Science.gov

Sample records for glucose phosphate isomerase

  1. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  2. Human glucose phosphate isomerase: Exon mapping and gene structure

    SciTech Connect

    Xu, Weiming; Lee, Pauline; Beutler, E.

    1995-10-10

    The structure of the gene for human glucose phosphate isomerase (GPI) has been determined. Three GPI clones were isolated from a human genomic library by using a full-length GPI cDNA probe and were characterized. Oligonucleotides based on the known cDNA sequence were used as primers in amplification and sequence analyses. This led to the identification of the exon-intron junctions. By this approach, 18 exons and 17 introns have been identified. The exons range in size from 44 to 431 nucleotides. The intronic sequences surrounding the exons provide useful information for the identification of mutations that give rise to human GPI deficiency associated with chronic hemolytic anemia. 13 refs., 4 figs., 1 tab.

  3. Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae.

    PubMed

    Alonso, A; Pascual, C; Romay, C; Herrera, L; Kotyk, A

    1989-01-01

    The rate of hexose transport was approximately 60% lower for both the high- and the low-affinity components of hexose uptake when a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae was preincubated with glucose, as compared with preincubation with water. Similarly the Jmax value of the high-affinity system of the mutant was 25-35% of the corresponding Jmax value for normal cells incubated with glucose. Accumulation of glucose 6-phosphate or of some other metabolite, such as fructose 6-phosphate or trehalose, may be responsible for this striking inhibition.

  4. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    PubMed

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Genetic expression of hexokinase and glucose phosphate isomerase in late-stage mouse preimplantation embryos: transcription activities in glucose/phosphate-containing HTF and glucose/phosphate-free P1 media.

    PubMed

    Johnson, M D; Batey, D W; Behr, B; Barro, J

    1997-04-01

    In mouse and human preimplantation development, pyruvate is consumed preferentially during early embryogenesis; however, during the morula and blastocyst stages, glucose is the preferred energy substrate. Studies have suggested that the glycolytic enzymes, hexokinase and glucose phosphate isomerase, are important enzymes in glucose metabolism during these later stages of human and mouse preimplantation development. In order to investigate the genetic activities of these enzymes in late-stage mouse embryos developing in vitro, we analysed hexokinase and glucose phosphate isomerase transcription activities by qualitative RNA assays using reverse transcriptase-nested polymerase chain reaction amplification of individual mouse morulae and early blastocysts incubated in glucose/phosphate-free preimplantation stage one (P1) medium and glucose/phosphate-containing human tubal fluid (HTF) medium. We observed an increased incidence of hexokinase transcripts in the population of blastocysts compared with morulae, and differences in transcript incidence between early blastocysts developing in HTF medium and in P1 medium. In contrast, glucose phosphate isomerase transcripts were consistantly present in all embryos analysed, and appear to be constitutively expressed during late-stage mouse embryogenesis. The different activity patterns of the two glycolytic genes may reflect different mechanisms of gene regulation or differential transcript stability during the later stages of mouse preimplantation development.

  6. Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis

    PubMed Central

    Lu, Ying; Yu, Shan-Shan; Zong, Ming; Fan, Sha-Sha; Lu, Tian-Bao; Gong, Ru-Han; Sun, Li-Shan; Fan, Lie-Ying

    2017-01-01

    The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI. PMID:28067317

  7. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  8. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  9. [Significance of glucose-6-phosphate isomerase assay in early diagnosis of rheumatoid arthritis].

    PubMed

    Xu, J; Liu, J; Zhu, L; Zhang, X W; Li, Z G

    2016-12-18

    To explore the titer of glucose-6-phosphate isomerase (GPI) for early diagnosis of the outpatient with rheumatoid arthritis (RA) in real life, and to analyze its relationship with disease activity. In the study, 1 051 patients with arthritis were collected in the group who had joints tender and swelling, and 90 cases of healthy people as a control group. ELISA method was used to detect the serum level of GPI, and according to clinical features and laboratory test, all the patients including 525 RA patients, the other patients including osteoarthritis (OA), 134 cases of seronegative spine joint disease (SpA), 104 cases of systemic lupus erythematosus (SLE), 31 cases of primary Sjogren syndrome (pSS), 24 cases of gout arthritis (GA), 22 cases of other connective tissue diseases (including polymyalgia rheumatica, dermatomyositis, systemic sclerosis, adult Still disease) and 46 cases of other diseases (including 165 cases of osteoporosis, avascular necrosis of the femoral head, traumatic osteomyelitis, bone and joint disease, juvenile rheumatoid arthritis, tumor). The diagnostic values of GPI were assessed, and the differences between the GPI positive and negative groups of the RA patients in clinical characteristics, disease activity, severity and inflammatory index analyzed. The positive rate of serum GPI in the patients with RA was 55.4%, contrasting to other autoimmune diseases (14.3%) and healthy controls (7.78%)(P<0.001). Compared with the OA and SpA patients, the RA group was increased more significantly, and the difference was statistically significant (P<0.001). The diagnostic value of GPI alone for RA was 0.39 mg/L, the sensitivity was 54.2%, and specificity was 87.3%. The positive rate of GPI in RF negative patients was 36.1%; the positive rate of GPI in anti-CCP antibody negative patients was 34.2%; the positive rate of GPI in RF and anti-CCP antibody negative patients was 24.1%. The level of GPI had positive correlation (P<0.05) with ESR, RF, anti

  10. [Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis].

    PubMed

    Wu, D; Sun, L; Li, C H; Yang, L; Zhao, J X; Liu, X Y

    2016-12-18

    To detect the anti-citrullinated glucose-6-phosphate isomerase (GPI) 70-88 peptide antibody (anti-C-GPI(70-88) antibody), anti-citrullinated GPI 435-453 peptide antibody (anti-C-GPI(435-453) antibody), anti-GPI 70-88 peptide antibody (anti-GPI(70-88) antibody) and anti-GPI 435-453 peptide antibody(anti-GPI(435-453) antibody) in the serum of rheumatoid arthritis (RA) patients, and examine the diagnostic values of the anti-C-GPI peptide antibodies in RA. The anti-C-GPI(70-88) antibody, anti-C-GPI(435-453) antibody, anti-GPI(70-88) antibody and anti-GPI(435-453) antibody were detected by enzyme-linked immunosorbent assay (ELISA) in 191 RA patients, 129 other rheumatic diseases and 74 healthy controls. The clinical and laboratory data of the patients with RA were collected, and the values of anti-C-GPI peptide antibodies in the diagnosis of RA and the relationships of anti-C-GPI peptide antibodies with the clinical and laboratory parameters analyzed. (1) The mean titers of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody in the RA patients (respectively, 68.71 ± 4.20 and 51.78 ± 3.13) were significantly higher than those with other rheumatic diseases and healthy individuals (P <0.05). However, the mean titers of the anti-GPI(70-88) antibody and anti-GPI(435-453) antibody in the RA patients were similar to those with other rheumatic diseases and healthy individuals. (2) The diagnostic sensitivity and specificity of the anti-C-GPI(70-88) antibody for RA were 41.88% and 84.50% respectively; and the diagnostic sensitivity and specificity of the anti-C-GPI(435-453) antibody for RA were 46.05% and 86.05% respectively. The sensitivity of combined detection of the two anti-C-GPI peptide antibodies was 50.79%, and the specificity was 81.40%. (3) The positive rates of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody were 35% and 45% respectively in those patients with negative anti-cyclic citrullinated peptide antibody, anti

  11. Identification of a novel tandemly repeated sequence present in an intron of the glucose phosphate isomerase (GPI) gene in mouse and man

    SciTech Connect

    Faik, P.; Walker, J.I.H.; Morgan, M.J. )

    1994-05-01

    Glucose phosphate isomerase (GPI, glucose 6-phosphate ketol-isomerase, EC 5.3.1.9) is a housekeeping gene expressed in all tissues and organisms that utilize glycolysis and gluconeogenesis. Deficiency in humans leads to a rare form of nonspherocytic hemolytic anemia. The authors have isolated a 3.2-kb mouse cDNA containing glucose phosphate isomerase coding sequence and a 2.1-kb intronic sequence and a large proportion of the human gene (approaching 55 kb) in four phage [lambda] recombinants. A 4-kb intronic fragment from the human gene showing homology to the mouse intronic sequence has been isolated and sequenced. The fragment contains approximately 1.5 kb of sequence that is composited of 30 repeat units of a novel 50-kb tandemly repeated unit. The mouse intronic sequence contains 18 similar units. The human consensus sequence differs from the mouse consensus sequence at only 7 positions out of 50 (positions 16, 26, 27, 42, 43, 47, and 48). A probe containing the repeat element detects polymorphisms, specific to glucose phosphate isomerase, in human DNA. The repeat element does not appear to be present at any other loci in human DNA. The conservation of this intronic repeat element extends to pig and Chinese hamster. 26 refs., 4 figs.

  12. AB222. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability

    PubMed Central

    Jiang, Xuping; Wang, Shangqian; Wang, Wei; Xu, Yang; Sun, Hongyong; Wang, Zengjun; Zhang, Wei

    2016-01-01

    Objective Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Methods We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results Results showed that normalized content of enolase1 (ENO1) (P<0.05) and glucose-6-phosphate isomerase (GPI) (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with post thaw sperm viability and motility was confirmed using Pearson’s linear correlation. Conclusions In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure.

  13. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    PubMed

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  14. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...

  15. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...

  16. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...

  17. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...

  18. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase enzyme...

  19. Thermoinactivation Mechanism of Glucose Isomerase

    NASA Astrophysics Data System (ADS)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  20. Genetical control and linkage relationships of isozyme markers in sugar beet (B. vulgaris L.) : 1. Isocitrate dehydrogenase, adenylate kinase, phosphoglucomutase, glucose phosphate isomerase and cathodal peroxidase.

    PubMed

    Smed, E; Van Geyt, J P; Oleo, M

    1989-07-01

    Five isozyme systems were genetically investigated. The different separation techniques, the developmental expression and the use as marker system in sugar beet genetics and breeding is discussed. Isocitrate dehydrogenase was controlled by two genes. The gene products form inter- as well as intralocus dimers, even with the gene products of the Icd gene in B. procumbens and B. patellaris. Adenylate kinase was controlled by one gene. Three different allelic forms were detected, which were active as monomeric proteins. Glucose phosphate isomerase showed two zones of activity. One zone was polymorphic. Three allelic variants, active as dimers, were found. Phosphoglucomutase also showed two major zones of activity. One zone was polymorphic and coded for monomeric enzymes. Two allelic forms were found in the accessions studied. The cathodal peroxidase system was controlled by two independent genes, of which only one was polymorphic. The gene products are active as monomers. Linkage was found between red hypocotyl color (R) and Icd 2. Pgm 1, Gpi 2, Ak 1 and the Icd 2-R linkage group segregated independently.

  1. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production...

  2. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Insoluble glucose isomerase enzyme preparations... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of...

  3. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Insoluble glucose isomerase enzyme preparations... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of...

  4. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Insoluble glucose isomerase enzyme preparations... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of...

  5. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    PubMed

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients.

  6. Anti-citrullinated glucose-6-phosphate isomerase peptide antibodies in patients with rheumatoid arthritis are associated with HLA-DRB1 shared epitope alleles and disease activity

    PubMed Central

    Umeda, N; Matsumoto, I; Ito, I; Kawasaki, A; Tanaka, Y; Inoue, A; Tsuboi, H; Suzuki, T; Hayashi, T; Ito, S; Tsuchiya, N; Sumida, T

    2013-01-01

    To identify and characterize anti-citrullinated glucose-6-phosphate isomerase (GPI) peptide antibodies in patients with rheumatoid arthritis (RA). Nine GPI arginine-bearing peptides in human GPI protein were selected and cyclic citrullinated GPI peptides (CCG-1–9) were constructed. Samples were obtained from RA (n = 208), systemic lupus erythematosus (SLE) (n = 101), Sjögren's syndrome (SS; n = 101) and healthy controls (n = 174). Antibodies against CCG-1–9 were measured, and anti-citrullinated α-enolase-1 (CEP-1), -cyclic citrullinated peptides (CCP) and -GPI proteins antibodies were also examined. Patients with RA were genotyped for HLA-DRB1. The numbers of shared epitope (SE) alleles were counted and compared with those of the autoantibodies. Rabbit GPI was citrullinated with rabbit peptidylarginine deiminase and immunoblot analysis of RA sera performed. The levels of autoantibodies were compared before and after treatment with TNF antagonists in 58 RA patients. Anti-CCG-2, -4 and -7 antibodies were detected in 25·5, 33·2 and 37·0% patients with RA, respectively, and these antibodies were very specific for RA (specificity, 98·1–99·7%). Altogether, 44·2, 86·1 and 13·9% of RA sera were positive for anti-CEP-1, -CCP and -GPI protein antibodies, respectively. Anti-CCG-2, -4 and -7 antibodies were correlated with anti-CCP and anti-CEP-1 antibodies and with the presence of HLA-DRB1 SE alleles. Citrullinated GPI protein was detected using RA sera. Treatment with tumour necrosis factor antagonists reduced significantly the levels of anti-CCG-2 and -7 but not of anti-CEP-1 antibodies. This is the first report documenting the presence of anti-CCG antibodies in RA. Anti-CCG-2 and -7 antibodies could be considered as markers for the diagnosis of RA and its disease activity. PMID:23480184

  7. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Insoluble glucose isomerase enzyme preparations... Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose... defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in...

  8. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  9. Plant Triose Phosphate Isomerase Isozymes 1

    PubMed Central

    Pichersky, Eran; Gottlieb, Leslie D.

    1984-01-01

    We report the first complete purifications of the cytosolic and plastid isozymes of triose phosphate isomerase (TPI; EC 5.3.1.1) from higher plants including spinach (Spinacia oleracea), lettuce (Lactuca sativa), and celery (Apium graveolens). Both isozymes are composed of two isosubunits with approximate molecular weight of 27,000; in spinach and lettuce the plastid isozyme is 200 to 400 larger than the cytosolic isozyme. The two isozymes, purified from lettuce, had closely similar amino acid compositions with the exception of methionine which was four times more prevalent in the cytosolic isozyme. Partial amino acid sequences from the N-terminus were also obtained for both lettuce TPIs. Nine of the 13 positions sequenced in the two proteins had identical amino acid residues. The partial sequences of the plant proteins showed high similarity to previously sequenced animal TPIs. Immunological studies, using antisera prepared independently against the purified plastid and cytosolic isozymes from spinach, revealed that the cytosolic isozymes from a variety of species formed an immunologically distinct group as did the plastid isozymes. However, both plastid and cytosolic TPIs shared some antigenic determinants. The overall similarity of the two isozymes and the high similarity of their partial amino acid sequences to those of several animals indicate that TPI is a very highly conserved protein. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663420

  10. Molecular and industrial aspects of glucose isomerase.

    PubMed Central

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  11. The effect of restricted hydration on the rate of reaction of glucose 6-phosphate dehydrogenase, phosphoglucose isomerase, hexokinase and fumarase. Relevance for metabolism in xeric (near-dry) conditions

    PubMed Central

    Stevens, Evelyn; Stevens, Lewis

    1979-01-01

    A method is described for the measurement of enzyme activity under xeric conditions. The reaction mixtures had water contents ranging between 0.1 and 0.6g/g of reaction mixture. For glucose 6-phosphate dehydrogenase, hexokinase and fumarase, enzyme activity became detectable (about 0.05% of the fully hydrated rate) when the water content was about 0.2g/g of reaction mixture, and for phosphoglucose isomerase, around 0.15g/g of reaction mixture. With the water content raised to 0.3g/g of reaction mixture the reaction rates were only increased to 0.1–3% of the fully hydrated rate. When the combined rates for phosphoglucose isomerase and glucose 6-phosphate dehydrogenase were measured, reasonable agreement was found between the experimental data and those calculated from the individual experimentally determined rates on the assumption that diffusion was not further limiting. A method was devised for measuring the diffusion coefficients of low-molecular-weight substances in solutions having low water contents. The diffusion coefficients of riboflavin in sorbitol solution decreased by about 100-fold when the water content of the latter was reduced from 3 to 0.25g/g of sorbitol. It is concluded that to detect enzyme activity a certain minimal amount of water is required and that above this minimum the rate is still restricted by diffusion limitation. The relevance of the results to the physical state of water in reaction mixtures and to metabolism in seeds and spores in xeric conditions is discussed. PMID:475753

  12. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    PubMed

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  13. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  14. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  15. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  16. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  17. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    PubMed

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation.

  18. Comparison of anti-mutated citrullinated vimentin, anti-cyclic citrullinated peptides, anti-glucose-6-phosphate isomerase and anti-keratin antibodies and rheumatoid factor in the diagnosis of rheumatoid arthritis in Chinese patients.

    PubMed

    Zhu, Tao; Feng, Liyun

    2013-04-01

    To evaluate the diagnostic value of anti-mutated citrullinated vimentin antibodies (anti-MCV), anti-cyclic citrullinated peptides antibodies (anti-CCP), anti-glucose-6-phosphate isomerase antibodies (anti-GPI) and anti-keratin antibodies (AKA) and rheumatoid factor (RF) in rheumatoid arthritis (RA). The five auto-antibodies were detected in serum samples of 56 patients with RA, 21 patients with systemic lupus erythematosus (SLE), 11 with ankylosing spondylitis (AS), six with Sjögren's syndrome (SS), four with connective tissue disease (CTD) and 20 healthy controls. Anti-MCV, anti-CCP and anti-GPI were detected by enzyme-linked immunosorbent assays (ELISA), AKA was determined by indirect immunofluorescence and RF was determined by rate nephelometry. In RA, anti-MCV and anti-GPI had the highest sensitivity (78.6% and 75.0%, respectively), anti-CCP and AKA had the highest specificity (97.6%). Anti-GPI had the lowest specificity (64.3%), and AKA had the lowest sensitivity (48.2%). When two antibodies were detected together, the sensitivity of anti-MCV/anti-CCP/RF were highest (92.9%) with a lower specificity (73.8%). The combination of anti-MCV/anti-CCP had a slightly decreased sensitivity (89.3%) and the same specificity (73.8%). The combination RF/anti-MCV/anti-CCP or anti-MCV/anti-CCP are usefully serologic tests for the diagnosis of RA in Chinese patients. © 2013 The Authors International Journal of Rheumatic Diseases © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  19. Solubility of glucose isomerase in ammonium sulphate solutions

    NASA Astrophysics Data System (ADS)

    Chayen, N.; Akins, J.; Campbell-Smith, S.; Blow, D. M.

    1988-07-01

    In order to quantify protein crystallization techniques, a method for measuring protein solubility in high salt concentration has been developed. It is based on a sensitive protein concentration assay, using binding to Coomassie blue dye. The protein concentration in a supernatant from which glucose isomerase is crystallising has been studied as a function of time. Equilibrium is established in 3-5 weeks, and the protein concentration remaining in solution is defined as the solubility of the protein. The solubility of glucose isomerase has been determined as a function of ammonium sulphate concentration; its variation with pH in 1.50M ammonium sulphate has also been studied. A remarkable dependence on pH over the range of 5.5 to 6.5 has been observed.

  20. Specificity and kinetics of triose phosphate isomerase from chicken muscle

    PubMed Central

    Putman, Sylvia J.; Coulson, A. F. W.; Farley, I. R. T.; Riddleston, B.; Knowles, J. R.

    1972-01-01

    The isolation of crystalline triose phosphate isomerase from chicken breast muscle is described. The values of kcat. and Km for the reaction in each direction were determined from experiments over wide substrate-concentration ranges, and the reactions were shown to obey simple Michaelis–Menten kinetics. With d-glyceraldehyde 3-phosphate as substrate, kcat. is 2.56×105min−1 and Km is 0.47mm; with dihydroxyacetone phosphate as substrate, kcat. is 2.59×104min−1 and Km is 0.97mm. The enzyme-catalysed exchange of the methyl hydrogen atoms of the `virtual substrate' monohydroxyacetone phosphate with solvent 2H2O or 3H2O was shown. This exchange is about 104-fold slower than the corresponding exchange of the C-3 hydrogen of dihydroxyacetone phosphate. The other deoxy substrate, 3-hydroxypropionaldehyde phosphate, was synthesized, but is too unstable in aqueous solution for analogous proton-exchange reactions to be studied. PMID:4643318

  1. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    PubMed

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  2. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle

    PubMed Central

    Novello, F.; McLean, Patricia

    1968-01-01

    Methods for the quantitative determination of ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, transketolase and transaldolase in tissue extracts are described. The determinations depend on the measurement of glyceraldehyde 3-phosphate by using the coupled system triose phosphate isomerase, α-glycero-phosphate dehydrogenase and NADH. By using additional purified enzymes transketolase, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase conditions could be arranged so that each enzyme in turn was made rate-limiting in the overall system. Transaldolase was measured with fructose 6-phosphate and erythrose 4-phosphate as substrates, and again glyceraldehyde 3-phosphate was measured by using the same coupled system. Measurements of the activities of the non-oxidative reactions of the pentose phosphate pathway were made in a variety of tissues and the values compared with those of the two oxidative steps catalysed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. PMID:16742603

  3. Enzyme-enzyme interaction in the chloroplast: glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase and aldolase.

    PubMed

    Anderson, L E; Goldhaber-Gordon, I M; Li, D; Tang, X Y; Xiang, M; Prakash, N

    1995-01-01

    Apparent physical interaction between pea chloroplast (Pisum sativum L.) glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase (EC 4.1.2.13) is seen in phase-partitioning, fluorescent-anisotropy and isoelectric-focusing experiments. Similarly, results obtained in phase-partitioning and isoelectric-focusing experiments indicate physical interaction between aldolase and triose-phosphate isomerase (EC 5.3.1.1). Kinetic experiments suggest that both aldolase-bound glyceraldehyde-3-phosphate can act as substrate for glyceraldehyde-3-phosphate dehydrogenase. These results are consistent with the notion that there is interaction between these three enzymes both during photosynthetic CO2 fixation and during glycolysis in the chloroplast.

  4. Optimization of lactulose synthesis from whey lactose by immobilized β-galactosidase and glucose isomerase.

    PubMed

    Song, Yoon-Seok; Lee, Hee-Uk; Park, Chulhwan; Kim, Seung-Wook

    2013-03-22

    In the present study, commercially available whey was used as a lactose source, and immobilized β-galactosidase and glucose isomerase were used to synthesize lactulose from whey lactose in the absence of fructose. Optimal reaction conditions, such as lactose concentration, temperature, ionic strength of the buffer, and ratio of immobilized enzymes, were determined to improve lactulose synthesis using immobilized enzymes. Lactulose synthesis using immobilized enzymes improved markedly after optimizing the reaction conditions. When the lactulose synthesis was carried out at 53.5°C using 20% (w/v) whey lactose, 12U/ml of immobilized β-galactosidase and 60U/ml of immobilized glucose isomerase in 100mM sodium phosphate buffer at pH 7.5, the lactulose concentration and specific productivity were 7.68g/l and 0.32mg/Uh, respectively. Additionally, when the immobilized enzymes were reused for lactulose synthesis, their catalytic activity was 57.1% after 7 repeated uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. L-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for L-ribose production.

    PubMed

    Xu, Zheng; Sha, Yuanyuan; Liu, Chao; Li, Sha; Liang, Jinfeng; Zhou, Jiahai; Xu, Hong

    2016-11-01

    L-Ribose is a synthetic L-form monosaccharide. It is a building block of many novel nucleotide analog anti-viral drugs. Bio-production of L-ribose relies on a two-step reaction: (i) conversion of L-arabinose to L-ribulose by the catalytic action of L-arabinose isomerase (L-AI) and (ii) conversion of L-ribulose to L-ribose by the catalytic action of L-ribose isomerase (L-RI, EC 5.3.1.B3) or mannose-6-phosphate isomerase (MPI, EC 5.3.1.8, alternately named as phosphomannose isomerase). Between the two enzymes, L-RI is a rare enzyme that was discovered in 1996 by Professor Izumori's group, whereas MPI is an essential enzyme in metabolic pathways in humans and microorganisms. Recent studies have focused on their potentials for industrial production of L-ribose. This review summarizes the applications of L-RI and MPI for L-ribose production.

  6. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate.

    PubMed Central

    Forsyth, R J; Bartlett, K; Burchell, A; Scott, H M; Eyre, J A

    1993-01-01

    Cells from primary rat astrocyte cultures express a 36.5 kDa protein that cross-reacts with polyclonal antibodies to the catalytic subunit of rat hepatic glucose-6-phosphatase on Western blotting. Glucose-6-phosphate-hydrolysing activity of the order of 10 nmol/min per mg of total cellular protein can be demonstrated in cell homogenates. This activity shows latency, and is localized to the microsomal fraction. Kinetic analysis shows a Km of 15 mM and a Vmax. of 30 nmol/min per mg of microsomal protein in disrupted microsomes. Approx. 40% of the total phosphohydrolase activity is specific glucose-6-phosphatase, as judged by sensitivity to exposure to pH 5 at 37 degrees C. Previous reports that the brain microsomal glucose-6-phosphatase system does not distinguish glucose 6-phosphate and mannose 6-phosphate are confirmed in astrocyte microsomes. However, we demonstrate significant phosphomannose isomerase activity in brain microsomes, allowing for ready interconversion between mannose 6-phosphate and glucose 6-phosphate (Vmax. 15 nmol/min per mg of microsomal protein; apparent Km < 1 mM; pH optimum 5-6 for the two-step conversion). This finding invalidates the past inference from the failure of brain microsomes to distinguish mannose 6-phosphate and glucose 6-phosphate that the cerebral glucose-6-phosphatase system lacks a 'glucose 6-phosphate translocase' [Fishman and Karnovsky (1986) J. Neurochem. 46, 371-378]. Furthermore, light-scattering experiments confirm that a proportion of whole brain microsomes is readily permeable to glucose 6-phosphate. Images Figure 1 PMID:8395816

  7. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  8. Development of Novel Sugar Isomerases by Optimization of Active Sites in Phosphosugar Isomerases for Monosaccharides

    PubMed Central

    Yeom, Soo-Jin; Kim, Yeong-Su

    2013-01-01

    Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases. PMID:23204422

  9. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella

    PubMed Central

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-01-01

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  10. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.

    PubMed

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-12-16

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  11. Interruption of the phosphoglucose isomerase gene results in glucose auxotrophy in Mycobacterium smegmatis.

    PubMed Central

    Tuckman, D; Donnelly, R J; Zhao, F X; Jacobs, W R; Connell, N D

    1997-01-01

    Two glycerol utilization mutants of Mycobacterium smegmatis that were unable to utilize most carbon sources except glucose were isolated. Supplementation of these media with small amounts of glucose restored growth in the mutants; these strains are therefore glucose auxotrophs. The mutant phenotype is complemented by the gene encoding phosphoglucose isomerase (pgi), and direct measurement of enzyme activities in the mutants suggests that this gene product is absent in the auxotrophic strains. Mapping of the mutant allele by Southern analysis demonstrates the presence of a 1-kb deletion extending into the coding sequence of pgi. The possible roles of phosphoglucose isomerase in mycobacterial cell wall synthesis and metabolic regulation are discussed. PMID:9098072

  12. Interruption of the phosphoglucose isomerase gene results in glucose auxotrophy in Mycobacterium smegmatis.

    PubMed

    Tuckman, D; Donnelly, R J; Zhao, F X; Jacobs, W R; Connell, N D

    1997-04-01

    Two glycerol utilization mutants of Mycobacterium smegmatis that were unable to utilize most carbon sources except glucose were isolated. Supplementation of these media with small amounts of glucose restored growth in the mutants; these strains are therefore glucose auxotrophs. The mutant phenotype is complemented by the gene encoding phosphoglucose isomerase (pgi), and direct measurement of enzyme activities in the mutants suggests that this gene product is absent in the auxotrophic strains. Mapping of the mutant allele by Southern analysis demonstrates the presence of a 1-kb deletion extending into the coding sequence of pgi. The possible roles of phosphoglucose isomerase in mycobacterial cell wall synthesis and metabolic regulation are discussed.

  13. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    PubMed

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-03-11

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min(-1). The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  14. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  15. Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A.

    PubMed Central

    Lee, C Y; Zeikus, J G

    1991-01-01

    Glucose isomerases produced by Thermoanaerobacter strain B6A and Clostridium thermosulfurogenes strain 4B were purified 10-11-fold to homogeneity and their physicochemical and catalytic properties were determined. Both purified enzymes displayed very similar properties (native Mr 200,000, tetrameric subunit composition, and apparent pH optima 7.0-7.5). The enzymes were stable at pH 5.5-12.0, and maintained more than 90% activity after incubation at high temperature (85 degrees C) for 1 h in the presence of metal ions. The N-terminal amino acid sequences of both thermostable glucose isomerases were Met-Asn-Lys-Tyr-Phe-Glu-Asn and were not similar to that of the thermolabile Bacillus subtilis enzyme. The glucose isomerase from C. thermosulfurogenes and Thermoanaerobacter displayed pI values of 4.9 and 4.8, and their kcat. and Km values for D-glucose at 65 degrees C were 1040 and 1260 min-1 and 140 and 120 mM respectively. Both enzymes displayed higher kcat. and lower Km values for D-xylose than for D-glucose. The C. thermosulfurogenes enzyme required Co2+ or Mg2+ for thermal stability and glucose isomerase activity, and Mn2+ or these metals for xylose isomerase activity. Crystals of C. thermosulfurogenes glucose isomerase were formed at room temperature by the hanging-drop method using 16-18% poly(ethylene glycol) (PEG) 4000 in 0.1 M-citrate buffer. Images Fig. 1. Fig. 5. PMID:1996956

  16. Localization of Phosphoglucose Isomerase in Escherichia coli and Its Relation to the Induction of the Hexose Phosphate Transport System

    PubMed Central

    Friedberg, Ilan

    1972-01-01

    The localization of phosphoglucose isomerase (PGI) was studied in relation to the induction of hexose phosphate uptake in Escherichia coli. The uptake system is induced only by extracellular glucose-6-phosphate (G6P); there is no induction by intracellular G6P. Fructose-6-phosphate (F6P) is an indirect inducer, and isomerization of F6P to G6P must occur before induction. PGI has been considered to be an internal enzyme; therefore, uptake of F6P by noninduced cells and leakage of the G6P formed would be required for induction. In this study, it was concluded that part of the PGI activity is located in the cell surface because: (i) uninduced, intact cells are able to convert F6P to G6P, whereas the activity of G6P dehydrogenase is not detectable; (ii) when cells are subjected to osmotic shock, about 10% of the PGI activity is found in the shock fluid; and (iii) sorbitol-6-phosphate (S6P) inhibits both PGI activity of whole cells and the induction of hexose phosphate transport system by F6P. S6P was not taken by intact cells. The data indicate that the isomerization of F6P to G6P can take place on the cell surface, and this explains the indirect induction of hexose phosphate transport by F6P. PMID:4344919

  17. Method for the assay of glucose isomerase activity in complex fermentation mixtures

    SciTech Connect

    Boguslawski, G.; Bertch, S.W.

    1980-10-01

    A method for the determination of glucose isomerase activity is described. The method employs D-sorbitol dehydrogenase for conversion of fructose, formed in the glucose isomerase reaction, to sorbitol, with the concomitant oxidation of reduced nicotinamide adenine dinucleotide. The assay technique is simple, sensitive, and accurate. The few interferences by some sugars and components of a complex fermentation medium are easily corrected for. The method compares favorably with such alternative procedures as the cysteine--H/sub 2/SO/sub 4/ or hydrochloric acid methods of fructose determination.

  18. Escherichia coli arabinose isomerase and Staphylococcus aureus tagatose-6-phosphate isomerase: which is a better template for directed evolution of non-natural substrate isomerization?

