (0.03, 0.1 and 0.3mg/kg) significantly and dose-dependently improved hyperglycemia and increased insulin secretion during the oral glucose tolerance test in Zucker fatty rats, the model of insulin resistance and glucose intolerance. Next, we examined the combination effects of DS-1558 with glucagon like peptide-1 (GLP-1). DS-1558 not only increased the glucose-stimulated insulin secretion by GLP-1 but also potentiated the maximum insulinogenic effects of GLP-1 after an intravenous glucose injection in normal Sprague Dawley rats. Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.

  18. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial.

    PubMed

    Bottin, Jeanne H; Swann, Jonathan R; Cropp, Eleanor; Chambers, Edward S; Ford, Heather E; Ghatei, Mohammed A; Frost, Gary S

    2016-07-01

    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.

  19. Efficacy and safety of liraglutide, a once-daily human glucagon-like peptide-1 analogue, in Latino/Hispanic patients with type 2 diabetes: post hoc analysis of data from four phase III trials.

    PubMed

    Davidson, J A; Ørsted, D D; Campos, C

    2016-07-01

    The aim of the present analysis was to evaluate the efficacy of the glucagon-like peptide-1 receptor agonist liraglutide in Latino/Hispanic individuals with type 2 diabetes, in addition to comparing its treatment effects with those observed in non-Latino/Hispanic individuals. Analyses were performed on patient-level data from a subset of individuals self-defined as Latino/Hispanic from four phase III studies, the LEAD-3, LEAD-4, LEAD-6 and 1860-LIRA-DPP-4 trials. Endpoints included change in glycated haemoglobin (HbA1c) and body weight from baseline. In Latino/Hispanic patients (n = 505; 323 treated with liraglutide) after 26 weeks, mean HbA1c reductions were significantly greater with both liraglutide 1.2 and 1.8 mg versus comparator or placebo in the LEAD-3 and LEAD-4 studies, and with 1.8 mg liraglutide in the 1860-LIRA-DPP-4 trial. In LEAD-3 both doses led to significant differences in body weight change among Latino/Hispanic patients versus the comparator. With 1.8 mg liraglutide, difference in weight change was significant only in the 1860-LIRA-DPP-4 trial versus sitagliptin. For both endpoints Latino/Hispanic and non-Latino/Hispanic patients responded to liraglutide similarly. In summary, liraglutide is efficacious for treatment of type 2 diabetes in Latino/Hispanic patients, with a similar efficacy to that seen in non-Latino/Hispanic patients. PMID:26936426

  20. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.

    PubMed

    Tang, Song-Tao; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Su, Huan; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-07-01

    Interaction between advanced glycation endproducts (AGEs) and receptor for AGEs (RAGE) as well as downstream pathways leads to vascular endothelial dysfunction in diabetes. Glucagon-like peptide-1 (GLP-1) has been reported to attenuate endothelial dysfunction in the models of atherosclerosis. However, whether GLP-1 exerts protective effects on aortic endothelium in diabetic animal model and the underlying mechanisms are still not well defined. Experimental diabetes was induced through administration with combination of high-fat diet and intraperitoneal injection of streptozotocin. Rats were randomly divided into four groups, including controls, diabetes, diabetes + sitagliptin (30 mg/kg/day), diabetes + exenatide (3 μg/kg/12 h). Eventually, endothelial damage, markers of inflammation and oxidative stress, were measured. After 12 weeks administration, diabetic rats received sitagliptin and exenatide showed significant elevation of serum NO level and reduction of ET-1 as well as inflammatory cytokines levels. Moreover, sitagliptin and exenatide significantly inhibited aortic oxidative stress level and improved aortic endothelial function in diabetic rats. Importantly, these drugs inhibited the protein expression level in AGE/RAGE-induced RhoA/ROCK/NF-κB/IκBα signaling pathways and activated AMPK in diabetic aorta. Finally, the target proteins of p-eNOS, iNOS, and ET-1, which reflect endothelial function, were also changed by these drugs. Our present study indicates that sitagliptin and exenatide administrations can improve endothelial function in diabetic aorta. Of note, RAGE/RhoA/ROCK and AMPK mediated NF-κB signaling pathways may be the intervention targets of these drugs to protect aortic endothelium. PMID:26758998

  1. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner.

    PubMed

    Hata, Takahiro; Mera, Yasuko; Ishii, Yukihito; Tadaki, Hironobu; Tomimoto, Daisuke; Kuroki, Yukiharu; Kawai, Takashi; Ohta, Takeshi; Kakutani, Makoto

    2011-03-01

    The microsomal triglyceride transfer protein (MTP) takes part in the mobilization and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. In this study, we investigated the effects of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), a novel intestine-specific MTP inhibitor, on food intake, gastric emptying, and gut peptides using Sprague-Dawley rats fed 3.1% fat, 13% fat, or 35% fat diets. JTT-130 treatment suppressed cumulative food intake and gastric emptying in rats fed a 35% fat diet, but not a 3.1% fat diet. In rats fed a 13% fat diet, JTT-130 treatment decreased cumulative food intake but not gastric emptying. In addition, treatment with orlistat, a lipase inhibitor, completely abolished the reduction of food intake and gastric emptying by JTT-130 in rats fed a 35% fat diet. On the other hand, JTT-130 treatment increased the plasma concentrations of gut peptides, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) but not cholecystokinin, in the portal vein in rats fed a 35% fat diet. These elevations in PYY and GLP-1 were also abolished by treatment with orlistat. Furthermore, JTT-130 treatment in rats fed a 35% fat diet increased the contents of triglycerides and free fatty acids in the intestinal lumen, which might contribute to the elevation of PYY and GLP-1 levels. The present findings indicate that JTT-130 causes satiety responses, decreased food intake, and gastric emptying in a dietary fat-dependent manner, with enhanced production of gut peptides such as PYY and GLP-1 from the intestine.

  2. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    PubMed

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models.

  3. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour.

    PubMed

    Hurtado-Carneiro, Verónica; Sanz, Carmen; Roncero, Isabel; Vazquez, Patricia; Blazquez, Enrique; Alvarez, Elvira

    2012-04-01

    The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.

  4. Comparative Effects of the Endogenous Agonist Glucagon-Like Peptide-1 (GLP-1)-(7-36) Amide and the Small-Molecule Ago-Allosteric Agent “Compound 2” at the GLP-1 Receptor

    PubMed Central

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J.; Wilkinson, Graeme F.

    2010-01-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca2+ signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Gαs in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca2+] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes. PMID:20507928

  5. Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS.

    PubMed

    Wang, Yan; Roth, Jonathan D; Taylor, Steven W

    2014-04-15

    Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (247±15pg/mL of AC3174 and 1306±48pg/mL of AC170222), or in combination (222±32pg/mL and 1136±47pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC

  6. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  7. The effect of a glucagon-like peptide-1 receptor agonist on glucose tolerance in women with previous gestational diabetes mellitus: protocol for an investigator-initiated, randomised, placebo-controlled, double-blinded, parallel intervention trial

    PubMed Central

    Foghsgaard, Signe; Vedtofte, Louise; Mathiesen, Elisabeth R; Svare, Jens A; Gluud, Lise L; Holst, Jens J; Damm, Peter; Knop, Filip K; Vilsbøll, Tina

    2013-01-01

    Introduction Pregnancy is associated with decreased insulin sensitivity, which is usually overcome by a compensatory increase in insulin secretion. Some pregnant women are not able to increase their insulin secretion sufficiently, and consequently develop gestational diabetes mellitus (GDM). The disease normally disappears after delivery. Nevertheless, women with previous GDM have a high risk of developing type 2 diabetes (T2D) later in life. We aim to investigate the early development of T2D in women with previous GDM and to evaluate whether treatment with the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, may modify their risk of developing T2D. Methods and analyses 100 women with previous GDM will be randomised to either liraglutide or placebo treatment for 1 year (blinded) with an open-label extension for another 4 years. Additionally, 15 women without previous GDM will constitute a baseline control group. Women will be tested with an oral glucose tolerance test (primary endpoint: area under the curve for plasma glucose) and an isoglycaemic intravenous glucose infusion at baseline, after 1 year and after 5 years. Additional evaluations include a glucagon test, dual-energy X-ray absorptiometry, imaging of the liver (ultrasound elastography and fibroscanning), an ad libitum meal for food intake evaluation and questionnaires related to appetite, quality of life and alcohol consumption habits. Ethics and dissemination The protocol has been approved by the Danish Medicines Agency, the Scientific-Ethical Committee of the Capital Region of Denmark, and the Danish Data Protection Agency and will be carried out under the surveillance and guidance of the GCP unit at Copenhagen University Hospital Bispebjerg in compliance with the ICH-GCP guidelines and in accordance with the Helsinki Declaration. Positive, negative and inconclusive results will be published at scientific conferences and as one or more scientific manuscripts in peer

  8. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  9. Successful Pregnancy after Improving Insulin Resistance with the Glucagon-Like Peptide-1 Analogue in a Woman with Polycystic Ovary Syndrome: A Case Report and Review of the Literature.

    PubMed

    Yang, Qianying; Wang, Fang

    2016-01-01

    The polycystic ovary syndrome (PCOS) is a common cause of anovulatory infertility. It is diagnosed by the presence of hyperandrogenemia, insulin resistance (IR), obesity and other endocrine or metabolic disorders. Exenatide (EX) is a kind of glucagon-like peptide, which is a new option for patients with diabetes mellitus. We present a patient with infertility for PCOS. She was overweight and her medical history included IR, right-sided ovarian mucinous cystadenomas, and left-sided teratoma. Although she had been treated with ovarian surgery, clomiphene citrate and gonadotropins, weight loss and metformin, which have been effective for dominant follicle development, she still failed to conceive. Then EX was initiated to intervene for 2 months. EX treatment was successful to improve IR; after that the infertile woman with PCOS became pregnant. EX improves IR and reproduction capacity in PCOS patients, reducing insulin level and ameliorating endocrine disorders, thereby improving ovarian function, promoting follicle development, and providing new avenues for the treatment of infertility with PCOS. PMID:27300746

  10. Glucagon-like peptide 1: a potent glycogenic hormone.

    PubMed

    Valverde, I; Morales, M; Clemente, F; López-Delgado, M I; Delgado, E; Perea, A; Villanueva-Peñacarrillo, M L

    1994-08-01

    GLP-1(7-36)amide is an insulinotropic peptide derived from the intestinal post-translational proglucagon process, the release of which is increased mainly after a carbohydrate meal; also, its anti-diabetogenic effect in normal and diabetic states has been reported. In this study, GLP-1(7-36)amide stimulates the formation of glycogen from glucose in isolated rat hepatocytes, such a glycogenic effect being achieved with physiological concentrations of the peptide. The GLP-1(7-36)amide-induced glycogenesis is abolished by glucagon, and it is accompanied by stimulation of the glycogen synthase alpha activity and by a decrease in the basal and glucagon-stimulated cyclic AMP content. These findings could explain, at least in part, the GLP-1(7-36)amide insulin-independent plasma glucose lowering effect.

  11. Efficacy and safety of the glucagon-like peptide-1 receptor agonist liraglutide added to insulin therapy in poorly regulated patients with type 1 diabetes—a protocol for a randomised, double-blind, placebo-controlled study: The Lira-1 study

    PubMed Central

    Dejgaard, Thomas Fremming; Knop, Filip Krag; Tarnow, Lise; Frandsen, Christian Seerup; Hansen, Tanja Stenbæk; Almdal, Thomas; Holst, Jens Juul; Madsbad, Sten; Andersen, Henrik Ullits

    2015-01-01

    Introduction Intensive insulin therapy is recommended for the treatment of type 1 diabetes (T1D). Hypoglycaemia and weight gain are the common side effects of insulin treatment and may reduce compliance. In patients with insulin-treated type 2 diabetes, the addition of glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy has proven effective in reducing weight gain and insulin dose. The present publication describes a protocol for a study evaluating the efficacy and safety of adding a GLP-1RA to insulin treatment in overweight patients with T1D in a randomised, double-blinded, controlled design. Methods and analysis In total, 100 patients with type 1 diabetes, poor glycaemic control (glycated haemoglobin (HbA1c) >8%) and overweight (body mass index >25 kg/m2) will be randomised to either liraglutide 1.8 mg once daily or placebo as an add-on to intensive insulin therapy in this investigator initiated, double-blinded, placebo-controlled parallel study. The primary end point is glycaemic control as measured by changes in HbA1c. Secondary end points include changes in the insulin dose, hypoglyacemic events, body weight, lean body mass, fat mass, food preferences and adverse events. Glycaemic excursions, postprandial glucagon levels and gastric emptying rate during a standardised liquid meal test will also be studied. Ethics and dissemination The study is approved by the Danish Medicines Authority, the Regional Scientific-Ethical Committee of the Capital Region of Denmark and the Data Protection Agency. The study will be carried out under the surveillance and guidance of the good clinical practice (GCP) unit at Copenhagen University Hospital Bispebjerg in accordance with the ICH-GCP guidelines and the Helsinki Declaration. Trial registration number NCT01612468. PMID:25838513

  12. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  13. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways.

    PubMed

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  14. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways.

    PubMed

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  15. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  16. Glucagon-like peptides activate hepatic gluconeogenesis.

    PubMed

    Mommsen, T P; Andrews, P C; Plisetskaya, E M

    1987-07-13

    Piscine (anglerfish, catfish, coho salmon) glucagon-like peptides (GLPs), applied at 3.5 nM, stimulate (1.1-1.9-fold) flux through gluconeogenesis above control levels in isolated trout and salmon hepatocytes. Human GLP-1 and GLP-2 also activate gluconeogenesis, but to a lesser degree than their piscine counterparts. Minor increases of substrate oxidation are noticed at times of peak gluconeogenic activation through GLPs. These hormones, which are derived from the same precursor peptide as glucagon are more potent activators of gluconeogenesis than glucagon when applied at equimolar concentrations, and do not appear to employ cAMP or cGMP as the intracellular messenger in hepatic tissue. PMID:3109952

  17. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiotaderived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine...

  18. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: potential therapies for the treatment of stroke

    PubMed Central

    Darsalia, Vladimer; Larsson, Martin; Nathanson, David; Klein, Thomas; Nyström, Thomas; Patrone, Cesare

    2015-01-01

    During the past decades, candidate drugs that have shown neuroprotective efficacy in the preclinical setting have failed in clinical stroke trials. As a result, no treatment for stroke based on neuroprotection is available today. The activation of the glucagon-like peptide 1 receptor (GLP-1) for reducing stroke damage is a relatively novel concept that has shown neuroprotective effects in animal models. In addition, clinical studies are currently ongoing. Herein, we review this emerging research field and discuss the next milestones to be achieved to develop a novel antistroke therapy. PMID:25669907

  19. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion.

    PubMed

    Jafri, Laila; Saleem, Samreen; Calderwood, Danielle; Gillespie, Anna; Mirza, Bushra; Green, Brian D

    2016-04-01

    Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists. PMID:26820940

  20. Gut adaptation and the glucagon-like peptides

    PubMed Central

    Drucker, D J

    2002-01-01

    The glucagon-like peptides GLP-1 and GLP-2 are synthesised and then released from enteroendocrine cells in the small and large intestine. GLP-1 promotes efficient nutrient assimilation while GLP-2 regulates energy absorption via effects on nutrient intake, gastric acid secretion and gastric emptying, nutrient absorption, and mucosal permeability. Preliminary human studies indicate that GLP-2 may enhance energy absorption and reduce fluid loss in subjects with short bowel syndrome suggesting that GLP-2 functions as a key regulator of mucosal integrity, permeability, and nutrient absorption. Hence GLP-2 may be therapeutically useful in diseases characterised by injury or dysfunction of the gastrointestinal epithelium. PMID:11839727

  1. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes.

    PubMed Central

    Yu, JingJia; Wang, Xiaojing; Liu, Dongmei; Zhao, Lin; Sun, Lihao; Zhao, Hongyan; Tao, Bei; Liu, Jianmin

    2015-01-01

    Recently, a number of studies have demonstrated the potential beneficial role for novel anti-diabetic GLP-1 receptor agonists (GLP-1RAs) in the skeleton metabolism in diabetic rodents and patients. In this study, we evaluated the impacts of the synthetic GLP-1RA Liraglutide on bone mass and quality in osteoporotic rats induced by ovariectomy (OVX) but without diabetes, as well as its effect on the adipogenic and osteoblastogenic differentiation of bone marrow stromal cells (BMSCs). Three months after sham surgery or bilateral OVX, eighteen 5-month old female Wistar rats were randomly divided into three groups to receive the following treatments for 2 months: (1) Sham + normal saline; (2) OVX + normal saline; and (3) OVX + Liraglutide (0.6 mg/day). As revealed by micro-CT analysis, Liraglutide improved trabecular volume, thickness and number, increased BMD, and reduced trabecular spacing in the femurs in OVX rats; similar results were observed in the lumbar vertebrae of OVX rats treated with Liraglutide. Following in vitro treatment of rat and human BMSCs with 10 nM Liraglutide, there was a significant increase in the mRNA expression of osteoblast-specific transcriptional factor Runx2 and the osteoblast markers alkaline phosphatase (ALP) and collagen α1 (Col-1), but a significant decrease in peroxisome proliferator-activated receptor γ (PPARγ). In conclusion, our results indicate that the anti-diabetic drug Liraglutide can exert a bone protective effect even in non-diabetic osteoporotic OVX rats. This protective effect is likely attributable to the impact of Liraglutide on the lineage fate determination of BMSCs. PMID:26177280

  2. Glucagon-like peptide-1 stimulates luteinizing hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell line.

    PubMed Central

    Beak, S A; Heath, M M; Small, C J; Morgan, D G; Ghatei, M A; Taylor, A D; Buckingham, J C; Bloom, S R; Smith, D M

    1998-01-01

    To examine the influence of the putative satiety factor (GLP-1) on the hypothalamo-pituitary-gonadal axis, we used GT1-7 cells as a model of neuronal luteinizing hormone- releasing hormone (LHRH) release. GLP-1 caused a concentration-dependent increase in LHRH release from GT1-7 cells. Specific, saturable GLP-1 binding sites were demonstrated on these cells. The binding of [125I]GLP-1 was time-dependent and consistent with a single binding site (Kd = 0.07+/-0.016 nM; binding capacity = 160+/-11 fmol/mg protein). The specific GLP-1 receptor agonists, exendin-3 and exendin-4, also showed high affinity (Ki = 0.3+/-0.05 and 0.32+/-0.06 nM, respectively) as did the antagonist exendin-(9-39) (Ki = 0.98+/-0.24 nM). At concentrations that increased LHRH release, GLP-1 (0.5-10 nM) also caused an increase in intracellular cAMP in GT1-7 cells (10 nM GLP-1: 7.66+/-0.4 vs. control: 0.23+/-0.02 nmol/mg protein; P < 0.001). Intracerebroventricular injection of GLP-1 at a single concentration (10 microg) produced a prompt increase in the plasma luteinizing hormone concentration in male rats (GLP-1: 1.09+/-0.11 vs. saline: 0.69+/-0.06 ng/ml; P < 0.005). GLP-1 levels in the hypothalami of 48-h-fasted male rats showed a decrease, indicating a possible association of the satiety factor with the low luteinizing hormone levels in animals with a negative energy balance. PMID:9502775

  3. Inositolphosphoglycans are possible mediators of the glucagon-like peptide 1 (7-36)amide action in the liver.

    PubMed

    Trapote, M A; Clemente, F; Galera, C; Morales, M; Alcántara, A I; López-Delgado, M I; Villanueva-Peñacarrillo, M L; Valverde, I

    1996-02-01

    A potent glycogenic effect for GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and the specific receptors detected for GLP-1(7-36)amide in these tissue membranes do not seem to be associated to adenylate cyclase. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers in the action of insulin. In a human hepatoma cell line (HEP G-2), we have observed the presence of [125I]GLP-1(7-36)amide specific binding, and a stimulatory effect of the peptide upon glycogen synthesis, confirming the findings in isolated rat hepatocytes. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs), in the same manner as insulin, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1(7-36)amide glycogenic action in the liver.

  4. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  5. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  6. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin, and glucagon-like peptide: amino acid sequences of oxyntomodulin and glucagon-like peptide.

    PubMed

    Pollock, H G; Kimmel, J R; Ebner, K E; Hamilton, J W; Rouse, J B; Lance, V; Rawitch, A B

    1988-01-01

    Oxyntomodulin, glucagon, and a glucagon-like peptide (GLP) have been isolated from the endocrine pancreas of the alligator gar (Lepisosteus spatula), a ganoid fish. The three peptides were isolated by gel filtration and HPLC and were identified by size, composition, and glucagon-like immunoreactivity. The amino acid sequences of the oxyntomodulin and GLP were determined. The oxyntomodulin contains 36 amino acid residues and its sequence is H S Q G T F T N D Y S K Y L D T R R A Q D F V Q W L M S T K R S G G I T. The composition of the glucagon is identical to the N-terminal 29 residues of the gar oxyntomodulin. The single form of GLP found contains 34 amino acid residues in the following sequence: H A D G T Y T S D V S S Y L Q D Q A A K K F V T W L K Q G Q D R R E. These findings suggest that all three peptides are derived from a common precursor. PMID:3282974

  7. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin, and glucagon-like peptide: amino acid sequences of oxyntomodulin and glucagon-like peptide.

    PubMed

    Pollock, H G; Kimmel, J R; Ebner, K E; Hamilton, J W; Rouse, J B; Lance, V; Rawitch, A B

    1988-01-01

    Oxyntomodulin, glucagon, and a glucagon-like peptide (GLP) have been isolated from the endocrine pancreas of the alligator gar (Lepisosteus spatula), a ganoid fish. The three peptides were isolated by gel filtration and HPLC and were identified by size, composition, and glucagon-like immunoreactivity. The amino acid sequences of the oxyntomodulin and GLP were determined. The oxyntomodulin contains 36 amino acid residues and its sequence is H S Q G T F T N D Y S K Y L D T R R A Q D F V Q W L M S T K R S G G I T. The composition of the glucagon is identical to the N-terminal 29 residues of the gar oxyntomodulin. The single form of GLP found contains 34 amino acid residues in the following sequence: H A D G T Y T S D V S S Y L Q D Q A A K K F V T W L K Q G Q D R R E. These findings suggest that all three peptides are derived from a common precursor.

  8. Evidence for the presence of glucagon-like immunoreactivity (GLI) in the pancreas.

    PubMed

    Srikant, C B; Unger, R H

    1976-12-01

    Glucagon-like immunoreactivity (GLI), which can be separated from glucagon by isoelectric focusing, has been detected in partially purified canine pancreatic extracts. Like gastrointestinal GLI, this insular GLI reacts with crossreacting antiserum 78J but not with glucagon "specific" antiserum 30K and has an isoelectric point (pl) of 9.5, whereas canine pancreatic glucagon has a pl of 6.25. When combined with glucagon, the GLI-glucagon mixture gives 48J assay values between GLI and this crossreacting antiglucagon serum and thus conceals it in glucagon-containing extracts.

