... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...
Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25*
Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B. Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang
2015-01-01
Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284
Duan, Wenlan; Paka, Latha; Pillarisetti, Sivaram
2005-01-01
Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects. PMID:16207378
The preparation and antioxidant activity of glucosamine sulfate
NASA Astrophysics Data System (ADS)
Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng
2009-05-01
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Asahina, Yasuko; Hori, Satoko; Sawada, Yasufumi
2010-02-01
Hyperkalemia is common in patients with renal disease, and is sometimes caused by dietary potassium intake. We aimed to determine and compare the content of potassium in nine brands of glucosamine supplements sold in the Japanese market and via the Internet. The potassium content was 0.165-3 mg per daily dose in Japanese products, which contained glucosamine hydrochloride or N-acetylglucosamine, while the content in foreign products, in which glucosamine was sulfated, was 197-280 mg. Our results show that the potassium content in glucosamine sulfate supplements can correspond to 20% of the maximum daily intake of potassium by patients on hemodialysis, because the products sometimes contain glucosamine as glucosamine sulfate potassium chloride for stabilization. Although it is not permitted to sell glucosamine sulfate as food in Japan, consumers can easily buy foreign products that contain glucosamine sulfate via the Internet, and those products rarely indicate the potassium content. Health professionals should pay attention to patients' use of glucosamine supplements, especially when patients' dietary potassium intake needs to be restricted.
Glucosamine for the Treatment of Osteoarthritis: The Time Has Come for Higher-Dose Trials.
McCarty, Mark F; O'Keefe, James H; DiNicolantonio, James J
2018-04-18
Although clinical trials with glucosamine in osteoarthritis have yielded mixed results, leading to doubts about its efficacy, the utility of glucosamine for preventing joint destruction and inflammation is well documented in rodent models of arthritis, including models of spontaneous osteoarthritis. The benefit of oral glucosamine in adjuvant arthritis is markedly dose dependent, likely reflecting a modulation of tissue levels of UDP-N-acetylglucosamine that in turn influences mucopolysaccharide synthesis and the extent of protein O-GlcNAcylation. Importantly, the minimal oral dose of glucosamine that exerts a detectible benefit in adjuvant arthritis achieves plasma glucosamine levels similar to those achieved when the standard clinical dose of glucosamine, 1.5 g daily, is administered as a bolus. The response of plasma glucosamine levels to an increase in glucosamine intake is nearly linear. Remarkably, every published clinical trial with glucosamine has employed the same 1.5 g dose that Rottapharm recommended for its proprietary glucosamine sulfate product decades ago, yet there has never been any published evidence that this dose is optimal with respect to efficacy and side effects. If this dose is on the edge of demonstrable clinical efficacy when experimental design is ideal, then variations in the patient populations targeted, the assessment vehicles employed, and the potency of glucosamine preparations tested could be expected to yield some null results. Failure to employ bolus dosing may also be a factor in the null results observed in the GAIT study and other trials. Clinical studies evaluating the dose dependency of glucosamine's influence on osteoarthritis are long overdue.
An evaluation of D-glucosamine as a gratuitous catabolite repressor of Saccharomyces carlsbergensis.
Furst, A; Michels, C A
1977-10-24
Glucose represses mitochondrial biogenesis and the fermentation of maltose, galactose and sucrose in yeast. We have analyzed the effect of D-glucosamine on these functions in order to determine if it can produce a similar repression. It was found that glucosamine represses the respiration rate (QO2) but more rapidly than glucose and to a final level slightly higher than in glucose-treated cells. Derepression of the respiration rate following either glucose or glucosamine repression was similar. A two hour lag was followed by a linear increase in QO2 to the derepressed level. Both glucose and glucosamine repressed the level of cytochrome oxidase to the same level. Glucosamine was also found to repress maltose and galactose fermentation but not sucrose fermentation. The derepression of maltase synthesis was inhibited by glucosamine. The constitutive synthesis of maltase was repressed by the addition of glucosamine. Glucosamine was judged to produce a repressed state similar to glucose repression in many respects.
Who Uses Glucosamine and Why? A Study of 266,848 Australians Aged 45 Years and Older
Sibbritt, David; Adams, Jon; Lui, Chi-Wai; Broom, Alex; Wardle, Jonathan
2012-01-01
Objectives There has been a dramatic increase in the use of complementary medicines over recent decades. Glucosamine is one of the most commonly used complementary medicines in Western societies. An understanding of glucosamine consumption is of significance for public health and future health promotion. This paper, drawing upon the largest dataset to date with regards to glucosamine use (n = 266,844), examines the use and users of glucosamine amongst a sample of older Australians. Design Analysis of the self-reported data on use of glucosamine, demographics and health status as extracted from the dataset of the 45 and Up Study, which is the largest study of healthy ageing ever undertaken in the Southern Hemisphere involving over 265,000 participants aged 45 and over. Results Analysis reveals that 58,630 (22.0%) participants reported using glucosamine in the 4 weeks prior to the survey. Use was higher for those who were female, non-smokers, residing in inner/outer regional areas, with higher income and private health insurance. Of all the health conditions examined only osteoarthritis was positively associated with use of glucosamine, while cancer, heart attack or angina and other heart disease were all negatively associated with glucosamine use. Conclusions This study suggests that a considerable proportion of the Australia population aged 45 and over consume glucosamine. There is a need for health care practitioners to enquire with their patients about their use of glucosamine and for further attention to be directed to providing good quality information for patients and providers with regards to glucosamine products. PMID:22859995
Tiku, Moti L; Narla, Haritha; Jain, Mohit; Yalamanchili, Praveen
2007-01-01
Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix. Further studies are needed to relate these in vitro findings to the retardation of cartilage degradation reported in OA trials investigating glucosamine. PMID:17686167
2012-01-01
Glucosamine in its acetylated form is a natural constituent of some glycosaminoglycans (for example, hyaluronic acid and keratan sulfate) in the proteoglycans found in articular cartilage, intervertebral disc and synovial fluid. Glucosamine can be extracted and stabilized by chemical modification and used as a drug or a nutraceutical. It has been approved for the treatment of osteoarthritis (OA) in Europe to promote cartilage and joint health and is sold over the counter as a dietary supplement in the United States. Various formulations of glucosamine have been tested, including glucosamine sulfate and glucosamine hydrochloride. In vitro and in vivo studies have uncovered glucosamine's mechanisms of action on articular tissues (cartilage, synovial membrane and subchondral bone) and justified its efficacy by demonstrating structure-modifying and anti-inflammatory effects at high concentrations. However, results from clinical trials have raised many concerns. Pharmacokinetic studies have shown that glucosamine is easily absorbed, but the current treatment doses (for example, 1,500 mg/day) barely reach the required therapeutic concentration in plasma and tissue. The symptomatic effect size of glucosamine varies greatly depending on the formulation used and the quality of clinical trials. Importantly, the effect size reduces when evidence is accumulated chronologically and evidence for the structure-modifying effects of glucosamine are sparse. Hence, glucosamine was at first recommended by EULAR and OARSI for the management of knee pain and structure improvement in OA patients, but not in the most recent NICE guidelines. Consequently, the published recommendations for the management of OA require revision. Glucosamine is generally safe and although there are concerns about potential allergic and salt-related side effects of some formulations, no major adverse events have been reported so far. This paper examines all the in vitro and in vivo evidence for the mechanism of action of glucosamine as well as reviews the results of clinical trials. The pharmacokinetics, side effects and differences observed with different formulations of glucosamine and combination therapies are also considered. Finally, the importance of study design and criteria of evaluation are highlighted as new compounds represent new interesting options for the management of OA. PMID:22293240
Henrotin, Yves; Mobasheri, Ali; Marty, Marc
2012-01-30
Glucosamine in its acetylated form is a natural constituent of some glycosaminoglycans (for example, hyaluronic acid and keratan sulfate) in the proteoglycans found in articular cartilage, intervertebral disc and synovial fluid. Glucosamine can be extracted and stabilized by chemical modification and used as a drug or a nutraceutical. It has been approved for the treatment of osteoarthritis (OA) in Europe to promote cartilage and joint health and is sold over the counter as a dietary supplement in the United States. Various formulations of glucosamine have been tested, including glucosamine sulfate and glucosamine hydrochloride. In vitro and in vivo studies have uncovered glucosamine's mechanisms of action on articular tissues (cartilage, synovial membrane and subchondral bone) and justified its efficacy by demonstrating structure-modifying and anti-inflammatory effects at high concentrations. However, results from clinical trials have raised many concerns. Pharmacokinetic studies have shown that glucosamine is easily absorbed, but the current treatment doses (for example, 1,500 mg/day) barely reach the required therapeutic concentration in plasma and tissue. The symptomatic effect size of glucosamine varies greatly depending on the formulation used and the quality of clinical trials. Importantly, the effect size reduces when evidence is accumulated chronologically and evidence for the structure-modifying effects of glucosamine are sparse. Hence, glucosamine was at first recommended by EULAR and OARSI for the management of knee pain and structure improvement in OA patients, but not in the most recent NICE guidelines. Consequently, the published recommendations for the management of OA require revision. Glucosamine is generally safe and although there are concerns about potential allergic and salt-related side effects of some formulations, no major adverse events have been reported so far. This paper examines all the in vitro and in vivo evidence for the mechanism of action of glucosamine as well as reviews the results of clinical trials. The pharmacokinetics, side effects and differences observed with different formulations of glucosamine and combination therapies are also considered. Finally, the importance of study design and criteria of evaluation are highlighted as new compounds represent new interesting options for the management of OA.
Dey, Nilanjan; Bhattacharya, Santanu
2017-05-11
An easily synthesizable probe has been employed for dual mode sensing of glucosamine in pure water. The method was also applied for glucosamine estimation in blood serum samples and pharmaceutical tablets. Further, selective detection of glucosamine was also achieved using portable color strips.
Charoenprasert, Suthawan; Zweigenbaum, Jerry A; Zhang, Gong; Mitchell, Alyson E
2017-07-01
Acrylic acid, N-acetyl-glucosamine and glucosamine were investigated for their role in the formation of acrylamide in California-style black ripe olives [CBROs]. Levels of acrylic acid and glucosamine are reported for the first time in fresh (333.50 ± 21.88 and 243.59 ± 10.06 nmol/g, respectively) and in brine-stored olives (184.50 ± 6.02 and 165.88 ± 11.51 nmol/g, respectively). Acrylamide levels significantly increased when acrylic acid (35.2%), N-acetyl-glucosamine (29.9%), and glucosamine (124.0%) were added to olives prior to sterilization. However, isotope studies indicate these compounds do not contribute carbon and/or nitrogen atoms to acrylamide. The base-catalyzed degradation of glucosamine is demonstrated in olive pulp and a strong correlation (r 2 = 0.9513) between glucosamine in olives before sterilization and acrylamide formed in processed CBROs is observed. Treatment with sodium hydroxide (pH > 12) significantly reduces acrylamide levels over 1 to 5 d without impacting olive fruit texture. © 2017 Institute of Food Technologists®.
Tsai, Jui-He; Schulte, Maureen; O'Neill, Kathleen; Chi, Maggie M.-Y.; Frolova, Antonina I.; Moley, Kelle H.
2013-01-01
ABSTRACT Embryo implantation in the uterus depends on decidualization of the endometrial stromal cells (ESCs), and glucose utilization via the pentose phosphate pathway is critical in this process. We hypothesized that the amino sugar glucosamine may block the pentose phosphate pathway via inhibition of the rate-limiting enzyme glucose-6-phosphate dehydrogenase in ESCs and therefore impair decidualization and embryo implantation, thus preventing pregnancy. Both human primary and immortalized ESCs were decidualized in vitro in the presence of 0, 2.5, or 5 mM glucosamine for 9 days. Viability assays demonstrated that glucosamine was well tolerated by human ESCs. Exposure of human ESCs to glucosamine resulted in significant decreases in the activity and expression of glucose-6-phosphate dehydrogenase and in the mRNA expression of the decidual markers prolactin, somatostatin, interleukin-15, and left-right determination factor 2. In mouse ESCs, expression of the decidual marker Prp decreased upon addition of glucosamine. In comparison with control mice, glucosamine-treated mice showed weak artificial deciduoma formation along the stimulated uterine horn. In a complementary in vivo experiment, a 60-day-release glucosamine (15, 150, or 1500 μg) or placebo pellet was implanted in a single uterine horn of mice. Mice with a glucosamine pellet delivered fewer live pups per litter than those with a control pellet, and pup number returned to normal after the end of the pellet-active period. In conclusion, glucosamine is a nonhormonal inhibitor of decidualization of both human and mouse ESCs and of pregnancy in mice. Our data indicate the potential for development of glucosamine as a novel, reversible, nonhormonal contraceptive. PMID:23718985
Yi, Y J; Im, G S; Park, C S
2002-12-16
These experiments were carried out to investigate the effect of N-acetyl-D-glucosamine, and to obtain additional information about the effect of orvus es paste (OEP) and egg yolk concentration in the freezing of boar sperm in the maxi-straw. The highest post-thaw acrosomes of normal apical ridge (NAR) and motility were obtained with 0.025 or 0.05% N-acetyl-D-glucosamine concentration in the first diluent. However, there were no effects of N-acetyl-D-glucosamine among the diluents with or without N-acetyl-D-glucosamine at the second dilution. The N-acetyl-D-glucosamine in the first and second diluents was added at room temperatures (20-23 degrees C) and 5 degrees C, respectively. It is suggested that the temperature of N-acetyl-D-glucosamine addition is important for the effect of boar sperm protection during freezing and thawing. When the 0.05% N-acetyl-D-glucosamine was supplemented in the first diluent, the optimum final OEP content was 0.5%. The optimum content of egg yolk in the diluent with 0.05% N-acetyl-D-glucosamine concentration was 20% and egg yolk was one of the main cryoprotective agents. In conclusion, we found out that the diluent with 0.025 or 0.05% soluble N-acetyl-D-glucosamine in the first diluent, 0.5% final orvus es paste concentration and 20% egg yolk concentration significantly enhanced NAR acrosomes and motility of boar sperm after freezing and thawing. Copyright 2002 Elsevier Science B.V.
The novel IGF-IR/Akt–dependent anticancer activities of glucosamine
2014-01-01
Background Recent studies have shown that glucosamine inhibits the proliferation of various human cancer cell lines and downregulates the activity of COX-2, HIF-1α, p70S6K, and transglutaminase 2. Because the IGF-1R/Akt pathway is a common upstream regulator of p70S6K, HIF-1α, and COX-2, we hypothesized that glucosamine inhibits cancer cell proliferation through this pathway. Methods We used various in vitro assays including flow cytometry assays, small interfering RNA (siRNA) transfection, western blot analysis, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, reverse transcription-polymerase chain reaction, and in vivo xenograft mouse model to confirm anticancer activities of glucosamine and to investigate the molecular mechanism. Results We found that glucosamine inhibited the growth of human non-small cell lung cancer (NSCLC) cells and negatively regulated the expression of IGF-1R and phosphorylation of Akt. Glucosamine decreased the stability of IGF-1R and induced its proteasomal degradation by increasing the levels of abnormal glycosylation on IGF-1R. Moreover, picropodophyllin, a selective inhibitor of IGF-1R, and the IGF-1R blocking antibody IMC-A12 induced significant cell growth inhibition in glucosamine-sensitive, but not glucosamine-resistant cell lines. Using in vivo xenograft model, we confirmed that glucosamine prohibits primary tumor growth through reducing IGF-1R signalling and increasing ER-stress. Conclusions Taken together, our results suggest that targeting the IGF-1R/Akt pathway with glucosamine may be an effective therapeutic strategy for treating some type of cancer. PMID:24438088
... sulfate. People take glucosamine hydrochloride by mouth for osteoarthritis, rheumatoid arthritis, glaucoma, a jaw disorder called temporomandibular ... with chondroitin sulfate, shark cartilage, and camphor for osteoarthritis. Glucosamine hydrochloride is used parenterally and short-term ...
Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn
2013-01-01
Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these findings. PMID:23324939
Effects of glucosamine on proteoglycan loss by tendon, ligament and joint capsule explant cultures.
Ilic, M Z; Martinac, B; Samiric, T; Handley, C J
2008-12-01
To investigate the effect of glucosamine on the loss of newly synthesized radiolabeled large and small proteoglycans by bovine tendon, ligament and joint capsule. The kinetics of loss of (35)S-labeled large and small proteoglycans from explant cultures of tendon, ligament and joint capsule treated with 10mM glucosamine was investigated over a 10-day culture period. The kinetics of loss of (35)S-labeled small proteoglycans and the formation of free [(35)S]sulfate were determined for the last 10 days of a 15-day culture period. The proteoglycan core proteins were analyzed by gel electrophoresis followed by fluorography. The metabolism of tendon, ligament and joint capsule explants exposed to 10mM glucosamine was evaluated by incorporation of [(3)H]serine and [(35)S]sulfate into protein and glycosaminoglycans, respectively. Glucosamine at 10mM stimulated the loss of small proteoglycans from ligament explant cultures. This was due to the increased loss of both macromolecular and free [(35)S]sulfate to the medium indicating that glucosamine affected the release of small proteoglycans as well as their intracellular degradation. The degradation pattern of small proteoglycans in ligament was not affected by glucosamine. In contrast, glucosamine did not have an effect on the loss of large or small proteoglycans from tendon and joint capsule or large proteoglycans from ligament explant cultures. The metabolism of cells in tendon, ligament and joint capsule was not impaired by the presence of 10mM glucosamine. Glucosamine stimulated the loss of small proteoglycans from ligament but did not have an effect on small proteoglycan catabolism in joint capsule and tendon or large proteoglycan catabolism in ligament, tendon or synovial capsule. The consequences of glucosamine therapy at clinically relevant concentrations on proteoglycan catabolism in joint fibrous connective tissues need to be further assessed in an animal model.
Runhaar, Jos; Rozendaal, Rianne M; van Middelkoop, Marienke; Bijlsma, Hans J W; Doherty, Michael; Dziedzic, Krysia S; Lohmander, L Stefan; McAlindon, Timothy; Zhang, Weiya; Bierma Zeinstra, Sita
2017-11-01
To evaluate the effectiveness of oral glucosamine in subgroups of people with hip or knee osteoarthritis (OA) based on baseline pain severity, body mass index (BMI), sex, structural abnormalities and presence of inflammation using individual patient data. After a systematic search of the literature and clinical trial registries, all randomised controlled trials (RCTs) evaluating the effect of any oral glucosamine substance in patients with clinically or radiographically defined hip or knee OA were contacted. As a minimum, pain, age, sex and BMI at baseline and pain as an outcome measure needed to be assessed. Of 21 eligible studies, six (n=1663) shared their trial data with the OA Trial Bank. Five trials (all independent of industry, n=1625) compared glucosamine with placebo, representing 55% of the total number of participants in all published placebo-controlled RCTs. Glucosamine was no better than placebo for pain or function at short (3 months) and long-term (24 months) follow-up. Glucosamine was also no better than placebo among the predefined subgroups. Stratification for knee OA and type of glucosamine did not alter these results. Although proposed and debated for several years, open trial data are not widely made available for studies of glucosamine for OA, especially those sponsored by industry. Currently, there is no good evidence to support the use of glucosamine for hip or knee OA and an absence of evidence to support specific consideration of glucosamine for any clinically relevant OA subgroup according to baseline pain severity, BMI, sex, structural abnormalities or presence of inflammation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Analysis of Chitin in Contaminated Fuels
1975-09-01
medium (12) Glucosamine hydrochloride (Iml = 8.6 mg glucosamine ). Store frozen at -IOOC. 2. Procedure. a. Take at least 10 bottles (bottle dimensions are...DISCUSSION 6. Discussion 5 V CONCLUSIONS 7. Conclusions 5 :1IBLIOGRAPHY 7 APIYFNDIX - Analytical Procedure for the Determination of Chitin As Glucosamine 8...concentration of the aminosugar. Chitin, a polymer of glucosamine . is present in the cell wall of most fungi3 and, thus, if determined quantitatively serves to
Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong
2017-09-01
The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1.
Ogutu, Benrick; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Hong, Dong-Lee; Lee, Yang-Bong
2017-01-01
The individual Maillard reactions of glucose, glucosamine, cyclohexylamine, and benzylamine were studied at a fixed temperature of 120°C under different durations by monitoring the absorbance of the final products at 425 nm. Glucosamine was the most individually reactive compound, whereas the reactions of glucose, cyclohexylamine, and benzylamine were not significantly different from each other. Maillard reactions of reaction mixtures consisting of glucosamine-cyclohexylamine, glucosamine-benzylamine, glucose-cyclohexylamine, and glucose-benzylamine were also studied using different concentration ratios under different durations at a fixed temperature of 120°C and pH 9. Maillard reactions in the pairs involving glucosamine were observed to be more intense than those of the pairs involving glucose. Finally, with respect to the concentration ratios, it was observed that in most instances, optimal activity was realized, when the reaction mixtures were in the ratio of 1:1. PMID:29043219
Higuera-Ciapara, Inocencio; Virués, Claudia; Jiménez-Chávez, Marcela; Martínez-Benavidez, Evelin; Hernández, Javier; Domínguez, Zaira; López-Rendón, Roberto; Velázquez, Enrique F; Inoue, Motomichi
2017-11-27
Complex formation of D-glucosamine (Gl) and N-acetyl-D-glucosamine (AGl) with capsaicin (Cp) were studied by 1 H NMR titrations in H 2 O-d 2 and DMSO-d 6 ; capsaicin is the major bioactive component of chili peppers. Every titration curve has been interpreted by formulating a suitable model for the reaction equilibrium, to elucidate intermolecular interactions. In DMSO, glucosamine cations associate with each other to yield linear aggregates, and undergo pseudo-1:1-complexation with capsaicin, the formation constant being ca. 30 M -1 . N-Acetylglucosamine, without self-association, forms a 2:1-complex AGl 2 Cp with the stability of ca. 70 M -2 . These complexations are achieved by intermolecular hydrogen bonds. In D 2 O, glucosamine undergoes reversible protonation equilibrium between Gl 0 and GlH + with the logarithmic protonation constants log K D = 8.63 for α-glucosamine and 8.20 for β-isomer. Both anomeric isomers of deprotonated glucosamine form Gl 0 Cp-type complexes of capsaicin, in a competitive manner, with a formation constant of 1040 M -1 for the α-glucosamine complex and 830 M -1 for the β-complex; the anomeric carbons result in the difference in thermodynamic stability. The reactant molecules are closed up by the solvent-exclusion effect and/or the van der Waals interaction; the resulting pair is stabilized by intermolecular hydrogen bonding within a local water-free space between the component molecules. By contrast, neither protonated glucosamine (GlH + ) nor N-acetylglucosamine yields a capsaicin complex with the definite stoichiometry. The monosaccharides recognize capsaicin under only a controlled condition; the same phenomena are predicted for biological systems and nanocarriers based on polysaccharides such as chitosan. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 180.1072 - Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the biological plant growth regulator poly-D-glucosamine when used as a seed treatment in or on... established for residues of the biological plant growth regulator poly-D-glucosamine when used as a pesticide...
40 CFR 180.1072 - Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the biological plant growth regulator poly-D-glucosamine when used as a seed treatment in or on... established for residues of the biological plant growth regulator poly-D-glucosamine when used as a pesticide...
40 CFR 180.1072 - Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the biological plant growth regulator poly-D-glucosamine when used as a seed treatment in or on... established for residues of the biological plant growth regulator poly-D-glucosamine when used as a pesticide...
USDA-ARS?s Scientific Manuscript database
Background: During late gestation the placental epithelial interface becomes highly folded, which involves changes in stromal hyaluronan. Hyaluronan is composed of glucoronate and N-acetyl-glucosamine. We hypothesized that supplementing gestating dams with glucosamine during this time would support ...
40 CFR 180.1072 - Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the biological plant growth regulator poly-D-glucosamine when used as a seed treatment in or on... established for residues of the biological plant growth regulator poly-D-glucosamine when used as a pesticide...
Navarro, Sandi L; White, Emily; Kantor, Elizabeth D; Zhang, Yuzheng; Rho, Junghyun; Song, Xiaoling; Milne, Ginger L; Lampe, Paul D; Lampe, Johanna W
2015-01-01
Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. ClinicalTrials.gov NCT01682694.
Zhou, Joseph ZiQi; Waszkuc, Ted; Mohammed, Felicia
2008-01-01
Single laboratory validation of a method for determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by with high-performance liquid Chromatography FMOC-Su derivatization. Tests with 2 blank matrixes containing SAMe, vitamin C, citric acid, chondroitin sulfates, methylsulfonylmethane, lemon juice concentrate, and other potential interferents showed the method to be selective and specific. Eight calibration curves prepared over 7 working days indicated excellent reproducibility with the linear range at least over 2.0–150 μg/mL, and determination coefficients >0.9999. Average spike recovery from the blank matrix (n = 8 over 2 days) was 93.5, 99.4, and 100.4% at respective spike levels of 15,100, and 150%, and from the sample matrix containing glucosamine (n = 3) was 99.9 and 102.8% at respective levels of 10 and 40%, with relative standard deviations <0.9%. The method was also applied to 12 various glucosamine finished products and raw materials. The stability tests confirmed that glucosamine–FMOC-Su derivative once formed is stable at room temperature for at least 5 days. Limit of quantitation was 1 μg/mL and limit of detection was 0.3 μg/mL. The method is ready to proceed for the collaborative study. PMID:15493664
Targeting breast cancer with sugar-coated carbon nanotubes
Fahrenholtz, Cale D; Hadimani, Mallinath; King, S Bruce; Torti, Suzy V; Singh, Ravi
2015-01-01
Aims To evaluate the use of glucosamine functionalized multiwalled carbon nanotubes (glyco-MWCNTs) for breast cancer targeting. Materials & methods Two types of glucosamine functionalized MWCNTs were developed (covalently linked glucosamine and non-covalently phospholipid-glucosamine coated) and evaluated for their potential to bind and target breast cancer cells in vitro and in vivo. Results & conclusion Binding of glyco-MWCNTs in breast cancer cells is mediated by specific interaction with glucose transporters. Glyco-MWCNTs prepared by non-covalent coating with phospholipid-glucosamine displayed an extended blood circulation time, delayed urinary clearance, low tissue retention and increased breast cancer tumor accumulation in vivo. These studies lay the foundation for development of a cancer diagnostic agent based upon glyco-MWCNTs with the potential for superior accuracy over current radiopharmaceuticals. PMID:26296098
Zeng, Chao; Wei, Jie; Li, Hui; Wang, Yi-lun; Xie, Dong-xing; Yang, Tuo; Gao, Shu-guang; Li, Yu-sheng; Luo, Wei; Lei, Guang-hua
2015-01-01
This study aimed to investigate the effectiveness and safety of glucosamine, chondroitin, the two in combination, or celecoxib in the treatment of knee osteoarthritis (OA). PubMed, Embase and Cochrane Library were searched through from inception to February 2015. A total of 54 studies covering 16427 patients were included. Glucosamine plus chondroitin, glucosamine alone, and celecoxib were all more effective than placebo in pain relief and function improvement. Specifically, celecoxib is most likely to be the best treatment option, followed by the combination group. All treatment options showed clinically significant improvement from baseline pain, but only glucosamine plus chondroitin showed clinically significant improvement from baseline function. In terms of the structure-modifying effect, both glucosamine alone and chondroitin alone achieved a statistically significant reduction in joint space narrowing. Although no significant difference was observed among the five options with respect to the three major adverse effects (withdrawal due to adverse events, serious adverse events and the number of patients with adverse events), the additional classical meta-analysis showed that celecoxib exhibited a higher rate of gastrointestinal adverse effect comparing with the placebo group. The present study provided evidence for the symptomatic efficacy of glucosamine plus chondroitin in the treatment of knee OA. PMID:26576862
40 CFR 180.1072 - Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Poly-D-glucosamine (chitosan); exemption from the requirement of a tolerance. 180.1072 Section 180.1072 Protection of Environment... RESIDUES IN FOOD Exemptions From Tolerances § 180.1072 Poly-D-glucosamine (chitosan); exemption from the...
Glucosamine hydrochloride for the treatment of osteoarthritis symptoms
Fox, Beth Anne; Stephens, Mary M
2007-01-01
Osteoarthritis is the most common arthritis in the world. It affects millions of people with age being the greatest risk factor for developing the disease. The burden of disease will worsen with the aging of the world’s population. The disease causes pain and functional disability. The direct costs of osteoarthritis include hospital and physician visits, medications, and assistive services. The indirect costs include work absences and lost wages. Many studies have sought to find a therapy to relieve pain and reduce disability. Glucosamine hydrochloride (HCl) is one of these therapies. There are limited studies of glucosamine HCl in humans. Although some subjects do report statistically significant improvement in pain and function from products combining glucosamine HCl and other agents, glucosamine HCl by itself appears to offer little benefit to those suffering from osteoarthritis. PMID:18225460
Girolami, Federica; Persiani, Stefano
2012-01-01
Glucosamine is an amino monosaccharide and a natural constituent of glycosaminoglycans in articular cartilage. When administered exogenously, it is used for the treatment of osteoarthritis as a prescription drug or a dietary supplement. The latter use is mainly supported by its perception as a cartilage building block, but it actually exerts specific pharmacologic effects, mainly decreasing interleukin 1-induced gene expression by inhibiting the cytokine intracellular signaling cascade in general and nuclear factor-kappa B (NF-kB) activation in particular. As a whole, the use of glucosamine in the management of osteoarthritis is supported by the clinical trials performed with the original prescription product, that is, crystalline glucosamine sulfate. This is the stabilized form of glucosamine sulfate, while other formulations or different glucosamine salts (e.g. hydrochloride) have never been shown to be effective. In particular, long-term pivotal trials of crystalline glucosamine sulfate 1500 mg once daily have shown significant and clinically relevant improvement of pain and function limitation (symptom-modifying effect) in knee osteoarthritis. Continuous administration for up to 3 years resulted in significant reduction in the progression of joint structure changes compared with placebo as assessed by measuring radiologic joint space narrowing (structure-modifying effect). The two effects combined may suggest a disease-modifying effect that was postulated based on an observed decrease in the risk of undergoing total joint replacement in the follow up of patients receiving the product for at least 12 months in the pivotal trials. The safety of the drug was good in clinical trials and in the postmarketing surveillance. Crystalline glucosamine sulfate 1500 mg once daily is therefore recommended in the majority of clinical practice guidelines and was found to be cost effective in pharmacoeconomic analyses. Compared with other glucosamine formulations, salts, or dosage forms, the prescription product achieves higher plasma and synovial fluid concentrations that are above the threshold for a pharmacologically relevant effect, and may therefore justify its distinct therapeutic characteristics. PMID:22850875
Navarro, Sandi L.; White, Emily; Kantor, Elizabeth D.; Zhang, Yuzheng; Rho, Junghyun; Song, Xiaoling; Milne, Ginger L.; Lampe, Paul D.; Lampe, Johanna W.
2015-01-01
Background Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. Methods We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0–32.5 kg/m2) adults, aged 20–55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. Results Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the “cytokine activity” pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. Conclusion Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. Trial Registration ClinicalTrials.gov NCT01682694 PMID:25719429
Kantor, Elizabeth D.; Zhang, Xuehong; Wu, Kana; Signorello, Lisa B.; Chan, Andrew T.; Fuchs, Charles S.; Giovannucci, Edward L.
2016-01-01
Recent epidemiologic evidence has emerged to suggest that use of glucosamine and chondroitin supplements may be associated with reduced risk of colorectal cancer (CRC). We therefore evaluated the association between use of these non-vitamin, non-mineral supplements and risk of CRC in two prospective cohorts, the Nurses’ Health Study and Health Professionals Follow-up Study. Regular use of glucosamine and chondroitin was first assessed in 2002 and participants were followed until 2010, over which time 672 CRC cases occurred. Cox proportional hazards regression was used to estimate relative risks (RRs) within each cohort, and results were pooled using a random effects meta-analysis. Associations were comparable across cohorts, with a RR of 0.79 (95% CI: 0.63–1.00) observed for any use of glucosamine and a RR of 0.77 (95% CI: 0.59–1.01) observed for any use of chondroitin. Use of glucosamine in the absence of chondroitin was not associated with risk of CRC, whereas use of glucosamine + chondroitin was significantly associated with risk (RR: 0.77; 95% CI: 0.58–0.999). The association between use of glucosamine + chondroitin and risk of CRC did not change markedly when accounting for change in exposure status over follow-up (RR: 0.75; 95% CI: 0.58–0.96), nor did the association significantly vary by sex, aspirin use, body mass index, or physical activity. The association was comparable for cancers of the colon and rectum. Results support a protective association between use of glucosamine and chondroitin and risk of CRC. Further study is needed to better understand the chemopreventive potential of these supplements. PMID:27357024
Yang, Shibing; Eaton, Charles B.; McAlindon, Timothy E.; Lapane, Kate L.
2014-01-01
Objective The purpose of this study was to estimate the effectiveness of glucosamine and chondroitin in relieving knee symptoms and slowing disease progression among patients with knee osteoarthritis (OA). Methods The 4-year follow-up data from Osteoarthritis Initiative were analyzed. We used a “new-user” design, for which only participants who were not using glucosamine/chondroitin at baseline were included in analyses (n=1,625). Cumulative exposure was calculated as the number of visits when participants reported use of glucosamine/chondroitin. Knee symptoms were measured with WOMAC scale and structural progression was measured with joint space width (JSW). To control for the time-varying confounders that might be influenced by prior treatments, we used marginal structural models to estimate the effects of using glucosamine/chondroitin for three years, two years and one year on treating OA. Results During the study period, 18% of the participants initiated treatment with glucosamine/chondroitin. After adjustment for potential confounders with marginal structural models, we found no clinically significant differences between users at all assessments and never-users of glucosamine/chondroitin in WOMAC Pain: 0.68 (95% CI: -0.16 to 1.53); WOMAC Stiffness: 0.41 (95% CI: 0 to 0.82); WOMAC Function: 1.28 (95% CI: -1.23 to 3.79); or JSW: 0.11 (95% CI: -0.21 to 0.44). Conclusions Use of glucosamine/chondroitin did not appear to relieve symptoms or modify disease progression among patients with radiographically confirmed OA. Our findings, which are consistent with meta-analyses of clinical trials, extend the results to a more general population with knee OA. PMID:25369761
Use of Glucosamine and Chondroitin and Lung Cancer Risk in the VITamins And Lifestyle (VITAL) Cohort
Brasky, Theodore M.; Lampe, Johanna W.; Slatore, Christopher G.; White, Emily
2011-01-01
Objective Inflammation plays an important role in lung carcinogenesis. Epidemiologic studies have reported inverse associations of non-steroidal anti-inflammatory drug (NSAID) use and lung cancer risk. Previously, we found that ever use of glucosamine and chondroitin, which have anti-inflammatory properties, were inversely associated with lung cancer risk. After an additional year of follow-up, we further examined the association including frequency/duration of use, interaction with factors associated with inflammation, and lung cancer histology. Methods Participants were members of the VITamins And Lifestyle (VITAL) Cohort. Adults, ages 50–76 years, who were residents of western Washington State, completed a baseline questionnaire in 2000–2002 (n=76,904). Participants were queried on their use of glucosamine and chondroitin, over the 10 years prior to baseline, and categorized as nonuser, low use <4 days/week or <3 years, or high use ≥4 days/week and ≥3 years. Lung cancer cases (n=808) were ascertained through linkage to the Surveillance, Epidemiology, and End Results cancer registry. Results High 10-year use of glucosamine [Hazard Ratio (HR) 0.77, 95% CI: 0.56–1.07; P-trend=0.04] but not chondroitin was associated with a reduction in lung cancer risk. The association with glucosamine was limited to adenocarcinoma (HR 0.49, 95% CI: 0.27–0.90; Ptrend-<0.01), and was not modified by NSAID use or smoking status. Conclusions Our results for glucosamine use are similar to the prior human studies of NSAID use and lung cancer, both in magnitude and the limitation of the association to adenocarcinoma. Unlike NSAIDs, glucosamine has no known adverse-effects. Although confirmatory studies are needed, glucosamine is an attractive candidate for lung cancer chemoprevention. PMID:21706174
Posakony, Jeffrey J.; Ferré-D'Amaré, Adrian R.
2013-01-01
Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactor of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogs, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz) and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogs. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection. PMID:23578404
Stabilization of RNA through Absorption by Functionalized Mesoporous Silicate Nanospheres
2012-11-30
storage or storage in restrictive environments. Materials and Methods Chemicals Bovine serum albumin (BSA), trehalose , glucosamine, tetraethyl...NS) were functionalized with trehalose (NS- T), glucosamine (NS-G), and BSA (NS-B). Functionalization of sorbents resulted in a loss in surface area...92 Å for glucosamine and trehalose functionalization (Fig. 2B). BSA functionalization resulted in an apparent loss in smaller diameter mesopores. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen
2006-11-01
Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2more » or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.« less
Zhang, Wei; He, Hong-bo; Xie, Hong-tu; Bai, Zhen; Zhang, Xu-dong
2010-10-01
By the method of intermittent leaching aerobic incubation, this paper studied the mineralization of three kinds of microbes-derived amino sugar (glucosamine, muramic acid, and galactosamine) in black soil of Northeast China, and the responses to glucose addition and glucose plus nitrogen amendment. The mineralization of the amino sugars was compound-specific. During incubation period, the content of muramic acid decreased by 25.4%, while that of glucosamine decreased by 7.1%, suggesting that bacteria-derived muramic acid was more inclined to be mineralized, compared with fungi-originated glucosamine. However, the mineralized amount of glucosamine (68.4 mg x kg(-1)) was greater than that of muramic acid (15.4 mg x kg(-1)). Both glucose addition and glucose plus nitrogen amendment improved the contents of glucosamine and muramic acid significantly, but the effect varied. The mineralization of galactosamine was much slower, and less affected by exogenous substances addition, indicating that galactosamine was more stable in test soil.
2008-12-01
glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from
Wu, Yunqi; Hussain, Munir; Fassihi, Reza
2005-06-15
A simple spectrophotometric method for determination of glucosamine release from sustained release (SR) hydrophilic matrix tablet based on reaction with ninhydrin is developed, optimized and validated. The purple color (Ruhemann purple) resulted from the reaction was stabilized and measured at 570 nm. The method optimization was essential as many procedural parameters influenced the accuracy of determination including the ninhydrin concentration, reaction time, pH, reaction temperature, purple color stability period, and glucosamine/ninhydrin ratio. Glucosamine tablets (600 mg) with different hydrophilic polymers were formulated and manufactured on a rotary press. Dissolution studies were conducted (USP 26) using deionized water at 37+/-0.2 degrees C with paddle rotation of 50 rpm, and samples were removed manually at appropriate time intervals. Under given optimized reaction conditions that appeared to be critical, glucosamine was quantitatively analyzed and the calibration curve in the range of 0.202-2.020 mg (r=0.9999) was constructed. The recovery rate of the developed method was 97.8-101.7% (n=6). Reproducible dissolution profiles were achieved from the dissolution studies performed on different glucosamine tablets. The developed method is easy to use, accurate and highly cost-effective for routine studies relative to HPLC and other techniques.
The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro
Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame
2014-01-01
Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347
Zhou, Joseph Ziqi; Waszkuc, Ted; Mohammed, Felicia
2008-01-01
A collaborative study was conducted for determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by high-performance liquid Chromatography (HPLC) with N-(9-fluorenyl-methoxycarbonyloxy) succinimide (FMOC-Su) derivatization. Thirteen blind materials, one pair of which were duplicates, were tested by 12 collaborating laboratories. The test samples consisted of various commercial products, including tablets, capsules, drink mix, and liquids as well as raw materials, blanks, and those for spike recovery analyses. The tests with blank products and products spiked with glucosamine showed good specificity of the method. The average recoveries at spike levels of 100 and 150% of the declared amount were 99.0% with a relative standard deviation (RSD) of 2.1%, and 101% with an RSD of 2.3%, respectively. The test results between laboratories on each commercial product were reproducible with RSD values of no more than 4.0%, and the results were repeatable in the same laboratory with an average RSD of 0.7%. HorRat values ranged from 0.5 to 1.7 on both tests of spike recovery and reproducibility between laboratories on commercial products. The average determination coefficient of the calibration curves from the laboratories was 0.9995 with an RSD of 0.03%. All of the 12 collaborating laboratories succeeded in the study and none of their reported test results were outliers, partly indicating the robustness of the method. It is recommended that the method be accepted by AOAC INTERNATIONAL as Official First Action. PMID:16152919
Wang, Xianhuo; Chen, Xiang; Chen, Lijuan; Wang, Biqin; Peng, Cheng; He, Chunmei; Tang, Minghai; Zhang, Fan; Hu, Jia; Li, Rui; Zhao, Xia; Wei, Yuquan
2008-11-01
A sensitive and reliable HPLC method with fluorescence detection based on the precolumn derivatization of glucosamine with 6-aminoquinolyl-N-hydroxylsuccinimidyl carbamate (AQC) was established for the quantitative determination of glucosamine in rat plasma. The plasma protein was precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was divided into the organic layer and aqueous layer by adding sodium chloride, and then the aqueous layer was derivatized with AQC in 0.2 M borate buffer of pH 8.8 before the HPLC analysis. An amino acid analysis column (3.9 x 150 mm, 4 microm) was applied, with 140 mM sodium acetate buffer (pH = 5.25) and acetonitrile as mobile phase at a flow rate of 1 mL/min. A linear correlation coefficient of 0.9987 was calculated within the range of 0.1-30 microg/mL of the standard curve for glucosamine. The limit of detection was 30 ng/mL. The intra- and inter-day precisions (as RSD) were less than 7.38 and 12.72%, respectively. The intra- and inter-day accuracy ranged from 91.8 to 110.0%. Extraction recoveries of glucosamine in plasma were more than 90%. The validated method was successfully applied for the quantitative determination of glucosamine in rat plasma and evaluation for pharmacokinetic study of glucosamine. It was also possible to be applied for the quantitative determination of other compounds containing amino group in biological samples.
2011-01-01
Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints. PMID:21410959
Lubis, Andri M T; Siagian, Carles; Wonggokusuma, Erick; Marsetyo, Aldo F; Setyohadi, Bambang
2017-04-01
Glucosamine, chondroitinsulfate are frequently used to prevent further joint degeneration in osteoarthritis (OA). Methylsulfonylmethane (MSM) is a supplement containing organic sulphur and also reported to slow anatomical joint progressivity in the knee OA. The MSM is often combined with glucosamine and chondroitin sulfate. However, there are controversies whether glucosamine-chondroitin sulfate or their combination with methylsulfonylmethane could effectively reduce pain in OA. This study is aimed to compare clinical outcome of glucosamine-chondroitin sulfate (GC), glucosamine-chondroitin sulfate-methylsulfonylmethane (GCM), and placeboin patients with knee osteoarthritis (OA) Kellgren-Lawrence grade I-II. a double blind, randomized controlled clinical trial was conducted on 147 patients with knee OA Kellgren-Lawrence grade I-II. Patients were allocated by permuted block randomization into three groups: GC (n=49), GCM (n=50), or placebo (n=48) groups. GC group received 1500 mg of glucosamine + 1200 mg of chondroitin sulfate + 500 mg of saccharumlactis; GCM group received 1500 mg of glucosamine + 1200 mg of chondroitin sulfate + 500 mg of MSM; while placebo group received three matching capsules of saccharumlactis. The drugs were administered once daily for 3 consecutive months VAS and WOMAC scores were measured before treatment, then at 4th, 8th and 12th week after treatment. on statistical analysis it was found that at the 12th week, there are significant difference between three treatment groups on the WOMAC score (p=0.03) and on the VAS score (p=0.004). When analyzed between weeks, GCM treatment group was found statistically significant on WOMAC score (p=0.01) and VAS score (p<0.001). Comparing the score difference between weeks, WOMAC score analysis showed significant difference between GC, GCM, and placebo in week 4 (p=0.049) and week 12 (p=0.01). In addition, VAS score also showed significant difference between groups in week 8 (p=0.006) and week 12 (p<0.001). combination of glucosamine-chondroitinsulfate-methylsulfonylmethane showed clinical benefit for patients with knee OAK ellgren-Lawrence grade I-II compared with GC and placebo. GC did not make clinical improvement in overall groups of patients with knee OA Kellgren Lawrence grade I-II.
Current concepts in the therapeutic management of osteoarthritis with glucosamine.
Reginster, Jean-Yves; Bruyere, Olivier; Fraikin, Genevieve; Henrotin, Yves
2005-01-01
Over the last 10 years, several studies have investigated the ability of glucosamine sulfate to improve the symptoms (pain and function) and to delay the structural progression of osteoarthritis. There is now a large, convergent body of evidence that glucosamine sulfate, given at a daily oral dose of 1,500 mg, is able to significantly reduce the symptoms of osteoarthritis in the lower limbs and spine. This effect is usually seen with a minimal time for the onset of significant action - around 2 weeks. A similar dose of glucosamine sulfate has also been shown, in two independent studies, to prevent the joint space narrowing observed at the femorotibial compartment in patients with mild to moderate knee osteoarthritis. This effect, which is not affected by the radiographic technique used for the assessment of joint space width, also translated into a 50% reduction in the incidence of osteoarthritis-related surgery of the lower limbs during a 5-year period following the withdrawal of the treatment. There is a high degree of consistency in the literature showing that when glucosamine sulfate is used for the treatment of osteoarthritis, an efficacious response with minimum side effects can be expected. Since some discrepancies have been described between the results of studies performed with a patent-protected formulation of glucosamine sulfate distributed as a drug and those having used glucosamine preparations purchased from global suppliers, packaged, and sold over-the-counter as nutritional supplements (not regulated as drugs and with some potential issues concerning the reliability of their content), caution should be used when extrapolating conclusive results obtained with prescription drugs to over-the-counter or food supplements.
Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel
2017-01-05
Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.
Ogata, Toru; Ideno, Yuki; Akai, Masami; Seichi, Atsushi; Hagino, Hiroshi; Iwaya, Tsutomu; Doi, Toru; Yamada, Keiko; Chen, Ai-Zhen; Li, Yingzi; Hayashi, Kunihiko
2018-04-30
Osteoarthritis (OA) of the knee is one of the main causes of mobility decline in the elderly. Non-surgical treatments such as administration of supplements to strengthen the joint cartilage matrix have become popular not only for pain relief but also for joint preservation. Glucosamine has been used in many countries based on the increasing evidence of its effectiveness for OA. Although there are many previous studies and systematic reviews, the findings vary and different conclusions have been drawn. We aimed to review recent randomized controlled trials on glucosamine for knee OA to reveal up-to-date findings about this supplement. We also performed a meta-analysis of some of the outcomes to overcome the unsolved bias in each study. Eighteen articles written between 2003 and 2016 were analyzed. Many used visual analogue scale (VAS) pain scores and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), which were assessed in our meta-analysis. We found a marginally favorable effect of glucosamine on VAS pain scores. The effect on knee function, as measured by the WOMAC, was small and not significant. A newly established knee OA scale, the Japanese Knee Osteoarthritis Measure (JKOM), is commonly used in Japan. Although the number of subjects was small, the JKOM meta-analysis indicated that glucosamine is superior to a placebo in alleviating knee OA symptoms. Given this, we concluded that glucosamine has the potential to alleviate knee OA pain. Further studies are needed to evaluate the effect of glucosamine on knee function and joint preservation, as well as to evaluate the combined effect with other components, such as chondroitin.
Bruyère, Olivier; Cooper, Cyrus; Al-Daghri, Nasser M; Dennison, Elaine M; Rizzoli, René; Reginster, Jean-Yves
2018-02-01
Osteoarthritis (OA) is a progressive joint disease, that occurs frequently in the aging population and is a major cause of disability worldwide. Both glucosamine and chondroitin are biologically active molecules that are substrates for proteoglycan, an essential component of the cartilage matrix. Evidence supports the use of glucosamine and chondroitin as symptomatic slow-acting drugs for osteoarthritis (SYSADOAs) with impact on OA symptoms and disease-modifying effects in the long term. Glucosamine and chondroitin are administered in exogenous form as a sulfate salt and multiple formulations of these agents are available, both as prescription-grade products and nutritional supplements. However, while all preparations may claim to deliver a therapeutic level of glucosamine or chondroitin not all are supported by clinical evidence. Only patented crystalline glucosamine sulfate (pCGS) is shown to deliver consistently high glucosamine bioavailability and plasma concentration in humans, which corresponds to demonstrated clinical efficacy. Similarly, clinical evidence supports only the pharmaceutical-grade chondroitin sulfate. The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) advocates, through careful consideration of the evidence base, that judicious choice of glucosamine and chondroitin formulation is essential to maximize clinical benefit, patient adherence and satisfaction with treatment. In future, the ESCEO recommends that complex molecules with biological activity such as pCGS may be treated as "biosimilars" akin to the European Medicines Agency guidance on biological medicinal products. It seems likely that for all other complex molecules classed as SYSADOAs, the recommendation to use only formulations clearly supported by the evidence-base should apply.
Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki
2015-11-23
Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Core Facility for the Study of Neurotoxins of Biological Origin
1992-02-15
a somewhat different approach was used. TVL was incubated with or without N-acetyl-g- glucosamine (1 x 10-1 M) for 30 min. This mixture was then...galactosamine, N-acetyl-0-galactosamine, N-acetyl-cz ,lucosamine and N-acetyl-3- glucosamine . None of these lectins was a potent antagonist of botulinum...sialic acid, whereas TVL has affinity for both N-acetyl-,6- glucosamine and N-acetyl-a-sialic acid. However, the fact that the lectin from Datora
Chemical Analysis for Chitin as a Measure of Fungal Infiltration of Cellulosic Materials.