    PubMed

    Kim, Hye Jung; Uhm, Tae Guk; Kim, Seong Bo; Kim, Pil

    2010-06-01

    Metallic and non-metallic isomerases can be used to produce commercially important monosaccharides. To determine which category of isomerase is more suitable as a template for directed evolution to improve enzymes for galactose isomerization, L-arabinose isomerase from Escherichia coli (ECAI; E.C. 5.3.1.4) and tagatose-6-phosphate isomerase from Staphylococcus aureus (SATI; E.C. 5.3.1.26) were chosen as models of a metallic and non-metallic isomerase, respectively. Random mutations were introduced into the genes encoding ECAI and SATI at the same rate, resulting in the generation of 515 mutants of each isomerase. The isomerization activity of each of the mutants toward a non-natural substrate (galactose) was then measured. With an average mutation rate of 0.2 mutations/kb, 47.5% of the mutated ECAIs showed an increase in activity compared with wild-type ECAI, and the remaining 52.5% showed a decrease in activity. Among the mutated SATIs, 58.6% showed an increase in activity, whereas 41.4% showed a decrease in activity. Mutant clones showing a significant change in relative activity were sequenced and specific increases in activity were measured. The maximum increase in activity achieved by mutation of ECAI was 130%, and that for SATI was 190%. Based on these results, the characteristics of the different isomerases are discussed in terms of their usefulness for directed evolution of non-natural substrate isomerization.

  19. [Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) and studying the enzymatic properties of its expression product].

    PubMed

    Rozanov, A S; Zagrebel'nyĭ, S N; Beklemishchev, A B

    2009-01-01

    The coding region of Escherichia coli K12 xylose (glucose) isomerase gene was inserted into the pRAC expression vector and cloned in E. coli BL21 (DE3) cells. After induction of expression of the cloned gene, the proportion of recombinant xylose isomerase accounted for 40% of the total protein content. As a result of one-stage purification by affinity chromatography, a protein preparation of 90% purity was obtained. The recombinant enzyme catalyzed the isomerization of glucose to fructose and exhibited maximum activity (0.8 U/mg) at 45 degrees C and pH 6.8. The enzyme required Mg2+ ions as a cofactor. When Mg2+ and Co2+ ions were simultaneously present in the reaction medium, the enzyme activity increased by 15-20%. Complete replacement of Mg2+ with Co2+ decreased the enzyme activity. In the presence of Ca2+ at concentrations comparable to the concentration of Mg2+, the enzyme was not inhibited, although published data reported inhibition of similar enzymes by Ca2+. The recombinant enzyme exhibited a very low thermostability: it underwent a slow inactivation when incubated at 45 degrees C and was completely inactivated after incubation at 65 degrees C for 1 h.

  20. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    PubMed Central

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  1. Analysis of the arabinose-5-phosphate isomerase of Bacteroides fragilis provides insight into regulation of single-domain arabinose phosphate isomerases.

    PubMed

    Cech, David; Wang, Pan Fen; Holler, Tod P; Woodard, Ronald W

    2014-08-01

    Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and D-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-D-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5'-monophospho-3-deoxy-D-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Analysis of the Arabinose-5-Phosphate Isomerase of Bacteroides fragilis Provides Insight into Regulation of Single-Domain Arabinose Phosphate Isomerases

    PubMed Central

    Cech, David; Wang, Pan Fen; Holler, Tod P.

    2014-01-01

    Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and d-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-d-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5′-monophospho-3-deoxy-d-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships. PMID:24891442

  3. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    PubMed

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  4. Identification of a d-Arabinose-5-Phosphate Isomerase in the Gram-Positive Clostridium tetani.

    PubMed

    Cech, David L; Markin, Katherine; Woodard, Ronald W

    2017-09-01

    d-Arabinose-5-phosphate (A5P) isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and d-arabinose-5-phosphate. Various Gram-negative bacteria, such as the uropathogenic Escherichia coli strain CFT073, contain multiple API paralogs (KdsD, GutQ, KpsF, and c3406) that have been assigned various cellular functions. The d-arabinose-5-phosphate formed by these enzymes seems to play important roles in the biosynthesis of lipopolysaccharide (LPS) and group 2 K-antigen capsules, as well as in the regulation of the cellular d-glucitol uptake and uropathogenic infectivity/virulence. The genome of a Gram-positive pathogenic bacterium, Clostridium tetani, contains a gene encoding a putative API, C. tetani API (CtAPI), even though C. tetani lacks both LPS and capsid biosynthetic genes. To better understand the physiological role of d-arabinose-5-phosphate in this Gram-positive organism, recombinant CtAPI was purified and characterized. CtAPI displays biochemical characteristics similar to those of APIs from Gram-negative organisms and complements the API deficiency of an E. coli API knockout strain. Thus, CtAPI represents the first d-arabinose-5-phosphate isomerase to be identified and characterized from a Gram-positive bacterium.IMPORTANCE The genome of Clostridium tetani, a pathogenic Gram-positive bacterium and the causative agent of tetanus, contains a gene (the CtAPI gene) that shares high sequence similarity with those of genes encoding d-arabinose-5-phosphate isomerases. APIs play an important role within Gram-negative bacteria in d-arabinose-5-phosphate production for lipopolysaccharide biosynthesis, capsule formation, and regulation of cellular d-glucitol uptake. The significance of our research is in identifying and characterizing CtAPI, the first Gram-positive API. Our findings show that CtAPI is specific to the interconversion of arabinose-5-phosphate and ribulose-5-phosphate while having no activity with the other sugars and sugar phosphates

  5. Structure of Escherichia coli Ribose-5-Phosphate Isomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle

    PubMed Central

    Zhang, Rong-guang; Andersson, C. Evalena; Savchenko, Alexei; Skarina, Tatiana; Evdokimova, Elena; Beasley, Steven; Arrowsmith, Cheryl H.; Edwards, Aled M.; Joachimiak, Andrzej; Mowbray, Sherry L.

    2009-01-01

    Summary Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 Å resolution (R factor 22.4%, Rfree 23.7%). RpiA exhibits an α/β/(α/β)/β/α fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 Å resolution. A mechanism for acid-base catalysis is proposed. PMID:12517338

  6. Structure of escherichia coli ribose-5-phosphate isomerase : a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.

    SciTech Connect

    Zhang, R.; Andersson, C. E.; Savchenko, A.; Skarina, T.; Evdokimova, E.; Beasley, S.; Arrowsmith, C. H.; Edwards, A.; Joachimiak, A.; Mowbray, S. L.; Biosciences Division; Uppsala Univ.; Univ. Health Network; Univ. of Toronto; Swedish Univ. of Agricultural Sciences

    2003-01-01

    Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 Angstroms resolution (R factor 22.4%, R{sub free} 23.7%). RpiA exhibits an {alpha}/{beta}/({alpha}/{beta})/{beta}/{alpha} fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.

  7. Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle.

    PubMed

    Zhang, Rong guang; Andersson, C Evalena; Savchenko, Alexei; Skarina, Tatiana; Evdokimova, Elena; Beasley, Steven; Arrowsmith, Cheryl H; Edwards, Aled M; Joachimiak, Andrzej; Mowbray, Sherry L

    2003-01-01

    Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 A resolution (R factor 22.4%, R(free) 23.7%). RpiA exhibits an alpha/beta/(alpha/beta)/beta/alpha fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.

  8. Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids

    PubMed Central

    Faria, Joana; Loureiro, Inês; Santarém, Nuno; Cecílio, Pedro; Macedo-Ribeiro, Sandra; Tavares, Joana; Cordeiro-da-Silva, Anabela

    2016-01-01

    Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes’ replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids. PMID:27230471

  9. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications.

    PubMed

    Chiu, Hsiu Ju; Grant, Joanna C; Farr, Carol L; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2014-10-01

    The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Å resolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5'-monophosphate-3-deoxy-D-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of D-ribulose 5-phosphate to D-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections.

  10. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications

    PubMed Central

    Chiu, Hsiu-Ju; Grant, Joanna C.; Farr, Carol L.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2014-01-01

    The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Å resolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5′-monophosphate-3-deoxy-d-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of d-ribulose 5-phosphate to d-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections. PMID:25286848

  11. Concerted Proton Transfer Mechanism of Clostridium thermocellum Ribose-5-phosphate Isomerase

    PubMed Central

    Wang, Jun; Yang, Weitao

    2013-01-01

    Ribose-5-phosphate isomerase (Rpi) catalyzes the interconversion of D-ribose-5-phosphate and D-ribulose-5-phosphate and plays an essential role in the pentose phosphate pathway and the Calvin cycle of photosynthesis. RpiB, one of the two isoforms of Rpi, is also a potential drug target for some pathogenic bacteria. Clostridium thermocellum ribose-5-phosphate isomerase (CtRpi), belonging to RpiB family, has recently been employed to the industrial production of rare sugars because of it fast reactions kinetics and narrow substrate specificity. It is known this enzyme adopts proton transfer mechanism. It was suggested that the deprotonated Cys65 attracts the proton at C2 of substrate to initiate the isomerization reaction and this step is the rate-limiting step. However the elaborate catalytic mechanism is still unclear. We have performed quantum mechanical/molecular mechanical simulations of this rate-limiting step of the reaction catalyzed by CtRpi with the substrate D-ribose. Our results demonstrate that the deprotonated Cys65 is not a stable reactant. Instead, our calculations revealed a concerted proton-transfer mechanism: Asp8, a highly conserved residue in the RpiB family performs as the base to abstract the proton at Cys65 and Cys65 in turn abstracts the proton of the D-ribose simultaneously. Moreover, we found Thr67 cannot catalyze the proton transfer from O2 to O1 of the D-ribose alone. Water molecule(s) may assist this proton transfer with Thr67. Our findings lead to a clear understanding of the catalysis mechanism of RpiB family and should guide the experiments to increase the catalysis efficiency. This study also highlights the importance of initial protonation states of cysteines. PMID:23875675

  12. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    PubMed Central

    2011-01-01

    Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD) phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether. PMID:21995815

  13. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues.

    PubMed

    Chanitnun, Kankiya; Pinphanichakarn, Pairoh

    2012-07-01

    Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  14. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production

    PubMed Central

    Sigdel, Sujan; Singh, Ranjitha; Kim, Tae-Su; Li, Jinglin; Kim, Sang-Yong; Kim, In-Won; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2015-01-01

    The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8) was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P). The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications. PMID:26171785

  15. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.

    PubMed

    Merico, A; Rodrigues, F; Côrte-Real, M; Porro, D; Ranzi, B M; Compagno, C

    2001-06-30

    The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852.

  16. Dual activity of quinolinate synthase: triose phosphate isomerase and dehydration activities play together to form quinolinate.

    PubMed

    Reichmann, Debora; Couté, Yohann; Ollagnier de Choudens, Sandrine

    2015-10-27

    Quinolinate synthase (NadA) is an Fe4S4 cluster-containing dehydrating enzyme involved in the synthesis of quinolinic acid (QA), the universal precursor of the essential coenzyme nicotinamide adenine dinucleotide. The reaction catalyzed by NadA is not well understood, and two mechanisms have been proposed in the literature that differ in the nature of the molecule (DHAP or G-3P) that condenses with iminoaspartate (IA) to form QA. In this article, using biochemical approaches, we demonstrate that DHAP is the triose that condenses with IA to form QA. The capacity of NadA to use G-3P is due to its previously unknown triose phosphate isomerase activity.

  17. Inheritance and subcellular localization of triose-phosphate isomerase in dwarf mountain pine (Pinus mugo).

    PubMed

    Odrzykoski, I J

    2001-01-01

    Several trees with expected heterozygous phenotype for triose-phosphate isomerase (TPI) were discovered in a population of dwarf mountain pine (Pinus mugo Turra) from southern Poland. As the inheritance of this enzyme in pines has not been reported, segregation of allelic variants was tested in eight trees with putative heterozygous phenotypes for two loci, TpiA and TPIB: Linkage between these and some other isozyme loci were studied and evidence for linkage has been found between TpiA and PgdA (r = 0.10) and between TpiB and DiaD (r = 0.36), but in single trees only. The subcellular localization of TPI isozymes was determined by comparing isoenzymes from the total extract with those found in fraction enriched in plastids, prepared by differential gradient centrifugation of cellular organelles. The more slowly migrating TPI-B isozyme is located in plastids.

  18. Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate.

    PubMed

    Zhou, Rui; Cheng, Lailiang

    2008-06-16

    Apple leaf cytosolic phosphoglucose isomerase (PGI, EC 5.3.1.9) was purified to an apparent homogeneity with a specific activity of 2456 units/mg protein, and chloroplastic PGI was partially purified to a specific activity of 72 units/mg protein to characterize their biochemical properties. These two isoforms showed differential responses to heat treatment; incubation at 50 degrees C for 10 min resulted in a complete loss of the chloroplastic PGI activity, whereas the cytosolic PGI only lost 50% of its activity. Apple cytosolic PGI is a dimeric enzyme with a molecular mass of 66 kDa for each monomer. The activity of both isoforms was strongly inhibited by erythrose 4-phosphate (E4P) with a K(i) of 1.2 and 3.0 microM for the cytosolic PGI and chloroplastic PGI, respectively. Sorbitol 6-phosphate (Sor6P), an intermediate in sorbitol biosynthesis, was found to be a competitive inhibitor for both cytosolic and chloroplastic PGIs with a K(i) of 61 and 40 microM, respectively. PGIs from both spinach and tomato leaves were also inhibited by Sor6P in a similar manner. The possible physiological significance of this finding is discussed.

  19. Molecular dynamics simulations of "loop closing" in the enzyme triose phosphate isomerase.

    PubMed

    Brown, F K; Kollman, P A

    1987-12-05

    We present molecular dynamics simulations on the active site region of dimeric triose phosphate isomerase (TIM) using the co-ordinates of native chicken muscle TIM as a starting point and performing simulations with no substrate, with dihydroxyacetone phosphate (DHAP), the natural substrate, and with dihydroxyacetone sulfate (DHAS), a substrate analog. Whereas most of the protein moves less than 1 A during the simulation, some residues in the active site loop move more than 8 A during the 10.5 picoseconds of dynamics for each of the simulations. Most interestingly, the nature of the loop motion depends on the substrate, with the largest motion found in the presence of DHAP, and only in the presence of DHAP does the loop move to "close off" the active site pocket. The final structure found for the DHAP-chicken TIM complex is qualitatively similar to that described by Alber et al. for DHAP-yeast TIM. Simulations on the monomeric protein gives insight into why the molecule is active only as a dimer.

  20. Polyols accumulated in ribose-5-phosphate isomerase deficiency increase mitochondrial superoxide production and improve antioxidant defenses in rats' prefrontal cortex.

    PubMed

    Stone, V; Kudo, K Y; August, P M; Marcelino, T B; Matté, C

    2014-10-01

    The ribose-5-phosphate isomerase deficiency is an inherited condition, which results in cerebral d-arabitol and ribitol accumulation. Patients present leukoencephalopathy, mental retardation, and psychomotor impairment. Considering that the pathophysiology of this disorder is still unclear, and literature are sparse and contradictory, reporting pro and antioxidant activities of polyols, the main objective of this study was to investigate some parameters of oxidative homeostasis of prefrontal cortex of rats incubated with d-arabitol and ribitol. We found evidences that ribitol promoted an increase in antioxidant enzymes activity (superoxide dismutase, catalase, and glutathione peroxidase), probably secondary to enhanced production of superoxide radical, measured by flow cytometry. Oxidation of proteins and lipids was not induced by polyols. Our data allow us to conclude that, at least in our methodological conditions, arabitol and ribitol probably have a secondary effect on the pathophysiology of ribose-5-phosphate isomerase deficiency. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    PubMed

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  2. Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose.

    PubMed

    Park, Ha-Young; Park, Chang-Su; Kim, Hye-Jung; Oh, Deok-Kun

    2007-10-15

    We purified recombinant galactose 6-phosphate isomerase (LacAB) from Lactococcus lactis using HiTrap Q HP and Phenyl-Sepharose columns. The purified LacAB had a final specific activity of 1.79units/mg to produce d-allose. The molecular mass of native galactose 6-phosphate isomerase was estimated at 135.5kDa using Sephacryl S-300 gel filtration, and the enzyme exists as a hetero-octamer of LacA and LacB subunits. The activity of galactose 6-phosphate isomerase was maximal at pH 7.0 and 30 degrees C, and enzyme activity was independent of metal ions. When 100g/L of d-psicose was used as the substrate, 25g/L of d-allose and 13g/L of d-altrose were simultaneously produced at pH 7.0 and 30 degrees C after 12h of incubation. The enzyme had broad specificity for various aldoses and ketoses. The interconversion of sugars with the same configuration except at the C2 position was driven by using a large amount of enzyme in extended reactions. The interconversion occurred via two isomerization reactions, i.e., the interconversion of d-allose<-->d-psicose<-->d-altrose, and d-allose to d-psicose reaction was faster than d-altrose to d-psicose reaction.

  3. Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase

    PubMed Central

    2004-01-01

    Isoprenoid biosynthesis via the methylerythritol phosphate pathway is a target against pathogenic bacteria and the malaria parasite Plasmodium falciparum. 4-(Hydroxyamino)-4-oxobutylphosphonic acid and 4-[hydroxy(methyl)amino]-4-oxobutyl phosphonic acid, two novel inhibitors of DXR (1-deoxy-D-xylulose 5-phosphate reducto-isomerase), the second enzyme of the pathway, have been synthesized and compared with fosmidomycin, the best known inhibitor of this enzyme. The latter phosphonohydroxamic acid showed a high inhibitory activity towards DXR, much like fosmidomycin, as well as significant antibacterial activity against Escherichia coli in tests on Petri dishes. PMID:15473867

  4. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice

    PubMed Central

    Sharma, Shweta; Mustafiz, Ananda; Singla-Pareek, Sneh L.; Shankar Srivastava, Prem; Sopory, Sudhir Kumar

    2012-01-01

    As compared with plant system, triose phosphate isomerase (TPI), a crucial enzyme of glycolysis, has been well studied in animals. In order to characterize TPI in plants, a full-length cDNA encoding OscTPI was cloned from rice and expressed in E. coli. The recombinant OscTPI was purified to homogeneity and it showed Km value of 0.1281 ± 0.025 µM, and the Vmax value of 138.7 ± 16 µmol min−1mg−1 which is comparable to the kinetic values studied in other plants. The OscTPI was found to be exclusively present in the cytoplasm when checked with the various methods. Functional assay showed that OscTPI could complement a TPI mutation in yeast. Real time PCR analysis revealed that OscTPI transcript level was regulated in response to various abiotic stresses. Interestingly, it was highly induced under different concentration of methylglyoxal (MG) stress in a concentration dependent manner. There was also a corresponding increase in the protein and the enzyme activity of OscTPI both in shoot and root tissues under MG stress. Our result shows that increases in MG leads to the increase in TPI which results in decrease of DHAP and consequently decrease in the level of toxic MG. PMID:22902706

  5. Mannose Phosphate Isomerase Regulates Fibroblast Growth Factor Receptor Family Signaling and Glioma Radiosensitivity

    PubMed Central

    Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C.; Sambrooks, Cecilia Lopez; Contessa, Joseph N.

    2014-01-01

    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post- translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization. PMID:25314669

  6. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes.

    PubMed

    Marcolongo, Paola; Fulceri, Rosella; Giunti, Roberta; Margittai, Eva; Banhegyi, Gabor; Benedetti, Angelo

    2012-09-21

    A phosphate-linked antiporter activity of the glucose-6-phosphate transporter (G6PT) has been recently described in liposomes including the reconstituded transporter protein. We directly investigated the mechanism of glucose-6-phosphate (G6P) transport in rat liver microsomal vesicles. Pre-loading with inorganic phosphate (Pi) did not stimulate G6P or Pi microsomal inward transport. Pi efflux from pre-loaded microsomes could not be enhanced by G6P or Pi addition. Rapid G6P or Pi influx was registered by light-scattering in microsomes not containing G6P or Pi. The G6PT inhibitor, S3483, blocked G6P transport irrespectively of experimental conditions. We conclude that hepatic G6PT functions as an uniporter.

  7. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    SciTech Connect

    Gowda, Giri; Sagurthi, Someswar Rao; Savithri, H. S.; Murthy, M. R. N.

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  8. Residual triose phosphate isomerase activity and color measurements to determine adequate cooking of ground beef patties.

    PubMed

    Sair, A I; Booren, A M; Berry, B W; Smith, D M

    1999-02-01

    The objectives were to (i) compare the use of triose phosphate isomerase (TPI) activity and internal color scores for determination of cooking adequacy of beef patties and (ii) determine the effect of frozen storage and fat content on residual TPI activity in ground beef. Ground beef patties (24.4% fat) were cooked to five temperatures ranging from 60.0 to 82.2 degrees C. TPI activity decreased as beef patty cooking temperature was increased from 60.0 to 71.1 degrees C; however, no difference (P > 0.05) in activity (6.3 U/kg meat) was observed in patties cooked to 71.1 degrees C and above. Degree of doneness color scores, a* values and b* values, of ground beef patties decreased as internal temperature was increased from 60.0 to 71.1 degrees C; however, temperature had no effect on L* values. TPI activity in raw ground beef after five freeze-thaw cycles did not differ from the control. Three freeze-thaw cycles of raw ground beef resulted in a 57.2% decrease in TPI activity after cooking. TPI activity of cooked beef increased during 2 months of frozen storage, but TPI activity in ground beef stored for 3 months or longer did not differ from the unfrozen control. While past research has shown color to be a poor indicator of adequate thermal processing, our results suggest that undercooked ground beef patties could be distinguished from those that had been adequately cooked following U.S. Department of Agriculture guidelines using residual TPI activity as a marker.

  9. [Glucose-6-phosphate dehydrogenase deficiency in Japan].

    PubMed

    Kanno, Hitoshi; Ogura, Hiromi

    2015-07-01

    In the past 10 years, we have diagnosed congenital hemolytic anemia in 294 patients, approximately 33% of whom were found to have glucose-6-phosphate dehydrogenase (G6PD) deficiency. It is becoming more common for Japanese to marry people of other ethnic origins, such that G6PD deficiency is becoming more prevalent in Japan. Japanese G6PD deficiency tends to be diagnosed in the neonatal period due to severe jaundice, while G6PD-deficient patients with foreign ancestors tend to be diagnosed at the onset of an acute hemolytic crisis before the age of six. It is difficult to predict the clinical course of each patient by G6PD activity, reduced glutathione content, or the presence/absence of severe neonatal jaundice. We propose that both neonatal G6PD screening and systematic analyses of G6PD gene mutations may be useful for personalized management of patients with G6PD-deficient hemolytic anemia.

  10. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    SciTech Connect

    Olchowy, Jaroslaw; Milewski, Slawomir

    2005-11-01

    The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to space group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.

  11. Characterization of ribose-5-phosphate isomerase converting D-psicose to D-allose from Thermotoga lettingae TMO.

    PubMed

    Feng, Zaiping; Mu, Wanmeng; Jiang, Bo

    2013-05-01

    The gene coding for ribose-5-phosphate isomerase (Rpi) from Thermotoga lettingae TMO was cloned and expressed in E. coli. The recombinant enzyme was purified by Ni-affinity chromatography. It converted D-psicose to D-allose maximally at 75 °C and pH 8.0 with a 32 % conversion yield. The k m, turnover number (k cat), and catalytic efficiency (k cat k m (-1) ) for substrate D-psicose were 64 mM, 6.98 min(-1) and 0.11 mM(-1) min(-1) respectively.

  12. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    PubMed Central

    Olchowy, Jaroslaw; Jedrzejczak, Robert; Milewski, Slawomir; Rypniewski, Wojciech

    2005-01-01

    Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to space group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers. PMID:16511216

  13. Glucose-6-phosphate dehydrogenase deficiency in Chinese

    PubMed Central

    Lai, H. C.; Lai, Michael P. Y.; Leung, Kevin S. N.

    1968-01-01

    In a Chinese population 1,000 full-term male neonates and a further 117 jaundiced neonates of both sexes were studied in an investigation of the frequency of deficiency of erythrocyte glucose-6-phosphate dehydrogenase (G6PD). This enzyme was found to be deficient in 3·6% of male neonates. Correlation of the results with the birthplace of the 602 mothers who were known to come from Kwangtung province showed no significant differences in the frequency of the deficiency between certain parts of the province. The deficiency of G6PD in hemizygous males is profound but it is not associated with erythrocyte acid monophosphoesterase deficiency in Chinese in Hong Kong. The G6PD deficiency accounts for 15·4% of all the 117 cases of neonatal jaundice. The relative importance of G6PD deficiency as a cause of neonatal jaundice does not differ materially in male and female mutants. Neonatal jaundice can occur in all genotypes of G6PD mutation in Chinese. PMID:5697334

  14. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    PubMed

    De Rose, Aldo Franco; Mantica, Guglielmo; Tosi, Mattia; Bovio, Giulio; Terrone, Carlo

    2016-10-05

    Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  15. Producing Glucose 6-Phosphate from Cellulosic Biomass

    PubMed Central

    Bacik, John-Paul; Klesmith, Justin R.; Whitehead, Timothy A.; Jarboe, Laura R.; Unkefer, Clifford J.; Mark, Brian L.; Michalczyk, Ryszard

    2015-01-01

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production. PMID:26354439

  16. Isolation and characterization of a xylose-glucose isomerase from a new strain Streptomyces thermovulgaris 127, var. 7-86.

    PubMed

    Raykovska, V; Dolashka-Angelova, P; Paskaleva, D; Stoeva, S; Abashev, J; Kirkov, L; Voelter, W

    2001-01-01

    A thermostable D-xylose-glucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by gamma-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAE-Sephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12 columns. The N-terminal amino acid sequence and amino acid analysis shows 73-92% homology with xylose-glucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12 column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 60-85 degrees C at pH 7.0, using D-glucose, and up to 50-60 degrees C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ x mol(-1)) and the critical temperature (Tc = 60 degrees C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59 degrees C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 k x mol(-1). The specific activity (km values) for D-xylose-glucose isomerase at 70 degrees C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, respectively.

  17. Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing D-allose from D-psicose.

    PubMed

    Park, Chang-Su; Yeom, Soo-Jin; Kim, Hye-Jung; Lee, Sook-Hee; Lee, Jung-Kul; Kim, Seon-Won; Oh, Deok-Kun

    2007-09-01

    The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted D-psicose into D-allose but it did not convert D-xylose, L-rhamnose, D-altrose or D-galactose. The production of D-allose by RpiB was maximal at pH 7.5 and 65 degrees C for 30 min. The half-lives of the enzyme at 50 degrees C and 65 degrees C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50 degrees C, 165 g D-allose l(-1 ) was produced without by-products from 500 g D-psicose l(-1) after 6 h.

  18. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance.

    PubMed

    Jaeken, J; Pirard, M; Adamowicz, M; Pronicka, E; van Schaftingen, E

    1996-11-01

    Isoelectrofocusing of serum sialotransferrins from patients with untreated hereditary fructose intolerance (HFI) shows a cathodal shift similar to that in carbohydrate-deficient glycoprotein (CDG) syndrome type I and in untreated galactosemia. This report is on serum lysosomal enzyme abnormalities in untreated HFI that are identical to those found in CDG syndrome type I but different from those in untreated galactosemia. CDG syndrome type I is due to phosphomannomutase deficiency, a defect in the early glycosylation pathway. It was found that fructose 1-phosphate is a potent competitive inhibitor (Ki congruent to 40 microM) of phosphomannose isomerase (EC 5.3.1.8), the first enzyme of the N-glycosylation pathway thus explaining the N-glycosylation disturbances in HFI.

  19. Purification, preliminary X-ray crystallography and biophysical studies of triose phosphate isomerase-β-globin subunit complex.

    PubMed

    Wahiduzzaman; Dar, Mohammad Aasif; Amir, Mohd; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2017-01-01

    Triose phosphate isomerase (TIM) is a cytoplasmic enzyme of prime importance in the mammalian glycolytic pathway. It has a major role in the conversion of dihydroxyacetone phosphate into glyceraldehyde-3-phosphate. We have successfully purified a stable complex of TIM with β-globin subunit from the sheep kidney using a simple two-step chromatography procedure. It is seen for the first time that TIM is forming a stable complex with β-globin. The purified protein-protein complex was crystallized and preliminary diffraction data were collected at 2.1Å resolution. We further studied guanidinium chloride (GdmCl)-induced denaturation of TIM-β-globin complex by monitoring changes in the mean residue ellipticity at 222nm ([θ]222) and difference absorption coefficient at 406nm (Δε406) at pH 7.5 and 25°C. We have observed that GdmCl-induced denaturation is reversible. Coincidence of normalized transition curves of both physical properties ([θ]222 and Δε406) suggests that folding/unfolding of TIM and β-subunit proteins is a two-state process. Denaturation curves of [θ]222 and Δε406 were used to estimate the stability parameters of the protein-protein complex. This is the first report on the isolation, purification, crystallization and biophysical characterization of the naturally occurring complex of TIM with the β-globin subunit. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Triose phosphate isomerase from the coelacanth. An approach to the rapid determination of an amino acid sequence with small amounts of material.

    PubMed

    Kolb, E; Harris, J I; Bridgen, J

    1974-02-01

    The preparation and purification of cyanogen bromide fragments from [(14)C]carboxymethylated coelacanth triose phosphate isomerase is presented. The automated sequencing of these fragments, the lysine-blocked tryptic peptides derived from them, and also of the intact protein, is described. Combination with results from manual sequence analysis has given the 247-residue amino acid sequence of coelacanth triose phosphate isomerase in 4 months, by using 100mg of enzyme. (Two small adjacent peptides were placed by homology with the rabbit enzyme.) Comparison of this sequence with that of the rabbit muscle enzyme shows that 207 (84%) of the residues are identical. This slow rate of evolutionary change (corresponding to two amino acid substitutions per 100 residues per 100 million years) is similar to that found for glyceraldehyde 3-phosphate dehydrogenase. The reliability of sequence information obtained by automated methods is discussed.

  1. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  2. Synthesis and evaluation of malonate-based inhibitors of phosphosugar-metabolizing enzymes: class II fructose-1,6-bis-phosphate aldolases, type I phosphomannose isomerase, and phosphoglucose isomerase.

    PubMed

    Desvergnes, Stéphanie; Courtiol-Legourd, Stéphanie; Daher, Racha; Dabrowski, Maciej; Salmon, Laurent; Therisod, Michel

    2012-02-15

    In the design of inhibitors of phosphosugar metabolizing enzymes and receptors with therapeutic interest, malonate has been reported in a number of cases as a good and hydrolytically-stable surrogate of the phosphate group, since both functions are dianionic at physiological pH and of comparable size. We have investigated a series of malonate-based mimics of the best known phosphate inhibitors of class II (zinc) fructose-1,6-bis-phosphate aldolases (FBAs) (e.g., from Mycobacterium tuberculosis), type I (zinc) phosphomannose isomerase (PMI) from Escherichia coli, and phosphoglucose isomerase (PGI) from yeast. In the case of FBAs, replacement of one phosphate by one malonate on a bis-phosphorylated inhibitor (1) led to a new compound (4) still showing a strong inhibition (K(i) in the nM range) and class II versus class I selectivity (up to 8×10(4)). Replacement of the other phosphate however strongly affected binding efficiency and selectivity. In the case of PGI and PMI, 5-deoxy-5-malonate-D-arabinonohydroxamic acid (8) yielded a strong decrease in binding affinities when compared to its phosphorylated parent compound 5-phospho-D-arabinonohydroxamic acid (2). Analysis of the deposited 3D structures of the kinetically evaluated enzymes complexed to the phosphate-based inhibitors indicate that malonate could be a good phosphate surrogate only if phosphate is not tightly bound at the enzyme active site, such as in position 7 of compound 1 for FBAs. These observations are of importance for further design of inhibitors of phosphorylated-compounds metabolizing enzymes with therapeutic interest.

  3. Probing the location and function of the conserved histidine residue of phosphoglucose isomerase by using an active site directed inhibitor N-bromoacetylethanolamine phosphate.

    PubMed Central

    Meng, M.; Chane, T. L.; Sun, Y. J.; Hsiao, C. D.

    1999-01-01

    Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the interconversion of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting an intrahydrogen transfer between C1 and C2. A conserved histidine exists throughout all phosphoglucose isomerases and was hypothesized to be the base catalyzing the isomerization reaction. In the present study, this conserved histidine, His311, of the enzyme from Bacillus stearothermophilus was subjected to mutational analysis, and the mutational effect on the inactivation kinetics by N-bromoacetylethanolamine phosphate was investigated. The substitution of His311 with alanine, asparagine, or glutamine resulted in the decrease of activity, in k(cat)/K(M), by a factor of 10(3), indicating the importance of this residue. N-bromoacetylethanolamine phosphate inactivated irreversibly the activity of wild-type phosphoglucose isomerase; however, His311 --> Ala became resistant to this inhibitor, indicating that His311 is located in the active site and is responsible for the inactivation of the enzyme by this active site-directed inhibitor. The pKa of His311 was estimated to be 6.31 according to the pH dependence of the inactivation. The proximity of this value with the pKa value of 6.35, determined from the pH dependence of k(cat)/K(M), supports a role of His311 as a general base in the catalysis. PMID:10595547

  4. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  6. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  7. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  8. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  9. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed

    SciTech Connect

    Chen, W.P.; Anderson, A.W.