  9. Induction of intestinal epithelial proliferation by glucagon-like peptide 2.

    PubMed Central

    Drucker, D J; Erlich, P; Asa, S L; Brubaker, P L

    1996-01-01

    Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation. Images Fig. 1 Fig. 5 PMID:8755576

  10. Pancreatic proglucagon processing: isolation and structures of glucagon and glucagon-like peptide from gene I.

    PubMed

    Nichols, R; Lee, T D; Andrews, P C

    1988-12-01

    The anglerfish endocrine pancreas expresses two different genes for preproglucagon. The regions of the two proglucagons that correspond to glucagon have different sequences, as do the two glucagon-like peptides (GLPs). The products derived from processing the more abundant proglucagon-II have recently been determined. However, it was not known whether proglucagon-I was processed to similar products. The two major biologically active products of preproglucagon-I processing (glucagon-I and GLP-I) have now been purified to homogeneity. Their structures were determined using automated gas phase Edman degradation, tryptic mapping, and fast atom bombardment mass spectrometry. The preproglucagon-I-processing sites were identified. Glucagon-I represents residues 53-81, and GLP-I corresponds to preproglucagon-I-(91-124) (numbering from the initiator Met). PMID:3058456

  11. Characterization of the hypotensive effects of glucagon-like peptide-2 in anesthetized rats.

    PubMed

    Iwai, Takashi; Kaneko, Maki; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro

    2013-08-29

    Glucagon-like peptide-2 (GLP-2) is a proglucagon-derived peptide released from enteroendocrine cells and neurons. We recently reported that GLP-2 induced hypotension. In the present study, we characterized the mechanisms of GLP-2-induced hypotension. GLP-2 was administered peripherally or centrally to male Wistar rats anesthetized with urethane and α-chloralose. The rats were vagotomized or systemically pretreated with atropine, prazosin, or propranolol before the GLP-2 administration. The central and peripheral administration of GLP-2 reduced mean arterial blood pressure (MAP). The maximum change of MAP (maximum ΔMAP) was reduced by vagotomy or prazosin, but not propranolol. The effects of the central but not peripheral administration of GLP-2 were reduced by atropine. These results suggest that GLP-2 modulates vagal afferent inputs and inhibits the sympathetic nervous system in the brain to induce hypotension. PMID:23867714

  12. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  13. Comparative physiology of glucagon-like peptide-2 – Implications and applications for production and health of ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  14. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  15. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model.

    PubMed

    Wu, Jie; Qi, Keke; Xu, Ziwei; Wan, Jin

    2015-01-01

    Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.

  16. Dibutyl Phthalate Exposure Disrupts Evolutionarily Conserved Insulin and Glucagon-Like Signaling in Drosophila Males.

    PubMed

    Williams, Michael J; Wiemerslage, Lyle; Gohel, Priya; Kheder, Sania; Kothegala, Lakshmi V; Schiöth, Helgi B

    2016-06-01

    Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism. PMID:27100621

  17. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice.

    PubMed

    Iwai, Takashi; Jin, Kazushi; Ohnuki, Tomoko; Sasaki-Hamada, Sachie; Nakamura, Minami; Saitoh, Akiyoshi; Sugiyama, Azusa; Ikeda, Masaatsu; Tanabe, Mitsuo; Oka, Jun-Ichiro

    2015-02-01

    We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.

  18. Angioplastic necrolytic migratory erythema. Unique association of necrolytic migratory erythema, extensive angioplasia, and high molecular weight glucagon-like polypeptide

    SciTech Connect

    Franchimont, C.; Pierard, G.E.; Luyckx, A.S.; Gerard, J.; Lapiere, C.M.

    1982-12-01

    A diabetic patient developed necrolytic migratory erythema with extensive angioplasia and high molecular weight glucagon-like polypeptide. There was no associated neoplasm such as glucagonoma. Lesions in the skin were studied by standard optical microscopy and by radioautography after incorporation of tritiated thymidine. Alterations in the skin begin as focal necrosis in the epidermis and in epithelial structures of adnexa, followed by marked angioplasia and a superficial and deep perivascular dermatitis.

  19. Glucagon-Like Peptide-2 Improves Both Acute and Late Experimental Radiation Enteritis in the Rat

    SciTech Connect

    Torres, Sandra

    2007-12-01

    Purpose: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. Methods and Materials: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. Results: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. Conclusion: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.

  20. Metabolic response of teleost hepatocytes to glucagon-like peptide and glucagon.

    PubMed

    Mommsen, T P; Moon, T W

    1990-07-01

    Salmon glucagon-like peptide (GLP), bovine glucagon (B-glucagon) and anglerfish glucagon (AF-glucagon), all activate glucose production in teleost hepatocytes through gluconeogenesis and glycogenolysis, but notable species differences exist in their respective effectiveness. In trout hepatocytes, gluconeogenesis appears to be the main target of hormone action. In eel cells, sampled in November, glycogenolysis was activated threefold, while gluconeogenesis was increased by 12% only. In March, glycogenolytic activation was 1.7-fold, while gluconeogenesis was increased by about 1.7-fold after exposure to B-glucagon. In brown bullhead cells, increases in glycogenolysis from seven- (GLP) to tenfold (B- and AF-glucagon) were noted, while activation of gluconeogenesis was slight. Fragments of two AF-glucagons (19-29) revealed only insignificant metabolic activity. Treatment of eel cells with B-glucagon led to large (up to 20-fold) increases in intracellular cyclic AMP (cAMP) concentrations, while exposure to GLP was accompanied by a modest (less than twofold) increase in cAMP, although metabolic effectiveness (gluconeogenesis and glycogenolysis) was similar for the two treatments. Under identical conditions, brown bullhead cellular cAMP responded poorly. Levels of cAMP peaked within 15 min following hormone application. The results imply that no simple or direct relationship exists between the amount of intracellular cAMP and the metabolic action of the glucagon family of hormones. It can further be concluded that GLPs are important regulators of hepatic metabolism, influencing identical targets as glucagon, while the mechanisms of action seem to differ. PMID:2166124

  1. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    PubMed Central

    Vegge, Andreas; Thymann, Thomas; Lund, Pernille; Stoll, Barbara; Bering, Stine B.; Hartmann, Bolette; Jelsing, Jacob; Qvist, Niels; Burrin, Douglas G.; Jeppesen, Palle B.; Holst, Jens J.

    2013-01-01

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection. PMID:23764891

  2. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance

    PubMed Central

    Tella, Sri Harsha

    2015-01-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5–1.5% over time with weight loss of 2–5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  3. Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet.

    PubMed

    Baldassano, Sara; Amato, Antonella; Cappello, Francesco; Rappa, Francesca; Mulè, Flavia

    2013-04-01

    Endogenous glucagon-like peptide-2 (GLP2) is a key mediator of refeeding-induced and resection-induced intestinal adaptive growth. This study investigated the potential role of GLP2 in mediating the mucosal responses to a chronic high-fat diet (HFD). In this view, the murine small intestine adaptive response to a HFD was analyzed and a possible involvement of endogenous GLP2 was verified using GLP2 (3-33) as GLP2 receptor (GLP2R) antagonist. In comparison with animals fed a standard diet, mice fed a HFD for 14 weeks exhibited an increase in crypt-villus mean height (duodenum, 27.5±3.0%; jejunum, 36.5±2.9%; P<0.01), in the cell number per villus (duodenum, 28.4±2.2%; jejunum, 32.0±2.9%; P<0.01), and in Ki67-positive cell number per crypt. No change in the percent of caspase-3-positive cell in the villus-crypt was observed. The chronic exposure to a HFD also caused a significant increase in GLP2 plasma levels and in GLP2R intestinal expression. Daily administration of GLP2 (3-33) (30-60  ng) for 4 weeks did not modify the crypt-villus height in control mice. In HFD-fed mice, chronic treatment with GLP2 (3-33) reduced the increase in crypt-villus height and in the cell number per villus through reduction of cell proliferation and increase in apoptosis. This study provides the first experimental evidence for a role of endogenous GLP2 in the intestinal adaptation to HFD in obese mice and for a dysregulation of the GLP2/GLP2R system after a prolonged HFD.

  4. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  5. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances. PMID:25605668

  6. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma

    PubMed Central

    Sowa-Staszczak, Anna; Trofimiuk-Müldner, Małgorzata; Stefańska, Agnieszka; Tomaszuk, Monika; Buziak-Bereza, Monika; Gilis-Januszewska, Aleksandra; Jabrocka-Hybel, Agata; Głowa, Bogusław; Małecki, Maciej; Bednarczuk, Tomasz; Kamiński, Grzegorz; Kowalska, Aldona; Mikołajczak, Renata; Janota, Barbara; Hubalewska-Dydejczyk, Alicja

    2016-01-01

    Introduction The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. Materials and Methods Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. Results Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). Conclusions 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective surgical treatment. This imaging technique may eliminate the need to perform invasive procedures in case of occult insulinoma. PMID:27526057

  7. New Insights Concerning the Glucose-dependent Insulin Secretagogue Action of Glucagon-like Peptide-1 in Pancreatic β-Cells

    PubMed Central

    Holz, G.

    2010-01-01

    The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic β-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca2+-dependent exocytosis. Simultaneously, GLP-1 promotes Ca2+ influx and mobilizes an intracellular source of Ca2+. GLP-1 sensitizes intracellular Ca2+ release channels (ryanodine and IP3 receptors) to stimulatory effects of Ca2+, thereby promoting Ca2+-induced Ca2+ release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K+ channels (K-ATP), membrane depolarization, and influx of Ca2+ through voltage-dependent Ca2+ channels (VDCCs). Ca2+ influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca2+ release channels are sensitized by GLP-1, Ca2+ influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no “fuel” is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new “feed-forward” hypothesis of β-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects. PMID:15655710

  8. [Roles of rs 6923761 gene variant in glucagon-like peptide 1 receptor on weight, cardiovascular risk factor and serum adipokine levels in morbid obese patients].

    PubMed

    de Luis, Daniel Antonio; Pacheco, David; Aller, Rocío; Izaola, Olatz; Bachiller, Rosario

    2014-04-01

    Antecedentes: Los estudios de receptor de GLP-1 se han dirigido a la identificación de polimorfismos en el gen receptor de GLP- 1 que pueden ser un factor que contribuye en la patogénesis de la diabetes mellitus y factores de riesgo cardiovascular. Sin embargo, el papel de las variantes del receptor de GLP-1 variantes en el peso corporal, factores de riesgo cardiovasculares y adipocitoquinas sigue estando poco estudiado en pacientes con obesidad morbida. Objetivo: Nuestro objetivo fue analizar los efectos del polimorfismo del receptor de GLP-1 rs6923761 sobre el peso corporal, factores de riesgo cardiovascular y los niveles de adipocitoquinas séricas en pacientes con obesidad mórbida. Diseño: Se estudió una muestra de 175 obesos mórbidos. La glucosa en ayunas, proteína C reactiva (PCR), insulina, resistencia a la insulina ( HOMA), colesterol total, LDL- colesterol, HDL- colesterol, triglicéridos y la concentración de adipoquinas se midieron. También se determinaron el peso, índice de masa corporal, circunferencia de la cintura, masa grasa a través de bioimpedancia y la presión arterial. Resultados: Un total de 87 obesos (49,7%) tenían el genotipo GG y 88 (50,3%) de los sujetos del estudio tenían los siguientes genotipos; GA (71 obesos, el 40,6%) o AA (17 sujetos del estudio, el 9,7%) ( segundo grupo) . En el grupo con genotipo GG, los niveles de glucosa (4,4 ± 2,3 mg/dl, p < 0,05), triglicéridos (6,8 ± 4,3 mg/dl , p < 0,05), insulina (4,5 ± 2,3 UI/l , p < 0,05) y HOMA (1,5 ± 0,9 unidades, p < 0,05 ) fueron mayores que en el grupo mutante. No se detectaron diferencias en el resto de parámetros analizados Conclusión: Existe una asociación entre los parámetros metabólicos y el alelo mutante (A) del polimorfismo rs6923761 del receptor de GLP- 1 en pacientes con obesidad mórbida. Los niveles de triglicéridos, insulina y resistencia a la insulina son más elevados en los sujetos portadores del alelo A.

  9. Combination of soya protein and polydextrose reduces energy intake and glycaemic response via modulation of gastric emptying rate, ghrelin and glucagon-like peptide-1 in Chinese.

    PubMed

    Soong, Yean Yean; Lim, Wen Xin; Leow, Melvin Khee Shing; Siow, Phei Ching; Teh, Ai Ling; Henry, Christiani Jeyakumar

    2016-06-01

    The short-term effect of soya protein, polydextrose and their combination on energy intake (EI) was investigated in Chinese. In total, twenty-seven healthy, normotensive and lean Chinese men aged 21-40 years were given four different soyabean curd preloads with or without polydextrose. The study was a repeated-measure, randomised, cross-over design. The consumption of high-protein soyabean curd alone or in addition with polydextrose as a preload led to greater reduction in EI at a subsequent meal. A similar observation was also found after intake of low-protein soyabean curd with polydextrose. The gut hormone responses mirrored the reduction in food intake. It appears that incorporation of polydextrose either with low- or high-protein soyabean curd could be a potential strategy to reduce EI and assist with weight management. The popular consumption of soyabean curd in Chinese makes it an ideal vehicle for incorporation of polydextrose. This evidence-based dietary approach can serve as a guideline for developing functional foods for weight reduction and weight maintenance. PMID:27185412

  10. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances.

  11. Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.

    PubMed

    Goodwill, Adam G; Tune, Johnathan D; Noblet, Jillian N; Conteh, Abass M; Sassoon, Daniel; Casalini, Eli D; Mather, Kieren J

    2014-01-01

    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.

  12. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation.

    PubMed

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  13. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  14. Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut.

    PubMed

    Connor, E E; Kahl, S; Elsasser, T H; Baldwin, R L; Fayer, R; Santin-Duran, M; Sample, G L; Evock-Clover, C M

    2013-03-01

    Damage to the intestinal epithelium reduces nutrient absorption and animal growth, and can have negative long-term health effects on livestock. Because the intestinotropic hormone glucagon-like peptide 2 (GLP-2) has been shown to contribute to gut integrity, reduce inflammation, and improve nutrient absorption, the present study was designed to determine whether administration of GLP-2 to calves with coccidiosis in the first month of life affects intestinal growth and mediates negative effects of the proinflammatory response. Holstein bull calves (n=19) were assigned to 4 treatment groups of 4 to 5 calves each: (1) infected with Eimeria bovis, GLP-2 treated; (2) noninfected, GLP-2 treated; (3) infected with E. bovis, buffer treated; and (4) noninfected, buffer treated. Infected calves received 100,000 to 200,000 sporulated E. bovis oocysts suspended in milk replacer on d 0 of the study. On d 18, calves in the GLP-2 groups received a subcutaneous injection of 50 μg of bovine GLP-2/kg of body weight twice daily for 10 d, and calves in the buffer-treated groups received an equivalent volume of sodium bicarbonate buffer only. On d 28, calves were slaughtered 2h after injection of 5-bromo-2'-deoxyuridine (BrdU). Intestinal tissues were measured and villus height, crypt depth, and BrdU immunostaining were evaluated in segments of the small intestine. Nitrotyrosine immunostaining, a measure of nitro-oxidative damage, was evaluated in the ileum and cecum. No GLP-2 treatment by E. bovis infection interaction was observed for any parameter measured, with the exception of nitrotyrosine immunostaining in the cecum. Large intestinal weight was greater in infected than noninfected calves and with GLP-2 treatment relative to buffer treatment. Calves that received GLP-2 also had greater small intestinal weight but no difference in cell proliferation, as assessed by BrdU labeling, relative to buffer-treated calves. No treatment effects were detected for villus height, crypt depth

  15. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    PubMed

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (P<0.01), while migration was even inhibited in Caco-2 cells (P<0.0012). GLP-2 significantly stimulated mRNA expression of VEGF and TGF-beta, but not of KGF in CCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound

  16. Glucagon-like peptide analogues for type 2 diabetes mellitus: systematic review and meta-analysis

    PubMed Central

    2010-01-01

    Background Glucagon-like peptide (GLP-1) analogues are a new class of drugs used in the treatment of type 2 diabetes. They are given by injection, and regulate glucose levels by stimulating glucose-dependent insulin secretion and biosynthesis, suppressing glucagon secretion, and delaying gastric emptying and promoting satiety. This systematic review aims to provide evidence on the clinical effectiveness of the GLP-1 agonists in patients not achieving satisfactory glycaemic control with one or more oral glucose lowering drugs. Methods MEDLINE, EMBASE, the Cochrane Library and Web of Science were searched to find the relevant papers. We identified 28 randomised controlled trials comparing GLP-1 analogues with placebo, other glucose-lowering agents, or another GLP-1 analogue, in patients with type 2 diabetes with inadequate control on a single oral agent, or on dual therapy. Primary outcomes included HbA1c, weight change and adverse events. Results Studies were mostly of short duration, usually 26 weeks. All GLP-1 agonists reduced HbA1c by about 1% compared to placebo. Exenatide twice daily and insulin gave similar reductions in HbA1c, but exenatide 2 mg once weekly and liraglutide 1.8 mg daily reduced it by 0.20% and 0.30% respectively more than glargine. Liraglutide 1.2 mg daily reduced HbA1c by 0.34% more than sitagliptin 100 mg daily. Exenatide and liraglutide gave similar improvements in HbA1c to sulphonylureas. Exenatide 2 mg weekly and liraglutide 1.8 mg daily reduced HbA1c by more than exenatide 10 μg twice daily and sitagliptin 100 mg daily. Exenatide 2 mg weekly reduced HbA1c by 0.3% more than pioglitazone 45 mg daily. Exenatide and liraglutide resulted in greater weight loss (from 2.3 to 5.5 kg) than active comparators. This was not due simply to nausea. Hypoglycaemia was uncommon, except when combined with a sulphonylurea. The commonest adverse events with all GLP-1 agonists were initial nausea and vomiting. The GLP-1 agonists have some effect on beta

  17. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide

    PubMed Central

    Gurung, Tara; Shyangdan, Deepson S; O’Hare, Joseph Paul; Waugh, Norman

    2015-01-01

    Background Dulaglutide is a new, long-acting glucagon-like peptide analogue in the treatment of type 2 diabetes. It is available in two doses, 0.75 and 1.5 mg, given by injection once weekly. This systematic review reports the effectiveness and safety of dulaglutide in type 2 diabetes in dual and triple therapy. Methods MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, and conference abstracts were searched from 2005 to August 2014, and updated in January 2015. Company websites and references of included studies were checked for potentially relevant studies. European Medicines Agency and US Food and Drug Administration websites were searched. Results Four trials were included. All were manufacturer-funded randomized controlled trials from the Assessment of Weekly Administration of Dulaglutide in Diabetes (AWARD) program. AWARD-1 compared dulaglutide 1.5 mg against exenatide 10 µg twice daily and placebo, AWARD-2 compared dulaglutide 0.75 and 1.5 mg against insulin glargine, AWARD-5 compared dulaglutide 0.75 and 1.5 mg against sitagliptin 100 mg and placebo, and AWARD-6 compared dulaglutide 1.5 mg against liraglutide 1.8 mg. The duration of follow-up in the trials ranged from 26 to 104 weeks. The primary outcome of all the included trials was change in HbA1c. At 26 weeks, greater HbA1c reductions were seen with dulaglutide than with twice daily exenatide (dulaglutide 1.5/0.75 mg: −1.5%/−1.3%; exe: 0.99%) and sitagliptin (1.5/0.75 mg −1.22%/−1.01%; sitagliptin: −0.6%). HbA1c change was greater with dulaglutide 1.5 mg (−1.08%) than with glargine (−0.63%), but not with dulaglutide 0.75 mg (−0.76%). Dulaglutide 1.5 mg was found to be noninferior to liraglutide 1.8 mg. More patients treated with dulaglutide achieved HbA1c targets of <7% and ≤6.5%. Reduction in weight was greater with dulaglutide than with sitagliptin and exenatide. Hypoglycemia was infrequent. The main adverse events were nausea, diarrhea, and vomiting. Conclusion

  18. Glucagon-like peptide-2 intracellularly stimulates eNOS phosphorylation and specifically induces submucosal arteriole vasodilation via a sheer stress-independent, local neural mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation, mucosal blood flow, luminal nutrient uptake, and suppressing gastric motility and secretion. We have shown th...

  19. Glucagon-like peptide-2 (GLP-2) increases net amino acid utilization by the portal-drained viscera of ruminatinhg calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) increases small intestinal mass and blood flow in ruminant calves, but its impact on nutrient metabolism across the portal-drained viscera (PDV) and liver is unknown. Eight Holstein calves with catheters in the carotid artery, mesenteric vein, portal vein and hepatic ...

  20. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine.

    PubMed

    Pedersen, Jens; Pedersen, Nis B; Brix, Sophie W; Grunddal, Kaare Villum; Rosenkilde, Mette M; Hartmann, Bolette; Ørskov, Cathrine; Poulsen, Steen S; Holst, Jens J

    2015-05-01

    Glucagon-like peptide 2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential in the treatment of intestinal deficiencies. It has recently been approved for the treatment of short bowel syndrome. The effects of GLP-2 are mediated by specific binding of the hormone to the GLP-2 receptor (GLP-2R) which was cloned in 1999. However, consensus about the exact receptor localization in the intestine has never been established. By physical, chemical and enzymatic tissue fragmentation, we were able to divide rat jejunum into different compartments consisting of: (1) epithelium alone, (2) mucosa with lamina propria and epithelium, (3) the external muscle coat including myenteric plexus, (4) a compartment enriched for the myenteric plexus and (5) intestine without epithelium. Expression of Glp2r; chromogranin A; tubulin, beta 3; actin, gamma 2, smooth muscle, enteric and glial fibrillary acidic protein in these isolated tissue fractions was quantified with qRT-PCR. Expression of the Glp2r was confined to compartments containing enteric neurons and receptor expression was absent in the epithelium. Our findings provide evidence for the expression of the GLP-2R in intestinal compartments rich in enteric neurons and, importantly they exclude significant expression in the epithelium of rat jejunal mucosa.

  1. Structure and biological activity of glucagon and glucagon-like peptide from a primitive bony fish, the bowfin (Amia calva).