1976-12-01
the addition of 50 n’.illiliters of I 2N hydrochloric acid). Store at .~lO0 C. (11) Bushnell-Haas medium (12) Glucosamine hydrochloride (I milliliter...Infiltration Cellu!.jsic Materials Fungus-Induced Deterioration Glucosamine A TRACT (Cl~ i~s ,.v.ra. ia. ~V ~~~~~a . y d Sd.niIl ~ By block ni b.,) A chemical...EXPERIMENTAL PROCEDURE 3. Approach to the Problem. Carry out laboratory experiments to investigate variables as: shelf life of stock glucosamine , digestion
Glucosamine and Chondroitin for Osteoarthritis
... sheet Osteoarthritis and Complementary Health Approaches . What the Science Says About Glucosamine and Chondroitin for Osteoarthritis For ... months as those who received placebo. What the Science Says About Safety and Side Effects No serious ...
Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin
2015-11-01
A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olchowy, Jaroslaw; Jedrzejczak, Robert; Milewski, Slawomir
2005-11-01
The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to spacemore » group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.« less
Runhaar, Jos; Deroisy, Rita; van Middelkoop, Marienke; Barretta, Francesco; Barbetta, Beatrice; Oei, Edwin H; Vroegindeweij, Dammis; Giacovelli, Giampaolo; Bruyère, Olivier; Rovati, Lucio C; Reginster, Jean-Yves; Bierma-Zeinstra, Sita M A
2016-02-01
The PRevention of knee Osteoarthritis in Overweight Females (PROOF) study (ISRCTN 42823086) described a trend for a decrease in the incidence of knee osteoarthritis (OA) by a tailored diet and exercise program (DEP) or by oral glucosamine sulfate in women at risk for the disease, using a composite clinical and/or radiological outcome. The aim of this updated post-hoc analysis was to re-assess the results according to more precise techniques and take advantage of the 2×2 factorial design. A total of 407 overweight (BMI ≥ 27kg/m(2)) women of 50-60 years of age with no diagnosis of knee OA were randomized to: (1) no DEP + placebo (Control, N = 102), (2) DEP + placebo (DEP, N = 101), (3) glucosamine sulfate + no DEP (GS, N = 102), and (4) DEP + glucosamine sulfate (DEP + GS, N =102) and followed for 2.5 years, with standardized postero-anterior, semiflexed (MTP) view knee radiographs at baseline and end of the study. DEP consisted of a tailored low fat and/or low caloric diet and easy to implement physical activities. Glucosamine was given as oral crystalline glucosamine sulfate 1500mg once daily, double-blinded vs. placebo. Incident knee OA was defined as radiographic progression of ≥1mm minimum joint space narrowing (mJSN) in the medial tibiofemoral compartment, as previously assessed by the visual (manual) technique and by a new semi-automated method. Logistic regression analysis was used to calculate the odds ratio for the effect of the interventions. After 2.5 years, 11.8% of control subjects developed knee OA. This incidence was decreased with glucosamine sulfate, either alone or in combination with the DEP, but not by the DEP alone. Since there was no statistical interaction between treatments, the 2×2 factorial design allowed analysis of patients receiving glucosamine sulfate (N = 204) vs. those not receiving it (N = 203), similarly for those on the DEP (N = 203) or not (N = 204). Glucosamine sulfate significantly decreased the risk of developing knee OA: odds ratio (OR) = 0.41 (95% CI: 0.20-0.85, P = 0.02) by the manual JSN assessment method and OR = 0.42 (95% CI: 0.20-0.92, P = 0.03) by the semi-automated technique. Conversely, there was no decrease in risk with the DEP. Glucosamine sulfate decreased the risk of developing radiographic knee OA over 2.5 years in overweight, middle-aged women at risk, as determined by medial mJSN progression. Conversely a tailored diet and exercise program exerted no preventive effect, possibly because of the lower than expected effect on weight loss. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Gaugué, Isabelle; Oberto, Jacques; Putzer, Harald; Plumbridge, Jacqueline
2013-01-01
B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source. PMID:23667565
Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki
2013-09-20
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.
Glucosamine and chondroitin use in canines for osteoarthritis: A review
Bhathal, Angel; Spryszak, Meredith; Louizos, Christopher; Frankel, Grace
2017-01-01
Osteoarthritis is a slowly progressive and debilitating disease that affects canines of all breeds. Pain and decreased mobility resulting from osteoarthritis often have a negative impact on the affected canine’s quality of life, level of comfort, daily functioning, activity, behaviour, and client-pet companionship. Despite limited and conflicting evidence, the natural products glucosamine hydrochloride (HCl) and chondroitin sulfate are commonly recommended by veterinarians for treating osteoarthritis in dogs. There is a paucity of well-designed clinical veterinary studies investigating the true treatment effect of glucosamine and chondroitin. The purposes of this review article are to provide a brief background on glucosamine and chondroitin use in canine osteoarthritis and to critically review the available literature on the role of these products for improving clinical outcomes. Based on critical review, recommendations for practice are suggested and a future study design is proposed. PMID:28331832
Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra
2013-01-01
The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482
Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?
... Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have ... build cartilage. The most common type of arthritis, osteoarthritis wears away the slick cartilage that covers the ...
Horal, Melissa; Zhang, Zhiquan; Stanton, Robert; Virkamäki, Antti; Loeken, Mary R
2004-08-01
Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.
Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong
2017-01-01
Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086
Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong
2017-03-01
Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.
Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine.
Perdih, Peter; Cebašek, Sašo; Možir, Alenka; Zagar, Ema
2014-11-27
Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.
Trč, Tomáš; Bohmová, Jana
2011-03-01
This was a 13-week, multicentre, randomised, parallel, double-blind study. One hundred men and women volunteers aged ≥ 40 years with knee osteoarthritis (KOA) were randomised to once daily enzymatic hydrolysed collagen (EHC) 10 g or glucosamine sulphate (GS) 1.5 g for 90 consecutive days. Follow-up took place after two weeks and after one, two and three months. Primary [visual analogue scale (VAS), Western Ontario and McMaster Universities (WOMAC Index)] and secondary outcomes variables, assessed at weeks two, four, eight and 12, were KOA pain intensity measured by quadruple visual analogue scales in the target knee, the WOMAC total score index, patient's and investigator's global assessments of disease activity, joint assessment, use of rescue medication (ibuprofen 400 mg tablets) and assessment of Quality of Life index (SF-36 Questionnaire). Safety and tolerability were also evaluated. Clear improvement was observed in both joint pain and symptoms in patients with KOA treated with EHC (Colatech®) and significant differences were observed. Mean reductions from baseline for EHC 10 g daily and GS 1.5 g, respectively, were KOA pain intensity reduction in the target knee for Colatech® (p < 0.05): WOMAC index decrease ≤ 15 points at the last visit (day 90) for Colatech® in 16 patients (34.04%) (p < 0.05) and for glucosamine in six patients (13.04%); total score index for painful joints: Colatech® 1.6 (p < 0.05) and glucosamine 1.8; total score index for swollen joints: Colatech® 0.5 (p < 0.05) and glucosamine 0.7; patient's global assessment of efficacy as the sum of improvement good + ideal: 80.8% for Colatech® and 46.6% for glucosamine (p < 0.05). EHC (Colatech®) showed superior improvement over GS in the SF-36 Questionnaire in the Physical Health Index (42.0 for Colatech and 40.0 for glucosamine). The incidence of adverse events was similar in both groups. Both EHC and GS were well tolerated.
Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo
2011-01-01
We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884
Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik
2015-01-01
Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521
Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe
2014-08-01
Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.
Bello, Luis; Añez, Roberto; Bermúdez, Valmore
2014-01-01
Osteoarthritis is a chronic degenerative disorder that currently represents one of the main causes of disability within the elderly population and an important presenting complaint overall. The pathophysiologic basis of osteoarthritis entails a complex group of interactions among biochemical and mechanical factors that have been better characterized in light of a recent spike in research on the subject. This has led to an ongoing search for ideal therapeutic management schemes for these patients, where glucosamine is one of the most frequently used alternatives worldwide due to their chondroprotective properties and their long-term effects. Its use in the treatment of osteoarthritis is well established; yet despite being considered effective by many research groups, controversy surrounds their true effectiveness. This situation stems from several methodological aspects which hinder appropriate data analysis and comparison in this context, particularly regarding objectives and target variables. Similar difficulties surround the assessment of the potential ability of glucosamine formulations to alter glucose metabolism. Nevertheless, evidence supporting diabetogenesis by glucosamine remains scarce in humans, and to date, this association should be considered only a theoretical possibility. PMID:24678419
Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R.; Yang, Shaoqing; Jiang, Zhengqiang
2015-01-01
Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854
Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R; Yang, Shaoqing; Jiang, Zhengqiang
2015-12-16
Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.
Dutta, Udayan; Cohenford, Menashi A; Dain, Joel A
2007-01-15
Advanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15. With D-glucose, D-galactose, D/L-glyceraldehyde, and D-glucosamine serving as the model glycating carbohydrates, D-glucosamine was found to exhibit the greatest effect on the stability and structure of the oligonucleotide duplexes, a finding that was confirmed by circular dichroism. The nonenzymatic glycation of deoxy-poly(AT) by D-glucosamine destabilized the deoxy-poly(AT) structure and changed its conformation from A form to X form. D-glucosamine also altered the conformation of deoxy-poly(GA)15 and deoxy-poly(CT)15 from A form to B form. Capillary electrophoresis and ultraviolet and fluorescence spectroscopy revealed that, of the various purines and pyrimidines, 2'-deoxyguanosine and guanine were most reactive with D-glucosamine. The nonenzymatic modification of nucleic acids warrants further investigation because this phenomenon may occur in vivo, altering DNA structure and/or function.
Lampe, Johanna W.; Navarro, Sandi L.; Song, Xiaoling; Milne, Ginger L.; White, Emily
2014-01-01
Abstract Objectives: Glucosamine and chondroitin supplements have been shown to have anti-inflammatory properties in both in vitro studies and animal models; however, little is known about these relationships in humans. The VITamins and Lifestyle (VITAL) biomarker study evaluated the associations between use of these supplements and a panel of circulating inflammatory biomarkers. Design: Study participants included 217 men and women age 50–75 years living in the Seattle metropolitan area. Use of glucosamine and chondroitin supplements was ascertained by home interview/supplement inventory. Inflammation was assessed by using blood and urine collected at the time of home interview. Measures of systemic inflammation included plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, soluble TNF receptors I and II, and urinary prostaglandin E2-metabolite (PGE-M). Multivariate-adjusted linear regression was used to evaluate the associations between supplement use and biomarkers of inflammation. Results: High users (14 or more pills/week) of chondroitin had 36% lower hsCRP (ratio, 0.64; 95% confidence interval [CI], 0.39–1.04; p for trend=.03) and 27% lower PGE-M (ratio, 0.73; 95% CI, 0.5–0.98; p for trend=.07) than nonusers. Compared with nonusers, high users of glucosamine had 28% lower hsCRP (ratio, 0.72; 95% CI, 0.47–1.08; p for trend=.09) and 24% lower PGE-M (ratio, 0.76; 95% CI, 0.59–0.97; p for trend=0.10). Use of glucosamine and chondroitin supplements was not associated with the other markers of inflammation. Conclusions: These results support prior research suggesting that use of glucosamine and chondroitin is associated with reduced hsCRP and PGE2, but further work is needed to more definitively evaluate the anti-inflammatory potential of these supplements. PMID:24738579
Gommans, Yvonne M M; Runhaar, Jos; Jacobs, Marloes L; Bierma-Zeinstra, Sita M A
2017-06-01
The aim of the present study was to evaluate the effect of a 2.5-year glucosamine sulfate intervention on hemoglobin A1c (HbA1c) levels and the incidence of new-onset diabetes mellitus over 6.5 years in middle-aged women with a body mass index ≥27 kg/m 2 . In total, 407 women were randomized into either oral crystalline glucosamine sulfate or placebo. At baseline, 1 year, 2.5 years, and 6.5 years, a blood sample for the HbA1c level was drawn and questionnaires were taken. After 6.5 years there were missing data for some variables, therefore, multiple imputation was used. With the imputed data, a generalized estimating equation was performed to analyze the effect of glucosamine sulfate usage over 6.5 years. Finally, these analyses were rerun for the 2 subgroups of participants with and without high HbA1c level (≥42 mmol/mol) at baseline. There was no significant effect of a 2.5-year glucosamine sulfate intervention on mean HbA1c level or on obtaining a high HbA1c level or new-onset diabetes mellitus over 6.5 years. The subgroup analyses of participants with and without high HbA1c level at baseline were also not statistically significant. However, participants with a high HbA1c level at baseline had higher odds ratios compared with the participants with a normal HbA1c at baseline. There was no effect of glucosamine sulfate on mean HbA1c level nor on obtaining a high HbA1c level or new-onset diabetes mellitus over 6.5 years, especially in participants with a normal HbA1c level at baseline. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, C-H; Cheong, K A; Park, C D; Lee, A-Y
2012-05-01
Tacrolimus (FK-506) has been found to exhibit potent inhibitory effects on spontaneously developed dermatitis. We previously showed that glucosamine prevents the development of Atopic dermatitis (AD)-like skin lesions in NC/Nga mice. The aims of our study were to investigate the synergistic therapeutic efficacy of combination of glucosamine plus FK-506 in dermatophagoides farina (Df)-induced AD-like skin lesions in NC/Nga mice and to determine the underlying therapeutic mechanisms. The Df-induced NC/Nga mice with a clinical score of 8 were used for treatment with glucosamine (500 mg/kg) alone, FK-506 (1.0 mg/kg) or in combination. The synergistic effects of combination therapy were evaluated by dermatitis scores, skin histology and immunological parameters such as IgE, Th2-mediated cytokines and chemokines, CD3(+) T cells and CLA(+) T cells. Combined therapy using glucosamine plus FK-506 improved the development of AD-like skin lesions as exemplified by a significant decrease in total skin symptom severity scores. The suppression of dermatitis by combined therapy was accompanied by a decrease in the plasma level of IgE and in the splenic level of IL-5, IL-13, TARC and eotaxin. Histological finding indicated that the dermal infiltration of inflammatory cells including mast cells and eosinophils was greatly reduced. Particularly, immunohistological evaluation reveals a reduction in CD3(+) T cells and CLA(+) cells in the combined therapy. Our findings suggest that combination therapy of glucosamine plus FK-506 was more synergistic efficacy than single-modality treatment with either alone to improve the development of established dermatitis in NC/Nga mice model. This combined immunosuppressive therapy may provide an effective therapeutic strategy for the treatment of AD. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.
Absence of preserved glucosamine and amino acids in fossil crustacean exoskeletons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimmelmann, A.; Krause, R.G.F.; DeNiro, M.J.
1988-01-01
No glucosamine and only traces of amino acids were detected in kerogen prepared from fossil crustacean exoskeletons. The elemental C/N ratios of the kerogen samples were above 20, indicating that most of the organic nitrogen was eliminated from the chitin biopolymer during diagenesis. The results contradict earlier reports of the stability of chitin during fossilization.
Antitumor activities of D-glucosamine and its derivatives*
Zhang, Li; Liu, Wan-shun; Han, Bao-qin; Peng, Yan-fei; Wang, Dong-feng
2006-01-01
The growth inhibitory effects of D-glucosamine hydrochloride (GlcNH2·HCl), D-glucosamine (GlcNH2) and N-acetyl glucosamine (NAG) on human hepatoma SMMC-7721 cells in vitro were investigated. The results showed that GlcNH2·HCl and GlcNH2 resulted in a concentration-dependent reduction in hepatoma cell growth as measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. This effect was accompanied by a marked increase in the proportion of S cells as analyzed by flow cytometry. In addition, human hepatoma SMMC-7721 cells treated with GlcNH2·HCl resulted in the induction of apoptosis as assayed qualitatively by agarose gel electrophoresis. NAG could not inhibit the proliferation of SMMC-7721 cells. GlcNH2·HCl exhibited antitumor activity against Sarcoma 180 in Kunming mice at dosage of 125~500 mg/kg, dose of 250 mg/kg being the best. GlcNH2·HCl at dose of 250 mg/kg could enhance significantly the thymus index, and spleen index and could promote T lymphocyte proliferation induced by ConA. The antitumor effect of GlcNH2·HCl is probably host-mediated and cytocidal. PMID:16845712
Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka; Tolani, Harish A; Anděra, Ladislav; Arntzen, Magnus Ø; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Agger, Jane W
2016-10-04
Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study
NASA Astrophysics Data System (ADS)
Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.
2016-07-01
Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.
Aghazadeh-Habashi, Ali; Duke, John; Jamali, Fakhreddin
2014-01-01
We investigated whether the recent implementation of the regulatory requirements for the entry to the Canadian market of natural products has resulted in improved quality of the available glucosamine products. Eleven available products, of which 8 had been tested in 2002 (7 had contained substantially lower than the label claim of the active ingredient), and a European pharmaceutical grade tablet were assayed for their glucosamine content. The potassium and sodium contents of the products were also tested. Nine of the 11 Canadian products and the European tablet had more than 91% of the label claim of the active ingredient, hence, met the criterion. Two products contained 71 and 78% label claim. The electrolyte contents were very variable but constituted only a small fraction of the daily requirements. Most tested glucosamine products passed the Health Canada requirements. This improvement is likely due to the publicity regarding the low quality of the products in the past and also a result, at least in part, of the introduction of the new regulatory requirements. The sub-standard quality of a few tested products is still of concern.
Barata, Teresa S.; Teo, Ian; Brocchini, Steve; Zloh, Mire; Shaunak, Sunil
2011-01-01
The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4′phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases. PMID:21738462
Yang, Wenbin; Liu, Wei; Miao, Cheng; Sun, Haibin; Li, Longjiang; Li, Chunjie
2018-06-02
Temporomandibular joint (TMJ) disorders occur in many people and osteoarthritis (OA) is a severe form of this disease. Glucosamine has been used to treat OA of the large joints for many years and has been proved effective. A double-blinded randomized controlled trial was designed to investigate the effectiveness and safety of oral glucosamine hydrochloride pills combined with hyaluronate sodium intra-articular injection in TMJ OA. One hundred forty-four participants with TMJ OA were randomized to 4 hyaluronate sodium injections and oral glucosamine hydrochloride (1.44 g/day) for 3 months (group A) or 4 hyaluronate sodium injections and oral placebo for 3 months (group B). All participants were followed for 1 year. Eighteen participants were lost to follow-up. The intention-to-treat analysis showed that group A had similar maximal interincisal mouth opening and pain intensity during TMJ function at months 1 and 6 (P > .05). However, during long-term follow-up, group A had significantly greater maximal interincisal mouth opening compared with group B at month 12 (41.5 vs 37.9 mm; P < .001). For pain intensity, group A showed obviously lower visual analog scale scores than group B at month 6 (20.6 vs 29.2 mm; P = .007) and month 12 (17.4 vs 28.6 mm; P = .001). Twenty-four participants had gastrointestinal tract side effects, fatigue, and rash. Of these, 23 had slight side effects that were not correlated with glucosamine. There was no significant difference between the 2 groups (P > .05). The results of this study suggest that, compared with hyaluronate sodium injection alone, glucosamine hydrochloride pills added to hyaluronate sodium injection had no meaningful effect on TMJ OA in the short-term but did relieve the pain caused by TMJ OA and improved TMJ functions in the long-term. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Mehta, Komal; Gala, Jayesh; Bhasale, Surendra; Naik, Sattayasheel; Modak, Millind; Thakur, Harshad; Deo, Nivedita; Miller, Mark JS
2007-01-01
Background The efficacy and safety of a dietary supplement derived from South American botanicals was compared to glucosamine sulfate in osteoarthritis subjects in a Mumbai-based multi-center, randomized, double-blind study. Methods Subjects (n = 95) were screened and randomized to receive glucosamine sulfate (n = 47, 1500 mg/day) or reparagen (n = 48, 1800 mg/day), a polyherbal consisting of 300 mg of vincaria (Uncaria guianensis) and 1500 mg of RNI 249 (Lepidium meyenii) administered orally, twice daily. Primary efficacy variable was response rate based on a 20% improvement in WOMAC pain scores. Additional outcomes were WOMAC scores for pain, stiffness and function, visual analog score (VAS) for pain, with assessments at 1, 2, 4, 6 and 8 weeks. Tolerability, investigator and subject global assessments and rescue medication consumption (paracetamol) were measured together with safety assessments including vital signs and laboratory based assays. Results Subject randomization was effective: age, gender and disease status distribution was similar in both groups. The response rates (20% reduction in WOMAC pain) were substantial for both glucosamine (89%) and reparagen (94%) and supported by investigator and subject assessments. Using related criteria response rates to reparagen were favorable when compared to glucosamine. Compared to baseline both treatments showed significant benefits in WOMAC and VAS outcomes within one week (P < 0.05), with a similar, progressive improvement over the course of the 8 week treatment protocol (45–62% reduction in WOMAC or VAS scores). Tolerability was excellent, no serious adverse events were noted and safety parameters were unchanged. Rescue medication use was significantly lower in the reparagen group (p < 0.01) at each assessment period. Serum IGF-1 levels were unaltered by treatments. Conclusion Both reparagen and glucosamine sulfate produced substantial improvements in pain, stiffness and function in subjects with osteoarthritis. Response rates were high and the safety profile was excellent, with significantly less rescue medication use with reparagen. Reparagen represents a new natural productive alternative in the management of joint health. Trial registration Current Controlled Trials ISRCTN25438351. PMID:17974032
Yang, Zhi; Xiong, Chiyi; Zhang, Rui; Zhu, Hua; Li, Chun
2012-01-01
The purposes of this study were to develop an efficient method of labeling D-glucosamine hydrochloride with gallium 68 (68Ga) and investigate the imaging properties of the resulting radiotracer in a human tumor xenograft model using micro-positron emission tomography (μPET). The precursor compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-2-deoxy-D-glucosamine (DOTA-DG) was synthesized from D-glucosamine hydrochloride and 2-(4-isothiocyanatobenzyl)-DOTA. Radiolabeling of DOTA-DG with 68Ga was achieved in 10 minutes using microwave heating. The labeling efficiency a nd radiochemical purity after purification of 68Ga-DOTA-DG were ~85% and greater than 98%, respectively. In A431 cells, the percentages of 68Ga-DOTA-DG and 18F-FDG uptakes after 60 min incubation were 15.7% and 16.2%, respectively. In vivo, the mean ± standard deviation of 68Ga-DOTADG uptake values in A431 tumors were 2.38±0.30, 0.75±0.13, and 0.39±0.04 percent of the injected dose per gram of tissue at 10, 30, and 60 minutes after intravenous injection, respectively. μPET imaging of A431-bearing mice clearly delineated tumors at 60 minutes after injection of 68Ga-DOTA-DG at a dose of 3.7 MBq. 68Ga-DOTA-DG displayed significantly higher tumor-to-heart, tumor-to-brain, and tumor-to-muscle ratios than 18F-FDG did. Further studies are needed to identify the mechanism of tumor uptake of this new glucosamine-based PET imaging tracer. PMID:23145365
Yang, Zhi; Xiong, Chiyi; Zhang, Rui; Zhu, Hua; Li, Chun
2012-01-01
The purposes of this study were to develop an efficient method of labeling D-glucosamine hydrochloride with gallium 68 ((68)Ga) and investigate the imaging properties of the resulting radiotracer in a human tumor xenograft model using micro-positron emission tomography (μPET). The precursor compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-2-deoxy-D-glucosamine (DOTA-DG) was synthesized from D-glucosamine hydrochloride and 2-(4-isothiocyanatobenzyl)-DOTA. Radiolabeling of DOTA-DG with (68)Ga was achieved in 10 minutes using microwave heating. The labeling efficiency a nd radiochemical purity after purification of (68)Ga-DOTA-DG were ~85% and greater than 98%, respectively. In A431 cells, the percentages of (68)Ga-DOTA-DG and (18)F-FDG uptakes after 60 min incubation were 15.7% and 16.2%, respectively. In vivo, the mean ± standard deviation of (68)Ga-DOTADG uptake values in A431 tumors were 2.38±0.30, 0.75±0.13, and 0.39±0.04 percent of the injected dose per gram of tissue at 10, 30, and 60 minutes after intravenous injection, respectively. μPET imaging of A431-bearing mice clearly delineated tumors at 60 minutes after injection of (68)Ga-DOTA-DG at a dose of 3.7 MBq. (68)Ga-DOTA-DG displayed significantly higher tumor-to-heart, tumor-to-brain, and tumor-to-muscle ratios than (18)F-FDG did. Further studies are needed to identify the mechanism of tumor uptake of this new glucosamine-based PET imaging tracer.
Le, Catherine; Scholey, James W.
2010-01-01
Cells exposed to high glucose may undergo hypertrophy, proliferation, and apoptosis, but the role of hexosamine flux in mediating these effects has not been fully elucidated. Accordingly, we studied the effects of glucose and glucosamine on rat glomerular mesangial cells (MC) turnover. Compared with physiological glucose (5.6 mM), treatment with high glucose (25 mM) for 24 h stimulated MC proliferation, an effect that was mimicked by exposure to low concentrations of glucosamine (0.05 mM). The percentage of cells in G0/G1 phase of the cell cycle was reduced with a concomitant increase of the number of cells in G2/M phase. Proliferating cell nuclear antigen, phosphorylated mammalian target of rapamycin [phospho-mTOR (Ser2448)], and total regulatory-associated protein of mTOR were increased by high glucose and glucosamine treatment. Inhibition of glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme for hexosamine flux, with 6-diazo-5-oxonorleucine (10 μM) and of mTOR with rapamycin both attenuated glucose-mediated MC proliferation. Higher glucosamine concentrations (0.25–10 mM) caused MC apoptosis after 48 h, and, in addition, GFAT overexpression also increased MC apoptosis (TdT-dUTP nick end-labeling-positive cells: 3.8 ± 0.3 vs. 1.1 ± 0.2% for empty vector; P < 0.05). Hence, hexosamine flux is an important determinant of MC proliferation and apoptosis. The proliferative response to high glucose and hexosamine flux is rapamycin-sensitive, suggesting that this effect is associated with signaling through rapamycin-sensitive mTOR complex 1 (mTORC1). PMID:19903862
In vitro Studies of Sandfly Fever Viruses and Their Potential Significance for Vaccine Development.
1980-02-01
more 14C-canavanine (DL-guanido-1LC-canavanine hydrochloride , Research Products International, Elk Grove, Illinois) than other viral proteins (data not...several laboratories have suggested that N-acetyl- glucosamine , glucose, and mannose residues are preassembled on dolichol phosphate (an isoprenoid...described below. Unlike the 0-glycosidic linkage between galactosamine and serine, the N-glycosidic linkage between N-acetyl glucosamine and asparagine
Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.
Balsanelli, Eduardo; Serrato, Rodrigo V; de Baura, Valter A; Sassaki, Guilherme; Yates, Marshall G; Rigo, Liu Un; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A
2010-08-01
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Novel Micro/Nano Approaches for Glucose Measurement Using pH-Sensitive
2006-06-01
step, the anionic enzyme was assembled in multilayers in alternation with poly(allylamine hydrochloride ) (PAH) (polycation). A total of three...group of D- glucosamine residues in chitosan can be conjugated with amine-reactive dyes, such as succinimidyl esters (Alexa Fluor 647™, CY5...measured values for FITC-chitosan were found to be: A494nm=0.153276 MW=161 [D- glucosamine ]=0.77g/L εdye=68000cm-1M-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Guan-Jing; Li, Lan-Fen; Li, Dan
2007-09-01
A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, withmore » unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.« less
Studies on the site of biosynthesis of acidic glycoproteins of guinea-pig serum
Simkin, J. L.; Jamieson, J. C.
1967-01-01
1. Studies were carried out to determine the cellular and subcellular site of biosynthesis of components of fraction I, an α-globulin fraction containing acidic glycoproteins isolated from guinea-pig serum. l-[U-14C]Leucine or -valine and d-[1-14C]glucosamine were used as precursors. 2. A lag of about 10min. occurred before appreciable label appeared in fraction I of serum after injection of leucine or glucosamine. Label in fraction I after 60min. labelling with glucosamine was present almost entirely in hexosamine and sialic acid. 3. Site of synthesis was investigated by studies in vivo up to 17min. after injection of precursor. Particulate subcellular fractions isolated from liver, spleen and kidney or homogenates of the latter two tissues were extracted with Lubrol. Extracts were allowed to react by double diffusion with antisera to fraction I or to subfractions isolated from it, and gels were subsequently subjected to radioautography. With either amino acid or glucosamine as precursor, only extracts of the microsome fraction of liver formed precipitin lines that were appreciably radioactive. 4. The role of the microsome fraction of liver in the synthesis of these glycoproteins was confirmed by immunological studies after incubation of liver slices with leucine or glucosamine. Incorporation of leucine was also investigated in a cell-free microsome system. 5. Material was also precipitated from certain Lubrol extracts of liver microsomes by direct addition of antiserum and its radioactivity measured. Degradation of material thus precipitated and use of heterologous immune systems showed that labelling of precipitin lines represented biosynthesis. 6. A study of extraction procedures suggested that the substances present in the microsome fraction of liver that react with specific antisera are associated with membranous structures. 7. Most or all precipitin lines formed by Lubrol extracts of liver microsomes interacted with precipitin lines given by guinea-pig serum or fraction I, immunological identity being apparent with some lines. The microsome-bound substances thus represent serum glycoproteins or precursors of them. 8. The distribution of label in various tissues and in the protein of subcellular fractions of liver after administration of [14C]glucosamine to the guinea pig was also studied. Some variation in results obtained with liver was found depending on the fractionation medium used. Images(a)(b)(a)(b) PMID:4962164
Yao, Dan; Xu, Lijuan; Xu, Oufan; Li, Rujun; Chen, Mingxing; Shen, Hui; Zhu, Huajiang; Zhang, Fengyi; Yao, Deshang; Chen, Yiu-Fai; Oparil, Suzanne; Zhang, Zhengang; Gong, Kaizheng
2018-06-01
Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. These results suggest that O-GlcNAcylation of A20 plays a key role in the negative regulation of NF-κB signaling cascades in TNF-α-treated vascular smooth muscle cells in culture and in acutely injured arteries, thus protecting against inflammation-induced vascular injury. © 2018 American Heart Association, Inc.
Wang, Limin; Detamore, Michael S
2009-01-01
Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.
Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele
2013-01-01
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.
Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi; Monteiro, Rose Adele
2013-01-01
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823
2005-03-01
detection with flow cytometry. Cancer . 85:2359-67. 18. Justice JP, Shibata Y, Sur S, Mustafa J, Fan M, Van Scott MR. 2001. IL-10 gene knockout attenuates...primed donors. Regional Immunol., 2, 169-175. 7. Druker, B. J., Wepsic, H. T. (1983) BCG-induced macrophages as suppressor cells. Cancer Investig. 1:151...however, have significantly lower binding affinities to de-acetylated glucosamine sugar residues (31). Dectin-1/[3- glucan CLR, on the other hand
Novel Micro/Nano Approaches for Glucose Measurement Using pH-Sensitive Hydrogels
2005-06-01
hydrochloride ) (PAH) (polycation). A total of three bilayers of GOx/PAH were assembled, and enzyme activity was confirmed by colorimetric assay...D- glucosamine residues in chitosan can be conjugated with amine-reactive dyes, such as succinimidyl esters (Alexa Fluor 647TM, CY5®), isothiocyanates...were found to be: A 4 94 nm=0.153276 MW=161 [D- glucosamine ]=0.77g/L Sdye=68000cm-M-1 DOL=4.71 x 10-’ Therefore, the labeling ratio of FITC:chitosan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, U.R.; Carlson, R.W.; Mayer, H.
1991-04-01
Lipopolysaccharides (LPSs) isolated from several strains of Rhizobium, Bradyrhizobium, Agrobacterium, and Azorhizobium were screened for the presence of 27-hydroxyoctacosanoic acid. The LPSs from all strains, with the exception of Azorhizobium caulinodans, contained various amounts of this long-chain hydroxy fatty acid in the lipid A fractions. Analysis of the lipid A sugars revealed three types of backbones: those containing glucosamine (as found in Rhizobium meliloti and Thizobium fredii), those containing glucosamine and galacturonic acid (as found in Rhizobium leguminosarum bv. phaseoli, trifolii, and viciae), and those containing clucosamine and galacturonic acid (as found in Rhizobium leguminosarum bv. phaseoli, trifolii, and viciae),more » and those containing 2,3-diamino-2,3-dideoxyglucose either alone or in combination with glucosamine (as found in Bradyrhizobium japonicum and Bradyrhizobium sp. (Lupinus) strain DSM 30140). The distribution of 27-hydroxyoctacosamoic acid as well as analysis of lipid A backbone sugars revealed the taxonomic relatedness of various strains of the Rhizobiaceae.« less
Characterization of a Glucosamine/Glucosaminide N-Acetyltransferase of Clostridium acetobutylicum▿†
Reith, Jan; Mayer, Christoph
2011-01-01
Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum. PMID:21784938
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides.
Umezawa, Taiki; Hasegawa, Yuki; Novita, Ira S; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-06-29
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite . Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC 50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC 50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO₄, which is used as a fouling inhibitor (EC 50 = 0.27 μg/mL).
New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.
Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio
2002-07-16
The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.
Bottelli, Susanna; Grillo, Gianluca; Barindelli, Edoardo; Nencioni, Alessandro; Di Maria, Alessandro; Fossati, Tiziano
2017-07-07
An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was devised for the determination of glucosamine (GlcN) in sodium chondroitin sulfate (CS). Glucosamine (GlcN) is intended as marker of residual keratan sulfate (KS) and other impurities generating glucosamine by acidic hydrolyzation. The latter brings CS and KS to their respective monomers. Since GlcN is present only in KS we developed a method that separates GlcN from GalN, the principal hydrolytic product of CS, and then we validated it in order to quantify GlcN. Method validation was performed by spiking CS raw material with known amounts of KS. Detection limit was 0.5% of KS in CS (corresponding to 0.1μg/ml), and the linear range was 0.5-5% of KS in CS (corresponding to 0.1-1μg/ml). The optimized analysis was carried out on an ICS-5000 system (Dionex, Sunnyvale, CA, USA) equipped with a Dionex Amino Trap guard column (3mm×30mm), Dionex CarboPac-PA20 (3mm×30mm) and a Dionex CarboPac-PA20 analytical column (3mm×150mm) using gradient elution at a 0.5ml/min flow rate. Regression equations revealed good linear relationship (R 2 =0.99, n=5) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of residual KS in CS in several raw materials and USP/EP reference substance. Results confirmed that the HPAEC-PAD method is more specific than the electrophoretic method for related substance reported in EP and provides sensitive determination of KS in acid-hydrolyzed CS samples, enabling the quantitation of KS and other impurities (generating glucosamine) in CS. Copyright © 2017 Elsevier B.V. All rights reserved.
2014-01-01
Background The osteoarthritis (OA) treatment in humans and in animals is a major orthopaedic challenge because there is not an ideal drug for preserving the joint structure and function. The aim of this study was to assess the effects of the treatment with oral glucosamine and risedronate alone or in combination on articular cartilage, synovial membrane and subchondral bone in an experimental rabbit model of OA. Osteoarthritis was surgically induced on one knee of 32 New Zealand White rabbits using the contralateral as healthy controls. Three weeks later treatments were started and lasted 8 weeks. Animal were divided in four groups of oral treatment: the first group received only saline, the second 21.5 mg/kg/day of glucosamine sulfate, the third 0.07 mg/kg/day of risedronate; and the fourth group both drugs simultaneously at the same dosages. Following sacrifice femurs were removed and osteochondral cylinders and synovial membrane were obtained for its histological and micro-CT evaluation. Results Sample analysis revealed that the model induced osteoarthritic changes in operated knees. OA placebo group showed a significant increase in cartilage thickness respect to the control and inflammatory changes in synovial membrane; whereas subchondral bone structure and volumetric bone mineral density remained unchanged. All the treated animals showed an improvement of the cartilage swelling independent of the drug used. Treatment with glucosamine alone seemed to have no effect in the progression of cartilage pathology while risedronate treatment had better results in superficial fibrillation and in resolving the inflammatory changes of the tissues, as well as modifying the orientation of trabecular lattice. The combination of both compounds seemed to have additive effects showing better results than those treated with only one drug. Conclusions The results of this animal study suggested that glucosamine sulfate and risedronate treatment alone or in combination may be able to stop cartilage swelling. The risedronate treatment could partially stop the fibrillation and the inflammation of synovial membrane as well as modify the orientation of trabeculae in healthy and in osteoarthritic knees. PMID:24766775
Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.
Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas
2004-07-08
D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.
NASA Astrophysics Data System (ADS)
Pringgenies, Delianis; Rudiyanti, Siti; Yudiati, Ervia
2018-02-01
This research aim was to study the potential of Stichopus hermanii to determine the amino acid, chondroitin, and glucosamine contents, to discover its antibacterial and anti-cancer agent. The samples were rinsed prior to separation, with only the corpus being used in the study. Sea cucumber extract was then processed using HPLC to trace contents of amino acid, chondroitin, and glucosamine contents. The samples were then put into test against several strains of pathogenic bacteria by means of diffusion for any biological activity. The anti-cancer test was performed by human ovarian cancer cell line (KOC7C) method. The study showed that the extract of Stichopus hermanii has the potency to inhibit the growth of active ovarian cancer cells. The qualitative test of the sea cucumber extract showed that it is capable of suppressing the growth of several strains of pathogenic bacteria identified as Staphylococcus aureus, Escherichia coli, Vibrio voinivica, and Pseudomonas sp. HPLC results showed that the extract contained amino acid (mg/100g), the highest being Collagen (11200), followed by Glycine (3760), Glutamic Acid (3700), Aspartic Acid (2540), Alanine (2140), Proline (2050), Arginine (2050), Tyrosine (1430), Threonine (1270), Leucine (1170), Valine (1050), Serine (971), Isoleucine (816), Phenylalanine (713), Lysine (639), Methionine (383), Cystine (263) and Histidine (208). The extract also contained Chondroitin Sulfate (4200) and Glucosamine Hydrochloride (<5.00). In conclusion, the study found that the extract of Stichopus hermanii has potential as anti-cancer, particularly against ovarian cancer, with the highest content being Collagen within amino acids, as well as chondroitin and glucosamine.
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides
Hasegawa, Yuki; Novita, Ira S.; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-01-01
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite. Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO4, which is used as a fouling inhibitor (EC50 = 0.27 μg/mL). PMID:28661419
Total mortality risk in relation to use of less-common dietary supplements123
Pocobelli, Gaia; Kristal, Alan R; Patterson, Ruth E; Potter, John D; Lampe, Johanna W; Kolar, Ann; Evans, Ilonka; White, Emily
2010-01-01
Background: Dietary supplement use is common in older US adults; however, data on health risks and benefits are lacking for a number of supplements. Objective: We evaluated whether 10-y average intakes of 13 vitamin and mineral supplements and glucosamine, chondroitin, saw palmetto, Ginko biloba, garlic, fish-oil, and fiber supplements were associated with total mortality. Design: We conducted a prospective cohort study of Washington State residents aged 50–76 y during 2000–2002. Participants (n = 77,719) were followed for mortality for an average of 5 y. Results: A total of 3577 deaths occurred during 387,801 person-years of follow-up. None of the vitamin or mineral 10-y average intakes were associated with total mortality. Among the nonvitamin-nonmineral supplements, only glucosamine and chondroitin were associated with total mortality. The hazard ratio (HR) when persons with a high intake of supplements (≥4 d/wk for ≥3 y) were compared with nonusers was 0.83 (95% CI: 0.72, 0.97; P for trend = 0.009) for glucosamine and 0.83 (95% CI: 0.69, 1.00; P for trend = 0.011) for chondroitin. There was also a suggestion of a decreased risk of total mortality associated with a high intake of fish-oil supplements (HR: 0.83; 95% CI: 0.70, 1.00), but the test for trend was not statistically significant. Conclusions: For most of the supplements we examined, there was no association with total mortality. Use of glucosamine and use of chondroitin were each associated with decreased total mortality. PMID:20410091
Interaction between chitosan and its related enzymes: A review.
Shinya, Shoko; Fukamizo, Tamo
2017-11-01
Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p K a of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass. Copyright © 2017 Elsevier B.V. All rights reserved.
D-Glucosamine Conjugation Accelerates the Labeling Efficiency of Quantum Dots in Osteoblastic Cells
Xie, Ming-Fang
2014-01-01
Quantum dots (QDs) are useful imaging tools in the medical and biological fields due to their optical properties, such as a high fluorescence intensity, remarkable resistance to photobleaching, broad absorption spectra, and narrow emission spectra. This is the first study to investigate the uptake of carboxylated QDs conjugated with D-glucosamine (core size: approximately 3 nm, final modified size: 20–30 nm) into cultured osteoblastic cells. The QDs attached to the cell surface and were transported into the cytoplasm within approximately three hours of culture, whose process was clearly demonstrated using specific fluorescent staining of the cell membrane. Although the intranuclear distribution was not observed, a dramatic decrease in the transfer of quantum dots into the cytoplasm was recognized after approximately seven days of culture. Other interesting phenomena include the escape of the quantum dots from lysosomes in the cytoplasm, as confirmed by the merging of both QD fluorescence and specific fluorescent staining of lysosomes in the cytoplasm. These findings suggest that D-glucosamine conjugation enhances proton absorption in acid organelles and promotes the lysosomal escape of QDs. PMID:24818156
Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu
2011-06-13
N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.
Porcheron, P; Morinière, M; Coudouel, N; Oberlander, H
1991-01-01
Hormone-regulated processing of N-acetyl-D-glucosamine was studied in an insect cell line derived from imaginal wing discs of the Indian meal moth, Plodia interpunctella (Hübner). The cell line, IAL-PID2, responded to treatment with 20-hydroxyecdysone with increased incorporation of GlcNAc into glycoproteins. Cycloheximide and tunicamycin counteracted the action of the hormone. In particular, treatment with 20-hydroxyecdysone resulted in the secretion of a 5,000 dalton N-acetyl-D-glucosamine-rich glycopeptide by the IAL-PID2 cells. Accumulation of this peptide was prevented by the use of teflubenzuron, a potent chitin synthesis inhibitor. A glycopeptide of similar molecular weight was observed in imaginal discs of P. interpunctella treated with 20-hydroxyecdysone in vitro, under conditions that induce chitin synthesis. Although the function of the 5,000 dalton glycopeptide is not known, we believe that the PID2 cell line is a promising model for molecular analysis of ecdysteroid-regulated processing of aminosugars by epidermal cells during insect development.
Chan, Yau Sang; Xia, Lixin; Ng, Tzi Bun
2015-01-01
A lectin exhibiting antiproliferative activity on tumor cell lines but devoid of antifungal activity has been purified from Phaseolus vulgaris cv. Green Dragon no. 8 seeds. The lectin was a 60 kDa dimeric protein with two 30 kDa subunits. It was a glucosamine-specific lectin as implied from the inhibitory effect of glucosamine on hemagglutinating activity of the lectin. The steps for isolation of the lectin involved Affi-gel blue gel (affinity gel), Mono Q (anion exchanger), and Superdex 75 column (size exclusion). The lectin was purified 20.8-fold from the crude extract of the beans. The purified lectin showed antiproliferative activity on breast cancer MCF7 cell line and nasopharyngeal cancer HONE1 and CNE2 cell lines, but a low activity on normal skin fibroblast HSF98 cell line. The lectin was shown to induce apoptosis on HONE1 cells, as indicated by increased phosphatidylserine externalization and mitochondrial depolarization. It also blocked HONE1 cell division and kept the cells at the G2/M phase of the cell cycle. PMID:26290674
Pawar, Smita; Shevalkar, Ganesh; Vavia, Pradeep
2016-09-01
Efficacy of anticancer drug is limited due to non-selectivity and toxicities allied with the drug; therefore the heart of the present work is to formulate drug delivery systems targeted selectively towards cancer cells with minimal toxicity to normal cells. Targeted drug delivery system of doxorubicin (DOX)-loaded niosomes using synthesized N-lauryl glucosamine (NLG) as a targeting ligand. NLG-anchored DOX niosomes were developed using ethanol injection method. Developed niosomes had particle size <150 nm and high entrapment efficiency ∼90%. In vivo pharmacokinetics exhibited long circulating nature of targeted niosomes with improved bioavailability, which significantly reduced CL and Vd than DOX solution and non-targeted niosomes (35 fold and 2.5 fold, respectively). Tissue-distribution study and enzymatic assays revealed higher concentration of DOX solution in heart while no toxicity to major organs with developed targeted niosomes was observed. Solid skin melanoma tumor model in mice manifested the commendable targeting potential of targeted niosomes with significant reduction in tumor volume and high % survival rate without drop in body weight in comparison with DOX solution and non-targeted niosomes of DOX. The glucosamine-anchored DOX-loaded targeted niosomes showed its potential in cancer targeted drug therapy with reduced toxicity. Abbreviations ALT alanine transaminase CL clearance CPK creatinine phosphokinase DOX doxorubicin EDC.HCL ethyl carbidimide hydrochloride GLUT glucose transporter GSH glutathione S-transferase LDH lactate dehydrogenase LHRH luteinizing hormone-releasing hormone MDA malonaldehyde NHS N-hydroxy succinimide NLG N-lauryl glucosamine NTAR DoxNio non-targeted doxorubicin niosomes PBS phosphate buffer saline RGD argynyl glycyl aspartic acid SGOT serum glutamate oxaloacetate transaminase SGPT serum glutamate pyruvate transaminase SOD superoxide dismutase TAR DoxNio targeted doxorubicin niosomes Vd volume of distribution.
Maira-Litran, Tomas; Kropec, Andrea; Goldmann, Donald; Pier, Gerald B
2004-02-17
Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) and Staphylococcus aureus carry the ica locus which encodes proteins that synthesize a polymer of beta-1-6 linked N-acetyl glucosamine residues (PNAG). Animal studies have shown purified PNAG can elicit protective immunity against both CoNS and S. aureus, suggesting its potential as a broadly protective vaccine for many clinically important strains of staphylococci.
VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP A STREPTOCOCCI
McCarty, Maclyn
1956-01-01
Soil organisms have been isolated which elaborate induced enzymes capable of attacking group A and variant (V) streptococcal carbohydrates. The V enzyme hydrolyzes V carbohydrate extensively to dialyzable split products with resultant total loss of precipitating activity with homologous antisera. The split products inhibit the reaction between intact V carbohydrate and its antiserum: evidence is presented which indicates that rhamnose oligosaccharides are responsible for the inhibitory effect. The serological specificity of the V carbohydrate thus appears to be primarily dependent on a rhamnose-rhamnose linkage. The effect of the A enzyme on A carbohydrate is characterized by the removal of 50 to 70 per cent of the total glucosamine in the form of free N-acetyl-glucosamine. As a result of this treatment, the residual carbohydrate loses its reactivity with specific group A antisera and at the same time develops markedly increased cross-reactivity with V antisera. This cross-reactivity is in turn eliminated by treatment with V enzyme. The evidence suggests that the specificity of group A carbohydrate is determined to a large extent by side chains of N-acetyl-glucosamine which also serve to mask underlying rhamnose-rhamnose linkages with V specificity. PMID:13367334
Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen
2017-04-10
Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Esen, Emin; Tatli, Ufuk
2015-01-01
Background The aim of the present study was to evaluate the effects of glucosamine-chondroitin sulphate combination on internal derangements of temporomandibular joint in clinical and biochemical manners. Material and Methods This randomized clinical study included 31 cases reporting joint tenderness, in which disc displacement was detected on MR imaging. In all patients, synovial fluid sampling was performed under local anesthesia. In the study group, the patients were prescribed a combination of 1500 mg glucosamine and 1200 mg chondroitin sulphate, while patients in the control group were only prescribed 50 mg tramadol HCl (twice daily) for pain control. After 8 weeks, synovial fluid sampling was repeated in the same manner. The levels of pain, maximum mouth opening (MMO), synovial fluid IL-1ß, IL-6, TNF-α and PGE2 measured before and after pharmacological intervention were compared. Results The reduction in pain levels was significant in both groups. There was no significant difference between two groups in terms of pain reduction. The improvement in MMO was significant in the study group but it was not in the control group. The MMO improvement was significantly higher in the study group compared to the control group. In the study group, significant decrease was observed in PGE2 level, while the decreases in IL-1β, IL-6 and TNF-α levels were not significant. In the control group, no significant decrease was observed in any of the inflammatory cytokines after 8 weeks, moreover IL-1ß and IL-6 levels were increased. Alterations of IL-1ß and IL-6 levels were significant in study group while TNF-α and PGE2 levels were not, compared to control group. Conclusions In conclusion, these results might suggest that glucosamine-chondroitin combination significantly increases the MMO and decreases the synovial fluid IL1β and IL6 levels in internal derangements of TMJ compared to tramadol. The modifications of synovial fluid TNF-α and PGE2 levels do not reach statistical significance. This combination also provides efficient pain relief in similar level with tramadol, a narcotic analgesic. Key words: Chondroitin sulphate, glucosamine, internal derangement, TMJ, tramadol. PMID:25662545
D'Onofrio, A; Copey, L; Jean-Gérard, L; Goux-Henry, C; Pilet, G; Andrioletti, B; Framery, E
2015-09-14
D-Glucosamine was successfully employed as a chiral auxiliary for the enantioselective synthesis of phosphine oxides. The influence of the anomeric position was also investigated and revealed the excellent ability of the α-anomer to perform this transformation in a highly selective fashion. The methodology employed consisted of three steps: diastereoselective formation of the oxazaphospholidine followed by subsequent selective cleavage of P-N and P-O bonds by reaction with two Grignard reagents. P-epimers oxazaphospholidines were prepared switching from a P(v) to a P(III) precursor, thus allowing for the synthesis of enantiomeric phosphine oxides. In addition, the chiral auxiliary could be recovered and efficiently recycled.