    1980-03-01

    The hemicellulose fraction of ryegrass straw was extracted with NaOH and used for the production of glucose isomerase by Streptomyces flavogriseus. The level of hemicellulose extracted increased proportionately with increasing NaOH concentration up to about 4%, then the rate of increase slowed down. Hemicellulose extraction was facilitated by the combined application of heat and NaOH. Approximately 15% hemicellulose (12% as pentosan) could be obtained by treating straw with 4% NaOH for either 3 hours at 90/sup 0/C or 24 hour at room temperature. The highest level (3.04 units/ml culture) of intracellular glucose isomerase was obtained when the organism was grown at 30 degrees Centigrade for two days on 2% straw hemicellulose. The organism also produced a high yield of glucose isomerase on xylose or xylan. The NaOH treated straw residue, after removal of hemicellulose, had approximately 75% higher digestibility and 20% higher feed efficiency for weanling meadow voles than untreated straw, but almost the equivalent to that obtained by NaOH treatment without removal of the hemicellulose. Thus, the residue could be used as animal feed. A process for the production of glucose isomerase and animal feed from ryegrass straw was also proposed.

  10. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors

    PubMed Central

    Mikami, Daisuke; Kurihara, Hideyuki; Kim, Sang Moo; Takahashi, Koretaro

    2013-01-01

    Five bromophenols isolated from three Rhodomelaceae algae (Laurencia nipponica, Polysiphonia morrowii, Odonthalia corymbifera) showed inhibitory effects against glucose 6-phosphate dehydrogenase (G6PD). Among them, the symmetric bromophenol dimer (5) showed the highest inhibitory activity against G6PD. PMID:24152564

  11. Glucose-6-phosphate dehydrogenase deficiency: not exclusively in males.

    PubMed

    van den Broek, Leonie; Heylen, Evelien; van den Akker, Machiel

    2016-12-01

    Glucose-6-phosphate (G6PD) deficiency is the most common human enzyme defect, often presenting with neonatal jaundice and/or acute hemolytic anemia, triggered by oxidizing agents. G6PD deficiency is an X-linked, hereditary disease, mainly affecting men, but should also be considered in females with an oxidative hemolysis.

  12. The effect of temperature on ribose-5-phosphate isomerase from a mesophile, Thiobacillus thioparus, and a thermophile, Bacillus caldolyticus.

    PubMed

    Middaugh, C R; MacElroy, R D

    1976-06-01

    The enzyme ribose-5-phosphate isomerase [EC 5.3.1.6] was partially purified from a mesophilic organism, Thiobacillus thioparus, and from an extreme thermophile, Bacillus caldolyticus. The stability and kinetics of the two enzymes were compared with regard to temperature in the presence of a series of neutral salts and alcohols. The thermal stability of both enzymes was altered such that the salts (NH4)2SO4, NaCl, KCl, and LiCl increased stability, while LiBr, CaCl2, methanol, ethanol, and 1-propanol decreased stability. Ethylene glycol had little effect on the mesophilic enzyme, but increased the stability of the thermophilic protein. The kinetics of both enzymes were also affected by the salts and alcohols, and Arrhenius plots of two kinetic parameters, Km and Vmax, displayed discontinuities, or sharp changes in slope, at characteristic temperatures, TD. Neutral salts and alcohols altered the temperature of discontinuity in a sequence similar to that observed in studies of thermal stability. It is suggested that the slope change is due to temperature-dependent alterations in the enzymes at specific, but undefined, loci at the active site, although no evidence is offered for the absence of a larger conformation change in the entire enzyme.

  13. Chemical- and thermal-induced unfolding of Leishmania donovani ribose-5-phosphate isomerase B: a single-tryptophan protein.

    PubMed

    Kaur, Preet Kamal; Supin, Jakka S; Rashmi, S; Singh, Sushma

    2014-08-01

    Ribose-5-phosphate isomerase B (RpiB), a crucial enzyme of pentose phosphate pathway, was proposed to be a potential drug target for visceral leishmaniasis. In this study, we have analyzed the biophysical properties of Leishmania donovani RpiB (LdRpiB) enzyme to gain insight into its unfolding pathway under various chemical and thermal denaturation conditions by using fluorescence and CD spectroscopy. LdRpiB inactivation precedes the structural transition at lower concentrations of both urea and guanidine hydrochloride (GdHCl). 8-Anilinonapthalene 1-sulfonic (ANS) binding experiments revealed the presence of molten globule intermediate at 1.5 M GdHCl and a nonnative intermediate state at 6-M urea concentration. Acrylamide quenching experiments further validated the above findings, as solvent accessibility of tryptophan residues increased with increase in GdHCl and urea concentration. The recombinant LdRpiB was completely unfolded at 6 M GdHCl, whereas the enzyme molecule was resistant to complete unfolding even at 8-M urea concentration. The GdHCl- and urea-mediated unfolding involves a three-state transition process. Thermal-induced denaturation revealed complete loss of enzyme activity at 65 °C with only 20 % secondary structure loss. The formation of the well-ordered β-sheet structures of amyloid fibrils was observed after 55 °C which increased linearly till 85 °C as detected by thioflavin T dye. This study depicts the stability of the enzyme in the presence of chemical and thermal denaturants and stability-activity relationship of the enzyme. The presence of the intermediate states may have major implications in the way the enzyme binds to its natural ligand under various conditions. Also, the present study provides insights into the properties of intermediate entities of this important enzyme.

  14. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.

    PubMed

    Toivari, Mervi H; Maaheimo, Hannu; Penttilä, Merja; Ruohonen, Laura

    2010-01-01

    Phosphoglucose isomerase-deficient (pgi1) strains of Saccharomyces cerevisiae were studied for the production of D-ribose and ribitol from D-glucose via the intermediates of the pentose phosphate pathway. Overexpression of the genes coding for NAD(+)-specific glutamate dehydrogenase (GDH2) of S. cerevisiae or NADPH-utilising glyceraldehyde-3-phosphate dehydrogenase (gapB) of Bacillus subtilis enabled growth of the pgi1 mutant strains on D-glucose. Overexpression of the gene encoding sugar phosphate phosphatase (DOG1) of S. cerevisiae was needed for the production of D-ribose and ribitol; however, it reduced the growth of the pgi1 strains expressing GDH2 or gapB in the presence of higher D-glucose concentrations. The CEN.PK2-1D laboratory strain expressing both gapB and DOG1 produced approximately 0.4 g l(-1) of D-ribose and ribitol when grown on 20 g l(-1) (w/v) D-fructose with 4 g l(-1) (w/v) D-glucose. Nuclear magnetic resonance measurements of the cells grown with (13)C-labelled D-glucose showed that about 60% of the D-ribose produced was derived from D-glucose. Strains deficient in both phosphoglucose isomerase and transketolase activities, and expressing DOG1 and GDH2 tolerated only low D-glucose concentrations (< or =2 g l(-1) (w/v)), but produced 1 g l(-1) (w/v) D-ribose and ribitol when grown on 20 g l(-1) (w/v) D-fructose with 2 g l(-1) (w/v) D-glucose.

  15. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase.

    PubMed

    Chandrakant, P; Bisaria, V S

    2000-03-01

    Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of a glucose/xylose mixture was carried out by Saccharomyces cerevisiae in the presence of xylose isomerase. The SIF of 50 g I(-1) xylose gave an ethanol concentration and metabolic yield of 7.5 g l(-1) and 0.36 g (g xylose consumed)(-1). These parameters improved to 13.4 g l(-1) and 0.40 respectively, when borate was added to the medium. The SICF of a mixture of 50 g l(-1) glucose and 50 g l(-1) xylose gave an ethanol concentration and metabolic yield of 29.8 g l(-1) and 0.42 respectively, in the presence of borate. Temperature modulation from 30 degrees C to 35 degrees C during fermentation further enhanced the above parameters to 39 g l(-1) and 0.45 respectively. The approach was extended to the bioconversion of sugars present in a real lignocellulose hydrolysate (peanut-shell hydrolysate) to ethanol, with a fairly good yield.

  16. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  17. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum.

    PubMed

    Yeom, Soo-Jin; Seo, Eun-Sun; Kim, Yeong-Su; Oh, Deok-Kun

    2011-03-01

    Ribose-5-phosphate isomerase from Clostridium thermocellum converted D-psicose to D-allose, which may be useful as a pharmaceutical compound, with no by-product. The 12 active-site residues, which were obtained by molecular modeling on the basis of the solved three-dimensional structure of the enzyme, were substituted individually with Ala. Among the 12 Ala-substituted mutants, only the R132A mutant exhibited an increase in D-psicose isomerization activity. The R132E mutant showed the highest activity when the residue at position 132 was substituted with Ala, Gln, Ile, Lys, Glu, or Asp. The maximal activity of the wild-type and R132E mutant enzymes for D-psicose was observed at pH 7.5 and 80°C. The half-lives of the wild-type enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 11, 7.0, 4.2, 1.5, and 0.6 h, respectively, whereas those of the R132E mutant enzymes were 13, 8.2, 5.1, 3.1, and 0.9 h, respectively. The specific activity and catalytic efficiency (k(cat)/K(m)) of the R132E mutant for D-psicose were 1.4- and 1.5-fold higher than those of the wild-type enzyme, respectively. When the same amount of enzyme was used, the conversion yield of D-psicose to D-allose was 32% for the R132E mutant enzyme and 25% for the wild-type enzyme after 80 min.

  18. The complex of Sphingomonas elodea ATCC 31461 glucose-1-phosphate uridylyltransferase with glucose-1-phosphate reveals a novel quaternary structure, unique among nucleoside diphosphate-sugar pyrophosphorylase members.

    PubMed

    Aragão, David; Fialho, Arsénio M; Marques, Ana R; Mitchell, Edward P; Sá-Correia, Isabel; Frazão, Carlos

    2007-06-01

    Gellan gum is a widely used commercial material, available in many different forms. Its economic importance has led to studies into the biosynthesis of exopolysaccharide gellan gum, which is industrially prepared in high yields using Sphingomonas elodea ATCC 31461. Glucose-1-phosphate uridylyltransferase mediates the reversible conversion of glucose-1-phosphate and UTP into UDP-glucose and pyrophosphate, which is a key step in the biosynthetic pathway of gellan gums. Here we present the X-ray crystal structure of the glucose-1-phosphate uridylyltransferase from S. elodea. The S. elodea enzyme shares strong monomeric similarity with glucose-1-phosphate thymidylyltransferase, several structures of which are known, although the quaternary structures of the active enzymes are rather different. A detailed comparison between S. elodea glucose-1-phosphate uridylyltransferase and available thymidylyltransferases is described and shows remarkable structural similarities, despite the low sequence identities between the two divergent groups of proteins.

  19. Mimicked translocation of glucose and glucose 6-phosphate with artificial enzyme membranes.

    PubMed Central

    Maïsterrena, B; Coulet, P R

    1989-01-01

    An approach to the mechanism which may govern the behaviour of biological compartmentalized systems is presented. Artificial enzyme membranes with immobilized glucose oxidase, invertase or hexokinase were used to separate two compartments of a specially designed diffusion cell. Asymmetry in volume, hydrodynamic conditions and enzyme location was purposely chosen in order to create situations which could not be obtained with an enzyme free in solution, and was then used to tentatively mimic situations existing in vivo. Experiments were conducted and a translocation effect of H2O2, glucose and glucose 6-phosphate was obtained. A theoretical analysis taking into account the different identified parameters of the system was elaborated. PMID:2764883

  20. Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity.

    PubMed

    Norledge, B V; Lambeir, A M; Abagyan, R A; Rottmann, A; Fernandez, A M; Filimonov, V V; Peter, M G; Wierenga, R K

    2001-02-15

    Loop 8 (residues 232-242) in triosephosphate isomerase (TIM) is a highly conserved loop that forms a tight binding pocket for the phosphate moiety of the substrate. Its sequence includes the fully conserved, solvent-exposed Leu238. The tight phosphate-binding pocket explains the high substrate specificity of TIM being limited to the in vivo substrates dihydroxyacetone-phosphate and D-glyceraldehyde-3-phosphate. Here we use the monomeric variant of trypanosomal TIM for exploring the structural consequences of shortening this loop. The mutagenesis, guided by extensive modeling calculations and followed up by crystallographic characterization, is aimed at widening the phosphate-binding pocket and, consequently, changing the substrate specificity. Two new variants were characterized. The crystal structures of these variants indicate that in monomeric forms of TIM, the Leu238 side-chain is nicely buried in a hydrophobic cluster. Monomeric forms of wild-type dimeric TIM are known to exist transiently as folding intermediates; our structural analysis suggests that in this monomeric form, Leu238 of loop 8 also adopts this completely buried conformation, which explains its full conservation across the evolution. The much wider phosphate-binding pocket of the new variant allows for the development of a new TIM variant with a different substrate specificity.

  1. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria.

  2. Drug-induced haemolysis in glucose-6-phosphate dehydrogenase deficiency.

    PubMed Central

    Chan, T K; Todd, D; Tso, S C

    1976-01-01

    People with the variants of glucose-6-phosphate dehydrogenase (GPD) deficiency common in the southern Chinese (Canton, B(-)Chinese, and Hong Kong-Pokfulam) have a moderate shortening of red-cell survival but no anaemia when they are in the steady state. With a cross-transfusion technique, primaquine, nitrofurantoin, and large doses of aspirin were found to aggravate the haemolysis while sulphamethoxazole did so only in some people. Individual differences in drug metabolism may be the reason for this. Many commonly used drugs reported to accentuate haemolysis in GPD deficiency did not shorten red-cell survival. PMID:990860

  3. Triose-phosphate isomerase of Leishmania mexicana mexicana. Cloning and characterization of the gene, overexpression in Escherichia coli and analysis of the protein.

    PubMed

    Kohl, L; Callens, M; Wierenga, R K; Opperdoes, F R; Michels, P A

    1994-03-01

    The gene of triose-phosphate isomerase in Leishmania mexicana has been cloned and characterized. The gene encodes a polypeptide of 251 amino acids, with a calculated molecular mass of 27,561 Da and a net charge of +2. Only one gene could be detected, although the enzyme is present in two different compartments of the cell, in microbody-like organelles called glycosomes and in the cytosol. The primary structure of the enzyme has many features in common with that of triose-phosphate isomerase in the related organism Trypanosoma brucei. Their sequences are 68% identical. The residues constituting the subunit interface are highly conserved between the enzyme of L. mexicana and T. brucei, but are mostly different from those in the enzyme of other organisms. One major substitution was detected in the interface region of the L. mexicana protein: a glutamate was found at position 66, instead of glutamine in all other available 20 sequences. The glutamine is thought to be important for the stability of the dimeric enzyme. L. mexicana triose-phosphate isomerase has been overexpressed in Escherichia coli. Growth conditions were established to obtain high levels of soluble and active protein. The enzyme has been purified to near homogeneity. It appears a stable dimeric protein with a specific activity of 5500 units/mg protein, a subunit mass of 28 kDa and an isoelectric point of 9.0. The enzyme has also been partially purified from glycosomes of cultured L. mexicana promastigotes. Some kinetic properties of the recombinant protein have been compared with those of the promastigote enzyme and with the values previously reported for the T. brucei enzyme. The kinetics of the different enzyme preparations were very similar. For the recombinant enzyme the following values were measured: with glyceraldehyde 3-phosphate as substrate Km = 0.30 +/- 0.05 mM and kcat = 2.5 x 10(5) min-1; with dihydroxyacetone phosphate as substrate Km = 1.3 +/- 0.3 mM and kcat = 2.8 x 10(4) min-1.

  4. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  5. Functional Characterization of UDP-Glucose:Undecaprenyl-Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus

    PubMed Central

    Patel, Kinnari B.; Toh, Evelyn; Fernandez, Ximena B.; Hanuszkiewicz, Anna; Hardy, Gail G.; Brun, Yves V.; Bernards, Mark A.

    2012-01-01

    Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins. PMID:22408159

  6. Hemolytic anemia caused by glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Olivares, N; Medina, C; Sánchez-Corona, J; Rivas, F; Rivera, H; Hernández, A; Delgado, J L; Ibarra, B; Cantú, J M; Vaca, G; Martínez, C

    1979-01-01

    Results are reported concerning quantitation of glucose -6- phosphate dehydrogenase (G6PD) enzyme activity where in one of the members of a family a clinical diagnosis of acute hemolytic anemia due to G6PD deficiency had been established. In the propositus, G6PD levels were found to be less than 10 per cent thus confirming diagnosis; the same enzymatic deficiency was identified in one of the siblings without a history of hematologic pathology and in a maternal cousin with a history of neonatal jaundice as well as two obliged carriers. Electrophoretical enzyme phenotype was similar to A variant in three affected males. Advantages of prevention and medical care possible with early diagnosis of G6PD deficiency are discussed.

  7. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M

    1996-05-01

    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  8. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    PubMed

    Zhou, Hang; Cheng, Jing-Sheng; Wang, Benjamin L; Fink, Gerald R; Stephanopoulos, Gregory

    2012-11-01

    Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.

  9. Multiple Independent Fusions of Glucose-6-Phosphate Dehydrogenase with Enzymes in the Pentose Phosphate Pathway

    PubMed Central

    Stover, Nicholas A.; Dixon, Thomas A.; Cavalcanti, Andre R. O.

    2011-01-01

    Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms. PMID:21829610

  10. Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase.

    PubMed

    Chen, Xiaoyan; Wang, Wen; Xu, Jingliang; Yuan, Zhenhong; Yuan, Tao; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2017-10-01

    d-Psicose has been drawing increasing attention in recent years because of its medical and health applications. The production of d-psicose from d-glucose requires the co-expression and synergistic action of xylose isomerase and d-psicose 3-epimerase. To co-express these genes, vector pET-28a(+)-dual containing two T7 promoters and RBS sites and an Multiple Cloning Sites was constructed using the Escherichia coli expression plasmid pET-28a(+). The xylose isomerase gene from E. coli MG1665 and the d-psicose 3-epimerase gene from Agrobacterium tumefaciens CGMCC 1.1488 were cloned and co-expressed in E. coli BL21(DE3). After 24h incubation with the dual enzyme system at 40°C, the sugar conversion ratio from d-glucose to d-psicose reached 10%. The optimal conditions were 50°C, pH 7.5 with Co(2+) and Mg(2+). The d-psicose yields from sugarcane bagasse and microalgae hydrolysate were 1.42 and 1.69g/L, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux*

    PubMed Central

    Allmann, Stefan; Morand, Pauline; Ebikeme, Charles; Gales, Lara; Biran, Marc; Hubert, Jane; Brennand, Ana; Mazet, Muriel; Franconi, Jean-Michel; Michels, Paul A. M.; Portais, Jean-Charles; Boshart, Michael; Bringaud, Frédéric

    2013-01-01

    All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/RNAiPGI double mutant when compared with the single mutants, and (iii) the 13C enrichment of glycolytic and PPP intermediates from cells incubated with [U-13C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host. PMID:23665470

  12. Water-soluble metabolites of p-nitrophenol and 1-naphthyl N-methylcarbamate in flies and grass grubs. Formation of glucose phosphate and phosphate conjugates.

    PubMed

    Heenan, M P; Smith, J N

    1974-11-01

    Metabolites isolated from houseflies dosed with 1-napththol or p-nitrophenol were identified as the phosphate and glucose phosphate conjugates of these phenols by titrations, hydrolysis, ionophoresis, i.r. spectra and mixed melting point. [(3)H]Carbaryl (1-naphthyl N-methylcarbamate) was metabolized by houseflies, blowflies and grass grubs to water-soluble metabolites which had chromatographic and ionophoretic behaviour similar to those of the conjugates of 1-naphthol with glucose, sulphate, phosphate and glucose 6-phosphate.

  13. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Substrate cycling between glycerol and triose phosphates in liver.

    PubMed

    Previs, S F; Fernandez, C A; Yang, D; Soloviev, M V; David, F; Brunengraber, H

    1995-08-25

    Mass isotopomer distribution analysis allows studying the synthesis of polymeric biomolecules from 15N, 13C-, or 2H-labeled monomeric units in the presence of unlabeled polymer. The mass isotopomer distribution of the polymer allows calculation of (i) the enrichment of the monomer and (ii) the dilution of the newly synthesized polymer by unlabeled polymer. We tested the conditions of validity of mass isotopomer distribution analysis of glucose labeled from [U-13C3]lactate, [U-13C3]glycerol, and [2-13C]glycerol to calculate the fraction of glucose production derived from gluconeogenesis. Experiments were conducted in perfused rat livers, live rats, and live monkeys. In all cases, [13C]glycerol yielded labeling patterns of glucose that are incompatible with glucose being formed from a single pool of triose phosphates of constant enrichment. We show evidence that variations in the enrichment of triose phosphates result from (i) the large fractional decrease in physiological glycerol concentration in a single pass through the liver and (ii) the release of unlabeled glycerol by the liver, presumably via lipase activity. This zonation of glycerol metabolism in liver results in the calculation of artifactually low contributions of gluconeogenesis to glucose production when the latter is labeled from [13C]glycerol. In contrast, [U-13C3]lactate appears to be a suitable tracer for mass isotopomer distribution analysis of gluconeogenesis in vivo, but not in the perfused liver. In other perfusion experiments with [2H5]glycerol, we showed that the rat liver releases glycerol molecules containing one to four 2H atoms. This indicates the operation of a substrate cycle between extracellular glycerol and liver triose phosphates, where 2H is lost in the reversible reactions catalyzed by alpha-glycerophosphate dehydrogenase, triose-phosphate isomerase, and glycolytic enzymes. This substrate cycle presumably involves alpha-glycerophosphate hydrolysis.

  14. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    PubMed Central

    Wang, Xiao-Tao; Engel, Paul C

    2009-01-01

    Background Human glucose 6-phosphate dehydrogenase (G6PD), active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP), providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with unaltered properties, paving the

  15. In silico analysis suggests that PH0702 and PH0208 encode for methylthioribose-1-phosphate isomerase and ribose-1,5-bisphosphate isomerase, respectively, rather than aIF2Bβ and aIF2Bδ.

    PubMed

    Gogoi, Prerana; Srivastava, Ambuj; Jayaprakash, Prajisha; Jeyakanthan, Jeyaraman; Kanaujia, Shankar Prasad

    2016-01-01

    The overall process of protein biosynthesis across all domains of life is similar; however, detailed insights reveal a range of differences in the proteins involved. For decades, the process of protein translation in archaea has been considered to be closer to eukaryotes than to bacteria. In archaea, however, several homologues of eukaryotic proteins involved in translation initiation have not yet been identified; one of them being the initiation factor eIF2B consisting of five subunits (α, β, γ, δ and ε). Three open reading frames (PH0440, PH0702 and PH0208) in Pyrococcus horikoshii have been proposed to encode for the α-, β- and δ-subunits of aIF2B, respectively. The crystal structure of PH0440 shows similarity toward the α-subunit of eIF2B. However, the capability of PH0702 and PH0208 to function as the β- and δ-subunits of eIF2B, respectively, remains uncertain. In this study, we have taken up the task of annotating PH0702 and PH0208 using bioinformatics methods. The phylogenetic analysis of protein sequences belonging to IF2B-like family along with PH0702 and PH0208 revealed that PH0702 belonged to methylthioribose-1-phosphate isomerase (MTNA) group of proteins, whereas, PH0208 was found to be clustered in the group of ribose-1,5-bisphosphate isomerase (R15PI) proteins. A careful analysis of protein sequences and structures available for eIF2B, MTNA and R15PI confirms that PH0702 and PH0208 contain residues essential for the enzymatic activity of MTNA and R15PI, respectively. Additionally, the protein PH0208 comprises of the residues required for the dimer formation which is essential for the biological activity of R15PI. This prompted us to examine all eIF2B-like proteins from archaea and to annotate their function. The results reveal that majority of these proteins are homologues of the α-subunit of eIF2B, even though they lack the residues essential for their functional activity. A better understanding of the mechanism of GTP exchange during

  16. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  17. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein

    PubMed Central

    Miranda-Ozuna, Jesús F. T.; Hernández-García, Mar S.; Brieba, Luis G.; Benítez-Cardoza, Claudia G.; Ortega-López, Jaime; González-Robles, Arturo

    2016-01-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis. Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. PMID:27481251

  18. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    PubMed

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Psychotic mania in glucose-6-phosphate-dehydrogenase-deficient subjects

    PubMed Central

    Bocchetta, Alberto

    2003-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been associated with acute psychosis, catatonic schizophrenia, and bipolar disorders by previous inconclusive reports. A particularly disproportionate rate of enzyme deficiency was found in manic schizoaffective patients from 662 lithium patients surveyed in Sardinia. The purpose of this study was to describe clinical characteristics which may be potentially associated with G6PD deficiency. Methods Characteristics of episodes, course of illness, family pattern of illness, laboratory tests, and treatment response of 29 G6PD-deficient subjects with a Research Diagnostic Criteria diagnosis of manic schizoaffective disorder were abstracted from available records. Results The most peculiar pattern was that of acute recurrent psychotic manic episodes, mostly characterized by loosening of associations, agitation, catatonic symptoms, and/or transient confusion, concurrent hyperbilirubinemia, positive psychiatric family history, and partial response to long-term lithium treatment. Conclusions A relationship between psychiatric disorder and G6PD deficiency is to be searched in the bipolar spectrum, particularly among patients with a history of acute episodes with psychotic and/or catatonic symptoms or with transient confusion. PMID:12844366

  20. Glucose-6-phosphate dehydrogenase deficiency: the added value of cytology.

    PubMed

    Roelens, Marie; Dossier, Claire; Fenneteau, Odile; Couque, Nathalie; Da Costa, Lydie

    2016-06-01

    We report the case of a 2 year-old boy hospitalized into the emergency room for influenza pneumonia infection. The evolution was marked by a respiratory distress syndrome, a severe hemolytic anemia, associated with thrombocytopenia and kidney failure. First, a diagnosis of hemolytic uremic syndrome (HUS) has been judiciously suggested due to the classical triad: kidney failure, hemolytic anemia and thrombocytopenia. But, strikingly, blood smears do not exhibit schizocytes, but instead ghosts and hemighosts, some characteristic features of a glucose-6-phosphate dehydrogenase deficiency. Our hypothesis has been confirmed by enzymatic dosage and molecular biology. The unusual initial aplastic feature of this anemia could be the result of a transient erythroblastopenia due to the viral agent, at the origin of the G6PD crisis on a background of a major erythrocyte anti-oxydant enzyme defect. This case of G6PD defect points out the continuously importance of the cytology, which was able to redirect the diagnosis by the hemighost and ghost detection.

  1. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    SciTech Connect

    Cho, Sungwoo; Joshi, J.G. )

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  2. Ribose 5-phosphate isomerase type B from Trypanosoma cruzi: kinetic properties and site-directed mutagenesis reveal information about the reaction mechanism

    PubMed Central

    Stern, Ana L.; Burgos, Emmanuel; Salmon, Laurent; Cazzulo, Juan J.

    2006-01-01

    Trypanosoma cruzi, the human parasite that causes Chagas disease, contains a functional pentose phosphate pathway, probably essential for protection against oxidative stress and also for R5P (ribose 5-phosphate) production for nucleotide synthesis. The haploid genome of the CL Brener clone of the parasite contains one gene coding for a Type B Rpi (ribose 5-phosphate isomerase), but genes encoding Type A Rpis, most frequent in eukaryotes, seem to be absent. The RpiB enzyme was expressed in Escherichia coli as a poly-His tagged active dimeric protein, which catalyses the reversible isomerization of R5P to Ru5P (ribulose 5-phos-phate) with Km values of 4 mM (R5P) and 1.4 mM (Ru5P). 4-Phospho-D-erythronohydroxamic acid, an analogue to the reaction intermediate when the Rpi acts via a mechanism involving the formation of a 1,2-cis-enediol, inhibited the enzyme competi-tively, with an IC50 value of 0.7 mM and a Ki of 1.2 mM. Site-directed mutagenesis allowed the demonstration of a role for His102, but not for His138, in the opening of the ribose furanosic ring. A major role in catalysis was confirmed for Cys69, since the C69A mutant was inactive in both forward and reverse directions of the reaction. The present paper contributes to the know-ledge of the mechanism of the Rpi reaction; in addition, the absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for chemotherapy of Chagas disease. PMID:16981853

  3. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    PubMed

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup.

    PubMed

    Jia, Dong-Xu; Zhou, Lin; Zheng, Yu-Guo

    2017-04-01

    Glucose isomerase (GI) is used in vitro to convert d-glucose to d-fructose, which is capable of commercial producing high fructose corn syrup (HFCS). To manufacture HFCS at elevated temperature and reduce the cost of enriching syrups, novel refractory GIs from Thermoanaerobacterium xylanolyticum (TxGI), Thermus oshimai (ToGI), Geobacillus thermocatenulatus (GtGI) and Thermoanaerobacter siderophilus (TsGI) were screened via genome mining approach. The enzymatic characteristics research showed that ToGI had higher catalytic efficiency and superior thermostability toward d-glucose among the screened GIs. Its optimum temperature reached 95°C and could retain more than 80% of initial activity in the presence of 20mM Mn(2+) at 85°C for 48h. The Km and kcat/Km values for ToGI were 81.46mM and 21.77min(-1)mM(-1), respectively. Furthermore, the maximum conversion yield of 400g/L d-glucose to d-fructose at 85°C was 52.16%. Considering its excellent high thermostability and ameliorable application performance, ToGI might be promising for realization of future industrial production of HFCS at elevated temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  6. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  7. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    USDA-ARS?s Scientific Manuscript database

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  8. Comparison of glucose, glucose 6-phosphate, ribose, and mannose as flavour precursors in pork; the effect of monosaccharide addition on flavour generation.

    PubMed

    Meinert, Lene; Schäfer, Annette; Bjergegaard, Charlotte; Aaslyng, Margit D; Bredie, Wender L P

    2009-03-01

    The effect of glucose, glucose 6-phosphate, mannose and ribose on the generation of aroma volatiles in pork was investigated. The monosaccharides were added individually to minced pork prior to heat treatment (160°C for 10min) in the following concentrations: glucose (27.5μmol/g), ribose (1.2μmol/g), mannose (8.3μmol/g) and glucose 6-phosphate (0.5μmol/g). The natural concentrations of the monosaccharides in the pork used were found to be 4.0μmol/g for glucose, 0.1μmol/g for ribose, 0.3μmol/g for mannose and 2.6μmol/g for glucose 6-phosphate. The major aroma compounds identified in the headspace of the heated samples were pyrazines, aldehydes (Strecker and lipid-derived), ketones, and sulphides. Glucose generated the highest amounts of volatiles followed by glucose 6-phosphate. However, when related to the added concentration of glucose 6-phosphate, this phosphorylated monosaccharide showed the highest aroma generating potential. The addition of ribose did not increase the concentration of volatiles compared with pork without the added monosaccharide. The fates of ribose 5-phosphate and ribose in pork were studied over time. The concentrations of ribose and ribose 5-phosphate clearly decreased during 2h equilibration, which may be due to enzymatic activities. These precursors may, therefore, be less important pork flavour precursors than glucose and glucose 6-phosphate.

  9. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  10. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.