    PubMed Central

    Conlon, J M; Youson, J H; Mommsen, T P

    1993-01-01

    The bowfin, Amia calva (order Amiiformes) occupies an important position in phylogeny as a surviving representative of a group of primitive ray-finned fishes from which the present-day teleosts may have evolved. Glucagon and glucagon-like peptide (GLP) were isolated from an extract of bowfin pancreas and their primary structures determined. Bowfin glucagon shows only four amino acid substitutions compared with human glucagon, and bowfin glucagon was equipotent and equally effective as human glucagon in stimulation of glycogenolysis in dispersed hepatocytes from a teleost fish, the copper rockfish, Sebastes caurinus. In contrast, bowfin GLP shows 15 amino acid substitutions and three amino acid deletions compared with the corresponding region of human GLP-1-(7-37)-peptide. In particular, the bowfin peptide contains an N-terminal tyrosine residue rather than the N-terminal histidine residue found in all other glucagon-related peptides so far characterized. Bowfin GLP stimulated glycogenolysis in rockfish hepatocytes, but was 3-fold less effective and 23-fold less potent than human GLP-1-(7-37)-peptide. We speculate that selective mutations in the GLP domain of bowfin preproglucagon may be an adaptive response to the previously demonstrated low biological potency of bowfin insulin. PMID:8240302

  2. Isolation and structure of the principal products of preproglucagon processing, including an amidated glucagon-like peptide.

    PubMed

    Andrews, P C; Hawke, D H; Lee, T D; Legesse, K; Noe, B D; Shively, J E

    1986-06-25

    The principal products derived from in vivo processing of anglerfish preproglucagon II were isolated and their structures determined. The structures were confirmed by a combination of automated Edman degradation, amino acid analysis, and fast atom bombardment mass spectrometry. The peptide corresponding to anglerfish preproglucagon II-(22-49) (numbering from the amino terminus of preproglucagon) was isolated intact and defines the site of signal cleavage to be between Gln-21 and Met-22. Glucagon from the anglerfish preproglucagon gene II was found to correspond to preproglucagon II-(52-80) (numbering from the amino terminus). Three forms of a glucagon-like peptide derived from preproglucagon II were also isolated. The structure of the longest form was consistent with the sequence of preproglucagon II-(89-122) deduced from the cDNA, His-Ala-Asp-Gly-Thr-Tyr-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Gln-Asp-Gln-Ala- Ala-Lys-Asp-Phe-Val-Ser-Trp-Leu-Lys-Ala-Gly-Arg-Gly-Arg-Arg-Glu. The carboxyl-terminal portion deduced from the cDNA remains intact in this form. A second form, preproglucagon II-(89-119) appears to result from proteolytic processing of the major form at the two adjacent arginine residues occurring at the carboxyl terminus. This second form has a glycine residue at its carboxyl terminus and is processed to the third form (preproglucagon II-(89-118)) which contains a carboxyl-terminal arginineamide. Radiolabeling studies in primary tissue culture support the observation that glucagon (preproglucagon II-(52-80], preproglucagon II-(89-122), and preproglucagon II-(89-119) are products of proglucagon processing in vivo. PMID:3755132

  3. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro

    PubMed Central

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia

    2009-01-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (Isc) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1–100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline Isc and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in Isc, with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons. PMID:19628655

  4. Synthesis and Pharmacological Characterization of Novel Glucagon-like Peptide-2 (GLP-2) Analogues with Low Systemic Clearance.

    PubMed

    Wiśniewski, Kazimierz; Sueiras-Diaz, Javier; Jiang, Guangcheng; Galyean, Robert; Lu, Mark; Thompson, Dorain; Wang, Yung-Chih; Croston, Glenn; Posch, Alexander; Hargrove, Diane M; Wiśniewska, Halina; Laporte, Régent; Dwyer, John J; Qi, Steve; Srinivasan, Karthik; Hartwig, Jennifer; Ferdyan, Nicky; Mares, Monica; Kraus, John; Alagarsamy, Sudarkodi; Rivière, Pierre J M; Schteingart, Claudio D

    2016-04-14

    Glucagon-like peptide-2 receptor agonists have therapeutic potential for the treatment of intestinal diseases. The native hGLP-2, a 33 amino acid gastrointestinal peptide, is not a suitable clinical candidate, due to its very short half-life in humans. In search of GLP-2 receptor agonists with better pharmacokinetic characteristics, a series of GLP-2 analogues containing Gly substitution at position 2, norleucine in position 10, and hydrophobic substitutions in positions 11 and/or 16 was designed and synthesized. In vitro receptor potency at the human GLP-2, selectivity vs the human GLP-1 and GCG receptors, and PK profile in rats were determined for the new analogues. A number of compounds more potent at the hGLP-2R than the native hormone, showing excellent receptor selectivity and very low systemic clearance (CL) were discovered. Analogues 69 ([Gly(2),Nle(10),D-Thi(11),Phe(16)]hGLP-2-(1-30)-NH2), 72 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-OH), 73 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NH2), 81 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NHEt), and 85 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NH-((CH2)2O)4-(CH2)2-CONH2) displayed the desired profiles (EC50 (hGLP-2R) < 100 pM, CL in rat <0.3 mL/min/kg, selective vs hGLP-1R and hGCGR). Compound 73 (FE 203799) was selected as a candidate for clinical development. PMID:26986178

  5. Effect of Glucagon-Like Peptide 2 on Hepatic, Renal, and Intestinal Disposition of 1-Chloro-2,4-dinitrobenzene

    PubMed Central

    Villanueva, Silvina S. M.; Perdomo, Virginia G.; Ruiz, María L.; Rigalli, Juan P.; Arias, Agostina; Luquita, Marcelo G.; Vore, Mary; Catania, Viviana A.

    2012-01-01

    The ability of the liver, small intestine, and kidney to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), was assessed in rats treated with glucagon-like peptide 2 (GLP-2, 12 μg/100 g b.wt. s.c. every 12 h for 5 consecutive days). An in vivo perfused jejunum model with simultaneous bile and urine collection was used. A single intravenous dose of 30 μmol/kg b.wt. 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its conjugate, DNP-SG, and dinitrophenyl cysteinyl glycine (DNP-CG), resulting from the action of γ-glutamyltransferase on DNP-SG, were determined in bile, intestinal perfusate, and urine by high-performance liquid chromatography. Tissue content of DNP-SG was also assessed in liver, intestine, and kidneys. Biliary excretion of DNP-SG+DNP-CG was decreased in GLP-2 rats with respect to controls. In contrast, their intestinal excretion was substantially increased, whereas urinary elimination was not affected. Western blot and real-time polymerase chain reaction studies revealed preserved levels of Mrp2 protein and mRNA in liver and renal cortex and a significant increase in intestine in response to GLP-2 treatment. Tissue content of DNP-SG detected 5 min after CDNB administration was decreased in liver, increased in intestine, and unchanged in kidney in GLP-2 versus control group, consistent with GLP-2-induced down-regulation of expression of glutathione transferase (GST) Mu in liver and up-regulation of GST-Alpha in intestine at both protein and mRNA levels. In conclusion, GLP-2 induced selective changes in hepatic and intestinal disposition of a common GST and Mrp2 substrate administered systemically that could be of pharmacological or toxicological relevance under therapeutic treatment conditions. PMID:22453052

  6. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells

    PubMed Central

    Chimerel, Catalin; Emery, Edward; Summers, David K.; Keyser, Ulrich; Gribble, Fiona M.; Reimann, Frank

    2014-01-01

    Summary It has long been speculated that metabolites, produced by gut microbiota, influence host metabolism in health and diseases. Here, we reveal that indole, a metabolite produced from the dissimilation of tryptophan, is able to modulate the secretion of glucagon-like peptide-1 (GLP-1) from immortalized and primary mouse colonic L cells. Indole increased GLP-1 release during short exposures, but it reduced secretion over longer periods. These effects were attributed to the ability of indole to affect two key molecular mechanisms in L cells. On the one hand, indole inhibited voltage-gated K+ channels, increased the temporal width of action potentials fired by L cells, and led to enhanced Ca2+ entry, thereby acutely stimulating GLP-1 secretion. On the other hand, indole slowed ATP production by blocking NADH dehydrogenase, thus leading to a prolonged reduction of GLP-1 secretion. Our results identify indole as a signaling molecule by which gut microbiota communicate with L cells and influence host metabolism. PMID:25456122

  7. Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage

    PubMed Central

    Hou, Jack; Manaenko, Anatol; Hakon, Jakob; Hansen-Schwartz, Jacob; Tang, Jiping; Zhang, John H

    2012-01-01

    The inflammatory response plays a pivotal role in propagating injury of intracerebral hemorrhage (ICH). Glucagon-like-peptide-1 (GLP-1) is a hormone with antidiabetic effect and may also have antiinflammatory properties. Despite consensus that the glucoregulatory action is mediated by the GLP-1 receptor (GLP-1R), mechanisms in the brain remain unclear. We investigated the effect of a long-acting GLP-1 analog, liraglutide, and its truncated metabolite, GLP-1(9-36)a from dipeptidyl peptidase-4 (DPP-4) cleavage in ICH-induced brain injury. Primary outcomes were cerebral edema formation, neurobehavior, and inflammatory parameters. GLP-1(9-36)a, GLP-1R inhibitor, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation inhibitor and DPP-4 inhibitor were administered to examine the mechanisms of action. Liraglutide suppressed neuroinflammation, prevented brain edema and neurologic deficit following ICH, which were partially reversed by GLP-1R inhibitor and AMPK phosphorylation inhibitor. Liraglutide-mediated AMPK phosphorylation was unaffected by GLP-1R inhibitor, and was found to be induced by GLP-1(9-36)a. GLP-1(9-36)a showed salutary effects on primary outcomes that were reversed by AMPK phosphorylation inhibitor but not by GLP-1R inhibitor. Liraglutide and DPP-4 inhibitor co-administration reversed liraglutide-mediated AMPK phosphorylation and antiinflammatory effects. Liraglutide exerted duals actions and the antiinflammatory effects are partially mediated by its metabolite in a phosphorylated AMPK-dependent manner. Therapies that inhibit GLP-1 degradation may weaken the metabolite-mediated effects. PMID:22968320

  8. Role of glial cell-line derived neurotropic factor family receptor alpha2 in the actions of the glucagon-like peptides on the murine intestine.

    PubMed

    McDonagh, Sean C; Lee, Jenny; Izzo, Angelo; Brubaker, Patricia L

    2007-08-01

    The intestinal glucagon-like peptides GLP-1 and GLP-2 inhibit intestinal motility, whereas GLP-2 also stimulates growth of the intestinal mucosa. However, the mechanisms of action of these peptides in the intestine remain poorly characterized. To determine the role of the enteric nervous system in the actions of GLP-1 and GLP-2 on the intestine, the glial cell line-derived neurotropic factor family receptor alpha(2) (GFRalpha2) knockout (KO) mouse was employed. The mice exhibited decreased cholinergic staining, as well as reduced mRNA transcripts for substance P-ergic excitatory motoneurons in the enteric nervous system (ENS) (P < 0.05). Examination of parameters of intestinal growth (including small and large intestinal weight and small intestinal villus height, crypt depth, and crypt cell proliferation) demonstrated no differences between wild-type and KO mice in either basal or GLP-2-stimulated mucosal growth. Nonetheless, KO mice exhibited reduced numbers of synaptophysin-positive enteroendocrine cells (P < 0.05), as well as a markedly impaired basal gastrointestinal (GI) transit rate (P < 0.05). Furthermore, acute administration of GLP-1 and GLP-2 significantly inhibited transit rates in wild-type mice (P < 0.05-0.01) but had no effect in GFRalpha2 KO mice. Despite these changes, expression of mRNA transcripts for the GLP receptors was not reduced in the ENS of KO animals, suggesting that GLP-1 and -2 modulate intestinal transit through enhancement of inhibitory input to cholinergic/substance P-ergic excitatory motoneurons. Together, these findings demonstrate a role for GFRalpha2-expressing enteric neurons in the downstream signaling of the glucagon-like peptides to inhibit GI motility, but not in intestinal growth.

  9. Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits Aβ25-35-induced apoptosis in PC12 cells by suppressing the expression of endoplasmic reticulum stress-related proteins

    PubMed Central

    Zhang, Jianfeng; Wu, Junfeng; Zeng, Weichen; Zhao, Yongfei; Zu, Hengbing

    2015-01-01

    Neurodegenerative disorders are chronic and progressive disease. Exendin-4 (Ex-4) can function as a neuroprotective agent and has novel therapeutic ability for the treatment of neurodegenerative disorders. In this study, we aimed to explore the neuroprotective effect of Ex-4 on PC12 cell apoptosis induced by Aβ25-35 in molecular level. The apoptosis of PC12 cells was detected by MTT assay, TUNEL staining and flow cytometry. The expression of ERS (endoplasmic reticulum stress, ERS) related proteins such as CHOP, GRP78 and Caspase-12 were determined by Western blot and cell immunocytochemistry. Results showed the apoptotic rate of PC12 cells significantly increased after Aβ25-35 addition, which was remarkably reduced after Ex-4 treatment. The expression of CHOP, GRP78 and Caspase-12 were significantly upregulated, and then remarkably reduced after Ex-4 treatment, while in the presence of Exendin9-39, the effect of Ex-4 was reversed. In conclusion, endoplasmic reticulum stress might be involved in the apoptosis process of PC12 cell induced by Aβ25-35 and Ex-4 might provide a potential strategy for the treatment and prevention of cell apoptosis-associated disorders. PMID:26722468

  10. Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells.

    PubMed

    Ojo, O O; Conlon, J M; Flatt, P R; Abdel-Wahab, Y H A

    2013-02-01

    Skin secretions of several frog species contain host-defense peptides with multiple biological activities including in vitro and in vivo insulin-releasing actions. This study investigates the effects of tigerinin-1R from Hoplobatrachus rugulosus (Dicroglossidae) and magainin-AM1, magainin-AM2, caerulein precursor fragment (CPF-AM1) and peptide glycine leucine amide (PGLa-AM1) from Xenopus amieti (Pipidae) on GLP-1 secretion from GLUTag cells. Tigerinin-1R showed the highest potency producing a significant (P<0.05) increase in GLP-1 release at a concentration of 0.1nM for the cyclic peptide and 0.3nM for the reduced form. All peptides from X. amieti significantly (P<0.05) stimulated GLP-1 release at concentrations ⩾300nM with magainin-AM2 exhibiting the greatest potency (minimum concentration producing a significant stimulation=1nM). The maximum stimulatory response (3.2-fold of basal rate, P<0.001) was produced by CPF-AM1 at a concentration of 3μM. No peptide stimulated release of the cytosolic enzyme, lactate dehydrogenase from GLUTag cells at concentrations up to 3μM indicating that the integrity of the plasma membrane had been preserved. The data indicate that frog skin peptides, by stimulating GLP-1 release as well as direct effects on insulin secretion, show therapeutic potential as agents for the treatment of type 2 diabetes.

  11. In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites.

    PubMed

    Osborne, Simone; Chen, Wei; Addepalli, Rama; Colgrave, Michelle; Singh, Tanoj; Tran, Cuong; Day, Li

    2014-11-01

    Understanding the digestive behaviour and biological activities of dairy proteins may help to develop model dairy products with targeted health outcomes including increased satiety and healthy weight maintenance. Caseins and whey proteins constitute over 95% of milk proteins with consumption of these proteins associated with increased satiety and a decreased prevalence of metabolic disorders. To investigate the in vitro digestive behaviour and satiety of dairy proteins at the intestinal epithelium, the in vitro transport and hydrolysis of 500-2000 μM β-casomorphin-7 (YPFPGPI or β-CM7) and a β-lactoglobulin (β-Lg) dipeptide (YL) was measured using Caco-2 cell monolayers grown on transwells as a model of the intestinal epithelium. Transport of YL was concentration dependent and ranged from 0.37-5.26 × 10(-6) cm s(-1), whereas transport of β-CM7 was only detected at 2000 μM and was significantly lower at 0.13 × 10(-6) cm s(-1). Rapid hydrolysis of β-CM7 in the apical chamber by the Caco-2 cells produced three peptide metabolites: YP, GPI and FPGPI. All of these metabolites were detected in the basolateral chamber after 30 min with both the YP and GPI peptides transporting at a higher rate than intact β-CM7. In vitro satiety was indicated by the secretion of cholecystokinin [26-33] (CCK-8) and glucagon-like peptide 1 (GLP-17-36NH2) in the STC-1 enteroendocrine cell model. CCK-8 secretion was highest in response to β-CM7 followed by the β-CM7 metabolite FPGPI. CCK-8 secretion however was not significantly stimulated by the tri- or dipeptides. Secretion of GLP-1 was not significantly stimulated by β-CM7 or YL. These in vitro results suggest that dairy peptide size enhances CCK-8 secretion, whilst limiting transport across Caco-2 monolayers. PMID:24892772

  12. In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites.

    PubMed

    Osborne, Simone; Chen, Wei; Addepalli, Rama; Colgrave, Michelle; Singh, Tanoj; Tran, Cuong; Day, Li

    2014-11-01

    Understanding the digestive behaviour and biological activities of dairy proteins may help to develop model dairy products with targeted health outcomes including increased satiety and healthy weight maintenance. Caseins and whey proteins constitute over 95% of milk proteins with consumption of these proteins associated with increased satiety and a decreased prevalence of metabolic disorders. To investigate the in vitro digestive behaviour and satiety of dairy proteins at the intestinal epithelium, the in vitro transport and hydrolysis of 500-2000 μM β-casomorphin-7 (YPFPGPI or β-CM7) and a β-lactoglobulin (β-Lg) dipeptide (YL) was measured using Caco-2 cell monolayers grown on transwells as a model of the intestinal epithelium. Transport of YL was concentration dependent and ranged from 0.37-5.26 × 10(-6) cm s(-1), whereas transport of β-CM7 was only detected at 2000 μM and was significantly lower at 0.13 × 10(-6) cm s(-1). Rapid hydrolysis of β-CM7 in the apical chamber by the Caco-2 cells produced three peptide metabolites: YP, GPI and FPGPI. All of these metabolites were detected in the basolateral chamber after 30 min with both the YP and GPI peptides transporting at a higher rate than intact β-CM7. In vitro satiety was indicated by the secretion of cholecystokinin [26-33] (CCK-8) and glucagon-like peptide 1 (GLP-17-36NH2) in the STC-1 enteroendocrine cell model. CCK-8 secretion was highest in response to β-CM7 followed by the β-CM7 metabolite FPGPI. CCK-8 secretion however was not significantly stimulated by the tri- or dipeptides. Secretion of GLP-1 was not significantly stimulated by β-CM7 or YL. These in vitro results suggest that dairy peptide size enhances CCK-8 secretion, whilst limiting transport across Caco-2 monolayers.

  13. The primary structure of glucagon-like peptide but not insulin has been conserved between the American eel, Anguilla rostrata and the European eel, Anguilla anguilla.

    PubMed

    Conlon, J M; Andrews, P C; Thim, L; Moon, T W

    1991-04-01

    Insulin was isolated from the pancreas of the American eel, Anguilla rostrata, and its primary structure was established as (Formula: see text). Eel insulin contains unusual substitutions at B-21, B-22, and B-26 in the putative receptor-binding region of the molecule compared with other mammalian and fish insulins. The A-chain of insulin from the European eel contains an asparagine rather than a serine residue at position A-12. Similarly, amino acid composition data indicate the B-chain of insulin from the European eel is appreciably different from that from the American eel. The primary structure of glucagon-like peptide (GLP) from the American eel is identical to that from the European eel, Anguilla anguilla. The primary structure of the peptide was established as (Formula: see text). Fast-atom bombardment mass spectrometry demonstrated that the COOH-terminal arginyl residue is alpha-amidated. The strong evolutionary pressure to conserve the structure of GLP provides further support for the assertion that the peptide plays an important regulatory role in teleost fish.

  14. Sustained glucagon-like peptide-2 infusion is required for intestinal adaptation, and cessation reverses increased cellularity in rats with intestinal failure

    PubMed Central

    Koopmann, Matthew C.; Chen, Xueyan; Holst, Jens J.

    2010-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived hormone that is a proposed treatment for human short bowel syndrome (SBS). The objective was to determine how the timing, duration, and cessation of GLP-2 administration affect intestinal adaptation and enterocyte kinetics in a rat model of human SBS that results in intestinal failure requiring total parenteral nutrition (TPN). Rats underwent 60% jejunoileal resection plus cecectomy and jugular vein cannulation and were maintained exclusively with TPN for 18 days in these treatments: TPN control (no GLP-2); sustained GLP-2 (1–18 days); early GLP-2 (1–7 days, killed at 7 or 18 days); and delayed GLP-2 (12–18 days). Body weight gain was similar across groups, and plasma bioactive GLP-2 was significantly increased with coinfusion of GLP-2 (100 μg·kg−1·day−1) with TPN. GLP-2-treated rats showed significant increases in duodenum and jejunum mucosal dry mass, protein, DNA, and sucrase activity compared with TPN control. The increased jejunum cellularity reflected significantly decreased apoptosis and increased crypt mitosis and crypt fission due to GLP-2. When GLP-2 infusion stopped at 7 days, these effects were reversed at 18 days. Sustained GLP-2 infusion significantly increased duodenum length and decreased 18-day mortality to 0% from 37.5% deaths in TPN control (P = 0.08). Colon proglucagon expression quantified by real-time RT-qPCR was increased in TPN controls and attenuated by GLP-2 infusion; jejunal expression of the GLP-2 receptor did not differ among groups. In summary, early, sustained GLP-2 infusion reduces mortality, induces crypt fission, and is required for intestinal adaptation, whereas cessation of GLP-2 reverses gains in mucosal cellularity in a rat model of intestinal failure. PMID:20864657

  15. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  16. Effects of the glucagon-like polypeptide-1 analogue (Val8)GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain.

    PubMed

    McGovern, Stephen F J; Hunter, Kerry; Hölscher, Christian

    2012-09-14

    Type 2 diabetes (T2DM) has been identified as a risk factor for Alzheimer's disease. Here, we tested the properties of the glucagon-like polypetide-1 (GLP-1) analogue (Val8)GLP-1, a drug originally developed as a treatment for T2DM at a range of doses (2.5 nmol; 25 nmol; 100 nmol; or 250 nmol/kg bw ip.) in an acute memory study in wild type C57B/l6 mice. We also tested (Val8)GLP-1 and the GLP-1 receptor antagonist exendin (9-39) in a chronic study (3 weeks at 25 nmol/kg bw ip. once-daily). We found that (Val8)GLP-1 crossed the blood brain barrier readily and that peripheral injection increased levels in the brain 30 min post-injection ip. but not 2h post-injection in rats. In the acute study, the low dose of 2.5 nmol/kg ip. enhanced motor activity in the open field task, while total distance travelled, exploratory behaviour and anxiety was not affected at any dose. Learning an object recognition task was not affected either. In the chronic study, no effect was observed in the open field assessment. The antagonist exendin (9-39) impaired object recognition learning and spatial learning in a water maze task, demonstrating the importance of GLP-1 signalling in memory formation. Locomotor activity was also affected in some cases. Blood sugar levels and insulin sensitivity was not affected in chronically treated mice. Neuronal stem cells and neurogenesis was enhanced by (Val8)GLP-1 in the dentate gyrus of wild type mice. The results demonstrate that (Val8)GLP-1 is safe in a range of doses, crosses the BBB and has potentially beneficial effects in the CNS by enhancing neurogenesis. PMID:22867941

  17. COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants.

    PubMed

    Connor, E E; Evock-Clover, C M; Walker, M P; Elsasser, T H; Kahl, S

    2015-02-01

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as

  18. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS.