Osaki, Tomohiro; Azuma, Kazuo; Kurozumi, Seiji; Takamori, Yoshimori; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Minami, Saburo
2012-01-01
D-Glucosamine hydrochloride (GlcN∙HCl) is an endogenous amino monosaccharide synthesized from glucose that is useful in the treatment of joint diseases in both humans and animals. The aim of this study was to examine amino acid metabolism in dogs after oral administration of GlcN∙HCl. Accelerated fumarate respiration and elevated plasma levels of lactic acid and alanine were observed after administration. These results suggest that oral administration of GlcN∙HCl induces anaerobic respiration and starvation in cells, and we hypothesize that these conditions promote cartilage regeneration. Further studies are required to evaluate the expression of transforming growth factor-beta (TGF-β). PMID:23015778
Green, Oluyinka M; McKenzie, Andrew R; Shapiro, Adam B; Otterbein, Ludovic; Ni, Haihong; Patten, Arthur; Stokes, Suzanne; Albert, Robert; Kawatkar, Sameer; Breed, Jason
2012-02-15
A novel arylsulfonamide-containing series of compounds represented by 1, discovered by highthroughput screening, inhibit the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). X-ray structure determination confirmed that inhibitor binds at the site occupied by acetyl-CoA, indicating that series is competitive with this substrate. This letter documents our early hit-to-lead evaluation of the chemical series and some of the findings that led to improvement in in-vitro potency against Gram-negative and Gram-positive bacterial isozymes, exemplified by compound 40. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.
Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram
2015-07-22
The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.
Valizadeh, Hadi; Pourmahmood, Mohammad; Mojarrad, Javid Shahbazi; Nemati, Mahboob; Zakeri-Milani, Parvin
2009-04-01
The objective of this study was to forecast and optimize the glucosamine production yield from chitin (obtained from Persian Gulf shrimp) by means of genetic algorithm (GA), particle swarm optimization (PSO), and artificial neural networks (ANNs) as tools of artificial intelligence methods. Three factors (acid concentration, acid solution to chitin ratio, and reaction time) were used as the input parameters of the models investigated. According to the obtained results, the production yield of glucosamine hydrochloride depends linearly on acid concentration, acid solution to solid ratio, and time and also the cross-product of acid concentration and time and the cross-product of solids to acid solution ratio and time. The production yield significantly increased with an increase of acid concentration, acid solution ratio, and reaction time. The production yield is inversely related to the cross-product of acid concentration and time. It means that at high acid concentrations, the longer reaction times give lower production yields. The results revealed that the average percent error (PE) for prediction of production yield by GA, PSO, and ANN are 6.84, 7.11, and 5.49%, respectively. Considering the low PE, it might be concluded that these models have a good predictive power in the studied range of variables and they have the ability of generalization to unknown cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bueren, A.; Ghinet, M; Gregg, K
2009-01-01
Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with ?-galactosidase activity (Escherichia coli LacZ), ?-glucuronidase activity (Homo sapiens GusB), and ?-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-?-d-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural ?-1,4-d-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-?-d-glucosaminide synthetic substrate provide insight into interactions in the + 1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammerts van Bueren, A.; Ghinet, M; Gregg, K
2009-01-01
Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less
Ibáñez-Sanz, Gemma; Díez-Villanueva, Anna; Vilorio-Marqués, Laura; Gracia, Esther; Aragonés, Nuria; Olmedo-Requena, Rocío; Llorca, Javier; Vidán, Juana; Amiano, Pilar; Nos, Pilar; Fernández-Tardón, Guillermo; Rada, Ricardo; Chirlaque, María Dolores; Guinó, Elisabet; Dávila-Batista, Verónica; Castaño-Vinyals, Gemma; Pérez-Gómez, Beatriz; Mirón-Pozo, Benito; Dierssen-Sotos, Trinidad; Etxeberria, Jaione; Molinuevo, Amaia; Álvarez-Cuenllas, Begoña; Kogevinas, Manolis; Pollán, Marina; Moreno, Victor
2018-02-01
A safe and effective colorectal cancer (CRC) chemoprevention agent remains to be discovered. We aim to evaluate the association between the use of glucosamine and/or chondroitin sulphate and risk of colorectal cancer (CRC) in the MCC-Spain study, a case-control study performed in Spain that included 2140 cases of CRC and 3950 population controls. Subjects were interviewed on sociodemographic factors, lifestyle, family and medical history and regular drug use. Adjusted odds ratios and their 95% confidence intervals were estimated. The reported frequency of chondroitin and/or glucosamine use was 2.03% in controls and 0.89% in cases. Users had a reduced risk of CRC (OR: 0.47; 95% CI: 0.28-0.79), but it was no longer significant when adjusted for NSAID (nonsteroidal anti-inflammatory drugs) use (OR: 0.82; 95% CI: 0.47-1.40). A meta-analysis with previous studies suggested a protective effect, overall and stratified by NSAID use (OR: 0.77; 95% CI: 0.62-0.97). We have not found strong evidence of an independent preventive effect of CG on CRC in our population because the observed effects of our study could be attributed to NSAIDs concurrent use. These results merit further research due to the safety profile of these drugs.
Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng
2018-04-01
Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.
Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos
2016-04-01
Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.
Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena
2012-04-01
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.
... in combination with chondroitin sulfate, glucosamine sulfate, and camphor reportedly reduce arthritis symptoms. However, any symptom relief is most likely due to the effect of camphor and not the other ingredients. Additionally, there is ...
Chiu, N H; Bruszewski, W B; Salzman, N P
1980-01-01
Simian Virus-40 infected BSC-1 cells were pretreated with glucosamine and briefly pulsed with [3H]-uridine. The labeling can be halted instantaneously by the addition of cold uridine and glucosamine. Under these pulse-chase conditions, the inhibitory effects of the intercalating agent proflavine on the processing of prelabeled nuclear RNA precursors were examined in vivo. Proflavine inhibits the cleavage of viral nuclear RNA precursors. However, turnover of the mature viral mRNAs in the cytoplasm is not inhibited. The effect of proflavine on processing is not a secondary consequence of its inhibition of protein synthesis. The data suggest that base-paired secondary structures in the primary transcripts are important processing signals in the generation of viral mRNA molecules. Images PMID:6243778
NASA Astrophysics Data System (ADS)
Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.
1989-03-01
The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.
Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs
Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu
2015-01-01
N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626
Medicines, injections, and supplements for arthritis
The body naturally makes both glucosamine and chondroitin sulfate. They are important for healthy cartilage in your joints. These two substances come in supplement form and can be bought over-the-counter. ...
... from several varieties of the willow tree, including white willow or European willow, black willow or pussy willow, ... taking a specific product containing glucosamine sulfate, methylsufonlylmethane, white willow bark extract, ginger root concentrate, boswellia extract, turmeric ...
NASA Astrophysics Data System (ADS)
Mangunuru, Hari Prasad Reddy
Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic transformations is a very important research goal in modern synthetic organic chemistry. We have synthesized a new class of chiral oxathiozinone from chiral amino phenol. From this synthesized chiral sulfinamides, ketimines followed by reducing the ketimines synthesized the highly hindered chiral amines. *Please refer to dissertation for diagrams.
Söderlund, G; Kihlström, E
1983-01-01
The kinetics of attachment and ingestion of Chlamydia trachomatis serotype L1 by monolayers of McCoy cells were studied by using a method that discriminated between attachment and uptake. When about 1% of the McCoy cells was infected, the proteinase K-resistant chlamydial fraction, regarded as ingested chlamydiae, reached a constant value after about 3 h of incubation at 37 degrees C. Uptake of chlamydiae at 4 degrees C could not be demonstrated. The attached and ingested chlamydial fractions were constant over an eightfold increase in chlamydial inoculum. Chitobiose and chitotriose, the di- and trisaccharides of N-acetyl-D-glucosamine, reduced the association of C. trachomatis serotype L1 with McCoy cells. Higher concentrations of chitobiose also selectively inhibited ingestion of chlamydiae. A corresponding effect of chitobiose was also observed on the number of chlamydial inclusions. Wheat germ agglutinin, specific for N-acetyl-D-glucosamine residues, reduced the association of chlamydiae when incubated at 4 degrees C, but not at 37 degrees C. A small inhibiting effect of concanavalin A on association of chlamydiae, but no effect of the corresponding carbohydrates, indicates a nonspecific effect on chlamydial attachment of this lectin. These results suggest that beta 1 leads to 4-linked oligomers of N-acetyl-D-glucosamine are important in the specificity of attachment of C. trachomatis to McCoy cells. PMID:6642670
Pawar, Smita; Mahajan, Ketan; Vavia, Pradeep
2017-11-01
A novel polymer-drug conjugate, polyethylene glycol-N-(acetyl)-glucosamine-doxorubicin (PEG-NAG-DOX) was evaluated in this study for its in vivo potential for treatment of tumours demonstrating improved efficacy and reduced toxicity. The proposed polymer-drug conjugate comprised of polyethylene glycol-maleimide (mPEG-MAL, 30000 Da) as a carrier, doxorubicin (DOX) as an anticancer drug and N-acetyl glucosamine (NAG) as a targeting moiety as well as penetration enhancer. Doxorubicin has a potent and promising anticancer activity; however, severe cardiotoxicity limits its application in cancer treatment. By modifying DOX in PEG-NAG-DOX prodrug conjugate, we aimed to eliminate this limitation. In vivo anticancer efficacy of the conjugate was evaluated using BDF mice-induced skin melanoma model by i.v. administration of DOX conjugates. Anticancer efficacy studies were done by comparing tumour volume, body weight, organ index and percent survival rate of the animals. Tumour suppression achieved by PEG-NAG-DOX at the cumulative dose of 7.5 mg/kg was two-fold better than that achieved by DOX solution. Also, the survival rate for PEG-NAG-DOX conjugate was >70% as compared to <50% survival rate for DOX solution. In addition, toxicity studies and histopathological studies revealed that while maintaining its cytotoxicity towards tumour cells, PEG-NAG-DOX conjugate showed no toxicities to major organs. Therefore, PEG-NAG-DOX conjugate can be suggested as a desirable candidate for targeted cancer therapy.
Yang, Jie; Hu, Wei; Li, Huirong; Hou, Hanna; Tu, Yi; Liu, Bo
2018-04-18
Two-photon microscopy imaging has been widely applied in biological imaging, but the development of two-photon absorption probes is obviously lagging behind in the development of imaging technology. In this paper, a two-photon fluorescent probe (1) based on pyrimidine 2-isothiocyanate has been designed and synthesized through a simple method for two-photon biological imaging. Probe 1 was able to couple effectively with the amino groups on biomolecules. To verify the reactivity of the isothiocyanate group on probe 1 and the amine groups on the biomolecules, d-glucosamine was chosen as a model biomolecule to conjugate with probe 1. The result showed that probe 1 could effectively conjugate with d-glucosamine to synthesize probe 2, and the yield of probe 2 was 83%. After conjugating with d-glucosamine, linear absorption spectra, single-photon fluorescence spectra, and two-photon fluorescence spectra of probes 1 and 2 did not present significant changes. Probes 1 and 2 exhibited high fluorescence quantum yields (0.71-0.79) in toluene and chloroform. They also exhibited different photo-physical properties in solvents with different polarities. The two-photon absorption cross-section of probe 1 was 953 GM in toluene. In addition, probe 1 could be effectively conjugated with transferrin, and the conjugated probe (Tf-1) could be transported into Hep G2 cells through a receptor-mediated process for biological imaging. These results demonstrate that such probes are expected to have great potential applications in two-photon fluorescence bioimaging.
Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L.
2011-01-01
Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tetr; named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species. PMID:21655093
Yadav, Vikas; Panilaitis, Bruce; Shi, Hai; Numuta, Keiji; Lee, Kyongbum; Kaplan, David L
2011-01-01
Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tet(r); named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G. xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally, G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other related bacterial species.
Dadashipour, Mohammad; Iwamoto, Mariko; Hossain, Mohammad Murad; Akutsu, Jun-Ichi; Zhang, Zilian; Kawarabayasi, Yutaka
2018-05-15
Most organisms, from Bacteria to Eukarya , synthesize UDP- N -acetylglucosamine (UDP-GlcNAc) from fructose-6-phosphate via a four-step reaction, and UDP- N -acetylgalactosamine (UDP-GalNAc) can only be synthesized from UDP-GlcNAc by UDP-GlcNAc 4-epimerase. In Archaea , the bacterial-type UDP-GlcNAc biosynthetic pathway was reported for Methanococcales. However, the complete biosynthetic pathways for UDP-GlcNAc and UDP-GalNAc present in one archaeal species are unidentified. Previous experimental analyses on enzymatic activities of the ST0452 protein, identified from the thermophilic crenarchaeon Sulfolobus tokodaii , predicted the presence of both a bacterial-type UDP-GlcNAc and an independent UDP-GalNAc biosynthetic pathway in this archaeon. In the present work, functional analyses revealed that the recombinant ST2186 protein possessed an glutamine:fructose-6-phosphate amidotransferase activity and that the recombinant ST0242 protein possessed a phosphoglucosamine-mutase activity. Along with the acetyltransferase and uridyltransferase activities of the ST0452 protein, the activities of the ST2186 and ST0242 proteins confirmed the presence of a bacterial-type UDP-GlcNAc biosynthetic pathway in S. tokodaii In contrast, the UDP-GlcNAc 4-epimerase homologue gene was not detected within the genomic data. Thus, it was expected that galactosamine-1-phosphate or galactosamine-6-phosphate (GalN-6-P) was provided by conversion of glucosamine-1-phosphate or glucosamine-6-phosphate (GlcN-6-P). A novel epimerase converting GlcN-6-P to GalN-6-P was detected in a cell extract of S. tokodaii , and the N-terminal sequence of the purified protein indicated that the novel epimerase was encoded by the ST2245 gene. Along with the ST0242 phosphogalactosamine-mutase activity, this observation confirmed the presence of a novel UDP-GalNAc biosynthetic pathway from GlcN-6-P in S. tokodaii Discovery of the novel pathway provides a new insight into the evolution of nucleotide sugar metabolic pathways. IMPORTANCE In this work, a novel protein capable of directly converting glucosamine-6-phosphate to galactosamine-6-phosphate was successfully purified from a cell extract of the thermophilic crenarchaeon Sulfolobus tokodaii Confirmation of this novel activity using the recombinant protein indicates that S. tokodaii possesses a novel UDP-GalNAc biosynthetic pathway derived from glucosamine-6-phosphate. The distributions of this and related genes indicate the presence of three different types of UDP-GalNAc biosynthetic pathways: a direct pathway using a novel enzyme and two conversion pathways from UDP-GlcNAc using known enzymes. Additionally, Crenarchaeota species lacking all three pathways were found, predicting the presence of one more unknown pathway. Identification of these novel proteins and pathways provides important insights into the evolution of nucleotide sugar biosynthesis, as well as being potentially important industrially. Copyright © 2018 American Society for Microbiology.
Deuchi, K; Kanauchi, O; Shizukuishi, M; Kobayashi, E
1995-07-01
We investigated the effects of continuous and massive intake of chitosan with sodium ascorbate (AsN) on the mineral and the fat-soluble vitamin status in male Sprague-Dawley rats fed on a high-fat diet. The apparent fat digestibility in the chitosan-receiving group was significantly lower than that in the cellulose- or glucosamine-receiving group. Chitosan feeding for 2 weeks caused a decrease in mineral absorption and bone mineral content, and it was necessary to administer twice the amount of Ca in the AIN-76 formula, which was supplemented with AsN, to prevent such a decrease in the bone mineral content. Moreover, the ingestion of chitosan along with AsN led to a marked and rapid decrease in the serum vitamin E level, while such a loss in vitamin E was not observed for rats given glucosamine monomer instead of chitosan.
Complementary and alternative medicine use in dermatology in the United States.
Landis, Erin T; Davis, Scott A; Feldman, Steven R; Taylor, Sarah
2014-05-01
Complementary and alternative medicine (CAM) has an increasing presence in dermatology. Complementary therapies have been studied in many skin diseases, including atopic dermatitis and psoriasis. This study sought to assess oral CAM use in dermatology relative to medicine as a whole in the United States, using the National Ambulatory Medical Care Survey. Variables studied include patient demographic characteristics, diagnoses, and CAM documented at the visits. A brief literature review of the top 5 CAM treatments unique to dermatology visits was performed. Most CAM users in both dermatology and medicine as a whole were female and white and were insured with private insurance or Medicare. Fish oil, glucosamine, glucosamine chondroitin, and omega-3 were the most common complementary supplements used in both samples. CAM use in dermatology appears to be part of a larger trend in medicine. Knowledge of common complementary therapies can help dermatologists navigate this expanding field.
Complementary and Alternative Medicine Use in Dermatology in the United States
Landis, Erin T.; Davis, Scott A.; Taylor, Sarah
2014-01-01
Abstract Background: Complementary and alternative medicine (CAM) has an increasing presence in dermatology. Complementary therapies have been studied in many skin diseases, including atopic dermatitis and psoriasis. Objectives: This study sought to assess oral CAM use in dermatology relative to medicine as a whole in the United States, using the National Ambulatory Medical Care Survey. Design: Variables studied include patient demographic characteristics, diagnoses, and CAM documented at the visits. A brief literature review of the top 5 CAM treatments unique to dermatology visits was performed. Results: Most CAM users in both dermatology and medicine as a whole were female and white and were insured with private insurance or Medicare. Fish oil, glucosamine, glucosamine chondroitin, and omega-3 were the most common complementary supplements used in both samples. Conclusions: CAM use in dermatology appears to be part of a larger trend in medicine. Knowledge of common complementary therapies can help dermatologists navigate this expanding field. PMID:24517329
Hayes, Maria; Carney, Brian; Slater, John; Brück, Wolfram
2008-07-01
Legal restrictions, high costs and environmental problems regarding the disposal of marine processing wastes have led to amplified interest in biotechnology research concerning the identification and extraction of additional high grade, low-volume by-products produced from shellfish waste treatments. Shellfish waste consisting of crustacean exoskeletons is currently the main source of biomass for chitin production. Chitin is a polysaccharide composed of N-acetyl-D-glucosamine units and the multidimensional utilization of chitin derivatives including chitosan, a deacetylated derivative of chitin, is due to a number of characteristics including: their polyelectrolyte and cationic nature, the presence of reactive groups, high adsorption capacities, bacteriostatic and fungistatic influences, making them very versatile biomolecules. Part A of this review aims to consolidate useful information concerning the methods used to extract and characterize chitin, chitosan and glucosamine obtained through industrial, microbial and enzymatic hydrolysis of shellfish waste.
Chun, Honggu; Dennis, Patty J; Ferguson Welch, Erin R; Alarie, Jean Pierre; Jorgenson, James W; Ramsey, J Michael
2017-11-10
The development and application of polyelectrolytic gel electrodes (PGEs) for a microfluidic photothermal absorbance detection system is described. The PGEs are used to measure changes in conductivity based on heat generation by analytes absorbing light and changing the solution viscosity. The PGEs are suitable for direct contact conductivity measurements since they do not degrade with exposure to high electric fields. Both a 2-electrode system with DC voltages and a 3-electrode system with AC voltages were investigated. Experimental factors including excitation voltage, excitation frequency, laser modulation frequency, laser power, and path length were tested. The limits of detection for the 3-electrode and 2-electrode systems are 500nM and 0.55nM for DABSYL-tagged glucosamine, respectively. In addition, an electrokinetic separation of a potassium, DABSYL-tagged glucosamine, Rhodamine 6G, and Rhodamine B mixture was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Gökçen, Anke; Vilcinskas, Andreas; Wiesner, Jochen
2013-01-01
The production of extracellular poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by Staphylococcus epidermidis is the principal determinant of biofilm formation on indwelling medical devices. Enzymes that degrade PNAG therefore provide an attractive strategy for biofilm removal and for the manufacture of biofilm-resistant coatings. Here we present methods that allow the identification of PNAG-degrading enzymes with the ability to detach biofilms. Our protocol includes the preparation of soluble PNAG from S. epidermidis cultures, the incubation of soluble PNAG with candidate enzymes and assays that detect the release of N-acetyl-d-glucosamine using high-pH anion-exchange chromatography (HPAEC) followed in parallel by pulsed amperometric detection (PAD) and online electrospray ionization mass spectrometry (ESI-MS). We validated our procedures using dispersin B, which is currently the only known PNAG-degrading enzyme. PMID:23357872
Miszkiel, Aleksandra; Wojciechowski, Marek
2017-11-01
Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5' diphospho N-acetyl-d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn't reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme's physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme's substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng
2014-09-01
The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... Initial Determination Granting a Joint Motion To Terminate The Investigation as to Respondent Ethical...) granting a joint motion to terminate the investigation as to respondent Ethical Naturals, Inc. from the...
Depauw, S; Bosch, G; Hesta, M; Whitehouse-Tedd, K; Hendriks, W H; Kaandorp, J; Janssens, G P J
2012-08-01
The natural diet of felids contains highly digestible animal tissues but also fractions resistant to small intestinal digestion, which enter the large intestine where they may be fermented by the resident microbial population. Little information exists on the microbial degradability of animal tissues in the large intestine of felids consuming a natural diet. This study aimed to rank animal substrates in their microbial degradability by means of an in vitro study using captive cheetahs fed a strict carnivorous diet as fecal donors. Fresh cheetah fecal samples were collected, pooled, and incubated with various raw animal substrates (chicken cartilage, collagen, glucosamine-chondroitin, glucosamine, rabbit bone, rabbit hair, and rabbit skin; 4 replicates per substrate) for cumulative gas production measurement in a batch culture technique. Negative (cellulose) and positive (casein and fructo-oligosaccharides; FOS) controls were incorporated in the study. Additionally, after 72 h of incubation, short-chain fatty acids (SCFA), including branched-chain fatty acids (BCFA), and ammonia concentrations were determined for each substrate. Glucosamine and glucosamine-chondroitin yielded the greatest organic matter cumulative gas volume (OMCV) among animal substrates (P < 0.05), whereas total SCFA production was greatest for collagen (P < 0.05). Collagen induced an acetate production comparable with FOS and a markedly high acetate-to-propionate ratio (8.41:1) compared with all other substrates (1.67:1 to 2.97:1). Chicken cartilage was rapidly fermentable, indicated by a greater maximal rate of gas production (R(max)) compared with all other substrates (P < 0.05). In general, animal substrates showed an earlier occurrence for maximal gas production rate compared with FOS. Rabbit hair, skin, and bone were poorly fermentable substrates, indicated by the least amount of OMCV and total SCFA among animal substrates (P < 0.05). The greatest amount of ammonia production among animal substrates was measured after incubation of collagen and rabbit bone (P < 0.05). This study provides the first insight into the potential of animal tissues to influence large intestinal fermentation in a strict carnivore, and indicates that animal tissues have potentially similar functions as soluble or insoluble plant fibers in vitro. Further research is warranted to assess the impact of fermentation of each type of animal tissue on gastro-intestinal function and health in the cheetah and other felid species.
Time to Talk: 6 Things You Should Know about Dietary Supplements for Osteoarthritis
... Y Z 6 Things You Should Know About Dietary Supplements for Osteoarthritis Share: Osteoarthritis is the most common ... hormones). Many people with OA report trying various dietary supplements, including glucosamine and chondroitin, alone or in combination, ...
Glucosamine: Can It Worsen Gout Symptoms?
... in joints. Gout is caused by deposits of uric acid crystals in a joint. Uric acid is a waste product formed from the breakdown ... contain purines, it isn't likely to increase uric acid levels or aggravate gout symptoms. Likewise, there's no ...
Complementary and Alternative Medicine (CAM): NCCAM Timeline—A Decade of Progress
... knee and serves as an effective complement to standard care. February 2006 - Research shows that the popular dietary supplement combination of glucosamine plus chondroitin sulfate did not provide significant relief from osteoarthritis among all participants but did relieve moderate-to- ...
Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation.
Hrynets, Yuliya; Ndagijimana, Maurice; Betti, Mirko
2015-01-01
The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.
Wang, L; Lazebnik, M; Detamore, M S
2009-03-01
To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.
Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch.
Fei, Xiang; Holmes, Thomas; Diddle, Julianna; Hintz, Lauren; Delaney, Dan; Stock, Alex; Renner, Danielle; McDevitt, Molly; Berkowitz, David B; Soukup, Juliane K
2014-12-19
The glmS riboswitch is unique among gene-regulating riboswitches and catalytic RNAs. This is because its own metabolite, glucosamine-6-phosphate (GlcN6P), binds to the riboswitch and catalytically participates in the RNA self-cleavage reaction, thereby providing a novel negative feedback mechanism. Given that a number of pathogens harbor the glmS riboswitch, artificial actuators of this potential RNA target are of great interest. Structural/kinetic studies point to the 2-amino and 6-phosphate ester functionalities in GlcN6P as being crucial for this actuation. As a first step toward developing artificial actuators, we have synthesized a series of nine GlcN6P analogs bearing phosphatase-inert surrogates in place of the natural phosphate ester. Self-cleavage assays with the Bacillus cereus glmS riboswitch give a broad SAR. Two analogs display significant activity, namely, the 6-deoxy-6-phosphonomethyl analog (5) and the 6-O-malonyl ether (13). Kinetic profiles show a 22-fold and a 27-fold higher catalytic efficiency, respectively, for these analogs vs glucosamine (GlcN). Given their nonhydrolyzable phosphate surrogate functionalities, these analogs are arguably the most robust artificial glmS riboswitch actuators yet reported. Interestingly, the malonyl ether (13, extra O atom) is much more effective than the simple malonate (17), and the "sterically true" phosphonate (5) is far superior to the chain-truncated (7) or chain-extended (11) analogs, suggesting that positioning via Mg coordination is important for activity. Docking results are consistent with this view. Indeed, the viability of the phosphonate and 6-O-malonyl ether mimics of GlcN6P points to a potential new strategy for artificial actuation of the glmS riboswitch in a biological setting, wherein phosphatase-resistance is paramount.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T.; Weintraub, B.D.
1985-04-01
The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less
Tsai, Wanchi; Tsai, Huifang; Wong, Yinuan; Hong, Juiyen; Chang, Shwujen; Lee, Mingwei
2018-01-01
To administer cancer drugs with improved convenience to patients and to enhance the bioavailability of cancer drugs for oral cancer therapy, this study prepared gellan gum/glucosamine/clioquinol (GG/GS/CQ) film as the oral cancer treatment patch. GG/GS/CQ film fabricated through the EDC-mediated coupling reactions (GG/GS/CQ/EDC film). The film of the physicochemical properties and drug release kinetics were studied. The effectiveness of GG/GS/CQ/EDC film as oral cancer treatment patch were evaluated with the animal model. The results confirmed that CQ can be incorporated via EDC-mediated covalent conjugation to gellan gum/glucosamine. Mechanical testing revealed that the maximum tensile strength and elongation percentage at break were 1.91kgf/mm 2 and 5.01% for GG/GS/CQ/EDC film. After a drug release experiment lasting 45days, 86.8% of CQ was released from GG/GS/CQ/EDC film. The Huguchi model fit the GG/GS/CQ/EDC drug release data with high correlation coefficients (R 2 =0.9994, respectively). The effect of the CQ dose on oral cancer cells (OC-2) was tested, and the IC 50 of CQ alone and CQ with 10μM CuCl 2 were 9.59 and 2.22μM, respectively. The animal testing indicated that GG/GS/CQ/EDC film was decreased epidermal growth factor receptor (EGFR) expression and suppress tumor progression. These findings provide insights into a possible use for GG/GS/CQ/EDC film for oral ca in clinical practice. The GG/GS/CQ/EDC film is suitable as the dressing for use in the treatment of early-stage cancer or as wound care after surgery in late-stage of oral cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation
2015-01-01
The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure. PMID:26406447
Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deckert, T.; Horowitz, I.M.; Kofoed-Enevoldsen, A.
1991-06-01
The hypothesis of genetic defects in glycosaminoglycan (GAG) regulation among patients with insulin-dependent diabetes mellitus (IDDM) and nephropathy was assessed by studies in tissue cultures of fibroblasts obtained from 7 patients with normal urinary albumin excretion, 11 patients with diabetic nephropathy, and 6 nondiabetic control subjects. The incorporation of (2H) glucosamine and (35S) sulfate into hyaluronic acid (HA), chondroitin sulfate and dermatan sulfate (CS + DS), and heparan sulfate (HS) was measured in cells, matrix, and medium and related to micrograms of tissue protein. Large interindividual variations were seen in all three groups, and the incorporation of (3H) glucosamine intomore » HA, CS + DS, and HS and (35S) sulfate into CS + DS and HS were not significantly different between the three groups. However, the fractional incorporation of (3H)glucosamine into HS was significantly reduced in diabetic patients with nephropathy compared with control subjects. This was the case not only when related to the total amount of GAGs (P = 0.014) but also when related to HA (P = 0.014). No significant difference was seen between control subjects and normoalbuminuric diabetic patients. The degree of N-sulfation of HS was not significantly different between the experimental groups. The results suggest that patients with diabetic nephropathy may suffer from deficiencies of coordinate regulation in the biosynthesis of GAG in fibroblasts, which may lead to a reduced density of HS in the extracellular matrix. If these changes reflect alterations in the biosynthesis of GAG from endothelial, myomedial, and mesangial cells, this observation may be relevant for the pathogenesis of severe diabetic complications.« less
Proteomic Prediction of Breast Cancer Risk: A Cohort Study
2008-03-01
under denaturing conditions and its subsequent concentration on a C4 column (complete removal of guanidium hydrochloride was difficult and adversely... Glucosamine --fructose-6-phosphate aminotransferase [isomerizing] 2 (EC 2.6.1.16) (Hexoseph 216 (Q13415) Origin recognition complex subunit 1 (Replication
The biosynthesis of glycoconjugates from galactose in the human gastric mucous membrane.
Kopacz-Jodczyk, T; Zwierz, K; Gałasiński, W
1984-12-01
Pieces of human gastric mucosa were incubated with labeled galactose. The ratio of glucosamine-galactosamine radioactivity in human gastric glycoconjugates, after incubation of the tissue with labeled galactose, was similar to that of the two compounds after incubation with labeled glucose.
Nitrogen-doped mesoporous carbons for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Qiming
2016-08-01
The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.
A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine
Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Lourido, Lucía; Rocha, Beatriz; Fernández-Costa, Carolina; Montell, Eulalia; Vergés, Josep; Ruiz-Romero, Cristina; Blanco, Francisco J.
2014-01-01
Osteoarthritis (OA) is the most common age-related rheumatic disease. Chondrocytes play a primary role in mediating cartilage destruction and extracellular matrix (ECM) breakdown, which are main features of the OA joint. Quantitative proteomics technologies are demonstrating a very interesting power for studying the molecular effects of some drugs currently used to treat OA patients, such as chondroitin sulfate (CS) and glucosamine (GlcN). In this work, we employed the iTRAQ (isobaric tags for relative and absolute quantitation) technique to assess the effect of CS and GlcN, both alone and in combination, in modifying cartilage ECM metabolism by the analysis of OA chondrocytes secretome. 186 different proteins secreted by the treated OA chondrocytes were identified. 36 of them presented statistically significant differences (p ≤ 0.05) between untreated and treated samples: 32 were increased and 4 decreased. The synergistic chondroprotective effect of CS and GlcN, firstly reported by our group at the intracellular level, is now demonstrated also at the extracellular level. PMID:24912619
Han, In Hee; Choi, Sung-Up; Nam, Dae Young; Park, Young Mi; Kang, Myung Joo; Kang, Kyoung Hoon; Kim, Yong Min; Bae, Gunho; Oh, Il Young; Park, Jong Hyeok; Ye, Jin Soo; Choi, Yoon Bae; Kim, Duk Ki; Lee, Jaehwi; Choi, Young Wook
2010-02-01
As an initial step to develop the transdermal delivery system of glucosamine hydrochloride (GL-HCl), the permeation study across the rat skin in vitro was performed to identify the most efficient vehicle with regard to the ability to deliver GL-HCl transdermally. The GL-HCl formulations such as o/w cream, liposome suspension, liposomal gel, and liquid crystalline vehicles were prepared and compared for transdermal flux of GL-HCl. The liquid crystalline vehicles were more effective in increasing the skin permeation of GL-HCl than o/w cream and liposomal vehicles. Of the liquid crystalline vehicles tested, the permeation enhancing ability of the cubic phase was greater than that of the hexagonal phase when the nanoparticle dispersion was used. The skin permeation enhancing ability of the cubic nanoparticles for GL-HCl was further increased by employing both oleic acid and polyethylene glycol 200. Therefore, the cubic liquid crystalline nanodispersion containing oleic acid and PEG 200 can provide a possibility of clinical application of transdermal GL-HCl.
Rahman, Md Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G H; Sørlie, Morten; Tronsmo, Arne
2014-01-01
Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases.
Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne
2014-01-01
Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and F A (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723
Hong, Pui Khoon; Ndagijimana, Maurice; Betti, Mirko
2016-04-15
Salt reduction in food is a challenging task. The food processing sector has adopted taste enhancers to replace salt partially. In this study, a flavour enhancer formulation (liquid seasoning) was produced using enzymatically hydrolysed poultry proteins isolate (PPI). The PPI obtained through the isoelectric solubilisation precipitation process (ISP) was hydrolysed with Alcalase and glycated with glucosamine (GlcN) at moderate temperatures (37/50°C) in the presence or absence of transglutaminase (TGase). The glycated hydrolysates showed reduced fluorescence advanced glycated end-products (AGE) and a reduced amount of alpha-dicarbonyl compounds (α-DC). An untrained consumer panel ranked the meat protein hydrolysate seasoning saltier than the salty standard seasoning solution (p<0.05) regardless of GlcN glycation (both tested at 0.3M Na(+)). GlcN treatments showed a tendency (p=0.0593) to increase savouriness. Free glutamic acid and free aspartic acid found in the PPI hydrolysate likely increased the salty perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Peraza-Garay, Felipe; Castro-Del Campo, Nohelia; Martínez-Urtaza, Jaime; Chaidez, Cristóbal
2017-08-01
Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.
Pathogenesis of Septic Acute Lung Injury and Strategies for Immuno-Pharmacological Therapy.
1996-10-01
Model. Swine were pre anesthetized with intramuscular ketamine hydrochloride (25 mg/kg) and placed supine. Sodium pentobarbital (20-30 mg/kg) is then...covalently bound to a phosphorylated and acylated di- glucosamine disaccharide, designated lipid A. Lipid A remains highly conserved across diverse gram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk; Tohoku University School of Medicine, Sendai; Andres, MC de
Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OAmore » is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma-Aldrich), (iv) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 2 mM GlcN, (v) cultured with 1.0 {mu}M BAY 11-7082 (BAY; NF-kB inhibitor: Calbiochem, Darmstadt, Germany) and, (vi) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 1.0 {mu}M BAY. The levels of IL1B and MMP13 mRNA were examined using qRT-PCR. The percentage DNA methylation in the CpG sites of the IL1{beta} and MMP13 proximal promoter were quantified by pyrosequencing. Result:IL1{beta} expression was enhanced over 580-fold in articular chondrocytes treated with IL-1{beta} and OSM. GlcN dramatically ameliorated the cytokine-induced expression by 4-fold. BAY alone increased IL1{beta} expression by 3-fold. In the presence of BAY, IL-1{beta} induced IL1B mRNA levels were decreased by 6-fold. The observed average percentage methylation of the -256 CpG site in the IL1{beta} promoter was 65% in control cultures and decreased to 36% in the presence of IL-1{beta}/OSM. GlcN and BAY alone had a negligible effect on the methylation status of the IL1B promoter. The cytokine-induced loss of methylation status in the IL1B promoter was ameliorated by both GlcN and BAY to 44% and 53%, respectively. IL-1{beta}/OSM treatment increased MMP13 mRNA levels independently of either GlcN or BAY and no change in the methylation status of the MMP13 promoter was observed. Conclusion: We demonstrate for the first time that GlcN and BAY can prevent cytokine-induced demethylation of a specific CpG site in the IL1{beta} promoter and this was associated with decreased expression of IL1{beta}. These studies provide a potential mechanism of action for OA disease modifying agents via NF-kB and, critically, demonstrate the need for further studies to elucidate the role that NF-kB may play in DNA demethylation in human chondrocytes.« less
USDA-ARS?s Scientific Manuscript database
Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...
Novel Task Functionalized Biopolymers for Enhanced Change Detection in Support of C-IED Operations
2013-04-15
biopolymer was tested. All materials tested, PAM, chitin , the native biopolymer, and the MU conjugated biopolymer, were applied in small soil plots...phaseoli Strain 127 K36. Carbohydr. Res. 117, 141-156. EPA. 2001. Chitin ; Poly-N-acetyl-D-glucosamine (128991) Fact Sheet. USEPA Fact Sheet
Poly (Acetyl, Arginyl) Glucosamine as a Biofilm-reducing Water Line Treatment
USDA-ARS?s Scientific Manuscript database
Bacteria can attach and form biofilms on a surface hindering removal by common disinfectants. Some bacteria are better than others at forming this biofilm but once it is formed many pathogens can reside in the matrix. Salmonella spp. have been shown to have some biofilm forming capabilities but will...
Glucosamine:chondroitin or ginger root extract have little effect on articular cartilage in swine
USDA-ARS?s Scientific Manuscript database
Sows are culled at a high rate from breeding herds due to musclo-skeletal problems and lameness. Research in our laboratory has shown that even first-parity sows have significant amounts of osteochondritic lesions of their articular cartilage. Glusoamine chondroitin and ginger root extract have both...
Mariño, Karina; Güther, M. Lucia Sampaio; Wernimont, Amy K.; Qiu, Wei; Hui, Raymond; Ferguson, Michael A. J.
2011-01-01
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed. PMID:21531872
Hong, Pui Khoon; Betti, Mirko
2016-12-01
Glucosamine (GlcN, 5% w/v) was incubated in either phosphate buffer or ammonium hydroxide solutions at 40 and 60°C for up to 48h in order to yield caramel solutions. Non-enzymatic browning was monitored via changes in absorption at 280, 320 and 420nm and the physico-chemical properties as well as the generation of short chain α-dicarbonyl compounds were evaluated. Accumulation of GlcN autocondensation products (280nm) proceeded in parallel with the development of pre-melanoidins (320nm) and melanoidins (420nm). The reactive α-dicarbonyls were detected at temperature as low as 40°C within 3h with a maximum level of diacetyl recorded at 6h. The caramel solutions showed a high efficacy in scavenging DPPH and ABTS radicals in accordance with the increasing browning intensity. The results suggest that GlcN browning can be modulated according to the specific desired properties to produce a multi-functional food ingredient that has health-promoting effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oosthuizen, Mathys M J; Lambrechts, Hugo
2007-01-01
Hepatoproliferin (HPF) was purified from regenerating rat livers as an oligomeric entity (big-HPF) from which the monomeric form (small-HPF) could be obtained using disaggregating conditions. By using a solid-phase ion-exchange method, small-HPF was forced to dissociate into two charged ionic species, namely norepinephrine (NE) and a sulfonated disaccharide with a molecular structure consisting of D-glucuronic acid bound to glucosamine 2,6-disulfate by a beta-glycosidic linkage having a beta, 1 --> 4 configuration. Monomeric HPF stemmed from the formation of three electrostatic bonds between the protonated amine groups of three norepinephrines, of which two bind to the deprotonated sulfonic groups of glucosamine 2,6-disulfate and one to the deprotonated carboxylic group of glucuronic acid, to constitute a tightly associated complex with a molecular mass of 1046 Da. This represents one of the two purified isoforms of small-HPF. The other isoform, which has a lower molecular mass of 877 Da, lack one NE, leaving the weaker carboxylic group of glucuronic acid unoccupied, to constitute a more acidic form of HPF.
Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei
Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.
2012-01-01
UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354
Wei, Guoguang; Zhang, Alei; Chen, Kequan; Ouyang, Pingkai
2017-09-01
This study presents an efficient pretreatment of crayfish shell using high pressure homogenization that enables N-acetyl-d-glucosamine (GlcNAc) production by chitinase. Firstly, the chitinase from Serratia proteamaculans NJ303 was screened for its ability to degrade crayfish shell and produce GlcNAc as the sole product. Secondly, high pressure homogenization, which caused the crayfish shell to adopt a fluffy netted structure that was characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), was evaluated as the best pretreatment method. In addition, the optimal conditions of high pressure homogenization of crayfish shell were determined to be five cycles at a pressure of 400bar, which achieved a yield of 3.9g/L of GlcNAc from 25g/L of crayfish shell in a batch enzymatic reaction over 1.5h. The results showed high pressure homogenization might be an efficient method for direct utilization of crayfish shell for enzymatic production of GlcNAc. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko
2014-01-01
A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nashalian, Ossanna; Yaylayan, Varoujan A
2016-04-15
Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2 h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dutta, Udayan; Cohenford, Menashi A; Guha, Madhumita; Dain, Joel A
2007-02-01
Glyoxylate is a 2 carbon aldo acid that is formed in hepatic tissue from glycolate. Once formed, the molecule can be converted to glycine by alanine-glyoxylate aminotransferase (AGAT). In defects of AGAT, glyoxylate is transformed to oxalate, resulting in high levels of oxalate in the body. The objective of this study was 2-fold. First, it was to determine, if akin to D-glucose, D-fructose or DL-glyceraldehyde, glyoxylate was susceptible to non-enzymatic attack by amino containing molecules such as lysine, arginine or glucosamine. Second, if by virtue of its molecular structure and size, glyoxylate was as reactive a reagent in non-enzymatic reactions as DL-glyceraldehyde; i.e., a glycose that we previously demonstrated to be a more effective glycating agent than D-glucose or D-fructose. Using capillary electrophoresis (CE), high performance liquid chromatography and UV and fluorescence spectroscopy, glyoxylate was found to be a highly reactive precursor of advanced glycation like end products (AGLEs) and a more effective promoter of non-enzymatic end products than D-glucose, D-fructose or DL-glyceraldehyde.
Park, S H; Hong, H; Han, Y M; Kangwan, N; Kim, S J; Kim, E H; Hahm, K B
2013-04-01
Gastrointestinal or cardiovascular complications limit nonsteroidal anti-inflammatory drugs (NSAID) prescription. Glucosamine hydrochloride (GS-HCl) alternatively chosen, but debates still exist in its clinical efficiency. COX-2 instability through inhibiting COX-2 N-glycosylation of GS-HCl raised the possibility of NSAID sparing effect. Study was done to determine whether combination treatment of glucosamine and NSAID contributes to gastric safety through NSAID sparing effect. IEC-6 cells were stimulated with TNF-α and compared the expressions of inflammatory mediators after indomethacin alone or combination of indomethacin and GS-HCl by Western blotting and RT-PCR. C57BL/6 mice injected with type II collagen to induce arthritis were treated with indomethacin alone or combination of reduced dose of indomethacin and GS-HCl after 3 weeks. TNF-α increased the expression of COX-2, iNOS and inflammatory cytokines, but GS-HCl significantly attenuated TNF-α-induced COX-2 expression. Decreased COX-2 after GS-HCl was caused by N-glycosylation inhibition as much as tunicamycin. Combination of reduced dose of indomethacin and GS-HCl significantly reduced the expressions of ICAM-1, VCAM-1, IL-8, IL-1β, MMP-2, MMP-7, MMP-9, and MMP-11 mRNA as well as NF-κB activation better than high dose indomethacin alone. These NSAID sparing effect of GS-HCl was further proven in collagen-induced arthritis model. Combination of GS-HCl and 2.5 mg/kg indomethacin showed significant protection from gastric damages as well as efficacious anti-arthritic effect. Taken together, COX-2 N-glycosylation inhibition by GS-HCl led to indomethacin sparing effects, based on which combination of GS-HCl and reduced dose of NSAID can provide the strategy to secure stomach from NSAID-induced gastric damage as well as excellent anti-arthritic effects.
Hwang, Ji-Sun; Kwon, Mi-Youn; Kim, Kyung-Hong; Lee, Yunkyoung; Lyoo, In Kyoon; Kim, Jieun E.; Oh, Eok-Soo; Han, Inn-Oc
2017-01-01
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess. PMID:27927986
Jagtap, Pravin Kumar Ankush; Soni, Vijay; Vithani, Neha; Jhingan, Gagan Deep; Bais, Vaibhav Singh; Nandicoori, Vinay Kumar; Prakash, Balaji
2012-01-01
N-Acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmUMtb) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmUMtb in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmUMtb. In this SN2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmUMtb; we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmUMtb, which may be exploited for the development of inhibitors specific to GlmU. PMID:22969087
Global Analysis of Transcript and Protein Levels Across the Plasmodium falciparum Life Cycle
2004-01-01
presence of 500 ng·mL1 pyrimethamine and gametocytogenesis was induced (Ifediba and Vanderberg 1981). N-acetyl-D- glucosamine (50 mM) was added to the...in 5 mM Tris(2-Carboxyethyl)phosphine hydrochloride (TCEP, Roche); (3) alkylated by 20 mM iodoacetamide (IAM); and (4) digested with proteinase K
2004-09-01
tion of tiletamine hydrochloride (HCl) and zolazepam HCl (Telazol, Fort Dodge Laboratories, Fort Dodge, IA), anesthe- sia was induced by mask using...Demceva M, Vournakis J, Finkielsztein S, Connolly RJ. Comparison of poly-N-acetyl glucosamine (P-GlcNAc) with absorbable collagen (Actifoam) and fibrin
ERIC Educational Resources Information Center
Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.
2015-01-01
To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…
STRUCTURAL FEATURES OF LIPID A PREPARATIONS ISOLATED FROM ESCHERICHIA COLI AND SHIGELLA FLEXNERI,
to 4 in contrast to those of S . marcescens ; the configurations are probably beta. Possible structures for both lipid A’s are proposed. (Author)...An earlier report stated that the D-glucosamine units in the lipid A of Serratia marcescens were linked I to 6 and were probably in the beta
Wound Healing: Biochemical Pathways and in vivo Studies.
1980-02-01
glycosaminoglycans (mucopolysaccharides) and glycoproteins (proteins with covalently bound hetero- polysaccharide chains). The matrix portion of the collagen unit is...the monosaccharides to the more complex mucopolysaccharides and glycoproteins and their role in the production and structure of collagen is evolving...glucosamine, and hexoses--glucose, galac- tose, and mannose. The monosaccharide pattern was similar in the wound tissue of the three species. These
Paszkiewicz-Gadek, A; Porowska, H; Gałasiński, W
1992-01-01
UDP-N-acetylglucosamine can be bound by pure ribosomes. The part of N-acetylglucosamine-1-P can be transferred from the complex ribosome-UDP-N-acetylglucosamine onto dolichol phosphate. Evidence is presented that N-acetylglucosamine bound to dolichol phosphate can be transferred to the nascent peptide synthesized on the ribosome.
Zeng, Di; Zhu, Siming
2018-02-01
Two novel polysaccharide fractions (HLP1-1 and HLP2-1) were purified from crude polysaccharides of Helvella leucopus by using DEAE-52 column (2.6cm×20cm) and Sephadex G-150 column (1.6×60cm). The characterization, antioxidant and anticancer activities of HLP1-1 and HLP2-1 were investigated. The GPC results showed that HLP1-1 and HLP2-1 had similar molecular weight (21,382Da and 23,063Da, respectively). Tertiary structure analyses indicated that HLP2-1 had triple-helical conformation, but HLP1-1 not. The monosaccharide compositions of HLP1-1 included rhamnose, glucosamine and mannose at a molar ratio of 11.8:1:78.6, and HLP2-1 included of rhamnose, glucosamine, glucose and mannose at a molar ratio of 4.2:1:18.1:27.3. Both HLP1-1 and HLP2-1 showed a certain antioxidant activity, and HLP2-1 showed stronger antioxidant activities than HLP1-1. Both HLP1-1 and HLP2-1 exhibited a relatively inhibition on HepG2. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao
2011-02-11
GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metabolism-independent sugar sensing in central orexin neurons.
González, J Antonio; Jensen, Lise T; Fugger, Lars; Burdakov, Denis
2008-10-01
Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.
The role of novel chitin-like polysaccharides in Alzheimer disease.
Castellani, Rudy J; Perry, George; Smith, Mark A
2007-12-01
While controversy over the role of carbohydrates in amyloidosis has existed since the initial recognition of amyloid, current understanding of the role of polysaccharides in the pathogenesis of amyloid deposition of Alzheimer disease and other amyloidoses is limited to studies of glyco-conjugates such as heparin sulfate proteoglycan. We hypothesized that polysaccharides may play a broader role in light of 1) the impaired glucose utilization in Alzheimer disease; 2) the demonstration of amylose in the Alzheimer disease brain; 3) the role of amyloid in Alzheimer disease pathogenesis. Specifically, as with glucose polymers (amyloid), we wanted to explore whether glucosamine polymers such as chitin were being synthesized and deposited as a result of impaired glucose utilization and aberrant hexosamine pathway activation. To this end, using calcofluor histochemistry, we recently demonstrated that amyloid plaques and blood vessels affected by amyloid angiopathy in subjects with sporadic and familial Alzheimer disease elicit chitin-type characteristics. Since chitin is a highly insoluble molecule and a substrate for glycan-protein interactions, chitin-like polysaccharides within the Alzheimer disease brain could provide a scaffolding for amyloid-beta deposition. As such, glucosamine may facilitate the process of amyloidosis, and /or provide neuroprotection in the Alzheimer disease brain.