    PubMed

    Sharma, Prerna; Guptasarma, Purnananda

    2015-05-08

    Triose phosphate isomerases (TIMs) are considered to be 'kinetically perfect' enzymes, limited in their activity only by the rates of diffusion of substrate and product molecules. Most studies conducted thus far have been on mesophile-derived TIMs. Here, we report studies of two extremophile-derived TIMs produced in Escherichia coli: (i) TonTIM, sourced from the genome of the thermophile archaeon, Thermococcus onnurineus, and (ii) PfuTIM, sourced from the genome of the hyperthermophile archaeon, Pyrococcus furiosus (PfuTIM). Although these enzymes are presumed to have evolved to function optimally at temperatures close to the boiling point of water, we find that TonTIM and PfuTIM display second-order rate-constants of activity (k(cat)/K(m) values) comparable to mesophile-derived TIMs, at 25 °C. At 90 °C, TonTIM and PfuTIM reach maximum velocities of reaction of ∼ 10(6)-10(7) μmol/s/mg, and display k(cat)/K(m) values in the range of ∼ 10(10)-10(11) M(-1) s(-1), which are three orders of magnitude higher than those reported for mesophile TIMs. Further, the two enzymes display no signs of having undergone any structural unfolding at 90 °C. Such enzymes could thus probably be called 'super-perfect' enzymes.

  11. Mutational and Structural Analysis of Conserved Residues in Ribose-5-Phosphate Isomerase B from Leishmania donovani: Role in Substrate Recognition and Conformational Stability

    PubMed Central

    Kaur, Preet Kamal; Tripathi, Neha; Desale, Jayesh; Neelagiri, Soumya; Yadav, Shailendra; Bharatam, Prasad V.; Singh, Sushma

    2016-01-01

    Ribose-5-phosphate isomerase B from Leishmania donovani (LdRpiB) is one of the potential drug targets against visceral leishmaniasis. In the present study, we have targeted several conserved amino acids for mutational analysis (i.e. Cys69, His11, His102, His138, Asp45, Tyr46, Pro47 and Glu149) to gain crucial insights into their role in substrate binding, catalysis and conformational stability of the enzyme. All the eight LdRpiB variants were cloned, sequenced, expressed and purified. C69S, H102N, D45N and E149A mutants exhibited complete loss of enzyme activity indicating that they are indispensable for the enzyme activity. Kinetic parameters were altered in case of H138N, H11N and P47A variants; however Y46F exhibited similar kinetic behaviour as wild type. All the mutants except H138N exhibited altered protein structure as determined by CD and fluorescence spectral analysis. This data was supported by the atomic level details of the conformational changes and substrate binding using molecular dynamic simulations. LdRpiB also exhibited activity with D-form of various aldose substrates in the order of D-ribose > D-talose > D-allose > D-arabinose. Our study provides insights for better understanding of substrate enzyme interactions which can rationalize the process of drug design against parasite RpiB. PMID:26953696

  12. A theoretical study to establish the relationship between the three-dimensional structure of triose-phosphate isomerase of Giardia duodenalis and point mutations in the respective gene.

    PubMed

    Nolan, Matthew J; Hofmann, Andreas; Jex, Aaron R; Gasser, Robin B

    2010-10-01

    Predicting how point mutations in genes alter the tertiary and quarternary structure of proteins is central to a number of areas of molecular biology and has implications in relation to the function and evolution of molecules. In the present study, we theoretically assessed the effects of 20 point mutations detected previously in a region of the triose-phosphate isomerase gene (tpi) of the protozoan Giardia duodenalis on the three-dimensional structure of the 'wild-type' protein (TPI). Amino acid substitutions arising from codon variations were mainly located at surface-accessible sites or in hydrophobic pockets of TPI. None of the substitutions was predicted to exert a significant change to the fold or functionality of the enzyme, with the exception of one alteration (Arg100). Almost all substitutions were either conservative or semi-conservative, and retained or even improved the expected stability of the fold. Overall, the findings provide support for the "neutral theory", which contends that evolution at the molecular level is not solely shaped by "Darwinian selection but also by random drift of selectively neutral or nearly neutral mutants".

  13. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains.

    PubMed

    Nagoshi, R N; Meagher, R L

    2016-06-01

    The noctuid moth Spodoptera frugiperda (the fall armyworm) is endemic to the Western Hemisphere and appears to be undergoing sympatric speciation to produce two subpopulations that differ in their choice of host plants. The 'rice strain' and 'corn strain' are morphologically indistinguishable, requiring the use of genetic markers for identification. Because fall armyworm is a major pest of corn and several other agricultural crops, characterizing the strains has important economic consequences. In this study, comparisons were made of the intron sequences from the triose-phosphate isomerase (Tpi) gene isolated from 85 fall armyworm specimens collected from two host plants. Sixteen new strain-specific haplotypes based on intron polymorphisms are described that can facilitate the characterization of fall armyworm populations associated with different host plants. Comparisons of genetic diversity within and between the strains provides evidence that the corn strain is undergoing active selection and supports the proposal of directional interstrain mating occurring in the wild. Comparisons of the polymorphisms indicate that each intron undergoes different patterns of mutation that in some cases corresponds to host plant preferences. The results confirm that intron sequence comparisons are an effective approach to study fall armyworm population genetics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Autosomal factors with correlated effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster.

    PubMed

    Laurie-Ahlberg, C C; Williamson, J H; Cochrane, B J; Wilton, A N; Chasalow, F I

    1981-09-01

    Isogenic lines, in which chromosomes sampled from natural populations of C. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.--Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.--These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence.

  15. Autosomal Factors with Correlated Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Laurie-Ahlberg, C. C.; Williamson, J. H.; Cochrane, B. J.; Wilton, A. N.; Chasalow, F. I.

    1981-01-01

    Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence. PMID:6804300

  16. Changing kinetic properties of glucose-6-phosphate dehydrogenase from pea chloroplasts during photosynthetic induction

    SciTech Connect

    Yuan, X.; Anderson, L.E.

    1987-04-01

    The first enzyme of the oxidative pentose phosphate pathway, glucose-6-P dehydrogenase (EC 1.1.1.49), is inactivated when pea chloroplasts are irradiated. They have examined the kinetics of light inactivation of glucose-6-P dehydrogenase in intact chloroplasts during photosynthetic induction and the kinetic parameters of the active (dark) and less active (light) form of the dehydrogenase. Light inactivation of the dehydrogenase is rapid and occurs before photosynthetic O/sub 2/ evolution is measureable in intact chloroplasts. Likewise dark activation is quite rapid. The major change in the kinetic parameters of glucose-6-phosphate dehydrogenase is in maximal velocity. This light inactivation probably prevents operation of a futile cycle involving glucose-6-P, NADPH and oxidative and reductive pentose phosphate pathway enzymes.

  17. Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves.

    PubMed Central

    Schnarrenberger, C.; Flechner, A.; Martin, W.

    1995-01-01

    The intracellular localization of transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase was reexamined in spinach (Spinacia oleracea L.) leaves. We found highly predominant if not exclusive localization of these enzyme activities in chloroplasts isolated by isopyknic centrifugation in sucrose gradients. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose phosphate isomerase, and triose phosphate isomerase activity was present in the chloroplast fraction but showed additional activity in the cytosol (supernatant) fraction attributable to the cytosol-specific isoforms known to exist for these enzymes. Anion-exchange chromatography of proteins of crude extracts on diethylaminoethyl-Fractogel revealed only a single enzyme each for transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase. The data indicate that chloroplasts of spinach leaf cells possess the complete complement of enzymes of the oxidative pentose phosphate path-way (OPPP), whereas the cytosol contains only the first two reactions, contrary to the widely held view that plants generally possess a cytosolic OPPP capable of cyclic function. The chloroplast enzymes transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase appear to be amphibolic for the Calvin cycle and OPPP. PMID:12228497

  18. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    PubMed

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  19. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

    PubMed

    Kuyper, Marko; Hartog, Miranda M P; Toirkens, Maurice J; Almering, Marinka J H; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2005-02-01

    After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.

  20. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    PubMed

    Patra, Ayan; Bera, Manindranath

    2014-01-30

    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  1. Cloning, expression, purification, crystallization and preliminary structure determination of glucose-1-phosphate uridylyltransferase (UgpG) from Sphingomonas elodea ATCC 31461 bound to glucose-1-phosphate

    PubMed Central

    Aragão, D.; Marques, A. R.; Frazão, C.; Enguita, F. J.; Carrondo, M. A.; Fialho, A. M.; Sá-Correia, I.; Mitchell, E. P.

    2006-01-01

    The cloning, expression, purification, crystallization and preliminary crystallographic analysis of glucose-1-phosphate uridylyltransferase (UgpG) from Sphingomonas elodea ATCC 31461 bound to glucose-1-phosphate are reported. Diffraction data sets were obtained from seven crystal forms in five different space groups, with highest resolutions ranging from 4.20 to 2.65 Å. The phase problem was solved for a P21 crystal form using multiple isomorphous replacement with anomalous scattering from an osmium derivative and a SeMet derivative. The best native crystal in space group P21 has unit-cell parameters a = 105.5, b = 85.7, c = 151.8 Å, β = 105.2°. Model building and refinement are currently under way. PMID:16946483

  2. Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase.

    PubMed Central

    Eikmanns, B J

    1992-01-01

    To investigate a possible chromosomal clustering of glycolytic enzyme genes in Corynebacterium glutamicum, a 6.4-kb DNA fragment located 5' adjacent to the structural phosphoenolpyruvate carboxylase (PEPCx) gene ppc was isolated. Sequence analysis of the ppc-proximal part of this fragment identified a cluster of three glycolytic genes, namely, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene gap, the 3-phosphoglycerate kinase (PGK) gene pgk, and the triosephosphate isomerase (TPI) gene tpi. The four genes are organized in the order gap-pgk-tpi-ppc and are separated by 215 bp (gap and pgk), 78 bp (pgk and tpi), and 185 bp (tpi and ppc). The predicted gene product of gap consists of 336 amino acids (M(r) of 36,204), that of pgk consists of 403 amino acids (M(r) of 42,654), and that of tpi consists of 259 amino acids (M(r) of 27,198). The amino acid sequences of the three enzymes show up to 62% (GAPDH), 48% (PGK), and 44% (TPI) identity in comparison with respective enzymes from other organisms. The gap, pgk, tpi, and ppc genes were cloned into the C. glutamicum-Escherichia coli shuttle vector pEK0 and introduced into C. glutamicum. Relative to the wild type, the recombinant strains showed up to 20-fold-higher specific activities of the respective enzymes. On the basis of codon usage analysis of gap, pgk, tpi, and previously sequenced genes from C. glutamicum, a codon preference profile for this organism which differs significantly from those of E. coli and Bacillus subtilis is presented. Images PMID:1400158

  3. Combination treatment with fingolimod and a pathogenic antigen prevents relapse of glucose‐6‐phosphate isomerase peptide‐induced arthritis

    PubMed Central

    Yoshida, Yuya; Mikami, Norihisa; Matsushima, Yuki; Miyawaki, Mai; Endo, Hiroki; Banno, Rie; Tsuji, Takumi; Fujita, Tetsuro

    2016-01-01

    Introduction Combination treatment with fingolimod (FTY720) plus pathogenic antigen is thought to prevent glucose‐6‐phosphate isomerase (GPI)325‐339‐induced arthritis progression by effective induction of immune tolerance. Here, we examined the efficacy of this combination treatment on remission maintenance. Methods GPI325‐339‐induced arthritis mice were treated for 5 days with FTY720 (1.0 mg/kg, p.o.) alone, GPI325–339 (10 μg/mouse, i.v.) alone, or with the FTY720 plus GPI325‐339 combination. In some experiments, mice were resensitized with GPI325‐339. Results Following resensitization with GPI325‐339, combination‐treated mice exhibited neither severe relapse nor elevated lymphocyte infiltration in joints. Neither anti‐human nor mouse GPI325‐339 antibody levels were correlated with clinical symptoms. This suggests that combination treatment prevents relapse following resensitization via regulation of pathogenic antigen‐specific T cells. The proportion of regulatory T (Treg) cells in inguinal lymph nodes was increased post treatment in the FTY720 alone and FTY720 plus GPI325‐339 groups. In contrast, the proportion of glucocorticoid‐induced tumor necrosis factor receptor‐family‐related gene/protein (GITR)+ non‐Treg cells was increased only in combination‐treated mice. Furthermore, GITR+ non‐Treg cells, which were induced by the combination treatment in vivo, possess suppressive activity and high ability to produce interleukin (IL)‐10. Conclusion GITR+ non‐Treg cells might play a key role in relapse prevention following resensitization. Thus, this combination treatment might establish immune tolerance by induction of GITR+ non‐Treg cells. PMID:27621810

  4. Characterization of grown-in dislocations in high-quality glucose isomerase crystals by synchrotron monochromatic-beam X-ray topography

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Koizumi, Haruhiko; Kojima, Kenichi; Fukuyama, Seijiro; Arai, Yasutomo; Tsukamoto, Katsuo; Suzuki, Yoshihisa; Tachibana, Masaru

    2017-06-01

    High quality glucose isomerase (GI) single crystals are grown by using chemical cross-linked seed crystals. The crystal structure is an orthorhombic system in which the molecular arrangement is close to a body-centered cubic (bcc) one. The crystal defects, especially dislocations, in GI crystals are experimentally characterized by synchrotron monochromatic-beam X-ray topography. Two straight dislocations are clearly observed, which originate from the interface between the cross-linked seed crystal and the grown crystal. From the invisibility criterion of the dislocation images, it is experimentally identified that they are close to be of pure edge character with the Burgers vector of [1 1 bar 1] which is typical one in bcc metal crystals. Moreover, bead-like contrasts along the dislocation images and the equal-thickness fringes, related to Pendellösung fringes, at crystal edges are clearly observed, which have never been observed in other protein crystals so far. These contrasts can attributed to the dynamical diffraction effect which has been often observed in high-quality crystals such as Si. Thus it seems that the perfection of GI crystals shown in this paper is extremely high compared with other protein crystals reported so far.

  5. Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores.

    PubMed

    Li, Zijie; Li, Yi; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-08-01

    Saccharomyces cerevisiae spores are dormant cells, which can tolerate various types of environmental stress. In our previous work, we successfully developed biological and chemical methods for enzyme immobilization based on the structures of S. cerevisiae spore wall. In this study, we employed biological and chemical approaches for the immobilization of D-xylose isomerase (XI) from Thermus thermophilus and D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens with yeast spores, respectively. The enzymatic properties of both immobilized XI and DPEase were characterized and the immobilized enzymes exhibit higher thermostability, broader pH tolerance, and good repeatability compared with free enzymes. Furthermore, we established a two-step approach for the bioconversion of D-glucose to D-psicose using immobilized enzymes. To improve the conversion yield, a multi-pot strategy was adopted for D-psicose production by repeating the two-step process continually. As a result, the yield of D-psicose was obviously improved and the highest yield reached about 12.0 %.

  6. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells

    PubMed Central

    Gumaa, K. A.; McLean, Patricia

    1969-01-01

    1. The pentose phosphate pathway in Krebs ascites cells was investigated for regulatory reactions. For comparison, the glycolytic pathway was studied simultaneously. 2. Activities of the pentose phosphate pathway enzymes were low in contrast with those of the enzymes of glycolysis. The Km values of glucose 6-phosphate dehydrogenase for both substrate and cofactor were about four times the reported upper limit for the enzyme from normal tissues. Fructose 1,6-diphosphate and NADPH competitively inhibited 6-phosphogluconate dehydrogenase. 3. About 28% of the hexokinase activity was in the particulate fraction of the cells. The soluble enzyme was inhibited by fructose 1,6-diphosphate and ribose 5-phosphate, but not by 3-phosphoglycerate. The behaviour of the partially purified soluble enzyme in vitro in a system simulating the concentrations of ATP, glucose 6-phosphate and Pi found in vivo is reported. 4. Kinetics of metabolite accumulation during the transient state after the addition of glucose to the cells indicated two phases of glucose phosphorylation, an initial rapid phase followed abruptly by a slow phase extending into the steady state. 5. Of the pentose phosphate pathway intermediates, accumulation of 6-phosphogluconate, sedoheptulose 7-phosphate and fructose 6-phosphate paralleled the accumulation of glucose 6-phosphate. Erythrose 4-phosphate reached the steady-state concentration by 2min., whereas the pentose phosphates accumulated linearly. 6. The mass-action ratios of the pentose phosphate pathway reactions were calculated. The transketolase reaction was at equilibrium by 30sec. and then progressively shifted away from equilibrium towards the steady-state ratio. The glucose 6-phosphate dehydrogenase was far from equilibrium at all times. 7. Investigation of the flux of [14C]glucose carbon confirmed the existence of an operative pentose phosphate pathway in ascites cells, contributing 1% of the total flux in control cells and 10% in cells treated with

  7. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  8. Endothelial inflammation induced by excess glucose is associated with cytosolic glucose-6-phosphate but not increased mitochondrial respiration

    PubMed Central

    Sweet, Ian R; Gilbert, Merle; Maloney, Ezekiel; Hockenbery, David M.; Schwartz, Michael W.; Kim, Francis

    2009-01-01

    Aims/hypothesis Exposure of endothelial cells to high glucose levels suppresses responses to insulin, including induction of endothelial nitric oxide synthetase activity, through pro-inflammatory signaling via the IKKβ-NF-κB pathway. In the current study, we aimed to identify metabolic responses to glucose excess that mediate endothelial cell inflammation and insulin resistance. Since endothelial cells decrease their rate of oxygen consumption (OCR) in response to glucose, we hypothesized that increased mitochondrial function would not mediate these cell’s response to excess substrate. Methods The effects of glycolytic and mitochondrial fuels on metabolic intermediates and end products of glycolytic and oxidative metabolism, including glucose-6 phosphate (G6P), lactate, CO2, NAD(P)H, and OCR, were measured in cultured human microvascular endothelial cells and correlated with IKKβ activation. Results In response to increases in glucose concentration from low to physiological levels (0 to 5 mM), production of G6P, lactate, NAD(P)H and CO2 each increased as expected, while OCR was sharply reduced. IKKβ activation was detected at glucose concentrations above 5 mM, which was associated with parallel increases of G6P levels, whereas downstream metabolic pathways were insensitive to excess substrate. Conclusions/interpretation Activation of IKKβ by excess glucose correlates with increased levels of the glycolytic intermediate G6P, but not with lactate generation or OCR, which are inhibited well below saturation levels at physiologic glucose concentrations. These findings suggest that oxidative stress due to increased mitochondrial respiration is unlikely to mediate endothelial inflammation induced by excess glucose and suggests instead the involvement of G6P accumulation in the adverse effects of hyperglycemia on endothelial cells. PMID:19219423

  9. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  10. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    PubMed Central

    Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro

    2012-01-01

    ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409

  11. Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts.

    PubMed

    Bergandi, Loredana; Aina, Valentina; Garetto, Stefano; Malavasi, Gianluca; Aldieri, Elisabetta; Laurenti, Enzo; Matera, Lina; Morterra, Claudio; Ghigo, Dario

    2010-02-12

    Bioactive glasses such as Hench's 45S5 (Bioglass) have applications to tissue engineering as well as bone repair, and the insertion of fluoride in their composition has been proposed to enhance their bioactivity. In view of a potential clinical application, we investigated whether fluoride-containing glasses exert toxic effects on human MG-63 osteoblasts, and whether and how fluoride, which is released in the cell culture medium, might play a role in such cytotoxicity. A 24h incubation with 50 microg/ml (12.5 microg/cm(2)) of fluoride-containing bioactive glasses termed HCaCaF(2) (F content: 5, 10 and 15 mol.%) caused the release of lactate dehydrogenase in the extracellular medium (index of cytotoxicity), the accumulation of intracellular malonyldialdehyde (index of lipoperoxidation), and the increase of glutathione consumption. Furthermore, fluoride-containing glasses inhibited the pentose phosphate oxidative pathway and the glucose 6-phosphate dehydrogenase activity. These effects are ascribable to the fluoride content/release of glass powders, since they were mimicked by NaF solutions and were prevented by dimethyl sulfoxide and tempol (two radical scavengers), by superoxide dismutase (a superoxide scavenger), and by glutathione (the most important intracellular antioxidant molecule), but not by apocynin (an inhibitor of NADPH oxidase). The presence of fluoride-containing glasses and NaF caused also the generation of reactive oxygen species, which was prevented by superoxide dismutase and catalase. The data suggest that fluoride released from glasses is the cause of MG-63 cell oxidative damage and is independent of NADPH oxidase activation. Our data provide a new mechanism to explain F(-) ions toxicity: fluoride could trigger, at least in part, an oxidative stress via inhibition of the pentose phosphate oxidative pathway and, in particular, through the oxidative inhibition of glucose 6-phosphate dehydrogenase.

  12. Quantitative measurement of the L-type pentose phosphate cycle with [2-14C]glucose and [5-14C]glucose in isolated hepatocytes.

    PubMed Central

    Longenecker, J P; Williams, J F

    1980-01-01

    1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells. PMID:7470039

  13. High frequency of diabetes and impaired fasting glucose in patients with glucose-6-phosphate dehydrogenase deficiency in the Western brazilian Amazon.

    PubMed

    Santana, Marli S; Monteiro, Wuelton M; Costa, Mônica R F; Sampaio, Vanderson S; Brito, Marcelo A M; Lacerda, Marcus V G; Alecrim, Maria G C

    2014-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase-deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria.

  14. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    PubMed

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM.

  15. Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis.

    PubMed

    Höfer, M; Brand, K; Deckner, K; Becker, J U

    1971-08-01

    d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically (14)C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase-transaldolase pathway. 2. From the correlation of the (14)CO(2) liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-(14)C]- and d-[6-(14)C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C(2) fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO(2): about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.

  16. Importance of the pentose phosphate pathway for d-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis

    PubMed Central

    Höfer, M.; Brand, K.; Deckner, K.; Becker, J.-U.

    1971-01-01

    d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed. PMID:4399401

  17. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2010-07-01

    Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix

  18. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed Central

    Cadefau, J; Bollen, M; Stalmans, W

    1997-01-01

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P. PMID:9148744

  19. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed

    Cadefau, J; Bollen, M; Stalmans, W

    1997-03-15

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P.

  20. Bio-catalytic nanocompartments for in situ production of glucose-6-phosphate.

    PubMed

    Lomora, M; Gunkel-Grabole, G; Mantri, S; Palivan, C G

    2017-08-29

    Cells are sophisticated biocatalytic systems driving a complex network of biochemical reactions. A bioinspired strategy to create advanced functional systems is to design confined spaces for complex enzymatic reactions by using a combination of synthetic polymer assemblies and natural cell components. Here, we developed bio-catalytic nanocompartments that contain phosphoglucomutase protected by a biomimetic polymer membrane, which was permeabilized for reactants through insertion of an engineered α-hemolysin pore protein. These bio-catalytic nanocompartments serve for production of glucose-6-phosphate, and thus possess great potential for applications in an incomplete glycolysis, pentose phosphate pathway, or in plant biological reactions.

  1. The preparation of nylon-tube-supported hexokinase and glucose 6-phosphate dehydrogenase and the use of the co-immobilized enzymes in the automated determination of glucose.

    PubMed Central

    Morris, D L; Campbell, J; Hornby, W E

    1975-01-01

    Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose. PMID:1167161

  2. Patient with toxoplasmosis and glucose-6-phosphate dehydrogenase deficiency: a case report

    PubMed Central

    Nunes, Altacílio A

    2009-01-01

    Introduction Toxoplasmosis, a zoonotic protozoal disease caused by toxoplasma gondii, is prevalent throughout the world, affecting a large proportion of persons who usually have no symptoms. Glucose 6 phosphate dehydrogenase deficiency, an X-linked inherited disorder, is present in over 400 million people world wide. It is more common in tropical and subtropical countries and is one of the important causes of hemolytic anemia. Case presentation This case report relates the occurrence of the two diseases simultaneously in a child of five years old. Conclusion Patients with glucose-6-phosphate dehydrogenase deficiency are more susceptible to toxoplasmosis and this case report, reinforce the findings of this propensity and alert us for such possibility, what it is important, therefore, the treatment of toxoplasmosis can cause serious hemolysis in these patients. PMID:19918404

  3. Molecular Analysis of the Gene Encoding F420-Dependent Glucose-6-Phosphate Dehydrogenase from Mycobacterium smegmatis

    PubMed Central

    Purwantini, Endang; Daniels, Lacy

    1998-01-01

    The gene fgd, which codes for F420-dependent glucose-6-phosphate dehydrogenase (FGD), was cloned from Mycobacterium smegmatis, and its sequence was determined and analyzed. A homolog of FGD which has a very high similarity to the M. smegmatis FGD-derived amino acid sequence was identified in Mycobacterium tuberculosis. FGD showed significant homology with F420-dependent N5,N10-methylene-tetrahydromethanopterin reductase (MER) from methanogenic archaea and with several hypothetical proteins from M. tuberculosis and Archaeoglobus fulgidus, but FGD showed no significant homology with NADP-dependent glucose-6-phosphate dehydrogenases. Multiple alignment of FGD and MER proteins revealed four conserved consensus sequences. Multiple alignment of FGD with the hypothetical proteins also revealed portions of the same conserved sequences. Moderately high levels of FGD were expressed in Escherichia coli BL21(DE3) carrying fgd in pBluescript. PMID:9555906

  4. [Hemoglobin Woodville associated with double point mutation in the gene of glucose-6-phosphate dehydrogenase].

    PubMed

    Mansini, Adrián P; Fernández, Diego A; Aguirre, Fernando M; Pepe, Carolina; Milanesio, Berenice; Chaves, Alejandro; Eandi Eberle, Silvia; Feliú Torres, Aurora

    2015-01-01

    The co-inheritance of erythrocyte defects, hemoglobinopathies, enzymopathies, and membranopathies is not an unusual event. For the diagnosis, a laboratory strategy, including screening and confirmatory tests, additional to molecular characterization, was designed. As the result of this approach, a 24-year-old man carrying a hemoglobinopathy (Hemoglobin Woodville) and an enzymopathy (glucose-6-phosphate dehydrogenase deficiency) was identified. In the heterozygous state hemoglobin Woodville, is asymptomatic, and homozygous or double heterozygous individuals have not been reported thus far. On the other hand, previously described double point mutation in the gene for glucose-6-phosphate dehydrogenase c. [202G>A; 376A>G], p. [Val 68Met; Asn126Asp], causes hemolysis of varying severity after food or drug intake or infections. This case highlights the importance of the methodology carried out for the diagnosis, treatment, and proper genetic counseling.

  5. Apparent role of dynein in glucose-6-phosphate dehydrogenase trafficking in neutrophils from pregnant women.

    PubMed

    Huang, Ji-Biao; Espinoza, Jimmy; Romero, Roberto; Petty, Howard R

    2006-03-01

    To better understand the mechanisms of metabolic microcompartmentalization associated with neutrophil hexose monophosphate shunt activity during pregnancy, we have studied the intracellular trafficking of glucose-6-phosphate dehydrogenase (G6PDase). Microtubule motor proteins colocalize with G6PDase. Dynein inhibitors block G6PDase accumulation at the microtubule-organizing center in pregnancy cells. On this basis, we conclude that microtubule motor proteins participate in hexose monophosphate shunt enzyme transport within leukocytes.

  6. Treatment of wood with glucose-diammonium phosphate for fire and fungal decay protection

    Treesearch

    George C. Chen

    2002-01-01

    This study describes a method for dual protection of wood against fungal and fire degradation in one treatment. The method consists of impregnating wood with aqueous solution of glucose-diammonium phosphate at pH 9, followed by heating the treated wood at temperatures of 160 °C and 190 °C for various lengths of time to form water insoluble products in wood.

  7. Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum

    DTIC Science & Technology

    2012-04-01

    low millimolar range. Most Ca2+ is sequestered within organelles , including the endoplasmic reticulum (ER), Golgi, mitochondria , and nucleus (Carafoli...G6P and thapsigargin caused generalized reduction in Ca2+ accumulation in remarkably similar patterns with no apparent gray matter regional...with glucose-6-phosphate (10 mM) or thapsigargin (1 µM), revealed very similar pattern of generalized reduction in 45Ca2+ accumulation in gray and

  8. Aortic valve replacement for a patient with glucose-6-phosphate dehydrogenase deficiency and autoimmune hemolytic anemia.

    PubMed

    Tas, Serpil; Donmez, Arzu Antal; Kirali, Kaan; Alp, Mete H; Yakut, Cevat

    2005-01-01

    Autoimmune hemolytic anemia and deficiency of glucose-6-phosphate deyhdrogenase (G6PD) result in severe hemolysis with different mechanisms. In patients with both pathologies, the effects of cardiopulmonary bypass on red blood cells and thrombocytes demand special care before and after open heart surgery. We evaluated the preoperative management and postoperative care of a patient with severe aortic insufficiency associated with G6PD deficiency and autoimmune hemolytic anemia who underwent aortic valve replacement.

  9. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli.

    PubMed

    Behrends, Volker; Maharjan, Ram P; Ryall, Ben; Feng, Lu; Liu, Bin; Wang, Lei; Bundy, Jacob G; Ferenci, Thomas

    2014-11-01

    Getting the most out of available nutrients is a key challenge that all organisms face. Little is known about how they optimize and balance the simultaneous utilization of multiple elemental resources. We investigated the effects of long-term phosphate limitation on carbon metabolism of the model organism Escherichia coli using chemostat cultures. We profiled metabolic changes in the growth medium over time and found evidence for an increase in fermentative metabolism despite the aerobic conditions. Using full-genome sequencing and competition experiments, we found that fitness under phosphate-limiting conditions was reproducibly increased by a mutation preventing flux through succinate in the tricarboxylic acid cycle. In contrast, these mutations reduced competitive ability under carbon limitation, and thus reveal a conflicting metabolic benefit in the role of the TCA cycle in environments limited by inorganic phosphate and glucose.

  10. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes.

    PubMed

    Chou, Janice Y; Jun, Hyun Sik; Mansfield, Brian C

    2015-05-01

    Disorders of the glucose-6-phosphatase (G6Pase)/glucose-6-phosphate transporter (G6PT) complexes consist of three subtypes: glycogen storage disease type Ia (GSD-Ia), deficient in the liver/kidney/intestine-restricted G6Pase-α (or G6PC); GSD-Ib, deficient in a ubiquitously expressed G6PT (or SLC37A4); and G6Pase-β deficiency or severe congenital neutropenia syndrome type 4 (SCN4), deficient in the ubiquitously expressed G6Pase-β (or G6PC3). G6Pase-α and G6Pase-β are glucose-6-phosphate (G6P) hydrolases with active sites lying inside the endoplasmic reticulum (ER) lumen and as such are dependent upon the G6PT to translocate G6P from the cytoplasm into the lumen. The tissue expression profiles of the G6Pase enzymes dictate the disease's phenotype. A functional G6Pase-α/G6PT complex maintains interprandial glucose homeostasis, while a functional G6Pase-β/G6PT complex maintains neutrophil/macrophage energy homeostasis and functionality. G6Pase-β deficiency is not a glycogen storage disease but biochemically it is a GSD-I related syndrome (GSD-Irs). GSD-Ia and GSD-Ib patients manifest a common metabolic phenotype of impaired blood glucose homeostasis not shared by GSD-Irs. GSD-Ib and GSD-Irs patients manifest a common myeloid phenotype of neutropenia and neutrophil/macrophage dysfunction not shared by GSD-Ia. While a disruption of the activity of the G6Pase-α/G6PT complex readily explains why GSD-Ia and GSD-Ib patients exhibit impaired glucose homeostasis, the basis for neutropenia and myeloid dysfunction in GSD-Ib and GSD-Irs are only now starting to be understood. Animal models of all three disorders are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.

  11. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  12. Ischaemic Priapism and Glucose-6-Phosphate Dehydrogenase Deficiency: A Mechanism of Increased Oxidative Stress?

    PubMed

    Morrison, B F; Thompson, E B; Shah, S D; Wharfe, G H

    2014-07-03

    Ischaemic priapism is a devastating urological condition that has the potential to cause permanent erectile dysfunction. The disorder has been associated with numerous medical conditions and the use of pharmacotherapeutic agents. The aetiology is idiopathic in a number of cases. There are two prior case reports of the association of ischaemic priapism and glucose-6-phosphate dehydrogenase (G6PD) deficiency. We report on a third case of priapism associated with G6PD deficiency and review recently described molecular mechanisms of increased oxidative stress in the pathophysiology of ischaemic priapism. The case report of a 32-year old Afro-Caribbean male with his first episode of major ischaemic priapism is described. Screening for common causes of ischaemic priapism, including sickle cell disease was negative. Glucose-6-phosphate dehydrogenase deficiency was discovered on evaluation for priapism. Penile aspiration was performed and erectile function was good post treatment.Glucose-6-phosphate dehydrogenase deficiency is a cause for ischaemic priapism and should be a part of the screening process in idiopathic causes of the disorder. Increased oxidative stress occurs in G6PD deficiency and may lead to priapism.