    PubMed

    Qi, K K; Wu, J; Deng, B; Li, Y M; Xu, Z W

    2015-09-01

    This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte

  19. Glucagon-like peptide-2 activates beta-catenin signaling in the mouse intestinal crypt: role of insulin-like growth factor-I.

    PubMed

    Dubé, Philip E; Rowland, Katherine J; Brubaker, Patricia L

    2008-01-01

    Chronic administration of glucagon-like peptide-2 (GLP-2) induces intestinal growth and crypt cell proliferation through an indirect mechanism requiring IGF-I. However, the intracellular pathways through which IGF-I mediates GLP-2-induced epithelial tropic signaling remain undefined. Because beta-catenin and Akt are important regulators of crypt cell proliferation, we hypothesized that GLP-2 activates these signaling pathways through an IGF-I-dependent mechanism. In this study, fasted mice were administered Gly(2)-GLP-2 or LR(3)-IGF-I (positive control) for 0.5-4 h. Nuclear translocation of beta-catenin in non-Paneth crypt cells was assessed by immunohistochemistry and expression of its downstream proliferative markers, c-myc and Sox9, by quantitative RT-PCR. Akt phosphorylation and activation of its targets, glycogen synthase kinase-3beta and caspase-3, were determined by Western blot. IGF-I receptor (IGF-IR) and IGF-I signaling were blocked by preadministration of NVP-AEW541 and through the use of IGF-I knockout mice, respectively. We found that GLP-2 increased beta-catenin nuclear translocation in non-Paneth crypt cells by 72 +/- 17% (P < 0.05) and increased mucosal c-myc and Sox9 mRNA expression by 90 +/- 20 and 376 +/- 170%, respectively (P < 0.05-0.01), with similar results observed with IGF-I. This effect of GLP-2 was prevented by blocking the IGF-IR as well as ablation of IGF-I signaling. GLP-2 also produced a time- and dose-dependent activation of Akt in the intestinal mucosa (P < 0.01), most notably in the epithelium. This action was reduced by IGF-IR inhibition but not IGF-I knockout. We concluded that acute administration of GLP-2 activates beta-catenin and proliferative signaling in non-Paneth murine intestinal crypt cells as well as Akt signaling in the mucosa. However, IGF-I is required only for the GLP-2-induced alterations in beta-catenin.

  20. Effects of resistant starch on behaviour, satiety-related hormones and metabolites in growing pigs.

    PubMed

    Souza da Silva, C; Haenen, D; Koopmans, S J; Hooiveld, G J E J; Bosch, G; Bolhuis, J E; Kemp, B; Müller, M; Gerrits, W J J

    2014-09-01

    Resistant starch (RS) has been suggested to prolong satiety in adult pigs. The present study investigated RS-induced changes in behaviour, satiety-related hormones and metabolites in catheterized growing pigs to explore possible underlying mechanisms for RS-induced satiety. In a cross-over design with two 14-day periods, 10 pigs (initial BW: 58 kg) were assigned to two treatments comprising diets containing either 35% pregelatinized starch (PS) or 34% retrograded starch (RS). Diets were isoenergetic on gross energy. Pigs were fed at 2.8× maintenance. Postprandial plasma response of satiety-related hormones and metabolites was measured at the end of each period using frequent blood sampling. Faecal and urinary energy losses were measured at the end of each period. Behaviour was scored 24 h from video recordings using scan sampling. Energy digestibility and metabolizability were ~6% lower in RS compared with PS diet (P<0.001), and metabolizable energy (ME) intake was ~3% lower in RS-fed than in PS-fed pigs (P<0.001). RS-fed pigs showed less feeder-directed (P=0.001) and drinking (P=0.10) behaviours than PS-fed pigs throughout the day. Postprandial peripheral short-chain fatty acid (SCFA) levels were higher in RS-fed than in PS-fed pigs (P<0.001). Postprandial glucose and insulin responses were lower in RS-fed than in PS-fed pigs (P<0.001). Triglyceride levels were higher in RS-fed than in PS-fed pigs (P<0.01), and non-esterified fatty acid levels did not differ between diets (P=0.90). Glucagon-like peptide-1 (GLP-1) levels were lower in RS-fed than in PS-fed pigs (P<0.001), and peptide tyrosine tyrosine (PYY) levels did not differ between diets (P=0.90). Blood serotonin levels were lower (P<0.001), whereas monoamine oxidase activity (P<0.05) and tryptophan (P<0.01) levels were higher in RS-fed than in PS-fed pigs. Despite a lower ME intake, RS seemed to prolong satiety, based on behavioural observations. Possible underlying mechanisms for RS-induced satiety include

  1. Characterization of glucagon-like peptide 2 receptor (GLP2R) gene in chickens: functional analysis, tissue distribution, and developmental expression profile of GLP2R in embryonic intestine.

    PubMed

    Mo, C; Zhong, Y; Wang, Y; Yan, Z; Li, J

    2014-07-01

    This study characterized the glucagon-like peptide 2 receptor (GLP2R) gene of chickens because relatively little is known about the underlying mechanism of GLP2 actions in nonmammalian species. With the use of reverse transcription PCR, we first cloned the chicken GLP2R (cGLP2R) from adult intestine, which was predicted to encode a 529-amino acid receptor precursor. With the use of a pGL3-CRE luciferase reporter system, we demonstrated that cGLP2R expressed in Chinese hamster ovary cells could be potently activated by cGLP2 (half maximal effective concentration, 1.06 nM) but not by its structurally related peptides, including the newly identified glucagon-like peptide, indicating that cGLP2R is a functional receptor specific to cGLP2. Reverse transcription PCR assay revealed that cGLP2R mRNA was widely expressed in adult chicken tissues, including pancreas and various parts of the gastrointestinal tract. With the use of quantitative real-time reverse transcription PCR assays, we further investigated the mRNA expression of cGLP2R and its potential downstream mediators, epidermal growth factor receptor (EGFR) ligands (heparin-binding EGF-like growth factor, epiregulin, and amphiregulin), in the distal duodenum of developing embryos. The mRNA expression levels of GLP2R and EGFR ligands (heparin-binding EGF-like growth factor and amphiregulin) were shown to increase (P < 0.05 or 0.01) during the late embryonic stages (E16 and E20), implying a potential coordinated action of GLP2 and EGFR ligands on embryonic intestine development. Taken together, our findings not only establish a molecular basis to explore the physiological roles of GLP2 in birds, but they also provide comparative insights into the roles of GLP2R and its ligand in vertebrates, such as its roles in embryonic intestine development.

  2. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.

    PubMed

    Vallon, Volker; Docherty, Neil G

    2014-09-01

    The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation. PMID:25085841

  3. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making

    PubMed Central

    Fleischmann, Holger

    2014-01-01

    The combination of basal insulin and glucagon-like protein 1 receptor agonists (GLP-1 RAs) is a new intriguing therapeutic option for patients with type 2 diabetes. In our daily practice we abbreviate this therapeutic concept with the term BIT (basal insulin combined incretin mimetic therapy) in a certain analogy to BOT (basal insulin supported oral therapy). In most cases BIT is indeed an extension of BOT, if fasting, prandial or postprandial blood glucose values have not reached the target range. In our paper we discuss special features of combinations of short- or prandial-acting and long- or continuous-acting GLP-1 RAs like exenatide, lixisenatide and liraglutide with basal insulin in relation to different glycemic targets. Overall it seems appropriate to use a short-acting GLP-1 RA if, after the near normalization of fasting blood glucose with BOT, the prandial or postprandial values are elevated. A long-acting GLP-1 RA might well be given, if fasting blood glucose values are the problem. Based on pathophysiological findings, recent clinical studies and our experience with BIT and BOT as well as BOTplus we developed chart-supported algorithms for decision making, including features and conditions of patients. The development of these practical tools was guided by the need for a more individualized antidiabetic therapy and the availability of the new BIT principle. PMID:25419451

  4. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  5. Immunoreactivity to peptides belonging to the pancreatic polypeptide family (NPY, aPY, PP, PYY) and to glucagon-like peptide in the endocrine pancreas and anterior intestine of adult lampreys, Petromyzon marinus: an immunohistochemical study.

    PubMed

    Cheung, R; Andrews, P C; Plisetskaya, E M; Youson, J H

    1991-01-01

    Immunoreactivity of antisera directed against human neuropeptide Y (NPY), anglerfish polypeptide YG (aPY), bovine pancreatic polypeptide (bPP), salmon pancreatic polypeptide (sPP), porcine peptide tyrosine tyrosine (PYY), and salmon glucagon-like peptide (GLP) was investigated in the endocrine pancreas and anterior intestine of adult lampreys, Petromyzon marinus, by immunohistochemical analysis. There was no immunoreactivity to anti-sPP and anti-bPP in any tissue and anti-GLP immunostaining was only present in the anterior intestine. The immunoreactivity to antisera raised against NPY, aPY, and PYY was colocalized within the same small number of cells in the caudal and cranial pancreas of juveniles and the caudal pancreas of upstream migrant adults. These antibodies did not immunostain B- or D-cells and thus, NPY, aPY, and PYY were likely localized in a third cell type (3a) in the lamprey pancreas. Immunostaining of a few cells with only anti-aPY suggested the possibility of a fourth cell type (3b). Immunoreactivity was similar in the cranial and caudal pancreas of male upstream migrants; however, in the female cranial pancreas, a few cells demonstrated intense immunoreaction to anti-aPY, while weaker immunostaining with this antiserum was observed in B-cells. In the intestine of juvenile and upstream migrant lampreys, positive immunostaining to GLP, NPY, aPY, and PYY antibodies was colocalized within the same cell. We believe that this cell may contain PYY/glucagon family peptides. Other intestinal cells immunostained with either GLP or somatostatin-34 antiserum. PMID:2026316

  6. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition.

    PubMed

    Romero, R; Ceska, M; Avila, C; Mazor, M; Behnke, E; Lindley, I

    1991-10-01

    The neutrophil is the leukocyte most frequently recruited into the amniotic fluid in cases of microbial invasion of the amniotic cavity. Neutrophil attractant/activating peptide-1/interleukin-8 is a newly identified cytokine that is capable of inducing selective neutrophil chemotaxis and activation. The purpose of this study was to examine the relationship between amniotic fluid concentrations of neutrophil attractant/activating peptide-1/interleukin-8, microbial invasion of the amniotic cavity, and parturition (term and preterm). Amniotic fluid neutrophil attractant/activating peptide-1/interleukin-8 was measured with an immunoassay validated for human amniotic fluid (sensitivity 0.3 ng/ml). Fluid was obtained from women in the following groups: midtrimester (n = 38), term not in labor (n = 38), term in active labor (n = 67), and preterm labor with intact membranes (n = 62). Fluid was cultured for aerobic and anaerobic bacterial and Mycoplasma. Sterile amniotic fluid from most women in the midtrimester of pregnancy and women at term not in labor did not contain immunoreactive neutrophil attractant/activating peptide-1/interleukin-8. Microbial invasion of the amniotic cavity was associated with increased concentrations of neutrophil attractant/activating peptide-1/interleukin-8. The amniotic fluid of women with preterm labor and sterile amniotic fluid who had preterm delivery contained higher neutrophil attractant/activating peptide-1/interleukin-8 levels than did the amniotic fluid of women who responded to tocolysis and had delivery at term. Term parturition is associated with increased concentrations of neutrophil attractant/activating peptide-1/interleukin-8 in the amniotic fluid. We conclude that neutrophil attractant/activating peptide-1/interleukin-8 is part of the host response to microbial invasion of the amniotic cavity and that increased amniotic fluid availability of this cytokine occurs in term and preterm parturition. PMID:1951537

  7. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  8. Quantification of Secondary Metabolites.

    PubMed

    2016-01-01

    Plants are a rich source of secondary metabolites that have medicinal and aromatic properties. Secondary metabolites such as alkaloids, iridoids and phenolics generally produced by plants for their defence mechanisms have been implicated in the therapeutic properties of most medicinal plants. Hence, quantification of these metabolites will aid to discover new and effective drugs from plant sources and also to scientifically validate the existing traditional practices. Quantification of large group of phytochemicals such as phenolics and flavonoids is quantified in this context.

  9. Murine nonvolatile pheromones: isolation of exocrine-gland secreting Peptide 1.

    PubMed

    Kimoto, Hiroko; Touhara, Kazushige

    2013-01-01

    Our search for a substance recognized by the vomeronasal neurons revealed that the extra-orbital lacrimal gland (ELG) isolated from adult male mice produced the male-specific peptide pheromone exocrine gland-secreting peptide 1 (ESP1). The following protocol reveals how ESP1 may be extracted from the ELG, purified using anion-exchange and reverse-phase high-performance liquid chromatography (HPLC), and analyzed by mass spectrometry. This protocol has been specifically designed for the purification of ESP1, but may be modified to isolate a variety of peptides from the exocrine glands. Peptides purified in this manner may help further define the molecular mechanisms underlying pheromone communication in the vomeronasal system.

  10. Quantification of Secondary Metabolites.

    PubMed

    2016-01-01

    Plants are a rich source of secondary metabolites that have medicinal and aromatic properties. Secondary metabolites such as alkaloids, iridoids and phenolics generally produced by plants for their defence mechanisms have been implicated in the therapeutic properties of most medicinal plants. Hence, quantification of these metabolites will aid to discover new and effective drugs from plant sources and also to scientifically validate the existing traditional practices. Quantification of large group of phytochemicals such as phenolics and flavonoids is quantified in this context. PMID:26939265

  11. Enhanced metabolite generation

    DOEpatents

    Chidambaram, Devicharan

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  12. [Potential of pharmacological modulation of level and activity incretins on diabetes mellitus type 2].

    PubMed

    Spasov, A A; Chepljaeva, N I

    2015-01-01

    This review summarizes data on the main approaches used for the search of biologically active compounds modulating the level and physiological activity of incretins. Currently two groups of drugs are used in clinical practice: they either replenish the deficit of incretins (glucagon-like peptide-1 receptor agonists) or inhibit the degradation processes (dipeptidyl peptidase 4 inhibitors). In addition, new groups of substances are actively searched. These include non-peptide agonists of glucagon-like peptide-1 receptors, agonists/antagonists of glucose-dependent insulinotropic peptide, the hybrid polypeptides based on glucagon-like peptide-1 and glucagon.

  13. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration.

    PubMed

    Lee, Young Jun; Lee, Ji-Hye; Cho, Hyeong-Jin; Kim, Hyung Keun; Yoon, Taek Rim; Shin, Heungsoo

    2013-07-01

    The development of ideal barrier membranes with appropriate porosity and bioactivity is essential for the guidance of new bone formation in orthopedic and craniomaxillofacial surgery. In this study, we developed bioactive electrospun fibers based on poly (lactide-co-glycolic acid) (PLGA) by immobilizing bone-forming peptide 1 (BFP1) derived from the immature region of bone morphogenetic protein 7 (BMP7). We exploited polydopamine chemistry for the immobilization of BFP1; polydopamine (PD) was coated on the electrospun PLGA fibers, on which BFP1 was subsequently immobilized under weakly basic conditions. The immobilization of BFP1 was verified by characterizing the surface chemical composition and quantitatively measured by fluorescamine assay. The immobilization of BPF1 on the electrospun fibers supported the compact distribution of collagen I and the spreading of human mesenchymal stem cells (hMSCs). SEM micrographs demonstrated the aggregation of globular mineral accretions, with significant increases in ALP activity and calcium deposition when hMSCs were cultured on fibers immobilized with BFP1 for 14 days. We then implanted the prepared fibers onto mouse calvarial defects and analyzed bone formation after 2 months. Semi-quantification of bone growth from representative X-ray images showed that the bone area was approximately 20% in the defect-only group, while the group implanted with PLGA fibers showed significant improvements of 44.27 ± 7.37% and 57.59 ± 15.24% in the groups implanted with PD-coated PLGA and with BFP1-coated PLGA, respectively. Based on these results, our approach may be a promising tool to develop clinically-applicable bioactive membranes for guided bone regeneration."

  14. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  15. SV-IV Peptide1–16 reduces coagulant power in normal Factor V and Factor V Leiden

    PubMed Central

    Di Micco, Biagio; Lepretti, Marilena; Rota, Lidia; Quaglia, Ilaria; Ferrazzi, Paola; Di Micco, Gianluca; Di Micco, Pierpaolo

    2007-01-01

    Native Factor V is an anticoagulant, but when activated by thrombin, Factor X or platelet proteases, it becomes a procoagulant. Due to these double properties, Factor V plays a crucial role in the regulation of coagulation/anticoagulation balance. Factor V Leiden (FVL) disorder may lead to thrombophilia. Whether a reduction in the activation of Factor V or Factor V Leiden may correct the disposition to thrombophilia is unknown. Therefore we tested SV-IV Peptide 1–16 (i.e. a peptide derived by seminal protein vescicle number IV, SV-IV) to assess its capacity to inhibit the procoagulant activity of normal clotting factor V or Factor V Leiden (FVL). We found that SV-IV protein has potent anti-inflammatory and immunomodulatory properties and also exerts procoagulant activity. In the present work we show that the SV-IV Peptide 1–16, incubated with plasma containing normal Factor V or FVL plasma for 5 minutes reduces the procoagulant capacity of both substances. This is an anticoagulant effect whereas SV-IV protein is a procoagulant. This activity is effective both in terms of the coagulation tests, where coagulation times are increased, and in terms of biochemical tests conducted with purified molecules, where Factor X activation is reduced. Peptide 1–16 was, in the pure molecule system, first incubated for 5 minutes with purified Factor V then it was added to the mix of phosphatidylserine, Ca2+, Factor X and its chromogenic molecule Chromozym X. We observed a more than 50% reduction in lysis of chromogenic molecule Chromozym X by Factor Xa, compared to the sample without Peptide 1–16. Such reduction in Chromozym X lysis, is explained with the reduced activation of Factor X by partial inactivation of Factor V by Peptide 1–16. Thus our study demonstrates that Peptide 1–16 reduces the coagulation capacity of Factor V and Factor V Leiden in vitro, and, in turn, causes factor X reduced activation. PMID:18154667

  16. Mexiletine metabolites: a review.

    PubMed

    Catalano, Alessia; Carocci, Alessia; Sinicropi, Maria Stefania

    2015-01-01

    Mexiletine belongs to class IB antiarrhythmic drugs and it is still considered a drug of choice for treating myotonias. However some patients do not respond to mexiletine or have significant side effects limiting its use; thus, alternatives to this drug should be envisaged. Mexiletine is extensive metabolized in humans via phase I and phase II reactions. Only a small fraction (about 10%) of the dose of mexiletine administered is recovered without modifications in urine. Although in the past decades Mex metabolites were reported to be devoid of biological activity, recent studies seem to deny this assertion. Actually, several hydroxylated metabolites showed pharmacological activity similar to that of Mex, thus contributing to its clinical profile. Purpose of this review is to summarize all the studies proposed till now about mexiletine metabolites, regarding structureactivity relationship studies as well as synthetic strategies. Biological and analytical studies will be also reported. PMID:25723511

  17. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  18. Microalgal metabolites: a new perspective.

    PubMed

    Shimizu, Y

    1996-01-01

    Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well.

  19. Microalgal metabolites: a new perspective.

    PubMed

    Shimizu, Y

    1996-01-01

    Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well. PMID:8905087

  20. Metabolite Damage and Metabolite Damage Control in Plants.

    PubMed

    Hanson, Andrew D; Henry, Christopher S; Fiehn, Oliver; de Crécy-Lagard, Valérie

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms. PMID:26667673

  1. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  2. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  3. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells

    PubMed Central

    Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  4. Synthesis Of Labeled Metabolites

    DOEpatents

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  5. Rethinking cycad metabolite research.

    PubMed

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research. PMID:21509189

  6. Rethinking cycad metabolite research.

    PubMed

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research.

  7. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42).

  8. Surface Behavior and Lipid Interaction of Alzheimer β-Amyloid Peptide 1–42: A Membrane-Disrupting Peptide

    PubMed Central

    Ambroggio, Ernesto E.; Kim, Dennis H.; Separovic, Frances; Barrow, Colin J.; Barnham, Kevin J.; Bagatolli, Luis A.; Fidelio, Gerardo D.

    2005-01-01

    Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles. PMID:15681641

  9. The glucagon‐like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents

    PubMed Central

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A.

    2015-01-01

    Abstract The incretin hormone, glucagon‐like peptide 1 (GLP‐1), regulates gastric emptying, glucose‐dependent stimulation of insulin secretion and glucagon release, and GLP‐1 analogs are therefore approved for treatment of type II diabetes. GLP‐1 receptors are expressed in reward‐related areas such as the ventral tegmental area and nucleus accumbens, and GLP‐1 was recently shown to regulate several alcohol‐mediated behaviors as well as amphetamine‐induced, cocaine‐induced and nicotine‐induced reward. The present series of experiments were undertaken to investigate the effect of the GLP‐1 receptor agonist, liraglutide, on several alcohol‐related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well‐documented effects of alcohol on the mesolimbic dopamine system, namely alcohol‐induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self‐administration of alcohol in selectively bred Sardinian alcohol‐preferring rats. Collectively, these data suggest that GLP‐1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  10. Identification of an HIV-1 Mutation in Spacer Peptide 1 That Stabilizes the Immature CA-SP1 Lattice

    PubMed Central

    Keller, Paul W.; Urano, Emiko; Ablan, Sherimay D.

    2015-01-01

    ABSTRACT Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein

  11. Toxicological significance of dihydrodiol metabolites

    SciTech Connect

    Hsia, M.T.

    1982-01-01

    Dihydrodiols are often found as the major organic-extractable metabolites of various olefinic or aromatic xenobiotics in many biological samples. Studies on the chemistry of dihydrodiol metabolites have provided insight into the pharmacokinetic behavior and the mode of action of the parent compound. The toxicology of dihydrodiol is more complex than what can be deduced solely on the basis of diminished bioavailability of the epoxide precursor, and the increased hydrophilicity associated with the dihydrodiol moiety. Dihydrodiols can be intrinsically toxic and may even represent metabolically activated species. Some of the dihydrodiol metabolites may still retain sufficient lipophilic character to serve again as substrates for microsomal oxygenases. Because of the tremendous chemical and biological diversity that existed among the various dihydrodiols, more mechanistic studies are needed to examine the toxicological properties of these compounds. It may be premature to conclude dihydrodiol formation as purely a detoxification route for xenobioties.

  12. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  13. Primary expectations of secondary metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant secondary metabolites (e.g., phenolics) are important for human health, in addition to the organoleptic properties they impart to fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions. Thorough identification of phenolic com...