Cornet, I; Wittner, N; Tofani, G; Tavernier, S
2018-02-01
Since the determination of the fermentation kinetics is one of the main challenges in solid state fermentation, the quantitative measurement of biomass growth during microbial pretreatment by FTIR spectroscopy in Attenuated Total Reflectance mode was evaluated. Peaks at wave numbers of 1651 cm -1 and 1593 cm -1 showed to be affected during pretreatment of poplar wood particles by Phanerochaete chrysosporium MUCL 19343. Samples with different microbial biomass fractions were obtained from two different experiments, i.e., shake flask and fixed-bed reactor experiments. The glucosamine concentration was compared to the normalized absorbance ratio of the 1651 cm -1 to 1593 cm -1 peak, measured by FTIR-ATR, and resulted in a linear relationship. The application of a normalized absorbance ratio in function of time provided a graph that was similar to the microbial growth curve. Application of FTIR in ATR mode to follow-up kinetics during solid state fermentation seems to be a fast and easy alternative to laborious measurement techniques, such as glucosamine determination. Copyright © 2018 Elsevier B.V. All rights reserved.
Pérez, M. M.; Prenafeta, A.; Valle, J.; Penadés, J.; Rota, C.; Solano, C.; Marco, J.; Grilló, M.J.; Lasa, I.; Irache, J.M.; Maira-Litran, T.; Jiménez-Barbero, J.; Costa, L.; Pier, G.B.; de Andrés, D.; Amorena, B.
2010-01-01
Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofilm bacteria delivered in different vehicles. This polysaccharide reacted specifically with antibodies to poly-N-acetyl-β-1,6-glucosamine (PNAG) and not with antibodies to other capsular antigens or bacterial components. Following intra-mammary challenge with biofilm-producing bacteria, antibody production against the polysaccharide, milk bacterial counts and mastitis lesions were determined. Bacterins from strong biofilm-producing bacteria triggered the highest production of antibodies to PNAG and conferred the highest protection against infection and mastitis, compared with weak biofilm-producing bacteria and non-cellular inocula. Thus, bacterins from strong biofilm bacteria, rather than purified polysaccharide, are proposed as a cost-efficient vaccination against S. aureus ruminant mastitis. PMID:19428854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huet, Joëlle, E-mail: jhuet@ulb.ac.be; Azarkan, Mohamed; Looze, Yvan
2008-05-01
A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resultingmore » from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.« less
Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise
2016-10-01
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.
Isolation, purification, and characterization of glucosamine-6-phosphate-N-acetylase from pig liver.
Porowski, T S; Porowska, H; Gałasiński, W
1990-08-01
The procedure of isolation, purification, and characterization of glucosamine-6-phosphate acetylase from the pig liver is described. The steps of purification were as follows: adsorption on hydroxylapatite, fractionation with ammonium sulfate, chromatography on cellulose phosphate, electrofocusing, and preparative gel electrophoresis. A highly purified (about 3000-fold) preparation of GlcN-6-P acetylase, with a yield of 23%, was obtained. It was found that GlcN-6-P acetylase from pig liver is heterogeneous and exists in two active forms. The characteristic features of the preparation were established: Mr, about 24 kDa; temperature optimum at 37 degrees; pH optimum at 7.45; and Km (GlcN-6-P) 3.7 x 10(-3) M and Km (AcCoA) 1.4 x 10(-3) M. The ions K+, Na+, NH4+, Mg2+, Mn2+, and CH3COO- do not stimulate the acetylase activity. The product of acetylase reaction (GlcNAc-6-P) inhibits this reaction according to the feedback process. The highly purified preparation of GlcN-6-P acetylase is unstable during storage and it is protected by ampholine or glycine from enzyme inactivation, but it is not protected by 2-mercaptoethanol.
Pandey, Preeti; Pandey, S.; Dubey, Shaifali
2013-01-01
Etodolac, a nonsteroidal antiinflammatory drug, widely used in arthritis is associated with gastric ulceration and irritation due to presence of free carboxylic group. The current investigation reports synthesis of mutual amide prodrug of etodolac by masking free carboxylic group with glucosamine, a nutritional supplement for treatment of arthritis. Confirmation and characterization of the structure of the synthesized prodrug done by elemental and spectroscopy analysis, melting point, determination of migration parameters (Rf, RM, and Rt) by using thin layer chromatography and high performance liquid chromatography, respectively. Partition coefficient and solubility study confirms its lipophilic character so can be suitable candidate for controlled release delivery. In vitro hydrolytic studies of prodrug confirms good rate of hydrolysis in blood plasma, fecal matter, and simulated intestinal fluid while stable in gastric simulated fluid. In vivo pharmacological screening performed on animals. Prodrug with respect to etodolac shows good analgesic, antiinflammatory, and antiarthritic activity. The prodrug was assessed for their probable damaging effects by ulcerogeniticity and histopathological analysis. The histopathological studies showed less ulceration in the gastric region when treated with prodrug, thereby proving the prodrug to be better in action as compared to etodolac and are advantageous in having less gastrointestinal side effects. PMID:24302794
Efficient Synthesis and Bioactivity of Novel Triazole Derivatives.
Hu, Boyang; Zhao, Hanqing; Chen, Zili; Xu, Chen; Zhao, Jianzhuang; Zhao, Wenting
2018-03-21
Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS) inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS), ¹H-NMR and 13 C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian , Sclerotinia sclerotiorum (Lib.) de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk.) Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR) were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.
1980-03-01
aminoethyl ether)-N,N-tetraacetic acid and 3 mM im- data). These results suggest that exposure to UV idazole hydrochloride buffer (pH 7.5) with a syringe...acetyl-f- glucosamin - 40- idase, no detectable quantities of these macro- - Kphage marker enzyme activities were found in 20- either the phase I or the
Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio
2015-01-01
Background The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. Methods A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. Results In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren–Lawrence (K–L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K–L grade I. No adverse effect of treatment was identified in the safety assessment. Conclusion In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions. PMID:26604721
Gallagher, Brian; Tjoumakaris, Fotios P; Harwood, Marc I; Good, Robert P; Ciccotti, Michael G; Freedman, Kevin B
2015-03-01
Structure-modifying medications or nutraceuticals may be an effective treatment for osteoarthritis. This study identified 12 treatments that may possess chondroprotective properties: oral glucosamine; chondroitin; nonsteroidal anti-inflammatory drugs (NSAIDs); polyunsaturated fatty acids; S-adenosylmethionine; avocado and soybean unsaponifiable fractions; methylsulfonylmethane; vitamins C, D, and E; intra-articular injections of hyaluronic acid; and platelet-rich plasma (PRP). To perform a systematic review of randomized controlled trials for the effectiveness of each agent in preserving articular cartilage of the knee and delaying the progression of osteoarthritis. Systematic review; Level of evidence, 2. A literature search was performed using PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials. Searches were performed using "treatment," "osteoarthritis," and "knee" as keywords. Selection criteria included randomized controlled trials of ≥12 months, with a placebo control, measuring radiographic changes in joint space width, cartilage volume, or radiographic progression of osteoarthritis. The primary outcome was changes in joint integrity measures. A total of 3514 studies were identified from the initial search, 13 of which met inclusion criteria. Treatment with chondroitin sulfate showed a significant reduction in cartilage loss in 3 of 4 studies identified compared with placebo. Two of 3 trials identified for glucosamine also reported significant structural effects relative to placebo. Intra-articular hyaluronic acid was effective in lowering the rate of cartilage loss in only 1 of 3 studies identified versus placebo. Of the 6 studies identified for NSAIDs, vitamin E, and vitamin D, none showed any structural effect compared with placebo. No studies were found that met the inclusion criteria for polyunsaturated fatty acids, S-adenosylmethionine, avocado and soybean unsaponifiable fractions, methylsulfonylmethane, vitamin C, or PRP. For patients with or at risk for osteoarthritis, the use of glucosamine and chondroitin sulfate may serve as a nonoperative means to protect joint cartilage and delay osteoarthritis progression. Hyaluronic acid injections showed variable efficacy, while NSAIDs and vitamins E and D showed no effect on osteoarthritis progression. The other agents evaluated had no evidence in the literature to support or refute their use for chondroprotection. © 2014 The Author(s).
Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio
2015-01-01
The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren-Lawrence (K-L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K-L grade I. No adverse effect of treatment was identified in the safety assessment. In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions.
A Morphofunctional Study on the Effect of Cytochalasin B on Intestinal Water Transport.
1986-05-10
Topic Category Selection hydrochloride . c. Signature Block for Member’s Signature d. Check Presentation Preference Box Each Abstract Form submitted...1999: 4-(2-isopropylamino-I-hydroxyethyl) methanesulfonanilide b. Topic Category Selection hydrochloride . c. Signature Block for Member’s Signature d...intestinal glyco- protein incorporation of 01-14 ) Glucosamine in vitro. Biochim Biophys Acta 261:353. Moe H (1955). On goblet cells, especially of
1989-11-01
standing overnight. Washing the filtered crystals with ether removed triethylamine hydrochloride and triphenyl phosphine, then recrystallisation from...pyridine to from an ester, DMF and pyridinium hydrochloride . The reaction of the Vilsmeier reagent with (E)-5-(2-carboxyvinyl)uridine and quenching...include 2-deoxy-2-glucose (28), D- glucosamine (29) and tunicamycin (30). Deoxyglucose is utilized instead of glucose in the formation of guanosine
Zhao, Minzhi; Li, Haiyun; Ma, Yan; Gong, He; Yang, Shu; Fang, Qiaojun; Hu, Zhiyuan
2017-01-01
Abraxane (Abr), a US Food and Drug Administration-approved albumin-bound nanoparticle applied for the treatment of non-small-cell lung cancer, has been reported to be more effective than paclitaxel (PTX). To further understand the molecular mechanisms that produce this superior drug efficacy of Abr, a quantitative proteomic approach has been applied to investigate the global protein expression profiles of lung cancer cell A549 treated with Abr and PTX. Only one protein, namely, glucosamine 6-phosphate N-acetyltransferase 1 (GNA1), showed significant differential expression ( P <0.05) in the cutoff of 2.0 fold, suggesting that Abr can be used safely as a substitute for PTX. GNA1 is a key enzyme in the biosynthesis of uridine diphosphate-N-acetylglucosamine, which is an important donor substrate for N-linked glycosylation and has several important functions such as embryonic development and growth. Albumin plays a major role in the regulation of this protein. In summary, this study first shows that the superior drug effect of Abr is mainly due to the downregulation of GNA1, which causes proliferative delay and cell adhesion defect. It is also noteworthy that the deficiency of GNA1 might reduce insulin secretion which correlates with type 2 diabetes.
Glycoconjugate sugar residues in the chick embryo developing lung: a lectin histochemical study.
Gheri, G; Sgambati, E; Bryk, S G
2000-03-01
A lectin histochemical study was performed to investigate the distribution and changes of the oligosaccharidic component of the glycoconjugates in the lung of chick embryos, of 1-day-old chick, and of the adult animal. For this purpose, a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, Con A, LTA, and UEA I) were employed. During the first phase of parabronchi and atria formation, D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine, alpha-D-mannose, and sialic acid, present at the level of the surface and of cytoplasmic granules of the lining epithelial cells, seem to play a role in regulating morphogenetic phenomena. In the subsequent phases, the parabronchial lumen and the atrial cavities were characterized by the presence of lectin-reactive material rich in terminal D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine and alpha-D-mannose. From day 18 onwards and immediately after hatching, the free border of the cells lining the air capillaries was characterized by the presence of beta-N-acetyl-D-galactosamine and alpha-D-mannose. The appearance of these sugar residues was concomitant with the beginning of respiratory activity. Copyright 2000 Wiley-Liss, Inc.
Cuellar, Norma; Aycock, Teresa; Cahill, Bridgett; Ford, Julie
2003-01-01
Background The use of CAM is at an all time high. There is very little research that compares the use of CAM in elders by ethnicity in rural settings. The purpose of the study was to determine if there was a difference between African American and Caucasian American rural elders on use of CAM and self-reported satisfaction with CAM. Methods The design was a descriptive, comparative study of 183 elders who reported the number of CAM used and satisfaction with CAM. A convenience sample was recruited through community service organizations in the state of Mississippi. The availability of elders through the support groups, sampling bias, subject effect, and self-report were limitations of the study. Results The commonest examples of CAM used by rural elders were prayer, vitamins, exercise, meditation, herbs, chiropractic medicine, glucosamine, and music therapy. Significant findings on SES and marital status were calculated. Differences on ethnicity and demographic variables were significant for age, education, and the use of glucosamine. Conclusions Health care providers must be aware that elders are using CAM and are satisfied with their use. Identifying different uses of CAM by ethnicity is important for health care practitioners, impacting how health care is provided. PMID:14622445
Cuellar, Norma; Aycock, Teresa; Cahill, Bridgett; Ford, Julie
2003-11-18
The use of CAM is at an all time high. There is very little research that compares the use of CAM in elders by ethnicity in rural settings. The purpose of the study was to determine if there was a difference between African American and Caucasian American rural elders on use of CAM and self-reported satisfaction with CAM. The design was a descriptive, comparative study of 183 elders who reported the number of CAM used and satisfaction with CAM. A convenience sample was recruited through community service organizations in the state of Mississippi. The availability of elders through the support groups, sampling bias, subject effect, and self-report were limitations of the study. The commonest examples of CAM used by rural elders were prayer, vitamins, exercise, meditation, herbs, chiropractic medicine, glucosamine, and music therapy. Significant findings on SES and marital status were calculated. Differences on ethnicity and demographic variables were significant for age, education, and the use of glucosamine. Health care providers must be aware that elders are using CAM and are satisfied with their use. Identifying different uses of CAM by ethnicity is important for health care practitioners, impacting how health care is provided.
Gonçalves, Gabriel Ramos Ferreira; Gandolfi, Olga Reinert Ramos; Santos, Leandro Soares; Bonomo, Renata Cristina Ferreira; Veloso, Cristiane Martins; Veríssimo, Lizzy Ayra Alcântara; Fontan, Rafael da Costa Ilhéu
2017-11-15
Lectins are glycoproteins that bind to carbohydrates or glycoconjugates by specific interactions. The specificity of lectins to various carbohydrates is a determinant factor in the choice of ligand for the chromatographic matrix when using chromatography as a lectin purification technique. In this work, the immobilization of three different aminated carbohydrates on the surface of macroporous polymeric cryogels was evaluated. Carbohydrates were immobilized on cryogel surfaces via the glutaraldehyde method to create spacer arms, reducing steric hindrance. The immobilized N-acetyl-d-glucosamine and N-acetyl-d-mannosamine concentrations contained approximately 130mg of carbohydrate/g dehydrated cryogel, while the N-acetyl-d-galactosamine contained 105mg of carbohydrate/g dehydrated cryogel. Scanning electron microscopy showed that the physical structure and porosity of the chromatographic columns were not affected by the immobilization process, maintaining an elevated hydration capacity and the macroporous structure of the cryogels. Adsorption of concanavalin A on cryogels functionalized with N-acetyl-d-glucosamine (cryo-d-GlcNAc) was tested, as well as its reuse capability. After 5 cycles of use, cryo-d-GlcNAc was shown to be stable, with an adsorptive capacity of around 50mg/g. Carbohydrate immobilization in polyacrylamide cryogels was satisfactory, with promise for applications in lectin purification processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Liping, Sun; Xuejiao, Su; Yongliang, Zhuang
2016-11-01
Boletus snicus (BS) is one of the commercially important mushroom species. Two polysaccharides (BSP-1b and BSP-2b) were extracted and purified from the body of BS by DEAE-cellulose and Sephadex G-100 column chromatography. The average of molecular weight of BSP-1b and BSP-2b were 59.21kDa and 128.74kDa. BSP-1b is a heteropolysaccharide with a large number of glucose and a small amount of mannose, glucosamine hydrochloride and arabinose. The monosaccharide compositions of BSP-2b contain mannose, glucuronic acid, glucosamine hydrochloride, glucose, galactose, arabinose with the molar ratio of 10.70:6.95:12.05:12.57:1.83:1.00. The FTIR spectra and NMR analysis demonstrated that BSP-1b and BSP-2b existed pyranose ring structure and BSP-2b had high content of uronic acid. The antiglycation activities of BSP-1b and BSP-2b were investigated. The results showed BSP-1b and BSP-2b had high inhibitory effects on glycation and exhibited dose-dependent responses. BSP-2b showed stronger antiglycation activity than BSP-1b. This study indicated that the BSP-2b could effectively inhibit the formation of advanced glycation end-products. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchok, A.C.; Clark, J.N.; Klein-Szanto, A.
1981-06-01
The ability of retinyl acetate to alter growth, differentiation, and synthesis of mucous glycoproteins in cell lines cloned from an adenocarcinoma (T-8) and a squamous cell carcinoma (1000 WT) was investigated with the use of F344 rats. Growth rate was inhibited approximately 25 and 50% in 6.6 x 10/sup -6/ and 3.3 x 10/sup -5/ M retinyl acetate, respectively, in both cell lines. Retinyl acetate induced the formation of numerous vacuoles and periodic acid-silver methenamine-positive granules in both T-8 and 1000 WT cells. After T-8 cells were cultured for 7 days in retinyl acetate, (/sup 3/H)glucosamine incorporation increased 133- tomore » 147-fold and (/sup 14/C)serine incorporation increased twelvefold to twentyfold in the high-molecular-weight mucous glycoprotein fraction (peak A) from the cell cytosol. In 1000 WT cells, (/sup 3/H)glucosamine incorporation increased only 4.2- to 7.5-fold, and (/sup 14/C)serine incorporation increased only 2.6- to 4.6-fold under the same culture conditions. Thus T-8 cells showed a marked increase in the synthesis and secretion of mucins, whereas 1000 WT cells showed a comparatively small but significant increase.« less
Ang, Andrew Si Wo; Cheung, Randy Chi Fai; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Ng, Tzi Bun
2014-01-01
A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg(2+)-dependent hemagglutinating activity was stable at pH 7-8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.
Yamagishi, Yoshie; Someya, Akimasa; Imai, Kensuke; Nagao, Junji; Nagaoka, Isao
2017-08-01
The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).
Simon-Assmann, P; Bouziges, F; Daviaud, D; Haffen, K; Kedinger, M
1987-08-15
Among the extracellular matrix components which have been suggested to be involved in developmental and neoplastic changes are glycosaminoglycans (GAGs). To try to correlate their amount and nature with the process of enterocytic differentiation, we studied glycosaminoglycan synthesis of human colonic adenocarcinoma cells (HT29 cell line) by [3H]glucosamine and [35S]sulfate incorporation. Enterocytic differentiation of the cells obtained in a sugar-free medium (for review, see A. Zweibaum et al. In: Handbook of Physiology. Intestinal Transport of the Gastrointestinal System, in press, 1987) resulted in a marked increase in total incorporation of labeled precursors (20-fold for [3H]glucosamine, 4.5-fold for [35S]sulfate) as well as in uronic acid content (5-fold); most of the synthesized GAGs were found associated with the cell pellet. Chromatographic and electrophoretic analysis of the labeled GAGs revealed that undifferentiated cells synthesized and secreted hyaluronic acid, heparan sulfate, and one class of chondroitin sulfate. Differentiation of HT29 cells because associated with the synthesis of an additional class of chondroitin sulfate (CS4) concomitant to a decrease in heparan sulfate which is no longer found secreted in the medium. Furthermore, the charge density of this latter GAG component varied as assessed by a shift of its affinity on ion-exchange chromatography.
Green synthesis approach: extraction of chitosan from fungus mycelia.
Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam
2013-12-01
Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.
Kaur, Surinder; Dhillon, Gurpreet Singh
2014-05-01
Among the biopolymers, chitin and its derivative chitosan (CTS) have been receiving increasing attention. Both are composed of randomly distributed β-(1-4)-linked d-glucosamine and N-acetyl glucosamine units. On commercial scale, CTS is mainly obtained from the crustacean shells. The chemical methods employed for extraction of CTS from crustacean shells are laden with many disadvantages. Waste fungal biomass represents a potential biological source of CTS, in fact with superior physico-chemical properties, such as high degree of deacetylation, low molecular weight, devoid of protein contamination and high bioactivity. Researchers around the globe are attempting to commercialize CTS production and extraction from fungal sources. Fungi are promising and environmentally benign source of CTS and they have the potential to completely replace crustacean-derived CTS. Waste fungal biomass resulting from various pharmaceutical and biotechnological industries is grown on inexpensive agro-industrial wastes and its by-products are a rich and inexpensive source of CTS. CTS is emerging as an important natural polymer having broad range of applications in different fields. In this context, the present review discusses the potential sources of CTS and their advantages and disadvantages. This review also deals with potential applications of CTS in different fields. Finally, the various attributes of CTS sought in different applications are discussed.
2006-03-01
Cholesterol Depletion Enhances Chitin Phagocytosis-Induced Macrophage Activation. Abstract will be presented at AAI Meeting at Boston in May 2006...presented at AAI Meeting at Boston in May 2006. Task 2. Tsuji S, M Yamashita Tsuji, A Nishiyama, Y Shibata. Molecular structure of human and mouse...interlectin-1 and comparison of binding to a mycobacterial galactofuranosyl residue. Abstract will be presented at AAI Meeting at Boston in May 2006
Design and synthesis of unnatural heparosan and chondroitin building blocks
Bera, Smritilekha; Linhardt, Robert J.
2011-01-01
Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620
2007-03-01
deoxygalactose and galactose, respectively. Relatively less mITLN-1 was eluted by these monosaccharides . The oligomeric Hu/Mo chimeric ITLN-1 had...Abeygunawardana, C., Bush, C. A. and Cisar, J. O. (1991) Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR...Hoogerhout, P. and van Boom, J. H. (1988) (1-5)-linked beta-D-galactofuranosides are immunodominant in extracellular polysaccharides of
2011-01-01
Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2) with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC) or higher protein (HP) diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL), 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium), and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%), fat mass (-6.0 ± 6%), and body fat (-3.5 ± 4%) with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39%) and knee stiffness (-42 ± 37%) was decreased while maximal strength (12%), muscular endurance (20%), balance indices (7% to 20%), lipid levels (-8% to -12%), homeostasis model assessment for estimating insulin resistance (-17%), leptin (-30%), and measures of physical functioning (59%), vitality (120%), and social function (66%) were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected perceptions of knee pain (p < 0.08). Conclusions Circuit style resistance-training and weight loss improved functional capacity in women with knee OA. The type of diet and dietary supplementation of GCM provided marginal additive benefits. Trial Registration ClinicalTrials.gov: NCT01271218 PMID:21689421
Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents
2009-09-01
linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into
1992-06-24
system, such as pneumococcal polysaccharide (Hiernaux et aI., 1989) or those that are presented by malignant tumors (O’Malley et ai., 1963). LPS...isolated the active ingredient, which they called ’’bacterial polysaccharide " (Shear and Andervont, 1936). The practice of inducing "therapeutic febrile...acylated, diphosphorylated, ~-1,6-linked D-glucosamine disaccharide (referred to as lipid A) which is attached covalently to a core polysaccharide that
A chitin-like component in Aedes aegypti eggshells, eggs and ovaries.
Moreira, Mônica F; Dos Santos, Amanda S; Marotta, Humberto R; Mansur, Juliana F; Ramos, Isabela B; Machado, Ednildo A; Souza, Gustavo H M F; Eberlin, Marcos N; Kaiser, Carlos R; Kramer, Karl J; Muthukrishnan, Subbaratnam; Vasconcellos, Ana Maria H
2007-12-01
An insoluble white substance was prepared from extracts of eggshells of Aedes aegypti, the yellow fever mosquito and dengue vector. Its infrared and proton NMR spectra were similar to that of standard commercial chitin. This putative chitin-like material, also obtained from ovaries, newly laid and dark eggs, was hydrolyzed in acid and a major product was identified by HPLC to be glucosamine. The eggshell acid hydrolysate was also analyzed by ESI-MS and an ion identical to a glucosamine monoprotonated species was detected. The presence of chitin was also analyzed during different developmental stages of the ovary using a fluorescent microscopy technique and probes specific for chitin. The results showed that a chitin-like material accumulates in oocytes during oogenesis. Streptomyces griseus chitinase pre-treatment of oocytes greatly reduced the chitin-derived fluorescence. Chitinase activity was detected in newborn larvae and eggs prior to hatching. Feeding experiments indicated that the chitin synthesis inhibitor lufenuron inhibited chitin synthesis, either when mosquitoes were allowed to feed directly on lufenuron-treated chickens or when an artificial feeding system was used. Lufenuron inhibited egg hatch, larval development and reduced mosquito viability. These data demonstrate for the first time that (1) a chitin-like material is present in A. aegypti eggs, ovaries and eggshells; (2) a chitin synthesis inhibitor can be used to inhibit mosquito oogenesis; and (3) chitin synthesis inhibitors have potential for controlling mosquito populations.
NASA Astrophysics Data System (ADS)
Fikrika, H.; Ambarsari, L.; Sumaryada, T.
2016-01-01
Molecular docking simulation of catechin and its derivatives on Glucosamine-6- Phosphate Synthase (GlmS) has been performed in this research. GlmS inhibition by a particular ligand will suppress the production of bacterial cell wall and significantly reduce the population of invading bacteria. In this study, catechin derivatives i.e epicatechin, galloatechin and epigalloatechin were found to have stronger binding affinities as compared to natural ligand of GlmS, Fructose-6-Phosphate (F6P). Those three ligands were docked on the same pocket in GlmS target as F6P, with 70% binding sites similarity. Based on the docking results, gallocatechin turns out to be the most potent ligand for anti-bacterial agent with ΔG= -8.00 kcal/mol. The docking between GlmS and catechin derivatives are characterized by a constant present of a strong hydrogen bond between functional group O3 and Ser-349. This hydrogen bond most likely plays a significant role in the docking mechanism and binding modes selection. The surprising result is catechin itself exhibited a quite strong binding with GlmS (ΔG= -7.80 kcal.mol), but docked on a completely different pocket compared to other ligands. This results suggest that catechin might still have a curing effect but with a completely different pathway and mechanism as compared to its derivatives.
Cova, Marta; López-Gutiérrez, Borja; Artigas-Jerónimo, Sara; González-Díaz, Aida; Bandini, Giulia; Maere, Steven; Carretero-Paulet, Lorenzo; Izquierdo, Luis
2018-03-05
Apicomplexa form a phylum of obligate parasitic protozoa of great clinical and veterinary importance. These parasites synthesize glycoconjugates for their survival and infectivity, but the enzymatic steps required to generate the glycosylation precursors are not completely characterized. In particular, glucosamine-phosphate N-acetyltransferase (GNA1) activity, needed to produce the essential UDP-N-acetylglucosamine (UDP-GlcNAc) donor, has not been identified in any Apicomplexa. We scanned the genomes of Plasmodium falciparum and representatives from six additional main lineages of the phylum for proteins containing the Gcn5-related N-acetyltransferase (GNAT) domain. One family of GNAT-domain containing proteins, composed by a P. falciparum sequence and its six apicomplexan orthologs, rescued the growth of a yeast temperature-sensitive GNA1 mutant. Heterologous expression and in vitro assays confirmed the GNA1 enzymatic activity in all lineages. Sequence, phylogenetic and synteny analyses suggest an independent origin of the Apicomplexa-specific GNA1 family, parallel to the evolution of a different GNA1 family in other eukaryotes. The inability to disrupt an otherwise modifiable gene target suggests that the enzyme is essential for P. falciparum growth. The relevance of UDP-GlcNAc for parasite viability, together with the independent evolution and unique sequence features of Apicomplexa GNA1, highlights the potential of this enzyme as a selective therapeutic target against apicomplexans.
Clarke, A. J.; Cox, Patricia M.; Shepherd, Audrey M.
1967-01-01
1. Eggs of the potato cyst-nematode (Heterodera rostochiensis Woll.) were isolated by sieving a suspension of crushed cysts. Eggs were broken open by ultrasonic vibration and the egg shells separated from the released larvae by centrifuging in a potassium tartrate density gradient. About 1 mg. of dried egg shells was obtained from 1000 cysts. 2. The major constituent of the egg shells was protein (59%, calculated from nitrogen content). About 80% of the egg shells went into solution on acid hydrolysis. Of the 18 amino acids determined with the Technicon Auto-Analyser, proline was most abundant and, with aspartic acid, glycine and serine, made up about 64% by weight of the total amino acids. The small amounts of aromatic and sulphur-containing amino acids, and the presence of hydroxy-proline, indicate a collagen-like protein. 3. The egg shells gave a positive van Wisselingh colour test for chitin, and glucosamine was detected in their acid hydrolysate by chromatography. The glucosamine content of the egg shells, determined by the Elson–Morgan colorimetric method, was 7%, corresponding to about 9% chitin. 4. Dried egg shells contained about 7% of lipid, 6% of carbohydrate and 3% of ash. Polyphenols (3% by weight of the egg shells) were detected in the acid hydrolysates. 5. Neither the collagen nor the chitin showed evidence of crystallinity when examined by X-ray diffraction. PMID:6069200
Glucosamine enhances paracetamol bioavailability by reducing its metabolism.
Qinna, Nidal A; Shubbar, Maryam H; Matalka, Khalid Z; Al-Jbour, Nawzat; Ghattas, Mohammad A; Badwan, Adnan A
2015-01-01
Paracetamol has an extensive first-pass metabolism that highly affects its bioavailability (BA); thus, dose may be repeated several times a day in order to have longer efficacy. However, hepatotoxicity may arise because of paracetamol metabolism. Therefore, this project aimed to increase paracetamol BA in rats by glucosamine (GlcN). At GlcN-paracetamol racemic mixture ratio of 4:1 and paracetamol dose of 10 mg/kg, paracetamol area under the curve (AUC) and maximum concentration (Cmax ) were significantly increased by 99% and 66%, respectively (p < 0.05). Furthermore, paracetamol AUC and Cmax levels were increased by 165% and 88% in rats prefed with GlcN for 2 days (p < 0.001). Moreover, GlcN significantly reduced phase Ι and phase I/ΙΙ metabolic reactions in liver homogenate by 48% and 54%, respectively. Furthermore, GlcN molecule was found to possess a good in silico binding mode into the CYP2E1 active site-forming bidentate hydrogen bonding with the Thr303 side chain. Finally, serum ALT and AST levels of rats-administered high doses of paracetamol were significantly reduced when rats were prefed with GlcN (p < 0.01). In conclusion, GlcN can increase the relative BA of paracetamol through reducing its metabolism. This phenomenon is associated with reduction in hepatocytes injury following ingestion of high doses of paracetamol. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Biosynthesis of Novel Exopolymers by Aureobasidium pullulans
Lee, Jin W.; Yeomans, Walter G.; Allen, Alfred L.; Deng, Fang; Gross, Richard A.; Kaplan, David L.
1999-01-01
Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 × 106 to 2.12 × 106 to 0.85 × 106 to 0.77 × 106 with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 ± 3 to 29 ± 2 mol%, and the molecular weight increased from 2.73 × 106 to 4.86 × 106. There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 ± 3:13 ± 3 to 28 ± 2:72 ± 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs. PMID:10583975
2013-01-01
The aim of this paper was to provide an overview of the current knowledge and understanding of the potential beneficial physiological effects of glucosamine (GlcN) on joint health. The objective was to reach a consensus on four critical questions and to provide recommendations for future research priorities. To this end, nine scientists from Europe and the United States were selected according to their expertise in this particular field and were invited to participate in the Hohenheim conference held in August 2011. Each expert was asked to address a question that had previously been posed by the chairman of the conference. Based on a systematic review of the literature and the collection of recent data, the experts documented the effects of GlcN on cartilage ageing, metabolic/kinetic and maintenance of joint health as well as reduction of risk of OA development. After extensive debate and discussion the expert panel addressed each question and a general consensus statement was developed, agreeing on the current state-of-the-art and future areas for basic and clinical studies. This paper summarizes the available evidence for beneficial effects of GlcN on joint health and proposes new insight into the design of future clinical trials aimed at identifying beneficial physiological effect of GlcN on joint tissues. PMID:23531101
Kimyon, Önder; Ulutürk, Zehra İ.; Nizalapur, Shashidhar; Lee, Matthew; Kutty, Samuel K.; Beckmann, Sabrina; Kumar, Naresh; Manefield, Mike
2016-01-01
N-acetyl glucosamine, the monomer of chitin, is an abundant source of carbon and nitrogen in nature as it is the main component and breakdown product of many structural polymers. Some bacteria use N-acyl-L-homoserine lactone (AHL) mediated quorum sensing (QS) to regulate chitinase production in order to catalyze the cleavage of chitin polymers into water soluble N-acetyl-D-glucosamine (NAG) monomers. In this study, the impact of NAG on QS activities of LuxR, LasR, and CviR regulated gene expression was investigated by examining the effect of NAG on QS regulated green fluorescent protein (GFP), violacein and extracellular chitinase expression. It was discovered that NAG inhibits AHL dependent gene transcription in AHL reporter strains within the range of 50–80% reduction at low millimolar concentrations (0.25–5 mM). Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. Further, this study shows that NAG down-regulates CviR induced violacein production while simultaneously up-regulating CviR dependent extracellular enzymes, suggesting that an unknown NAG dependent regulatory component influences phenotype expression. The quorum sensing inhibiting activity of NAG also adds to the list of compounds with known quorum sensing inhibiting activities. PMID:27602027
Cardozo, Flávio Augusto; Gonzalez, Juan Miguel; Feitosa, Valker Araujo; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez
2017-10-27
N-Acetyl-D-glucosamine (GlcNAc) is a monosaccharide with great application potential in the food, cosmetic, pharmaceutical, and biomaterial areas. GlcNAc is currently produced by chemical hydrolysis of chitin, but the current processes are environmentally unfriendly, have low yield and high cost. This study demonstrates the potential to produce GlcNAc from α-chitin using chitinases of ten marine-derived Aeromonas isolates as a sustainable alternative to the current chemical process. The isolates were characterized as Aeromonas caviae by multilocus sequence analysis (MLSA) using six housekeeping genes (gltA, groL, gyrB, metG, ppsA, and recA), not presented the virulence genes verified (alt, act, ast, ahh1, aer, aerA, hlyA, ascV and ascFG), but showed hemolytic activity on blood agar. GlcNAc was produced at 37 °C, pH 5.0, 2% (w/v) colloidal chitin and crude chitinase extracts (0.5 U mL -1 ) by all the isolates with yields from 14 to 85% at 6 h, 17-89% at 12 h and 19-93% after 24 h. The highest yield of GlcNAc was observed by A. caviae CH129 (93%). This study demonstrates one of the most efficient chitin enzymatic hydrolysis procedures and A. caviae isolates with great potential for chitinases expression and GlcNAc production.
Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J.
2016-01-01
Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis. PMID:27019285
Muhizi, Théoneste; Coma, Véronique; Grelier, Stéphane
2011-03-01
Structure-activity relationships are often reported in scientific studies. These may be employed in searching for new acceptable biocides to use against harmful microorganisms, because the biocides used hitherto encounter various problems, including lack of efficiency, high toxicity and persistence. Nowadays, scientists are trying to find new, environmentally acceptable biocides to replace these earlier biocides. Different compounds from renewable materials have been studied and have shown pronounced antifungal activity against wood fungi. These include aminopolysaccharide derivatives and different quaternary ammonium polymers. A biological study carried out with these products indicated a possible relationship between amino groups and differences in biological activity observed. In this study, an amino group was successively fixed to different carbon atoms of glucose, and glucosamine was also modified by both N-alkylation and quaternisation. The impact of the amino group position on antifungal activity against two wood decay fungi was investigated. The amino group at the anomeric position showed the highest antifungal activity against both Coriolus versicolor Quel. and Poria placenta (Fr.) Cooke. Furthermore, the positive impact of both N-alkylation and quaternisation on the growth of both strains was demonstrated. The anomeric position of the amino group and the N-alkylation and quaternisation of amino sugars considerably increase the antifungal activity of these compounds. Copyright © 2010 Society of Chemical Industry.
Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2).
Viens, Pascal; Dubeau, Marie-Pierre; Kimura, Akane; Desaki, Yoshitake; Shinya, Tomonori; Shibuya, Naoto; Saito, Akihiro; Brzezinski, Ryszard
2015-05-01
The csnR gene, localized at the beginning of an operon, csnR-K, which organization is conserved through many actinomycete genomes, was previously shown to repress the transcription of the chitosanase gene csnA in Streptomyces lividans. However, knowledge on the function of the whole csnR-K operon in the metabolism of chitosan (an N-deacetylated derivative of chitin) remained limited. Mutants of S. coelicolor A3(2) harboring partial or total deletions of the csnR-K operon were analyzed for their capacity to uptake glucosamine oligosaccharides (GlcN)n. The csnR-K operon was autoregulated by CsnR repressor and its transcription was inducible by GlcN oligosaccharides. The operon controlled the uptake of GlcN oligosaccharides in S. coelicolor A3(2), with a minor contribution to the consumption of monomeric GlcN but not chitin-related N-acetylated derivatives. The deletion of the whole operon abolished the uptake of GlcN oligosaccharides. The CsnEFG transporter encoded by this operon is the front door for the assimilation of chitosan-derived hydrolysis products in S. coelicolor A3(2). The ATP-binding component MsiK was essential for CsnEFG transport function. Also, deletion of msiK abolished the induction of csnA transcription by GlcN oligosaccharides. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Leatham, Gary F.
1985-01-01
Although the commercially important mushroom Lentinus (= Lentinula) edodes (Berk.) Sing. can be rapidly cultivated on supplemented wood particles, fruiting is not reliable. This study addressed the problem by developing more information about growth and development on a practical oakwood-oatmeal medium. The study determined (i) the components degraded during a 150-day incubation at 22°C, (ii) the apparent vegetative growth pattern, (iii) the likely growth-limiting nutrient, and (iv) assays that can be used to study key extracellular enzymes. All major components of the medium were degraded, lignin selectively so. The vegetative growth rate was most rapid during the initial 90 days, during which weight loss correlated with glucosamine accumulation (assayed after acid hydrolysis). The rate then slowed; in apparent preparation for fruiting, the cultures rapidly accumulated glucosamine (or its oligomer or polymer). Nitrogen was growth limiting. Certain enzyme activities were associated with the pattern of medium degradation, with growth, or with development. They included cellulolytic system enzymes, hemicellulases, the ligninolytic system, (gluco-)amylase, pectinase, acid protease, cell wall lytic enzymes (laminarinase, 1,4-β-d-glucosidase, β-N-acetyl-d-glucosaminidase, α-d-galactosidase, β-d-mannosidase), acid phosphatase, and laccase. Enzyme activities over the 150-day incubation period with and without a fruiting stimulus are reported. These results provide a basis for future investigations into the physiology and biochemistry of growth and fruiting. PMID:16346918
Furuike, Tetsuya; Chaochai, Thitirat; Okubo, Tsubasa; Mori, Takahiro; Tamura, Hiroshi
2016-12-01
Since gelatin (Gel) undergoes a sol-gel transition, a novel dry-spinning procedure for Gel was used. Here, nonwoven fabrics of Gel were electrospun by applying the principles of dry spinning. The diameter of the fibers and the viscosity and flow rate of the solution were directly dependent on the concentration of Gel. Nonwoven fabrics spun with a 25% (w/w) Gel concentration only exhibited a nanoscale fiber diameter. In order to improve the properties of the nonwoven fabrics, they were cross-linked with glutaraldehyde (GTA) vapor after spinning or by the addition of N-acetyl-d-glucosamine (GlcNAc) to the Gel solution prior to spinning followed by heating these fibers. The developed nonwoven fibers were characterized using SEM, rheometry, FTIR, TGA, and mechanical tensile testing. The nonwoven fabrics cross-linked by the GTA vapor exhibited improved mechanical properties compared to those without cross-linking or with GlcNAc cross-linking. The swelling and water uptake ability resulted in no morphological changes in the fibers with GTA cross-linking. The TGA thermogram confirmed no phase change in the composite structure. Further, in vitro cytocompatibility studies using human mesenchymal stem cells showed the compatible nature of the developed nonwoven fibers. Our studies showed that these nonwoven fibers could be useful in medical care. Copyright © 2016 Elsevier B.V. All rights reserved.
Histochemical study of lymphocystis disease in skin of gilthead seabream, Sparus aurata L.
Sarasquete, C; González de Canales, M L; Arellano, J; Pérez-Prieto, S; García-Rosado, E; Borrego, J J
1998-01-01
A battery of horseradish peroxidase-conjugated lectins (Con A, WGA and DBA), as well as conventional histochemical techniques (PAS, saponification, Alcian Blue pH 0.1, 1, 2.5, chlorhydric hydrolisis, sialidase, Bromophenol blue, Tioglycollate reduction and Ferric-ferricyanide-FeIII) were used to study the content and distribution of carbohydrates, proteins and glycoconjugate sugar residues on the skin and on the lymphocystis-infected cells of gilthead seabream, Sparus aurata. Variable amounts of glycoproteins containing sialic acid, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, mannose and/or glucose residues were observed in the cuticle and mucous cells of the corporal skin, tails and fins. Germinative and epithelial cells of the epidermis contained glycogen, proteins, carboxylated groups, as well as glycoproteins with mannose and/or glucose and N-acetyl-D-galactosamine residues. Hyaline capsule of the mature lymphocystis-infected cells was strongly stained with PAS, Alcian Blue (pH 0.5 and 2.5) and weakly positive with Alcian Blue (pH 1). Con A reacted with the granular cytoplasm, specially around hyaline capsule, and with the basophilic intracytoplasmic inclusions developed in mature lymphocystis-infected cells of Sparus aurata skin. These sugar residues (mannose and/or glucose), as well as N-acetyl-D-glucosamine and/or sialic acid and N-acetyl-D-galactosamine were not detected in the hyaline capsule of the lymphocystis disease.
Characterization of the Polypeptides in Varicella Zoster Virus - Infected Cells
1984-03-16
DNA binding proteins.. 127 38. Autoradiogram of guanidine hydrochloride wash of DNA cellulose columns 129 Figure Page 32 39. Autoradiogram of P...of purification was seventy-fold 35 1^ with respect to host proteins and the S-methionine or G- glucosamine labeled virions were subjected to SDS... hydrochloride [pH7.5]. 20 mM EDTA, (2 x STE buffer), was used. For electron microscopy pellets were resuspended in 10 mM Tris- hydrochloride [pH 7.5]. 1 inM
1990-02-01
which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were
Thayer, Desiree A; Wong, Chi-Huey
2006-09-18
Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.
2008-05-01
asthma in Cynomolgus monkeys. J Appl Physiol 96:1433-1444, 2003. Task 2. Shibata Y, A Nishiyama, H Ohata, J Gabbard , QN Myrvik, RA Henriksen...Proceeding of “International Symposium on Low-Dose Radiation Exposures and Bio-Defense System. Page 5, 2006. Task 2. Shibata Y, J Gabbard , M Yamashita...killed BCG. J Leukoc Biol 78:1281-1290. 4. Shibata, Y., J. Gabbard , M. Yamashita, S. Tsuji, M. Smith, A. Nishiyama, R. A. Henriksen, and Q. N. Myrvik
Identification of the glycoproteins of lymphocystis disease virus (LDV) of fish.
Robin, J; Laperrière, A; Berthiaume, L
1986-01-01
Analysis of highly purified fish Lymphocystis Disease Virus (LDV), strain Leetown NFH, by three different methods, namely periodic Acid Schiff reaction, radiolabelling with tritiated fucose and N-acetyl-D-glucosamine and staining with three lectins, indicated that ten glycoproteins were associated with the virus structure. Six of them were detected by all of the three methods, three by both radiolabelling and lectin staining but only one by the lectin technique. Localization of these glycoproteins at the surface or inside the virion is discussed.
Zhao, Jinlei
2014-01-01
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijk, Xander M.R. van; Oosterhof, Arie; Broek, Sebastiaan A.M.W. van den
2010-09-10
Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -{beta}1-4GlcA-{alpha}1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-D-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect.more » 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.« less
Kawada-Matsuo, Miki; Oogai, Yuichi; Komatsuzawa, Hitoshi
2016-01-01
Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans. PMID:28036052
G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora.
Rouf, Razina; Stephens, Alexandre S; Spaan, Lina; Arndt, Nadia X; Day, Christopher J; May, Tom W; Tiralongo, Evelin; Tiralongo, Joe
2014-01-01
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.
Frondoza, Carmelita G; Heinecke, Lowella F; Grzanna, Mark W; Au, Angela Y; Ownby, Stacy L
2011-01-01
To determine whether camel articular chondrocytes can be maintained in tissue culture without phenotype loss and whether the response to cytokine stimulation can be modulated. Cartilage from 4 carpal joints of healthy adult dromedary camels (Camelus dromedarius). Chondrocytes were evaluated for type II collagen and aggrecan production They were incubated with control media or with 2 test mixtures (alone and then in combination) that have anti-inflammatory activity (avocado-soybean unsaponifiables, glucosamine, and chondroitin sulfate [ie, ASU + GLU + CS] and pentosan polysulfate and N-acetyl glucosamine [ie, PPS + NG]). Cells were then stimulated with interleukin-1β and tumor necrosis factor-α to determine prostaglandin (PG) E₂ production and nuclear factor (NF)-κB activation. Chondrocytes proliferated in media used for propagating equine chondrocytes; they produced type II collagen and aggrecan. Cytokine stimulation induced PGE₂ production and translocation of NF-κB. Incubation with each test mixture significantly inhibited PGE₂ production. The combination of ASU + GLU + CS and PPS + NG significantly potentiated PGE₂ inhibition and disrupted NF-κB translocation, compared with effects for either mixture alone. Chondrocytes proliferated without loss of the cartilage phenotype. Responses to cytokines were significantly inhibited by the mixtures of ASU + GLU + CS and PPS + NG, which indicated that this response can be modulated. This culture technique can be used to study the functional properties of camel chondrocytes and identify agents that may potentially be used to treat and manage joint inflammation.
Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horst, M.N.
1990-12-01
Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated;more » a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.« less
Osteoarthritis Year in Review 2015: Clinical
Sharma, Leena
2015-01-01
The purpose of this review is to highlight clinical research in osteoarthritis. A literature search was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) with the search terms “osteoarthritis [All Fields] AND treatment [All Fields]” and the following limits activated: humans, English language, all adult 19+ years, published between April 1, 2014 and April 1, 2015. A second literature search was then conducted with the search terms “osteoarthritis [All Fields] AND epidemiology [All Fields]”, with the same limits. Reports of surgical outcome, case series, surgical technique, tissue sample or culture studies, trial protocols, and pilot studies were excluded. Of 1523, 148 were considered relevant. Among epidemiologic and observational clinical studies, themes included physical activity, early knee OA, and confidence/instability/falls. Symptom outcomes of pharmacologic treatments were reported for methotrexate, adalimumab, anti-nerve growth factor monoclonal antibodies, strontium ranelate, bisphosphonates, glucosamine, and chondroitin sulfate, and structural outcomes of pharmacologic treatments for strontium ranelate, recombinant human fibroblast growth factor 18, and glucosamine and chondroitin sulfate. Symptom outcomes of non-pharmacologic interventions were reported for: neuromuscular exercise, quadriceps strengthening, weight reduction and maintenance, TENS, therapeutic ultrasound, stepped care strategies, cognitive behavior therapy for sleep disturbance, acupuncture, gait modification, booster physical therapy, a web-based therapeutic exercise resource center for knee OA; hip physical therapy for hip OA; and joint protection and hand exercises for hand OA. Structure outcomes of non-pharmacologic interventions were reported for patellofemoral bracing. PMID:26707991
Ferrelli, Francesca; Pastore, Donatella; Capuani, Barbara; Lombardo, Marco F; Blot-Chabaud, Marcel; Coppola, Andrea; Basello, Katia; Galli, Angelica; Donadel, Giulia; Romano, Maria; Caratelli, Sara; Pacifici, Francesca; Arriga, Roberto; Di Daniele, Nicola; Sbraccia, Paolo; Sconocchia, Giuseppe; Bellia, Alfonso; Tesauro, Manfredi; Federici, Massimo; Della-Morte, David; Lauro, Davide
2015-02-01
Diabetic hyperglycaemia causes endothelial dysfunction mainly by impairing endothelial nitric oxide (NO) production. Moreover, hyperglycaemia activates several noxious cellular pathways including apoptosis, increase in reactive oxygen species (ROS) levels and diminishing Na(+)-K(+) ATPase activity which exacerbate vascular damage. Serum glucocorticoid kinase (SGK)-1, a member of the serine/threonine kinases, plays a pivotal role in regulating NO production through inducible NO synthase activation and other cellular mechanisms. Therefore, in this study, we aimed to investigate the protective role of SGK-1 against hyperglycaemia in human umbilical endothelial cells (HUVECs). We used retrovirus to infect HUVECs with either SGK-1, SGK-1Δ60 (lacking of the N-60 amino acids-increase SGK-1 activity) or SGK-1Δ60KD (kinase-dead constructs). We tested our hypothesis in vitro after high glucose and glucosamine incubation. Increase in SGK-1 expression and activity (SGK-1Δ60) resulted in higher production of NO, inhibition of ROS synthesis and lower apoptosis in endothelial cell after either hyperglycaemia or glucosamine treatments. Moreover, in this study, we showed increased GLUT-1 membrane translocation and Na(+)-K(+) ATPase activity in cell infected with SGK-1Δ60 construct. These results suggest that as in endothelial cells, an increased SGK-1 activity and expression reduces oxidative stress, improves cell survival and restores insulin-mediated NO production after different noxae stimuli. Therefore, SGK-1 may represent a specific target to further develop novel therapeutic options against diabetic vascular disease.