  13. Effects of some drugs on human erythrocyte glucose 6-phosphate dehydrogenase: an in vitro study.

    PubMed

    Akkemik, Ebru; Budak, Harun; Ciftci, Mehmet

    2010-12-01

    Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of human have been investigated. For this purpose, at the beginning, erythrocyte glucose 6-phosphate dehydrogenase was purified 2256 times in a yield of 44.22% by using ammonium sulphate precipitation and 2', 5'-ADP Sepharose 4B affinity gel. Temperature of +4°C was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. This method was utilized for all kinetic studies. Ketotifen, dacarbazine, thiocolchicoside, meloxicam, methotrexate, furosemide, olanzapine, methylprednizolone acetate, paricalcitol, ritodrine hydrochloride, and gadobenate-dimeglumine were used as drugs. All the drugs indicated the inhibitory effects on the enzyme. Ki constants for glucose 6-phosphate dehydrogenase were found by means of Lineweaver-Burk graphs. While methylprednizolone acetate showed competitive inhibition, the others displayed non-competitive inhibition. In addition, IC(50) values of the drugs were determined by plotting Activity% vs [I].

  14. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  15. Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

    PubMed Central

    Sandoval, Juan M.; Arenas, Felipe A.; Vásquez, Claudio C.

    2011-01-01

    The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress. PMID:21984934

  16. Cloning and expression of glucose-1-phosphate thymidylyltransferase gene (schS6) from Streptomyces sp. SCC-2136.

    PubMed

    Han, Ji-Man; Kim, Su-Min; Lee, Hyo-Jung; Yoo, Jin-Cheol

    2007-04-01

    The deoxysugar biosynthetic gene cluster of Sch 47554/Sch 47555 was cloned from Streptomyces sp. SCC-2136. One of the ORFs, schS6, appeared to encode glucose-1-phosphate thymidylyltransferase, which converts dTTP and glucose-1-phosphate to TDP-D-glucose and pyrophosphate. The dTDP-D-glucose is a key metabolite in prokaryotics as a precursor for a large number of modified deoxysugars, and these deoxysugars are a major part of various antibiotics, ranging from glycosides to macrolides. SchS6 was expressed in E. coli vector pSCHS6 and the expressed protein was purified to apparent homogeneity by ammonium sulfate precipitation and Ni-NTA affinity column chromatography. The specific activity of the purified enzyme increased 4.7-fold with 17.5% recovery. It migrated as a single band on SDS-PAGE with an apparent molecular mass of 56 kDa. The purified protein showed glucose-1-phosphate thymidylyltransferase activity, catalyzing a reversible bimolecular group transfer reaction. In the forward reaction, the highest activity was obtained with combination of dTTP and alpha-D-glucose-1-phosphate, and only 12% of that activity was obtained with the substrates UTP/alpha-D-glucose-1-phosphate. In the opposite direction, the purified protein was highly specific for dTDP-D-glucose and pyrophosphate.

  17. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489.

    PubMed Central

    Liu, S Y; Wiegel, J; Gherardini, F C

    1996-01-01

    An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed

  18. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.

    PubMed

    Cano-Sancho, German; Smith, Anna; La Merrill, Michele A

    2017-04-01

    The use of triphenyl phosphate (TPhP) as a flame retardant or plasticizer has increased during the last decade, resulting in widespread human exposure without commensurate toxicity assessment. The main objectives of this study were to assess the in vitro effect of TPhP and its metabolite diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, coinciding with increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N (-7-nitrobenz-2-oxa1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weaker effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

  19. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.

    PubMed

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar

    2015-05-01

    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.

  20. Induction of the Pho Regulon Suppresses the Growth Defect of an Escherichia coli sgrS Mutant, Connecting Phosphate Metabolism to the Glucose-Phosphate Stress Response

    PubMed Central

    Richards, Gregory R.

    2012-01-01

    Some bacteria experience stress when glucose-6-phosphate or analogues like α-methyl glucoside-6-phosphate (αMG6P) accumulate in the cell. In Escherichia coli, the small SgrS RNA is vital to recovery from glucose-phosphate stress; the growth of sgrS mutants is strongly inhibited by αMG. SgrS helps to restore growth in part through inhibiting translation of the ptsG mRNA, which encodes the major glucose transporter EIICBGlc. While the regulatory mechanism of SgrS has been characterized, little is known about how glucose-phosphate stress connects to other aspects of cell physiology. In the present study, we discovered that mutation of pitA, which encodes the low-affinity transporter of inorganic phosphate, partially suppresses the αMG growth defect of an sgrS mutant. Induction of the stress response was also reduced in the sgrS pitA mutant compared to its sgrS parent. Microarray analysis suggested that expression of phosphate (Pho) regulon genes is increased in the sgrS pitA mutant compared to the sgrS parent. Consistent with this, we found increased PhoA (alkaline phosphatase) activity in the sgrS pitA mutant compared to the sgrS strain. Further, direct induction of the Pho regulon (in a pitA+ background) also resulted in partial suppression of the sgrS growth defect. The suppression was reversed when Pho induction was prevented by mutation of phoB, which encodes the Pho transcriptional activator. Deletion of individual Pho structural genes in suppressed strains did not identify a single gene responsible for suppression. Altogether, this work describes one of the first studies of glucose-phosphate stress physiology and suggests a novel connection of carbon and phosphate metabolism. PMID:22427626

  1. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  2. Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor

    PubMed Central

    Asención Diez, Matías D.; Peirú, Salvador; Demonte, Ana M.; Gramajo, Hugo

    2012-01-01

    Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high Vmax in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (Vmax of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium. PMID:22210767

  3. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.

    PubMed

    Duan, Yun Xia; Chen, Tao; Chen, Xun; Zhao, Xue Ming

    2010-02-01

    Carbon flow in Bacillus subtilis through the pentose phosphate (PP) pathway was modulated by overexpression of glucose-6-phosphate dehydrogenase (G6PDH) under the control of the inducible Pxyl promoter in B. subtilis PY. Alteration of carbon flow into the PP pathway will affect the availability of ribulose-5-phosphate (Ru5P) and the riboflavin yield. Overexpression of G6PDH resulted in the glucose consumption rate increasing slightly, while the specific growth rate was unchanged. An improvement by 25% + or - 2 of the riboflavin production was obtained. Compared to by-products formation in flask culture, low acid production (acetate and pyruvate) and more acetoin were observed. Metabolic analysis, together with carbon flux redistribution, indicated that the PP pathway fluxes are increased in response to overexpression of G6PDH. Moreover, increased flux of the PP pathway is associated with an increased intracellular pool of Ru5P, which is a precursor for riboflavin biosynthesis. The high concentrations of Ru5P could explain the increased riboflavin production.

  4. The Production and Utilization of GDP-glucose in the Biosynthesis of Trehalose 6-Phosphate by Streptomyces venezuelae.

    PubMed

    Asención Diez, Matías D; Miah, Farzana; Stevenson, Clare E M; Lawson, David M; Iglesias, Alberto A; Bornemann, Stephen

    2017-01-20

    Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate.

  5. The Production and Utilization of GDP-glucose in the Biosynthesis of Trehalose 6-Phosphate by Streptomyces venezuelae*

    PubMed Central

    Asención Diez, Matías D.; Miah, Farzana; Stevenson, Clare E. M.; Lawson, David M.; Iglesias, Alberto A.; Bornemann, Stephen

    2017-01-01

    Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli. However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae. The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate. PMID:27903647

  6. [Attempt at characterization of 2 erythrocyte variants of glucose-6-phosphate dehydrogenase in a patient with a partial enzymatic deficit].

    PubMed

    Bansard-Desmidt, N

    1975-09-01

    The electrophoresis shows, in red blood cells of a North African man affected by a glucose-6-phosphate dehydrogenase deficiency, the presence of two enzymes differing by their electrophoretic mobilities: one of them presents in the same mobility as variant Gd (+) B, the other being faster. After partial purification of the enzymes by ionic exchange chromatography on cellex D BIO-RAD, the preparation obtained shows some kinetic abnormalities: an increased value of 2-deoxy-glucose-6-phosphate utilisation and a non linear plot of 1/v versus 1/s, inadequate for Km determination. Assuming that our preparation contains two enzymes differing by their affinities for glucose-6-phosphate, were carried out a study of their Michaelis constants for glucose-6-phosphate by a method based on the densitometric determination of colored spots corresponding to these two variants after electrophoretic separation on cellogel strips. One of these variants is similar to Gd (+) B, the other being characterised by increased values of: electrophoretic mobility (+ 110%), Km for glucose-6-hosphate (194 +/- 38 muM, normal range being 55 to 70 muM), utilisation coefficient of 2-deoxy-glucose-6-phosphate.

  7. In vivo lability of glucose-6-phosphate dehydrogenase in GdA- and Gdmediterranean deficiency

    PubMed Central

    Piomelli, Sergio; Corash, Laurence M.; Davenport, Deatra D.; Miraglia, Janet; Amorosi, Edward L.

    1968-01-01

    A decreased level of glucose-6-phosphate dehydrogenase might result from decreased rate of synthesis, synthesis of an enzyme of lower catalytic efficiency, increased lability, or a combined mechanism. To test the hypothesis of increased lability, the rate of decline of the enzyme in vivo was measured in three groups of individuals, controls, Gd(—),A-males, and Gd(—), Mediterranean males, by the slope of decline of activity in fractions containing erythrocytes of progressively increasing mean age. These fractions were obtained by ultracentrifugation on a discontinuous density gradient of erythrocyte suspensions free of contaminating platelets and leukocytes. The rate of in vivo decline of pyruvate kinase (another age-dependent enzyme) was also measured and found very similar in the three groups. The in vivo decline of glucose-6-phosphate dehydrogenase was found to follow an exponential rate, with a half-life of 62 days for controls and 13 days for Gd(—),A- erythrocytes. The activity in normal reticulocytes was estimated at 9.7 U and in Gd(—),A- reticulocytes at 8.8 U. These estimates were confirmed by direct measurements in reticulocytes isolated from patients with extreme reticulocytosis. In Gd(—),Mediterranean erythrocytes activity could be demonstrated only in reticulocytes, which were estimated to average 1.4 U. The rate of decline is so extreme that no activity could be detected in mature erythrocytes. These data suggest that the glucose-6-phosphate dehydrogenase deficiency of both the GdA- and the GdMediterranean variant results from different degrees of in vivo instability of the abnormal enzyme. PMID:5641629

  8. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  9. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobinophaties in Resident of Arso PIR, Irian Jaya

    DTIC Science & Technology

    1990-01-01

    and drug treatment . Another factor is play a part in innate resistance. 0-6-PD the ’internal environment’ of the host and deficiency can also complicate...response to and treatment of glucose-6-phosphate. The amount of of malaria, epidemiologic and immuno- NADPH produced is detected spectropho- logic...Ohio inherited along with a B- thalassemia gene 9-66. producing Hb-E thalassemia . Although 2. Kellermeyer, R.W., A.R. Tarlov, G.J. this condition can

  10. Is glucose-6-phosphate dehydrogenase deficiency more prevalent in Carrion's disease endemic areas in Latin America?

    PubMed

    Mazulis, Fernando; Weilg, Claudia; Alva-Urcia, Carlos; Pons, Maria J; Del Valle Mendoza, Juana

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention. Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria, giving G6PD a major role in its stability. G6PD deficiency (G6PDd) is the most common enzyme deficiency in humans; it affects approximately 400 million individuals worldwide. The overall G6PDd allele frequency across malaria endemic countries is estimated to be 8%, corresponding to approximately 220 million males and 133 million females. However, there are no reports on the prevalence of G6PDd in Andean communities where bartonellosis is prevalent.

  11. Glucose-6-phosphate dehydrogenase deficiency: an unusual cause of acute jaundice after paracetamol overdose.

    PubMed

    Phillpotts, Simon; Tash, Elliot; Sen, Sambit

    2014-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest human enzyme defect causing haemolytic anaemia after exposure to specific triggers. Paracetamol-induced haemolysis in G6PD deficiency is a rare complication and mostly reported in children. We report the first case (to the best of our knowledge) of acute jaundice without overt clinical features of a haemolytic crisis, in an otherwise healthy adult female following paracetamol overdose, due to previously undiagnosed G6PD deficiency. It is important that clinicians consider this condition when a patient presents following a paracetamol overdose with significant and disproportionate jaundice, without transaminitis or coagulopathy.

  12. Glucose-6-phosphate dehydrogenase deficiency in the Greek population of Cape Town.

    PubMed

    Bonafede, R P; Botha, M C; Beighton, P

    1984-04-07

    A sample of 250 unrelated members of the Greek community of Cape Town was studied in order to establish the prevalence of glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in the community. A gene frequency of 0,067 in males and a prevalence of 6,7% are estimated for this group. It is recommended that persons with G-6-PD deficiency should have access to a list of medicinal agents which have the potential for precipitating acute haemolytic crises and that they should wear Medic-Alert discs bearing information concerning the disorder.

  13. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production.

    PubMed

    Maleki, Susan; Mærk, Mali; Valla, Svein; Ertesvåg, Helga

    2015-05-15

    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.

  14. The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity.

    PubMed

    Park, Yoon Jeong; Choe, Sung Sik; Sohn, Jee Hyung; Kim, Jae Bum

    2017-04-03

    Obesity is closely associated with metabolic diseases including type 2 diabetes. One hallmark characteristics of obesity is chronic inflammation that is coordinately controlled by complex signaling networks in adipose tissues. Compelling evidence indicates that reactive oxygen species (ROS) and its related signaling pathways play crucial roles in the progression of chronic inflammation in obesity. The pentose phosphate pathway (PPP) is an anabolic pathway that utilizes the glucoses to generate molecular building blocks and reducing equivalents in the form of NADPH. In particular, NADPH acts as one of the key modulators in the control of ROS through providing an electron for both ROS generation and scavenging. Recently, we have reported that glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the PPP, is implicated in adipose tissue inflammation and systemic insulin resistance in obesity. Mechanistically, G6PD potentiates generation of ROS that augments pro-inflammatory responses in adipose tissue macrophages, leading to systemic insulin resistance. Here, we provide an overview of cell type- specific roles of G6PD in the regulation of ROS balance as well as additional details on the significance of G6PD that contributes to pro-oxidant NADPH generation in obesity-related chronic inflammation and insulin resistance.

  15. Differential behaviour of glucose 6-phosphate dehydrogenase in two morphological forms of Trypanosoma cruzi.

    PubMed

    Lupiañez, J A; Adroher, F J; Vargas, A M; Osuna, A

    1987-01-01

    1. Glucose 6-phosphate dehydrogenase activity (EC 1.1.1.49) of two morphological forms of Trypanosoma cruzi, epimastigotes and metacyclics, are reported. 2. The kinetic behaviour and some of the kinetic parameters of the enzyme in both forms were studied. The enzymes showed a simple Michaelis-Menten kinetic. 3. The activity in epimastigote forms was alway higher than the metacyclic ones. At subsaturating concentrations of substrate was almost 10-fold higher, whereas at saturating concentrations was about 2-fold higher. 4. In epimastigote forms the specific activity and Km values, at pH 7.5 and 37 degrees C, was found to be 142 mUnits x mg-1 of protein and 0.23 mM, respectively. 5. In the same conditions, the specific activity and Km values in metacyclic forms was 75 mUnits x mg-1 of protein and 1.06 mM, respectively. 6. A possible role in the carbohydrate metabolism of glucose 6-phosphate dehydrogenase in both forms of Trypanosoma cruzi is discussed.

  16. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis.

    PubMed Central

    Purwantini, E; Daniels, L

    1996-01-01

    A variety of Mycobacterium species contained the 5-deazaflavin coenzyme known as F420. Mycobacterium smegmatis was found to have a glucose-6-phosphate dehydrogenase that was dependent on F420 as an electron acceptor and which did not utilize NAD or NADP. The enzyme was purified by ammonium sulfate fractionation, phenyl-Sepharose column chromatography, F420-ether-linked aminohexyl-Sepharose 4B affinity chromatography, and quaternary aminoethyl-Sephadex column chromatography, and the sequence of the first 26 N-terminal amino acids has been determined. The response of enzyme activity to a range of pHs revealed a two-peak pattern, with maxima at pH 5.5 and 8.0. The apparent Km values for F420 and glucose-6-phosphate were, respectively, 0.004 and 1.6 mM. The apparent native and subunit molecular masses were 78,000 and approximately 40,000 Da, respectively. PMID:8631674

  17. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    PubMed

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD(+), NADH, NADP(+), and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P)(+) in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  19. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  20. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-12-09

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  1. Design of an interface peptide as new inhibitor of human glucose-6-phosphate dehydrogenase.

    PubMed

    Obiol-Pardo, Cristian; Alcarraz-Vizán, Gema; Díaz-Moralli, Santiago; Cascante, Marta; Rubio-Martinez, Jaime

    2014-04-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is an essential enzyme involved in the first reaction of the oxidative branch of the pentose phosphate pathway (PPP). Recently, G6PDH was suggested as a novel target protein for cancer therapy as one of the final products of the PPP, ribose-5-phosphate, is necessary for nucleic acid synthesis and tumor progression. After analyzing the protein-protein interface of the crystal structure of human G6PDH by means of molecular dynamics simulations, we designed six interface peptides based on the natural sequence of the protein. The three most promising peptides, as predicted by binding free energy calculations, were synthesized and one of them was confirmed as a novel inhibitor of human G6PDH in experimental assays. Together, the active peptide found and its suggested binding mode proposes a new strategy for inhibiting this enzyme and should aid the further design of novel, potent and non-peptidic G6PDH inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. © 2016 by the American Diabetes Association.

  3. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes.

    PubMed Central

    Gartler, S M; Hornung, S K; Motulsky, A G

    1981-01-01

    The activities of cystathionine synthase [L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22], uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8], and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) have been measured in phytohemagglutinin-stimulated lymphocytes of young and old human subjects. A significant decrease in activity with age was observed for cystathionine synthase and uroporphyrinogen I synthase but not for glucose-6-phosphate dehydrogenase. These changes could not be related to declining phytohemagglutinin response with aging. Age-related decreases in activity of some enzymes may be relevant for an understanding of the biology of aging. False assignment of heterozygosity, and even homozygosity, for certain genetic disorders, such as homocystinuria, may result when low enzyme levels are detected in the lymphocytes of older people. PMID:6940198

  4. Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors.

    PubMed

    Schründer, J; Gunge, N; Meinhardt, F

    1996-11-01

    On the basis of the linear killer plasmid pGKL1 from Kluyveromyces lactis, two new linear hybrid plasmids were constructed. One of these, pRSC126, carried the xylA gene from Streptomyces rubiginosus encoding the xylose isomerase. The other linear hybrid molecule, pRSC128, carried the hasB gene of Streptococcus pyogenes encoding the UDP glucose dehydrogenase. Construction was performed in a way that the putative cytoplasmic promoter element of ORF5 of pGKL2 was fused to the coding region of the heterologous genes. After transformation, in vivo recombination led to the establishment of linear hybrid vectors. Though efficiency of expression was low when compared with bacterial systems, cytoplasmic expression of both genes was clearly demonstrated.

  5. The pentose phosphate pathway in regenerating skeletal muscle.

    PubMed Central

    Wagner, K R; Kauffman, F C; Max, S R

    1978-01-01

    1. The activities of the oxidative enzymes (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and of the non-oxidative enzymes (transaldolase, tranketolase, ribose 5 phosphate isomerase and ribulose 5-phosphate 3-epimerase) of the pentose phosphate pathway were measured at various times during the first 24h of skeletal-muscle regeneration after administration of Marcaine, a mytoxic local anesthetic. 2. The activities of the oxidative enzymes increased after Marcaine injection and rose to 9 times control activities by 24h. 3. The activities of all non-oxidative enzymes were increased after Marcaine administration, but to a much smaller extent than the oxidative enzymes (1.1-1.7-fold). 4. Histochemical analysis localized glucose 6-phosphate dehydrogenase activity within muscle fibres of control and Marcaine-treated muscles. 5. Cycloheximide or actinomycin D prevented the increase in oxidative enzyme activities, suggesting a requirement for synthesis of protein and RNA. Images PLATE 1 PMID:629775

  6. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

    PubMed

    Fettke, Joerg; Albrecht, Tanja; Hejazi, Mahdi; Mahlow, Sebastian; Nakamura, Yasunori; Steup, Martin

    2010-02-01

    Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.

  7. Inactivation of the AMP-activated protein kinase by glucose in cardiac myocytes: a role for the pentose phosphate pathway.

    PubMed

    Tabidi, Ikhlass; Saggerson, David

    2012-06-01

    Incubation of adult rat cardiac myocytes with increasing glucose concentrations decreased phosphorylation (αThr172) and activity of AMPK (AMP-activated protein kinase). The effect could be demonstrated without measurable changes in adenine nucleotide contents. The glucose effect was additive to the decrease in AMPK activity caused by insulin, was attenuated by adrenaline, was not mimicked by glucose analogues, lactate or pyruvate and was not due to changes in myocyte glycogen content. AMPK activity was decreased by xylitol and PMS (phenazine methosulfate) and was increased by the glucose-6-phosphate dehydrogenase inhibitor DHEA (dehydroepiandrosterone) and by thiamine. PMS and DHEA respectively, increased and decreased CO2 formation by the PPP (pentose phosphate pathway). AMPK activity was inversely related to the myocyte content of Xu5P (xylulose 5-phosphate), an intermediate of the non-oxidative arm of the PPP. Endothall, an inhibitor of PP2A (protein phosphatase 2A), abolished the glucose effect on AMPK activity. Further studies are needed to define the 'active component' that mediates the glucose effect and whether its site of action is PP2A.

  8. Apert syndrome with glucose-6-phosphate dehydrogenase deficiency: a case report.

    PubMed

    Tosun, G; Sener, Y

    2006-05-01

    Apert syndrome is characterized by midface hypoplasia, syndactyly of the hands and feet, proptosis of eyes, steep and flat frontal bones, and premature union of cranial sutures. Maxillary hypoplasia, deep palatal vault, anterior open bite, crowding of the dental arch, severely delayed tooth eruption, and dental malocclusion are the main oral manifestations of this syndrome. In this report, a case of Apert syndrome with glucose-6-phosphate dehydrogenase (G(6)PD) deficiency is presented. The patient, a 4-year-old male and the fourth child of healthy parents, was admitted to our department because of delayed tooth eruption. He had all the cardinal symptoms of the Apert syndrome. Clinical examination revealed that primary centrals, canines and first molars erupted; however, primary second molars and laterals had not erupted. The patient had no dental caries. Preventive treatments were applied, and subsequently, the patient was taken to long-term follow up.

  9. Glutathion peroxidase and glucose-6-phosphate dehydrogenase activities in bovine blood and liver.

    PubMed

    Abd Ellah, Mahmoud Rushdi; Niishimori, Kazuhiro; Goryo, Masanobu; Okada, Keiji; Yasuda, Jun

    2004-10-01

    A total of 46 cattle, including 25 as control, 16 with glycogen degeneration and 5 with severe fatty degeneration were studied. Whole blood and liver tissue specimens were used to measure glutathione peroxidase (GSH-Px) and Glucose-6-Phosphate Dehydrogenase (G6PD) activities. The present study determined the value of these parameters in diagnosing glycogen and fatty degeneration in cattle from the point of the status of antioxidation and lipid peroxidation. The results showed a significant decrease in hepatic GSH-Px activity and a significant increase in hepatic G6PD activity in cases of fatty degeneration. On the other hand, there were no significant changes in erythrocytic and hepatic GSH-Px and G6PD activities in cases of glycogen degeneration. The results indicated lipoperoxidation process in the liver tissues increased in cases of fatty degeneration. Therefore, supplying animals suffering from fatty liver with sufficient quantities of nutrient antioxidants may be valuable when treatment is considered.

  10. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery

    PubMed Central

    Gupta, Shreedhara; Igoillo-Esteve, Mariana; Michels, Paul A. M.; Cordeiro, Artur T.

    2011-01-01

    In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents. PMID:22091394

  11. Should we screen newborns for glucose-6-phosphate dehydrogenase deficiency in the United States?

    PubMed

    Watchko, J F; Kaplan, M; Stark, A R; Stevenson, D K; Bhutani, V K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common X-linked enzymopathy can lead to severe hyperbilirubinemia, acute bilirubin encephalopathy and kernicterus in the United States. Neonatal testing for G6PD deficiency is not yet routine and the American Academy of Pediatrics recommends testing only in jaundiced newborns who are receiving phototherapy whose family history, ethnicity, or geographic origin suggest risk for the condition, or for infants whose response to phototherapy is poor. Screening tests for G6PD deficiency are available, are suitable for use in newborns and have been used in birth hospitals. However, US birth hospitals experience is limited and no national consensus has emerged regarding the need for newborn G6PD testing, its effectiveness or the best approach. Our review of current state of G6PD deficiency screening highlights research gaps and informs specific operational challenges to implement universal newborn G6PD testing concurrent to bilirubin screening in the United States.

  12. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands

    SciTech Connect

    Hirono, A.; Ishii, A.; Hirono, K.; Miwa, S.; Kere, N.; Fujii, H.

    1995-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most prevalent genetic disorders, and >100 million people are considered to have mutant genes. G6PD deficiency is frequent in the area where plasmodium falciparum infection is endemic, probably because the G6PD-deficient subjects are resistant to the parasite. Falciparum and vivax malarias have been highly endemic in the Solomon Islands, and a high frequency of G6PD deficiency has also been expected. A recent investigation showed that the frequency of G6PD deficiency in the Solomon Islands was 8.4%-14.4%. Although >80 G6PD variants from various populations have been molecularly analyzed, little is known about those in Melanesians. G6PD Maewo, which was originally found in Vanuatu, has so far been the only Melanesian variant whose structural abnormality was determined. 14 refs., 1 fig.

  13. [Glucose 6-phosphate dehydrogenase deficiency: a protection against malaria and a risk for hemolytic accidents].

    PubMed

    Wajcman, Henri; Galactéros, Frédéric

    2004-08-01

    Glucose 6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway, which in the RBC leads to the formation of NADPH, essential to prevent the cell from an oxidative stress. Worldwide, more than 400 million people (90% being males) are affected by G6PD deficiency, in regions that are, or have been, endemic for malaria and in populations originating from these regions. RBCs with low G6PD activity offer a hostile environment to parasite growth and thus an advantage to G6PD deficiency carriers. The counterpart of this protective effect is an increased susceptibility to oxidants such as some foods (fava beans), drugs (anti-malarial or sulphonamides), or various chemicals. In the case of G6PD deficiency, the hypothesis of a convergent evolution between parasite, protecting mutation, and cultural traditions (food, skin painting...) has been proposed. Near to 150 different G6PD variants have been described, which are classified into four types, according to their clinical effects. Several variants, such as the G6PD A- or the Mediterranean variant, reach the polymorphism level in endemic regions. The recent determination of the three-dimensional structure of this enzyme allows one to explain now the mechanisms of the disorders in terms of structure-function relationship.

  14. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  15. Glucose-6-phosphate dehydrogenase deficiency (G6PD) as a risk factor of male neonatal sepsis.

    PubMed

    Rostami-Far, Z; Ghadiri, K; Rostami-Far, M; Shaveisi-Zadeh, F; Amiri, A; Rahimian Zarif, B

    2016-01-01

    Introduction.Neonatal sepsis is a disease process, which represents the systemic response of bacteria entering the bloodstream during the first 28 days of life. The prevalence of sepsis is higher in male infants than in females, but the exact cause is unknown. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway, which leads to the production of NADPH. NADPH is required for the respiratory burst reaction in white blood cells (WBCs) to destroy microorganisms. The purpose of this study was to evaluate the prevalence of G6PD deficiency in neonates with sepsis. Materials and methods.This study was performed on 76 neonates with sepsis and 1214 normal neonates from February 2012 to November 2014 in the west of Iran. The G6PD deficiency status was determined by fluorescent spot test. WBCs number and neutrophils percentages were measured and compared in patients with and without G6PD deficiency. Results.The prevalence of the G6PD deficiency in neonates with sepsis was significantly higher compared to the control group (p=0.03). WBCs number and neutrophils percentages in G6PD deficient patients compared with patients without G6PD deficiency were decreased, but were not statistically significant (p=0.77 and p=0.86 respectively). Conclusions.G6PD deficiency is a risk factor of neonatal sepsis and also a justification for more male involvement in this disease. Therefore, newborn screening for this disorder is recommended.

  16. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-05-11

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress.

  17. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots.

    PubMed

    Castiglia, Daniela; Cardi, Manuela; Landi, Simone; Cafasso, Donata; Esposito, Sergio

    2015-08-01

    In plant cells, glucose 6 phosphate dehydrogenase (G6PDH-EC 1.1.1.49) regulates the oxidative pentose phosphate pathway (OPPP), a metabolic route involved in the production of NADPH for various biosynthetic processes and stress response. In this study, we report the overexpression of a cytosolic G6PDH isoform from barley (Hordeum vulgare) roots in bacteria, and the biochemical characterization of the purified recombinant enzyme (HvCy-G6PDH). A full-length cDNA coding for a cytosolic isoform of G6PDH was isolated, and the sequence was cloned into pET3d vector; the protein was overexpressed in Escherichia coli BL21 (DE3) and purified by anion exchange and affinity chromatography. The kinetic properties were calculated: the recombinant HvCy-G6PDH showed KMs and KINADPH comparable to those observed for the enzyme purified from barley roots; moreover, the analysis of NADPH inhibition suggested a competitive mechanism. Therefore, this enzyme could be utilised for the structural and regulatory characterization of this isoform in higher plants.

  18. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate

    SciTech Connect

    Toroser, D.; Plaut, Z.; Huber, S.C.

    2000-05-01

    One of the major protein kinases (PK{sub III}) that phosphorylates serine-158 of spinach sucrose-phosphate synthase (SPS), which is responsible for light/dark modulation of activity, is known to be a member of the SNF1-related family of protein kinases. In the present study, the authors have developed a fluorescence-based continuous assay for measurement of PK{sub III} activity. Using the continuous assay, along with the fixed-time-point {sup 32}P-incorporation assay, they demonstrate that PK{sub III} activity is inhibited by glucose-6-phosphate (Glc-6-P). Relative inhibition by Glc-6-P was increased by decreasing pH from 8.5 to 5.5 and by reducing the concentration of Mg{sup 2+} in the assay from 10 to 2 nM. Under likely physiological conditions (PH 7.0 and 2 mM Mg{sup 2+}), 10 nM Glc-6-P inhibited kinase activity approximately 70%. Inhibition by Glc-6-P could not be ascribed to contaminants in the commercial preparations. Other metabolites inhibited PK{sub III} in the following order: Glc-6-P > mannose-6-P, fructose-1,6P{sub 2} > ribose-5-P, 3-PGA, fructose-6-P. Inorganic phosphate, Glc, and AMP were not inhibitory, and free Glc did not reverse the inhibition by Glc-6-P. Because SNF1-related protein kinases are thought to function broadly in the regulation of enzyme activity and gene expression, Glc-6-P inhibition of PK{sub III} activity potentially provides a mechanism for metabolic regulation of the reactions catalyzed by these important protein kinases.

  19. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity

    SciTech Connect

    Snoep, J.L. |; Arfman, N.; Yomano, L.P.; Ingram, L.O.; Westerhoff, H.V.; Conway, T.