  14. Identification of Epoxide-Derived Metabolite(s) of Benzbromarone.

    PubMed

    Wang, Kai; Wang, Hui; Peng, Ying; Zheng, Jiang

    2016-04-01

    Benzbromarone (BBR) is a benzofuran derivative that has been quite useful for the treatment of gout; however, it was withdrawn from European markets in 2003 because of reported serious incidents of drug-induced liver injury. BBR-induced hepatotoxicity has been suggested to be associated with the formation of a quinone intermediate. The present study reported epoxide-derived intermediate(s) of BBR. An N-acetylcysteine (NAC) conjugate derived from epoxide metabolite(s) was detected in both microsomal incubations of BBR and urine samples of mice treated with BBR. The NAC conjugate was identified as 6-NAC BBR. Ketoconazole suppressed the bioactivation of BBR to the epoxide intermediate(s), and the CYP3A subfamily was the primary enzyme responsible for the formation of the epoxide(s). The present study provided new information on metabolic activation of BBR. PMID:26792818

  15. Tear metabolite changes in keratoconus

    PubMed Central

    Karamichos, D; Zieske, JD; Sejersen, H; Sarker-Nag, A; Asara, John M; Hjortdal, J

    2015-01-01

    While efforts have been made over the years, the exact cause of keratoconus (KC) remains unknown. The aim of this study was to identify alterations in endogenous metabolites in the tears of KC patients compared with age-matched healthy subjects. Three groups were tested: 1) Age-matched controls with no eye disease (N=15), 2) KC – patients wearing Rigid Gas permeable lenses (N=16), and 3) KC – No Correction (N=14). All samples were processed for metabolomics analysis using LC-MS/MS. We identified a total of 296 different metabolites of which >40 were significantly regulated between groups. Glycolysis and gluconeogenesis had significant changes, such as 3-phosphoglycerate and 1,3 diphopshateglycerate. As a result the citric acid cycle (TCA) was also affected with notable changes in Isocitrate, aconitate, malate, and acetylphosphate, up regulated in Group 2 and/or 3. Urea cycle was also affected, especially in Group 3 where ornithine and aspartate were up-regulated by at least 3 fold. The oxidation state was also severely affected. Groups 2 and 3 were under severe oxidative stress causing multiple metabolites to be regulated when compared to Group 1. Group 2 and 3, both showed significant down regulation in GSH-to-GSSG ratio when compared to Group 1. Another indicator of oxidative stress, the ratio of lactate – pyruvate was also affected with Groups 2 and 3 showing at least a 2-fold up regulation. Overall, our data indicate that levels of metabolites related to urea cycle, TCA cycle and oxidative stress are highly altered in KC patients. PMID:25579606

  16. Two metabolites from Aspergillus flavipes.

    PubMed

    Clark, A M; Hufford, C D; Robertson, L W

    1977-01-01

    Two novel fungal metabolites, N-benzoyl-L-phenylalaninol (1a) and asperphenamate (2) were isolated from the culture filtrate and mycelium of Aspergillus flavipes ATCC 11013. N-benzoyl-L-phenylalaninol was identified by direct comparison with an authentic sample. The structure of asperphenamate is proposed as (S)-N-benzoyl-phenylalanine-(S)-2-benzamido-3-phenyl propyl ester, based on chemical and spectroscopic evidence. PMID:875642

  17. Metabolite

    MedlinePlus

    Kumar V, Abbas AK, Aster JC. Cellular responses to stress and toxic insults: Adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and Cotran Pathologic Basis of Disease . 9th ed. Philadelphia, PA: ...

  18. TNT metabolites in animal tissues

    SciTech Connect

    Shugart, L.R.; Griest, W.H.; Tan, E.; Guzman, C.; Caton, J.E.; Ho, C.-H.; Tomkins, B.A.

    1991-06-01

    Analyses for TNT and nine potential metabolites (TNT-related compounds) were made in deer, rabbit, and quail tissues (muscle and liver) taken from the Alabama Army Ammunition Plant (AAAP), Childersburg, Alabama. The listed TNT-related compounds are 2,4,6- trinitrotoluene (parent compound); 2,4-diamino-6-nitrotoluene; 2,6-diamino-4-nitrotoluene; 2-amino-4,6-dinitrotoluene; 4-amino-2,6- dinitrotoluene; 2,4,6-trinitrobenzyl alcohol; 2,4,6-trinitrobenzoic acid; 1,3,5-trinitrobenzene; 4-hydroxylamino-2,6-dinitrotoluene; and 2,6,2',6'-tetranitro-4,4'-azoxytoluene. The procedure for extraction of these compounds from animal tissue required homogenization in acetonitrile, and subsequent partitioning into chloroform. Quantitative determination of extracted compounds was obtained by chromatographic separation on a mixed-mode HPLC column in which the phase bonded to the silica surface contained both a C18 (reversed-phase function) and a secondary amine (anion exchange function) incorporated into a single ligand. A ternary mobile phase gradient containing pH 5.1 phosphate buffer, methanol, and acetonitrile was used in separation. An experimental verification of the metabolism of TNT and the detection (or absence) of the selected metabolites was performed in mice subacutely dosed with 100 milligrams per kilogram of ({sup 14}C)-TNT. These studies show that the TNT-related compounds of concern do accumulate in muscle and liver tissue of the mouse under the experimental conditions imposed, but at concentrations below the 1.2 ppM level. However, products other than TNT and free metabolites may be accumulating since some ({sup 14}C) was found to be nonextractable. 13 refs., 5 figs., 6 tabs.

  19. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  20. Synthetic cannabinoids: analysis and metabolites.

    PubMed

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  1. Complicating factors in safety testing of drug metabolites: Kinetic differences between generated and preformed metabolites

    SciTech Connect

    Prueksaritanont, Thomayant . E-mail: thomayant_prueksaritanont@merck.com; Lin, Jiunn H.; Baillie, Thomas A.

    2006-12-01

    This paper aims to provide a scientifically based perspective on issues surrounding the proposed toxicology testing of synthetic drug metabolites as a means of ensuring adequate nonclinical safety evaluation of drug candidates that generate metabolites considered either to be unique to humans or are present at much higher levels in humans than in preclinical species. We put forward a number of theoretical considerations and present several specific examples where the kinetic behavior of a preformed metabolite given to animals or humans differs from that of the corresponding metabolite generated endogenously from its parent. The potential ramifications of this phenomenon are that the results of toxicity testing of the preformed metabolite may be misleading and fail to characterize the true toxicological contribution of the metabolite when formed from the parent. It is anticipated that such complications would be evident in situations where (a) differences exist in the accumulation of the preformed versus generated metabolites in specific tissues, and (b) the metabolite undergoes sequential metabolism to a downstream product that is toxic, leading to differences in tissue-specific toxicity. Owing to the complex nature of this subject, there is a need to treat drug metabolite issues in safety assessment on a case-by-case basis, in which a knowledge of metabolite kinetics is employed to validate experimental paradigms that entail administration of preformed metabolites to animal models.

  2. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    PubMed

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  3. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    PubMed Central

    Everett, Jeremy R.

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field. PMID:25750701

  4. Tight junction gene expression in gastrointestinal tract of dairy calves with coccidiosis and treated with glucagon-like peptide-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...

  5. Energy-Dependent Modulation of Glucagon-Like Signaling in Drosophila via the AMP-Activated Protein Kinase

    PubMed Central

    Braco, Jason T.; Gillespie, Emily L.; Alberto, Gregory E.; Brenman, Jay E.; Johnson, Erik C.

    2012-01-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  6. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of the...

  7. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase.

    PubMed

    Braco, Jason T; Gillespie, Emily L; Alberto, Gregory E; Brenman, Jay E; Johnson, Erik C

    2012-10-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  8. Immunoreactive prohormone atrial natriuretic peptides 1-30 and 31-67 - Existence of a single circulating amino-terminal peptide

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Ming; Whitson, Peggy A.; Cintron, Nitza M.

    1990-01-01

    Sep-Pak C18 extraction of human plasma and radioimmunoassay using antibodies which recognize atrial natriuretic peptide (99-128) and the prohormone sequences 1-30 and 31-67 resulted in mean values from 20 normal subjects of 26.2 (+/- 9.2), 362 (+/- 173) and 368 (+/- 160) pg/ml, respectively. A high correlation coefficient between values obtained using antibodies recognizing prohormone sequences 1-30 and 31-67 was observed (R = 0.84). Extracted plasma immunoreactivity of 1-30 and 31-67 both eluted at 46 percent acetonitrile. In contrast, chromatographic elution of synthetic peptides 1-30 and 31-67 was observed at 48 and 39 percent acetonitrile, respectively. Data suggest that the radioimmunoassay of plasma using antibodies recognizing prohormone sequences 1-30 and 31-67 may represent the measurement of a unique larger amino-terminal peptide fragment containing antigenic sites recognized by both antisera.

  9. Accuracy investigation of phthalate metabolite standards.

    PubMed

    Langlois, Éric; Leblanc, Alain; Simard, Yves; Thellen, Claude

    2012-05-01

    Phthalates are ubiquitous compounds whose metabolites are usually determined in urine for biomonitoring studies. Following suspect and unexplained results from our laboratory in an external quality-assessment scheme, we investigated the accuracy of all phthalate metabolite standards in our possession by comparing them with those of several suppliers. Our findings suggest that commercial phthalate metabolite certified solutions are not always accurate and that lot-to-lot discrepancies significantly affect the accuracy of the results obtained with several of these standards. These observations indicate that the reliability of the results obtained from different lots of standards is not equal, which reduces the possibility of intra-laboratory and inter-laboratory comparisons of results. However, agreements of accuracy have been observed for a majority of neat standards obtained from different suppliers, which indicates that a solution to this issue is available. Data accuracy of phthalate metabolites should be of concern for laboratories performing phthalate metabolite analysis because of the standards used. The results of our investigation are presented from the perspective that laboratories performing phthalate metabolite analysis can obtain accurate and comparable results in the future. Our findings will contribute to improving the quality of future phthalate metabolite analyses and will affect the interpretation of past results.

  10. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  11. Familial resemblance for serum metabolite concentrations.

    PubMed

    Draisma, Harmen H M; Beekman, Marian; Pool, René; van Ommen, Gert-Jan B; Adamski, Jerzy; Prehn, Cornelia; Vaarhorst, Anika A M; de Craen, Anton J M; Willemsen, Gonneke; Slagboom, P Eline; Boomsma, Dorret I

    2013-10-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resemblance for the concentrations in human serum of more than 100 metabolites, measured using a targeted metabolomics platform. Age- and sex-corrected monozygotic twin correlations, midparent-offspring regression coefficients, and spouse correlations in subjects from two independent cohorts (Netherlands Twin Register and Leiden Longevity Study) were estimated for each metabolite. In the Netherlands Twin Register subjects, who were largely fasting, we found significant monozygotic twin correlations for 121 out of 123 metabolites. Heritability was confirmed by midparent-offspring regression. For most detected metabolites, the correlations between spouses were considerably lower than those between twins, indicating a contribution of genetic effects to familial resemblance. Remarkably high heritability was observed for free carnitine (monozygotic twin correlation 0.66), for the amino acids serine (monozygotic twin correlation 0.77) and threonine (monozygotic twin correlation 0.64), and for phosphatidylcholine acyl-alkyl C40:3 (monozygotic twin correlation 0.77). For octenoylcarnitine, a consistent point estimate of approximately 0.50 was found for the spouse correlations in the two cohorts as well as for the monozygotic twin correlation, suggesting that familiality for this metabolite is explained by shared environment. We conclude that for the majority of metabolites targeted by the used metabolomics platform, the familial resemblance of serum concentrations is largely genetic. Our results contribute to the knowledge of the heritability of fasting serum metabolite concentrations, which is relevant for biomarker research. PMID:23985338

  12. Secondary metabolites from Rubiaceae species.

    PubMed

    Martins, Daiane; Nunez, Cecilia Veronica

    2015-07-22

    This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion.

  13. Metabolism and metabolites of polychlorinated biphenyls (PCBs)

    PubMed Central

    Grimm, FA; Hu, D; Kania-Korwel, I; Lehmler, HJ; Ludewig, G; Hornbuckle, KC; Duffel, MW; Bergman, A; Robertson, LW

    2015-01-01

    The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity and thereby assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general and in humans in particular. The aim of this document is to provide an overview of PCB metabolism and to identify metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed. PMID:25629923

  14. Analytical Methods for Secondary Metabolite Detection.

    PubMed

    Taibon, Judith; Strasser, Hermann

    2016-01-01

    The entomopathogenic fungi Metarhizium brunneum, Beauveria bassiana, and B. brongniartii are widely applied as biological pest control agent in OECD countries. Consequently, their use has to be flanked by a risk management approach, which includes the need to monitor the fate of their relevant toxic metabolites. There are still data gaps claimed by regulatory authorities pending on their identification and quantification of relevant toxins or secondary metabolites. In this chapter, analytical methods are presented allowing the qualitative and quantitative analysis of the relevant toxic B. brongniartii metabolite oosporein and the three M. brunneum relevant destruxin (dtx) derivatives dtx A, dtx B, and dtx E. PMID:27565501

  15. Analytical Methods for Secondary Metabolite Detection.

    PubMed

    Taibon, Judith; Strasser, Hermann

    2016-01-01

    The entomopathogenic fungi Metarhizium brunneum, Beauveria bassiana, and B. brongniartii are widely applied as biological pest control agent in OECD countries. Consequently, their use has to be flanked by a risk management approach, which includes the need to monitor the fate of their relevant toxic metabolites. There are still data gaps claimed by regulatory authorities pending on their identification and quantification of relevant toxins or secondary metabolites. In this chapter, analytical methods are presented allowing the qualitative and quantitative analysis of the relevant toxic B. brongniartii metabolite oosporein and the three M. brunneum relevant destruxin (dtx) derivatives dtx A, dtx B, and dtx E.

  16. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  17. Isoprenoid and metabolite profiling of plant trichomes.

    PubMed

    Balcke, Gerd U; Bennewitz, Stefan; Zabel, Sebastian; Tissier, Alain

    2014-01-01

    Plant glandular trichomes are specialized secretory structures located on the surface of the aerial parts of plants with large biosynthetic capacity, often with terpenoids as output molecules. The collection of plant trichomes requires a method to separate trichomes from leaf epidermal tissues. For metabolite profiling, trichome tissue needs to be rapidly quenched in order to maintain the indigenous state of intracellular intermediates. Appropriate extraction and chromatographic separation methods must be available, which address the wide-ranging polarity of metabolites. In this chapter, a protocol for trichome harvest using a frozen paint brush is presented. A work flow for broad-range metabolite profiling using LC-MS(2) analysis is described, which is applicable to assess very hydrophilic isoprenoid precursors as well as more hydrophobic metabolites from trichomes and other plant tissues. PMID:24777798

  18. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells. PMID:22200423

  19. Blood metabolites during basketball competitions.

    PubMed

    Ben Abdelkrim, Nidhal; Castagna, Carlo; El Fazaa, Saloua; Tabka, Zouhaier; El Ati, Jalila

    2009-05-01

    This study examined basketball game blood hormonal and metabolite responses in 38 (8 guards, 18 forwards, and 12 centers) male national elite-junior players (age, 18.2 +/- 0.5 years; height, 1.89 +/- 0.1 m; body mass, 80.3 +/- 6.7 kg; body fat, 8.2 +/- 5.6%; maximum oxygen uptake Vo2max], 52.8 +/- 2.4 mlxkgxmin). At the moment of the investigation, players had 8 +/- 1.6 years of competitive experience. Blood samples were collected at the beginning, at halftime, and at fulltime of 6 junior competitive games (Tunisian under 19 basketball championship). Game intensity was assessed monitoring heart rates (HR). During the game, players attained 93 +/- 2% of maximal HR. Triglycerides (TG) and free fatty acids (FFA) concentrations significantly increased during the game, most markedly so in the second half. Postgame TG and FFA concentrations were significantly (p < 0.05 and p < 0.001, respectively) lower for guards (1.48 +/- 0.22 and 0.88 +/- 0.14 mmolxL, respectively) than for centers (1.88 +/- 0.30 and 1.08 +/- 0.09 mmolxL, respectively). Plasma glucose significantly increased at halftime (from 4.05 +/- 1.27 to 5.98 +/- 0.88 mmolxL; p < 0.001) but decreased in the second half. Serum insulin (INS) progressively decreased for all players during the game, whereas serum cortisol increased at the end of the first half (from 333 +/- 129 to 487 +/- 209 nmolxL; p < 0.001) to remain increased throughout the second half.Basketball game demands seem to induce significant metabolic-hormonal changes on players. Higher values of HR and glycemia were observed in the first half, but a more important increase of lipolytic variables was recorded in the second half. Changes in metabolic markers are role-dependent.

  20. Flux balance analysis accounting for metabolite dilution.

    PubMed

    Benyamini, Tomer; Folger, Ori; Ruppin, Eytan; Shlomi, Tomer

    2010-01-01

    Flux balance analysis is a common method for predicting steady-state flux distributions within metabolic networks, accounting for the growth demand for the synthesis of a predefined set of essential biomass precursors. Ignoring the growth demand for the synthesis of intermediate metabolites required for balancing their dilution leads flux balance analysis to false predictions in some cases. Here, we present metabolite dilution flux balance analysis, which addresses this problem, resulting in improved metabolic phenotype predictions. PMID:20398381

  1. The significance of lichens and their metabolites.

    PubMed

    Huneck, S

    1999-12-01

    Lichens, symbiontic organisms of fungi and algae, synthesize numerous metabolites, the "lichen substances," which comprise aliphatic, cycloaliphatic, aromatic, and terpenic compounds. Lichens and their metabolites have a manifold biological activity: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory, antiherbivore, and enzyme inhibitory. Usnic acid, a very active lichen substance is used in pharmaceutical preparations. Large amounts of Pseudevernia furfuracea and Evernia prunastri are processed in the perfume industry, and some lichens are sensitive reagents for the evaluation of air pollution.

  2. The Significance of Lichens and Their Metabolites

    NASA Astrophysics Data System (ADS)

    Huneck, S.

    Lichens, symbiontic organisms of fungi and algae, synthesize numerous metabolites, the "lichen substances," which comprise aliphatic, cycloaliphatic, aromatic, and terpenic compounds. Lichens and their metabolites have a manifold biological activity: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory, antiherbivore, and enzyme inhibitory. Usnic acid, a very active lichen substance is used in pharmaceutical preparations. Large amounts of Pseudevernia furfuracea and Evernia prunastri are processed in the perfume industry, and some lichens are sensitive reagents for the evaluation of air pollution.

  3. Secondary metabolites in bryophytes: an ecological aspect.

    PubMed

    Xie, Chun-Feng; Lou, Hong-Xiang

    2009-03-01

    Bryophytes frequently grow in an unfavorable environment as the earliest land plants, and inevitably biosynthesize secondary metabolites against biotic or abiotic stress. They not only defend against the plant competition, microbial attack, and insect or animal predation, but also function in UV protection, drought tolerance, and freezing survival. This review covers the ecological aspect of secondary metabolites in bryophytes and is taxonomically presented according to the ecological significances.

  4. Flux balance analysis accounting for metabolite dilution.

    PubMed

    Benyamini, Tomer; Folger, Ori; Ruppin, Eytan; Shlomi, Tomer

    2010-01-01

    Flux balance analysis is a common method for predicting steady-state flux distributions within metabolic networks, accounting for the growth demand for the synthesis of a predefined set of essential biomass precursors. Ignoring the growth demand for the synthesis of intermediate metabolites required for balancing their dilution leads flux balance analysis to false predictions in some cases. Here, we present metabolite dilution flux balance analysis, which addresses this problem, resulting in improved metabolic phenotype predictions.

  5. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and degradates. Information which shows the existence of any metabolite or degradate of a pesticide product...

  6. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and degradates. Information which shows the existence of any metabolite or degradate of a pesticide product...

  7. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and degradates. Information which shows the existence of any metabolite or degradate of a pesticide product...

  8. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and degradates. Information which shows the existence of any metabolite or degradate of a pesticide product...

  9. 40 CFR 159.179 - Metabolites, degradates, contaminants, and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Metabolites, degradates, contaminants.../Benefit Information § 159.179 Metabolites, degradates, contaminants, and impurities. (a) Metabolites and degradates. Information which shows the existence of any metabolite or degradate of a pesticide product...

  10. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  11. Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala).

    PubMed

    Liang, Tao; Ji, Wei; Zhang, Gui-Rong; Wei, Kai-Jian; Feng, Ke; Wang, Wei-Min; Zou, Gui-Wei

    2013-08-01

    Liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 are widespread in fish and extremely important components of the host innate immune system. In this study, full-length cDNAs of LEAP-1 and LEAP-2 were cloned and sequenced from blunt snout bream, Megalobrama amblycephala. The open reading frames (ORF) of LEAP-1 and LEAP-2 genes encode putative peptides of 94 and 92 amino acids, which possess eight and four conserved cysteine residues, respectively. The homologous identities of deduced amino acid sequences show that the LEAP-1 and LEAP-2 of blunt snout bream share considerable similarity with those of grass carp. The mRNA expressions of LEAP-1 and LEAP-2 were detectable at different early developmental stages of blunt snout bream and varied with embryonic and larval growth. LEAP-1 and LEAP-2 were expressed in a wide range of adult tissues, with the highest expression levels in the liver and midgut, respectively. Bacterial challenge experiments showed that the levels of LEAP-1 and LEAP-2 mRNA expression were up-regulated in the liver, spleen, gill and brain of juvenile blunt snout bream. These results indicate that the LEAP-1 and LEAP-2 may play important roles in early development of embryos and fry, and may contribute to the defense against the pathogenic bacterial invasion. This study will further our understanding of the function of LEAP-1 and LEAP-2 and the molecular mechanism of innate immunity in teleosts.

  12. Mutation-based structural modification and dynamics study of amyloid beta peptide (1-42): An in-silico-based analysis to cognize the mechanism of aggregation.

    PubMed

    Panda, Pritam Kumar; Patil, Abhaysinha Satish; Patel, Priyam; Panchal, Hetalkumar

    2016-03-01

    Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1-42, a misfolded protein) in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide. PMID:26981406

  13. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation

    PubMed Central

    Panda, Pritam Kumar; Patil, Abhaysinha Satish; Patel, Priyam; Panchal, Hetalkumar

    2016-01-01

    Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein) in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide. PMID:26981406

  14. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  15. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  16. Improved metabolite profile smoothing for flux estimation.