Lu, Shih-Chin; Lin, Sung-Chyr
2012-01-05
Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Holroyde, M J; Chesher, J M; Trayer, I P; Walker, D G
1976-01-01
The synthesis of N-(6-aminohexanoyl)-2-amino-2-deoxy-D-glucose is described and it was shown to be a competitive inhibitor (Ki, 0.75 mM) with respect to glucose of rat hepatic glucokinase (EC 2.7.1.2). After attachment to CNBr-activated Sepharose 4B, this derivative was able to remove glucokinase quantitatively from crude liver extracts and release it when the columns were developed with glucose, glucosamine, N-acetyl-glucosamine or KC1. Repeated exposure of the columns to liver extracts led to rapid loss in their effectiveness as affinity matrices because proteins other than glucokinase are bound to the columns. The nature of such protein binding and methods for the rejuvenation of "used" columns are discussed along with the effect of the mode of preparation of the Sepharose-ligand conjugate and the concentration of bound ligand on the purification of glucokinase. Glucose 6-phosphate dehydrogenase is cited as an example of both non-specific protein binding to the affinity column and of the importance of the control of ligand concentration in removing such non-specifically bound proteins. Some guidelines emerged that should be generally applicable to other systems, particularly those which involve affinity chromatography of enzymes that are present in tissue extracts in very low amounts and possess only a relatively low association constant for the immobilized ligand. PMID:1275893
Cold Osmotic Shock in Saccharomyces cerevisiae
Patching, J. W.; Rose, A. H.
1971-01-01
Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201
Świątek, Magdalena A; Urem, Mia; Tenconi, Elodie; Rigali, Sébastien; van Wezel, Gilles P
2012-01-01
N-acetylglucosamine (GlcNAc), the monomer of chitin and constituent of bacterial peptidoglycan, is a preferred carbon and nitrogen source for streptomycetes. Recent studies have revealed new functions of GlcNAc in nutrient signaling of bacteria. Exposure to GlcNAc activates development and antibiotic production of Streptomyces coelicolor under poor growth conditions (famine) and blocks these processes under rich conditions (feast). Glucosamine-6-phosphate (GlcN-6P) is a key molecule in this signaling pathway and acts as an allosteric effector of a pleiotropic transcriptional repressor DasR, the regulon of which includes the GlcNAc metabolic enzymes N-actetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase (NagA) and GlcN-6P deaminase (NagB). Intracellular accumulation of GlcNAc-6P and GlcN-6P enhanced production of the pigmented antibiotic actinorhodin. When the nagB mutant was challenged with GlcNAc or GlcN, spontaneous second-site mutations that relieved the toxicity of the accumulated sugar phosphates were obtained. Surprisingly, deletion of nagA also relieved toxicity of GlcN, indicating novel linkage between the GlcN and GlcNAc utilization pathways. The strongly enhanced antibiotic production observed for many suppressor mutants shows the potential of the modulation of GlcNAc and GlcN metabolism as a metabolic engineering tool toward the improvement of antibiotic productivity or even the discovery of novel compounds.
Ranjbar-Navazi, Zahra; Eskandani, Morteza; Johari-Ahar, Mohammad; Nemati, Ali; Akbari, Hamid; Davaran, Soudabeh; Omidi, Yadollah
2018-03-01
Nanoscaled quantum dots (QDs), with unique optical properties have been used for the development of theranostics. Here, InP/ZnS QDs were synthesised and functionalised with folate (QD-FA), D-glucosamine (QD-GA) or both (QD-FA-GA). The bi-functionalised QDs were further conjugated with doxorubicin (QD-FA-GA-DOX). Optimum Indium to fatty acid (In:MA) ratio was 1:3.5. Transmission electron microscopy (TEM) micrographs revealed spherical morphology for the QDs (11 nm). Energy-dispersive spectroscopy (EDS) spectrum confirmed the chemical composition of the QDs. MTT analysis in the OVCAR-3 cells treated with bare QDs, QD-FA, QD-GA, QD-FA-GA and QD-FA-GA-DOX (0.2 mg/mL of QDs) after 24 h indicated low toxicity for the bare QDs and functionalised QDs (about 80-90% cell viability). QD-FA-GA-DOX nanoparticles elicited toxicity in the cells. Cellular uptake of the engineered QDs were investigated in both folate receptor (FR)-positive OVCAR-3 cells and FR-negative A549 cells using fluorescence microscopy and FACS flow cytometry. The FA-functionalised QDs showed significantly higher uptake in the FR-positive OVCAR-3 cells, nonetheless the GA-functionalised QDs resulted in an indiscriminate uptake in both cell lines. In conclusion, our findings indicated that DOX-conjugated FA-armed QDs can be used as theranostics for simultaneous imaging and therapy of cancer.
Moczar, M; Robert, A M; Jacotot, B; Robert, L
2001-05-01
The effect of an alpha-blocking agent and of a beta-blocking agent on the biosynthesis of extracellular matrix macromolecules of the arterial wall was investigated. Rabbit aorta explants were cultured up to 48 hours with radioactive proline, lysine or glucosamine. In presence of these drugs, at concentration shown to be effective for the inhibition of platelet-endothelial cell interactions (10(-7) M), the incorporation of 14C proline in total macromolecular proline was higher than in macromolecular hydroxyproline suggesting a relatively higher rate of biosynthesis of non-collagenous proteins as compared to collagens. The alpha-blocking increased the incorporation of 14C proline in collagenous and non-collagenous proteins after 18 hours of incubation. beta-blocking also increased the incorporation of proline in macromolecular proline and hydroxyproline as compared to control cultures. Both increased the incorporation of 3H glucosamine in newly synthesised glycosaminoglycans. beta-blocking increased mainly the neosynthesis of heparan sulphate, alpha-blocking that of hyaluronan. The incorporation of 14C-lysine in crosslinked, insoluble elastin was not modified. These experiments confirm that alpha and beta-blocking agents can influence not only the tonus of aortic smooth muscle cells but also the relative rates of biosynthesis of extracellular matrix macromolecules. This effect should be taken in consideration for the evaluation of the long range effect of alpha and beta-blocking drugs on the vascular wall.
Sulfur in human nutrition and applications in medicine.
Parcell, Stephen
2002-02-01
Because the role of elemental sulfur in human nutrition has not been studied extensively, it is the purpose of this article to emphasize the importance of this element in humans and discuss the therapeutic applications of sulfur compounds in medicine. Sulfur is the sixth most abundant macromineral in breast milk and the third most abundant mineral based on percentage of total body weight. The sulfur-containing amino acids (SAAs) are methionine, cysteine, cystine, homocysteine, homocystine, and taurine. Dietary SAA analysis and protein supplementation may be indicated for vegan athletes, children, or patients with HIV, because of an increased risk for SAA deficiency in these groups. Methylsulfonylmethane (MSM), a volatile component in the sulfur cycle, is another source of sulfur found in the human diet. Increases in serum sulfate may explain some of the therapeutic effects of MSM, DMSO, and glucosamine sulfate. Organic sulfur, as SAAs, can be used to increase synthesis of S-adenosylmethionine (SAMe), glutathione (GSH), taurine, and N-acetylcysteine (NAC). MSM may be effective for the treatment of allergy, pain syndromes, athletic injuries, and bladder disorders. Other sulfur compounds such as SAMe, dimethylsulfoxide (DMSO), taurine, glucosamine or chondroitin sulfate, and reduced glutathione may also have clinical applications in the treatment of a number of conditions such as depression, fibromyalgia, arthritis, interstitial cystitis, athletic injuries, congestive heart failure, diabetes, cancer, and AIDS. Dosages, mechanisms of action, and rationales for use are discussed. The low toxicological profiles of these sulfur compounds, combined with promising therapeutic effects, warrant continued human clinical trails.
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-01-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species. PMID:9171426
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-06-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.
The cuticular localization of integument peptides from particular routing categories.
Locke, M; Kiss, A; Sass, M
1994-10-01
The distribution of integument peptides in relation to chitin and structural features has been studied in the surface epidermis of the caterpillar of Calpodes ethlius by immunoblotting and immunogold labelling using antibodies prepared to peptides isolated from lamellate endocuticle or from hemolymph. The intermoult cuticle consists of an epicuticle, an endocuticle of many chitin containing lamellae, and a chitin containing assembly zone directly above the apical epidermal microvilli and the perimicrovillar space. During the intermoult, the epidermis secretes peptides constitutively, that is, secretory vesicles containing peptides exocytose without accumulating, traverse the perimicrovillar space and form lamellae in the assembly zone. At moulting, the epidermis deposits ecdysial droplets in addition. These interrupt the last few lamellae which later go on to become the perforated ecdysial membrane. The integument is involved with four routing classes of peptide. Secretion is apical into the cuticle (C), basal into the hemolymph (H), bidirectional (BD), or transported to the cuticle across the epidermis from the hemolymph (T). Some peptides change their routing at moulting. There are several patterns of localization. (1) C and BD cuticular peptides occur mainly in chitin containing lamellate cuticle. (2) Some are also present in epicuticle, and are therefore not obligatorily linked to chitin or matrix between chitin fibers. Cuticular peptides that also occur in the hemolymph are glycosylated, whereas most that are only secreted apically into the cuticle are not. All BD but few C peptides carry alpha-D-glucose/alpha-D-mannose. Some C and BD peptides carry N-acetyl glucosamine. (3) C36 extracted from cuticle has most N-acetyl glucosamine and colocalizes with chitin rather than the protein matrix. It is therefore probably the main link between chitin fibers and the matrix. (4) H235 is barely detectable at the apical cell surface during the intermoult but is abundant at moulting around and below the ecdysial droplets. (5) T66 occurs in intermoult lamellate cuticle. At moulting, alone among the peptides examined, it is in ecdysial droplets. Intermoult C and BD peptides are not in ecdysial droplets but continue to be present in the ecdysial membrane, suggesting that constitutive secretion is independent from the exocytosis of transported moult peptides. T66 differs from most hemolymph peptides in that it does not carry N-acetyl glucosamine or alpha-D-glucose/alpha-D-mannose. (6) Weakly reacting BD peptides (and some H peptides barely detectable in cuticle) localize near the apical surface. Their distribution therefore favours apical secretion and retrieval as a mechanism for basal secretion.
Jean, M; Smaoui, F; Lavertu, M; Méthot, S; Bouhdoud, L; Buschmann, M D; Merzouki, A
2009-09-01
Growth factor therapy is an emerging treatment modality that enhances tissue vascularization, promotes healing and regeneration and can treat a variety of inflammatory diseases. Both recombinant human growth factor proteins and their gene therapy are in human clinical trials to heal chronic wounds. As platelet-derived growth factor-bb (PDGF-BB) and fibroblast growth factor-2 (FGF-2) are known to induce chemotaxis, proliferation, differentiation, and matrix synthesis, we investigated a non-viral means for gene delivery of these factors using the cationic polysaccharide chitosan. Chitosan is a polymer of glucosamine and N-acetyl-glucosamine, in which the percentage of the residues that are glucosamine is called the degree of deacetylation (DDA). The purpose of this study was to express PDGF-BB and FGF-2 genes in mice using chitosan-plasmid DNA nanoparticles for the controlled delivery of genetic material in a specific, efficient, and safe manner. PDGF-BB and FGF-2 genes were amplified from human tissues by RT-PCR. To increase the secretion of FGF-2, a recombinant 4sFGF-2 was constructed bearing eight amino-acid residues of the signal peptide of FGF-4. PCR products were inserted into the expression vector pVax1 to produce recombinant plasmids pVax1-4sFGF2 and pVax1-PDGF-BB, which were then injected into BALB/C mice in the format of polyelectrolyte nanocomplexes with specific chitosans of controlled DDA and molecular weight, including 92-10, 80-10, and 80-80 (DDA-number average molecular weight or M(n) in kDa). ELISA assays on mice sera showed that recombinant FGF-2 and PDGF-BB proteins were efficiently expressed and specific antibodies to these proteins could be identified in sera of injected mice, but with levels that were clearly dependent on the specific chitosan used. We found high DDA low molecular weight chitosans to be efficient protein expressors with minimal or no generation of neutralizing antibodies, while lowering DDA resulted in greater antibody levels and correspondingly lower levels of detected recombinant protein. Histological analyses corroborated these results by revealing greater inflammatory infiltrates in lower DDA chitosans, which produced higher antibody titers. We found, in general, a more efficient delivery of the plasmids by subcutaneous than by intramuscular injection. Specific chitosan carriers were identified to be either efficient non-toxic therapeutic protein delivery systems or vectors for DNA vaccines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.
2009-12-01
This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate componentsmore » can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djovkar, A.; Gressner, A.M.
1987-03-01
The synthesis of proteoheparan sulfate in hepatocytes is positively regulated under acute-phase conditions produced either by turpentine or deep back incision. In both cases the incorporation of (/sup 35/S)sulfate and (/sup 14/C)glucosamine is doubled during a 4-h incubation period if compared with control rat hepatocytes. Neither the fractional secretion rate of heparan sulfate into the medium (less than 0.1 of cell-associated glycosaminoglycans) nor the composition of newly formed proteoglycans in hepatocytes are affected during acute phase reaction.
The Antemortem Detection and Conformational Switches of Prion Proteins
2006-07-01
distribution of di-, mono-, and unglycosylated PrPC molecules (Fig. 7B, lane 2). Subsequent elution of the column with N-acetyl glucosamine yielded...pellet was washed in 50 mM Tris, pH 8.0, 150 mM NaCl, and then solubilized in 6 M guanidinium hydrochloride , 50 mM Tris pH 8.0, 150 mM NaCl. The...and 150mM sodium chloride (TCl) containing 6M guanidinium hydrochloride . The supernatant was centrifuged for 30min at 18,000g. The protein was
PAPER-CHROMATOGRAM MEASUREMENT OF SUBSTANCES LABELLED WITH H$sup 3$ (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, M.
1961-03-01
Compounds labelled with H/sup 3/ can be detected with a paper chromatogram using a methane flow counter with a count yield of 1%. The yield can be estimated from the beta maximum energy. A new double counter was developed which increases the count yield to 2% and also considerably decreases the margin of error. Calibration curves with leucine and glucosamine show satisfactory linearity between measured and applied activity in the range from 4 to 50 x 10/sup -//sup 3/ mu c of H/sup 3/. (auth)
Yang, You; Li, Yao; Yu, Biao
2009-09-02
TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.
Identification of rat serum alkaline phosphatase isoenzyme by means of wheat germ agglutinin.
Wada, H; Niwa, N; Hayakawa, T; Tsuge, H
1997-01-01
Wheat germ agglutinin (WGA) precipitates bone type serum alkaline phosphatase (sALP) isoenzyme specifically. The precipitates are composed of the macromolecules of WGA and "bone type sALP" (WGA-ALP complex). In order to use bone type sALP as a marker in polyacrylamide gel electrophoresis (PAGE), a method to separate "bone type sALP" from the "WGA-ALP complex" was established by using N-acetyl-D-glucosamine (GlcNAc)-Sepharose 6E column chromatography. It was concluded that this method is useful for clinical examination in the rat.
Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T.; Mummalaneni, Shobha; DeSimone, John A.
2008-01-01
Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t. PMID:18603652
Zhou, Ligang; Yueh, Chen-Yu; Lam, Daniel D; Shaw, Jill; Osundiji, Mayowa; Garfield, Alastair S; Evans, Mark; Heisler, Lora K
2011-09-12
Maintaining glucose levels within the appropriate physiological range is necessary for survival. The identification of specific neuronal populations, within discreet brain regions, sensitive to changes in glucose concentration has led to the hypothesis of a central glucose-sensing system capable of directly modulating feeding behaviour. Glucokinase (GK) has been identified as a glucose-sensor responsible for detecting such changes both within the brain and the periphery. We previously reported that antagonism of centrally expressed GK by administration of glucosamine (GSN) was sufficient to induce protective glucoprivic feeding in rats. Here we examine a neurochemical mechanism underlying this effect and report that GSN stimulated food intake is highly correlated with the induction of the neuronal activation marker cFOS within two nuclei with a demonstrated role in central glucose sensing and appetite, the arcuate nucleus of the hypothalamus (ARC) and lateral hypothalamic area (LHA). Furthermore, GSN stimulated cFOS within the ARC was observed in orexigenic neurons expressing the endogenous melanocortin receptor antagonist agouti-related peptide (AgRP) and neuropeptide Y (NPY), but not those expressing the anorectic endogenous melanocortin receptor agonist alpha-melanocyte stimulating hormone (α-MSH). In the LHA, GSN stimulated cFOS was found within arousal and feeding associated orexin/hypocretin (ORX), but not orexigenic melanin-concentrating hormone (MCH) expressing neurons. Our data suggest that GK within these specific feeding and arousal related populations of AgRP/NPY and ORX neurons may play a modulatory role in the sensing of and appetitive response to hypoglycaemia. Copyright © 2011 Elsevier B.V. All rights reserved.
Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki
2013-01-01
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760
The envelopes of amphibian oocytes: physiological modifications in Bufo arenarum.
Barisone, Gustavo A; Albertali, Isabel E; Sánchez, Mercedes; Cabada, Marcelo O
2003-02-11
A characterization of the Amphibian Bufo arenarum oocyte envelope is presented. It was made in different functional conditions of the oocyte: 1) when it has been released into the coelomic cavity during ovulation (surrounded by the coelomic envelope, (CE), 2) after it has passed through the oviduct and is deposed (surrounded by the viteline envelope, (VE), and 3) after oocyte activation (surrounded by the fertilization envelope, (FE). The characterization was made by SDS-PAGE followed by staining for protein and glycoproteins. Labeled lectins were used to identify glycosidic residues both in separated components on nitrocellulose membranes or in intact oocytes and embryos. Proteolytic properties of the content of the cortical granules were also analyzed. After SDS-PAGE of CE and VE, a different protein pattern was observed. This is probably due to the activity of a protease present in the pars recta of the oviduct. Comparison of the SDS-PAGE pattern of VE and FE showed a different mobility for one of the glycoproteins, gp75. VE and FE proved to have different sugar residues in their oligosaccharide chains. Mannose residues are only present in gp120 of the three envelopes. N-acetyl-galactosamine residues are present in all of the components, except for gp69 in the FE. Galactose residues are present mainly in gp120 of FE. Lectin-binding assays indicate the presence of glucosamine, galactose and N-acetyl galactosamine residues and the absence (or non-availability) of N-acetyl-glucosamine or fucose residues on the envelopes surface. The cortical granule product (CGP) shows proteolytic activity on gp75 of the VE.
The envelopes of amphibian oocytes: physiological modifications in Bufo arenarum
Barisone, Gustavo A; Albertali, Isabel E; Sánchez, Mercedes; Cabada, Marcelo O
2003-01-01
A characterization of the Amphibian Bufo arenarum oocyte envelope is presented. It was made in different functional conditions of the oocyte: 1) when it has been released into the coelomic cavity during ovulation (surrounded by the coelomic envelope, (CE), 2) after it has passed through the oviduct and is deposed (surrounded by the viteline envelope, (VE), and 3) after oocyte activation (surrounded by the fertilization envelope, (FE). The characterization was made by SDS-PAGE followed by staining for protein and glycoproteins. Labeled lectins were used to identify glycosidic residues both in separated components on nitrocellulose membranes or in intact oocytes and embryos. Proteolytic properties of the content of the cortical granules were also analyzed. After SDS-PAGE of CE and VE, a different protein pattern was observed. This is probably due to the activity of a protease present in the pars recta of the oviduct. Comparison of the SDS-PAGE pattern of VE and FE showed a different mobility for one of the glycoproteins, gp75. VE and FE proved to have different sugar residues in their oligosaccharide chains. Mannose residues are only present in gp120 of the three envelopes. N-acetyl-galactosamine residues are present in all of the components, except for gp69 in the FE. Galactose residues are present mainly in gp120 of FE. Lectin-binding assays indicate the presence of glucosamine, galactose and N-acetyl galactosamine residues and the absence (or non-availability) of N-acetyl-glucosamine or fucose residues on the envelopes surface. The cortical granule product (CGP) shows proteolytic activity on gp75 of the VE. PMID:12694627
Bulik, Dorota A; Olczak, Mariusz; Lucero, Hector A; Osmond, Barbara C; Robbins, Phillips W; Specht, Charles A
2003-10-01
In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.
Glucosamine Activates Autophagy In Vitro and In Vivo
Caramés, Beatriz; Kiosses, William B.; Akasaki, Yukio; Brinson, Diana C.; Eap, William; Koziol, James; Lotz, Martin K.
2013-01-01
Objectives Aging-associated changes in articular cartilage represent a main Osteoarthritis (OA) risk factor. Autophagy is an essential cellular homeostasis mechanism. Aging-associated or experimental defects in autophagy contribute to organismal and tissue specific aging while enhancement of autophagy may protect against certain aging related pathologies such as OA. The objective of this study was to determine whether glucosamine (GlcN) could activate autophagy. Methods Chondrocytes from normal human articular cartilage were treated with GlcN (0.1-10 mM). Autophagy activation and phosphorylation levels of Akt, FoxO3 and ribosomal protein S6 (prbS6) were determined by Western blotting. Autophagosome formation was analyzed by microscopy. Transgenic reporter mice with green fluorescent protein fused to LC3 (GFP-LC3 mice) were used to test changes in autophagy in response to starvation and GlcN administration. Results GlcN treatment of chondrocytes activated autophagy as indicated by increased of LC3-II levels, formation of LC3 puncta and increased LC3 turnover. This was associated with GlcN-mediated inhibition of Akt, FoxO3 and mTOR pathway. Administration of GlcN to GFP-LC3 mice markedly activated autophagy in articular cartilage. Conclusions GlcN modulates molecular targets of the autophagy pathway in vitro and in vivo and the enhancement of autophagy was mainly dependent on the Akt/FoxO and mTOR pathway. These findings suggest that GlcN is an effective autophagy activator and motivate future studies on its efficacy in modifying aging-related cellular changes and supporting joint health. PMID:23606170
Gu, Hanna; Song, Mina; Boonanantanasarn, Kanitsak; Baek, Kyunghwa; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa
2018-01-09
Hyperglycemic conditions in diabetic patients can affect various cellular functions, including the modulation of osteogenic differentiation. However, the molecular mechanisms by which hyperglycemia affects osteogenic differentiation are yet to be clarified. This study aimed to investigate whether the aberrant increase in protein O -linked-β- N -acetylglucosamine glycosylation ( O -GlcNAcylation) contributes to the suppression of osteogenic differentiation due to hyperglycemia. To induce osteogenic differentiation, C2C12 cells were cultured in the presence of recombinant human bone morphogenetic protein 2 (BMP2). Excessive protein O -GlcNAcylation was induced by treating C2C12 cells with high glucose, glucosamine, or N -acetylglucosamine concentrations or by O -GlcNAc transferase (OGT) overexpression. The effect of O -GlcNAcylation on osteoblast differentiation was then confirmed by examining the expression levels of osteogenic marker gene mRNAs, activity of alkaline phosphatase, and transcriptional activity of Runx2, a critical transcription factor for osteoblast differentiation and bone formation. Cell treatment with high glucose, glucosamine or N -acetylglucosamine increased O -GlcNAcylation of Runx2 and the total levels of O -GlcNAcylated proteins, which led to a decrease in the transcriptional activity of Runx2, expression levels of osteogenic marker genes (Runx2, osterix, alkaline phosphatase, and type I collagen), and activity of alkaline phosphatase. These inhibitory effects were rescued by lowering protein O -GlcNAcylation levels by adding STO45849, an OGT inhibitor, or by overexpressing β- N -acetylglucosaminidase. Our findings suggest that excessive protein O -GlcNAcylation contributes to high glucose-suppressed osteogenic differentiation.
Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita
2018-04-03
Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.
Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon
2010-01-01
Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364
Nanostructured Lipid Carrier for Topical Application of N-Acetyl Glucosamine.
Aliasgharlou, Lavin; Ghanbarzadeh, Saeed; Azimi, Hamideh; Zarrintan, Mohammad Hossein; Hamishehkar, Hamed
2016-12-01
Purpose: Hyperpigmentation occurs when melanin is overproduced in certain spots on the skin and is one of the most challenging skin conditions to treat. Although it is usually harmless, for cosmetic reasons, it is dreadfully bothersome to those who undergo it. It was reported that N-acetyl-glucosamine (NAGA) prevents melanin synthesis and alters the expression of numerous genes related to pigmentation. In spite of these advantages, NAGA cannot be employed in topical formulations due to its extremely polar characteristics. Nanoparticles, especially lipid-based ones, have been introduced as an efficient carrier for dermal drug delivery. Methods: The aim of the present study was to load adequate hydrophilic NAGA to the lipophilic nanostructured lipid carriers (NLCs) for potential dermal application. NAGA-loaded NLCs were formulated, using hot homogenization technique, and the characteristics of the optimized formulation were analyzed by laser light scattering, X-ray diffraction, and scanning electron microscopy methods. Loading capacity percentage and in vitro release study were carried out by applying a validated HPLC method. The optimum formulation was utilized for the in vivo skin lightening evaluations in healthy volunteers. Results: NAGA-loaded NLCs demonstrated promising results (the size of 190 nm, narrow size distribution, loading capacity of 9%, and appropriate NAGA release profile) suitable for dermal delivery. XRD results exhibited a dramatic reduction in the crystalline structure of encapsulated NAGA. Dermoscopy images indicated a considerable decline in melanin distribution pattern in the majority of the cases treated with NAGA-loaded NLCs. Conclusion: Thus, this study has opened new horizons for the potential use of lipid based nanoparticles in the managing of hyperpigmentation.
The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix.
Gundogdu, Mehmet; Llabrés, Salomé; Gorelik, Andrii; Ferenbach, Andrew T; Zachariae, Ulrich; van Aalten, Daan M F
2018-05-17
O-linked β-N-acetyl- D -glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Netzer, Florian; Herschbach, Cornelia; Oikawa, Akira; Okazaki, Yozo; Dubbert, David; Saito, Kazuki; Rennenberg, Heinz
2018-01-01
Phosphorus (P) is one of the most important macronutrients limiting plant growth and development, particularly in forest ecosystems such as temperate beech ( Fagus sylvatica ) forests in Central Europe. Efficient tree internal P cycling during annual growth is an important strategy of beech trees to adapt to low soil-P. Organic P (P org ) is thought to play a decisive role in P cycling, but the significance of individual compounds and processes has not been elucidated. To identify processes and metabolites involved in P cycling of beech trees, polar-metabolome and lipidome profiling was performed during annual growth with twig tissues from a sufficient (Conventwald, Con) and a low-soil-P (Tuttlingen, Tut) forest. Autumnal phospholipid degradation in leaves and P export from senescent leaves, accumulation of phospholipids and glucosamine-6-phosphate (GlcN6P) in the bark, storage of N-acetyl-D-glucosamine-6-phosphate (GlcNAc6P) in the wood, and establishing of a phospholipid "start-up capital" in buds constitute main processes involved in P cycling that were enhanced in beech trees on low-P soil of the Tut forest. In spring, mobilization of P from storage pools in the bark contributed to an effective P cycling. Due to the higher phospholipid "start-up capital" in buds of Tut beeches, the P metabolite profile in developing leaves in spring was similar in beech trees of both forests. During summer, leaves of Tut beeches meet their phosphate (P i ) needs by replacing phospholipids by galacto- and sulfolipids. Thus, several processes contribute to adequate P i supply on P impoverished soil thereby mediating similar growth of beech at low and sufficient soil-P availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bame, K.J.
1986-01-01
Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less
Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram
2009-12-11
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Little, Dustin J.; Bamford, Natalie C.; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P. Lynne
2014-01-01
Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni2+, Co2+, and Zn2+. From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci. PMID:25359777
Bao, Lei; Cai, Xiaxia; Zhang, Zhaofeng; Li, Yong
2015-01-14
Grape seed procyanidin B2 (GSPB2), an antioxidative and anti-inflammatory polyphenol in grape seed, has been found to have protective effects on diabetic nephropathy. Based on its favourable biological activities, in the present study, we aimed to investigate whether GSPB2 could inhibit apoptosis in rat mesangial cells treated with glucosamine (GlcN) under high-dose conditions. The results showed that the administration of GSPB2 (10 μg/ml) significantly increased the viability of mesangial cells treated with GlcN at a dose of 15 mM. We found that GSPB2 inhibited apoptosis in mesangial cells using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphates (dUTP) nick-end labelling staining and flow cytometry technique (P< 0·05 for both). GSPB2 treatment also suppressed oxidative stress by elevating the activity of glutathione peroxidase (P< 0·05) and superoxide dismutase (P< 0·01), as well as prevented cellular damage. GSPB2 enhanced the mRNA expression of nuclear respiratory factor 1, mitochondrial transcription factor A and mitochondrial DNA copy number in mesangial cells as determined by real-time PCR (P< 0·05 for each). Finally, GSPB2 treatment activated the protein expression of PPARγ co-activator-1α (PGC-1α), silent mating type information regulation 2 homologue 1 (SIRT1) and AMP-activated protein kinase (AMPK) in mesangial cells. These findings suggest that GSPB2 markedly ameliorates mitochondrial dysfunction and inhibits apoptosis in rat mesangial cells treated with high-dose GlcN. This protective effect could be, at least in part, due to the activation of the AMPK-SIRT1-PGC-1α axis.
Toegel, S; Wu, S Q; Piana, C; Unger, F M; Wirth, M; Goldring, M B; Gabor, F; Viernstein, H
2008-10-01
To compare the effects of glucosamine (GlcN), curcumin, and diacerein in immortalized human C-28/I2 chondrocytes at the cellular and the gene expression level. This study aimed to provide insights into the proposed beneficial effects of these agents and to assess the applicability of the C-28/I2 cell line as a model for the evaluation of chondroprotective action. Interleukin-1beta (IL-1beta)-stimulated C-28/I2 cells were cultured in the presence of GlcN, curcumin, and diacerein prior to the evaluation of parameters such as viability, morphology and proliferation. The impact of GlcN, curcumin, and diacerein on gene expression was determined using quantitative real-time RT-PCR (qPCR). At the transcriptional level, 5 mM GlcN and 50 microM diacerein increased the expression of cartilage-specific genes such as aggrecan (AGC) and collagen type II (COL2), while reducing collagen type I (COL1) mRNA levels. Moreover, the IL-1beta-mediated shift in gene expression pattern was antagonized by GlcN and diacerein. These effects were associated with a significant reduction in cellular proliferation and the development of chondrocyte-specific cell morphology. In contrast, curcumin was not effective at lower concentrations but even damaged the cells at higher amounts. Both GlcN and diacerein promoted a differentiated chondrocytic phenotype of immortalized human C-28/I2 chondrocytes by altering proliferation, morphology, and COL2/COL1 mRNA ratios. Moreover, both agents antagonized inhibitory effects of IL-1beta by enhancing AGC and COL2 as well as by reducing COL1 mRNA levels.
Sansalone, Salvatore; Leonardi, Rosario; Antonini, Gabriele; Vitarelli, Antonio; Vespasiani, Giuseppe
2014-01-01
We aimed to evaluate the efficacy of oral therapy with alga Ecklonia bicyclis, Tribulus terrestris, and glucosamine oligosaccharide (Tradamix TX1000) in patients with erectile dysfunction (ED) at 3 months of follow-up. From January 2013 to September 2013, 177 patients diagnosed with mild-moderate ED (IIEF-EF < 26) were enrolled in this multicenter, single-blinded, placebo-controlled study and randomized in Group A (Tradamix, n = 87) and Group B (placebo, n = 90). Penile color Doppler ultrasound measures, IIEF-15 questionnaire, male sexual health questionnaire-ejaculation disorder (MSHQ-EjD), and sexual quality of life (SQoL-M) were collected. We observed significant changes of the IIEF-15 in Group A (mean difference: 11.54; P < 0.05) at 3 months versus Group B (P < 0.05). PSV (P < 0.05), IIEF-intercourse satisfaction (P < 0.05), IIEF-orgasmic function (mean P < 0.05), IIEF-sexual desire (P < 0.05), IIEF-overall satisfaction (P < 0.05), MSHQ-EjD (mean difference: 1.21; P < 0.05), and SQoL-M (mean difference: 10.2; P < 0.05) were significantly changed in Group A versus baseline and Group B. Patients with moderate arterial dysfunction showed significant increase of PSV (P < 0.05), IIEF-EF (P < 0.05), MSHQ-EjD (P < 0.05), and SQoL-M (P < 0.05) in Group A. Therapy with Tradamix improves erectile and ejaculation function and sexual quality of life in patients with mild-moderate ED and in particular for those with moderate arterial dysfunction. PMID:25136552
Sansalone, Salvatore; Leonardi, Rosario; Antonini, Gabriele; Vitarelli, Antonio; Vespasiani, Giuseppe; Basic, Dragoslav; Morgia, Giuseppe; Cimino, Sebastiano; Russo, Giorgio Ivan
2014-01-01
We aimed to evaluate the efficacy of oral therapy with alga Ecklonia bicyclis, Tribulus terrestris, and glucosamine oligosaccharide (Tradamix TX1000) in patients with erectile dysfunction (ED) at 3 months of follow-up. From January 2013 to September 2013, 177 patients diagnosed with mild-moderate ED (IIEF-EF < 26) were enrolled in this multicenter, single-blinded, placebo-controlled study and randomized in Group A (Tradamix, n = 87) and Group B (placebo, n = 90). Penile color Doppler ultrasound measures, IIEF-15 questionnaire, male sexual health questionnaire-ejaculation disorder (MSHQ-EjD), and sexual quality of life (SQoL-M) were collected. We observed significant changes of the IIEF-15 in Group A (mean difference: 11.54; P < 0.05) at 3 months versus Group B (P < 0.05). PSV (P < 0.05), IIEF-intercourse satisfaction (P < 0.05), IIEF-orgasmic function (mean P < 0.05), IIEF-sexual desire (P < 0.05), IIEF-overall satisfaction (P < 0.05), MSHQ-EjD (mean difference: 1.21; P < 0.05), and SQoL-M (mean difference: 10.2; P < 0.05) were significantly changed in Group A versus baseline and Group B. Patients with moderate arterial dysfunction showed significant increase of PSV (P < 0.05), IIEF-EF (P < 0.05), MSHQ-EjD (P < 0.05), and SQoL-M (P < 0.05) in Group A. Therapy with Tradamix improves erectile and ejaculation function and sexual quality of life in patients with mild-moderate ED and in particular for those with moderate arterial dysfunction.
Bailey, D S; Burke, J; Sinclair, R; Mukherjee, B B
1981-01-01
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis. PMID:7306042
Bascoul-Colombo, Cécile; Garaiova, Iveta; Plummer, Sue F.; Harwood, John L.; Caterson, Bruce; Hughes, Clare E
2016-01-01
Objective Glucosamine hydrochloride (GH) and chondroitin sulfate (CS) are commonly used for the treatment of osteoarthritis (OA). The aim of this study was to assess their effects, alone and in combination, on preventing aggrecan degradation and inflammation in an in vitro model of OA. Design To test the effects of GH and/or CS as a preventative treatment, cartilage explants were pretreated with the compound(s) using concentrations that showed no detrimental effect on chondrocyte viability. Interleukin-1α (IL-1α) was added to induce cartilage degradation, supernatant and explants were analyzed for proteoglycan degradation products, aggrecanase mRNA expression and activity, and for the release of inflammatory markers. Results Following treatment with IL-1α, 2 mg/mL dose of GH pretreatment was associated with a reduction of glycosaminoglycan release, reduced generation of the pathological interglobular domain aggrecan catabolites, decreased mRNA levels of ADAMTS-4 and -5 and reduced activity of ADAMTS-4. In contrast, CS alone did not have a significant effect on IL-1α-induced cartilage degradation and the addition of 0.4 mg/mL CS to 2 mg/mL GH did not further inhibit IL-1α-induced activity. Pretreatment with 2 mg/mL GH also reduced the release of inflammatory markers, prostaglandin E2 and nitric oxide induced by IL-1α while CS did not have a significant effect. Conclusions The results suggest that GH prevents cartilage degradation mediated by aggrecanases ADAMTS-4 and -5, and may also reduce inflammation. This could be part of the mechanisms by which GH is effective in maintaining joint integrity and function, and preventing or delaying early symptoms of OA. PMID:26958319
Starzyńska-Janiszewska, Anna; Stodolak, Bożena; Wikiera, Agnieszka
2015-01-01
Tempeh is a food product obtained from legumes by means of solid-state fermentation with Rhizopus sp. Our previous research proved that mixed-culture inoculum may also be successfully applied. The objective of present research was to study the proteolytic activity of R. microsporus var. chinensis and A. oryzae during tempeh-type fermentation of grass pea seeds, and the effect of inoculum composition on the protein level and in vitro protein bioavailability in products. Fermentation substrate were soaked and cooked grass pea seeds. Material was mixed with single- or mixed-culture inoculum, and incubated in perforated plastic bags at 30°C for 32 hrs. In the products, the proteolytic activity (pH 3, 5 and 7), glucosamine, total protein and free amino acids levels, as well as protein in vitro bioavailability and degree of protein hydrolysis were obtained. The significant correlation was found between glucosamine content and proteolytic activity in grass pea seeds fermented with Rhizopus or Aspergillus. The activities of Rhizopus proteases were higher than Aspergillus ones, which corresponded with the degree of seed protein hydrolysis. Both strains showed the highest activity of protease at pH 3. Tempeh made with pure culture of Rhizopus had 37% protein of 69% in-vitro bioavailability. Mixed-culture fermentation improved nutritional parameters of products only when the dose of Aspergillus spores in the inoculum was equal and lower than that of Rhizopus. This process resulted in higher in-vitro bioavailability of protein, slightly more efficient protein hydrolysis and higher level of free amino acids, as compared to standard tempeh. The activity of A. oryzae in tempeh-type fermentation is beneficial as long as it does not dominate the activity and/or growth of Rhizopus strain.
Sanches, Marcella; Assis, Lívia; Criniti, Cyntia; Fernandes, Danilo; Tim, Carla; Renno, Ana Claudia Muniz
2018-04-01
The aim of this study was to compare the effects of combined treatment with chondroitin sulfate and glucosamine sulfate (CS/Gl) and photobiomodulation (PBM) on the degenerative process related to osteoarthritis (OA) in the articular cartilage in rats. Forty male Wistar rats were randomly divided into four groups: OA control group (CG); OA animals submitted to PBM treatment (PBM); OA animals submitted to CS/Gl treatment (CS/Gl); OA submitted to CS/GS associated with PBM treatments (GS/Gl + PBM). The CS/Gl started 48 h after the surgery, and they were performed for 29 consecutive days. Moreover, PBM was performed after the CS/Gl administration on the left joint. Morphological characteristics and immunoexpression of interleukin 10 (IL-10) and 1 beta (IL-1β) and collagen type II (Col II) of the articular cartilage were evaluated. The results showed that all treated groups (CS/Gl and PBM) presented attenuation signs of degenerative process (measured by histopathological analysis) and lower density chondrocytes [PBM (p = 0.0017); CS/Gl (p = 0.0153) and CS/Gl + PBM (p = 0.002)]. Additionally, CS/Gl [associated (p = 0.0089) or not with PBM (p = 0.0059)] showed significative lower values for OARSI grade evaluation. Furthermore, CS/GS + PBM decreased IL-1β protein expression (p = 0.0359) and increased IL-10 (p = 0.028) and Col II imunoexpression (p = 0.0204) compared to CG. This study showed that CS/Gl associated with PBM was effective in modulating inflammatory process and preventing the articular tissue degradation in the knees OA rats.
Elephant’s breast milk contains large amounts of glucosamine
TAKATSU, Zenta; TSUDA, Muneya; YAMADA, Akio; MATSUMOTO, Hiroshi; TAKAI, Akira; TAKEDA, Yasuhiro; TAKASE, Mitsunori
2016-01-01
Hand-reared elephant calves that are nursed with milk substitutes sometimes suffer bone fractures, probably due to problems associated with nutrition, exercise, sunshine levels and/or genetic factors. As we were expecting the birth of an Asian elephant (Elephas maximus), we analyzed elephant’s breast milk to improve the milk substitutes for elephant calves. Although there were few nutritional differences between conventional substitutes and elephant’s breast milk, we found a large unknown peak in the breast milk during high-performance liquid chromatography-based amino acid analysis and determined that it was glucosamine (GlcN) using liquid chromatography/mass spectrometry. We detected the following GlcN concentrations [mean ± SD] (mg/100 g) in milk hydrolysates produced by treating samples with 6M HCl for 24 hr at 110°C: four elephant’s breast milk samples: 516 ± 42, three cow’s milk mixtures: 4.0 ± 2.2, three mare’s milk samples: 12 ± 1.2 and two human milk samples: 38. The GlcN content of the elephant’s milk was 128, 43 and 14 times greater than those of the cow’s, mare’s and human milk, respectively. Then, we examined the degradation of GlcN during 0–24 hr hydrolyzation with HCl. We estimated that elephant’s milk contains >880 mg/100 g GlcN, which is similar to the levels of major amino acids in elephant’s milk. We concluded that a novel GlcN-containing milk substitute should be developed for elephant calves. The efficacy of GlcN supplements is disputed, and free GlcN is rare in bodily fluids; thus, the optimal molecular form of GlcN requires a further study. PMID:28049867
Peluso, Rosario; Caso, Francesco; Costa, Luisa; Sorbo, Dario; Carraturo, Nello; Di Minno, Matteo Nicola Dario; Carraturo, Federica; Oriente, Alfonso; Balestrieri, Umberto; Minicucci, Annamaria; Del Puente, Antonio; Scarpa, Raffaele
2016-01-01
To evaluate the efficacy and safety of combined treatment of mud-bath therapy and glucosamine crystalline sulfate (GlcN-S) in patients with knee osteoarthritis (OA). This study was a randomised, controlled, crossover investigation. Patients were randomly assigned (1:1) by the investigators to two groups, named group 1 and 2. Group 1 included twenty-three patients receiving oral GlcN-S treatment from the beginning of the study (T0) to the end of the 3rd month of treatment (T3) and a combined treatment of both mud-bath therapy and GlcN-S from T3 to the end of the study at six months (T6). Group 2 included twenty-two patients receiving a combined treatment of both mud-bath therapy and GlcN-S from T0 to T3 and that discontinued mud-bath therapy, receiving GlcN-S treatment alone, from T3 to T6. Primary endpoints of the study consisted of evaluating OA severity and activity at baseline and at follow-up visits. All 45 patients, eligible for the study, completed the period of the crossover. In group 1, no significant difference was shown in the comparison from T0 to T3, while from T3 to T6 most variables were significantly improved. In group 2, instead, the comparison between T0 and T3 showed a significant difference in different parameters. When comparing T3 and T6, despite an improvement of all the variables, no significant difference was shown. The association of GlcN-S and mud-bath therapy has a positive and safe role in improving pain, function and quality of life in knee OA patients.
N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
Gaderer, Romana; Seidl-Seiboth, Verena; de Vries, Ronald P; Seiboth, Bernhard; Kappel, Lisa
2017-10-01
N-acetylglucosamine (GlcNAc) is the monomer of the polysaccharide chitin, an essential structural component of the fungal cell wall and the arthropod exoskeleton. We recently showed that the genes encoding the enzymes for GlcNAc catabolism are clustered in several ascomycetes. In the present study we tested these fungi for growth on GlcNAc and chitin. All fungi, containing the GlcNAc gene cluster, could grow on GlcNAc with the exception of four independent Neurospora crassa wild-type isolates, which were however able to grow on chitin. GlcNAc even inhibited their growth in the presence of other carbon sources. Genes involved in GlcNAc catabolism were strongly upregulated in the presence of GlcNAc, but during growth on chitin their expression was not increased. Deletion of hxk-3 (encoding the first catabolic enzyme, GlcNAc-hexokinase) and ngt-1 (encoding the GlcNAc transporter) improved growth of N. crassa on GlcNAc in the presence of glycerol. A crucial step in GlcNAc catabolism is enzymatic conversion from glucosamine-6-phosphate to fructose-6-phosphate, catalyzed by the glucosamine-6-phosphate deaminase, DAM-1. To assess, if DAM-1 is compromised in N. crassa, the orthologue from Trichoderma reesei, Trdam1, was expressed in N. crassa. Trdam1 expression partially alleviated the negative effects of GlcNAc in the presence of a second carbon source, but did not fully restore growth on GlcNAc. Our results indicate that the GlcNAc-catabolism pathway is bypassed during growth of N. crassa on chitin by use of an alternative pathway, emphasizing the different strategies that have evolved in the fungal kingdom for chitin utilization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi
2016-10-01
This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.
Gomes, Angélica M.; Kozlowski, Eliene O.; Pomin, Vitor H.; de Barros, Cintia Monteiro; Zaganeli, José L.; Pavão, Mauro S. G.
2010-01-01
Heparin-like glycans with diverse disaccharide composition and high anticoagulant activity have been described in several families of marine mollusks. The present work focused on the structural characterization of a new heparan sulfate (HS)-like polymer isolated from the mollusk Nodipecten nodosus (Linnaeus, 1758) and on its anticoagulant and antithrombotic properties. Total glycans were extracted from the mollusk and fractionated by ethanol precipitation. The main component (>90%) was identified as HS-like glycosaminoglycan, representing ∼4.6 mg g−1 of dry tissue. The mollusk HS resists degradation with heparinase I but is cleaved by nitrous acid. Analysis of the mollusk glycan by one-dimensional 1H, two-dimensional correlated spectroscopy, and heteronuclear single quantum coherence nuclear magnetic resonance revealed characteristic signals of glucuronic acid and glucosamine residues. Signals corresponding to anomeric protons of nonsulfated, 3- or 2-sulfated glucuronic acid as well as N-sulfated and/or 6-sulfated glucosamine were also observed. The mollusk HS has an anticoagulant activity of 36 IU mg−1, 5-fold lower than porcine heparin (180 IU mg−1), as measured by the activated partial thromboplastin time assay. It also inhibits factor Xa (IC50 = 0.835 μg ml−1) and thrombin (IC50 = 9.3 μg ml−1) in the presence of antithrombin. In vivo assays demonstrated that at the dose of 1 mg kg−1, the mollusk HS inhibited thrombus growth in photochemically injured arteries. No bleeding effect, factor XIIa-mediated kallikrein activity, or toxic effect on fibroblast cells was induced by the invertebrate HS at the antithrombotic dose. PMID:20053999
Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang
2018-08-05
N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.
Matos, Liliana; Canals, Isaac; Dridi, Larbi; Choi, Yoo; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Pshezhetsky, Alexey V; Grinberg, Daniel; Alves, Sandra; Vilageliu, Lluïsa
2014-12-10
Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.
Al-Kurdi, Zakieh I; Chowdhry, Babur Z; Leharne, Stephen A; Qinna, Nidal A; Al Omari, Mahmoud MH; Badwan, Adnan A
2015-01-01
The aim of the work reported herein was to study the effect of glucosamine HCl (GlcN·HCl) on the bioactivity (BA) of insulin, administered via subcutaneous (SC) and oral routes, in adult male Sprague Dawley rats. The oral insulin delivery system (insulin–chitosan reverse micelle [IC-RM]) was prepared by solubilizing insulin–chitosan (13 kDa) polyelectrolyte complex in a RM system consisting of oleic acid, PEG-8 caprylic/capric glycerides, and polyglycerol-6-dioleate. The BA of insulin in vivo was evaluated by measuring blood glucose level using a blood glucose meter; the results revealed that the extent of hypoglycemic activity of SC insulin was GlcN·HCl dose dependent when they were administered simultaneously. A significant reduction in blood glucose levels (P<0.05) was found for the insulin:GlcN·HCl at mass ratios of 1:10 and 1:20, whereas lower ratios (eg, 1:1 and 1:4) showed no significant reduction. Furthermore, enhancement of the action of SC insulin was achieved by oral administration of GlcN·HCl for 5 consecutive days prior to insulin injection (P<0.05). For oral insulin administration via the IC-RM system, the presence of GlcN·HCl increased the hypoglycemic activity of insulin (P<0.05). The relative BA were 6.7% and 5.4% in the presence and absence of GlcN·HCl (ie, the increase in the relative BA was approximately 23% due to incorporating GlcN·HCl in the IC-RM system), respectively. The aforementioned findings offer an opportunity to incorporate GlcN·HCl in oral insulin delivery systems in order to enhance a reduction in blood glucose levels. PMID:26640369
Maira-Litrán, Tomás; Kropec, Andrea; Goldmann, Donald A; Pier, Gerald B
2005-10-01
Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPNAG; 15% acetylation) were conjugated to the carrier protein diphtheria toxoid (DT) and used to immunize animals. Mice responded in a dose-dependent fashion to both conjugate vaccines, with maximum antibody titers observed at the highest dose and 4 weeks after the last of three weekly immunizations. PNAG-DT and dPNAG-DT vaccines were also very immunogenic in rabbits. Antibodies raised to the conjugate vaccines in rabbits mediated the opsonic killing of various staphylococcal strains, but the specificity of the opsonic killing was primarily to dPNAG, as this antigen inhibited the killing of S. aureus strains by both PNAG- and dPNAG-specific antibodies. Passive immunization of mice with anti-dPNAG-DT rabbit sera showed significant levels of clearance of S. aureus from the blood (54 to 91%) compared to control mice immunized with normal rabbit sera, whereas PNAG-specific antibodies were ineffective at clearing S. aureus. Passive immunization of mice with a goat antiserum raised to the dPNAG-DT vaccine protected against a lethal dose of three different S. aureus strains. Overall, these data show that immunization of animals with a conjugate vaccine of dPNAG elicit antibodies that mediated opsonic killing and protected against S. aureus infection, including capsular polysaccharide types 5 and 8 and an untypable strain.
Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice
2007-08-17
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.
Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs.
Engleder, Elisabeth; Demmerer, Elisabeth; Wang, Xueyan; Honeder, Clemens; Zhu, Chengjing; Studenik, Christian; Wirth, Michael; Arnoldner, Christoph; Gabor, Franz
2015-04-30
In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
O-Linked N-Acetylglucosaminylation of Sp1 Inhibits the Human Immunodeficiency Virus Type 1 Promoter▿
Jochmann, Ramona; Thurau, Mathias; Jung, Susan; Hofmann, Christian; Naschberger, Elisabeth; Kremmer, Elisabeth; Harrer, Thomas; Miller, Matthew; Schaft, Niels; Stürzl, Michael
2009-01-01
Human immunodeficiency virus type 1 (HIV-1) gene expression and replication are regulated by the promoter/enhancer located in the U3 region of the proviral 5′ long terminal repeat (LTR). The binding of cellular transcription factors to specific regulatory sites in the 5′ LTR is a key event in the replication cycle of HIV-1. Since transcriptional activity is regulated by the posttranslational modification of transcription factors with the monosaccharide O-linked N-acetyl-d-glucosamine (O-GlcNAc), we evaluated whether increased O-GlcNAcylation affects HIV-1 transcription. In the present study we demonstrate that treatment of HIV-1-infected lymphocytes with the O-GlcNAcylation-enhancing agent glucosamine (GlcN) repressed viral transcription in a dose-dependent manner. Overexpression of O-GlcNAc transferase (OGT), the sole known enzyme catalyzing the addition of O-GlcNAc to proteins, specifically inhibited the activity of the HIV-1 LTR promoter in different T-cell lines and in primary CD4+ T lymphocytes. Inhibition of HIV-1 LTR activity in infected T cells was most efficient (>95%) when OGT was recombinantly overexpressed prior to infection. O-GlcNAcylation of the transcription factor Sp1 and the presence of Sp1-binding sites in the LTR were found to be crucial for this inhibitory effect. From this study, we conclude that O-GlcNAcylation of Sp1 inhibits the activity of the HIV-1 LTR promoter. Modulation of Sp1 O-GlcNAcylation may play a role in the regulation of HIV-1 latency and activation and links viral replication to the glucose metabolism of the host cell. Hence, the establishment of a metabolic treatment might supplement the repertoire of antiretroviral therapies against AIDS. PMID:19193796
Bulik, Dorota A.; Olczak, Mariusz; Lucero, Hector A.; Osmond, Barbara C.; Robbins, Phillips W.; Specht, Charles A.
2003-01-01
In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane. PMID:14555471
Panahifar, A; Jaremko, J L; Tessier, A G; Lambert, R G; Maksymowych, W P; Fallone, B G; Doschak, M R
2014-10-01
We sought to develop a comprehensive scoring system for evaluation of pre-clinical models of osteoarthritis (OA) progression, and use this to evaluate two different classes of drugs for management of OA. Post-traumatic OA (PTOA) was surgically induced in skeletally mature rats. Rats were randomly divided in three groups receiving either glucosamine (high dose of 192 mg/kg) or celecoxib (clinical dose) or no treatment. Disease progression was monitored utilizing micro-magnetic resonance imaging (MRI), micro-computed tomography (CT) and histology. Pertinent features such as osteophytes, subchondral sclerosis, joint effusion, bone marrow lesion (BML), cysts, loose bodies and cartilage abnormalities were included in designing a sensitive multi-modality based scoring system, termed the rat arthritis knee scoring system (RAKSS). Overall, an inter-observer correlation coefficient (ICC) of greater than 0.750 was achieved for each scored feature. None of the treatments prevented cartilage loss, synovitis, joint effusion, or sclerosis. However, celecoxib significantly reduced osteophyte development compared to placebo. Although signs of inflammation such as synovitis and joint effusion were readily identified at 4 weeks post-operation, we did not detect any BML. We report the development of a sensitive and reliable multi-modality scoring system, the RAKSS, for evaluation of OA severity in pre-clinical animal models. Using this scoring system, we found that celecoxib prevented enlargement of osteophytes in this animal model of PTOA, and thus it may be useful in preventing OA progression. However, it did not show any chondroprotective effect using the recommended dose. In contrast, high dose glucosamine had no measurable effects. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Becerra-Arteaga, Alejandro; Shuler, Michael L
2007-08-15
We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.
Dela Justina, Vanessa; Dos Passos Junior, Rinaldo R; Bressan, Alecsander F; Tostes, Rita C; Carneiro, Fernando S; Soares, Thaigra S; Volpato, Gustavo T; Lima, Victor Vitorino; Martin, Sebastian San; Giachini, Fernanda R
2018-05-07
Hyperglycemia increases glycosylation with O-linked N‑acetyl‑glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. Female Wistar rats were divided into the following groups: severe hyperglycemia (>300 mg/dL; n = 5); mild hyperglycemia (>140 mg/dL, at least than two time points during oral glucose tolerance test; n = 7) or normoglycemia (<120 mg/dL; n = 6). At 21 days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80 °C for protein quantification by western blot. Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia. Copyright © 2017. Published by Elsevier Inc.
Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks.
Emmadi, Madhu; Kulkarni, Suvarn S
2013-10-01
Bacterial glycoconjugates comprise atypical deoxy amino sugars that are not present on the human cell surface, making them good targets for drug discovery and carbohydrate-based vaccine development. Unfortunately, they cannot be isolated with sufficient purity in acceptable amounts, and therefore chemical synthesis is a crucial step toward the development of these products. Here we describe a detailed protocol for the synthesis of orthogonally protected bacterial deoxy amino hexopyranoside (2,4-diacetamido-2,4,6-trideoxyhexose (DATDH), D-bacillosamine, D-fucosamine, and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT)), D-glucosamine and D-galactosamine building blocks starting from β-D-thiophenylmannoside. Readily available β-D-thiophenylmannoside was first converted into the corresponding 2,4-diols via deoxygenation or silylation at C6, followed by O3 acylation. The 2,4-diols were converted into 2,4-bis-trifluoromethanesulfonates, which underwent highly regioselective, one-pot, double-serial and double-parallel displacements by azide, phthalimide, acetate and nitrite ions as nucleophiles. Thus, D-rhamnosyl- and D-mannosyl 2,4-diols can be efficiently transformed into various rare sugars and D-galactosamine, respectively, as orthogonally protected thioglycoside building blocks on a gram scale in 1-2 d, in 54-85% overall yields, after a single chromatographic purification. This would otherwise take 1-2 weeks. D-Glucosamine building blocks can be prepared from β-D-thiophenylmannoside in four steps via C2 displacement of triflates by azide in 2 d and in 66-70% overall yields. These procedures have been applied to the synthesis of L-serine-linked trisaccharide of Neisseria meningitidis and a rare disaccharide fragment of the zwitterionic polysaccharide (ZPS) A1 (ZPS A1) of Bacteroides fragilis.
NASA Astrophysics Data System (ADS)
El-Houssiny, A. S.; Ward, A. A.; Mostafa, D. M.; Abd-El-Messieh, S. L.; Abdel-Nour, K. N.; Darwish, M. M.; Khalil, W. A.
2016-06-01
This work involves the preparation and characterization of alginate nanoparticles (Alg NPs) as a new transdermal carrier for site particular transport of glucosamine sulfate (GS). The GS-Alg NPs were examined through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric spectroscopy. GS-Alg NPs was efficiently prepared via ionic gelation method which generates favorable conditions for the entrapment of hydrophilic drugs. The TEM studies revealed that GS-Alg NPs are discrete and have spherical shapes. FTIR studies showed a spectral change of the characteristic absorptions bands of Alg NPs after encapsulation with GS because of the amine groups of GS and the carboxylic acid groups of Alg. The DSC data showed changes in the thermal behavior of GS-Alg NPs after the addition of GS indicating signs of main chemical interaction among the drug (GS) and the polymer (Alg). The absence of the drug melting endothermic peak within the DSC thermogram of GS-Alg NPs indicating that GS is molecularly dispersed in the NPs and not crystallize. From the dielectric study, it was found modifications within the dielectric loss (ɛ″) and conductivity (σ) values after the addition of GS. The ɛ″ and σ values of Alg NPs decreased after the addition of GS which indicated the successful encapsulation of GS within Alg NPs. Furthermore, the dielectric study indicated an increase of the activation energy and the relaxation time for the first process in the GS-Alg NPs as compared to Alg NPs. Consequently, the existing observations indicated an initiation of electrostatic interaction among the amine group of GS and carboxyl group of Alg indicating the successful encapsulation of GS inside Alg NPs which could provide favorable circumstance for the encapsulation of GS for topical management.
Ficko-Blean, Elizabeth; Stuart, Christopher P.; Suits, Michael D.; Cid, Melissa; Tessier, Matthew; Woods, Robert J.; Boraston, Alisdair B.
2012-01-01
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract. PMID:22479408
Volpi, Nicola
2009-04-05
A new robust CE method for the determination of the glucosamine (GlcN) content in nutraceutical formulations is described after its derivatization with anthranilic acid (2-aminobenzoic acid, AA). The CE separation of derivatized GlcN with AA was performed on an uncoated fused-silica capillary tube (50 microm I.D.) using an operating pH 7.0 buffer of 150 mM boric acid/50 mM NaH2PO4 and UV detection at 214 nm. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for GlcN was linear over the selected concentration range from 240 to 2400 pg (40-400 microg/mL) with a correlation coefficient greater than 0.980. The intra- and inter-day variations (CV%) were between 0.5 and 0.9 for migration time, and between 2.8 and 4.3 for peak area, respectively. The LOD and the LOQ of the method were approximately 200 and 500 pg, respectively. The intra- and inter-day accuracy was estimated to range from 2.8% to 5.1%, while the percent recoveries of GlcN in formulations were calculated to be about 100% after simple centrifugation for 10 min, lyophilization and derivatization with AA. The CE method was applied to the determination of GlcN content, in the form of GlcN-hydrochloride or GlcN-sulfate, of several nutraceutical preparations in the presence of other ingredients, i.e. chondroitin sulfate, vitamin C and/or methylsulfonylmethane (MSM) as well as salts and other agents. The quantitative results obtained were in total conformity with the label claims.
Jorge, João M P; Nguyen, Anh Q D; Pérez-García, Fernando; Kind, Stefanie; Wendisch, Volker F
2017-04-01
Gamma-aminobutyric acid (GABA) is a non-protein amino acid widespread in Nature. Among the various uses of GABA, its lactam form 2-pyrrolidone can be chemically converted to the biodegradable plastic polyamide-4. In metabolism, GABA can be synthesized either by decarboxylation of l-glutamate or by a pathway that starts with the transamination of putrescine. Fermentative production of GABA from glucose by recombinant Corynebacterium glutamicum has been described via both routes. Putrescine-based GABA production was characterized by accumulation of by-products such as N-acetyl-putrescine. Their formation was abolished by deletion of the spermi(di)ne N-acetyl-transferase gene snaA. To improve provision of l-glutamate as precursor 2-oxoglutarate dehydrogenase activity was reduced by changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and by maintaining the inhibitory protein OdhI in its inhibitory form by changing amino acid residue 15 from threonine to alanine. Putrescine-based GABA production by the strains described here led to GABA titers up to 63.2 g L -1 in fed-batch cultivation at maximum volumetric productivities up to 1.34 g L -1 h -1 , the highest volumetric productivity for fermentative GABA production reported to date. Moreover, GABA production from the carbon sources xylose, glucosamine, and N-acetyl-glucosamine that do not have competing uses in the food or feed industries was established. Biotechnol. Bioeng. 2017;114: 862-873. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chondroitin for osteoarthritis
Singh, Jasvinder A.; Noorbaloochi, Shahrzad; MacDonald, Roderick; Maxwell, Lara J.
2016-01-01
Background Osteoarthritis, a common joint disorder, is one of the leading causes of disability. Chondroitin has emerged as a new treatment. Previous meta-analyses have shown contradictory results on the efficacy of chondroitin. This, in addition to the publication of more trials, necessitates a systematic review. Objectives To evaluate the benefit and harm of oral chondroitin for treating osteoarthritis compared with placebo or a comparator oral medication including, but not limited to, nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, opioids, and glucosamine or other “herbal” medications. Search methods We searched seven databases up to November 2013, including the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, CINAHL, EMBASE, Science Citation Index (Web of Science) and Current Controlled Trials. We searched the US Food and Drug Administration (FDA) and European Medicines Agency (EMEA) websites for adverse effects. Trial registers were not searched. Selection criteria All randomized or quasi-randomized clinical trials lasting longer than two weeks, studying adults with osteoarthritis in any joint, and comparing chondroitin with placebo, an active control such as NSAIDs, or other “herbal” supplements such as glucosamine. Data collection and analysis Two review authors independently performed all title assessments, data extractions, and risk of bias assessments. Main results Forty-three randomized controlled trials including 4,962 participants treated with chondroitin and 4,148 participants given placebo or another control were included. The majority of trials were in knee OA, with few in hip and hand OA. Trial duration varied from 1 month to 3 years. Participants treated with chondroitin achieved statistically significantly and clinically meaningful better pain scores (0–100) in studies less than 6 months than those given placebo with an absolute risk difference of 10% lower (95% confidence interval (CI), 15% to 6% lower; number needed to treat (NNT) = 5 (95% CI, 3 to 8; n = 8 trials) (level of evidence, low; risk of bias, high); but there was high heterogeneity between the trials (T2 = 0.07; I2 = 70%, which was not easily explained by differences in risk of bias or study sample size). In studies longer than 6 months, the absolute risk difference for pain was 9% lower (95% CI 18% lower to 0%); n = 6 trials; T2 = 0.18; I2 = 83% ), again with low level of evidence. For the Western Ontario and McMaster Universities Osteoarthritis Index Minimal Clinically Important Improvement (WOMAC MCII Pain subscale) outcome, a reduction in knee pain by 20% was achieved by 53/100 in the chondroitin group versus 47/100 in the placebo group, an absolute risk difference of 6% (95% CI 1% to 11%), (RR 1.12, 95% CI 1.01 to 1.24; T2 = 0.00; I2 = 0%) (n = 2 trials, 1253 participants; level of evidence, high; risk of bias, low). Differences in Lequesne’s index (composite of pain, function and disability) statistically significantly favoured chondroitin as compared with placebo in studies under six months, with an absolute risk difference of 8% lower (95% CI 12% to 5% lower; T2= 0.78; n = 7 trials) (level of evidence, moderate; risk of bias, unclear), also clinically meaningful. Loss of minimum joint space width in the chondroitin group was statistically significantly less than in the placebo group, with a relative risk difference of 4.7% less (95% CI 1.6% to 7.8% less; n = 2 trials) (level of evidence, high; risk of bias, low). Chondroitin was associated with statistically significantly lower odds of serious adverse events compared with placebo with Peto odds ratio of 0.40 (95% CI 0.19 to 0.82; n = 6 trials) (level of evidence, moderate). Chondroitin did not result in statistically significant numbers of adverse events or withdrawals due to adverse events compared with placebo or another drug. Adverse events were reported in a limited fashion, with some studies providing data and others not. Comparisons of chondroitin taken alone or in combination with glucosamine or another supplement showed a statistically significant reduction in pain (0–100) when compared with placebo or an active control, with an absolute risk difference of 10% lower (95% CI 14% to 5% lower); NNT = 4 (95% CI 3 to 6); T2 = 0.33; I2 = 91%; n = 17 trials) (level of evidence, low). For physical function, chondroitin in combination with glucosamine or another supplement showed no statistically significant difference from placebo or an active control, with an absolute risk difference of 1% lower (95% CI 6% lower to 3% higher with T2 = 0.04; n = 5 trials) (level of evidence, moderate). Differences in Lequesne’s index statistically significantly favoured chondroitin as compared with placebo, with an absolute risk difference of 8% lower (95% CI, 12% to 4% lower; T2 = 0.12; n = 10 trials) (level of evidence, moderate). Chondroitin in combination with glucosamine did not result in statistically significant differences in the numbers of adverse events, withdrawals due to adverse events, or in the numbers of serious adverse events compared with placebo or with an active control. The beneficial effects of chondroitin in pain and Lequesne’s index persisted when evidence was limited to studies with adequate blinding or studies that used appropriate intention to treat (ITT) analyses. These beneficial effects were uncertain when we limited data to studies with appropriate allocation concealment or a large study sample (> 200) or to studies without pharmaceutical funding. Authors’ conclusions A review of randomized trials of mostly low quality reveals that chondroitin (alone or in combination with glucosamine) was better than placebo in improving pain in participants with osteoarthritis in short-term studies. The benefit was small to moderate with an 8 point greater improvement in pain (range 0 to 100) and a 2 point greater improvement in Lequesne’s index (range 0 to 24), both likely clinically meaningful. These differences persisted in some sensitivity analyses and not others. Chondroitin had a lower risk of serious adverse events compared with control. More high-quality studies are needed to explore the role of chondroitin in the treatment of osteoarthritis. The combination of some efficacy and low risk associated with chondroitin may explain its popularity among patients as an over-the-counter supplement. PMID:25629804
Klusemann, J; Kleinow, W; Peters, W
1990-01-01
The jaws (trophi) of the rotifer Brachionus plicatilis are soluble in strong acids but are resistant to long treatments by strong alkali. They show the same buoyant density as chitin and also as the chitin-containing layers of rotifer egg-shells. The presence of chitin in these structures was confirmed using the following techniques: chitosan-tests, thin-layer chromatography of trophi-hydrolysates which revealed glucosamine, by dissolving trophi with chitinase and electron microscopic WGA/gold-labelling. The content of chitin in the trophi was estimated by two different methods to be approx. 64% (50-75%).
A Lectin-Like Receptor is Involved in Invasion of Erythrocytes by Plasmodium falciparum
NASA Astrophysics Data System (ADS)
Jungery, M.; Pasvol, G.; Newbold, C. I.; Weatherall, D. J.
1983-02-01
Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.
Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans.
Stepan, Herwig; Bleckmann, Christina; Geyer, Hildegard; Geyer, Rudolf; Staudacher, Erika
2010-07-02
The N- and O-glycans of Arianta arbustorum, Achatina fulica, Arion lusitanicus and Planorbarius corneus were analysed for their monosaccharide pattern by reversed-phase HPLC after labelling with 2-aminobenzoic acid or 3-methyl-1-phenyl-2-pyrazolin-5-one and by gas chromatography-mass spectrometry. Glucosamine, galactosamine, mannose, galactose, glucose, fucose and xylose were identified. Furthermore, three different methylated sugars were detected: 3-O-methyl-mannose and 3-O-methyl-galactose were confirmed to be a common snail feature; 4-O-methyl-galactose was detected for the first time in snails. Copyright 2010 Elsevier Ltd. All rights reserved.
Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces
Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...
2018-02-09
Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less
Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish
Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less
Rees, Martin D; Pattison, David I; Davies, Michael J
2005-10-01
Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl- to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2 approximately 3.1x10(5) and 9 M(-1) x s(-1) (at 37 degrees C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2 approximately 0.05 and 0.01 M(-1) x s(-1) (at 37 degrees C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 degrees C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 degrees C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci.
Rees, Martin D.; Pattison, David I.; Davies, Michael J.
2005-01-01
Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl− to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2∼3.1×105 and 9 M−1·s−1 (at 37 °C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2∼0.05 and 0.01 M−1·s−1 (at 37 °C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 °C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 °C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci. PMID:15932347
Dhanikula, Renu Singh; Argaw, Anteneh; Bouchard, Jean-Francois; Hildgen, Patrice
2008-01-01
Therapeutic benefit in glial tumors is often limited due to low permeability of delivery systems across the blood-brain barrier (BBB), drug resistance, and poor penetration into the tumor tissue. In an attempt to overcome these hurdles, polyether-copolyester (PEPE) dendrimers were evaluated as drug carriers for the treatment of gliomas. Dendrimers were conjugated to d-glucosamine as the ligand for enhancing BBB permeability and tumor targeting. The efficacy of methotrexate (MTX)-loaded dendrimers was established against U87 MG and U 343 MGa cells. Permeability of rhodamine-labeled dendrimers and MTX-loaded dendrimers across the in vitro BBB model and their distribution into avascular human glioma tumor spheroids was also studied. Glucosylated dendrimers were found to be endocytosed in significantly higher amounts than nonglucosylated dendrimers by both the cell lines. IC 50 of MTX after loading in dendrimers was lower than that of the free MTX, suggesting that loading MTX in PEPE dendrimers increased its potency. Similar higher activity of MTX-loaded glucosylated and nonglucosylated dendrimers was found in the reduction of tumor spheroid size. These MTX-loaded dendrimers were able to kill even MTX-resistant cells highlighting their ability to overcome MTX resistance. In addition, the amount of MTX-transported across BBB was three to five times more after loading in the dendrimers. Glucosylation further increased the cumulative permeation of dendrimers across BBB and hence increased the amount of MTX available across it. Glucosylated dendrimers distributed through out the avascular tumor spheroids within 6 h, while nonglucosylated dendrimers could do so in 12 h. The results show that glucosamine can be used as an effective ligand not only for targeting glial tumors but also for enhanced permeability across BBB. Thus, glucosylated PEPE dendrimers can serve as potential delivery system for the treatment of gliomas.
Benini, Stefano; Toccafondi, Mirco; Rejzek, Martin; Musiani, Francesco; Wagstaff, Ben A; Wuerges, Jochen; Cianci, Michele; Field, Robert A
2017-11-01
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.
2007-09-01
Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoformsmore » were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.« less
Hwang, Jung-Ah; Kim, Yujin; Hong, Seung-Hyun; Lee, Jieun; Cho, Yong Gu; Han, Ji-Youn; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Lee, Yeon-Su; Kim, Duk-Hwan
2013-01-01
Background This study was aimed at investigating the functional significance of heparan sulfate (glucosamine) 3-O-sulfotransferase 2 (HS3ST2) hypermethylation in non-small cell lung cancer (NSCLC). Methodology/ Principal Findings HS3ST2 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using 298 formalin-fixed paraffin-embedded tissues and 26 fresh-frozen tissues from 324 NSCLC patients. MS-HRM (methylation-specific high-resolution melting) and EpiTYPERTM assays showed substantial hypermethylation of CpG island at the promoter region of HS3ST2 in six lung cancer cell lines. The silenced gene was demethylated and re-expressed by treatment with 5-aza-2′-deoxycytidine (5-Aza-dC). A promoter assay also showed the core promoter activity of HS3ST2 was regulated by methylation. Exogenous expression of HS3ST2 in lung cancer cells H460 and H23 inhibited cell migration, invasion, cell proliferation and whereas knockdown of HS3ST2 in NHBE cells induced cell migration, invasion, and cell proliferation in vitro. A negative correlation was observed between mRNA and methylation levels of HS3ST2 in 26 fresh-frozen tumors tissues (ρ = -0.51, P = 0.009; Spearman’s rank correlation). HS3ST2 hypermethylation was found in 95 (32%) of 298 primary NSCLCs. Patients with HS3ST2 hypermethylation in 193 node-negative stage I-II NSCLCs with a median follow-up period of 5.8 years had poor overall survival (hazard ratio = 2.12, 95% confidence interval = 1.25–3.58, P = 0.005) compared to those without HS3ST2 hypermethylation, after adjusting for age, sex, tumor size, adjuvant therapy, recurrence, and differentiation. Conclusions/ Significance The present study suggests that HS3ST2 hypermethylation may be an independent prognostic indicator for overall survival in node-negative stage I-II NSCLC. PMID:24265783
Grzanna, Mark W; Secor, Erica J; Fortuno, Lowella V; Au, Angela Y; Frondoza, Carmelita G
2018-06-01
Objective Osteoarthritis is a painful, chronic joint disease affecting man and animals with no known curative therapies. Palliative nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used but they cause adverse side effects prompting the search for safer alternatives. To address this need, we evaluated the anti-inflammatory activity of avocado/soybean unsaponifiables (ASU), glucosamine (GLU), and chondroitin sulfate (CS) with or without the NSAID carprofen. Design Canine chondrocytes were propagated in microcarrier spinner culture and incubated with (1) control medium, (2) ASU (8.3 µg/mL) + GLU (11 µg/mL) + CS (20 µg/mL) combination for 24 hours; and/or carprofen (40 ng/mL). Cultures were next incubated with control medium alone or IL-1β (10 ng/mL) for another 24 hours. Production of PGE 2 , IL-6, IL-8, and MCP-1 (also known as CCL-2) were measured by ELISA. Results Chondrocytes proliferated in microcarrier spinner culture and produced type II collagen and aggrecan. Stimulation with IL-1β induced significant increases in PGE 2 , IL-6, IL-8, and MCP-1 production. The increases in production were suppressed by carprofen as well as [ASU+GLU+CS]. The combination of carprofen and [ASU+GLU+CS] reduced PGE 2 production significantly more than either preparation alone. The inhibitory effect of carprofen on IL-6, IL-8, and MCP-1 production was significantly less than that of [ASU+GLU+CS], whereas the combination did not reduce the production of these molecules significantly more than [ASU+GLU+CS] alone. Conclusions The potentiating effect of [ASU+GLU+CS] on low-dose carprofen was identified in chondrocyte microcarrier spinner cultures. Our results suggest that the combination of low-dose NSAIDs like carprofen with [ASU+GLU+CS] could offer a safe, effective management for joint pain.
Efficacy of treatment with glucosamine sulfate in patients with knee effusion due to osteoarthritis
Korkmaz, Murat; Karaaslan, Fatih; Erdogan, Yalcin; Bolat, Esef; Karacavus, Seyhan; Kizilkaya, Hafize; Gunaydin, Ilhan
2013-01-01
Objective: Evaluation of anti-inflammatory effect of Glucosamine sulfate (GS) versus diclofenac sodium (DS) in effusion of osteoarthritic knees. Methodology: In this study, patients were included in this study from 2007-2010 based on American College of Rheumatology criteria with OA and physical examination in effusion of osteoarthritic knees. The patients were divided into two groups. First group (27 patients) DS was given in doses 75 mg twice daily for ten day. In the group II (25 patients) GS was used in doses of 1500 mg two times daily over the first 12 weeks of the study. A closed aspiration was performed. The knee circumference was measured in patients before and 12 week after treatment. Before and after 12 weeks of treatments, both groups of patients were assessed according to the WOMAC questionnaire of knee pain and function scores. Results: Comparison of knee mean circumference between the two groups was not statistically significant before treatment (p=0.938), but significant after treatment (p<0.001). At the end of the 12 week, there was 66.6% complete resolution of effusion in the DS group (18 patients) and 24.0% (6 patients) in the GS group, this was statistically significant (P<0.001). DS groups, results of the beginning and at the end of 12 week measurement showed significant differences in WOMAC pain mean score (P < 0.001) but GS groups not statistically significant (P=0.160). The WOMAC function mean scores in pre and post-treatment periods of follow-up showed significant variation between the two groups (P< 0.001, P<0.001). Conclusions: Our observations suggest that GS is not able to suppress the progression of adjuvant arthritis in OA with effusion of knee osteoarthritis. GS should not be expected as anti-inflammatory influence as DF in the treatment of OA-related effusion. PMID:24353641
Chopade, Shakuntala Santosh; Dhaneshwar, Suneela Sunil
2018-01-01
AIM To design colon-targeted codrugs of mycophenolic acid (MPA) and aminosugars as a safer option to mycophenolate mofetil (MMF) in the management of inflammatory bowel disease. METHODS Codrugs were synthesized by coupling MPA with aminosugars (D-glucosamine and D-galactosamine) using EDCI coupling. The structures were confirmed by infrared radiation, nuclear magnetic resonance, mass spectroscopy and elemental analysis. The release profile of codrugs was extensively studied in aqueous buffers, upper gastrointestinal homogenates, faecal matter and caecal homogenates (in vitro) and rat blood (in vitro). Anti-colitic activity was assessed in 2,4,6-trinitrobezenesulfonic acid-induced colitis in Wistar rats by the estimation of various demarcating parameters. Statistical evaluation was performed by applying one-way and two-way ANOVA when compared with the disease control. RESULTS The prodrugs resisted activation in HCl buffer (pH 1.2) and stomach homogenates of rats with negligible hydrolysis in phosphate buffer (pH 7.4) and intestinal homogenates. Incubation with colon homogenates (in vitro) produced 76% to 89% release of MPA emphasizing colon-specific activation of codrugs and the release of MPA and aminosugars at the site of action. In the in vitro studies, the prodrug of MPA with D-glucosamine (MGLS) was selected which resulted in 68% release of MPA in blood. in vitro studies on MGLS revealed its colon-specific activation after a lag time of 8 h which could be ascribed to the hydrolytic action of N-acyl amidases found in the colon. The synthesized codrugs markedly diminished disease activity score and revived the disrupted architecture of the colon that was comparable to MMF but superior to MPA. CONCLUSION The significant attenuating effect of prodrugs and individual aminosugars on colonic inflammation proved that the rationale of the codrug approach is valid. PMID:29563754
Hubert, C; Houari, S; Rozet, E; Lebrun, P; Hubert, Ph
2015-05-22
When using an analytical method, defining an analytical target profile (ATP) focused on quantitative performance represents a key input, and this will drive the method development process. In this context, two case studies were selected in order to demonstrate the potential of a quality-by-design (QbD) strategy when applied to two specific phases of the method lifecycle: the pre-validation study and the validation step. The first case study focused on the improvement of a liquid chromatography (LC) coupled to mass spectrometry (MS) stability-indicating method by the means of the QbD concept. The design of experiments (DoE) conducted during the optimization step (i.e. determination of the qualitative design space (DS)) was performed a posteriori. Additional experiments were performed in order to simultaneously conduct the pre-validation study to assist in defining the DoE to be conducted during the formal validation step. This predicted protocol was compared to the one used during the formal validation. A second case study based on the LC/MS-MS determination of glucosamine and galactosamine in human plasma was considered in order to illustrate an innovative strategy allowing the QbD methodology to be incorporated during the validation phase. An operational space, defined by the qualitative DS, was considered during the validation process rather than a specific set of working conditions as conventionally performed. Results of all the validation parameters conventionally studied were compared to those obtained with this innovative approach for glucosamine and galactosamine. Using this strategy, qualitative and quantitative information were obtained. Consequently, an analyst using this approach would be able to select with great confidence several working conditions within the operational space rather than a given condition for the routine use of the method. This innovative strategy combines both a learning process and a thorough assessment of the risk involved. Copyright © 2015 Elsevier B.V. All rights reserved.
Dixit, Radhika; Arakane, Yasuyuki; Specht, Charles A; Richard, Chad; Kramer, Karl J; Beeman, Richard W; Muthukrishnan, Subbaratnam
2008-04-01
A bioinformatics investigation of four insect species with annotated genome sequences identified a family of genes encoding chitin deacetylase (CDA)-like proteins, with five to nine members depending on the species. CDAs (EC 3.5.1.41) are chitin-modifying enzymes that deacetylate the beta-1,4-linked N-acetylglucosamine homopolymer. Partial deacetylation forms a heteropolysaccharide that also contains some glucosamine residues, while complete deacetylation produces the homopolymer chitosan, consisting exclusively of glucosamine. The genomes of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, the malaria mosquito, Anopheles gambiae, and the honey bee, Apis mellifera contain 9, 6, 5 and 5 genes, respectively, that encode proteins with a chitin deacetylase motif. The presence of alternative exons in two of the genes, TcCDA2 and TcCDA5, increases the protein diversity further. Insect CDA-like proteins were classified into five orthologous groups based on phylogenetic analysis and the presence of additional motifs. Group I enzymes include CDA1 and isoforms of CDA2, each containing in addition to a polysaccharide deacetylase-like catalytic domain, a chitin-binding peritrophin-A domain (ChBD) and a low-density lipoprotein receptor class A domain (LDLa). Group II is composed of CDA3 orthologs from each insect species with the same domain organization as group I CDAs, but differing substantially in sequence. Group III includes CDA4s, which have the ChBD domain but do not have the LDLa domain. Group IV comprises CDA5s, which are the largest CDAs because of a very long intervening region separating the ChBD and catalytic domains. Among the four insect species, Tribolium is unique in having four CDA genes in group V, whereas the other insect genomes have either one or none. Most of the CDA-like proteins have a putative signal peptide consistent with their role in modifying extracellular chitin in both cuticle and peritrophic membrane during morphogenesis and molting.
Cicek, Kader; Gulec, Burcu; Ungor, Rifat; Hasanova, Gulnara
2017-01-01
A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity. Previously, we developed a strategy for enzymatic deglycosylation of proteins in planta by co-expressing bacterial peptide-N-glycosidase F (PNGase F). Though PNGase F removes oligosaccharides from glycosylated proteins, in so doing it causes an amino acid change due to the deamidation of asparagine to aspartate in the N-X-S/T site. Endo-β-N-acetylglucosaminidase (EC3.2.1.96, Endo H), another deglycosylating enzyme, catalyzes cleavage between two N-Acetyl-D-glucosamine residues of the chitobiose core of N-linked glycans, leaving a single N-Acetyl-D-glucosamine residue without the concomitant deamidation of asparagine. In this study, a method for in vivo deglycosylation of recombinant proteins in plants by transient co-expression with bacterial Endo H is described for the first time. Endo H was fully active in vivo. and successfully cleaved N-linked glycans from glycoproteins were tested. In addition, unlike the glycosylated form, in vivo Endo H deglycosylated Pfs48/45 was recognized by conformational specific Pfs48/45 monoclonal antibody, in a manner similar to its PNGase F deglycosylated counterpart. Furthermore, the deglycosylated PA83 molecule produced by Endo H showed better stability than a PNGase F deglycosylated counterpart. Thus, an Endo H in vivo deglycosylation approach provides another opportunity to develop vaccine antigens, therapeutic proteins, antibodies, and industrial enzymes. PMID:28827815
Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar
2008-08-01
Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.
Coppa, Giovanni V; Galeotti, Fabio; Zampini, Lucia; Maccari, Francesca; Galeazzi, Tiziana; Padelia, Lucia; Santoro, Lucia; Gabrielli, Orazio; Volpi, Nicola
2011-04-01
Mucopolysaccharidoses (MPS) diagnosis is often delayed and irreversible organ damage can occur, making possible therapies less effective. This highlights the importance of early and accurate diagnosis. A high-throughput procedure for the simultaneous determination of glucosamine and galactosamine produced from urinary galactosaminoglycans and glucosaminoglycans by capillary electrophoresis (CE) and HPLC has been performed and validated in subjects affected by various MPS including their mild and severe forms, Hurler and Hurler-Scheie, Hunter, Sanfilippo, Morquio, and Maroteaux-Lamy. Contrary to other analytical approaches, the present single analytical procedure, which is able to measure total abnormal amounts of urinary GAGs, high molecular mass, and related fragments, as well as specific hexosamines belonging to a group of GAGs, would be useful for possible application in their early diagnosis. After a rapid urine pretreatment, free hexosamines are generated by acidic hydrolysis, derivatized with 2-aminobenzoic acid and separated by CE/UV in ∼10min and reverse-phase (RP)-HPLC in fluorescence in ∼21min. The total content of hexosamines was found to be indicative of abnormal urinary excretion of GAGs in patients compared to the controls, and the galactosamine/glucosamine ratio was observed to be related to specific MPS syndromes in regard to both their mild and severe forms. As a consequence, important correlations between analytical response and clinical diagnosis and the severity of the disorders were observed. Furthermore, we can assume that the severity of the syndrome may be ascribed to the quantity of total GAGs, as high-molecular-mass polymers and fragments, accumulated in cells and directly excreted in the urine. Finally, due to the high-throughput nature of this approach and to the equipment commonly available in laboratories, this method is suitable for newborn screening in preventive public health programs for early detection of MPS disorders, diagnosis, and their treatment. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abakumova, O. Y.; Baum, Rudolf P.; Ermakova, Natalia Y.; Gradyushko, A. T.; Guseva-Donskaya, T. N.; Karmenyan, Artashes V.; Koraboyev, U. M.; Laptev, V. P.; Mechkov, V. M.; Mikhailova, L. M.; Panferova, N. G.; Rebeko, Aleksei G.; Reshetnickov, Andrei V.; Ryabov, M. V.; Stranadko, Eugeny P.; Tsvetkova, Tatyana A.; Zhukova, O. S.
1999-12-01
A novel stable water-soluble form of well known photosensitizer chlorin e6 named `Photodithazine' has been obtained from Spirulina Platensis cyanobacteria as a noncovalent complex with N-methyl-D-glucosamine, and its biological characteristics evaluate, which proved to be as follows: in vitro photocytotoxicity was 1 (mu) M (EC50) as determined by the extent of DNA synthesis inhibition in CaOv cells after irradiation with 650 - 900 nm light, and 5 (mu) M (EC65) as determined using MTT test on PC12 cells after irradiation with 670 nm laser light at the doses of 15 and 20 J/cm2, respectively, with Al-sulfophthalocyanine `Photosense' (Russia; oligomerized hematoporphyrin-IX mixture `Photogen', Russia) being used as permitted reference drugs.
Morris-Berry, C M; Pollard, M; Gao, S; Thompson, C; Singer, H S
2013-11-15
Single-point-in-time ELISA optical densities for three putative antibodies identified in Sydenham's chorea, the streptococcal group A carbohydrate antigen, N-acetyl-beta-d-glucosamine, tubulin, and the dopamine 2 receptor, showed no differences in children with PANDAS (n=44) or Tourette syndrome (n=40) as compared to controls (n=24). Anti-tubulin and D2 receptor antibodies assessed in serial samples from 12 PANDAS subjects obtained prior to a documented exacerbation, during the exacerbation (with or without a temporally associated streptococcal infection), and following the exacerbation, showed no evidence of antibody levels correlating with a clinical exacerbation. These data do not support hypotheses suggesting an autoimmune hypothesis in either TS or PANDAS. © 2013.
Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus
1976-01-01
The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450
Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants
Korman, Ruth Z.
1966-01-01
Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547
Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis.
Itoh, Kimihisa; Hirata, Noriko; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Wakabayashi, Keitaro; Matsuda, Hideaki
2009-03-01
The 50% ethanolic extract (CH-ext) obtained from the unripe fruit of Citrus hassaku exhibited significant tyrosinase inhibitory activity. The CH-ext showed antioxidant activity, such as superoxide dismutase (SOD)-like activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Activity-guided fractionation of the CH-ext indicated that flavanone glycoside-rich fractions showed potent tyrosinase inhibitory activity. Further examination revealed that the tyrosinase inhibitory activity and antioxidant activity of the CH-ext were attributable to naringin and neohesperidin, respectively. The CH-ext showed inhibition of melanogenesis without any effects on cell proliferation in cultured murine B16 melanoma cells after glucosamine exposure. The topical application of the CH-ext to the dorsal skin of brownish guinea pigs showed in vivo preventive effects against UVB-induced pigmentation.
NASA Astrophysics Data System (ADS)
Fang, Y. Q.; Welsch, U.
1997-03-01
The present light microscopic lectin, histochemical study suggests for the first time that the vertebrate gonadotropin-like substance in the basal part of the epithelial cells of Hatschek's pit is a sialic acid-containing glycoprotein. The binding intensity of the epithelial cells in Hatschek's pit to 6 lectins ( Limulus polyphemus agglutinin (LPA), Wheat germ agglutinin (WGA), Helix pomatia agglutinin (HPA), Concanavalin A (Con A), Ulex europaeus agglutinin I (UEA I) and Ricinus communis agglutinin I (RCA I)) indicate that the carbohydrate composition of the gonadotrophic glycoprotein is similar to that of mammals and fish, and that N-acetyl-D-galactosamine, sialic acid, glucosamine, D-mannose and L-fucose are components of the carbohydrate portion.
[Thromboresistance of glucose-containing hydrogels].
Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A
2013-01-01
The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.
Developing biochemical and molecular markers for cyanobacterial inoculants.
Prasanna, R; Madhan, K; Singh, R N; Chauhan, A K; Nain, L
2010-09-01
Markers for evaluating the establishment of cyanobacteria based on their sensitivity or resistance to antibiotics, saccharide utilization patterns and PCR generated fingerprints were developed. Four selected strains (isolates from rhizosphere soils of diverse agro-ecosystems) have shown potential as diazotrophs and exhibited plant growth promoting abilities. Different responses were obtained on screening against 40 antibiotics, which aided in developing selectable antibiotic markers for each strain. Biochemical profiles generated using standardized chromogenic identification system (including saccharide utilization tests) revealed that 53 % of the saccharides tested were not utilized by any strain, while some strains exhibited unique ability for utilization of saccharides such as melibiose, cellobiose, maltose and glucosamine. PCR based amplification profiles developed using a number of primers based on repeat sequences revealed the utility of 3 primers in providing unique fingerprints for the strains.
Chitin Adsorbents for Toxic Metals: A Review
Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N.; Kyzas, George Z.
2017-01-01
Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth. PMID:28067848
Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V
1994-03-01
Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.
Cheng, Zhen; Levi, Jelena; Xiong, Zhengming; Gheysens, Olivier; Keren, Shay; Chen, Xiaoyuan; Gambhir, Sanjiv Sam
2011-01-01
2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging and therapy monitoring of cancer and other diseases. Non-radioactive glucose analogs enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A non-radioactive fluorescent deoxyglucose analog may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated d-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of Cy5.5-d-glucosamine conjugate (Cy5.5-2DG) for NIR fluorescence imaging of tumors in a pre-clinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and d-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 °C and 4 °C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 °C incubation, while they exhibit marginal uptake at 4 °C. The tumor cell uptake of Cy5.5-2DG can not be blocked by the 50 mM d-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization were clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min post-injection, and the highest U87MG tumor/muscle ratio of 2.81 ± 0.10, 3.34 ± 0.23 were achieved 24 hours post-injection for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micro-positron emission tomography imaging study shows that [18F]FDG preferentially localize to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h post-administration of the probe. In conclusion, the NIR fluorescent glucose analog, Cy5.5-2DG and Cy5.5-NHS both demonstrate tumor targeting abilities in cell culture and in living mice. More studies are warranted to further explore their application for optical tumor imaging. In order to develop NIR glucose analog with ability to targeting GLUTs/hexokinase, it is highly important to select NIR dyes with reasonable molecular size. PMID:16704203
HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.
2015-01-01
Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor-mediated uptake pathways of seed predators while preserving ribosome affinity and rRNA recognition. PMID:26238506
Vaningelgem, Frederik; Zamfir, Medana; Mozzi, Fernanda; Adriany, Tom; Vancanneyt, Marc; Swings, Jean; De Vuyst, Luc
2004-01-01
Twenty-six lactic acid bacterium strains isolated from European dairy products were identified as Streptococcus thermophilus and characterized by bacterial growth and exopolysaccharide (EPS)-producing capacity in milk and enriched milk medium. In addition, the acidification rates of the different strains were compared with their milk clotting behaviors. The majority of the strains grew better when yeast extract and peptone were added to the milk medium, although the presence of interfering glucomannans was shown, making this medium unsuitable for EPS screening. EPS production was found to be strain dependent, with the majority of the strains producing between 20 and 100 mg of polymer dry mass per liter of fermented milk medium. Furthermore, no straightforward relationship between the apparent viscosity and EPS production could be detected in fermented milk medium. An analysis of the molecular masses of the isolated EPS by gel permeation chromatography revealed a large variety, ranging from 10 to >2,000 kDa. A distinction could be made between high-molecular-mass EPS (>1,000 kDa) and low-molecular-mass EPS (<1,000 kDa). Based on the molecular size of the EPS, three groups of EPS-producing strains were distinguished. Monomer analysis of the EPS by high-performance anion-exchange chromatography with amperometric detection was demonstrated to be a fast and simple method. All of the EPS from the S. thermophilus strains tested were classified into six groups according to their monomer compositions. Apart from galactose and glucose, other monomers, such as (N-acetyl)galactosamine, (N-acetyl)glucosamine, and rhamnose, were also found as repeating unit constituents. Three strains were found to produce EPS containing (N-acetyl)glucosamine, which to our knowledge was never found before in an EPS from S. thermophilus. Furthermore, within each group, differences in monomer ratios were observed, indicating possible novel EPS structures. Finally, large differences between the consistencies of EPS solutions from five different strains were assigned to differences in their molecular masses and structures. PMID:14766570
NASA Astrophysics Data System (ADS)
Ragusa, Jorge Alejandro
Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Peláez, J; Bongalhardo, D C; Long, J A
2011-02-01
The carbohydrate-rich zone on the sperm surface is essential for inmunoprotection in the female tract and early gamete interactions. We recently have shown the glycocalyx of chicken sperm to be extensively sialylated and to contain residues of mannose, glucose, galactose, fucose, N-acetyl-galactosamine, N-acetyl-glucosamine, and N-acetyl-lactosamine. Our objective here was to evaluate the effects of 3 different cryopreservation methods on the sperm glycocalyx. Semen from roosters was pooled, diluted, cooled to 5°C, and aliquoted for cryopreservation using 6% dimethylacetamide (DMA), 11% dimethylsulfoxide (DMSO), or 11% glycerol (GOH). For the DMA method, semen was equilibrated for 1 min with cryoprotectant and rapidly frozen by dropping 25-µL aliquots into liquid nitrogen. For the other methods, semen was equilibrated for either 1 min (DMSO) or 20 min (GOH), loaded into straws, and frozen with a programmable freezer. Thawing rates mimicked the freezing rates (e.g., rapid for DMA; moderate for DMSO and GOH). Aliquots of thawed and fresh, unfrozen semen were incubated with 1 of 12 fluorescein isothiocyanate-conjugated lectins and counterstained with propidium iodide, and mean fluorescence intensity (MFI) was assessed by flow cytometry. For each lectin, the MFI of propidium iodide-negative (viable sperm) was compared among the fresh and frozen-thawed treatments (n = 5). For sperm frozen with GOH and DMA, the MFI of most lectins was similar (P > 0.05) to that of fresh sperm, whereas only 5 of 12 lectins were similar between fresh and DMSO-frozen sperm. Sperm from all 3 methods had higher (P < 0.05) MFI for lectins specific for N-acetyl-glucosamine and β-galactose than did fresh sperm. Fewer sperm were damaged (P < 0.001) with GOH than with DMA or DMSO, and membrane integrity was correlated with MFI for 9 of 12 lectins (P < 0.05). These data indicate that surface carbohydrates are altered during cryopreservation, and that cryoprotectant type and freezing-thawing rates affect the degree of modification. Although the glycoconjugates have not yet been identified, it is likely that these cryopreservation-induced changes contribute to the reduced fertility of frozen-thawed chicken semen.
Hochberg, Marc C; Martel-Pelletier, Johanne; Monfort, Jordi; Möller, Ingrid; Castillo, Juan Ramón; Arden, Nigel; Berenbaum, Francis; Blanco, Francisco J; Conaghan, Philip G; Doménech, Gema; Henrotin, Yves; Pap, Thomas; Richette, Pascal; Sawitzke, Allen; du Souich, Patrick; Pelletier, Jean-Pierre
2016-01-01
Objectives To compare the efficacy and safety of chondroitin sulfate plus glucosamine hydrochloride (CS+GH) versus celecoxib in patients with knee osteoarthritis and severe pain. Methods Double-blind Multicentre Osteoarthritis interVEntion trial with SYSADOA (MOVES) conducted in France, Germany, Poland and Spain evaluating treatment with CS+GH versus celecoxib in 606 patients with Kellgren and Lawrence grades 2–3 knee osteoarthritis and moderate-to-severe pain (Western Ontario and McMaster osteoarthritis index (WOMAC) score ≥301; 0–500 scale). Patients were randomised to receive 400 mg CS plus 500 mg GH three times a day or 200 mg celecoxib every day for 6 months. The primary outcome was the mean decrease in WOMAC pain from baseline to 6 months. Secondary outcomes included WOMAC function and stiffness, visual analogue scale for pain, presence of joint swelling/effusion, rescue medication consumption, Outcome Measures in Rheumatology Clinical Trials and Osteoarthritis Research Society International (OMERACT-OARSI) criteria and EuroQoL-5D. Results The adjusted mean change (95% CI) in WOMAC pain was −185.7 (−200.3 to −171.1) (50.1% decrease) with CS+GH and −186.8 (−201.7 to −171.9) (50.2% decrease) with celecoxib, meeting the non-inferiority margin of −40: −1.11 (−22.0 to 19.8; p=0.92). All sensitivity analyses were consistent with that result. At 6 months, 79.7% of patients in the combination group and 79.2% in the celecoxib group fulfilled OMERACT-OARSI criteria. Both groups elicited a reduction >50% in the presence of joint swelling; a similar reduction was seen for effusion. No differences were observed for the other secondary outcomes. Adverse events were low and similarly distributed between groups. Conclusions CS+GH has comparable efficacy to celecoxib in reducing pain, stiffness, functional limitation and joint swelling/effusion after 6 months in patients with painful knee osteoarthritis, with a good safety profile. Trial registration number: NCT01425853. PMID:25589511
Dietary supplements for treating osteoarthritis: a systematic review and meta-analysis.