    1996-07-20

    Alycolytic genes in Zymomonas mobilis are highly expressed and constitute half of the cytoplasmic protein. The first four genes (glf, zwf, edd, glk) in this pathway form an operon encoding a glucose permease, glucose 6-phosphate dehydrogenase (G6-P dehydrogenase), 6-phosphogluconate dehydratase, and glucokinase, respectively. Each gene was overexpressed from a tac promoter to investigate the control of glycolysis during the early stages of batch fermentation when flux (qCO{sub 2}) is highest. Almost half of flux control appears to reside with G6-P dehydrogenase (C{sub G6-P dehydrogenase}{sup J} = 0.4). Although Z. mobilis exhibits one of the highest rates of glycolysis known, recombinants with elevated G6-P dehydrogenase had a 10% to 13% higher glycolytic flux than the native organism. A small increase in flux was also observed for recombinants expressing glf. Results obtained did not allow a critical evaluation of glucokinase and this enzyme may also represent an important control point. 6-Phosphogluconate dehydratase appears to be saturating at native levels. With constructs containing the full operon, growth rate and flux were both reduced, complicating interpretations. However, results obtained were also consistent with G6-P dehydrogenase as a primary site of control. Flux was 17% higher in operon constructs which exhibited a 17% increase in G6-P dehydrogenase specific activity, relative to the average of other operon constructs which contain a frameshift mutation in zwf.

  20. Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types.

    PubMed

    Wildberger, Patricia; Pfeiffer, Martin; Brecker, Lothar; Rechberger, Gerald N; Birner-Gruenberger, Ruth; Nidetzky, Bernd

    2015-03-01

    The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.

  1. Acclimation of metabolism to light in A rabidopsis thaliana: the glucose 6‐phosphate/phosphate translocator GPT2 directs metabolic acclimation

    PubMed Central

    DYSON, BETH C.; ALLWOOD, J. WILLIAM; FEIL, REGINA; XU, YUN; MILLER, MATTHEW; BOWSHER, CAROLINE G.; GOODACRE, ROYSTON; LUNN, JOHN E.

    2015-01-01

    Abstract Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In A rabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6‐phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild‐type plants (35%); however, over subsequent days, wild‐type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild‐type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6‐phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short‐term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild‐type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals. PMID:25474495

  2. Dehydroepiandrosterone Inhibits Glucose Flux Through the Pentose Phosphate Pathway in Human and Mouse Endometrial Stromal Cells, Preventing Decidualization and Implantation

    PubMed Central

    Frolova, Antonina I.; O'Neill, Kathleen

    2011-01-01

    Endometrial stromal cells (ESC) must undergo a hormone-driven differentiation to form decidual cells as a requirement of proper embryo implantation. Recent studies from our laboratory have demonstrated that decidualizing cells require glucose transporter 1 expression and an increase in glucose use to complete this step. The present study focuses on the glucose-dependent molecular and metabolic pathways, which are required by ESC for decidualization. Inhibition of glycolysis had no effect on decidualization. However, blockade of the pentose phosphate pathway (PPP) with pharmacologic inhibitors 6-aminonicotinamide or dehydroepiandrosterone (DHEA), and short hairpin RNA-mediated knockdown of glucose-6-phosphate dehydrogenase, the rate-limiting step in the PPP, both led to strong decreases in decidual marker expression in vitro and decreased decidualization in vivo. Additionally, the studies demonstrate that inhibition is due, at least in part, to ribose-5-phosphate depletion, because exogenous nucleoside administration restored decidualization in these cells. The finding that PPP inhibition prevents decidualization of ESC is novel and clinically important, because DHEA is an endogenous hormone produced by the adrenal glands and elevated in a high proportion of women who have polycystic ovary syndrome, the most common endocrinopathy in reproductive age women. Together, this data suggest a mechanistic link between increased DHEA levels, use of glucose via the PPP, and pregnancy loss. PMID:21680659

  3. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction.

    PubMed Central

    Lee, W. T.; Levy, H. R.

    1992-01-01

    Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction. PMID:1304341

  4. Biochemical characterization of phosphoglucose isomerase and genetic variants from mouse and Drosophila melanogaster.

    PubMed

    Charles, D; Lee, C Y

    1980-01-16

    A simple and unique procedure was developed to purify phosphoglucose isomerase variants from the whole mouse body extracts and Drosophila homogenate. It involved the use of an 8-(6-aminohexyl)-amino-ATP-Sepharose column followed by a preparative isoelectric focusing. In each case, the enzyme in the homogenate was adsorbed by ionic interaction on the ATP-Sepharose column. Substantial purification was achieved by the affinity elution with the substrate-glucose-6-phosphate. Mouse and Drosophila phosphoglucose isomerase as well as the corresponding variants were shown to be dimers of similar molecular weight and to exhibit similar kinetic properties. The isoelectric points for the variants from DBA/2J and C57BL/6J mice were determined to be 8.4 and 8.7 respectively, while they were 6.8 and 6.3 respectively for Drosophila and 4/4 variants. Differential thermal stability was observed for the two mouse variants but not for the Drosophila ones. Amino acid composition analysis was performed for both mouse and Drosophila enzymes. Rabbit antisera for mouse (DBA/2J) and Drosophila (2/2) enzymes were raised. Within each species, complete immunological identity was observed between the variants. The antisera were used to characterize the null mutants of phosphoglucose isomerase identified in the mouse and Drosophila populations. By rocket immunoelectrophoresis, the null allele of the naturally occurring heterozygous null variant of Drosophila was shown to express no cross-reacting materials (CRM).

  5. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests.

    PubMed

    Kahn, Maria; LaRue, Nicole; Bansil, Pooja; Kalnoky, Michael; McGray, Sarah; Domingo, Gonzalo J

    2013-08-20

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-care G6PD deficiency screening tests suitable for areas of the developing world where malarial treatments are frequently administered. The development and evaluation of new G6PD tests will be greatly assisted with the availability of specimen repositories. Cryopreservation of erythrocytes was evaluated as a means to preserve G6PD activity. Blood specimens from 31 patients including ten specimens with normal G6PD activity, three with intermediate activity, and 18 with deficient activity were cryopreserved for up to six months. Good correlation in G6PD activity between fresh and cryopreserved specimens (R2 = 0.95). The cryopreserved specimens show an overall small drop in mean G6PD activity of 0.23 U/g Hb (P=0.23). Cytochemical staining showed that intracellular G6PD activity distribution within the red blood cell populations is preserved during cryopreservation. Furthermore, the mosaic composition of red blood cells in heterozygous women is also preserved for six months or more. The fluorescent spot and the BinaxNOW qualitative tests for G6PD deficiency also showed high concordance in G6PD status determination between cryopreserved specimens and fresh specimens. A methodology for establishing a specimen panel for evaluation of G6PD tests is described. The approach is similar to that used in several malaria research facilities for the cryopreservation of parasites in clinical specimens and axenic cultures. Specimens stored in this manner will aid both the development and evaluation of

  6. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.

    PubMed

    Hanke, Tanja; Nöh, Katharina; Noack, Stephan; Polen, Tino; Bringer, Stephanie; Sahm, Hermann; Wiechert, Wolfgang; Bott, Michael

    2013-04-01

    In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.

  7. Combined Fluxomics and Transcriptomics Analysis of Glucose Catabolism via a Partially Cyclic Pentose Phosphate Pathway in Gluconobacter oxydans 621H

    PubMed Central

    Hanke, Tanja; Noack, Stephan; Polen, Tino; Bringer, Stephanie; Sahm, Hermann; Wiechert, Wolfgang

    2013-01-01

    In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by 13C-based metabolic flux analysis (13C-MFA) in combination with transcriptomics and enzyme assays. For 13C-MFA, cells were cultivated with specifically 13C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). 13C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II. PMID:23377928

  8. Data mining and pathway analysis of glucose-6-phosphate dehydrogenase with natural language processing.

    PubMed

    Chen, Long; Zhang, Chunhua; Wang, Yanling; Li, Yuqian; Han, Qiaoqiao; Yang, Huixin; Zhu, Yuechun

    2017-08-01

    Human glucose-6-phosphate dehydrogenase (G6PD) is a crucial enzyme in the pentose phosphate pathway, and serves an important role in biosynthesis and the redox balance. G6PD deficiency is a major cause of neonatal jaundice and acute hemolyticanemia, and recently, G6PD has been associated with diseases including inflammation and cancer. The aim of the present study was to conduct a search of the National Center for Biotechnology Information PubMed library for articles discussing G6PD. Genes that were identified to be associated with G6PD were recorded, and the frequency at which each gene appeared was calculated. Gene ontology (GO), pathway and network analyses were then performed. A total of 98 G6PD‑associated genes and 33 microRNAs (miRNAs) that potentially regulate G6PD were identified. The 98 G6PD‑associated genes were then sub‑classified into three functional groups by GO analysis, followed by analysis of function, pathway, network, and disease association. Out of the 47 signaling pathways identified, seven were significantly correlated with G6PD‑associated genes. At least two out of four independent programs identified the 33 miRNAs that were predicted to target G6PD. miR‑1207‑5P, miR‑1 and miR‑125a‑5p were predicted by all four software programs to target G6PD. The results of the present study revealed that dysregulation of G6PD was associated with cancer, autoimmune diseases, and oxidative stress‑induced disorders. These results revealed the potential roles of G6PD‑regulated signaling and metabolic pathways in the etiology of these diseases.

  9. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

    PubMed

    Nguyen, Trinh Thi My; Kitajima, Sakihito; Izawa, Shingo

    2014-09-01

    Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major biomass conversion inhibitor, also induces oxidative stress and is reduced in an NAD(P)H-dependent manner to its less toxic alcohol derivative. Therefore, the pentose phosphate pathway (PPP), through which most NADPH is generated, plays a role in tolerance to furfural. Although vanillin also induces oxidative stress and is reduced to vanillyl alcohol in a NADPH-dependent manner, the relationship between vanillin and PPP has not yet been investigated. In the present study, we examined the importance of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the rate-limiting NADPH-producing step in PPP, for yeast tolerance to vanillin. The growth of the null mutant of G6PDH gene (zwf1Δ) was delayed in the presence of vanillin, and vanillin was efficiently reduced in the culture of wild-type cells but not in the culture of zwf1Δ cells. Furthermore, zwf1Δ cells easily induced the activation of Yap1, an oxidative stress responsive transcription factor, mitochondrial fragmentation, and P-body formation with the vanillin treatment, which indicated that zwf1Δ cells were more susceptible to vanillin than wild type cells. These findings suggest the importance of G6PDH and PPP in the response of yeast to vanillin.

  10. Molecular study of ovine glucose 6-phosphate dehydrogenase gene expression in respect to different energy intake.

    PubMed

    Laliotis, George P; Vitsa, Alkistis; Bizelis, Iosif; Charismiadou, Maria A; Rogdakis, Emmanuel

    2010-06-01

    Glucose 6-phosphate dehydrogenase (G6PD) plays an important role in a ruminant's metabolism catalyzing the first committed reaction in the pentose phosphate pathway as it provides necessary compounds of NADPH for the synthesis of fatty acids. The cloning of ovine (Ovis aries) G6PD gene revealed the presence of two cDNA transcripts (oG6PD(A) and oG6PD(B)), with oG6PD(B) being a product of alternative splicing and with no similarity to any other previously reported G6PD transcript. Here, we attempt to study the effect of energy balance in ovine G6PD transcript expression, trying simultaneously to find out any potential physiological role of the oG6PD(B) transcript. Changes of energy balance that lead to synergistic changes in the expression of both transcripts, but in opposite directions and not in a proportional way. Negative energy balance favours the presence of the oG6PD(B) transcript leading to a significant increase of its expression, compared to oG6PD(A) expression (P<0.05). In contrast, positive energy balance leads to a significant increase of oG6PD(A) compared to oG6PD(B) expression (P<0.05). In either condition oG6PD(B) expression is unchanged. Regression analysis showed that there is an energy balance threshold where the expression of both transcripts shows no change. 2010 Elsevier Inc. All rights reserved.

  11. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease

    PubMed Central

    Hecker, Peter A.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes. PMID:23241320

  12. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol

    SciTech Connect

    Srisomsap, C.; Richardson, K.L.; Jay, J.C.; Marchase, R.B. )

    1989-12-05

    UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha-Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in both mammalian cells and Paramecium is a cytoplasmic glycoprotein of 62-63 kDa. When cytoplasmic proteins from rat liver were fractionated by preparative isoelectric focusing following incubation of a liver homogenate with the 35S-labeled phosphorothioate analogue of UDP-Glc ((beta-35S)UDP-Glc), the acceptor was found to have a pI of about 6.0. This fraction, when not labeled prior to the focusing, became very heavily labeled when mixed with (beta-35S). UDP-Glc and intact liver microsomes, a rich source of the Glc-phosphotransferase. In addition, it was observed that the isoelectric fractions of the cytosol having pI values of 2-3.2 contained a degradative activity, alpha-Glc-1-P phosphodiesterase, that was capable of removing alpha-Glc-1-P, monitored through radioactive labeling both in the sugar and the phosphate, as an intact unit from the 62-kDa acceptor. Identification of the product of this cleavage was substantiated by its partial transformation to UDP-Glc in the presence of UTP and UDP-Glc pyrophosphorylase. The alpha-Glc-1-P phosphodiesterase had a pH optimum of 7.5 and was not effectively inhibited by any of the potential biochemical inhibitors that were tested. Specificity for the Glc-alpha-1-P-6-Man diester was suggested by the diesterase's inability to degrade UDP-Glc or glucosylphosphoryldolichol. This enzyme may be important in the regulation of secretion since the alpha-Glc-1-P present on the 62-kDa phosphoglycoprotein appears to be removed and then rapidly replaced in response to secretagogue.

  13. The structure of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei reveals a zinc binding site at the heart of the active site.

    PubMed

    Harmer, Nicholas J

    2010-07-16

    Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into D-glycero-D-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.

  14. Detection of Occult Acute Kidney Injury in Glucose-6-Phosphate Dehydrogenase Deficiency Anemia

    PubMed Central

    Abdel Hakeem, Gehan Lotfy; Abdel Naeem, Emad Allam; Swelam, Salwa Hussein; El Morsi Aboul Fotoh, Laila; El Mazary, Abdel Azeem Mohamed; Abdel Fadil, Ashraf Mohamed; Abdel Hafez, Asmaa Hosny

    2016-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency anemia is associated with intravascular hemolysis. The freely filtered hemoglobin can damage the kidney. We aimed to assess any subclinical renal injury in G6PD children. Methods Sixty children were included. Thirty G6PD deficiency anemia children were enrolled during the acute hemolytic crisis and after the hemolytic episode had elapsed. Another thirty healthy children were included as controls. Serum cystatin C, creatinine levels, and urinary albumin/creatinine (A/C) ratio were measured, and the glomerular filtration rate (GFR) was calculated. Results Significantly higher urinary A/C ratio (p=0.001,0.002 respectively) and lower GFR (p=0.001 for both) were found during hemolysis and after the hemolytic episode compared to the controls. Also, significant higher serum cystatin C (p=0.001), creatinine (p=0.05) and A/C (p= 0.001) ratio and insignificant lower GFR (p=0.3) during acute hemolytic crisis compared to the same children after the hemolytic episode subsided. Conclusions G6PD deficiency anemia is associated with a variable degree of acute renal injury during acute hemolytic episodes which may persist after elapsing of the hemolytic crises. PMID:27648201

  15. A hemolysis trigger in glucose-6-phosphate dehydrogenase enzyme deficiency. Vicia sativa (Vetch).

    PubMed

    Bicakci, Zafer

    2009-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme, playing an important role in the redox metabolism of all aerobic cells. It was reported that certain medications, fava beans, and infections can trigger acute hemolytic anemia in patients with G6PD deficiency. An 8-year-old male patient was admitted to the hospital with blood in the urine, headache, dizziness, fatigue, loss of appetite, and jaundice in the eyes, 24 hours after eating large amounts of fresh, vetch grains. Laboratory investigation revealed hemolytic anemia, hyperbilirubinemia, and G6PD deficiency. Approximately 0.5% of fava bean seeds have 2 pyrimidine beta-glycosides called, vicine and convicine. Vetch has 0.731% vicine, 0.081% convicine, and 0.530% beta cyanoalanine glycosides. The aim of this case report is to emphasize the importance of vetch seeds as a cause for hemolytic crisis in our country, where approximately one million tons of vetch is produced per year, especially in the agricultural regions.

  16. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    PubMed

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  17. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency in the neonatal period.

    PubMed

    Keihanian, F; Basirjafari, S; Darbandi, B; Saeidinia, A; Jafroodi, M; Sharafi, R; Shakiba, M

    2017-06-01

    Considering the high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborns, different screening methods have been established in various countries. In this study, we aimed to assess the prevalence of G6PD deficiency among newborns in Rasht, Iran, and compare G6PD activity in cord blood samples, using quantitative and qualitative tests. This cross-sectional, prospective study was performed at five largest hospitals in Rasht, Guilan Province, Iran. The screening tests were performed for all the newborns, referred to these hospitals. Specimens were characterized in terms of G6PD activity under ultraviolet light, using the kinetic method and the qualitative fluorescent spot test (FST). We also determined the sensitivity, specificity, negative predictive value, and positive predictive value of the qualitative assay. Blood samples were collected from 1474 newborns. Overall, 757 (51.4%) subjects were male. As the findings revealed, 1376 (93.4%) newborns showed normal G6PD activity, while 98 (6.6%) had G6PD deficiency. There was a significant difference in the mean G6PD level between males and females (P = 0.0001). Also, a significant relationship was detected between FST results and the mean values obtained in the quantitative test (P < 0.0001). According to the present study, FST showed acceptable sensitivity and specificity for G6PD activity, although it appeared inefficient for diagnostic purposes in some cases. © 2017 John Wiley & Sons Ltd.

  18. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  19. Molecular characterization of a German variant of glucose-6-phosphate dehydrogenase deficiency (G6PD Aachen).

    PubMed

    Efferth, T; Osieka, R; Beutler, E

    2000-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-chromosome-linked hereditary disorder. Clinically, patients with G6PD deficiency often present with drug- or food-induced hemolytic crises or neonatal jaundice. G6PD is involved in the generation of NADPH and reduced glutathione. In contrast to American, Mediterranean, and African ancestries, only few variants are known from Middle and Northern Europe. We describe the molecular characterization of a distinct variant from the northwestern area of Germany, G6PD Aachen. The sequence of the G6PD gene from three afflicted males was found to be hemizygous at cDNA residue 1089 for a C-->G mutation with a predicted amino acid change of Asn363Lys. The 1089 C-->G point mutation is unique, but produces the identical amino acid change found in a Mexican variant of G6PD deficiency, G6PD Loma Linda. This G6PD-deficient variant is caused by a 1089 C-->A mutation. The 363-amino-acid replacement is located outside a known mutation cluster region between amino acid residues 380 and 450, but may disrupt or weaken dimer interactions of G6PD enzyme subunits.

  20. Glucose-6-Phosphate Dehydrogenase-Deficiency in Transfusion Medicine: The Unknown Risks

    PubMed Central

    Francis, Richard O.; Jhang, Jeffrey S.; Pham, Huy P.; Hod, Eldad A.; Zimring, James C.; Spitalnik, Steven L.

    2013-01-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce hemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing hemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage, and mechanisms of hemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. PMID:23815264

  1. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse

    SciTech Connect

    Hendriksen, P.J.M. |; Hoogerbrugge, J.W.; Baarends, W.M.

    1997-05-01

    The X-chromosomal gene glucose-6-phosphate dehydrogenase (G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designated G6pd-2, encoding a G6PD isoenzyme. G6pd-2 does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encoded G6pd gene is not transcribed. Expression of the G6pd-2 sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence of G6pd-2-encoded isoenzyme in these cell types. G6pd-2 is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis. 62 refs., 7 figs.

  2. Splenic artery pseudoaneurysm due to seatbelt injury in a glucose-6-phosphate dehydrogenase-deficient adult.

    PubMed

    Lau, Yu Zhen; Lau, Yuk Fai; Lai, Kang Yiu; Lau, Chu Pak

    2013-11-01

    A 23-year-old man presented with abdominal pain after suffering blunt trauma caused by a seatbelt injury. His low platelet count of 137 × 10(9)/L was initially attributed to trauma and his underlying hypersplenism due to glucose-6-phosphate dehydrogenase (G6PD) deficiency. Despite conservative management, his platelet count remained persistently reduced even after his haemoglobin and clotting abnormalities were stabilised. After a week, follow-up imaging revealed an incidental finding of a pseudoaneurysm (measuring 9 mm × 8 mm × 10 mm) adjacent to a splenic laceration. The pseudoaneurysm was successfully closed via transcatheter glue embolisation; 20% of the spleen was also embolised. A week later, the platelet count normalised, and the patient was subsequently discharged. This case highlights the pitfalls in the detection of a delayed occurrence of splenic artery pseudoaneurysm after blunt injury via routine delayed phase computed tomography. While splenomegaly in G6PD may be a predisposing factor for injury, a low platelet count should arouse suspicion of internal haemorrhage rather than hypersplenism.

  3. Glucose-6-phosphate dehydrogenase and red cell pyruvate kinase deficiency in neonatal jaundice cases in egypt.

    PubMed

    Abdel Fattah, Mohammed; Abdel Ghany, Eman; Adel, Alia; Mosallam, Dalia; Kamal, Shahira

    2010-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency can lead to acute hemolytic anemia, chronic nonspherocytic hemolytic anemia, and neonatal jaundice. Neonatal red cell pyruvate kinase (PK) deficiency may cause clinical patterns, ranging from extremely severe hemolytic anemia to moderate jaundice. The authors aimed at studying the prevalence of G6PD and PK deficiency among Egyptian neonates with pathological indirect hyperbilirubinemia in Cairo. This case-series study included 69 newborns with unconjugated hyperbilirubinemia. All were subjected to clinical history, laboratory investigations, e.g., complete blood counts, reticulocytic counts, direct and indirect serum bilirubin levels, Coombs tests, qualitative assay of G6PD activity by methemoglobin reduction test, and measurement of erythrocytic PK levels. The study detected 10 neonates with G6PD deficiency, which means that the prevalence of G6PD deficiency among Egyptian neonates with hyperbilirubinemia is 14.4% (21.2% of males). G6PD deficiency was significantly higher in males than females (P = .01). The authors detected 2 cases with PK deficiency, making the prevalence of its deficiency 2.8%. These data demonstrate that G6PD deficiency is an important cause for neonatal jaundice in Egyptians. Neonatal screening for its deficiency is recommended. PK deficiency is not a common cause of neonatal jaundice. However, this needs further investigation on a larger scale.

  4. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    LaRue, Nicole; Kahn, Maria; Murray, Marjorie; Leader, Brandon T; Bansil, Pooja; McGray, Sarah; Kalnoky, Michael; Zhang, Hao; Huang, Huiqiang; Jiang, Hui; Domingo, Gonzalo J

    2014-10-01

    A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline-based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests. © The American Society of Tropical Medicine and Hygiene.

  5. Haemoglobinopathies, glucose-6-phosphate dehydrogenase deficiency and allied problems in the Indian subcontinent

    PubMed Central

    Chatterjea, J. B.

    1966-01-01

    The present world-wide interest in haemoglobinopathies and allied disorders has given rise to a very considerable literature over the past two decades. This communication reviews this literature in so far as it refers to the Indian subcontinent. The most common abnormality is thalassaemia, which has been discovered in all regions under consideration: India, Pakistan, Nepal, Bhutan and Ceylon. Haemoglobins S, D and E are also quite common: Hb S has been found mostly in the aboriginal tribes, Hb D in Gujaratis and Punjabis and Hb E in Bengalis, Assamese and Nepalese. A few instances of haemoglobins F, H, J, K, L and M have also been reported. However, there remain many population groups to be investigated. Studies of the distribution of glucose-6-phosphate dehydrogenase deficiency are also reviewed, and the correlation between the various haemoglobin disorders and various environmental factors is discussed, but it is pointed out that the relevant data are still insufficient to allow any definite conclusions to be drawn. PMID:5338376

  6. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress.

    PubMed Central

    Ursini, M V; Parrella, A; Rosa, G; Salzano, S; Martini, G

    1997-01-01

    Recent reports have demonstrated that glucose-6-phosphate dehydrogenase (G6PD) activity in mammalian cells is necessary in order to ensure cell survival when damage is produced by reactive oxygen intermediates. In this paper we demonstrate that oxidative stress, caused by agents acting at different steps in the biochemical pathway controlling the intracellular redox status, determines the increase in G6PD-specific activity in human cell lines of different tissue origins. The intracellular level of G6PD-specific mRNA also increases, with kinetics compatible with the induction of new enzyme synthesis. We carried out experiments in which cells were exposed to oxidative stress in the presence of inhibitors of protein or RNA synthesis. These demonstrated that increased G6PD expression is mainly due to an increased rate of transcription, with a minor but significant contribution of regulatory mechanisms acting at post-transcriptional levels. These results provide new information on the defence systems that eukaryotic cells possess in order to prevent damage caused by potentially harmful oxygen derivatives. PMID:9169615

  7. New PCR Assay Using Glucose-6-Phosphate Dehydrogenase for Identification of Leishmania Species

    PubMed Central

    Castilho, Tiago M.; Shaw, Jeffrey Jon; Floeter-Winter, Lucile M.

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is one of the multilocus enzymes used to identify Leishmania by zymodeme analysis. The polymorphic pattern revealed by partial characterization of the gene encoding G6PD generated molecular markers useful in the identification of different Leishmania species by PCR. Initially degenerate oligonucleotides were designed on the basis of data on the conserved active center described for other organisms. Primers for reverse transcription-PCR experiments, designed from the nucleotide sequence of the PCR product, enabled us to characterize the 5′ and 3′ untranslated regions and the G6PD open reading frame of reference strains of Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) amazonensis. Sets of paired primers were designed and used in PCR assays to discriminate between the parasites responsible for tegumentar leishmaniasis of the subgenera Leishmania (Leishmania) and Leishmania (Viannia) and to distinguish L. (Viannia) braziliensis from others organisms of the subgenus Leishmania (Viannia). No amplification products were detected for the DNA of Crithidia fasciculata, Trypanosoma cruzi, or Leishmania (Sauroleishmania) tarentolae or DNA from a healthy human control. The tests proved to be specific and were sensitive enough to detect parasites in human biopsy specimens. The successful discrimination of L. (Viannia) braziliensis from other parasites of the subgenus Leishmania (Viannia) opens the way to epidemiological studies in areas where more than one species of the subgenus Leishmania (Viannia) exist, such as Amazonia, as well as follow-up studies after chemotherapy and assessment of clinical prognoses. PMID:12574243

  8. Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: a systematic review and meta-analysis.

    PubMed

    Lai, Yin Key; Lai, Nai Ming; Lee, Shaun Wen Huey

    2017-05-01

    Emerging epidemiological evidence suggests that patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency may have a higher risk of developing diabetes. The aim of the review was to synthesise the evidence on the association between G6PD deficiency and diabetes. A systematic search on Medline, EMBASE, AMED and CENTRAL databases for studies published between January 1966 and September 2016 that assessed the association between G6PD deficiency and diabetes was conducted. This was supplemented by a review of the reference list of retrieved articles. We extracted data on study characteristics, outcomes and performed an assessment on the methodological quality of the studies. A random-effects model was used to compute the summary risk estimates. Fifteen relevant publications involving 949,260 participants were identified, from which seven studies contributed to the meta-analysis. G6PD deficiency was associated with a higher odd of diabetes (odds ratio 2.37, 95% confidence interval 1.50-3.73). The odds ratio of diabetes among men was higher (2.22, 1.31-3.75) compared to women (1.87, 1.12-3.12). This association was broadly consistent in the sensitivity analysis. Current evidence suggests that G6PD deficiency may be a risk factor for diabetes, with higher odds among men compared to women. Further research is needed to determine how G6PD deficiency moderates diabetes.

  9. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation.

    PubMed

    García-Magallanes, N; Luque-Ortega, F; Aguilar-Medina, E M; Ramos-Payán, R; Galaviz-Hernández, C; Romero-Quintana, J G; Del Pozo-Yauner, L; Rangel-Villalobos, H; Arámbula-Meraz, E

    2014-08-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); the mutations in 86% of these samples were G6PD A(-202A/376G), G6PDA(-376G/968C) and G6PD Santamaria(376G/542T). Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country (P = 0.48336), and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF(193A>G) (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.

  10. Glucose-6-phosphate dehydrogenase deficiency A- variant in febrile patients in Haiti.

    PubMed

    Carter, Tamar E; Maloy, Halley; von Fricken, Michael; St Victor, Yves; Romain, Jean R; Okech, Bernard A; Mulligan, Connie J

    2014-08-01

    Haiti is one of two remaining malaria-endemic countries in the Caribbean. To decrease malaria transmission in Haiti, primaquine was recently added to the malaria treatment public health policy. One limitation of primaquine is that, at certain doses, primaquine can cause hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd). In this study, we genotyped two mutations (A376G and G202A), which confer the most common G6PDd variant in West African populations, G6PDd A-. We estimated the frequency of G6PDd A- in a sample of febrile patients enrolled in an on-going malaria study who represent a potential target population for a primaquine mass drug administration. We found that 33 of 168 individuals carried the G6PDd A- allele (includes A- hemizygous males, A- homozygous or heterozygous females) and could experience toxicity if treated with primaquine. These data inform discussions on safe and effective primaquine dosing and future malaria elimination strategies for Haiti.

  11. Anemia in patients with coinherited thalassemia and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Pornprasert, Sakorn; Phanthong, Siratcha

    2013-01-01

    Thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency are genetic disorders that cause hemolytic anemia. In areas with high frequencies of both hematological disorders, coinheritance of G-6-PD deficiency with thalassemia can be found. Whether G-6-PD deficiency, coinherited with thalassemia, enhances severe anemia is still unclear. Hematological parameters between thalassemia carriers with G-6-PD deficiency and those without G-6-PD deficiency were compared. The G-6-PD deficiency was diagnosed in 410 blood samples from thalassemia patients using a fluorescent spot test. The levels of hemoglobin (Hb), packed cell volume (PCV), mean corpuscular volume (MCV) and Hb A2/Hb E [β26(B8)Glu→Lys; HBB: c.79G>A] were measured using an automated blood counter and high performance liquid chromatography (HPLC), respectively. The G-6-PD deficiency was found in 37 samples (9.02%). Mean levels of Hb, PCV, MCV and Hb A2/E were similar between the two groups. Thus, G-6-PD deficiency did not enhance red blood cell pathology or induce more anemic severity in thalassemia patients.

  12. Glucose-6-phosphate dehydrogenase (G6PD) deficiency among tribal populations of India - Country scenario.

    PubMed

    Mukherjee, Malay B; Colah, Roshan B; Martin, Snehal; Ghosh, Kanjaksha

    2015-05-01

    It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from India more than 50 years ago. t0 he prevalence varies from 2.3 to 27.0 per cent with an overall prevalence of 7.7 per cent in different tribal groups. Since the tribal populations live in remote areas where malaria is/has been endemic, irrational use of antimalarial drugs could result in an increased number of cases with drug induced haemolysis. Therefore, before giving antimalarial therapy, routine screening for G6PD deficiency should be undertaken in those tribal communities where its prevalence is high.

  13. Prevalence and molecular characterization of glucose-6-phosphate dehydrogenase deficiency in northern Thailand.

    PubMed

    Charoenkwan, Pimlak; Tantiprabha, Watcharee; Sirichotiyakul, Supatra; Phusua, Arunee; Sanguansermsri, Torpong

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common inherited enzymopathies in endemic areas of malaria including Southeast Asia. The molecular features of G6PD deficiency are similar among Southeast Asian population, with differences in the type of the prominent variants in each region. This study determined the prevalence and molecular characteristics of G6PD deficiency in northern Thailand. Quantitative assay of G6PD activity was conducted in 566 neonatal cord blood samples and 6 common G6PD mutations were determined by PCR-restriction fragment length polymorphism method on G6PD complete and intermediate deficiency samples. Ninety newborns had G6PD deficiency, with prevalence in male newborns of 17% and that of female newborns having an intermediate and complete deficiency of 13% and 2%, respectively. From 95 G6PD alleles tested, G6PD Mahidol, G6PD Kaiping, G6PD Canton, G6PD Viangchan, G6PD Union, and G6PD Chinese-5 was detected in 19, 17, 15, 13, 7, and 2 alleles, respectively. Our study shows that the prevalence of G6PD deficiency in northern Thai population is high and combination of the common Chinese mutations is the majority, a distribution different from central and southern Thailand where G6PD Viangchan is the prominent variant. These findings suggest a higher proportion of assimilated Chinese ethnic group in the northern Thai population.

  14. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks.

    PubMed

    Francis, R O; Jhang, J S; Pham, H P; Hod, E A; Zimring, J C; Spitalnik, S L

    2013-11-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce haemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing haemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage and mechanisms of haemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed.