    PubMed

    Dromms, Robert A; Styczynski, Mark P

    2015-09-01

    As genome-scale metabolic models become more sophisticated and dynamic, one significant challenge in using these models is to effectively integrate increasingly prevalent systems-scale metabolite profiling data into them. One common data processing step when integrating metabolite data is to smooth experimental time course measurements: the smoothed profiles can be used to estimate metabolite accumulation (derivatives), and thus the flux distribution of the metabolic model. However, this smoothing step is susceptible to the (often significant) noise in experimental measurements, limiting the accuracy of downstream model predictions. Here, we present several improvements to current approaches for smoothing metabolite time course data using defined functions. First, we use a biologically-inspired mathematical model function taken from transcriptional profiling and clustering literature that captures the dynamics of many biologically relevant transient processes. We demonstrate that it is competitive with, and often superior to, previously described fitting schemas, and may serve as an effective single option for data smoothing in metabolic flux applications. We also implement a resampling-based approach to buffer out sensitivity to specific data sets and allow for more accurate fitting of noisy data. We found that this method, as well as the addition of parameter space constraints, yielded improved estimates of concentrations and derivatives (fluxes) in previously described fitting functions. These methods have the potential to improve the accuracy of existing and future dynamic metabolic models by allowing for the more effective integration of metabolite profiling data.

  17. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  18. Simvastatin (SV) metabolites in mouse tissues

    SciTech Connect

    Duncan, C.A.; Vickers, S. )

    1990-02-26

    SV, a semisynthetic analog of lovastatin, is hydrolyzed in vivo to its hydroxy acid (SVA), a potent inhibitor of HMG CoA reductase (HR). Thus SV lowers plasma cholesterol. SV is a substrate for mixed function oxidases whereas SVA undergoes lactonization and {beta}-oxidation. Male CD-1 mice were dosed orally with a combination of ({sup 14}C)SV and ({sup 3}H)SVA at 25 mg/kg of each, bled and killed at 0.5, 2 and 4 hours. Labeled SV, SVA, 6{prime}exomethylene SV (I), 6{prime}CH{sub 2}OH-SV (II), 6{prime}COOH-SV (III) and a {beta}-oxidized metabolite (IV) were assayed in liver, bile, kidneys, testes and plasma by RIDA. Levels of potential and active HR inhibitors in liver were 10 to 40 fold higher than in other tissues. II and III, in which the configuration at 6{prime} is inverted, may be 2 metabolites of I. Metabolites I-III are inhibitors of HR in their hydroxy acid forms. Qualitatively ({sup 14}C)SV and ({sup 3}H)SVA were metabolized similarly (consistent with their proposed interconversion). However {sup 3}H-SVA, I-III (including hydroxy acid forms) achieved higher concentrations than corresponding {sup 14}C compounds (except in gall bladder bile). Major radioactive metabolites in liver were II-IV (including hydroxy acid forms). These metabolites have also been reported in rat tissues. In bile a large fraction of either label was unidentified polar metabolites. The presence of IV indicated that mice (like rats) are not good models for SV metabolism in man.

  19. [Treatment of leprosy by human metabolites].

    PubMed

    Mester de Parajd, L; Mester de Parajd, M

    1986-01-01

    We are interested for other human metabolites than desoxyfructo-serotonin (DFS), showing antileprosy activity. This is the case of desoxyfructo-5-hydroxytryptophan and of some liposoluble derivatives of DFS. The time of resorption and penetration into M. leprae infected tissue, is very different for these metabolites. For this reason the simultaneous application of these compounds may represent some advantage in the treatment of multibacillar form of leprosy. The use of DFS together with the antileprosy diet "NAL" have the supplementary advantage to stabilize the DFS level in the serum during the treatment. PMID:3105224

  20. EXENATIDE IMPROVES HYPERTENSION IN A RAT MODEL OF THE METABOLIC SYNDROME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exenatide is a peptide incretin mimetic that has glucoregulatory actions associated with weight reduction. Previous reports demonstrated acute increases in blood pressure after systemic or intracerebroventricular administration of exenatide or glucagon-like peptide-1 (GLP-1) in rats. However, there ...

  1. Brain GLP-1 and insulin sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels....

  2. Mutagenicity of dimethylated metabolites of inorganic arsenics.

    PubMed

    Yamanaka, K; Ohba, H; Hasegawa, A; Sawamura, R; Okada, S

    1989-10-01

    The genotoxic effects of dimethylarsinic acid (DMAA), one of the main metabolites of inorganic arsenics in mammals, and its further metabolites were investigated using Escherichia coli B tester strains. When H/r30R (wild-type; Exc+Rec+) and Hs30R (uvrA-; Exc-Rec+) cells were incubated with DMAA for 3 h in liquid NB medium, many more revertants appeared in sealed tubes than in the control, but this was not the case in unsealed tubes, suggesting that volatile metabolites of DMAA caused the mutagenesis. By gas chromatography-mass spectrometry (GC-MS), dimethylarsine and trimethylarsine, known to be volatile metabolites in microorganisms, were detected in the gas phase of DMAA-added tester strain cell suspensions in sealed tubes. Among these arsines, dimethylarsine was mutagenic in WP2 (wild-type; Exc+Rec+) and WP2uvrA (uvrA-; Exc-Rec+), while trimethylarsine was not. The mutagenesis induced by dimethylarsine required oxygen gas in the assay system; the number of revertants markedly increased in an oxygen-replaced system and diminished in a nitrogen-replaced one. These results suggest that the reaction product(s) between dimethylarsine and molecular oxygen is responsible for the mutagenesis. The significance of this mutagenesis in the genetoxic action of inorganic arsenics is discussed.

  3. Microbial metabolism part 13 metabolites of hesperetin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal culture, Mucor ramannianus (ATCC 2628) transformed hesperitin to four metabolites: 4'-methoxy -5, 7, 8, 3'-tetrahydroxyflavanone (8-hydroxyhesperetin), 5, 7, 3', 4'-tetrahydroxyflavanone (eriodictyol), 4'-methoxy-5, 3'-dihydroxyflavanone 7-sulfate (hesperetin 7-sulfate) and 5, 7, 3'-tri...

  4. Serum albumin complexation of acetylsalicylic acid metabolites.

    PubMed

    Jurkowski, Wiktor; Porebski, Grzegorz; Obtułowicz, Krystyna; Roterman, Irena

    2009-06-01

    One possible origin of the type I hypersensitivity reaction is reaction of drugs such as acetylsalicylic acid and its metabolites being complexed with human serum albumin. Albumin, being transporting molecule abundant in blood plasma is able to bind large array of ligands varying from small single carbon particles to long hydrophobic tailed lipidic acids (e.g. myristic acid). This non specificity is possible because of multi domain scaffold and large flexibility of inter-domain loops, which results in serious reorientation of domains. Hypothesis that acetylsalicylic acid metabolites may play indirect role in activation of allergic reaction has been tested. Binding of acetylsalicylic acid metabolites in intra-domain space causes significant increase of liability of domains IIIA and IIIB. One of metabolites, salicyluric acid, once is bound causes distortion and partial unfolding of helices in domains IA, IIB and IIIB. Changed are both directions and amplitude of relative motions as well as intra-domain distances. In result albumin is able to cross-link of adjacent IgE receptors which subsequently starts allergic reaction.

  5. Serum albumin complexation of acetylsalicylic acid metabolites.

    PubMed

    Jurkowski, Wiktor; Porebski, Grzegorz; Obtułowicz, Krystyna; Roterman, Irena

    2009-06-01

    One possible origin of the type I hypersensitivity reaction is reaction of drugs such as acetylsalicylic acid and its metabolites being complexed with human serum albumin. Albumin, being transporting molecule abundant in blood plasma is able to bind large array of ligands varying from small single carbon particles to long hydrophobic tailed lipidic acids (e.g. myristic acid). This non specificity is possible because of multi domain scaffold and large flexibility of inter-domain loops, which results in serious reorientation of domains. Hypothesis that acetylsalicylic acid metabolites may play indirect role in activation of allergic reaction has been tested. Binding of acetylsalicylic acid metabolites in intra-domain space causes significant increase of liability of domains IIIA and IIIB. One of metabolites, salicyluric acid, once is bound causes distortion and partial unfolding of helices in domains IA, IIB and IIIB. Changed are both directions and amplitude of relative motions as well as intra-domain distances. In result albumin is able to cross-link of adjacent IgE receptors which subsequently starts allergic reaction. PMID:19689242

  6. Aspirin-triggered metabolites of EFAs.

    PubMed

    Makriyannis, Alexandros; Nikas, Spyros P

    2011-10-28

    Aspirin triggers the biosynthesis of oxygenated metabolites from arachidonic, eicosapentaenoic, and docosahexaenoic (DHA) acids. In a preceding issue, Serhan et al. (2011) describe a novel aspirin-triggered DHA pathway for the biosynthesis of a potent anti-inflammatory and proresolving molecule. PMID:22035788

  7. Eleven microbial metabolites of 6-hydroxyflavanone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Hydroxyflavanone (1) when fermented with fungal culture Cunninghamella blakesleeana (ATCC 8688a) yielded flavanone 6-O-ß-D-glucopyranoside (2), flavanone 6-sulfate (3), and 6-hydroxyflavanone 7-sulfate (4). Aspergillus alliaceus (ATCC 10060) also transformed 1 to metabolite 3 as well as 4'-hydrox...

  8. [Synthesis of metabolites and enantiomers of prolintane].

    PubMed

    Rücker, G; Neugebauer, M; Zhong, D

    1992-01-01

    The synthesis of 15 possible metabolites of prolintane (1) (Katovit) which is used in the treatment of blood pressure disregulations is described. Furthermore, the preparation of the enantiomers of 1 is reported, starting with R-(+)- and S-(-)-phenylalaninol respectively. PMID:1605711

  9. Discovering the secondary metabolite potential encoded within Entomopathogenic Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article discusses the secondary metabolite potential of the insect pathogens Metarhizium and Beauveria, including a bioinformatics analysis of secondary metabolite genes for which no products are yet identified....

  10. METLIN: MS/MS metabolite data from the MAGGIE Project

    DOE Data Explorer

    METLIN is a metabolite database for metabolomics containing over 50,000 structures, it also represents a data management system designed to assist in a broad array of metabolite research and metabolite identification by providing public access to its repository of current and comprehensive MS/MS metabolite data. An annotated list of known metabolites and their mass, chemical formula, and structure are available on the METLIN website. Each metabolite is conveniently linked to outside resources such as the the Kyoto Encyclopedia of Genes and Genomes (KEGG) for further reference and inquiry. MS/MS data is also available on many of the metabolites. The list is expanding continuously as more metabolite information is being deposited and discovered. [from http://metlin.scripps.edu/] Metlin is a component of the MAGGIE Project. MAGGIE is funded by the DOE Genomics: GTL and is an acronym for "Molecular Assemblies, Genes, and Genomics Integrated Efficiently."

  11. Urinary excretion pattern of methaqualone metabolites in man.

    PubMed

    Ericsson, O; Danielsson, B

    1977-01-01

    A method based on selected ion monitoring for determination of five monohydroxy metabolites of methaqualone in urine has been worked out. By means of this method the time course of metabolite excretion was studied in three healthy volunteers receiving an oral therapeutic dose of methaqualone. In all subjects the main monohydroxy metabolite was conjugated 4'-hydroxymethaqualone, but the relative importance of the five metabolites showed intersubject variation. Metabolite excretion was still going on, when urine sampling was discontinued after 70 hr. Only small amounts (less than 1% of the dose during 70 hr) of unmetabolized methaqualone were excreted. On the other hand, it was confirmed that methaqualone-N1-oxide is an important metabolite. The presence of a hydroxy methoxy metabolite of methaqualone, very probably 4'-hydroxy-5'-methoxymethaqualone, as a minor metabolite was established by comparison with authentic, synthetic material. 8-Hydroxymethaqualone and 2-nitrobenz-o-toluidide, reported by other groups, could not be detected.

  12. Non-peptide metabolites from the genus Bacillus.

    PubMed

    Hamdache, Ahlem; Lamarti, Ahmed; Aleu, Josefina; Collado, Isidro G

    2011-04-25

    Bacillus species produce a number of non-peptide metabolites that display a broad spectrum of activity and structurally diverse bioactive chemical structures. Biosynthetic, biological, and structural studies of these metabolites isolated from Bacillus species are reviewed. This contribution also includes a detailed study of the activity of the metabolites described, especially their role in biological control mechanisms.

  13. Biologically Active Metabolites Synthesized by Microalgae.

    PubMed

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  14. Preparative Microfluidic Electrosynthesis of Drug Metabolites

    PubMed Central

    2013-01-01

    In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized. PMID:24900614

  15. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  16. Gut microbiota, metabolites and host immunity.

    PubMed

    Rooks, Michelle G; Garrett, Wendy S

    2016-05-27

    The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system. PMID:27231050

  17. Emerging role of thyroid hormone metabolites.

    PubMed

    Gnocchi, D; Steffensen, K R; Bruscalupi, G; Parini, P

    2016-07-01

    Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.

  18. [Basidiomycetes: A new source of secondary metabolites.].

    PubMed

    Brizuela, M A; García, L; Pérez, L; Mansur, M

    1998-06-01

    The area of natural products research is the most rapidly growing field of organic chemistry, due to the great technical developments in the isolation and identification techniques. Today, near to one million natural products -isolated from the most diverse living things- are known. Microorganisms are among the least-studied of these. Nevertheless, they offer large possibilities for the discovery of new structures and biological activities. Among the microorganisms, the Basidiomycetes present a production capacity and a range of biologically active metabolites, which have scarcely been investigated. The wide spectrum of natural products with biological activity produced by Basidiomycetes includes antimicrobial agents, antifungal, antiviral and cytotoxic activities, enzymes, plant growth regulators and flavors. These metabolites are generally grouped by their chemical origin, and the relationship between chemical structure and the different biological activities reported. The main objective of this review is to bring an updated revision of the numerous and interesting biosynthetic pathways from basidiomycetes.

  19. Three new metabolites from Botrytis cinerea.

    PubMed

    Wang, Tian-Shan; Zhou, Jin-Yan; Tan, Hong

    2008-01-01

    Three new metabolites, gamma-abscisolactone (1), botrytisic acids A (3) and B (4) were isolated from the fermentation broth of Botrytis cinerea TB-3-H8. Their structures were elucidated on the basis of MS, IR, UV, and NMR spectroscopic data. Compound 2 was isolated from natural resource for the first time. The structure of 1 was further confirmed by single-crystal X-ray diffraction (CCDC-265897).

  20. Metabolic regulation and overproduction of primary metabolites

    PubMed Central

    Sanchez, Sergio; Demain, Arnold L.

    2008-01-01

    Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and

  1. Three new metabolites from Botrytis cinerea.

    PubMed

    Wang, Tian-Shan; Zhou, Jin-Yan; Tan, Hong

    2008-01-01

    Three new metabolites, gamma-abscisolactone (1), botrytisic acids A (3) and B (4) were isolated from the fermentation broth of Botrytis cinerea TB-3-H8. Their structures were elucidated on the basis of MS, IR, UV, and NMR spectroscopic data. Compound 2 was isolated from natural resource for the first time. The structure of 1 was further confirmed by single-crystal X-ray diffraction (CCDC-265897). PMID:19003608

  2. Phthalate Metabolites, Consumer Habits and Health Effects.

    PubMed

    Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter

    2016-01-01

    Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching.

  3. Pyrazinone protease inhibitor metabolites from Photorhabdus luminescens.

    PubMed

    Park, Hyun Bong; Crawford, Jason M

    2016-08-01

    Photorhabdus luminescens is a bioluminescent entomopathogenic bacterium that undergoes phenotypic variation and lives in mutualistic association with nematodes of the family Heterorhabditidae. The pair infects and kills insects, and during their coordinated lifecycle, the bacteria produce an assortment of specialized metabolites to regulate its mutualistic and pathogenic roles. As part of our search for new specialized metabolites from the Photorhabdus genus, we examined organic extracts from P. luminescens grown in an amino-acid-rich medium based on the free amino-acid levels found in the circulatory fluid of its common insect prey, the Galleria mellonella larva. Reversed-phase HPLC/UV/MS-guided fractionation of the culture extracts led to the identification of two new pyrazinone metabolites, lumizinones A (1) and B (2), together with two N-acetyl dipeptides (3 and 4). The lumizinones were produced only in the phenotypic variant associated with nematode development and insect pathogenesis. Their chemical structures were elucidated by analysis of 1D and 2D NMR and high-resolution ESI-QTOF-MS spectral data. The absolute configurations of the amino acids in 3 and 4 were determined by Marfey's analysis. Compounds 1-4 were evaluated for their calpain protease inhibitory activity, and lumizinone A (1) showed inhibition with an IC50 (half-maximal inhibitory concentration) value of 3.9 μm. PMID:27353165

  4. Phthalate Metabolites, Consumer Habits and Health Effects

    PubMed Central

    Wallner, Peter; Kundi, Michael; Hohenblum, Philipp; Scharf, Sigrid; Hutter, Hans-Peter

    2016-01-01

    Phthalates are multifunctional chemicals used in a wide variety of consumer products. The aim of this study was to investigate whether levels of urinary phthalate metabolites in urine samples of Austrian mothers and their children were associated with consumer habits and health indicators. Within an Austrian biomonitoring survey, urine samples from 50 mother-child pairs of five communities (two-stage random stratified sampling) were analysed. The concentrations of 14 phthalate metabolites were determined, and a questionnaire was administered. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), and 3-carboxy-mono-propyl phthalate (3cx-MPP) could be quantified in the majority of samples. Significant correlations were found between the use of hair mousse, hair dye, makeup, chewing gum, polyethylene terephthalate (PET) bottles and the diethyl phthalate (DEP) metabolite MEP. With regard to health effects, significant associations of MEP in urine with headache, repeated coughing, diarrhoea, and hormonal problems were observed. MBzP was associated with repeated coughing and MEHP was associated with itching. PMID:27428989

  5. The WEIZMASS spectral library for high-confidence metabolite identification

    PubMed Central

    Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph

    2016-01-01

    Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date. PMID:27571918

  6. The WEIZMASS spectral library for high-confidence metabolite identification.

    PubMed

    Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph

    2016-01-01

    Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date. PMID:27571918

  7. The WEIZMASS spectral library for high-confidence metabolite identification.

    PubMed

    Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph

    2016-01-01

    Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.

  8. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites.

    PubMed

    Pinto, Caroline L; Mansouri, Kamel; Judson, Richard; Browne, Patience

    2016-09-19

    The US Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) is using in vitro data generated from ToxCast/Tox21 high-throughput screening assays to assess the endocrine activity of environmental chemicals. Considering that in vitro assays may have limited metabolic capacity, inactive chemicals that are biotransformed into metabolites with endocrine bioactivity may be missed for further screening and testing. Therefore, there is a value in developing novel approaches to account for metabolism and endocrine activity of both parent chemicals and their associated metabolites. We used commercially available software to predict metabolites of 50 parent compounds, out of which 38 chemicals are known to have estrogenic metabolites, and 12 compounds and their metabolites are negative for estrogenic activity. Three ER QSAR models were used to determine potential estrogen bioactivity of the parent compounds and predicted metabolites, the outputs of the models were averaged, and the chemicals were then ranked based on the total estrogenicity of the parent chemical and metabolites. The metabolite prediction software correctly identified known estrogenic metabolites for 26 out of 27 parent chemicals with associated metabolite data, and 39 out of 46 estrogenic metabolites were predicted as potential biotransformation products derived from the parent chemical. The QSAR models estimated stronger estrogenic activity for the majority of the known estrogenic metabolites compared to their parent chemicals. Finally, the three models identified a similar set of parent compounds as top ranked chemicals based on the estrogenicity of putative metabolites. This proposed in silico approach is an inexpensive and rapid strategy for the detection of chemicals with estrogenic metabolites and may reduce potential false negative results from in vitro assays. PMID:27509301

  9. The incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel

    PubMed Central

    Llewellyn‐Smith, Ida J.; Gribble, Fiona; Reimann, Frank; Trapp, Stefan; Fadool, Debra Ann

    2016-01-01

    Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain.GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb.GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3).Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing.The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes. Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its

  10. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    PubMed

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-01

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  11. Detection and characterization of clostebol sulfate metabolites in Caucasian population.

    PubMed

    Balcells, Georgina; Pozo, Oscar J; Garrostas, Lorena; Esquivel, Argitxu; Matabosch, Xavier; Kotronoulas, Aristotelis; Joglar, Jesús; Ventura, Rosa

    2016-06-01

    Anabolic androgenic steroids (AAS) are synthetic testosterone derivatives which undergo extensive metabolism in man. Differences in the excretion of phase II metabolites are strongly associated with inter-individual and inter-ethnic variations. Sulfate metabolites have been described as long-term metabolites for some AAS. Clostebol is the 4-chloro derivative of testosterone and the aim of the present study was the evaluation of clostebol sulfate metabolites in Caucasian population by LC-MS/MS technology. Clostebol was orally administered to four healthy Caucasian male volunteers, and excretion study urines were collected up to 31 days. Several analytical strategies (neutral loss scan, precursor ion scan and selected reaction monitoring acquisitions modes) were applied to detect sulfate metabolites in post-administration samples. Sixteen sulfate metabolites were detected, five of them having detectability times above 10 days (S1a, S2a, S3b, S3g and S4b). Interestingly, metabolite S1a could be detected up to the last collected sample of all excretion studies and it was characterized by LC-MS/MS and GC-MS as 4ξ-chloro-5α-androst-3β-ol-17-one 3β-sulfate. Thus, monitoring of S1a improves the detection time of clostebol misuse with respect to the commonly monitored metabolites, excreted in the glucuronide fraction. Importantly, this new metabolite can be incorporated into recently developed LC-MS/MS screening methods base on the direct detection of phase II metabolites. PMID:27085012

  12. Maternal and Infant Urinary Phthalate Metabolite Concentrations: Are They Related?

    PubMed Central

    Sathyanarayana, S; Calafat, Antonia Maria; Liu, Fan; Swan, Shanna Helen

    2008-01-01

    Background Phthalates are synthetic chemicals that are ubiquitous in our society and may have adverse health effects in humans. Detectable concentrations of phthalate metabolites have been found in adults and children, but no studies have examined the relationship between maternal and infant phthalate metabolite concentrations. Objective We investigated the relationship between maternal and infant urinary phthalate metabolite concentrations. Methods We measured nine phthalate metabolites in urine samples from 210 mother/infant pairs collected on the same study visit day (1999–2005) and obtained demographic history from questionnaires. Using multivariate linear regression analyses, we examined the degree to which maternal urine phthalate metabolite concentration predicted infant phthalate metabolite concentration. All analyses were adjusted for infant age, creatinine concentration, and race. Results Correlation coefficients between phthalate metabolite concentrations in the urine of mothers and their infants were generally low but increased with decreasing age of infant. In multivariate analyses, mother’s phthalate metabolite concentrations were significantly associated with infants’ concentrations for six phthalate metabolites: monobenzyl phthalate, monoethyl phthalate, monoisobutyl phthalate, and three metabolites of di(2-ethylhexyl) phthalate: mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-hydroxy-hexyl) phthalate and mono(2-ethyl-5-oxo-hexyl) phthalate (p-values for all coefficients <0.05). Discussion Mother’s urine phthalate metabolite concentration is significantly associated with infant urine phthalate metabolite concentration for six phthalate metabolites. It is plausible that shared exposures to phthalates in the immediate surrounding environment accounted for these relationships, but other unidentified sources may also contribute to infants’ phthalate exposures. This study indicates the importance of further identifying infant phthalate exposures

  13. Endogenous cross-talk of fungal metabolites

    PubMed Central

    Sheridan, Kevin J.; Dolan, Stephen K.; Doyle, Sean

    2015-01-01

    Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite. PMID:25601857

  14. Clinical Pharmacokinetics of Alamifovir and Its Metabolites

    PubMed Central

    Chan, Clark; Abu-Raddad, Eyas; Golor, Georg; Watanabe, Hikari; Sasaki, Akira; Yeo, Kwee Poo; Soon, Danny; Sinha, Vikram P.; Flanagan, Shawn D.; He, Minxia M.; Wise, Stephen D.