Liu, Xiaoqian; Machado, Gustavo C; Eyles, Jillian P; Ravi, Varshini; Hunter, David J
2018-02-01
To investigate the efficacy and safety of dietary supplements for patients with osteoarthritis. An intervention systematic review with random effects meta-analysis and meta-regression. MEDLINE, EMBASE, Cochrane Register of Controlled Trials, Allied and Complementary Medicine and Cumulative Index to Nursing and Allied Health Literature were searched from inception to April 2017. Randomised controlled trials comparing oral supplements with placebo for hand, hip or knee osteoarthritis. Of 20 supplements investigated in 69 eligible studies, 7 (collagen hydrolysate, passion fruit peel extract, Curcuma longa extract, Boswellia serrata extract, curcumin, pycnogenol and L-carnitine) demonstrated large (effect size >0.80) and clinically important effects for pain reduction at short term. Another six (undenatured type II collagen, avocado soybean unsaponifiables, methylsulfonylmethane, diacerein, glucosamine and chondroitin) revealed statistically significant improvements on pain, but were of unclear clinical importance. Only green-lipped mussel extract and undenatured type II collagen had clinically important effects on pain at medium term. No supplements were identified with clinically important effects on pain reduction at long term. Similar results were found for physical function. Chondroitin demonstrated statistically significant, but not clinically important structural improvement (effect size -0.30, -0.42 to -0.17). There were no differences between supplements and placebo for safety outcomes, except for diacerein. The Grading of Recommendations Assessment, Development and Evaluation suggested a wide range of quality evidence from very low to high. The overall analysis including all trials showed that supplements provided moderate and clinically meaningful treatment effects on pain and function in patients with hand, hip or knee osteoarthritis at short term, although the quality of evidence was very low. Some supplements with a limited number of studies and participants suggested large treatment effects, while widely used supplements such as glucosamine and chondroitin were either ineffective or showed small and arguably clinically unimportant treatment effects. Supplements had no clinically important effects on pain and function at medium-term and long-term follow-ups. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L
1983-03-01
The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest that immunoreactive NILE GP is distributed widely and selectively on neural cell surfaces.
Barthel, Steven R.; Antonopoulos, Aristotelis; Cedeno-Laurent, Filiberto; Schaffer, Lana; Hernandez, Gilberto; Patil, Shilpa A.; North, Simon J.; Dell, Anne; Matta, Khushi L.; Neelamegham, Sriram; Haslam, Stuart M.; Dimitroff, Charles J.
2011-01-01
Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis. PMID:21493714
Design and synthesis of inositolphosphoglycan putative insulin mediators.
López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel
2005-03-07
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
Metabolism of Glycoproteins in Turpentine Granuloma*
Prodi, G.; Pane, G.; Romeo, G.
1970-01-01
The local synthesis of sialic acid and sialic acid containing glycoproteins in granuloma experimentally produced with turpentine has been investigated by incubating them in vitro with 14C glucosamine. The content and activity of chromatographically isolated sialic acid of water soluble and water insoluble fractions of tissue incubated at different times after injection of turpentine was determined. A local synthesis of sialic acid and its incorporation both in the soluble and insoluble fractions were found, with a time depending slope. Chromatography on DEAE Sephadex of glycoproteins obtained from water soluble fraction showed that radioactivity was present in 2 peaks. After papain digestion of the insoluble fraction, the sialic acid containing material could be separated into 2 groups of radioactive glycopeptides on DEAE Sephadex. The data demonstrates that granuloma can synthestize in vitro a considerable variety of glycoproteic materials. PMID:5491911
Welker, N. E.
1971-01-01
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings. PMID:4255338
Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F
2013-11-15
A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey
2016-11-01
Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.
Nahin, Richard L; Boineau, Robin; Khalsa, Partap S; Stussman, Barbara J; Weber, Wendy J
2016-09-01
Although most pain is acute and resolves within a few days or weeks, millions of Americans have persistent or recurring pain that may become chronic and debilitating. Medications may provide only partial relief from this chronic pain and can be associated with unwanted effects. As a result, many individuals turn to complementary health approaches as part of their pain management strategy. This article examines the clinical trial evidence for the efficacy and safety of several specific approaches-acupuncture, manipulation, massage therapy, relaxation techniques including meditation, selected natural product supplements (chondroitin, glucosamine, methylsulfonylmethane, S-adenosylmethionine), tai chi, and yoga-as used to manage chronic pain and related disability associated with back pain, fibromyalgia, osteoarthritis, neck pain, and severe headaches or migraines. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
A little sugar goes a long way: The cell biology of O-GlcNAc
2015-01-01
Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515
Kraft, Jochen; Mill, Katharina; Ziegler, Thomas
2016-12-10
Two novel carbohydrate-derived pyridyl (PYOX)- and cyclopropyl (CYBOX)-substituted oxazoline ligands were prepared from d-glucosamine hydrochloride and 1,3,4,6-tetra- O -acetyl-2-amino-2-deoxy-β-d-glucopyranose hydrochloride in two steps, respectively. The sugar-annulated PYOX ligand formed a stable metal complex with Pd(II), which was fully characterized by NMR spectroscopy and X-ray crystallography. NMR and X-ray analysis revealed a change of the conformation in the sugar moiety upon complexation with the palladium(II) species. Both glycosylated ligands resulted in high asymmetric induction (up to 98% ee ) upon application as chiral ligands in the Pd-catalyzed allylic alkylation of rac -1,3-diphenylallyl acetate with dimethyl malonate (Tsuji-Trost reaction). Both ligands provided mainly the ( R )-enantiomer of the alkylation product.
Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J; Piletsky, Sergey
2016-11-24
Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.
Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey
2016-01-01
Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays. PMID:27883023
Efficacy of Curcuma for Treatment of Osteoarthritis
Perkins, Kimberly; Sahy, William; Beckett, Robert D.
2016-01-01
The objective of this review is to identify, summarize, and evaluate clinical trials to determine the efficacy of curcuma in the treatment of osteoarthritis. A literature search for interventional studies assessing efficacy of curcuma was performed, resulting in 8 clinical trials. Studies have investigated the effect of curcuma on pain, stiffness, and functionality in patients with knee osteoarthritis. Curcuma-containing products consistently demonstrated statistically significant improvement in osteoarthritis-related endpoints compared with placebo, with one exception. When compared with active control, curcuma-containing products were similar to nonsteroidal anti-inflammatory drugs, and potentially to glucosamine. While statistical significant differences in outcomes were reported in a majority of studies, the small magnitude of effect and presence of major study limitations hinder application of these results. Further rigorous studies are needed prior to recommending curcuma as an effective alternative therapy for knee osteoarthritis. PMID:26976085
Tachykinin receptors mediating airway marcomolecular secretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, S.E.
1991-01-01
Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absencemore » and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.« less
Siala, Wafi; Kucharíková, Soňa; Braem, Annabel; Vleugels, Jef; Tulkens, Paul M; Mingeot-Leclercq, Marie-Paule; Van Dijck, Patrick; Van Bambeke, Françoise
2016-11-03
Biofilms play a major role in Staphylococcus aureus pathogenicity but respond poorly to antibiotics. Here, we show that the antifungal caspofungin improves the activity of fluoroquinolones (moxifloxacin, delafloxacin) against S. aureus biofilms grown in vitro (96-well plates or catheters) and in vivo (murine model of implanted catheters). The degree of synergy among different clinical isolates is inversely proportional to the expression level of ica operon, the products of which synthesize poly-N-acetyl-glucosamine polymers, a major constituent of biofilm matrix. In vitro, caspofungin inhibits the activity of IcaA, which shares homology with β-1-3-glucan synthase (caspofungin's pharmacological target in fungi). This inhibition destructures the matrix, reduces the concentration and polymerization of exopolysaccharides in biofilms, and increases fluoroquinolone penetration inside biofilms. Our study identifies a bacterial target for caspofungin and indicates that IcaA inhibitors could potentially be useful in the treatment of biofilm-related infections.
The dispersion of fine chitosan particles by beads-milling
NASA Astrophysics Data System (ADS)
Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia
2018-02-01
This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.
Perspective: Dendrimer drugs for infection and inflammation.
Shaunak, Sunil
2015-12-18
Biologists are dissecting complex biological pathways at breath taking speed. It is opening up new opportunities for the therapeutic evaluation of novel dendrimer drugs. This review focuses on studies of small dendrimers decorated with sulfate, phosphonate, N-acetyl-cysteine, glucosamine and mannose in animal model studies of infection and inflammation. It highlights those animal model studies which have demonstrated the most promising dendrimer drug constructs as potential new medicines. The issues relating to their analytical chemistry that are slowing the progress of dendrimer drugs into the clinic are highlighted. It should be possible to solve these with additional analytical expertise because it is small dendrimers with only 16-32 peripheral groups that make for the best infection and inflammation related medicines. Public-private partnerships are now needed to progress these dendrimer drugs into proof-of-concept clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
Degradation and mineralization of chitin in an estuary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, J.
1987-01-01
A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. /sup 14/C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-(/sup 14/C)-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q/sub 10/ values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation.more » The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture.« less
Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties.
Rodríguez-Argüelles, M Carmen; Sieiro, Carmen; Cao, Roberto; Nasi, Lucia
2011-12-01
Chitosan nanoparticles (CS-NP) containing small silver nanoparticles are reported (Ag@CS-NP). CS-NP was synthesized using tripolyphosphate (TPP) as a polyanionic template. TPP also served to electrostatically attract Ag(+) inside CS-NP, where it was reduced by the terminal glucosamine units of the biopolymer. This procedure is environmental friendly, inexpensive, and permits the synthesis of very small AgNP (0.93-1.7 nm), with only a discrete dependence from the amount of silver nitrate used (5-200mg). The obtained hybrid nanocomposites Ag@CS-NP were characterized by DLS, HRTEM, and HAADF-STEM presenting a mean hydrodynamic diameter of 78 nm. The antimicrobial activity of Ag@CS-NP against Candida glabrata, Sacharomyces cerevisiae, Escherichia coli, Klebsiella pneumoniae, Salmonella, Staphylococcus aureus, and Bacillus cereus corresponded to MIC values lower than for AgNO(3). Copyright © 2011 Elsevier Inc. All rights reserved.
Characterization of Hyaluronan-Degrading Enzymes from Yeasts.
Smirnou, Dzianis; Krčmář, Martin; Kulhánek, Jaromír; Hermannová, Martina; Bobková, Lenka; Franke, Lukáš; Pepeliaev, Stanislav; Velebný, Vladimír
2015-10-01
Hyaluronidases (HAases) from yeasts were characterized for the first time. The study elucidated that hyaluronate 4-glycanohydrolase and hyaluronan (HA) lyase can be produced by yeasts. Six yeasts producing HAases were found through express screening of activities. The extracellular HAases from two of the yeast isolates, Pseudozyma aphidis and Cryptococcus laurentii, were characterized among them. P. aphidis HAase hydrolyzed β-1,4 glycosidic bonds of HA, yielding even-numbered oligosaccharides with N-acetyl-D-glucosamine at the reducing end. C. laurentii produced hyaluronan lyase, which cleaved β-1,4 glycosidic bonds of HA in β-elimination reaction, and the products of HA degradation were different-sized even-numbered oligosaccharides. The shortest detected HA oligomer was dimer. The enzymes' pH and temperature optima were pH 3.0 and 37-45 °C (P. aphidis) and pH 6.0 and 37 °C (C. laurentii), respectively. Both HAases showed good thermostability.
Treatment of knee osteoarthritis.
Ringdahl, Erika; Pandit, Sandesh
2011-06-01
Knee osteoarthritis is a common disabling condition that affects more than one-third of persons older than 65 years. Exercise, weight loss, physical therapy, intra-articular corticosteroid injections, and the use of nonsteroidal anti-inflammatory drugs and braces or heel wedges decrease pain and improve function. Acetaminophen, glucosamine, ginger, S-adenosylmethionine (SAM-e), capsaicin cream, topical nonsteroidal anti-inflammatory drugs, acupuncture, and tai chi may offer some benefit. Tramadol has a poor trade-off between risks and benefits and is not routinely recommended. Opioids are being used more often in patients with moderate to severe pain or diminished quality of life, but patients receiving these drugs must be carefully selected and monitored because of the inherent adverse effects. Intra-articular corticosteroid injections are effective, but evidence for injection of hyaluronic acid is mixed. Arthroscopic surgery has been shown to have no benefit in knee osteoarthritis. Total joint arthroplasty of the knee should be considered when conservative symptomatic management is ineffective.
The composition of peptidochitodextrins from sarcophagid puparial cases
Lipke, H.; Geoghegan, T.
1971-01-01
1. N-Bromosuccinimide cleaved proteins and pigments from fly puparia, increasing the chitin:protein ratio from 0.5 to 1.5. The product afforded subfractions (ratio 5:1) of molecular weights of 1200 and 1600 devoid of aromatic residues and N-terminal β-alanine, direct aryl links between polysaccharide chains being discounted. 2. The chitin–protein complex decreased in molecular weight when treated with Pronase, which suggested polypeptide bridges within the native chitin micelle. The limit dextrins generated by chitinase were mixtures of unsubstituted dextrins and peptidylated oligosaccharides, with the former predominating. 3. Peptidochitodextrins of similar molecular weight but markedly different solubility were prepared, which were indistinguishable with respect to amino acid, glucosamine, acetyl, X-ray or infrared characteristics. It is suggested that physical interactions contribute to the stability of the integument in addition to the covalent bonds that form during sclerotization. PMID:5145884
Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes
Chien, Mei-Yin; Sheu, Ming-Thau; Huang, Yi-You; Chen, Meng-Hsun; Su, Ching-Hua; Liu, Der-Zen
2014-01-01
LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing) compared to cotton gauze (>30 days), but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance. PMID:24812618
Dried fruit of the Luffa sponge as a source of chitin for applications as skin substitutes.
Jiang, Ping-Lun; Chien, Mei-Yin; Sheu, Ming-Thau; Huang, Yi-You; Chen, Meng-Hsun; Su, Ching-Hua; Liu, Der-Zen
2014-01-01
LUFFACHITIN obtained from the residue of the sponge-like dried fruit of Luffa aegyptiaca was developed as a weavable skin substitute in this study. A chemical analysis revealed that LUFFACHITIN was composed of a copolymer containing N-acetyl-glucosamine (~40%) as a major monomer with a filamentary structure as demonstrated by both optical and scanning electron microscopy. The pulp-like white residue of the sponge-like dried fruit of Luffa aegyptiaca after treatment was then woven into a thin, porous membrane by filtration and lyophilization as a skin substitute for conducting wound-healing study on rats. The results indicated that the LUFFACHITIN membrane showed significant wound-healing enhancement (25 days to complete healing) compared to cotton gauze (>30 days), but not inferior to that of SACCHACHITIN. Furthermore, the LUFFACHITIN membrane had advantages of having a high yield, better physical properties for fabrication, and a more attractive appearance.
Development of a Photothermal Absorbance Detector for Use with Microfluidic Devices
Dennis, Patty J.; Ferguson Welch, Erin R.; Alarie, Jean Pierre; Ramsey, J. Michael; Jorgenson, James W.
2010-01-01
The development of a photothermal absorbance detector for use with microfluidic devices is described. Unlike thermooptical techniques that rely on measuring refractive index changes, the solution viscosity is probed by continuously monitoring solution conductivity. Platinum electrodes microfabricated on a quartz substrate and bonded to a substrate containing the microchannels enable contact conductivity measurements. The effects of excitation frequency and voltage, electrode spacing, laser power, and laser modulation (chopping) frequency were evaluated experimentally. In the current configuration a limit of detection of 5 nM for DABSYL-tagged glucosamine was obtained using long injections (to give flat-topped peaks). This corresponds to an absorbance of 4.4 × 10−7 AU. Separation and detection of DABSYL-tagged glycine, proline, and tryptophan is also shown to demonstrate the feasibility of the method. In addition, simulations were used to investigate the applicability of the technique to small volume platforms. PMID:20411923
Siala, Wafi; Kucharíková, Soňa; Braem, Annabel; Vleugels, Jef; Tulkens, Paul M; Mingeot-Leclercq, Marie-Paule; Van Dijck, Patrick; Van Bambeke, Françoise
2016-01-01
Biofilms play a major role in Staphylococcus aureus pathogenicity but respond poorly to antibiotics. Here, we show that the antifungal caspofungin improves the activity of fluoroquinolones (moxifloxacin, delafloxacin) against S. aureus biofilms grown in vitro (96-well plates or catheters) and in vivo (murine model of implanted catheters). The degree of synergy among different clinical isolates is inversely proportional to the expression level of ica operon, the products of which synthesize poly-N-acetyl-glucosamine polymers, a major constituent of biofilm matrix. In vitro, caspofungin inhibits the activity of IcaA, which shares homology with β-1-3-glucan synthase (caspofungin's pharmacological target in fungi). This inhibition destructures the matrix, reduces the concentration and polymerization of exopolysaccharides in biofilms, and increases fluoroquinolone penetration inside biofilms. Our study identifies a bacterial target for caspofungin and indicates that IcaA inhibitors could potentially be useful in the treatment of biofilm-related infections. PMID:27808087
Skin lightening preparations and the hydroquinone controversy.
Draelos, Zoe Diana
2007-01-01
Skin lightening preparations are widely used in dermatology by persons of all Fitzpatrick skin types. Fitzpatrick skin types I-III require local pigment lightening for the treatment of hormonally induced melasma and postinflammatory hyperpigmentation caused by acne and trauma. Fitzpatrick skin types IV and darker have an even greater need for skin lightening for social reasons, as well as pigmentary changes that occur around the eyes, in the intertriginous areas, following dermatitis, or with acne and trauma. The gold standard dermatologic agent for skin lightening was hydroquinone, until regulatory agencies in Japan, Europe, and most recently in the United States questioned the safety of this substance. This has encouraged research into alternative agents to inhibit skin pigmentation such as retinoids, mequinol, azelaic acid, arbutin, kojic acid, aleosin, licorice extract, ascorbic acid, soy proteins, and N-acetyl glucosamine. The efficacy and safety of each of these ingredients is examined as possible topical alternatives to hydroquinone.
Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials
Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu
2015-01-01
Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874
Ghfir, B; Fonvieille, J L; Dargent, R
1997-07-01
The cell walls of the growing hyphae of Aspergillus fumigatus (Fresenius) cultured in the presence or absence of the essential oil of Hyssopus officinalis were isolated and their chemical composition analysed. The presence of the essential oil led to a reduction in levels of neutral sugars, uronic acid and proteins, whereas amino sugars, lipids and phosphorus levels were increased. HPLC analysis of the neutral sugars showed that they consisted mainly of glucose, mannose and galactose, while the amino sugars consisted of glucosamine and galactosamine. The presence of the essential oil in the culture medium induced marked changes in the content of galactose and galactosamine. Cell walls were fractionated by treatment with alkali and acid. The essential oil induced similar alterations in the various fractions with a more marked effect on the major constituents. The alterations were related to changes in the structure of the cells.
Chaudhury, Aritra; Ghosh, Rina
2017-02-07
Bacterial rare amino deoxy sugars are found in the cell surface polysaccharides of multiple pathogenic bacterial strains, but are absent in the human metabolism. This helps in the differentiation between pathogens and host cells which can be exploited for target specific drug discovery and carbohydrate based vaccine development. The principal bacterial atypical sugar derivatives include 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT), 2,4-diacetamido-2,4,6-trideoxy-d-galactose (DATDG) and N-acetylfucosamine (FucNAc). Herein, a highly streamlined protocol leading to the aforesaid derivatives is presented. The highlights of the method lie in radical mediated 6-deoxygenation along with a one-pot like protection profile manipulation on suitably derivatised d-glucosamine or d-mannose motifs to obtain a vital quinovosaminoside or rhamnoside from which rare sugar derivatives were synthesized in a diversity oriented manner.
O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway.
Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen
2016-03-18
O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. Copyright © 2016 Elsevier Inc. All rights reserved.
Separation of carbohydrates using hydrophilic interaction liquid chromatography.
Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao
2013-09-20
A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pusztahelyi, T; Molnár, Z; Emri, T; Klement, E; Miskei, M; Kerékgyárto, J; Balla, J; Pócsi, I
2006-01-01
N-Acetyl-D-glucosamine, chito-oligomers and carbon starvation regulated chiA, chiB, and nagA gene expressions in Aspergillus nidulans cultures. The gene expression patterns of the main extracellular endochitinase ChiB and the N-acetyl-beta-D-glucosaminidase NagA were similar, and the ChiB-NagA enzyme system may play a morphological and/or nutritional role during autolysis. Alterations in the levels of reactive oxygen species or in the glutathione-glutathione disulfide redox balance, characteristic physiological changes developing in ageing and autolyzing fungal cultures, did not affect the regulation of either the growth-related chiA or the autolysis-coupled chiB genes although both of them were down-regulated under diamide stress. The transcription of the chiC gene with unknown physiological function was repressed by increased intracellular superoxide concentration.
Efficacy of Curcuma for Treatment of Osteoarthritis.
Perkins, Kimberly; Sahy, William; Beckett, Robert D
2017-01-01
The objective of this review is to identify, summarize, and evaluate clinical trials to determine the efficacy of curcuma in the treatment of osteoarthritis. A literature search for interventional studies assessing efficacy of curcuma was performed, resulting in 8 clinical trials. Studies have investigated the effect of curcuma on pain, stiffness, and functionality in patients with knee osteoarthritis. Curcuma-containing products consistently demonstrated statistically significant improvement in osteoarthritis-related endpoints compared with placebo, with one exception. When compared with active control, curcuma-containing products were similar to nonsteroidal anti-inflammatory drugs, and potentially to glucosamine. While statistical significant differences in outcomes were reported in a majority of studies, the small magnitude of effect and presence of major study limitations hinder application of these results. Further rigorous studies are needed prior to recommending curcuma as an effective alternative therapy for knee osteoarthritis. © The Author(s) 2016.
Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.
Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang
2015-03-06
Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
Background Lower urinary tract symptoms (LUTS) are associated with great emotional costs to individuals and substantial economic costs to society. This study seeks to evaluate the effect of a new natural compound “Tradamixina plus Serenoa Repens” in order to improve lower urinary tract symptoms. Methods 100 patients (≥45years) who had had LUTS/BPH for >6 mo at screening and with IPSS -The international Prostate symptom scores- ≥13 and maximum urinary flow rate (Qmax) ≥4 to ≤15 ml/s. were recruited. The compound “Tradamixina plus Serenoa Repens” (80 mg of Alga Ecklonia Bicyclis, 100 mg of Tribulus Terrestris and 100 mg of D-Glucosamine and N-Acetyl-D-Glucosamine plus 320 mg of Serenoa Repens) was administered daily for 2 months. At visit and after 60 days of treatment patients were evaluated by means of detailed medical urological history, clinical examination, laboratory investigations (total PSA), and instrumental examination like urolfowmetry. Efficacy measures included IPSS-International Prostate Sympto, BPH Impact Index (BII), Quality-of-Life (QoL) Index. Measures were assessed at baseline and end point (12 wk or end of therapy) and also at screening, 1 and 4 wk for IPSS, and 4 wk for BII. Statistical significance was interpreted only if the results of the preceding analysis were significant at the 0.05 level. Results After 2 months of treatment the change from baseline to week 12 relative to “Tradamixina plus Seronea Repens” in total IPSS and Qol was statistically significant. Differences from baseline in BII were statistically significant for “Tradamixina plus Seronea Repens” above all differences in BII were also significant at 4 wk (LSmean ± SE: -0.8 ± 0.2). In the distribution of subjects over the PGI-I and CGI-I response categories were significant for”Tradamixina plus Seronea Repens” (PGI-I: p = 0.001; CGI-I). We also observed a decrease of total PSA. Conclusion The daily treatment with a new compound “Tradamixina plus Serenoa Repens” for 2 months improved the male sexual function , it improved the bother symptoms which affect the patient’s quality of life , improved uroflowmetric parameters, and we also observed a decrease of serum PSA level. PMID:23173650
Nutraceuticals in the management of osteoarthritis : a critical review.
Ragle, Ryan L; Sawitzke, Allen D
2012-09-01
Osteoarthritis (OA) is a chronic, highly prevalent and disabling disease that is expected to increase in prevalence secondary to longer life expectancy and a disproportionately aging population. Treatment of OA is only marginally effective and has been focused primarily on symptom control using weight loss, physical therapy, nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, intra-articular steroids or viscosupplementation, topical NSAIDs and analgesics, diacerein (an oral interleukin-1β inhibitor) and finally joint replacement surgery. The use of nutraceuticals in the treatment of OA is common, and scientific studies examining the effects of nutraceuticals on the pathogenesis and treatment of OA are increasing. This review examines the efficacy and safety of select nutraceuticals for the treatment of OA. The reviewed nutraceuticals include glucosamine, chondroitin, collagen hydrolysates (CHs) and avocado-soybean unsaponifiables (ASUs). There have been several clinical trials examining the efficacy of these products and the results demonstrate significant heterogeneity. Significant improvements in pain, function and structural outcomes have been shown for some of the treatment arms or subgroups of patients, but the effects are not consistent across the studies. Glucosamine, chondroitin and the two in combination have been the most extensively studied. Significant improvement in pain and functional indices and a decrease in the loss of joint space width were demonstrated in some but not all studies. CHs showed significant improvement in pain and functional indices for several subgroups of patients, but these findings were not pervasive amongst the treatment arms. ASU has demonstrated positive results with respect to decreased NSAID use in several studies and functional and pain end points in most of the reviewed studies; however, in the two studies examining structural end points, the results were mixed. The safety of these nutraceuticals has been demonstrated across all of the reviewed trials, and there were no significant issues with tolerance. Given the good safety profile of nutraceuticals, the marginal efficacy of conventional treatments, the high prevalence and rate of disability from OA and the possible benefit of nutraceuticals to patients with OA, use of nutraceuticals in select patients is appropriate. An overall recommendation to use nutraceuticals in the treatment of all patients with OA is not strongly supported by the available data. Future studies should focus on standardization of symptomatic and structural outcome measures, be of longer duration and pay careful attention to the content of the investigational product.
NASA Astrophysics Data System (ADS)
Roth, Philipp; Lehndorff, E.; Cao, Z.; Amelung, W.
2010-05-01
Available nitrogen is a limiting factor in paddy rice systems due to ammonia volatilization, denitrification and stabilization in organic complexes. Soil organic nitrogen (SON) might therefore constitute a critical component of the nitrogen cycle in rice systems. The objective of this study was to elucidate the role of microorganisms for the sequestration of paddy N in organic forms. For this purpose we analyzed amino sugars as markers for the residues of bacteria and fungi in a chronosequence of soils that were used for paddy rice production for a period of 0 to 2000 years in the Hangzhou bay area in Southeast China. Within the soil profile, amino sugar concentrations were generally highest in the puddled Ap horizon and decreased with increasing depth along with organic carbon concentrations regardless of the time of rice cultivation. Nevertheless, a sharp increase of total amino sugar concentration from 0.1 g kg-1 to 0.3 g kg-1 was observed in the Ah horizon when comparing tidal wetland to salt marsh that had been impoldered 30 years ago, indicating an increasing importance of microbial residues in SON stabilization following the conversion of the semiaquatic marsh to a terrestrial system. With increased time of paddy rice cropping, amino sugar concentrations continued to increase up to a maximum of 2.1 g kg-1 after 300 years of paddy cultivation but declined again to 1 g kg-1 in soils with 700-2000 years history of cultivation despite increasing organic matter accumulation. Changes in the composition of the amino sugars were also most pronounced at initial stages of paddy rice management. The proportions of glucosamine (abundant in fungal chitin) decreased during the first 50 years of cultivation relative to mainly galactosamine (abundant in bacterial gums) and muramic acid (abundant in bacterial peptidoglycan), that remained at constantly low levels. At later stages of paddy rice cultivation, the ratios of glucosamine to galactosamine and to muramic acid re-increased. We conclude that microorganisms significantly contribute to the sequestration of paddy N in organic forms during the first 300 years of cropping, within an increasing contribution of bacteria as cropping time proceeds. At even longer periods of paddy rice cultivation, there appears to be a backshift to lower concentrations of microbial residues with higher proportions of fungal N remaining.
Chen, Chih-Hao; Kuo, Chang-Yi; Wang, Yan-Jie; Chen, Jyh-Ping
2016-11-23
Glucosamine (GlcN) fulfills many of the requirements as an ideal component in scaffolds used in cartilage tissue engineering. The incorporation of GlcN in a gelatin/hyaluronic acid (GH) cryogel scaffold could provide biological cues in maintaining the phenotype of chondrocytes. Nonetheless, substituting gelatin with GlcN may also decrease the crosslinking density and modulate the mechanical properties of the cryogel scaffold, which may be beneficial as physical cues for chondrocytes in the scaffold. Thus, we prepared cryogel scaffolds containing 9% GlcN (GH-GlcN9) and 16% GlcN (GH-GlcN16) by carbodiimide-mediated crosslinking reactions at -16 °C. The crosslinking density and the mechanical properties of the cryogel matrix could be tuned by adjusting the content of GlcN used during cryogel preparation. In general, incorporation of GlcN did not influence scaffold pore size and ultimate compressive strain but increased porosity. The GH-GlcN16 cryogel showed the highest swelling ratio and degradation rate in hyaluronidase and collagenase solutions. On the contrary, the Young's modulus, storage modulus, ultimate compressive stress, energy dissipation level, and rate of stress relaxation decreased by increasing the GlcN content in the cryogel. The release of GlcN from the scaffolds in the culture medium of chondrocytes could be sustained for 21 days for GH-GlcN16 in contrast to only 7 days for GH-GlcN9. In vitro cell culture experiments using rabbit articular chondrocytes revealed that GlcN incorporation affected cell proliferation, morphology, and maintenance of chondrogenic phenotype. Overall, GH-GlcN16 showed the best performance in maintaining chondrogenic phenotype with reduced cell proliferation rate but enhanced glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Quantitative real-time polymerase chain reaction also showed time-dependent up-regulation of cartilage-specific marker genes (COL II, aggrecan and Sox9) for GH-GlcN16. Implantation of chondrocytes/GH-GlcN16 constructs into full-thickness articular cartilage defects of rabbits could regenerate neocartilage with positive staining for GAGs and COL II. The GH-GlcN16 cryogel will be suitable as a scaffold for the treatment of articular cartilage defects.
Kidibule, Peter Elias; Santos-Moriano, Paloma; Jiménez-Ortega, Elena; Ramírez-Escudero, Mercedes; Limón, M Carmen; Remacha, Miguel; Plou, Francisco José; Sanz-Aparicio, Julia; Fernández-Lobato, María
2018-03-22
Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5-6.5 and 30-40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the k cat /K m ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (D-glucosamine) 1-8 -GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities.
Tat, Steeve Kwan; Pelletier, Jean-Pierre; Vergés, Josep; Lajeunesse, Daniel; Montell, Eulàlia; Fahmi, Hassan; Lavigne, Martin; Martel-Pelletier, Johanne
2007-01-01
Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology. PMID:17996099
Pharmacological therapy of osteoarthritis.
Hochberg, M C; Dougados, M
2001-10-01
In 2000, both the American College of Rheumatology (ACR) and the European League of Associations of Rheumatology (EULAR) published recommendations for the use of pharmacological therapy in the treatment of patients with lower limb osteoarthritis. These recommendations are based on the level of evidence observed in systematic reviews and/or meta-analyses of published randomized controlled trials as well as expert opinion. Acetaminophen (paracetamol) is considered as first-line oral therapy for symptomatic lower limb osteoarthritis with mild to moderate pain because it is more efficacious than placebo and is generally considered to be safe and well tolerated. Data obtained in recent trials and the results of a meta-analysis, however, show that acetaminophen is not as efficacious as non-steroidal anti-inflammatory drugs (NSAIDs) for pain at rest and pain on motion. Furthermore, data from a recent epidemiological study suggest that use of high-dose acetaminophen (>2 g/day) may convey the same magnitude of increased risk for serious upper gastrointestinal adverse events as NSAIDs.NSAIDs have demonstrated efficacy superior to placebo in patients with osteoarthritis. The newer cyclo-oxygenase (COX)-2-specific inhibitors (coxibs) have comparable efficacy to traditional dual inhibitor NSAIDs and have demonstrated a better gastrointestinal safety profile. Thus, for patients who have severe pain and/or signs of inflammation or who have failed to respond to acetaminophen, the use of a coxib should be considered, especially if the patient is at increased risk for serious upper gastrointestinal adverse events from a traditional NSAID.Compounds different from pure analgesics and NSAIDs are also used for the management of patients with osteoarthritis. Recent clinical trials have demonstrated statistically significant efficacy of such compounds (e.g. chondroitin sulphate, diacerhein, glucosamine sulphate) with the following characteristics: (1) the effect size seems to be of slightly lower magnitude than that seen for NSAIDs; (2) the onset of action is delayed for approximately 4 to 6 weeks; and (3) the symptomatic effect is maintained after stopping the treatment for periods of 4 to 8 weeks.The methodology for evaluating the possible structure-modifying effect of drugs has dramatically improved during the past decade. Two agents have demonstrated a beneficial structural effect: glucosamine sulphate in osteoarthritis of the knee, and diacerhein in osteoarthritis of the hip. The clinical relevance of such an effect needs to be further evaluated in long-term outcome studies. Copyright 2001 Harcourt Publishers Ltd.
Roca, Christophe; Lehmann, Mareen; Torres, Cristiana A V; Baptista, Sílvia; Gaudêncio, Susana P; Freitas, Filomena; Reis, Maria A M
2016-06-25
Exopolysaccharides (EPS) are polymers excreted by some microorganisms with interesting properties and used in many industrial applications. A new Pseudoalteromonas sp. strain, MD12-642, was isolated from marine sediments and cultivated in bioreactor in saline culture medium containing glucose as carbon source. Its ability to produce EPS under saline conditions was demonstrated reaching an EPS production of 4.4g/L within 17hours of cultivation, corresponding to a volumetric productivity of 0.25g/Lh, the highest value so far obtained for Pseudoalteromonas sp. strains. The compositional analysis of the EPS revealed the presence of galacturonic acid (41-42mol%), glucuronic acid (25-26mol%), rhamnose (16-22mol%) and glucosamine (12-16mol%) sugar residues. The polymer presents a high molecular weight (above 1000kDa). These results encourage the biotechnological exploitation of strain MD12-642 for the production of valuable EPS with unique composition, using saline by-products/wastes as feedstocks. Copyright © 2016 Elsevier B.V. All rights reserved.
Manczinger, Máté; Bocsik, Alexandra; Kocsis, Gabriella F.; Vörös, Andrea; Hegedűs, Zoltán; Marton, Annamária; Vízler, Csaba; Tubak, Vilmos; Deli, Mária; Kemény, Lajos; Nagy, István; Lakatos, Lóránt
2015-01-01
To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis. PMID:26366412
Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David
2016-10-18
In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.
Schmidt-Ullrich, R.; Wallach, D. F. H.; Lightholder, J.
1979-01-01
In order to characterize parasite-induced host cell membrane antigens, the plasma membranes of Plasmodium knowlesi-infected rhesus erythrocytes have been compared with those of normal red cells and purified schizonts by immunochemical and biochemical techniques. Host cell membranes and schizonts were separated by differential centrifugation following nitrogen decompression. Isolated schizonts were further fractionated into several subcellular compartments. Crossed-immune electrophoresis, against monkey anti-schizont serum, of Triton X-100-solubilized material identified 7 P. knowlesi-specific antigens, of which 4 could be detected only in the host cell membranes. These membranes also contained 3 proteins, with relative molecular masses of 55 000, 65 000 and 90 000 and isoelectric points at pH 4.5, 4.5 and 5.2, respectively, which are lacking in normal membranes. Pulse-chase experiments with (14C)-glucosamine showed that these parasite-induced host cell membrane components are glycoproteins. ImagesFig. 1Fig. 2 PMID:120762
Hunt, L A
1980-08-01
To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein.
Hunt, L A
1980-01-01
To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein. Images PMID:6255177
Cheng, Jing-Jy; Chang, Chia-Chuan; Chao, Chi-Hsein; Lu, Mei-Kuang
2012-09-01
Sulfated polysaccharides (SPSs) from two edible fungal species, including two strains of Antrodia cinnamomea and Poria cocos, were isolated. Fucose, glucosamine, galactose, glucose, and mannose were the major sugars in the SPSs, and these SPSs had a high sulfate content. The area percentage of low-molecular-weight SPSs (1-100 kDa) covered almost half of the SPS mixture of the A. cinnamomea strains. In contrast, high-molecular-weight SPSs (>1000 kDa) of P. cocos covered a large proportion of the area at 30.06%. SPSs from A. cinnamomea B86 showed stronger inhibition of endothelial cell (EC) tube formation in an in vitro assay of angiogenesis, than did A. cinnamomea 35396 or P. cocos. The degree of sulfation paralleled their antiangiogenic activity. When tumor cells were concurrently exposed to doxorubicin (DOX) and fungal SPSs, SPSs synergistically increased the cytotoxicity of DOX to different degree up to 50-fold. Fungal SPSs may offer new applications for combinational-therapy drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ferrari, Alessandro R; Lee, Misun; Fraaije, Marco W
2015-06-01
Chitooligosaccharide oxidase from Fusarium graminearum (ChitO) oxidizes N-acetyl-D-glucosamine (GlcNAc) and its oligomers with high efficiency at the C1-hydroxyl moiety while it shows poor or no activity with other carbohydrates. By sequence and structural comparison with other known carbohydrate oxidases (glucooligosaccharide oxidase from Acremonium strictum and lactose oxidase from Microdochium nivale) eleven mutants were designed to redirect the catalytic scope of ChitO for improved oxidation of lactose, cellobiose and maltose. The catalytic properties of the most interesting mutants were further improved by combining single mutations. This has resulted in the creation of a set of ChitO variants that display totally different substrate tolerances. One ChitO variant shows a dramatic improvement in catalytic efficiency towards oxidation of glucose, cellobiose, lactose, and maltose. We also describe a ChitO variant with the highest catalytic efficiency in GlcNAc oxidation so far reported in the literature. © 2015 Wiley Periodicals, Inc.
Elliott, S. D.; Hayward, John; Liu, T. Y.
1971-01-01
A Group A variant-like antigen has been detected in streptococci belonging to Groups D, E, G, M, and N. In Groups D and N the variant-like antigen was located in the streptococcal cell walls. In two strains of Group N streptococci (C559 and B209) the cell walls were chemically different and serologically distinct. In strain C559 N-acetylgalactosamine, and in strain B209, N-acetylglucosamine were the major determinants of serological specificity. The cell walls of strain C559 contained at least three serologically reactive components: a rhamnose-containing fraction that precipitated with an antiserum to Group A-variant carbohydrate; a strain-specific polysaccharide composed of galactosamine and glucosamine, both in the N-acetylated form and probably polymerized with an unidentified phosphorylated substance; and a component of unknown composition serologically related to a Group D streptococcus strain C3 (S. durans). An analogy is drawn between the cell wall structure in streptococcus and Salmonella. PMID:5111438
Diphtheria toxin-induced channels in Vero cells selective for monovalent cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvig, K.; Olsnes, S.
1988-09-05
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of /sup 45/Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+,more » K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.« less
Too sweet to resist: Control of immune cell function by O-GlcNAcylation.
de Jesus, Tristan; Shukla, Sudhanshu; Ramakrishnan, Parameswaran
2018-06-02
O-linked β-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille
2017-12-14
Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tilburt, Jon C; Emanuel, Ezekiel J; Miller, Franklin G
2008-09-01
To determine if the public consumption of herbs, vitamins, and supplements changes in light of emerging negative evidence. We describe trends in annual US sales of five major supplements in temporal relationship with publication of research from three top US general medical journals published from 2001 through early 2006 and the number of news citations associated with each publication using the Lexus-Nexis database. In four of five supplements (St. John's wort, echinacea, saw palmetto, and glucosamine), there was little or no change in sales trends after publication of research results. In one instance, however, dramatic changes in sales occurred following publication of data suggesting harm from high doses of vitamin E. Results reporting harm may have a greater impact on supplement consumption than those demonstrating lack of efficacy. In order for clinical trial evidence to influence public behavior, there needs to be a better understanding of the factors that influence the translation of evidence in the public.
A Paradox-based data collection and management system for multi-center randomized clinical trials.
Abdellatif, Mazen; Reda, Domenic J
2004-02-01
We have developed a Paradox-based data collection and management system for large-scale multi-site randomized clinical trials. The system runs under Windows operating system and integrates Symantec pcAnywhere32 telecommunications software for data transmission and remote control sessions, PKZIP utility for the compression/decompression of transmitted data, and Stat/Transfer for exporting the centralized Paradox database for analyses. We initially developed this system for VA Cooperative Study #399 'The Effect of Antiarrhythmic Therapy in Maintaining Stability of Sinus Rhythm in Atrial Fibrillation', which collects over 1000 variables on 706 patients at 20 sites. Patient intake for this 5-year study began in March of 1998. We have also developed an enhanced version of this system, which is being used in the NIH-funded 'Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT)' that collects over 1200 variables on 1588 patients at 13 sites. Patient intake for this 4-year study began in October of 2000.
High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants
Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek
2008-01-01
Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here. PMID:18703844
Chitin: a cell-surface component of Phytomonas françai.
Nakamura, C V; Esteves, M J; Andrade, A F; Alviano, C S; de Souza, W; Angluster, J
1993-01-01
The occurrence of chitin as a structural component of the surface of the phytopathogenic protozoan Phytomonas françai was demonstrated by paper and gas-liquid chromatographic analysis of the products of enzymatic and chemical hydrolysis of alkali-resistant polysaccharides, lectin binding, glycosidase digestion, and infrared spectra. Chitin was characterized by its insolubility in hot alkali and chromatographic immobility as well as by the release of glucosamine on hydrolysis with strong acid and of N-acetylglucosamine (GlcNAc) on hydrolysis with chitinase. The presence of chitin was also shown directly by binding of wheat-germ agglutinin (WGA), which recognizes GlcNAc units, to the parasite surface. Fluorescein-labeled WGA binding was completely abolished by treatment with chitinase. This effect was specific since it could be prevented by incubating the enzyme with chitin before treatment of the phytomonads. These findings indicate that chitin is an exposed cell-surface polysaccharide in Phytomonas françai. The data were confirmed by the infrared spectrum of an alkali-insoluble residue, which showed a pattern typical of chitin.
Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K
2003-12-22
Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.
Kodali, Vidya P; Perali, Ramu S; Sen, R
2011-08-26
An exopolysaccharide (EPS) was isolated from Bacillus coagulans RK-02 and purified by size exclusion chromatography. The purified, homogeneous EPS had an average molecular weight of ∼3 × 10⁴ Da by comparison with FITC-labeled dextran standards. In vivo evaluations showed that, like other reported polysaccharides, this EPS displayed significant antioxidant activity. FTIR spectroscopy analysis showed the presence of hydroxy, carboxy, and α-glycosidic linkages and a mannose residue. GC analysis indicated that the EPS was a heteropolymer composed of glucose, mannose, galactose, glucosamine, and fucose as monomeric constituent units. Partial elucidation of the structure of the carbohydrate biopolymer based on GC-MS and NMR analysis showed the presence of two unique sets of tetrasaccharide repeating units that have 1→3 and 1→6 glycosidic linkages. This is also the first report of a Gram-positive bacterial polysaccharide with both fucose as a sugar monomer and 1→3 and 1→6 glycosidic linkages in the molecular backbone.
The GlcN6P cofactor serves multiple catalytic roles in the glmS ribozyme
Bingaman, Jamie L.; Zhang, Sixue; Stevens, David R.; Yennawar, Neela H.; Hammes-Schiffer, Sharon; Bevilacqua, Philip C.
2017-01-01
RNA enzymes have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors. The naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies implicated GlcN6P as the general acid. Here we describe new catalytic roles for GlcN6P through experiments and calculations. Large stereospecific normal thio effects and lack of metal ion rescue in the holoribozyme show that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal ion rescue in the aporibozyme reveals this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, allowing RNA to compensate for its limited functional diversity. PMID:28192411
Anitua, Eduardo; Troya, María; Zalduendo, Mar; Orive, Gorka
2015-02-01
The prevalence and incidence of trauma-related injuries, coronary heart disease and other chronic diseases increase dramatically with age. This population sector is therefore a regular consumer of different types of drugs that may affect platelet aggregation and the coagulation cascade. We have evaluated whether the consumption of acetylsalicylic acid, acenocoumarol, glucosamine sulfate and chondroitin sulfate, and therefore their presence in blood, could interfere with the preparation and biological outcomes of plasma rich in growth factors (PRGF). Clotting time, clot retraction and platelet activation of PRGF was evaluated. PRGF growth factor content and the release of different biomolecules by tendon fibroblasts were also quantified, as well as cell proliferation and cell migration. The preparation and biological potential of PRGF is not affected by the intake of the evaluated drugs, and solely its angiogenic potential and its capacity to induce HA and fibronectin synthesis, is reduced in patients taking anti-coagulants.
Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix.
Gomes, Fernanda; Teixeira, Pilar; Cerca, Nuno; Azeredo, Joana; Oliveira, Rosário
2011-10-01
Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-D: -glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.
Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae.
Mishra, C; Semino, C E; McCreath, K J; de la Vega, H; Jones, B J; Specht, C A; Robbins, P W
1997-03-30
Chitin deacetylase (EC 3.5.1.41), which hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, has been demonstrated in crude extracts from sporulating Saccharomyces cerevisiae. Two S. cerevisiae open reading frames (ORFs), identified by the Yeast Genome Project, have protein sequence homology to a chitin deacetylase from Mucor rouxii. Northern blot hybridizations show each ORF was transcribed in diploid cells after transfer to sporulation medium and prior to formation of asci. Each ORF was cloned in a vector under transcriptional control of the GAL 1, 10 promoter and introduced back into haploid strains of S. cerevisiae. Chitin deacetylase activity was detected by in vitro assays from vegetative cells grown in galactose. Chemical analysis of these cells also demonstrated the synthesis of chitosam in vivo. Both recombinant chitin deacetylases showed similar qualitative and quantitative activities toward chitooligosaccharides in vitro. A diploid strain deleted to both ORFs, when sporulated, did not show deacetylase activity. The mutant spores were hypersensitive to lytic enzymes (Glusulase or Zymolyase).
Synthesis and Anticoagulant Activity of Polyureas Containing Sulfated Carbohydrates
2015-01-01
Polyurea-based synthetic glycopolymers containing sulfated glucose, mannose, glucosamine, or lactose as pendant groups have been synthesized by step-growth polymerization of hexamethylene diisocyanate and corresponding secondary diamines. The obtained polymers were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. The nonsulfated polymers showed similar results to the commercially available biomaterial polyurethane TECOFLEX in a platelet adhesion assay. The average degree of sulfation after reaction with SO3 was calculated from elemental analysis and found to be between three and four −OSO3 groups per saccharide. The blood-compatibility of the synthetic polymers was measured using activated partial thromboplastin time, prothrombin time, thrombin time, anti-IIa, and anti-Xa assays. Activated partial thromboplastin time, prothrombin time, and thrombin time results indicated that the mannose and lactose based polymers had the highest anticoagulant activities among all the sulfated polymers. The mechanism of action of the polymers appears to be mediated via an anti-IIa pathway rather than an anti-Xa pathway. PMID:25329742
Induced Autolysis of Aspergillus oryzae (A. niger group)
Emiliani, Ezio; de Davie, I. Ucha
1962-01-01
The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623
The US regulatory and pharmacopeia response to the global heparin contamination crisis.
Szajek, Anita Y; Chess, Edward; Johansen, Kristian; Gratzl, Gyöngyi; Gray, Elaine; Keire, David; Linhardt, Robert J; Liu, Jian; Morris, Tina; Mulloy, Barbara; Nasr, Moheb; Shriver, Zachary; Torralba, Pearle; Viskov, Christian; Williams, Roger; Woodcock, Janet; Workman, Wesley; Al-Hakim, Ali
2016-06-09
The contamination of the widely used lifesaving anticoagulant drug heparin in 2007 has drawn renewed attention to the challenges that are associated with the characterization, quality control and standardization of complex biological medicines from natural sources. Heparin is a linear, highly sulfated polysaccharide consisting of alternating glucosamine and uronic acid monosaccharide residues. Heparin has been used successfully as an injectable antithrombotic medicine since the 1930s, and its isolation from animal sources (primarily porcine intestine) as well as its manufacturing processes have not changed substantially since its introduction. The 2007 heparin contamination crisis resulted in several deaths in the United States and hundreds of adverse reactions worldwide, revealing the vulnerability of a complex global supply chain to sophisticated adulteration. This Perspective discusses how the US Food and Drug Administration (FDA), the United States Pharmacopeial Convention (USP) and international stakeholders collaborated to redefine quality expectations for heparin, thus making an important natural product better controlled and less susceptible to economically motivated adulteration.
Composition of Fatty Acids and Carbohydrates in Leptospira1
Kondo, Eiko; Ueta, Nobuo
1972-01-01
The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167
Evaluation of thermophilic fungal consortium for paddy straw composting.
Kumar, Adesh; Gaind, Sunita; Nain, Lata
2008-06-01
Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th(4)), Scytalidium thermophilum (Th(5)), and Humicola sp. (Th(10)). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.
Glycosylinositolphosphoceramides in Aspergillus fumigatus.