  15. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: biochemical versus genetic technologies.

    PubMed

    Kaplan, Michael; Hammerman, Cathy

    2011-06-01

    Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, a commonly occurring genetic condition, is associated in neonates with severe hemolytic episodes, extreme hyperbilirubinemia, and bilirubin encephalopathy. Neonatal screening programs for the condition should increase parental and caretaker awareness, thereby facilitating early access to treatment with resultant diminished mortality and morbidity. However, screening for G-6-PD deficiency is not widely performed. Although G-6-PD-deficient males may be accurately identified, females are more difficult to categorize because many in this group may be heterozygotes with phenotype overlap between normal homozygotes, heterozygotes, and deficient homozygotes. Screening methodologies include biochemical qualitative assays, quantitative enzymatic activity measurements and DNA-based polymerase chain reaction molecular screening. The appropriateness of any of these technologies for any particular population group or geographic area must be assessed before setting up a screening program. The pros and cons of each method, including ease of testing, cost, need for sophisticated laboratory equipment and degree of personnel training, as well as the ability to identify females, are discussed.

  16. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity.

    PubMed

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C; Campo, Brice; Sampath, Aruna; Magill, Alan J; Tekwani, Babu L; Walker, Larry A

    2013-10-22

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations.

  17. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

    PubMed Central

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C.; Campo, Brice; Sampath, Aruna; Magill, Alan J.; Tekwani, Babu L.; Walker, Larry A.

    2013-01-01

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations. PMID:24101478

  18. A case of ataxia telangiectasia with unbalanced glucose 6-phosphate dehydrogenase mosaicism in the granulocytic/monocytic lineages.

    PubMed Central

    Ferraris, A M; Melani, C; Canepa, L; Meloni, T; Forteleoni, G; Gaetani, G F

    1987-01-01

    Ataxia telangiectasia is a genetically determined disease with multi-system abnormalities and a high incidence of neoplasia. In order to define the nature of the association between ataxia telangiectasia and malignancy, we investigated a patient with the disease and heterozygote for the Mediterranean variant of the X-linked marker glucose 6-phosphate dehydrogenase. Enzymatic mosaicism in hemopoietic and nonhemopoietic cells was evaluated with the 2-deoxy glucose 6-phosphate technique. While erythrocytes, platelets, and lymphocytes expressed the same double-enzyme phenotype as tissues of nonhemopoietic origin, granulocytes and monocytes expressed almost exclusively the Mediterranean-type enzyme. We suggest that, as the result of genetic instability at the hemopoietic stem-cell level, the granulocytic/monocytic progeny enjoyed a proliferative advantage and became the predominant clone. PMID:3812485

  19. In situ thermal condensation of glucose-diammonium phosphate in wood for fire and fungal decay protection

    Treesearch

    George Chen

    2009-01-01

    Thermal condensation of glucose-diammonium phosphate in wood at 160 and 190[degrees]C will protect wood against fire and decay in one treatment using an aqueous system. For fire protection, treatments at 160 or 190[degrees]C led to low flammability as evidenced by fire-tube tests. For nonleached wood, weight losses were 1.9, 2.0, and 2.0% with chemical retentions of 56...

  20. Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings

    PubMed Central

    Sashidhar, Burla; Podile, Appa Rao

    2009-01-01

    Summary The enzyme quinoprotein glucose dehydrogenase (GDH) catalyses the oxidation of glucose to gluconic acid by direct oxidation in the periplasmic space of several Gram‐negative bacteria. Acidification of the external environment with the release of gluconic acid contributes to the solubilization of the inorganic phosphate by biofertilizer strains of the phosphate‐solubilizing bacteria. Glucose dehydrogenase (gcd) gene from Escherichia coli, and Azotobacter‐specific glutamine synthetase (glnA) and phosphate transport system (pts) promoters were isolated using sequence‐specific primers in a PCR‐based approach. Escherichia coli gcd, cloned under the control of glnA and pts promoters, was mobilized into Azotobacter vinelandii AvOP and expressed. Sorghum seeds were bacterized with the transgenic azotobacters and raised in earthen pots in green house. The transgenic azotobacters, expressing E. coli gcd, showed improved biofertilizer potential in terms of mineral phosphate solubilization and plant growth‐promoting activity with a small reduction in nitrogen fixation ability. PMID:21255283

  1. The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast.

    PubMed

    Mulet, Jose M; Alejandro, Santiago; Romero, Carlos; Serrano, Ramón

    2004-05-01

    Trk, encoded by the partially redundant genes TRK1 and TRK2, is the major potassium transporter of Saccharomyces cerevisiae. This system is specific for potassium and rubidium but, by reducing the electrical membrane potential of the plasma membrane, Trk decreases the uptake of toxic cations such as lithium, calcium, aminoglycosides and polyamines, which are transported by other systems. Gain- and loss-of-function studies indicate that TPS1, a gene encoding trehalose-6-phosphate synthase and known to modulate glucose metabolism, activates Trk and reduces the sensitivity of yeast cells to many toxic cations. This effect is independent of known regulators of Trk, such as the Hal4 and Hal5 protein kinases and the protein phosphatase calcineurin. Mutants defective in isoform 2 of phosphoglucomutase (pgm2) and mutants defective in isoform 2 of hexokinase (hxk2) exhibit similar phenotypes of reduced Trk activity and increased sensitivity to toxic cations compared with tps1 mutants. In all cases Trk activity was positively correlated with levels of glucose phosphates (glc-1-P and glc-6-P). These results indicate that Tps1, like Pgm2 and Hxk2, increases the levels of glucose phosphates and suggest that these metabolites, directly or indirectly, activate Trk.

  2. Lowering effect of firefly squid powder on triacylglycerol content and glucose-6-phosphate dehydrogenase activity in rat liver.

    PubMed

    Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro

    2014-01-01

    Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.

  3. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase.

    PubMed

    Sashidhar, B; Podile, A R

    2010-07-01

    Microbial biodiversity in the soil plays a significant role in metabolism of complex molecules, helps in plant nutrition and offers countless new genes, biochemical pathways, antibiotics and other metabolites, useful molecules for agronomic productivity. Phosphorus being the second most important macro-nutrient required by the plants, next to nitrogen, its availability in soluble form in the soils is of great importance in agriculture. Microbes present in the soil employ different strategies to make use of unavailable forms of phosphate and in turn also help plants making phosphate available for plant use. Azotobacter, a free-living nitrogen fixer, is known to increase the fertility of the soil and in turn the productivity of different crops. The glucose dehydrogenase gene, the first enzyme in the direct oxidation pathway, contributes significantly to mineral phosphate solubilization ability in several Gram-negative bacteria. It is possible to enhance further the biofertilizer potential of plant growth-promoting rhizobacteria by introducing the genes involved mineral phosphate solubilization without affecting their ability to fix nitrogen or produce phytohormones for dual benefit to agricultural crops. Glucose dehydrogenases from Gram-negative bacteria can be engineered to improve their ability to use different substrates, function at higher temperatures and EDTA tolerance, etc., through site-directed mutagenesis. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  4. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt

    PubMed Central

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  5. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    SciTech Connect

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; Jarboe, Laura R.; Unkefer, Clifford J.; Mark, Brian L.; Michalczyk, Ryszard

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.

  6. Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals.

    PubMed

    Conway, Michael K; Grunwald, Douglas; Heideman, Warren

    2012-09-01

    Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals.

  7. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats

    PubMed Central

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L.; Becker, Katja; Arese, Paolo; Elhabiri, Mourad

    2015-01-01

    Abstract Aims: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. Results: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure–activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. Innovation: The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. Conclusion: This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations. Antioxid. Redox Signal. 22, 1337–1351. PMID:25714942

  8. Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Lee, Jaewoong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack-Gyun

    2017-01-01

    Background We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. Methods In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. Results One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. Conclusions The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability. PMID:28028996

  9. Prevalence of glucose-6-phosphate dehydrogenase deficiency in jaundiced Egyptian neonates.

    PubMed

    M Abo El Fotoh, Wafaa Moustafa; Rizk, Mohammed Soliman

    2016-12-01

    The enzyme, Glucose-6-phosphate dehydrogenase (G6PD), deficiency leads to impaired production of reduced glutathione and predisposes the red cells to be damaged by oxidative metabolites, causing hemolysis. Deficient neonates may manifest clinically as hyperbilirubinemia or even kernicterus. This study was carried out to detect erythrocyte G6PD deficiency in neonatal hyperbilirubinemia. To determine the frequency and effect of G6PD deficiency, this study was conducted on 202 neonates with indirect hyperbilirubinemia. All term and preterm babies up to 13 day of age admitted with clinically evident jaundice were taken for the study. G6PD activity is measured by the UV-Kinetic Method using cellular enzyme determination reagents by spectrophotometry according to manufacturer's instructions. A total of 202 babies were enrolled in this study. Male babies outnumbered the female (71.3% versus 28.7%). Mean age of the study newborns was 3.75 ± 2.5 days. Eighteen neonates (8.9%) had G6PD deficiency, all are males. One case had combined G6PD deficiency and RH incompatibility. Mean serum total bilirubin was 17.2 ± 4.4 in G6PD deficient cases. There was significant positive correlation between the time of appearance of jaundice in days and G6PD levels in G6PD deficient cases. Neonatal hyperbilirubinemia is associated with various clinical comorbidities. G6PD deficiency is found to one important cause of neonatal jaundice developing on day 2 onwards.

  10. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis

    PubMed Central

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59–1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40–0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96–1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57–0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46–1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61–1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender. PMID:28382932

  11. A new paper-based analytical device for detection of Glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Kaewarsa, Phuritat; Laiwattanapaisal, Wanida; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic haemolytic disorder. Most persons with G6PD deficiency are asymptomatic, but exposure to oxidant drugs, such as the anti-malarial drug primaquine, may induce haemolysis, which is commonly found in Asian countries. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis. This study proposes a novel quantitative method to detect G6PD deficiency using paper-based analytical devices (G6PDD-PAD). Wax printing was utilized for fabricating circular reaction zone patterns in paper. The colorimetric assay is based on the formation of formazan via a reduction of tetra-nitro blue tetrazolium (TNBT) by the G6PD enzyme on G6PDD-PAD. Detection was achieved by capturing the colour using a desktop scanner and the colour intensity was analysed with Adobe Photoshop C56. The results showed that the G6PD activity analysed by G6PDD-PAD was highly correlated with the standard biochemical assay (SBA) (r(2)=0.87, p<0.01). Moreover, good agreement by Bland-Altman bias plot was demonstrated between G6PDD-PAD and the SBA (mean bias 1.4 IU/gHb). The detection limit was 0 IU/gHb of G6PD activity. This study demonstrates the feasibility of using G6PDD-PAD. This simple, low-cost test ($0.1/test) should be useful for diagnosing G6PD deficiency in resource-limited settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.

    PubMed

    Smith, Brandon T; Santoro, Marco; Grosfeld, Eline C; Shah, Sarita R; van den Beucken, Jeroen J J P; Jansen, John A; Mikos, Antonios G

    2017-03-01

    Calcium phosphate cements (CPCs) have been extensively investigated as scaffolds in bone tissue engineering in light of their chemical composition closely resembling the mineral component of bone extracellular matrix. Yet, the degradation kinetics of many CPCs is slow compared to de novo bone formation. In order to overcome this shortcoming, the use of porogens within CPCs has been suggested as a potential strategy to increase scaffold porosity and promote surface degradation. This study explored the usage of glucose microparticles (GMPs) as porogens for the introduction of macroporosity within CPCs, and characterized the handling properties and physicochemical characteristics of CPCs containing GMPs. Samples were fabricated with four different weight fractions of GMPs (10, 20, 30, and 40%) and two different size ranges (100-150μm and 150-300μm), and were assayed for porosity, pore size distribution, morphology, and compressive mechanical properties. Samples were further tested for their handling properties - specifically, setting time and cohesiveness. Additionally, these same analyses were conducted on samples exposed to a physiological solution in order to estimate the dissolution kinetics of GMPs and its effect on the properties of the composite. GMPs were efficiently encapsulated and homogeneously dispersed in the resulting composite. Although setting times increased for GMP/CPC formulations compared to control CPC material, increasing the Na2HPO4 concentration in the liquid phase decreased the initial setting time to clinically acceptable values (i.e. <15min). Incorporation of GMPs led to the formation of instant macroporosity upon cement setting, and encapsulated GMPs completely dissolved in three days, resulting in a further increase in scaffold porosity. However, the dissolution of GMPs decreased scaffold compressive strength. Overall, the introduction of GMPs into CPC resulted in macroporous scaffolds with good handling properties, as well as designer

  13. Glucose-1-Phosphate Transport into Protoplasts and Chloroplasts from Leaves of Arabidopsis1

    PubMed Central

    Fettke, Joerg; Malinova, Irina; Albrecht, Tanja; Hejazi, Mahdi; Steup, Martin

    2011-01-01

    Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-14C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less 14C into starch when unlabeled bicarbonate is supplied in addition to the 14C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-14C]Glc-1-P incorporate 14C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate 14C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch. PMID:21115809

  14. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females.

    PubMed

    Abdulrazzaq, Y M; Micallef, R; Qureshi, M; Dawodu, A; Ahmed, I; Khidr, A; Bastaki, S M; Al-Khayat, A; Bayoumi, R A

    1999-01-01

    The aims of this study were to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the United Arab Emirates (UAE), to describe the different mutations in the population, to determine its prevalence, and to study inheritance patterns in families of G6PD-deficient individuals. All infants born at Tawam Hospital, Al-Ain, UAE from January 1994 to September 1996 were screened at birth for their G6PD status. In addition, those attending well-baby clinics during the period were also screened for the disorder. Families of 40 known G6PD-deficient individuals, selected randomly from the records of three hospitals in the country, were assessed for G6PD deficiency. Where appropriate, this was followed by definition of G6PD mutations. Of 8198 infants, 746 (9.1%), comprising 15% of males and 5% of females tested, were found to be G6PD deficient. A total of 27 families were further assessed: of these, all but one family had the nt563 Mediterranean mutation. In one family, two individuals had the nt202 African mutation. The high manifestation of G6PD deficiency in women may be due to the preferential expression of the G6PD-deficient gene and X-inactivation of the normal gene, and/or to the presence of an 'enhancer' gene that makes the expression of the G6PD deficiency more likely. The high level of consanguinity which, theoretically, should result in a high proportion of homozygotes and consequently a higher proportion of females with the deficiency, was not found to be a significant factor.

  15. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence

    PubMed Central

    Kwok, Man Ki; Leung, Gabriel M.; Schooling, C. Mary

    2016-01-01

    Background To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. Methods In a population-representative Chinese birth cohort: “Children of 1997” (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Results Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. Conclusions G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation. PMID:27824927

  16. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis.

    PubMed

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-04-06

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59-1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40-0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96-1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57-0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46-1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61-1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender.

  17. Screening and prevention of neonatal glucose 6-phosphate dehydrogenase deficiency in Guangzhou, China.

    PubMed

    Jiang, J; Li, B; Cao, W; Jiang, X; Jia, X; Chen, Q; Wu, J

    2014-06-09

    We aimed to summarize the results of screening protocol and prevention of neonatal glucose 6-phosphate dehydrogenase (G6PD) deficiency during a 22-year-long period to provide a basis of reference for the screening of this disease. About 1,705,569 newborn subjects in Guangzhou City were screened for this deficiency. Specimens were collected according to the conventional method of specimen acquisition for "newborn dried bloodspot screening", preserved, and inspected. The specimens were studied with fluorescent spot test and quantitative fluorescence assay. Diagnosis was performed using the modified NBTG6PD/6PGD ratio method. Bloodspot filter paper specimens were sent to the laboratory within 24 h via EMS Express, and the G6PD test was performed on the same day. The G6PD deficiency-positive rate was 4.2% in the samples screened using the fluorescent spot test, while it was 5% in case of the quantitative fluorescence assay. Neonatal screening for G6PD deficiency for 11,437 cases (6117 boys and 5320 girls) showed positive results in 481 cases. About 420 cases (318 boys and 102 girls) of G6PD deficiency were confirmed with the modified Duchenne NBT ratio method. The total detection rate was 3.7:5.2% for boys and 1.9% for girls. Quantitative fluorescence assay improved the sensitivity and detection rate. Accelerating the speed of sample delivery by using Internet network systems and ensuring online availability of screening results can aid the screening and diagnosis of this deficiency within 1 week of birth.

  18. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    PubMed

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  19. Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes.

    PubMed

    Peters, Anna L; van Noorden, Cornelis J F

    2017-01-01

    Cytochemistry is the discipline that is applied to visualize specific molecules in individual cells and has become an essential tool in life sciences. Immunocytochemistry was developed in the sixties of last century and is the most frequently used cytochemical application. However, metabolic mapping is the oldest cytochemical approach to localize activity of specific enzymes, but in the last decades of the previous century and the first decade of the present century it almost became obsolete. The popularity of this approach revived in the past few years. Metabolism gained interest as player in chronic and complex diseases such as cancer, diabetes, neurodegenerative diseases, and vascular diseases and both enzyme cytochemistry and metabolic mapping have become important tools in life sciences.In this chapter, we present glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most prevalent enzyme deficiency worldwide, to illustrate recent developments in enzyme cytochemistry or metabolic mapping. The first assays which were developed quantified enzyme activity but were unreliable for single cell evaluation. The field has expanded with the development of cytochemical single cell assays and DNA testing. Still, all assays-from the earliest developed tests up to the most recently developed tests-have their place in investigations on G6PD activity. Recently, nanoscopy has become available for light and fluorescence microscopy at the nanoscale. For nanoscopy, cytochemistry is an essential tool to visualize intracellular molecular processes. The ultimate goal in the coming years will be nanoscopy of living cells so that the molecular dynamics can be studied. Cytochemistry will undoubtedly play a critical role in these developments.

  20. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates.

    PubMed

    Kaplan, M; Vreman, H J; Hammerman, C; Leiter, C; Abramov, A; Stevenson, D K

    1996-06-01

    We determined the contribution of haemolysis to the development of hyperbilirubinaemia in glucose-6-phosphate dehydrogenase (G-6-PD) deficient neonates and G-6-PD normal controls. Blood carboxyhaemoglobin (COHb), sampled on the third day of life, was measured by gas chromatography, corrected for inhaled carbon monoxide (COHbC), and expressed as a percentage of total haemoglobin concentration (Hb). Serum bilirubin was tested as clinically necessary. 37 non-jaundiced (peak serum total bilirubin (PSTB) < or = 255 mumol/l) and 20 jaundiced (PSTB > or = 257 mumol/l) G-6-PD-deficient neonates were compared to 31 non-jaundiced and 24 jaundiced controls with comparable PSTB values, respectively. COHbC values for the entire G-6-PD deficient group were higher than in the controls (0.75 +/- 0.17% v 0.62 +/- 0.19%, P < 0.001). COHbC and PSTB values did not correlate in the G-6-PD-deficient group (r = 0.15, P > 0.05) but did in the controls (r = 0.58, P < 0.001). COHbC values were increased to a similar extent in the G-6-PD-deficient, non-jaundiced (0.72 +/- 0.16%), the G-6-PD-deficient, jaundiced (0.80 +/- 0.19%) and the control, jaundiced (0.75 +/- 0.18%) subgroups, compared to the control, non-jaundiced subgroup (0.53 +/- 0.13%) (P < 0.05). Although present in G-6-PD deficient neonates, increased haemolysis was not directly related to the PSTB.

  1. DHEA prevents ribavirin-induced anemia via inhibition of glucose-6-phosphate dehydrogenase.

    PubMed

    Handala, Lynda; Domange, Barbara; Ouled-Haddou, Hakim; Garçon, Loïc; Nguyen-Khac, Eric; Helle, Francois; Bodeau, Sandra; Duverlie, Gilles; Brochot, Etienne

    2017-09-08

    Ribavirin has been widely used for antiviral therapy. Unfortunately, ribavirin-induced anemia is often a cause of limiting or interrupting treatment. Our team has observed that dehydroepiandrosterone (DHEA) has a protective effect against in vitro and in vivo ribavirin-induced hemolysis. The aim of this study was to better understand this effect as well as the underlying mechanism(s). DHEA was able to reduce in vitro intraerythrocytic ATP depletion induced by ribavirin. Only 1% of ATP remained after incubation with ribavirin (2 mM) at 37 °C for 24 h vs. 37% if DHEA (200 μM) was added (p < 0.01). DHEA also helped erythrocytes conserve their size, with a shrinkage of only 10% vs 40% at 24 h with ribavirin alone (p < 0.01), and reduced phosphatidylserine exposure at the outer membrane, i.e. 27% vs 40% at 48 h, (p < 0.05). DHEA also inhibits ribavirin-induced hemolysis, i.e. 34% vs 46.5% at 72 h (p < 0.01). DHEA is an inhibitor of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme in the hexose monophosphate shunt connected to the glycolytic pathway which is the only energy supplier of the red blood cell in the form of ATP. We have confirmed this inhibitory effect in the presence of ribavirin. All these observations suggest that ribavirin-induced hemolysis was initiated by ATP depletion, and that the inhibitory effect of DHEA on G6PD was able to rescue enough ATP to limit this hemolysis. This mechanism could be important for improving the therapeutic management of patients treated with ribavirin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion.

    PubMed

    Bacik, John-Paul; Klesmith, Justin R; Whitehead, Timothy A; Jarboe, Laura R; Unkefer, Clifford J; Mark, Brian L; Michalczyk, Ryszard

    2015-10-30

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    PubMed

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency.

  4. Glucose-6-phosphate dehydrogenase enzyme stability in filter paper dried blood spots.

    PubMed

    Flores, Sharon R; Hall, Elizabeth M; De Jesús, Víctor R

    2017-10-01

    Prior to initial distribution of Glucose-6-phosphate dehydrogenase (G6PD) proficiency testing (PT) materials, we evaluated G6PD enzyme stability in dried blood spots (DBS) under various temperature and humidity environments to develop storage and usage guidelines for our new materials. We prepared fresh G6PD-normal DBS materials and conducted stability evaluations of daily use and short and long-term storage under various temperature and humidity environments. G6PD DBS PT materials retained 92% of initial activity after 30days of use at 4°C. Materials stored at -20°C and 4°C with desiccant for 30days retained 95% and 90% of initial activity, respectively. When stored for one year at -20°C or six months at 4°C specimens retained >90% of initial activity. Specimens stored at 37°C with desiccant lost 10% activity in three days. At the end of 30days, specimens stored under 'Extreme'-humidity >50% without desiccant- conditions at 37°C assayed below the NSQAP cut off for G6PD. Humidity exacerbated loss of enzyme activity with increasing temperature and time duration. Data suggest that G6PD PT materials can be stored at 4°C and used for up to one month and can be stored at -20°C for one year and yield >90% enzyme activity. Exposure to warm temperatures, especially with elevated humidity, should be avoided. Desiccant should always be used to mitigate humidity effects. Published by Elsevier Inc.

  5. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    DOE PAGES

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; ...

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium andmore » solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.« less

  6. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate.

    PubMed

    Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang

    2013-04-01

    In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  8. Alterations in Cytosolic Glucose-Phosphate Metabolism Affect Structural Features and Biochemical Properties of Starch-Related Heteroglycans1[W

    PubMed Central

    Fettke, Joerg; Nunes-Nesi, Adriano; Alpers, Jessica; Szkop, Michal; Fernie, Alisdair R.; Steup, Martin

    2008-01-01

    The cytosolic pools of glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate are essential intermediates in several biosynthetic paths, including the formation of sucrose and cell wall constituents, and they are also linked to the cytosolic starch-related heteroglycans. In this work, structural features and biochemical properties of starch-related heteroglycans were analyzed as affected by the cytosolic glucose monophosphate metabolism using both source and sink organs from wild-type and various transgenic potato (Solanum tuberosum) plants. In leaves, increased levels of the cytosolic phosphoglucomutase (cPGM) did affect the cytosolic heteroglycans, as both the glucosyl content and the size distribution were diminished. By contrast, underexpression of cPGM resulted in an unchanged size distribution and an unaltered or even increased glucosyl content of the heteroglycans. Heteroglycans prepared from potato tubers were found to be similar to those from leaves but were not significantly affected by the level of cPGM activity. However, external glucose or Glc-1-P exerted entirely different effects on the cytosolic heteroglycans when added to tuber discs. Glucose was directed mainly toward starch and cell wall material, but incorporation into the constituents of the cytosolic heteroglycans was very low and roughly reflected the relative monomeric abundance. By contrast, Glc-1-P was selectively taken up by the tuber discs and resulted in a fast increase in the glucosyl content of the heteroglycans that quantitatively reflected the level of the cytosolic phosphorylase activity. Based on 14C labeling experiments, we propose that in the cytosol, glucose and Glc-1-P are metabolized by largely separated paths. PMID:18805950

  9. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

    PubMed

    Lucarelli, Giuseppe; Galleggiante, Vanessa; Rutigliano, Monica; Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-05-30

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target.

  10. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma

    PubMed Central

    Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-01-01

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target. PMID:25945836

  11. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers.

    PubMed Central

    Béliveau, R; Demeule, M; Ibnoul-Khatib, H; Bergeron, M; Beauregard, G; Potier, M

    1988-01-01

    Radiation-inactivation studies were performed on brush-border-membrane vesicles purified from rat kidney cortex. No alteration of the structural integrity of the vesicles was apparent in electron micrographs of irradiated and unirradiated vesicles. The size distributions of the vesicles were also similar for both populations. The molecular sizes of two-brush-border-membrane enzymes, alkaline phosphatase and 5'-nucleotidase, estimated by the radiation-inactivation technique, were 104800 +/- 3500 and 89,400 +/- 1800 Da respectively. Polyacrylamide-gel-electrophoresis patterns of membrane proteins remained unaltered by the radiation treatment, except in the region of higher-molecular-mass proteins, where destruction of the proteins was visible. The molecular size of two of these proteins was estimated from their mobilities in polyacrylamide gels and was similar to the target size, estimated from densitometric scanning of the gel. Intravesicular volume, estimated by the uptake of D-glucose at equilibrium, was unaffected by irradiation. Uptake of Na+, D-glucose and phosphate were measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Na+-independent D-glucose and phosphate uptakes were totally unaffected in the dose range used (0-9 Mrad). The Na+-dependent uptake of D-glucose was studied in irradiated vesicles, and the molecular size of the transporter was found to be 288,000 Da. The size of the Na+-dependent phosphate carrier was also estimated, and a value of 234,000 Da was obtained. Images Fig. 1. Fig. 4. PMID:3421923

  12. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage.

    PubMed

    Rolletschek, Hardy; Nguyen, Thuy H; Häusler, Rainer E; Rutten, Twan; Göbel, Cornelia; Feussner, Ivo; Radchuk, Ruslana; Tewes, Annegret; Claus, Bernhard; Klukas, Christian; Linemann, Ute; Weber, Hans; Wobus, Ulrich; Borisjuk, Ljudmilla

    2007-08-01

    The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.

  13. Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker's yeast and deoxyriboaldolase-expressing Escherichia coli.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-06-01

    2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.

  14. Crystal Structure Analysis of Human Glutamine : Fructose 6-Phosphate Amidotransferase, a Key Regulator in Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Nakaishi, Yuichiro; Bando, Masahiko

    Glutamine : fructose 6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosythetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose 6-phosphate and linear glucosamine 6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.

  15. 2-Deoxy-2-fluoro-D-glucose as a functional probe for NMR: the unique metabolism beyond its 6-phosphate.

    PubMed

    Kanazawa, Y; Yamane, H; Shinohara, S; Kuribayashi, S; Momozono, Y; Yamato, Y; Kojima, M; Masuda, K

    1996-05-01

    Epimeric conversion of 2-deoxy-2-fluoro-D-glucose (FDG) to its 2-epimer 2-deoxy-2-fluoro-D-mannose (FDM) proved by 19F NMR has been shown to reflect the brain activity. To examine the feasibility of FDG as a new NMR probe for in vivo functional monitoring, we studied here the fundamental NMR properties of metabolites, spectral assignments, and reliability of NMR quantification. Metabolites confirmed in brain besides FDM-6-phosphate were as follows: FDG-1-phosphate, FDG-1,6-bisphosphate, FDM-1-phosphate, FDM-1,6-bisphosphate, and FDG and FDM derivatives of nucleotide diphosphate. NMR quantification of these metabolites was evaluated in comparison with the method of 18F-labeled FDG. In the NMR functional study using FDG, where a high dose is inevitable, the dose dependence of uptake was investigated. FDG uptake in mouse brain was shown to be in the range of interpretation using the biochemical parameters of enzymes for glucose uptake as long as a dose of < 200 mg/kg was used.

  16. Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: A retrospective observational study.

    PubMed

    Dore, Maria P; Davoli, Agnese; Longo, Nunzio; Marras, Giuseppina; Pes, Giovanni M

    2016-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been associated with a lower cancer risk, possibly via a reduction of mutagenic oxygen-free radicals and by reducing nicotinamide-adeninedinucleotide-phosphate for replicating cells. In Sardinia, the enzyme defect is frequent as a consequence of selection by malaria in the past. This study investigated the relationship between G6PD deficiency and colorectal cancer (CRC).A retrospective case-control study of 3901 patients from Sardinia, who underwent a colonoscopy between 2006 and 2016, was performed. G6PD phenotype was assessed for each subject. The proportion of pre and malignant colorectal lesions was compared in cases (G6PD-deficient) and controls (G6PD-normal). Data concerning age, sex, family history of CRC, smoking habits, body height, and weight, and also associated diseases were collected.The CRC risk reduction was 43.2% among G6PD-deficient compared with G6PD-normal subjects (odds ratio 0.57, 95% confidence interval 0.37-0.87, P = 0.010). Age, sex, family history of CRC, and also comorbidities such as type 1 diabetes and ischemic heart disease, were significantly associated with CRC risk. The protective effect of G6PD deficiency remained significant after adjusting for all covariates by logistic regression analysis, and was consistently lower across all age groups.Glucose-6-phosphate dehydrogenase enzyme deficiency is associated with a reduced risk of CRC.

  17. Glucose-6-phosphate dehydrogenase deficiency in people living in malaria endemic districts of Nepal.

    PubMed

    Ghimire, Prakash; Singh, Nihal; Ortega, Leonard; Rijal, Komal Raj; Adhikari, Bipin; Thakur, Garib Das; Marasini, Baburam

    2017-05-23

    Glucose-6-phosphate dehydrogenase (G6PD) is a rate limiting enzyme of the pentose phosphate pathway and is closely associated with the haemolytic disorders among patients receiving anti-malarial drugs, such as primaquine. G6PD deficiency (G6PDd) is an impending factor for radical treatment of malaria which affects the clearance of gametocytes from the blood and subsequent delay in the achievement of malaria elimination. The main objective of this study was to assess the prevalence of G6PD deficiency in six malaria endemic districts in Southern Nepal. A cross-sectional population based prevalence survey was conducted in six malaria endemic districts of Nepal, during April-Dec 2013. A total of 1341 blood samples were tested for G6PDd using two different rapid diagnostic test kits (Binax-Now(®) and Care Start™). Equal proportions of participants from each district (n ≥ 200) were enrolled considering ethnic and demographic representation of the population groups. Out of total 1341 blood specimens collected from six districts, the overall prevalence of G6PDd was 97/1341; 7.23% on Binax Now and 81/1341; 6.0% on Care Start test. Higher prevalence was observed in male than females [Binax Now: male 10.2%; 53/521 versus female 5.4%; 44/820 (p = 0.003) and Care Start: male 8.4%; 44/521 versus female 4.5%; 37/820 (p = 0.003)]. G6PDd was higher in ethnic groups Rajbanshi (11.7%; 19/162) and Tharu (5.6%; 56/1005) (p = 0.006), major inhabitant of the endemic districts. Higher prevalence of G6PDd was found in Jhapa (22/224; 9.8%) and Morang districts (18/225; 8%) (p = 0.031). In a multivariate analysis, male were found at more risk for G6PDd than females, on Binax test (aOR = 1.97; CI 1.28-3.03; p = 0.002) and Care Start test (aOR = 1.86; CI 1.16-2.97; p = 0.009). The higher prevalence of G6PDd in certain ethnic group, gender and geographical region clearly demonstrates clustering of the cases and ascertained the risk groups within the population. This is

  18. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis.