    2005-01-01

    Alamifovir, a purine nucleotide analogue prodrug, and its hydrolyzed derivatives have shown preclincal efficacy activity against wild-type and lamivudine-resistant hepatitis B virus. Two studies were conducted to examine the single- and multiple-dose alamifovir pharmacokinetics after oral administration in healthy males. In study 1, subjects were given single doses (0.2 to 80 mg), with a subset receiving 20 mg in a fed state. Study 2 subjects were dosed with 2.5 to 15 mg twice daily for 15 days. Plasma samples were collected over 72 h in study 1 and over 24 h on days 1 and 15 in study 2. Concentrations of alamifovir and its major metabolites were determined using liquid chromatography/tandem mass spectrometry methods. The data were analyzed using a noncompartmental technique. Although alamifovir was rapidly absorbed, there was limited systemic exposure due to its rapid hydrolysis and formation of at least three metabolites, suggesting that alamifovir acts as a prodrug. The major metabolites detected were 602074 and 602076, with 602075 detectable only in higher-dose groups. Maximum 602074 plasma concentration was achieved at approximately 0.5 h (Tmax) and declined with a 1- to 2-h terminal half-life (t1/2). Maximum concentrations of 602076 (Cmax) averaged 10% of the 602074 Cmax and reached Tmax in 2.5 h with a 4-h t1/2. Food appeared to decrease the extent of absorption of the compound. Multiple dosing resulted in minimal accumulation, and the concentrations following multiple doses could be predicted using the single-dose data. Alamifovir was well tolerated and the pharmacokinetics were characterized in these studies. PMID:15855501

  15. MASS SPECTROMETRY IMAGING FOR DRUGS AND METABOLITES

    PubMed Central

    Greer, Tyler; Sturm, Robert; Li, Lingjun

    2011-01-01

    Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review’s main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed. PMID:21515430

  16. Antimycobacterial activity of lichen metabolites in vitro.

    PubMed

    Ingólfsdóttir, K; Chung, G A; Skúlason, V G; Gissurarson, S R; Vilhelmsdóttir, M

    1998-04-01

    Several compounds, whose structures represent the most common chemical classes of lichen metabolites, were screened for in vitro activity against Mycobacterium aurum, a non-pathogenic organism with a similar sensitivity profile to M. tuberculosis. Of the compounds tested, usnic acid from Cladonia arbuscula exhibited the highest activity with an MIC value of 32 microg/ml. Atranorin and lobaric acid, both isolated from Stereocaulon alpinum, salazinic acid from Parmelia saxatilis and protolichesterinic acid from Cetraria islandica all showed MIC values >/=125 microg/ml. PMID:9795033

  17. Novel sulfur-containing microbial metabolite of primaquine.

    PubMed

    Hufford, C D; Baker, J K; McChesney, J D; Clark, A M

    1986-08-01

    Microbial metabolism studies of the antimalarial drug primaquine, using Streptomyces roseochromogenus (ATCC 13400) have produced an N-acetylated metabolite and a methylene-linked dimeric product, both of which have been previously reported, and a novel sulfur-containing microbial metabolite. The structure of the metabolite as a sulfur-linked dimer was proposed on the basis of spectral and chemical data. The molecular formula C34H44N6O4S was established from field-desorption mass spectroscopy and analytical data. The 1H- and 13C-nuclear magnetic resonance spectral data firmly established that the novel metabolite was a symmetrically substituted dimer of primaquine N-acetate with a sulfur atom linking the two units at C-5. The metabolite has been shown to be a mixture of stereoisomers which can equilibrate in solution. This observation was confirmed by microbial synthesis of the metabolite from optically active primaquine. PMID:3767340

  18. Applications and advances of metabolite biosensors for metabolic engineering.

    PubMed

    Liu, Di; Evans, Trent; Zhang, Fuzhong

    2015-09-01

    Quantification and regulation of pathway metabolites is crucial for optimization of microbial production bioprocesses. Genetically encoded biosensors provide the means to couple metabolite sensing to several outputs invaluable for metabolic engineering. These include semi-quantification of metabolite concentrations to screen or select strains with desirable metabolite characteristics, and construction of dynamic metabolite-regulated pathways to enhance production. Taking inspiration from naturally occurring systems, biosensor functions are based on highly diverse mechanisms including metabolite responsive transcription factors, two component systems, cellular stress responses, regulatory RNAs, and protein activities. We review recent developments in biosensors in each of these mechanistic classes, with considerations towards how these sensors are engineered, how new sensing mechanisms have led to improved function, and the advantages and disadvantages of each of these sensing mechanisms in relevant applications. We particularly highlight recent examples directly using biosensors to improve microbial production, and the great potential for biosensors to further inform metabolic engineering practices.

  19. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites.

    PubMed

    Tian, Li

    2015-01-01

    Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed. PMID:25583225

  20. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  1. Metabolite profiling of wheat (Triticum aestivum L.) phloem exudate

    PubMed Central

    2014-01-01

    Background Biofortification of staple crops with essential micronutrients relies on the efficient, long distance transport of nutrients to the developing seed. The main route of this transport in common wheat (Triticum aestivum) is via the phloem, but due to the reactive nature of some essential micronutrients (specifically Fe and Zn), they need to form ligands with metabolites for transport within the phloem. Current methods available in collecting phloem exudate allows for small volumes (μL or nL) to be collected which limits the breadth of metabolite analysis. We present a technical advance in the measurement of 79 metabolites in as little as 19.5 nL of phloem exudate. This was achieved by using mass spectrometry based, metabolomic techniques. Results Using gas chromatography–mass spectrometry (GC-MS), 79 metabolites were detected in wheat phloem. Of these, 53 were identified with respect to their chemistry and 26 were classified as unknowns. Using the ratio of ion area for each metabolite to the total ion area for all metabolites, 39 showed significant changes in metabolite profile with a change in wheat reproductive maturity, from 8–12 to 17–21 days after anthesis. Of these, 21 were shown to increase and 18 decreased as the plant matured. An amine group derivitisation method coupled with liquid chromatography MS (LC-MS) based metabolomics was able to quantify 26 metabolites and semi-quantitative data was available for a further 3 metabolites. Conclusions This study demonstrates that it is possible to determine metabolite profiles from extremely small volumes of phloem exudate and that this method can be used to determine variability within the metabolite profile of phloem that has occurred with changes in maturity. This is also believed to be the first report of the presence of the important metal complexing metabolite, nicotianamine in the phloem of wheat. PMID:25143779

  2. Buckwheat phenolic metabolites in health and disease.

    PubMed

    Kreft, Marko

    2016-06-01

    Buckwheat (Fagopyrum esculentum Moench, F. tataricum Gaertner) groats and flour have been established globally as nutritional foods because of their high levels of proteins, polyphenols and minerals. In some regions, buckwheat herb is used as a functional food. In the present study, reports of in vitro studies, preclinical and clinical trials dealing with the effect of buckwheat and its metabolites were reviewed. There are numerous reports of potential health benefits of consuming buckwheat, which may be in the form of food, dietary supplements, home remedies or possibly pharmaceutical drugs; however, adverse effects, including those resulting from contamination, must be considered. There are reports of antioxidative activity of buckwheat, which contains high levels of rutin and quercetin. On the other hand, both cytotoxic and antigenotoxic effects have been shown. Reduction of hyperlipidaemia, reduction of blood pressure and improved weight regulation have been suggested. Consuming buckwheat may have a beneficial effect on diabetes, since lower postprandial blood glucose and insulin response have been reported. In addition, buckwheat metabolites, such as rutin, may have intrinsic protective effects in preserving insulin signalling. Rutin has also been suggested to have potential therapeutic applications for the treatment of Alzheimer's disease. The literature indicates that buckwheat is safe to consume and may have various beneficial effects on human health. PMID:27046048

  3. Hairy root cultures for secondary metabolites production.

    PubMed

    Pistelli, Laura; Giovannini, Annalisa; Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    Hairy roots (HRs) are differentiated cultures of transformed roots generated by the infection of wounded higher plants with Agrobacterium rhizogenes. This pathogen causes the HR disease leading to the neoplastic growth of roots that are characterized by high growth rate in hormone free media and genetic stability. HRs produce the same phytochemicals pattern of the corresponding wild type organ. High stability and productivity features allow the exploitation of HRs as valuable biotechnological tool for the production of plant secondary metabolites. In addition, several elicitation methods can be used to further enhance their accumulation in both small and large scale production. However, in the latter case, cultivation in bioreactors should be still optimized. HRs can be also utilised as biological farm for the production of recombinant proteins, hence holding additional potential for industrial use. HR technology has been strongly improved by increased knowledge of molecular mechanisms underlying their development. The present review summarizes updated aspects of the hairy root induction, genetics and metabolite production. PMID:21520711

  4. Species identification of Papaver by metabolite profiling.

    PubMed

    Choe, Sanggil; Kim, Suncheun; Lee, Chul; Yang, Wonkyung; Park, Yuran; Choi, Hwakyung; Chung, Heesun; Lee, Dongho; Hwang, Bang Yeon

    2011-09-10

    Papaver somniferum L. and Papaver setigerum D.C. are controlled as opium poppy in Korea because they contain narcotic substances such as morphine and codeine. It is one of the critical issues whether the plants similar to opium poppy in shape are controlled plants or not. There are more than 110 species in the genus Papaver worldwide and about 10 species in Korea. As the morphological features of some species are very similar and the alkaloid contents and the ratios among the major alkaloids vary even within the same species, it is often difficult to identify the exact species by the morphological features and/or major alkaloids analysis. To develop a new method that uses metabolite profiling for species discrimination between P. somniferum, Papaver rhoeas and P. setigerum, the gas chromatography/mass spectrometry (GC-MS) data of the alkaline extract were processed with in-house Microsoft Visual Basic(®) modules and the chemical information was analyzed through multivariate statistical analyses such as Hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). The GC-MS results combined with multivariate analysis demonstrated that the metabolite profiling was an efficient technique for the classification and this method will provide a powerful tool for the identification of Korean Papaver species.

  5. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  6. Metabolite production by different Ulocladium species.

    PubMed

    Andersen, Birgitte; Hollensted, Morten

    2008-08-15

    Ulocladium, which is phylogenetically related to Alternaria, contains species that are food spoilers and plant pathogens, but also species that have potential as enzyme producers and bio-control agents. Ulocladium spp. are often found on dead vegetation, in soil, air and dust, but also on food and feedstuffs and on water-damaged building materials. The aim was to study the morphological and chemical diversity within the genus Ulocladium. Cultures of 52 Ulocladium strains were identified morphologically, and then extracted and analyzed using automated Chemical Image Analysis. Production of individual metabolites was correlated to species identity and source of isolation (substratum). Chemical analyses corroborated the morphological identifications and showed the existence of several species species-specific metabolites, of which most were known compounds. The production of curvularins was specific to Ulocladium atrum, while most species produced infectopyrones and derivatives of altertoxin I. None of the 52 Ulocladium strains produced alternariols, tenuazonic acid, altersolanols or macrosporin, which are common in species of Alternaria.

  7. Blood styrene and urinary metabolites in styrene polymerisation.

    PubMed Central

    Wolff, M S; Lorimer, W V; Lilis, R; Selikoff, I J

    1978-01-01

    The results of the analysis of blood and urine samples for styrene and its metabolites in 491 workers in a styrene polymerisation plant in the United States are reported. The levels of exposure to styrene were estimated to be less than 10 ppm, but nevertheless styrene and metabolites were detectable in more than 50% of workers in polymerisation jobs, within 4 h of exposure. Workers involved in the manufacture and purification of styrene from ethyl benzene also had detectable blood styrene and urinary metabolites in 83% of recently exposed subjects. The relationship between styrene in blood and in subcutaneous fat and urinary metabolites as pharmacokinetic variables is discussed. PMID:737139

  8. Radioimmunoassay of methaqualone and its monohydroxy metabolites in urine.

    PubMed

    Berman, A R; McGrath, J P; Permisohn, R C; Cella, J A

    1975-12-01

    A commercial radioimmunoassay kit was evaluated for efficacy in detecting methaqualone or its metabolites in urine of persons receiving this drug. The drug and its unconjugated 3'- and 4'-monohydroxy metabolites could be detected equally well. The unconjugated alpha-monohydroxy metabolite was about 80% as reactive and the unconjugated 6-monohydroxy metabolite reacted only very weakly. Quantitation of the conjugated metabolites was less sensitive than of unconjugated. Nineteen urine specimens which reacted positively to radioimmunoassay and which thin-layer chromatography had shown to contain methaqualone and its metabolites were also examined by gas-liquid chromatography. Those specimens that reacted strongly to radioimmunoassay contained high concentrations of the drug or its metabolites. In the specimens examined by gas-liquid chromatography, the apparent concentrations of the metabolites were generally higher than those of the drug itself. Methaqualone in combination with its unconjugated metabolites reacted additively with the radioimmunoassay, resembling the same concentration of parent drug alone. Detection limits were between 10-200 mug/liter.

  9. Beta-orcinol metabolites from the lichen Hypotrachyna revoluta.

    PubMed

    Papadopoulou, Panagiota; Tzakou, Olga; Vagias, Constantinos; Kefalas, Panagiotis; Roussis, Vassilios

    2007-01-01

    Four new beta-orcinol metabolites, hypotrachynic acid (1), deoxystictic acid (2), cryptostictinolide (3) and 8'-methylconstictic acid (4) along with the metabolites 8'-methylstictic acid (5), 8'-methylmenegazziaic acid (6), stictic acid (7), 8'-ethylstictic acid (8) and atranorin (9), that have been previously described, were isolated for the first time from the tissue extracts of the lichen Hypotrachyna revoluta (Flörke) Hale. The structures of the new metabolites were elucidated on the basis of extensive spectroscopic analyses. Radical scavenging activity (RSA) of the metabolites isolated in adequate amounts, was evaluated using luminol chemiluminescence and comparison with Trolox. PMID:17873835

  10. Characterization of Urinary Phthalate Metabolites Among Custodians

    PubMed Central

    Cavallari, Jennifer M.; Simcox, Nancy J.; Wakai, Sara; Lu, Chensheng; Garza, Jennifer L.; Cherniack, Martin

    2015-01-01

    Phthalates, a ubiquitous class of chemicals found in consumer, personal care, and cleaning products, have been linked to adverse health effects. Our goal was to characterize urinary phthalate metabolite concentrations and to identify work and nonwork sources among custodians using traditional cleaning chemicals and ‘green’ or environmentally preferable products (EPP). Sixty-eight custodians provided four urine samples on a workday (first void, before shift, end of shift, and before bedtime) and trained observers recorded cleaning tasks and types of products used (traditional, EPP, or disinfectant) hourly over the work shifts. Questionnaires were used to assess personal care product use. Four different phthalate metabolites [monoethyl phthalate (MEP), monomethyl phthalate (MMP), mono (2-ethylhexyl) phthalate (MEHP), and monobenzyl phthalate (MBzP)] were quantified using liquid chromatography mass spectrometry. Geometric means (GM) and 95% confidence intervals (95% CI) were calculated for creatinine-adjusted urinary phthalate concentrations. Mixed effects univariate and multivariate modeling, using a random intercept for each individual, was performed to identify predictors of phthalate metabolites including demographics, workplace factors, and personal care product use. Creatinine-adjusted urinary concentrations [GM (95% CI)] of MEP, MMP, MEHP, and MBzP were 107 (91.0–126), 2.69 (2.18–3.30), 6.93 (6.00–7.99), 8.79 (7.84–9.86) µg g−1, respectively. An increasing trend in phthalate concentrations from before to after shift was not observed. Creatinine-adjusted urinary MEP was significantly associated with frequency of traditional cleaning chemical intensity in the multivariate model after adjusting for potential confounding by demographics, workplace factors, and personal care product use. While numerous demographics, workplace factors, and personal care products were statistically significant univariate predictors of MMP, MEHP, and MBzP, few

  11. Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms.

    PubMed

    Yet, Idil; Menni, Cristina; Shin, So-Youn; Mangino, Massimo; Soranzo, Nicole; Adamski, Jerzy; Suhre, Karsten; Spector, Tim D; Kastenmüller, Gabi; Bell, Jordana T

    2016-01-01

    Metabolomic profiling is a powerful approach to characterize human metabolism and help understand common disease risk. Although multiple high-throughput technologies have been developed to assay the human metabolome, no technique is capable of capturing the entire human metabolism. Large-scale metabolomics data are being generated in multiple cohorts, but the datasets are typically profiled using different metabolomics platforms. Here, we compared analyses across two of the most frequently used metabolomic platforms, Biocrates and Metabolon, with the aim of assessing how complimentary metabolite profiles are across platforms. We profiled serum samples from 1,001 twins using both targeted (Biocrates, n = 160 metabolites) and non-targeted (Metabolon, n = 488 metabolites) mass spectrometry platforms. We compared metabolite distributions and performed genome-wide association analyses to identify shared genetic influences on metabolites across platforms. Comparison of 43 metabolites named for the same compound on both platforms indicated strong positive correlations, with few exceptions. Genome-wide association scans with high-throughput metabolic profiles were performed for each dataset and identified genetic variants at 7 loci associated with 16 unique metabolites on both platforms. The 16 metabolites showed consistent genetic associations and appear to be robustly measured across platforms. These included both metabolites named for the same compound across platforms as well as unique metabolites, of which 2 (nonanoylcarnitine (C9) [Biocrates]/Unknown metabolite X-13431 [Metabolon] and PC aa C28:1 [Biocrates]/1-stearoylglycerol [Metabolon]) are likely to represent the same or related biochemical entities. The results demonstrate the complementary nature of both platforms, and can be informative for future studies of comparative and integrative metabolomics analyses in samples profiled on different platforms. PMID:27073872

  12. From the Lab Bench: Plant secondary metabolites: The good and the bad.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written to discuss the negatives and positives of plant secondary metabolites. Primary metabolites are those metabolites that are required for survival, such as protein, carbohydrates, and lipids. Plant secondary metabolites are produced from primary metabolites and are not required f...

  13. Satiety Hormone and Metabolomic Response to an Intermittent High Energy Diet Differs in Rats Consuming Long-Term Diets High in Protein or Prebiotic Fiber

    PubMed Central

    2012-01-01

    Large differences in the composition of diet between early development and adulthood can have detrimental effects on obesity risk. We examined the effects of an intermittent high fat/sucrose diet (HFS) on satiety hormone and serum metabolite response in disparate diets. Wistar rat pups were fed control (C), high prebiotic fiber (HF) or high protein (HP) diets (weaning to 16 weeks), HFS diet challenged (6 weeks), and finally reverted to their respective C, HF, or HP diet (4 weeks). At conclusion, measurement of body composition and satiety hormones was accompanied by 1H NMR metabolic profiles in fasted and postprandial states. Metabolomic profiling predicted dietary source with >90% accuracy. The HF group was characterized by lowest body weight and body fat (P < 0.05) and increased satiety hormone levels (glucagon-like peptide 1 and peptide-YY). Regularized modeling confirmed that the HF diet is associated with higher gut hormone secretion that could reflect the known effects of prebiotics on gut microbiota and their fementative end products, the short chain fatty acids. Rats reared on a HF diet appear to experience fewer adverse effects from an intermittent high fat diet in adulthood when rematched to their postnatal diet. Metabolite profiles associated with the diets provide a distinct biochemical signature of their effects. PMID:22788871

  14. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.

  15. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  16. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  17. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  18. Secondary metabolites: applications on cultural heritage.

    PubMed

    Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

    2013-01-01

    Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera.

  19. Encapsulates for Food Bioconversions and Metabolite Production

    NASA Astrophysics Data System (ADS)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  20. Lipid Metabolites from the Mushroom Meripilus giganteus.

    PubMed

    Catenia, Francesca; Altieri, Tiziano; Zacchigna, Marina; Procida, Giuseppe; Zilic, Jelena; Zigon, Dusan; Cichelli, Angelo

    2015-11-01

    The phytochemical investigation of the methanolic extract of the white rot fungus Meripilus giganteus resulted in the isolation and identification of complex mixtures of free fatty acids (1), monoacylglycerols (2), cerebrosides (3), ergosterol (4) and ergosterol peroxide (5). The structures of the isolated lipid metabolites (1-5) were determined by chemical and spectroscopic methods. The antioxidant activity of the whole MeOH extract of the fungus was evaluated through in vitro model systems, such as 2,2-diphenyl-l-picrylhydrazyl (DPPH) and superoxide anion. In all two systems, the results indicated that the extract of the fungus showed the same free-radical-scavenging activity with SC50 data of 47.70 µg/mL, compared with the positive control quercetin (DPPH assay). None of the isolated compounds (1-5) showed a significant activity. Compounds 2-4 were isolated from Meripilus giganteus for the first time.

  1. Screening botanical extracts for quinoid metabolites.

    PubMed

    Johnson, B M; Bolton, J L; van Breemen, R B

    2001-11-01

    Botanical dietary supplements represent a significant share of the growing market for alternative medicine in the USA, where current regulations do not require assessment of their safety. To help ensure the safety of such products, an in vitro assay using pulsed ultrafiltration and LC-MS-MS has been developed to screen botanical extracts for the formation of electrophilic and potentially toxic quinoid species upon bioactivation by hepatic cytochromes P450. Rat liver microsomes were trapped in a flow-through chamber by an ultrafiltration membrane, and samples containing botanical extracts, GSH and NADP(H), were flow-injected into the chamber. Botanical compounds that were metabolized to reactive intermediates formed stable GSH adducts mimicking a common in vivo detoxification pathway. If present in the ultrafiltrate, GSH conjugates were detected using LC-MS-MS with precursor ion scanning followed by additional characterization using product ion scanning and comparison to standard compounds. As expected, no GSH adducts of reactive metabolites were found in extracts of Trifolium pratense L. (red clover), which are under investigation as botanical dietary supplements for the management of menopause. However, extracts of Sassafras albidum (Nutt.) Nees (sassafras), Symphytum officinale L. (comfrey), and Rosmarinus officinalis L. (rosemary), all of which are known to contain compounds that are either carcinogenic or toxic to mammals, produced GSH adducts during this screening assay. Several compounds that formed GSH conjugates including novel metabolites of rosmarinic acid were identified using database searching and additional LC-MS-MS studies. This assay should be useful as a preliminary toxicity screen during the development of botanical dietary supplements. A positive test suggests that additional toxicological studies are warranted before human consumption of a botanical product.