Simenel, Catherine; Coddeville, Bernadette; Delepierre, Muriel; Latgé, Jean-Paul; Fontaine, Thierry
2008-01-01
Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.
Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent.
Boddu, Veera M; Abburi, Krishnaiah; Talbott, Jonathan L; Smith, Edgar D
2003-10-01
A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.
Pusztai, A.
1965-01-01
1. The conditions of extracting nitrogenous, phosphorus-containing and glucosamine-containing components of the seeds of kidney bean have been studied. 2. The dispersing of proteins was incomplete below pH 7, and the exact amount of protein extracted depended on the pH and the ionic strength of the solvent. 3. The extraction of proteins was practically complete in the range pH 7–9, but the relative amounts of the individual proteins obtained still depended on the pH of the extracting media, indicating a pH-dependent association–dissociation reaction between the protein molecules present. 4. The extraction of phosphorus-containing material showed an optimum at pH 6–7, and only a part of this was removed on dialysis. The precipitates obtained with trichloroacetic acid, on the other hand, retained very little phosphorus-containing material. 5. The significance of these findings is discussed. PMID:14340051
Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F
1995-05-01
The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.
Hildebrandt, K M; Anderson, J S
1990-01-01
Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507
[Separation of osteoclasts by lectin affinity chromatography].
Itokazu, M; Tan, A; Tanaka, S
1991-09-01
Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.
Kim, Chang-Hyun; Choi, Yun-Seok; Cheong, Kyung Ah; Lee, Ai-Young
2013-02-01
Combination therapy is often used in the treatment of atopic dermatitis (AD) to improve clinical efficacy or to spare the dose of each drug. Cyclosporine A (CsA) is a calcineurin inhibitor that was developed for the treatment of AD. Glucosamine (Glu) is a potent immunosuppressant that inhibits Th2-mediated immunity. We previously reported that Glu has an ameliorative effect on the development of the pathology in NC/Nga mice. The aims of our study were to investigate the therapeutic efficacy of combination of Glu and low-dose CsA in dermatophagoides farina (Df)-induced AD-like skin lesions in NC/Nga mice and to determine the underlying therapeutic mechanisms. The Df-induced NC/Nga mice with a clinical score of 7 were used for treatment with Glu (500mg/kg) alone, low-dose CsA (2, 5, and 10mg/kg) or in combination. The clinical scores were reduced significantly by the combination treatment with Glu and low-dose CsA. The suppression of dermatitis by combined therapy was accompanied by decrease in the plasma level of IgE and in the splenic level of IL-4, IL-5, IL-13, TARC and eotaxin. Histological analysis of the skin also revealed that combination treatment significantly reduced the inflammatory cellular infiltrate, including mast cells and eosinophils. Particularly, immunological evaluation reveals an increase of CD4(+)CD25(+) Treg cells in the combined treatment. The induction of TSLP, which leads to systemic Th2 response, was reduced in the skin on combination treatment. The protein expression of filaggrin and involucrin was recovered by combination treatment in the skin lesions, whereas the protein expression of keratin-10 and keratin-14 decreased in the combination treatment. Collectively, our findings suggest that combination treatment of Glu and low-dose CsA leads to the therapeutic effects in Df-induced AD-like skin lesion in NC/Nga mice through inhibition of IgE, inflammatory cellular infiltrate, and recovery of skin barrier function via a mechanism that may inhibition of Th2-mediated immune responses, in part, increment of CD4(+)CD25(+) Treg cells. These results suggest that this combined immunosuppressive treatment may provide important implications for the design of therapeutic strategies aimed at AD treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Sexual asthenia: Tradamixina versus Tadalafil 5 mg daily
2012-01-01
Background Reduced libido is widely considered the most prominent symptomatic reflection of low testosterone (T) levels in men. Testosterone deficiency (TD) afflicts approximately 30% of men aged 40-79 years. This study seeks to evaluate the effect of a new natural compound “tradamixina “in order to improve male sexual function in elderly men, particularly libido and possible erectile dysfunction, versus administration of tadalafil 5 mg daily. Methods Seventy patients (67.3± 3.7 years) with stable marital relations and affected by reduced libido, with or without erectile dysfunction were recruited. They were randomly separated in 2 groups A-B of 35. Group A was administered twice a day a new compound “Tradamixina” (150 mg of Alga Ecklonia Bicyclis, 396 mg of Tribulus Terrestris and 144 mg of D-Glucosamine and N-Acetyl-D-Glucosamine) for two months, while Group B was administered tadalafil 5 mg daily, for two months. At visit and after 60 days of treatment patients were evaluated by means of detailed medical and sexual history, clinical examination, laboratory investigations (Total and Free T), instrumental examination (NPTR- nocturnal penile tumescence and rigidity test- with Rigiscan). Patients completed a self-administered IIEF questionnaire (The international index of erectile function) and SQoLM questionnaire (Sexual quality of life Questionnarie-Male). The results pre and post treatment were compared by Student t test (p<0.005). Results After 2 months of treatment in group A serum TT levels (230±18 ng/dl vs 671±14 ng/dl ) and FT levels(56± 2.4 pg/ml vs 120± 3.9pg/ml) increased, while in group B serum TT levels (245±12 ng/dl vs 247±15 ng/dl ) and FT levels(53± 0.3 pg/ml vs 55± 0.5pg/ml) increased not statistically significant. The patient’s numbers with negative NPTR improved after treatment in group A and B (15 vs 18 and 13 vs 25 respectively). The IIEF total score in group A increased after treatment with tradamixina (15±1.5 vs 29.77±1.2); the IIEF total score in group B increased slightly (12±1.3 vs 23.40±1.2). The SQoLM total score improved in both groups (A:16±2,3 vs 33±4,1 and B: 16±3,4 vs 31±2,1). Conclusion The treatment twice a day with “Tradamixina” for 2 months improved libido in elderly men without side effects of Tadalafil. PMID:23173697
Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji
2016-10-01
A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Zheng, P; Chen, J-J; Zhou, C-J; Zeng, L; Li, K-W; Sun, L; Liu, M-L; Zhu, D; Liang, Z-H; Xie, P
2016-11-15
Women are more vulnerable to major depressive disorder (MDD) than men. However, molecular biomarkers of sex differences are limited. Here we combined gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabonomics to investigate sex differences of urinary metabolite markers in MDD, and further explore their potential of diagnosing MDD. Consequently, the metabolite signatures of women and men MDD subjects were significantly different from of that in their respective healthy controls (HCs). Twenty seven women and 36 men related differentially expressed metabolites were identified in MDD. Fourteen metabolites were changed in both women and men MDD subjects. Significantly, the women-specific (m-Hydroxyphenylacetate, malonate, glycolate, hypoxanthine, isobutyrate and azelaic acid) and men-specific (tyrosine, N-acetyl-d-glucosamine, N-methylnicotinamide, indoxyl sulfate, citrate and succinate) marker panels were further identified, which could differentiate men and women MDD patients from their respective HCs with higher accuracy than previously reported sex-nonspecific marker panels. Our findings demonstrate that men and women MDD patients have distinct metabonomic signatures and sex-specific biomarkers have promising values in diagnosing MDD.
Rouf, Razina; Tiralongo, Evelin; Krahl, Anja; Maes, Karen; Spaan, Lina; Wolf, Stefan; May, Tom W; Tiralongo, Joe
2011-01-01
Fifteen Australian mushroom species (higher Basidiomycetes) were assessed for hemagglutination and lectin activity. Hemagglutination activity was evaluated using both neuraminidase treated and untreated rabbit and human A, B, and O erythrocytes. Lectin activity was determined by the ability of various mono- and oligosaccharides to inhibit hemagglutination activity. Of the mushrooms evaluated, seven contained lectin activity. However, five (Agaricus bitorquis, Chlorophyllum brunneum, Coprinus comatus, Cortinarius sp. TWM 1710, and Omphalotus nidiformis) expressed lectin activity in only one of two collections tested. The two remaining lectin active mushroom species (Phlebopus marginatus and Psathyrella asperospora) possessed lectin activity with the same sugar specificity in both collections. Although lectins were identified with diverse specificity, lactose-specific lectin activity was most frequently identified, being present in Agaricus bitorquis, Copronus comatus, Omphalotus nidiformis, and Phlebopus marginatus. In contrast, Psathyrella asperospora, Cortinarius sp. TWM 1710, and Chlorophyllum brunneum were found to possess lectin activity specific for N-acetyl-D-glucosamine, galactose, and N-acetyl-neurammic acid, respectively. Significantly, the galactose-specific lectin activity identified in Cortinarius sp. TWM 1710 and the lactose-specific lectin activity in Phlebopus marginatus have not been previously reported.
Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.
2013-01-01
New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440
The glmS Ribozyme Cofactor is a General Acid-Base Catalyst
Viladoms, Julia; Fedor, Martha J.
2012-01-01
The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700
Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages
Fernández-Maestre, Roberto
2009-01-01
In the pharmaceutical industry, there are increasing requirements for analytical methods in quality assessment for the production of drugs. In this investigation, ion mobility spectrometry (IMS) was used for the rapid qualitative separation and identification of active ingredients in generic over-the-counter drugs and food additives in beverages. The active ingredients determined in drugs were acetaminophen, aspartame, bisacodyl, caffeine, dextromethorphan, diphenhydramine, famotidine, glucosamine, guaifenesin, loratadine, niacin, phenylephrine, pyridoxine, thiamin, and tetrahydrozoline. Aspartame and caffeine were determined in beverages. Fourteen over-the-counter drugs and beverages were analyzed. Analysis times below 10 s were obtained for IMS, and reduced mobilities were reported for the first time for 12 compounds. A quadrupole mass spectrometer coupled to a mobility spectrometer was used to assure a correct peak assignation. The combination of fast analysis, low cost, and inexpensive maintenance of IMS instruments makes IMS an attractive technique for the qualitative determination of the active ingredients in over-the-counter drugs and food additives in manufacture quality control and cleaning verification for the drug and food industries. PMID:20835390
[Synthesis of exo-β-glucosaminidase BY FUNGUS Penicillium sp. IB-37-2].
Aktuganov, G E; Galimzyanova, N F; Teregulova, G A; Melentjev, A I
2016-01-01
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ∼80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.
Rojo, M C; Blánquez, M J; González, M E
1996-01-01
A histochemical study of the branchial area of brown trout embryos from 35 to 71 d of incubation is reported. A battery of 6 different horseradish peroxidase-labelled lectins, the PAS reaction and Alcian blue staining were used to study the distribution of carbohydrate residues in glycoconjugates along the pharyngeal and branchial epithelia. Con A and WGA reacted at every site of the branchial region thus showing the ubiquitous presence of alpha-D-mannose and N-acetyl-D-glucosamine. WGA, DBA and SBA were good markers for the hatching gland cells (HGCs) and mucous cells. Other lectins, such as PNA and UEA I, reacted only for a short time at some sites during the considered period of incubation. From 35 d until posthatching stages, a manifest strong reaction was noted both in the dorsal epithelium of branchial arches and the HGCs as shown by SBA reactivity. This may be significant with regard to the controversial origin of HGCs, which is thought to be endodermal. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8982837
Studies on the biosynthesis and intracellular transport of gangliosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrer, R.G.
1987-01-01
Ganglioside biosynthesis and transport to myelin was studied in brainstem of 17-21 day old rats. Brainstem slices were incubated for up to 2 hours with (/sup 3/H)glucosamine, and gangliosides were isolated by column chromatography and HPTLC. Results from these experiments showed that: (a) ganglioside synthesis was decreased in the slices compared to in vivo, and this decrease was greater in the more complex gangliosides than in the simpler ones; (b) label incorporation into gangliosides GM3 and GM2 increased in a linear fashion, whereas the rate of incorporation continuously increased over the 2 hour period for the more complex gangliosides; (c)more » label incorporated into gangliosides, which showed almost no effect of chase after 30 minutes; (d) monensin at 0.1 uM inhibited the synthesis of all gangliosides except GM3, GM2 and GD3. Compartmentation of ganglioside biosynthesis was examined by analyzing the subcellular location of two ganglioside synthesizing enzymes, lactosylceramide sialosyltransferase (LCST) and GDlb sialosyltransferase (GDlbST), acting early and late in the ganglioside pathway, respectively.« less
[Investigation of metabolites of Triptergium wilfordii on liver toxicity by LC-MS].
Zhao, Xiao-mei; Liu, Xin-ying; Xu, Chang; Ye, Tao; Jin, Cheng; Zhao, Kui-jun; Ma, Zhi-jie; Xiao, Xiao-he
2015-10-01
In this paper, biomarkers of liver toxicity of Triptergium wilfordii based on metabolomics was screened, and mechanism of liver toxicity was explored to provide a reference for the clinical diagnosis for liver toxicity of Triptergium wilfordii. MS method was carried on the analysis to metabolic fingerprint spectrum between treatment group and control group. The potential biomarkers were compared and screened using the multivariate statistical methods. As well, metabolic pathway would be detailed description. Combined with PCA and OPLS-DA pattern recognition analysis, 20 metabolites were selected which showed large differences between model group and blank group (VIP > 1.0). Seven possible endogenous biomarkers were analyzed and identified. They were 6-phosphate glucosamine, lysophospholipid, tryptophan, guanidine acetic acid, 3-indole propionic acid, cortisone, and ubiquinone. The level changes of above metabolites indicated that the metabolism pathways of amino acid, glucose, phospholipid and hormone were disordered. It is speculated that liver damage of T. wilfordii may be associated with the abnormal energy metabolism in citric acid cycle, amino acid metabolism in urea cycle, and glucose metabolism. It will be helpful to further research liver toxicity ingredients of Triptergium wilfordii.
Natural health product use in Canada.
Troppmann, Leticia; Johns, Timothy; Gray-Donald, Katherine
2002-01-01
To quantify patterns of Natural Health Product (NHP) use in Canada. The Food Habits of Canadians surveyed 1,543 Canadian adults using a 24-hour recall to record dietary supplements. Prevalence of use by user profile was examined. Forty-six percent of women and 33% of men reported taking at least one Natural Health Product with a mean of 2.3 among users. The highest prevalence of supplement use, 57%, occurred among women aged 50-65. Supplement users were older, less likely to smoke and perceived their health as better than non-users. Among supplement users, men had higher rates of use of garlic and vitamin C while women used iron, calcium, B complex, evening primrose oil and glucosamine sulfate. Supplement use by Canadians, at 38% for nutrients and 15% for herbal products, was similar to the rate of uses in the U.S., although differences in the reporting of types of supplements underline aspects of consumer behaviour as well as methodological issues specific to NHPs. Investigation of the use of NHPs in the healthcare setting is important given the widespread use and the potential health care consequences associated with supplement use.
Extraction of Cell-Wall Polysaccharide Antigen from Streptococci
Slade, Hutton D.
1965-01-01
Slade, Hutton D. (Northwestern University Medical School, Chicago, Ill., and Max-Planck Institut für Immunbiologie, Freiburg, Germany). Extraction of cell-wall polysaccharide antigen from streptococci. J. Bacteriol. 90:667–672. 1965.—The carbohydrate grouping antigens in the cell walls of streptococci belonging to groups A, E, G, L, and T were extracted with 5% trichloroacetic acid at 90 C. The antigens were removed also from dry whole cells by extraction with trichloroacetic acid followed by treatment with phenol-water. Details of the methods are presented. The antigens obtained by use of either of these procedures were suitable for studies on immunological specificity and chemical structure. Quantitative enzymatic and chemical analyses of two group E antigens and one group T preparation showed the presence of l-rhamnose (22 to 44%), d-glucose (7 to 22%), d-galactose (T antigen only, 26%), glucosamine (2 to 16%), and galactosamine (T antigen only, 3%). In addition, analyses of A and G antigen preparations are presented. The protein and phosphate content of the A and E antigens were about 1% each. Quantitative precipitin curves of these antigens are presented. PMID:16562065
Sauvé, Frédéric; Paradis, Manon; Refsal, Kent R; Moreau, Maxim; Beauchamp, Guy; Dupuis, Jacques
2003-06-01
The purpose of this study was to evaluate the effect of the administration of meloxicam; carprofen; and a slow-acting disease modifying osteoarthritis agent, that contains chondroitin sulfate, purified glucosamine, and manganese ascorbate (CS-G-M), on thyroid function in dogs. Forty-six healthy (except for osteoarthritis) euthyroid dogs were blindly assigned to 3 treatment groups: meloxicam, carprofen, and CS-G-M. Each group received the recommended dose of the drug for 60 days. Sixteen other osteoarthritic euthyroid dogs, which received a placebo, were used as a control group to validate the study. For all groups, blood samples were collected on days 0, 30, and 60 to evaluate the serum total and free thyroxine, and endogenous thyrotropin concentrations. There were no significant differences among the treatment groups at each time or within each group over a 60-day period for all parameters. Moreover, none of these values were within the hypothyroid range. Based on the results of this study, the administration of meloxicam, carprofen, and CS-G-M did not affect canine thyroid function evaluation.
Deva, Taru; Pryor, KellyAnn D; Leiting, Barbara; Baker, Edward N; Smith, Clyde A
2003-08-01
UDP-N-acetylmuramoyl:L-alanine ligase (MurC) is involved in the pathway leading from UDP-N-glucosamine to the UDP-N-acetylmuramoyl:pentapeptide unit, which is the building block for the peptidoglycan layer found in all bacterial cell walls. The pathways leading to the biosynthesis of the peptidoglycan layer are important targets for the development of novel antibiotics, since animal cells do not contain these pathways. MurC is the first of four similar ATP-dependent amide-bond ligases which share primary and tertiary structural similarities. The crystal structures of three of these have been determined by X-ray crystallography, giving insights into the binding of the carbohydrate substrate and the ATP. Diffraction-quality crystals of the enzyme MurC have been obtained in both native and selenomethionine forms and X-ray diffraction data have been collected at the Se edge at a synchrotron source. The crystals are orthorhombic, with unit-cell parameters a = 73.9, b = 93.6, c = 176.8 A, and diffraction has been observed to 2.6 A resolution.
Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains.
Gangoiti, M V; Puertas, A I; Hamet, M F; Peruzzo, P J; Llamas, M G; Medrano, M; Prieto, A; Dueñas, M T; Abraham, A G
2017-08-15
Lactobacillus plantarum CIDCA 8327 is an exopolysaccharide (EPS)-producer strain isolated from kefir with promising properties for the development of functional foods. The aim of the present study was to characterize the structure of the EPS synthesized by this strain grown in skim milk or semidefined medium (SDM). Additionally, genes involved in EPS synthesis were detected by PCR. L. plantarum produces an EPS with a molecular weight of 10 4 Da in both media. When grown in SDM produce an heteropolysaccharide composed mainly of glucose, glucosamine and rhamnose meanwhile the EPS produced in milk was composed exclusively of glucose indicating the influence of the sugar source. FTIR spectra of this EPS showed signals attributable to an α-glucan. Both by 1 H NMR and methylation analysis it was possible to determine that this polysaccharide is a branched α-(1→4)-d-glucan composed of 80% linear α-(1→4)-d-glucopyranosyl units and 19% (1→4)-d-glucopyranosyl units substituted at O-3 by single α-d-glucopyranosil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaeni, Ahmad; Safitri, Endang; Fuadah, Badrotul; Nyoman Sudiana, I.
2017-05-01
Chitin is the most widespread renewable natural sources following cellulose as the main source of chitosan. Chitin is isolated from crustacean waste and shrimp shells. Chitosan is derived from chitin throuhgt demineralisation, deproteination, decolorisation and deacetylation process using chemicals such as sodium hydroxide, hydrogen chloride and acetone. Glucosamine hydrochloride (GlcN-Cl) can be produced by hydrolysis of chitosan by using hydrogen chloride. During deacetylation and hydrolysis the solution is heated by hotplate or furnace. In this paper we use microwave instead of hotplate for production chitosan and GlcN-Cl. The research investigates effect of microwaves to amount of rendemen and their property. The chitosan was characterized its moisture content, solubility, and degree of deacetylation (DDA). Whereas the glucosammine hydrochloride characterized its functional groups using FTIR and crystallization by using X-Ray Difraction (XRD). The experimental results show that the use of microwave energy on deacetilation of chitosan and hydrolisis processes can decrease time consuming and reactant concentration during production. the DDA value obtained was very high from 70 to 85%. The results also show that microwaves meet chitosan and GlcN-Cl standards.
Emanuel, Ezekiel J.; Miller, Franklin G.
2008-01-01
Objective To determine if the public consumption of herbs, vitamins, and supplements changes in light of emerging negative evidence. Methods We describe trends in annual US sales of five major supplements in temporal relationship with publication of research from three top US general medical journals published from 2001 through early 2006 and the number of news citations associated with each publication using the Lexus-Nexis database. Results In four of five supplements (St. John’s wort, echinacea, saw palmetto, and glucosamine), there was little or no change in sales trends after publication of research results. In one instance, however, dramatic changes in sales occurred following publication of data suggesting harm from high doses of vitamin E. Conclusion Results reporting harm may have a greater impact on supplement consumption than those demonstrating lack of efficacy. In order for clinical trial evidence to influence public behavior, there needs to be a better understanding of the factors that influence the translation of evidence in the public. PMID:18618194
NASA Astrophysics Data System (ADS)
Marotta, Nicholas P.; Lin, Yu Hsuan; Lewis, Yuka E.; Ambroso, Mark R.; Zaro, Balyn W.; Roth, Maxwell T.; Arnold, Don B.; Langen, Ralf; Pratt, Matthew R.
2015-11-01
Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.
Tsuchido, T; Hiraoka, T; Takano, M; Shibasaki, I
1985-01-01
The addition of saturated C6, C8, C10, and C12 fatty acids appeared to lyse actively growing cells of Bacillus subtilis 168, as judged by a decrease in the optical density of the culture. Of these fatty acids, dodecanoic acid was the most effective, with 50% lysis occurring in about 30 min at a concentration of 0.5 mM. These conditions also decreased the amount of peptidoglycan estimated by the incorporated radioactivity of N-acetyl-D-[1-14C]glucosamine. At concentrations above 1 mM, however, bacterial lysis was not extensive. Dodecanoic acid did not affect autolysis of the cell wall. The lytic action of dodecanoic acid was greatly diminished in cells in which protein synthesis was inhibited and in an autolytic enzyme-deficient mutant. The results suggest that fatty acid-induced lysis of B. subtilis 168 is due to the induction of autolysis by an autolytic enzyme rather than massive solubilization of the cell membrane by the detergent-like action of the fatty acids. PMID:2858469
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J
2008-12-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.
Liu, Jie; Zhou, Lutan; He, Zhicheng; Gao, Na; Shang, Feineng; Xu, Jianping; Li, Zi; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua
2018-02-01
Edible snails have been widely used as a health food and medicine in many countries. A unique glycosaminoglycan (AF-GAG) was purified from Achatina fulica. Its structure was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, analysis of monosaccharide composition, and 1D/2D nuclear magnetic resonance spectroscopy. Chemical composition analysis indicated that AF-GAG is composed of iduronic acid (IdoA) and N-acetyl-glucosamine (GlcNAc) and its average molecular weight is 118kDa. Structural analysis clarified that the uronic acid unit in glycosaminoglycan (GAG) is the fully epimerized and the sequence of AF-GAG is →4)-α-GlcNAc (1→4)-α-IdoA2S (1→. Although its structure with a uniform repeating disaccharide is similar to those of heparin and heparan sulfate, this GAG is structurally highly regular and homogeneous. Anticoagulant activity assays indicated that AF-GAG exhibits no anticoagulant activities, but considering its structural characteristic, other bioactivities such as heparanase inhibition may be worthy of further study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Management of hyperpigmentation in darker racial ethnic groups.
Grimes, Pearl E
2009-06-01
Dyschromias, in particular hyperpigmentation, are major issues of concern for people of color. Pigmentary disorders such as melasma and postinflammatory hyperpigmentation (PIH) can cause psychological and emotional distress and can pose a negative impact on a person's health-related quality of life. The precise etiology of these conditions is unknown. Therapies for melasma and PIH target various points during the cycle of melanin production and degradation. Therapies for these conditions include topical agents and resurfacing procedures. Hydroquinone remains the gold standard of topical agents. Other efficacious agents include kojic acid, azelaic acid, mequinol, and retinoids. Cosmeceutical agents include licorice, arbutin, soy, N-acetyl glucosamine, and niacinamide. Resurfacing procedures that have been used to treat melasma and PIH include chemical peels, microdermabrasion, lasers, and intense pulsed light. These procedures are best used in combination with topical bleaching agents. Given the propensity of darker skin to hyperpigment, resurfacing procedures should be used with care and caution. Maximal results are best achieved with repetitive, superficial, resurfacing modalities. In addition, ultraviolet protective measures such as broad-spectrum sunscreens are fundamental to the successful management of these conditions.
Davis, Erica C; Callender, Valerie D
2010-07-01
Postinflammatory hyperpigmentation is a common sequelae of inflammatory dermatoses that tends to affect darker skinned patients with greater frequency and severity. Epidemiological studies show that dyschromias, including postinflammatory hyperpigmentation, are among the most common reasons darker racial/ethnic groups seek the care of a dermatologist. The treatment of postinflammatory hyperpigmentation should be started early to help hasten its resolution and begins with management of the initial inflammatory condition. First-line therapy typically consists of topical depigmenting agents in addition to photoprotection including a sunscreen. Topical tyrosinase inhibitors, such as hydroquinone, azelaic acid, kojic acid, arbutin, and certain licorice extracts, can effectively lighten areas of hypermelanosis. Other depigmenting agents include retinoids, mequinol, ascorbic acid, niacinamide, N-acetyl glucosamine, and soy with a number of emerging therapies on the horizon. Topical therapy is typically effective for epidermal postinflammatory hyperpigmentation; however, certain procedures, such as chemical peeling and laser therapy, may help treat recalcitrant hyperpigmentation. It is also important to use caution with all of the above treatments to prevent irritation and worsening of postinflammatory hyperpigmentation.
Exploiting fungal cell wall components in vaccines.
Levitz, Stuart M; Huang, Haibin; Ostroff, Gary R; Specht, Charles A
2015-03-01
Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected.
Exploiting fungal cell wall components in vaccines
Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.
2014-01-01
Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118
Hao, Cui; Wang, Wei; Wang, Shuyao; Zhang, Lijuan; Guo, Yunliang
2017-03-23
Chitin is the second most abundant biopolymer on Earth and is mainly comprised of a marine invertebrate, consisting of repeating β-1,4 linked N-acetylated glucosamine units, whereas its N-deacetylated product, chitosan, has broad medical applications. Interestingly, chitosan oligosaccharides have therapeutic effects on different types of neuronal disorders, including, but not limited to, Alzheimer's disease, Parkinson's disease, and nerve crush injury. A common link among neuronal disorders is observed at a sub-cellular level, such as atypical protein assemblies and induced neuronal death. Chronic activation of innate immune responses that lead to neuronal injury is also common in these diseases. Thus, the common mechanisms of neuronal disorders might explain the general therapeutic effects of chitosan oligosaccharides and their derivatives in these diseases. This review provides an update on the pathogenesis and therapy for neuronal disorders and will be mainly focused on the recent progress made towards the neuroprotective properties of chitosan and acetylated chitosan oligosaccharides. Their structural features and the underlying molecular mechanisms will also be discussed.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.
Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Treatment of Osteoarthritis of the Knee (Nonarthroplasty)
Richmond, John; Hunter, David; Irrgang, Jay; Jones, Morgan H.; Levy, Bruce; Marx, Robert; Snyder-Mackler, Lynn; Watters, William C.; Haralson, Robert H.; Turkelson, Charles M.; Wies, Janet L.; Boyer, Kevin M.; Anderson, Sara; Andre, St. Justin St.; Sluka, Patrick; McGowan, Richard
2011-01-01
The clinical practice guideline was explicitly developed to include only treatments less invasive than knee replacement (ie, arthroplasty). Patients with symptomatic osteoarthritis of the knee are to be encouraged to participate in self-management educational programs and to engage in self-care, as well as to lose weight and engage in exercise and quadriceps strengthening. The guideline recommends taping for short-term relief of pain as well as analgesics and intra-articular corticosteroids, but not glucosamine and/or chondroitin. Patients need not undergo needle lavage or arthroscopy with débridement or lavage. Patients may consider partial meniscectomy or loose body removal or realignment osteotomy, as conditions warrant. Use of a free-floating interpositional device should not be considered for symptomatic unicompartmental osteoarthritis of the knee. Lateral heel wedges should not be prescribed for patients with symptomatic medial compartmental osteoarthritis of the knee. The work group was unable either to recommend or not recommend the use of braces with either valgus- or varus-directing forces for patients with medial unicompartmental osteoarthritis; the use of acupuncture or of hyaluronic acid; or osteotomy of the tibial tubercle for isolated symptomatic patellofemoral osteoarthritis. PMID:19726743
Sauvé, Frédéric; Paradis, Manon; Refsal, Kent R.; Moreau, Maxim; Beauchamp, Guy; Dupuis, Jacques
2003-01-01
The purpose of this study was to evaluate the effect of the administration of meloxicam; carprofen; and a slow-acting disease modifying osteoarthritis agent, that contains chondroitin sulfate, purified glucosamine, and manganese ascorbate (CS-G-M), on thyroid function in dogs. Forty-six healthy (except for osteoarthritis) euthyroid dogs were blindly assigned to 3 treatment groups: meloxicam, carprofen, and CS-G-M. Each group received the recommended dose of the drug for 60 days. Sixteen other osteoarthritic euthyroid dogs, which received a placebo, were used as a control group to validate the study. For all groups, blood samples were collected on days 0, 30, and 60 to evaluate the serum total and free thyroxine, and endogenous thyrotropin concentrations. There were no significant differences among the treatment groups at each time or within each group over a 60-day period for all parameters. Moreover, none of these values were within the hypothyroid range. Based on the results of this study, the administration of meloxicam, carprofen, and CS-G-M did not affect canine thyroid function evaluation. PMID:12839241
Gastrin-releasing peptide in human nasal mucosa.
Baraniuk, J N; Lundgren, J D; Goff, J; Peden, D; Merida, M; Shelhamer, J; Kaliner, M
1990-04-01
Gastrin-releasing peptide (GRP), the 27 amino acid mammalian form of bombesin, was studied in human inferior turbinate nasal mucosa. The GRP content of the mucosa measured by radioimmunoassay was 0.60 +/- 0.25 pmol/g tissue (n = 9 patients; mean +/- SEM). GRP-immunoreactive nerves detected by the immunogold method of indirect immunohistochemistry were found predominantly in small muscular arteries, arterioles, venous sinusoids, and between submucosal gland acini. 125I-GRP binding sites determined by autoradiography were exclusively and specifically localized to nasal epithelium and submucosal glands. There was no binding to vessels. The effects of GRP on submucosal gland product release were studied in short-term explant culture. GRP (10 microM) significantly stimulated the release of the serous cell-specific product lactoferrin, and [3H]glucosamine-labeled glycoconjugates which are products of epithelial goblet cells and submucosal gland cells. These observations indicate that GRP released from nerve fibers probably acts on glandular GRP receptors to induce glycoconjugate release from submucosal glands and epithelium and lactoferrin release from serous cells, but that GRP would probably not affect vascular permeability.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
EXCI-CEST: Exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging.
Longo, Dario Livio; Moustaghfir, Fatima Zzahra; Zerbo, Alexandre; Consolino, Lorena; Anemone, Annasofia; Bracesco, Martina; Aime, Silvio
2017-06-15
Chemical Exchange Saturation Transfer (CEST) approach is a novel tool within magnetic resonance imaging (MRI) that allows visualization of molecules possessing exchangeable protons with water. Many molecules, employed as excipients for the formulation of finished drug products, are endowed with hydroxyl, amine or amide protons, thus can be exploitable as MRI-CEST contrast agents. Their high safety profiles allow them to be injected at very high doses. Here we investigated the MRI-CEST properties of several excipients (ascorbic acid, sucrose, N-acetyl-d-glucosamine, meglumine and 2-pyrrolidone) and tested them as tumor-detecting agents in two different murine tumor models (breast and melanoma cancers). All the investigated molecules showed remarkable CEST contrast upon i.v. administration in the range 1-3ppm according to the type of mobile proton groups. A marked increase of CEST contrast was observed in tumor regions up to 30min post injection. The combination of marked tumor contrast enhancement and lack of toxicity make these molecules potential candidates for the diagnosis of tumors within the MRI-CEST approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity
Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929
Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Miranda Santos, I.K.; Pereira, M.E.
1984-09-01
Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeusmore » and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.« less
The glmS ribozyme cofactor is a general acid-base catalyst.
Viladoms, Júlia; Fedor, Martha J
2012-11-21
The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.
Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator.
Mosayebnia, Mona; Shafiee-Ardestani, Mehdi; Pasalar, Parvin; Mashayekhi, Mojgan; Amanlou, Massoud
2014-01-01
To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG) was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2) cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO), a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide MTT assay as well. There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage.
Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.
Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun
2015-08-07
Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.
NASA Astrophysics Data System (ADS)
Chiu, Hsin-Yu; Leu, Jyh-Der; Chen, Wei R.; Lee, Yi-Jang
2016-03-01
Breast cancer is increasing with years in Taiwan because of dietary style, life behavior and several social-physiological factors. According to the record of Bureau of Health Promotion in Taiwan, the incidence of breast cancer is top one, and the mortality of that is top one cancer type in women. Compared with USA, most of breast cancer cases found in Taiwanese women have reached to stage 2 or 3. Current therapeutic strategies for breast cancer include surgery, radiation therapy, chemotherapy, hormone therapy and targeted therapy. However, these methods used for curing the late-stage breast cancer remains rare. Because the metastasis is the major problem of late-stage breast cancer, it is of interest to investigate whether a systemic therapy can reduce the symptoms of cancer. The immunotherapy, particularly an induction of autoimmune system, is probably important for the treatment of late-stage breast cancer. Glycated chitosan (GC) is derived from chitosan, a linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine through β-(1-4) linkage. Several lines of evidence have shown that GC is an immunoadjuvant that can target on primary and metastatic tumors formed in animal and human patients. In our previous data, GC was demonstrated to decrease the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Radiofrequency ablation (RFA) is dependent on a small generator that delivers high frequency alternating electric current directly to burn a tumor lesion. Therefore, the temperature may reach up to above 60 °C. In this study, we used 4T1 mouse breast cancer cell that is the approximately equal to stage 4 of human breast cancer. And triple modality reporter gene (3R) was delivered into the cells using transfected piggyBac, a transposable element for observation of tumor growth and metastasis in vivo. Data showed that growth and metastasis of tumors smaller than 500mm3 were entirely suppressed by RFA-GC combination treatment. Plasma extraction from this group displayed an inhibitory effect on cultured 4T1 cells, suggesting some immunoreactions were triggered and therefore secreted some cytokines. Protein array data indicated that PF-4 may play a key role in GC-RFA caused tumor suppression but the further effects should be investigated. On the other hand, the survival rate of small tumor-bearing mice under RFA-GC treatment was higher than those of GC or RFA treatment only. In conclusion, this study confirmed that radiofrequency ablation combined with GC could trigger an autoimmune response to inhibit tumor metastasis and tumorigenesis. For metastatic cancers, this combination treatment may become the foundation for a feasible cancer treatment modality.
Sterzi, Silvia; Giordani, Laura; Morrone, Michelangelo; Lena, Emanuela; Magrone, Giovanni; Scarpini, Claudia; Milighetti, Stefano; Pellicciari, Leonardo; Bravi, Marco; Panni, Ilaria; Ljoka, Concetta; Bressi, Federica; Foti, Calogero
2016-06-01
Knee osteoarthritis (OA) conservative treatment aims to delay cartilage degeneration; chondroprotective agents are a valid approach in this sense. A commercially available dietary supplement, CartiJoint Forte, containing glucosamine hydrochloride (GH), chondroitin sulfate (CS) and Bio-Curcumin BCM-95®, was used in this trial. The aim of this study was to assess efficacy and safety of CartiJoint Forte combined with physical therapy in treating subjects with knee OA. A multicenter, prospective, randomized, double blind, placebo-controlled clinical trial. Outpatients referred to the Rehabilitation Departments of two University Hospitals. Fifty-three patients were randomly assigned to an experimental group (N=26) or a control group (N.=27). Experimental subjects received two tablets of CartiJoint Forte each day for 8 weeks, while those in the control group were provided with a placebo. Three subjects dropped out during the course of the study. The two groups both received 20 sessions of physical therapy during the course of the trial. Primary outcome was pain intensity, measured both at motion and at rest, using the Visual Analogue Scale (VAS). A secondary outcome was an assessment of knee function by Western Ontario and McMaster Universities Arthritis Index and Lequesne Index, knee ROM, and two inflammation markers (C-reactive protein and erythrocyte sedimentation rate). Each assessment was carried out at baseline (T0), at 8 weeks (T1) and at 12 weeks (T2). VAS at rest was found to be reduced between T0 and T1, as well as between T0 and T2 (F=13.712; P=0.0001), with no differences between groups (F=1.724; P=0.191). VAS at motion revealed a significant "group × time-check" interaction (F=2.491; P=0.032), with increasing effect of time on VAS reduction (F=17.748; P=0.0001). This was most pronounced in the experimental group at 8 weeks (F=3.437; P=0.045). The Lequesne Index showed reductions at T1 and T2 compared to T0 (F=9.535; P=0.0001), along with group effect, since the experimental group presented a lower score at T2 (F=7.091; P=0.009). No significant changes were found in the knee ROM and inflammation markers. CartiJoint Forte, added to physical therapy, may ameliorate pain and help to improve algofunctional score in knee OA patients. Treatment of knee OA with curcuminoids plus glycosaminoglycans, added to physical therapy, improves VAS at motion and Lequesne Index scores.
Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc
2015-03-01
This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative function of the HBP reflecting the nutrient status of lipids or glucose and further implicate the importance of the pathway in insulin signaling for the regulation of metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Wakita, Satoshi; Kimura, Masahiro; Kato, Naoki; Kashimura, Akinori; Kobayashi, Shunsuke; Kanayama, Naoto; Ohno, Misa; Honda, Shotaro; Sakaguchi, Masayoshi; Sugahara, Yasusato; Bauer, Peter O; Oyama, Fumitaka
2017-05-15
Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc) 2 as well as (GlcNAc) 3 under physiological conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Utilization of carbon sources by clinical isolates of Aeromonas.
Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T
2017-04-01
Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.
Susceptibility and Resistance of Several Fungi to Microbial Lysis1
Potgieter, H. J.; Alexander, M.
1966-01-01
Potgieter, H. J. (Cornell University, Ithaca, N.Y.), and M. Alexander. Susceptibility and resistance of several fungi to microbial lysis. J. Bacteriol. 91:1526–1532. 1966.—Strains of Streptomyces, Nocardia, and Pseudomonas capable of lysing hyphae of Fusarium solani or Neurospora crassa were obtained by selective culture, but attempts to isolate an organism lysing Rhizoctonia solani failed. When provided with F. solani or N. crassa as carbon sources, the actinomycetes tested produced β-(1 → 3) glucanase and chitinase. A mixture containing purified chitinase and β-(1 → 3) glucanase induced spheroplast formation in F. solani, caused some morphological changes in N. crassa, but had almost no effect on R. solani hyphae. The polysaccharides in R. solani walls, which contain a large amount of glucose as well as galactose, mannose, and glucosamine, were not hydrolyzed appreciably by the two enzymes. Laminaribiose and laminaritriose were released by enzymatic hydrolysis of F. solani and N. crassa walls, and gentiobiose was liberated from R. solani and N. crassa walls. Melaninlike materials were found in R. solani walls, accounting for 8.50% of the wall weight. A role for melanin in protecting hyphae from microbial lysis is suggested. PMID:5929777
Functionalized and graft copolymers of chitosan and its pharmaceutical applications.
Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab
2017-10-01
Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.
Gheri, Gherardo; Sgambati, Eleonora; Thyrion, Giorgia D Zappoli; Vichi, Debora; Orlandini, Giovanni E
2004-01-01
The saccharidic content of the glycoconjugates has been studied in the descended the undescended testes of a 8 years old boy. For this purpose, a battery of seven HRP-conjugated lectins (SBA, DBA,PNA,WGA,UEAI, LTA and ConA) was used. D-galactose-N-acetyl-D-galactosamine and alpha-L-fucose sugar residues, which were present in the cytoplasm of the Sertoli cells of the normally positioned prepubertal testis, were not detected in the same cells of the undescended testis. The Leydig's cells of the descended testis appeared characterized by N-acetyl-D-glucosamine which was absent in the rare and atrophic Leydig's cells of the cryptorchid testis. Differences in sugar residues distribution between the descended and the undescended testis were also detected in the lamina propria of the seminiferous tubules. Peritubular myoid cells in the undescended testis only reacted with PNA, after neuraminidase digestion, thus revealing the presence of D-galactose (beta1-->3)-N-acetyl-D-galactosamine and sialic acid. In this study a complete distributional map of the sugar residues of the glycoconjugates in the descended and undescended prepubertal testis is reported.
The heparin-Ca(2+) interaction: the influence of the O-sulfation pattern on binding.
Chevalier, Franck; Lucas, Ricardo; Angulo, Jesús; Martin-Lomas, Manuel; Nieto, Pedro M
2004-04-02
The specific binding of Ca(2+) to synthetic hexasaccharide models of modified heparin has been investigated by NMR and molecular modeling and compared with previous results on a model of regular heparin. These two models represent the regular region of heparin lacking one type of O-sulfate group, either at C-6 of glucosamine or at C-2 of iduronate. The NMR experiments show different responses to the presence of Ca(2+). In the case of the compound lacking O-sulfate groups at C-2, the results are indicative of specific binding similar to that observed for the regular heparin, while the model lacking sulfate groups in position 6 interacts more weakly with Ca(2+). In order to understand the basis of this difference, a molecular modeling study based on a rigid body docking approach of the interaction of these carbohydrates with Ca(2+) and Na(+) was performed. We have found that the results are strongly dependent on the starting orientation of the lateral side chains of the charged groups of the carbohydrate, and that the best agreement with the experimental results is obtained when the starting conformations are taken from previous simulations in the presence of Ca(2+).
de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M
2001-09-03
An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity.
Ansari, Anam; Ali, Abad; Asif, Mohd; Rauf, Mohd Ahmar; Owais, Mohammad; Shamsuzzaman
2018-06-01
A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents. Copyright © 2018 Elsevier Inc. All rights reserved.
García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.
2016-01-01
The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938
Fluorescent sensors based on boronic acids
NASA Astrophysics Data System (ADS)
Cooper, Christopher R.; James, Tony D.
1999-05-01
Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.
Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.
Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G
2004-01-01
The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.
Mura, Carla; Valenti, Donatella; Floris, Costantino; Sanna, Roberta; De Luca, Maria Antonietta; Fadda, Anna Maria; Loy, Giuseppe
2011-09-01
The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jiandong; Wei, Juan; Hogan, John D.; Chopra, Pradeep; Joshi, Apoorva; Lu, Weigang; Klein, Joshua; Boons, Geert-Jan; Lin, Cheng; Zaia, Joseph
2018-03-01
Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. [Figure not available: see fulltext.
Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).
Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru
2017-01-01
The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.
Shi, Wei-Wei; Jiang, Yong-Liang; Zhu, Fan; Yang, Yi-Hu; Shao, Qiu-Yan; Yang, Hong-Bo; Ren, Yan-Min; Wu, Hui; Chen, Yuxing; Zhou, Cong-Zhao
2014-01-01
Protein glycosylation catalyzed by the O-GlcNAc transferase (OGT) plays a critical role in various biological processes. In Streptococcus pneumoniae, the core enzyme GtfA and co-activator GtfB form an OGT complex to glycosylate the serine-rich repeat (SRR) of adhesin PsrP (pneumococcal serine-rich repeat protein), which is involved in the infection and pathogenesis. Here we report the 2.0 Å crystal structure of GtfA, revealing a β-meander add-on domain beyond the catalytic domain. It represents a novel add-on domain, which is distinct from the all-α-tetratricopeptide repeats in the only two structure-known OGTs. Structural analyses combined with binding assays indicate that this add-on domain contributes to forming an active GtfA-GtfB complex and recognizing the acceptor protein. In addition, the in vitro glycosylation system enables us to map the O-linkages to the serine residues within the first SRR of PsrP. These findings suggest that fusion with an add-on domain might be a universal mechanism for diverse OGTs that recognize varying acceptor proteins/peptides. PMID:24936067
Silibinin phosphodiester glyco-conjugates: Synthesis, redox behaviour and biological investigations.
Romanucci, Valeria; Agarwal, Chapla; Agarwal, Rajesh; Pannecouque, Christophe; Iuliano, Mauro; De Tommaso, Gaetano; Caruso, Tonino; Di Fabio, Giovanni; Zarrelli, Armando
2018-04-01
New silibinin phosphodiester glyco-conjugates were synthesized by efficient phosphoramidite chemistry and were fully characterized by 2D-NMR. A wide-ranging study focused on the determination of their pKa and E° values as well as on their radical scavenging activities by different assays (DPPH, ABTS + and HRSA) was conducted. The new glyco-conjugates are more water-soluble than silibinin, and their radical scavenging activities are higher than those of silibinin. The conjugation therefore improves both the water solubilities and antioxidant activities of the flavonolignan moieties. The serum stability was evaluated under physiological conditions, and the glyco-conjugates degraded with half-lives of 40-70 h, making them useful in pro-drug approaches. We started by treating androgen-dependent prostate cancer (PCa) LNCaP cells and then expanded our studies to androgen-independent PCa PC3 and DU145 cells. In most cases, the new derivatives significantly reduced both total and live cell numbers, albeit at different levels. Anti-HIV activities were evaluated and the glucosamine-phosphate silibinin derivative showed higher activity (IC 50 = 73 μM) than silibinin. Copyright © 2018 Elsevier Inc. All rights reserved.
Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young
2009-01-01
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878
Rheumatology and musculoskeletal medicine
Davenport, Graham
2004-01-01
MUSCULOSKELETAL disease accounts for a large proportion of a general practitioner's (GP's) workload. Proper management can not only improve quality of care, but also increase job satisfaction and reap rewards under the new contract. Osteoporosis creates a huge socioeconomic burden of disease and disability. Identifying high-risk groups in primary care and using preventative treatment can result in a substantial reduction in morbidity and mortality. GPs can help by presenting a unified lifestyle message, advising on fall prevention, and providing effective treatment; in particular, calcium and vitamin D for female nursing home residents. Osteoarthritis is eminently treatable in primary care with a number of management options for GPs, in addition to drug therapy. Glucosamine and chondroitin have few side effects and are worth recommending to patients with mild knee osteoarthritis. Rheumatoid arthritis can cause significant disability, which can be limited by early diagnosis, referral, and treatment. Severe refractory rheumatoid arthritis may warrant referral for consideration of biologic therapy. Assessment of the cardiovascular risk and possible use of statins in rheumatoid patients may reduce their cardiovascular mortality. GPs should aim to help patients to achieve optimum quality of life by using a holistic approach and by allowing maximum choice and control over their disease. PMID:15186570
Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.
2017-04-01
Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.
Glycosaminoglycan synthesis by adult rat submandibular salivary-gland secretory units.
Cutler, L S; Christian, C P; Rendell, J K
1987-01-01
The synthesis of glycosaminoglycans (GAG) by a preparation of purified, functional submandibular-gland secretory units (acini and intercalated ducts) was examined. Such units were isolated from Sprague-Dawley rats by digestion of minced gland with hyaluronidase and collagenase followed by gentle sieving of the digest through a graded series of Teflon screens. They incorporated amino acids into exocrine proteins which could be released by stimulation with isoproterenol as in vivo, indicating their functional integrity. Secretory units, incubated for 2 h in medium containing [35S]-sodium sulphate alone or in combination with [3H]-glucosamine, were then washed, homogenized and digested in pronase. The resulting material was then sequentially digested by specific enzymic and chemical procedures and analysed by chromatography on Sephadex G-50 columns to identify the various GAG synthesized. Secretory units synthesized a GAG mixture which was 20-25 per cent hyaluronic acid, 70-75 per cent heparan sulphate, and only 3-5 per cent chondroitin or dermatan sulphates, similar to that synthesized in vivo. No GAG was present in the secretory material, suggesting that all the GAG synthesized was destined for the basement membrane or cell surface.
Raichvarg, D; Brossard, C; Agneray, J
1979-01-01
Ribonucleic acid was removed from a phenol-water extract of Haemophilus influenzae type a by streptomycin sulfate. This preparation was called purified preparation or PP. It contained neutral sugars (glucose, galactose, mannose, pentose), glucosamine, amino acids, and fatty acids. Heptose and 2-keto-3-deoxyoctonic acid were not present. The biological properties and immunogenicity were compared with the activities of lipopolysaccharide of Escherichia coli or Salmonella typhimurium. Higher doses were necessary to obtain lethality in mice and Sanarelli and Shwartzman reactions with our preparations than were necessary with lipopolysaccharide. The Limulus test and pyrogen assay in rabbits gave the same results with purified preparation and lipopolysaccharide, but pyrogenicity of purified preparation was not destroyed by NaOH treatment. Purified preparation was not as immunogenic at low doeses for rabbits as lipopolysaccharide. The results were different from those obtained with lipopolysaccharide but similar to those known from peptidoglycan studies. The contamination of purified preparation with peptidoglycan was negligible and cannot explain the biological activities of purified preparation. We suggest that the phenol-water extract from H. influenzae is not a classical endotoxin, but rather an endotoxin-like substance. PMID:317593