  2. Screening botanical extracts for quinoid metabolites.

    PubMed

    Johnson, B M; Bolton, J L; van Breemen, R B

    2001-11-01

    Botanical dietary supplements represent a significant share of the growing market for alternative medicine in the USA, where current regulations do not require assessment of their safety. To help ensure the safety of such products, an in vitro assay using pulsed ultrafiltration and LC-MS-MS has been developed to screen botanical extracts for the formation of electrophilic and potentially toxic quinoid species upon bioactivation by hepatic cytochromes P450. Rat liver microsomes were trapped in a flow-through chamber by an ultrafiltration membrane, and samples containing botanical extracts, GSH and NADP(H), were flow-injected into the chamber. Botanical compounds that were metabolized to reactive intermediates formed stable GSH adducts mimicking a common in vivo detoxification pathway. If present in the ultrafiltrate, GSH conjugates were detected using LC-MS-MS with precursor ion scanning followed by additional characterization using product ion scanning and comparison to standard compounds. As expected, no GSH adducts of reactive metabolites were found in extracts of Trifolium pratense L. (red clover), which are under investigation as botanical dietary supplements for the management of menopause. However, extracts of Sassafras albidum (Nutt.) Nees (sassafras), Symphytum officinale L. (comfrey), and Rosmarinus officinalis L. (rosemary), all of which are known to contain compounds that are either carcinogenic or toxic to mammals, produced GSH adducts during this screening assay. Several compounds that formed GSH conjugates including novel metabolites of rosmarinic acid were identified using database searching and additional LC-MS-MS studies. This assay should be useful as a preliminary toxicity screen during the development of botanical dietary supplements. A positive test suggests that additional toxicological studies are warranted before human consumption of a botanical product. PMID:11712913

  3. Urinary Metabolite Markers of Precocious Puberty*

    PubMed Central

    Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2012-01-01

    The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition. PMID:22027199

  4. Urinary metabolite markers of precocious puberty.

    PubMed

    Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2012-01-01

    The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition.

  5. Synthesis of an Albendazole Metabolite: Characterization and HPLC Determination

    ERIC Educational Resources Information Center

    Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Nunez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo

    2008-01-01

    In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H[subscript 2]O[subscript 2] in acetic acid. The reaction is environmental friendly,…

  6. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  7. Role of active metabolites in the use of opioids.

    PubMed

    Coller, Janet K; Christrup, Lona L; Somogyi, Andrew A

    2009-02-01

    The opioid class of drugs, a large group, is mainly used for the treatment of acute and chronic persistent pain. All are eliminated from the body via metabolism involving principally CYP3A4 and the highly polymorphic CYP2D6, which markedly affects the drug's function, and by conjugation reactions mainly by UGT2B7. In many cases, the resultant metabolites have the same pharmacological activity as the parent opioid; however in many cases, plasma metabolite concentrations are too low to make a meaningful contribution to the overall clinical effects of the parent drug. These metabolites are invariably more water soluble and require renal clearance as an important overall elimination pathway. Such metabolites have the potential to accumulate in the elderly and in those with declining renal function with resultant accumulation to a much greater extent than the parent opioid. The best known example is the accumulation of morphine-6-glucuronide from morphine. Some opioids have active metabolites but at different target sites. These are norpethidine, a neurotoxic agent, and nordextropropoxyphene, a cardiotoxic agent. Clinicians need to be aware that many opioids have active metabolites that will become therapeutically important, for example in cases of altered pathology, drug interactions and genetic polymorphisms of drug-metabolizing enzymes. Thus, dose individualisation and the avoidance of adverse effects of opioids due to the accumulation of active metabolites or lack of formation of active metabolites are important considerations when opioids are used.

  8. Influence of abiotic stress signals on secondary metabolites in plants.

    PubMed

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-11-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.

  9. Determination of Tamoxifen and its Major Metabolites in Exposed Fish

    EPA Science Inventory

    Tamoxifen (TAM), (Z)-1-(p-dimethylaminoethoxyphenyl)-1, 2-diphenyl-1-butene, is a nonsteroidal agent that has been used in breast cancer treatment for decades. Its major metabolites are 4-hydroxytamoxifen (4-OHT), N-desmethyltamoxifen (DMT), and endoxifen. While TAM and metabolit...

  10. Yeast synthetic biology for high-value metabolites.

    PubMed

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2014-07-22

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites.

  11. Overview of metabolite safety testing from an industry perspective.

    PubMed

    Anderson, Shelby; Knadler, Mary Pat; Luffer-Atlas, Debra

    2010-07-01

    Regulatory guidelines on MIST were initially established in 2005 and finalized in 2008 by the US FDA and this has led to much discussion and debate on how to apply these recommendations in today's resource-constrained pharmaceutical environment. There are four aspects of MIST that impact on the field of bioanalysis: definition of a disproportionate human metabolite, establishment of nonclinical (animal) safety coverage for important human metabolites, degree of rigor in validation of bioanalytical methods to quantify metabolites when synthetic standards are available, and semiquantitation of metabolites when synthetic standards are not available. In this manuscript, each of these points has been addressed from a pharmaceutical industry standpoint, including a perspective on the necessary convergence of the fields of metabolite safety testing and bioanalysis.

  12. Matching metabolites and reactions in different metabolic networks.

    PubMed

    Qi, Xinjian; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2014-10-01

    Comparing and identifying matching metabolites, reactions, and compartments in genome-scale reconstructed metabolic networks can be difficult due to inconsistent naming in different networks. In this paper, we propose metabolite and reaction matching techniques for matching metabolites and reactions in a given metabolic network to metabolites and reactions in another metabolic network. We employ a variety of techniques that include approximate string matching, similarity score functions and multi-step filtering techniques, all enhanced by a set of rules based on the underlying metabolic biochemistry. The proposed techniques are evaluated by an empirical study on four pairs of metabolic networks, and significant accuracy gains are achieved using the proposed metabolite and reaction identification techniques.

  13. Profiling the reactive metabolites of xenobiotics using metabolomic technologies.

    PubMed

    Li, Feng; Lu, Jie; Ma, Xiaochao

    2011-05-16

    A predominant pathway of xenobiotic-induced toxicity is initiated by bioactivation. Characterizing reactive intermediates will provide information on the structure of reactive species, thereby defining a potential bioactivation mechanism. Because most reactive metabolites are not stable, it is difficult to detect them directly. Reactive metabolites can form adducts with trapping reagents, such as glutathione, which makes the reactive metabolites detectable. However, it is challenging to "fish" these adducts out from a complex biological matrix, especially for adducts generated via uncommon metabolic pathways. In this regard, we developed a novel approach based upon metabolomic technologies to screen trapped reactive metabolites. The bioactivation of pulegone, acetaminophen, and clozapine were reexamined by using this metabolomic approach. In all these cases, a large number of trapped reactive metabolites were readily identified. These data indicate that this metabolomic approach is an efficient tool to profile xenobiotic bioactivation.

  14. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  15. Characterizing protein modifications by reactive metabolites using magnetic bead bioreactors and LC-MS/MS.

    PubMed

    Li, Dandan; Fu, You-Jun; Rusling, James F

    2015-03-18

    We report here label-free metabolite-protein adduct detection and identification employing magnetic beads coated with metabolic enzymes as bioreactors to generate metabolites and possible metabolite-protein adducts for analysis by liquid chromatography-tandem mass spectrometry.

  16. Systematic Identification of Protein-Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Nikolaev, Yaroslav V; Kochanowski, Karl; Link, Hannes; Sauer, Uwe; Allain, Frederic H-T

    2016-05-10

    Protein-metabolite interactions play a vital role in the regulation of numerous cellular processes. Consequently, identifying such interactions is a key prerequisite for understanding cellular regulation. However, the noncovalent nature of the binding between proteins and metabolites has so far hampered the development of methods for systematically mapping protein-metabolite interactions. The few available, largely mass spectrometry-based, approaches are restricted to specific metabolite classes, such as lipids. In this study, we address this issue and show the potential of ligand-detected nuclear magnetic resonance (NMR) spectroscopy, which is routinely used in drug development, to systematically identify protein-metabolite interactions. As a proof of concept, we selected four well-characterized bacterial and mammalian proteins (AroG, Eno, PfkA, and bovine serum albumin) and identified metabolite binders in complex mixes of up to 33 metabolites. Ligand-detected NMR captured all of the reported protein-metabolite interactions, spanning a full range of physiologically relevant Kd values (low micromolar to low millimolar). We also detected a number of novel interactions, such as promiscuous binding of the negatively charged metabolites citrate, AMP, and ATP, as well as binding of aromatic amino acids to AroG protein. Using in vitro enzyme activity assays, we assessed the functional relevance of these novel interactions in the case of AroG and show that l-tryptophan, l-tyrosine, and l-histidine act as novel inhibitors of AroG activity. Thus, we conclude that ligand-detected NMR is suitable for the systematic identification of functionally relevant protein-metabolite interactions.

  17. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

    PubMed

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R

    2016-01-08

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  18. Detection and quantification of boscalid and its metabolites in honeybees.

    PubMed

    Jabot, Claire; Daniele, Gaëlle; Giroud, Barbara; Tchamitchian, Sylvie; Belzunces, Luc P; Casabianca, Hervé; Vulliet, Emmanuelle

    2016-08-01

    Boscalid is a new-generation fungicide that has been detected in several bee matrices. The objective of this work was to characterize boscalid metabolites in honeybees based on in vivo experimentation, and next to verify the presence of theses metabolites into honeybees from colonies presenting troubles. A methodology based on complementary mass spectrometric tools, namely ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-QToF) or triple quadrupole mass spectrometry (UHPLC-QqQ) was implemented. Honeybees were sprayed with boscalid, at field rate (to induce the metabolization process) and the parent compound with its generated metabolites were then extracted using modified EU-QuEChERS method. The mass characteristics including exact mass, isotopic profile and mass fragments allowed assuming the structure of several metabolites. Some of them were unambiguously identified by comparison with synthesized analytical standards. The metabolites were resulted from hydroxylation and dechlorination of the parent compound as well as the substitution of a chlorine atom with an hydroxyl group. The metabolites were then quantified in bee samples collected from various beehives located in France. Boscalid and three of its metabolites were present in some samples at a level ranged between 0.2 and 36.3 ng/g. PMID:27179242

  19. Development of competitive immunoassays to hydroxyl containing fungicide metabolites.

    PubMed

    Gough, Kevin C; Jarvis, Shila; Maddison, Ben C

    2011-01-01

    This paper describes the isolation of monoclonal antibodies and the development of competitive immunoassays to pesticide metabolites of the fungicides imazalil, carbendazim and thiabendazole. The metabolite specific hydroxyl residues were used as the reactive group with which to link the metabolite to the carrier proteins Keyhole Limpet Haemocyanin (KLH) and Bovine Serum Albumin (BSA). In each case immune responses in mice were raised and monoclonal antibodies were produced. Antibodies were developed into competitive ELISAs to the appropriate metabolite. The antibody raised to a metabolite of imazalil was optimised into a competitive ELISA format which had an assay IC50 of 7.5 μg/L and a limit of detection (LOD) of 1.1 μg/L. A single antibody isolated against the metabolite of carbendazim had assay IC50s of 3.2 and 2.7 μg/L for the metabolites of carbendazim and thiabendazole respectively with an LOD of 0.38 μg/L for both. These sensitive immunoassays may have application in the monitoring of human exposure to these fungicide residues either by occupational or non-occupational routes.

  20. Detection and quantification of boscalid and its metabolites in honeybees.

    PubMed

    Jabot, Claire; Daniele, Gaëlle; Giroud, Barbara; Tchamitchian, Sylvie; Belzunces, Luc P; Casabianca, Hervé; Vulliet, Emmanuelle

    2016-08-01

    Boscalid is a new-generation fungicide that has been detected in several bee matrices. The objective of this work was to characterize boscalid metabolites in honeybees based on in vivo experimentation, and next to verify the presence of theses metabolites into honeybees from colonies presenting troubles. A methodology based on complementary mass spectrometric tools, namely ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-QToF) or triple quadrupole mass spectrometry (UHPLC-QqQ) was implemented. Honeybees were sprayed with boscalid, at field rate (to induce the metabolization process) and the parent compound with its generated metabolites were then extracted using modified EU-QuEChERS method. The mass characteristics including exact mass, isotopic profile and mass fragments allowed assuming the structure of several metabolites. Some of them were unambiguously identified by comparison with synthesized analytical standards. The metabolites were resulted from hydroxylation and dechlorination of the parent compound as well as the substitution of a chlorine atom with an hydroxyl group. The metabolites were then quantified in bee samples collected from various beehives located in France. Boscalid and three of its metabolites were present in some samples at a level ranged between 0.2 and 36.3 ng/g.

  1. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    PubMed Central

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.

    2016-01-01

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036

  2. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  3. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks.

    PubMed

    Celiz, Mary D; Tso, Jerry; Aga, Diana S

    2009-12-01

    The occurrence of human and veterinary pharmaceuticals in the environment has been a subject of concern for the past decade because many of these emerging contaminants have been shown to persist in soil and water. Although recent studies indicate that pharmaceutical contaminants can pose long-term ecological risks, many of the investigations regarding risk assessment have only considered the ecotoxicity of the parent drug, with very little attention given to the potential contributions that metabolites may have. The scarcity of available environmental data on the human metabolites excreted into the environment or the microbial metabolites formed during environmental biodegradation of pharmaceutical residues can be attributed to the difficulty in analyzing trace amounts of previously unknown compounds in complex sample matrices. However, with the advent of highly sensitive and powerful analytical instrumentations that have become available commercially, it is likely that an increased number of pharmaceutical metabolites will be identified and included in environmental risk assessment. The present study will present a critical review of available literature on pharmaceutical metabolites, primarily focusing on their analysis and toxicological significance. It is also intended to provide an overview on the recent advances in analytical tools and strategies to facilitate metabolite identification in environmental samples. This review aims to provide insight on what future directions might be taken to help scientists in this challenging task of enhancing the available data on the fate, behavior, and ecotoxicity of pharmaceutical metabolites in the environment.

  4. Physiochemical property space distribution among human metabolites, drugs and toxins

    PubMed Central

    2009-01-01

    Background The current approach to screen for drug-like molecules is to sieve for molecules with biochemical properties suitable for desirable pharmacokinetics and reduced toxicity, using predominantly biophysical properties of chemical compounds, based on empirical rules such as Lipinski's "rule of five" (Ro5). For over a decade, Ro5 has been applied to combinatorial compounds, drugs and ligands, in the search for suitable lead compounds. Unfortunately, till date, a clear distinction between drugs and non-drugs has not been achieved. The current trend is to seek out drugs which show metabolite-likeness. In identifying similar physicochemical characteristics, compounds have usually been clustered based on some characteristic, to reduce the search space presented by large molecular datasets. This paper examines the similarity of current drug molecules with human metabolites and toxins, using a range of computed molecular descriptors as well as the effect of comparison to clustered data compared to searches against complete datasets. Results We have carried out statistical and substructure functional group analyses of three datasets, namely human metabolites, drugs and toxin molecules. The distributions of various molecular descriptors were investigated. Our analyses show that, although the three groups are distinct, present-day drugs are closer to toxin molecules than to metabolites. Furthermore, these distributions are quite similar for both clustered data as well as complete or unclustered datasets. Conclusion The property space occupied by metabolites is dissimilar to that of drugs or toxin molecules, with current drugs showing greater similarity to toxins than to metabolites. Additionally, empirical rules like Ro5 can be refined to identify drugs or drug-like molecules that are clearly distinct from toxic compounds and more metabolite-like. The inclusion of human metabolites in this study provides a deeper insight into metabolite/drug/toxin-like properties and

  5. Immunomodulation by the estrogen metabolite 2-methoxyestradiol.

    PubMed

    Stubelius, Alexandra; Erlandsson, Malin C; Islander, Ulrika; Carlsten, Hans

    2014-07-01

    2-methoxyestradiol (2me2), a metabolite of 17β-estradiol (E2), has been tested in phase II clinical cancer trials and models of inflammation. Its effects are only partly clarified. We investigated the effects of 2me2 on the immune system, using ovariectomized or sham-operated mice treated with a high and a low dose of 2me2 (2me2H and 2me2L), E2 or vehicle. We investigated antagonism of tissue proliferation and estrogen response element (ERE) activation. Established immunomodulation by E2 was reproduced. 2me2L increased NK and T-cells from bone marrow, spleen and liver. Both 2me2H and E2 induced uterus proliferation in ovariectomized mice, but no antagonistic effects on uteri growth were seen in intact animals. Both E2 and 2me2H activated EREs. Immunomodulation by 2me2 is tissue-, and concentration dependent. E2 regulated the immune system more potently. The higher dose of 2me2 resulted in E2 like effects, important to consider when developing 2me2 as a drug.

  6. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  7. Cerebrospinal fluid monoamine metabolites and suicide.

    PubMed

    Jokinen, Jussi; Nordström, Anna-Lena; Nordström, Peter

    2009-01-01

    Prospective studies of the serotonergic system and suicide report that low 5-hydroxyindolacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) and a history of attempted suicide predict suicide risk. Low CSF homovanillic acid (HVA) is reported to be associated with past and future lethality of suicide attempts but not with suicide. The interrelationships between monoamine metabolites, violent method, suicide intent and lethality of suicidal behaviour are complex. We hypothesized that CSF 5-HIAA and HVA levels are related to suicide intent, violence and lethality of suicidal behaviour. Fifteen male suicide attempters admitted to a psychiatric ward at the Karolinska University Hospital and eight healthy male volunteers were submitted to lumbar puncture and CSF 5-HIAA and HVA were assayed. Suicide intent with the Beck Suicide Intent Scale (SIS), lethality and violence of suicidal behaviour were assessed. All patients were followed up for causes of death. Six suicides and one fatal accident were identified with death certificates. Mean CSF 5-HIAA but not CSF HVA differed between suicides and survivors. Violent suicides had higher suicide intent and CSF 5-HIAA than non-violent suicides. In violent suicides, CSF 5-HIAA levels were negatively correlated with SIS. Greater suicide intent may be associated with greater aggressive intent and predicts a violent suicide method. PMID:19034712

  8. Medicinal chemistry of drugs with active metabolites following conjugation.

    PubMed

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia

    2013-10-01

    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  9. NeeMDB: Convenient Database for Neem Secondary Metabolites

    PubMed Central

    Hatti, Kaushik S; Muralitharan, Lakshmi; Hegde, Rajendra; Kush, Anil

    2014-01-01

    Indian Neem tree is known for its pesticidal and medicinal properties for centuries. Structure elucidation of large number of secondary metabolites responsible for its diverse properties has been achieved. However, this data is spread over various books, scientific reports and publications and difficult to access. We have compiled and stored structural details of neem metabolites in NeeMDB, a database which can be easily accessed, queried and downloaded. NeeMDB would be central in dissipating structural information of neem secondary metabolites world over. PMID:24966540

  10. IN VITRO CYTOTOXICITY OF BTEX METABOLITES IN HELA CELL LINES

    EPA Science Inventory

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied exte...

  11. Phoma Saccardo: distribution, secondary metabolite production and biotechnological applications.

    PubMed

    Rai, Mahendra; Deshmukh, Prajakta; Gade, Aniket; Ingle, Avinash; Kövics, György J; Irinyi, László

    2009-01-01

    Phoma Sacc. is an ubiquitous fungus, which has been reported from plants, soil, human beings, animals, and air. Some species of Phoma like P. sorghina, P. herbarum, P. exigua var. exigua, P. macrostoma, P. glomerata, Phoma macdonaldii, Phoma tracheiphila, Phoma proboscis, P. multirostrata, and Phoma foveata secrete phytotoxin and anthraquinone pigments as secondary metabolites, which have great potential for the biological control of weeds, and can be exploited for the production of mycopesticides, agrophytochemicals, and dyes. Some other species produce pharmaceutically active metabolites, viz., Sirodesmins, Phomenoic acid, Phomenolactone, Phomadecalins, Phomactin A, Phomasetin, Squalestatin-1 (S1), and Squalestatin-2 (S2). The secondary metabolites secreted by some species of Phoma are antitumor, antimicrobial, and anti-HIV. Equisetin and Phomasetin obtained from species of Phoma are useful against AIDS. The main goal of the present review is to discuss secondary metabolite production by species of Phoma and their utilization as antibiotics and as biocontrol agents. PMID:19624254

  12. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda.

    PubMed

    Ayil-Gutiérrez, Benjamin A; Villegas-Mendoza, Jesús M; Santes-Hernndez, Zuridai; Paz-González, Alma D; Mireles-Martínez, Maribel; Rosas-García, Ninfa M; Rivera, Gildardo

    2015-11-01

    The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2- undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 µmoles mg(-1) DW), psoralen (3.6 µmoles mg(-1) DW) and rutin (0.001 pmoles mg(-1) DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.

  13. Methaqualone metabolites in human urine after therapeutic doses.

    PubMed

    Kazyak, L; Kelley, J A; Cella, J A; Droege, R E; Hilpert, L R; Permisohn, R C

    1977-11-01

    We measured five principal metabolites of methaqualone in the urine of seven volunteers after single and multiple doses of the drug. Urine, collected for up to 72 hours after the last dose, was analyzed for methaqualone and its principal metabolites by high-resolution capillary-column gas chromatography. The major biotransformation of methaqualone under therapeutic conditions occurred through benzylic and para-hydroxylation of the o-tolyl moiety. Methaqualone itself was present in concentrations of no more than 1 mg/liter, if it could be detected at all. The observed physiological effects ant total urinary excretion of metabolites reflected the cumulative nature of the parent drug when it was administered in multiple doses. No clear relationship was found between appearance of a specific metabolite and time after ingestion of the drug, although higher amounts of 2-methyl-3-(2'-hydroxymethylphenyl)-4(3H)-quinazolinone were noted in those individuals who tolerated the drug less well.

  14. Metabolites: messengers between the microbiota and the immune system.

    PubMed

    Levy, Maayan; Thaiss, Christoph A; Elinav, Eran

    2016-07-15

    The mammalian intestine harbors one of the largest microbial densities on Earth, necessitating the implementation of control mechanisms by which the host evaluates the state of microbial colonization and reacts to deviations from homeostasis. While microbial recognition by the innate immune system has been firmly established as an efficient means by which the host evaluates microbial presence, recent work has uncovered a central role for bacterial metabolites in the orchestration of the host immune response. In this review, we highlight examples of how microbiota-modulated metabolites control the development, differentiation, and activity of the immune system and classify them into functional categories that illustrate the spectrum of ways by which microbial metabolites influence host physiology. A comprehensive understanding of how microbiota-derived metabolites shape the human immune system is critical for the rational design of therapies for microbiota-driven diseases.

  15. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  16. Possible endocrine disrupting effects of parabens and their metabolites.

    PubMed

    Boberg, Julie; Taxvig, Cam