    PubMed

    Bonini, B M; Van Vaeck, C; Larsson, C; Gustafsson, L; Ma, P; Winderickx, J; Van Dijck, P; Thevelein, J M

    2000-08-15

    The TPS1 gene, encoding trehalose-6-phosphate synthase (TPS), exerts an essential control on the influx of glucose into glycolysis in the yeast Saccharomyces cerevisiae. The deletion of TPS1 causes an inability to grow on glucose because of a hyperaccumulation of sugar phosphates and depletion of ATP and phosphate. We show that expression of the Escherichia coli homologue, otsA, in a yeast tps1 mutant results in high TPS activity. Although the trehalose 6-phosphate (Tre6P) level during exponential growth on glucose was at least as high as in a wild-type yeast strain, growth on glucose was only partly restored and the lag phase was much longer. Measurement of the glycolytic metabolites immediately after the addition of glucose showed that in spite of a normal Tre6P accumulation there was still a partial hyperaccumulation of sugar phosphates. Strong elevation of the Tre6P level by the additional deletion of the TPS2 gene, which encodes Tre6P phosphatase, was not able to cause a strong decrease in the sugar phosphate levels in comparison with the wild-type strain. In addition, in chemostat experiments the short-term response to a glucose pulse was delayed, but normal metabolism was regained over a longer period. These results show that Tre6P synthesis from a heterologous TPS enzyme can to some extent restore the control of glucose influx into glycolysis and growth on glucose in yeast. However, they also indicate that the yeast TPS enzyme, as opposed to the E. coli otsA gene product, is able to increase the efficiency of the Tre6P control on glucose influx into yeast glycolysis.

  19. Hereditary sideroblastic anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro family.

    PubMed

    Prasad, A S; Tranchida, L; Konno, E T; Berman, L; Albert, S; Sing, C F; Brewer, G J

    1968-06-01

    Detailed clinical and genetic studies have been performed in a Negro family, which segregated for sex-linked sideroblastic anemia and glucose-6-phosphate dehydrogenase (G-6-DP) deficiency. This is the first such pedigree reported. Males affected with sideroblastic anemia had growth retardation, hypochromic microcytic anemia, elevated serum iron, decreased unsaturated iron-binding capacity, increased (59)Fe clearance, low (59)Fe incorporation into erythrocytes, normal erythrocyte survival ((51)Cr), normal hemoglobin electrophoretic pattern, erythroblastic hyperplasia of marrow with increased iron, and marked increase in marrow sideroblasts, particularly ringed sideroblasts. Perinuclear deposition of ferric aggregates was demonstrated to be intramitochondrial by electron microscopy. Female carriers of the sideroblastic gene were normal but exhibited a dimorphic population of erythrocytes including normocytic and microcytic cells. The bone marrow studies in the female (mother) showed ringed marrow sideroblasts. Studies of G-6-PD involved the methemoglobin elution test for G-6-PD activity of individual erythrocytes, quantitative G-6-PD assay, and electrophoresis. In the pedigree, linkage information was obtained from a doubly heterozygous woman, four of her sons, and five of her daughters. Three sons were doubly affected, and one was normal. One daughter appeared to be a recombinant. The genes appeared to be linked in the coupling phase in the mother. The maximum likelihood estimate of the recombination value was 0.14. By means of Price-Jones curves, the microcytic red cells in peripheral blood were quantitated in female carriers. The sideroblast count in the bone marrow in the mother corresponded closely to the percentage of microcytic cells in peripheral blood. This is the second example in which the cellular expression of a sex-linked trait has been documented in the human red cells, the first one being G-6-PD deficiency. The coexistence of the two genes in doubly

  20. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

    PubMed Central

    Sarker, Suprovath Kumar; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh. PMID:27880809

  1. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia.

    PubMed

    Valencia, Sócrates Herrera; Ocampo, Iván Darío; Arce-Plata, María Isabel; Recht, Judith; Arévalo-Herrera, Myriam

    2016-05-26

    Glucose 6-phosphate dehydrogenase (G6PD) is an enzyme involved in prevention of cellular oxidative damage, particularly protecting erythrocytes from haemolysis. An estimated 400 million people present variable degrees of inherited G6PD deficiency (G6PDd) which puts them at risk for developing haemolysis triggered by several risk factors including multiple drugs and certain foods. Primaquine (PQ) is a widely used anti-malarial drug that can trigger haemolysis in individuals with G6PDd. Intensification of malaria control programmes worldwide and particularly malaria elimination planning in some regions recommend a more extensive use of PQ and related drugs in populations with different G6PDd prevalence. This a preliminary study to assess the prevalence of G6PDd in representative malaria endemic areas of Colombia by measuring G6PD phonotype and genotypes. Volunteers (n = 426) from four malaria endemic areas in Colombia (Buenaventura, Tumaco, Tierralta and Quibdo) were enrolled. Blood samples were drawn to evaluate G6PD enzymatic activity by using a quantitative G6PD test and a subset of samples was analysed by PCR-RFLP to determine the frequency of the three most common G6PD genotypic variants: A-, A+ and Mediterranean. A total of 28 individuals (6.56 %) displayed either severe or intermediate G6PDd. The highest prevalence (3.51 %) was in Buenaventura, whereas G6PDd prevalence was lower (<1 %) in Tierralta and Quibdo. G6PD A alleles were the most frequent (15.23 %) particularly in Buenaventura and Tumaco. Overall, a high frequency of G6PD A- genotype, followed by A+ genotype was found in the analysed population. G6PDd based on enzymatic activity as well as G6PD A allelic variants were found in malaria-endemic populations on the Pacific coast of Colombia, where most of malaria cases are caused by Plasmodium vivax infections. These infections are treated for 14 days with PQ, however there are no official reports of PQ-induced haemolytic crises. Further

  2. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.

    PubMed

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-05-02

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans

  3. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border.

    PubMed

    Li, Qing; Yang, Fang; Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24

  4. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia.

    PubMed

    Tsegaye, Arega; Golassa, Lemu; Mamo, Hassen; Erko, Berhanu

    2014-11-18

    Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is widespread across malaria endemic regions. G6PD-deficient individuals are at risk of haemolysis when exposed, among other agents, to primaquine and tafenoquine, which are capable of blocking malaria transmission by killing Plasmodium falciparum gametocytes and preventing Plasmodium vivax relapses by targeting hypnozoites. It is evident that no measures are currently in place to ensure safe delivery of these drugs within the context of G6PDd risk. Thus, determining G6PDd prevalence in malarious areas would contribute towards avoiding possible complications in malaria elimination using the drugs. This study, therefore, was aimed at determining G6PDd prevalence in Gambella hospital, southwest Ethiopia, using CareStart™ G6PDd fluorescence spot test. Venous blood samples were collected from febrile patients (n = 449) attending Gambella hospital in November-December 2013. Malaria was diagnosed using blood films and G6PDd was screened using CareStart™ G6PDd screening test (Access Bio, New Jersey, USA). Haematological parameters were also measured. The association of G6PD phenotype with sex, ethnic group and malaria smear positivity was tested. Malaria prevalence was 59.2% (96.6% of the cases being P. falciparum mono infections). Totally 33 participants (7.3%) were G6PD-deficient with no significant difference between the sexes. The chance of being G6PD-deficient was significantly higher for the native ethnic groups (Anuak and Nuer) compared to the 'highlanders'/settlers (odds ratio (OD) = 3.9, 95% confidence interval (CI) 0.481-31.418 for Anuak vs 'highlanders'; OD = 4.9, 95% CI 0.635-38.00 for Nuer vs 'highlanders'). G6PDd prevalence among the Nuer (14.3%) was significantly higher than that for the Anuak (12.0%). G6PDd prevalence in the area is substantial with 30 (90.9%) of the 33 deficient individuals having malaria suggesting the non-protective role of the disorder at least from clinical malaria

  5. Glucose-6-phosphate dehydrogenase polymorphisms and susceptibility to mild malaria in Dogon and Fulani, Mali.

    PubMed

    Maiga, Bakary; Dolo, Amagana; Campino, Susana; Sepulveda, Nuno; Corran, Patrick; Rockett, Kirk A; Troye-Blomberg, Marita; Doumbo, Ogobara K; Clark, Taane G

    2014-07-11

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with protection from severe malaria, and potentially uncomplicated malaria phenotypes. It has been documented that G6PD deficiency in sub-Saharan Africa is due to the 202A/376G G6PD A-allele, and association studies have used genotyping as a convenient technique for epidemiological studies. However, recent studies have shown discrepancies in G6PD202/376 associations with severe malaria. There is evidence to suggest that other G6PD deficiency alleles may be common in some regions of West Africa, and that allelic heterogeneity could explain these discrepancies. A cross-sectional epidemiological study of malaria susceptibility was conducted during 2006 and 2007 in the Sahel meso-endemic malaria zone of Mali. The study included Dogon (n = 375) and Fulani (n = 337) sympatric ethnic groups, where the latter group is characterized by lower susceptibility to Plasmodium falciparum malaria. Fifty-three G6PD polymorphisms, including 202/376, were genotyped across the 712 samples. Evidence of association of these G6PD polymorphisms and mild malaria was assessed in both ethnic groups using genotypic and haplotypic statistical tests. It was confirmed that the Fulani are less susceptible to malaria, and the 202A mutation is rare in this group (<1% versus Dogon 7.9%). The Betica-Selma 968C/376G (~11% enzymatic activity) was more common in Fulani (6.1% vs Dogon 0.0%). There are differences in haplotype frequencies between Dogon and Fulani, and association analysis did not reveal strong evidence of protective G6PD genetic effects against uncomplicated malaria in both ethnic groups and gender. However, there was some evidence of increased risk of mild malaria in Dogon with the 202A mutation, attaining borderline statistical significance in females. The rs915942 polymorphism was found to be associated with asymptomatic malaria in Dogon females, and the rs61042368 polymorphism was associated with clinical malaria in

  6. Glucose-6-phosphate dehydrogenase polymorphisms and susceptibility to mild malaria in Dogon and Fulani, Mali

    PubMed Central

    2014-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with protection from severe malaria, and potentially uncomplicated malaria phenotypes. It has been documented that G6PD deficiency in sub-Saharan Africa is due to the 202A/376G G6PD A-allele, and association studies have used genotyping as a convenient technique for epidemiological studies. However, recent studies have shown discrepancies in G6PD202/376 associations with severe malaria. There is evidence to suggest that other G6PD deficiency alleles may be common in some regions of West Africa, and that allelic heterogeneity could explain these discrepancies. Methods A cross-sectional epidemiological study of malaria susceptibility was conducted during 2006 and 2007 in the Sahel meso-endemic malaria zone of Mali. The study included Dogon (n = 375) and Fulani (n = 337) sympatric ethnic groups, where the latter group is characterized by lower susceptibility to Plasmodium falciparum malaria. Fifty-three G6PD polymorphisms, including 202/376, were genotyped across the 712 samples. Evidence of association of these G6PD polymorphisms and mild malaria was assessed in both ethnic groups using genotypic and haplotypic statistical tests. Results It was confirmed that the Fulani are less susceptible to malaria, and the 202A mutation is rare in this group (< 1% versus Dogon 7.9%). The Betica-Selma 968C/376G (~11% enzymatic activity) was more common in Fulani (6.1% vs Dogon 0.0%). There are differences in haplotype frequencies between Dogon and Fulani, and association analysis did not reveal strong evidence of protective G6PD genetic effects against uncomplicated malaria in both ethnic groups and gender. However, there was some evidence of increased risk of mild malaria in Dogon with the 202A mutation, attaining borderline statistical significance in females. The rs915942 polymorphism was found to be associated with asymptomatic malaria in Dogon females, and the rs61042368 polymorphism was

  7. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets.

    PubMed

    Hecker, Peter A; Mapanga, Rudo F; Kimar, Charlene P; Ribeiro, Rogerio F; Brown, Bethany H; O'Connell, Kelly A; Cox, James W; Shekar, Kadambari C; Asemu, Girma; Essop, M Faadiel; Stanley, William C

    2012-10-15

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects.

  8. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    PubMed

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  9. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report.

    PubMed

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management.

  10. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report

    PubMed Central

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management. PMID:26435857

  11. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti.

    PubMed

    Barra, Lise; Pica, Nathalie; Gouffi, Kamila; Walker, Graham C; Blanco, Carlos; Trautwetter, Annie

    2003-12-12

    Inactivation of the zwf gene in Sinorhizobium meliloti induces an osmosensitive phenotype and the loss of osmoprotection by trehalose and sucrose, but not by ectoine and glycine betaine. This phenotype is not linked to a defect in the biosynthesis of endogenous solutes. zwf expression is induced by high osmolarity, sucrose and trehalose, but is repressed by betaine. A zwf mutant is more sensitive than its parental strain to superoxide ions, suggesting that glucose 6-phosphate dehydrogenase involvement in the osmotic response most likely results from the production of reactive oxygen species during osmotic stress.

  12. Hemizygous Expression of Glucose-6-Phosphate Dehydrogenase in Erythrocytes of Heterozygotes for the Lesch-Nyhan Syndrome*

    PubMed Central

    Nyhan, William L.; Bakay, Bohdan; Connor, James D.; Marks, James F.; Keele, Doman K.

    1970-01-01

    In women heterozygous for hypoxanthine guanine phosphoribosyl trasferase deficiency, the activity of this enzyme in the erythrocyte is usually normal. In a key kindred two such obligate heterozygotes were also heterozygous for glucose-6-phosphate dehydrogenase types A and B. The AB genotype was confirmed in one by assay of skin fibroblasts. Erythrocytes were exclusively of type B. These observations suggest the clonal origin of the hematopoietic system in these women from a primordial cell line with a single active X chromosome. Images PMID:5263751

  13. The Preterm Infant: A High-Risk Situation for Neonatal Hyperbilirubinemia Due to Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Kaplan, Michael; Hammerman, Cathy; Bhutani, Vinod K

    2016-06-01

    Prematurity and glucose-6-phosphate dehydrogenase (G6PD) deficiency are risk factors for neonatal hyperbilirubinemia. The 2 conditions may interact additively or synergistically, contributing to extreme hyperbilirubinemia, with the potential for bilirubin neurotoxicity. This hyperbilirubinemia is the result of sudden, unpredictable, and acute episodes of hemolysis in combination with immaturity of bilirubin elimination, primarily of conjugation. Avoidance of contact with known triggers of hemolysis in G6PD-deficient individuals will prevent some, but not all, episodes of hemolysis. All preterm infants with G6PD deficiency should be vigilantly observed for the development of jaundice both in hospital and after discharge home.

  14. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  15. Free fatty acid inhibition of the insulin induction of glucose-6-phosphate dehydrogenase in rat hepatocyte monolayers.

    PubMed

    Salati, L M; Adkins-Finke, B; Clarke, S D

    1988-01-01

    Rat hepatocytes in monolayer culture were utilized to determine if the decrease in glucose-6-phosphate dehydrogenase (G6PD) activity resulting from the ingestion of fat can be mimicked by the addition of fatty acids to a chemically, hormonally defined medium. G6PD activity in cultured hepatocytes was induced several-fold by insulin. Dexamethasone or T3 did not amplify the insulin induction of G6PD. Glucose alone increased G6PD activity in cultured hepatocytes from fasted donors by nearly 500%. Insulin in combination with glucose induced G6PD an additional two-fold. The increase in G6PD activity caused by glucose was greater in hepatocytes isolated from 72 hr-fasted rats as compared to fed donor rats. Such a response was reminiscent of the "overshoot" phenomenon in which G6PD activity is induced well above the normal level by fasting-refeeding rats a high glucose diet. Addition of linoleate to the medium resulted in a significant suppression of insulin's ability to induce G6PD, but linoleate had no effect on the induction of G6PD activity by glucose alone. A shift to the right in the insulin-response curve for the induction of G6PD also was detected for the induction of malic enzyme and acetyl-CoA carboxylase. Arachidonate (0.25 mM) was a significantly more effective inhibitor of the insulin action than linoleate was. Apparently rat hepatocytes in monolayer culture can be utilized as a model to investigate the molecular mechanism by which fatty acids inhibit the production of lipogenic enzymes. In part, this mechanism of fatty acid inhibition involves desensitization of hepatocytes to the lipogenic action of insulin.

  16. Overcompensation in Response to Herbivory in Arabidopsis thaliana: The Role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway

    PubMed Central

    Siddappaji, Madhura H.; Scholes, Daniel R.; Bohn, Martin; Paige, Ken N.

    2013-01-01

    That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (i.e., plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of Arabidopsis thaliana, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensating ecotype Columbia. From the QTL/microarray screen we uncovered one gene that plays a significant role in overcompensation: glucose-6-phosphate-1-dehydrogenase (G6PDH1). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of G6PDH1 verify its role in compensation. G6PDH1 is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression. PMID:23934891

  17. Protective effects of glucose-6-phosphate and NADP against alpha-chaconine-induced developmental toxicity in Xenopus embryos.

    PubMed

    Rayburn, J R; Bantle, J A; Qualls, C W; Friedman, M

    1995-12-01

    In previous studies a metabolic activation system (MAS) composed of Aroclor 1254-induced rat liver microsomes led to an apparent reduction of potato glycoalkaloid developmental toxicity in the frog embryo teratogenesis assay-Xenopus (FETAX). The reasons for this reduction were investigated in this study. The effect of the exogenous MAS on glycoalkaloid developmental toxicity was examined in two experiments in which a concentration series of alpha-chaconine was tested with a MAS with and without a reduced nicotinamide adenine dinucleotide (NADPH) generator system consisting of NADPH, oxidized nicotinamide adenine dinucleotide (NADP), glucose-6-phosphate (G6P) and glucose-6-phosphate dehydrogenase. The NADPH generator system and each of its individual components were tested at a single high concentration of alpha-chaconine to evaluate their potential effects on toxicity. The findings indicated that the protective effect of the MAS was not the result of detoxification by microsomal enzyme systems, but was caused by two components of the NADPH generator system, namely NADP and G6P. G6P was more protective of alpha-chaconine-induced toxicity than NADP at the concentrations tested. Thus, FETAX with a MAS must be performed with appropriate controls that take into account the possible interactions with individual components of the system.

  18. Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate.

    PubMed

    Banerjee, Suchanda; Sarkar, Priyabrata; Turner, Anthony P F

    2013-08-15

    Glucose-6-phosphate (G6P) plays an important role in carbohydrate metabolism of all living organisms. Compared with the conventional analytical methods available for estimation of G6P, the biosensors having relative simplicity, specificity, low cost, and fast response time are a promising alternative. We have reported a G6P biosensor based on screen-printed electrode using Prussian Blue (PB) nanoparticles and enzymes, glucose-6-phosphate dehydrogenase, and glutathione reductase. The PB nanoparticles acted as a mediator and thereby enhanced the rate of electron transfer in a bienzymatic reaction. The Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy study confirmed the formation of PB, whereas atomic force microscopy revealed that PB nanoparticles were approximately 25 to 30 nm in diameter. Various optimization studies, such as pH, enzyme, and cofactor loading, were conducted to obtain maximum amperometric responses for G6P measurement. The developed G6P biosensor showed a broad linear response in the range of 0.01 to 1.25 mM, with a detection limit of 2.3 μM and sensitivity of 63.3 μA/mM at a signal-to-noise ratio of 3 within 15s at an applied working potential of -100 mV. The proposed G6P biosensor also exhibited good stability and excellent anti-interference ability, and it worked well for serum samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. False-Positive Newborn Screen Using the Beutler Spot Assay for Galactosemia in Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Stuhrman, Grace; Perez Juanazo, Stefanie J; Crivelly, Kea; Smith, Jennifer; Andersson, Hans; Morava, Eva

    2017-01-12

    Classical galactosemia is detected through newborn screening by measuring galactose-1-phosphate uridylyltransferase (GALT) in the USA primarily via the Beutler spot assay. We report on an 18-month-old patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency that was originally diagnosed with classical galactosemia. The patient presented with elevated liver function enzymes and bilirubinemia and was immediately treated with soy-based formula. Confirmatory tests revealed deficiency of the GALT enzyme, however, full-sequencing of GALT was normal, suggestive of a different ideology. The Beutler spot assay uses three other enzymatic steps in addition to GALT. A deficiency in either of these enzymes can result in suspected decreased GALT activity when using the Beutler assay. Congenital Disorders of Glycosylation screening for phosphoglucomutase-1 deficiency was negative. Quantitative analysis of G6PD enzyme in red blood cells showed a severe deficiency and a deletion in G6PD. Soy-formula, the standard treatment for galactosemia, has been reported to trigger hemolysis in G6PD deficient patients. G6PD and phosphoglucomutase-1 deficiencies should be considered when confirmatory tests are negative for pathogenic variants in GALT and galactose-1-phosphate level is normal.

  20. Decreased Glutathione S-transferase Level and Neonatal Hyperbilirubinemia Associated with Glucose-6-phosphate Dehydrogenase Deficiency: A Perspective Review.

    PubMed

    Al-Abdi, Sameer Yaseen

    2017-02-01

    Classically, genetically decreased bilirubin conjugation and/or hemolysis account for the mechanisms contributing to neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, these mechanisms are not involved in most cases of this hyperbilirubinemia. Additional plausible mechanisms for G6PD deficiency-associated hyperbilirubinemia need to be considered. Glutathione S-transferases (GST) activity depends on a steady quantity of reduced form of glutathione (GSH). If GSH is oxidized, it is reduced back by glutathione reductase, which requires the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). The main source of NADPH is the pentose phosphate pathway, in which G6PD is the first enzyme. Rat kidney GSH, rat liver GST, and human red blood cell GST levels have been found to positively correlate with G6PD levels in their respective tissues. As G6PD is expressed in hepatocytes, it is expected that GST levels would be significantly decreased in hepatocytes of G6PD-deficient neonates. As hepatic GST binds bilirubin and prevents their reflux into circulation, hypothesis that decreased GST levels in hepatocytes is an additional mechanism contributing to G6PD deficiency-associated hyperbilirubinemia seems plausible. Evidence for and against this hypothesis are discussed in this article hoping to stimulate further research on the role of GST in G6PD deficiency-associated hyperbilirubinemia.

  1. The glucose 6-phosphate shunt around the Calvin-Benson cycle.

    PubMed

    Sharkey, Thomas D; Weise, Sean E

    2016-07-01

    It is just over 60 years since a cycle for the regeneration of the CO2-acceptor used in photosynthesis was proposed. In this opinion paper, we revisit the origins of the Calvin-Benson cycle that occurred at the time that the hexose monophosphate shunt, now called the pentose phosphate pathway, was being worked out. Eventually the pentose phosphate pathway was separated into two branches, an oxidative branch and a non-oxidative branch. It is generally thought that the Calvin-Benson cycle is the reverse of the non-oxidative branch of the pentose phosphate pathway but we describe crucial differences and also propose that some carbon routinely passes through the oxidative branch of the pentose phosphate pathway. This creates a futile cycle but may help to stabilize photosynthesis. If it occurs it could explain a number of enigmas including the lack of complete labelling of the Calvin-Benson cycle intermediates when carbon isotopes are fed to photosynthesizing leaves. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels in a mesocosm study

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Thingstad, T. F.; Løvdal, T.; Grossart, H.-P.; Larsen, A.; Allgaier, M.; Meyerhöfer, M.; Schulz, K. G.; Wohlers, J.; Zöllner, E.; Riebesell, U.

    2008-05-01

    Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6-10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced

  3. Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen Trypanosoma cruzi in complex with substrate

    PubMed Central

    Ortíz, Cecilia; Larrieux, Nicole; Medeiros, Andrea; Botti, Horacio; Comini, Marcelo; Buschiazzo, Alejandro

    2011-01-01

    An N-terminally truncated version of the enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi lacking the first 37 residues was crystallized both in its apo form and in a binary complex with glucose 6-­phosphate. The crystals both belonged to space group P21 and diffracted to 2.85 and 3.35 Å resolution, respectively. Self-rotation function maps were consistent with point group 222. The structure was solved by molecular replacement, confirming a tetrameric quaternary structure. PMID:22102256

  4. Time course of radiolabeled 2-deoxy-D-glucose 6-phosphate turnover in cerebral cortex of goats

    SciTech Connect

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-02-01

    The vivo dephosphorylation rate of 2-deoxy-D-glucose 6-phosphate (DGP) in the cerebral cortex of goats injected intravenously with radiolabeled 2-deoxy-D-glucose (DG) was investigated. Serial rapidly frozen samples of parietal cortical gray tissue were obtained at regular intervals over time periods from 45 min to 3 h in awake goats or in paralyzed and artificially ventilated goats maintained under 70% N/sub 2/O or pentobarbital sodium anesthesia. The samples were analyzed for glucose content and separate DG and DGP activities. The rate parameters for phosphorylation (k/sup *//sub 4/) and dephosphorylation (k/sup *//sub 4/) were estimated in each animal. The glucose phosphorylation rate (PR) was calculated over the intervals 3-5 (or 6), 3-10, 3-20, 3-30, and 3-45 min, assuming k/sup *//sub 4/ = O. As the evaluation period was extended beyond 10 min, the calculated PR became increasingly less when compared with that calculated over the 3- to 5- (or 6) min interval (PR/sub i/). Furthermore, as metabolic activity decreased, the magnitude of the error increased such that at 45 min pentobarbital-anesthetize goats underestimated the PR/sub i/ by 46.5% compared with only 23.1 in N/sub 2/O-anesthetized goats. This was also reflected in the >twofold higher k/sup *//sub 4//k/sup *//sub 3/ ratio in the pentobarbital vs. N/sub 2/O-anesthetized group. It is concluded that when using the DG method in the goat, DGP dephosphorylation cannot be ignored when employing >10-min evaluation periods.

  5. An audit of the precipitating factors for haemolytic crisis among glucose-6-phosphate dehydrogenase-deficient paediatric patients.

    PubMed

    Al-Azzam, Sayer I; Al-Ajlony, Mohammad J; Al-Khateeb, Taqwa; Alzoubi, Karem H; Mhaidat, Nizar; Ayoub, Abeer

    2009-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common genetic enzyme deficiencies leading to haemolytic anaemia. This study aimed to investigate the precipitating factors for haemolytic crisis in G6PD-deficient paediatric patients in Jordan. A retrospective study of data from the records of 258 paediatric patients admitted to a major paediatric hospital in North Jordan from January 2001 until April 2007. Patients included were G6PD-deficient children who were admitted to the hospital secondary to an episode of haemolytic anaemia. Of 258 paediatric patients, 244 (94.2%) had developed a haemolytic episode secondary to ingestion of fava beans. The remaining 14 children (5.8%) developed a haemolytic episode triggered by other factors, such as drugs and upper respiratory infections. Fava bean ingestion is the major precipitating factor for haemolytic anaemia episodes among G6PD-deficient children in Jordan.

  6. Co-occurrence of biphenotypic acute leukaemia, glucose 6-phosphate dehydrogenase deficiency and haemoglobin E trait in a single child.

    PubMed

    Mallick, Debkrishna; Thapa, Rajoo; Biswas, Biswajit

    2016-02-01

    Acute leukaemias occur as the result of clonal expansion subsequent to transformation and arrest at a normal differentiation stage of haematopoietic precursors, which commit to a single lineage, such as myeloid or B-lymphoid or T-lymphoid cells. Biphenotypic acute leukaemia (BAL) constitutes a biologically different group of leukaemia arising from a precursor stem cell and co-expressing more than one lineage specific marker. The present report describes a child with unusual co-occurrence of biphenotypic (B-precursor cell and Myeloid) acute leukaemia, haemoglobin E trait and glucose 6-phosphate dehydrogenase (G6-PD) deficiency. To the best of our knowledge, this constellation of haematological conditions in a single child has never been described before.

  7. Periodontal considerations in a patient with glucose-6-phosphate dehydrogenase deficiency with associated pancytopenia: A rare case report.

    PubMed

    Gupta, Harinder; Arora, Ruchika; Kamboj, Monika

    2014-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme defect in humans. G6PD deficiency is widely distributed in tropical and subtropical parts of the world and a conservative estimate is that at least 500 million people have a G6PD deficient gene. In several of these areas, the frequency of a G6PD deficiency gene may be as high as 20% or more. The vast majority of people with G6PD deficiency remain clinically asymptomatic throughout their lifetime. However, all of them have an increased risk of developing neonatal jaundice and a risk of developing acute hemolytic anemia when challenged by a number of oxidative agents. The most important treatment measure is prevention: Avoidance of the drugs and foods that cause hemolysis.

  8. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  9. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells.

    PubMed

    Bayliak, M; Gospodaryov, D; Semchyshyn, H; Lushchak, V

    2008-04-01

    The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.

  10. Regulatory mechanism of the three-component system HptRSA in glucose-6-phosphate uptake in Staphylococcus aureus.

    PubMed

    Yang, Yifan; Sun, Haipeng; Liu, Xiaoyu; Wang, Mingxing; Xue, Ting; Sun, Baolin

    2016-06-01

    Glucose-6-phosphate (G6P) is a common alternative carbon source for various bacteria, and its uptake usually relies on the hexose phosphate antiporter UhpT. In the human pathogenic bacterium Staphylococcus aureus, the ability to utilize different nutrients, particularly alternative carbon source uptake in glucose-limiting conditions, is essential for its fitness in the host environment during the infectious process. It has been reported that G6P uptake in S. aureus is regulated by the three-component system HptRSA. When G6P is provided as the only carbon source, HptRSA could sense extracellular G6P and activate uhpT expression to facilitate G6P utilization. However, the regulatory mechanism of HptRSA is still unclear. In this study, we further investigated the HptRSA system in S. aureus. First, we confirmed that HptRSA is necessary for the normal growth of this pathogen in chemically defined medium with G6P supplementation, and we discovered that HptRSA could exclusively sense extracellular G6P compared to the other organophosphates we tested. Next, using isothermal titration calorimetry, we found that HptA could bind to G6P, suggesting that it may be the G6P sensor. After that experiment, using an electrophoresis mobility shift assay, we verified that the response regulator HptR could directly bind to the uhpT promoter and identified a putative binding site from -67 to -96-bp. Subsequently, we created different point mutations in the putative binding site and revealed that the entire 30-bp sequence is essential for HptR regulation. In summary, we unveiled the regulatory mechanism of the HptRSA system in S. aureus, HptA most likely functions as the G6P sensor, and HptR could implement its regulatory function by directly binding to a conserved, approximately 30-bp sequence in the uhpT promoter.

  11. The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: its role in the defense of the parasite against oxidative stress.

    PubMed

    Igoillo-Esteve, Mariana; Cazzulo, Juan José

    2006-10-01

    The Trypanosoma cruzi glucose-6-phosphate dehydrogenase (G6PDH) is encoded by several genes located in three of the parasite chromosomes. All the sequences present two possible start codons, 111bp apart, also present in its Trypanosoma brucei counterpart. As the 37 residues comprised between the two candidate initiator methionines of T. brucei and T. cruzi G6PDHs constitute an unusual N-terminal extension only present in trypanosomatids, two forms of the T. cruzi G6PDH were expressed in Escherichia coli: a long one (Tc-G6PDH-L) translated from the first ATG codon, and a short one (Tc-G6PDH-S) translated from the second. Both were purified and their kinetic constants determined. The apparent K(m) for glucose-6-phosphate was 189.9, 98.4, and 288microM, for Tc-G6PDH-L, Tc-G6PDH-S and native Tc-G6PDH, respectively. The apparent K(m) for NADP was similar for both recombinant proteins. The Tc-G6PDH-L as well as the native enzyme, was inactivated by DTT while the Tc-G6PDH-S was unaffected by the reducing agent. This behavior could be related to the presence of two Cys groups in the N-terminal extension of the Tc-G6PDH-L similarly to the redox regulated G6PDHs from chloroplasts and cyanobacteria. This property, together with a remarkable induction (up to 46-fold) of the T. cruzi G6PDH in metacyclic trypomastigotes under oxidative stress conditions, suggests that the enzyme may play a prominent role in the defense mechanisms of the parasite against oxidative stress becoming an important target for chemotherapy. Western blots using antibodies against the N-terminal extension in Tc-G6PDH-L show that this form is expressed in the parasite.

  12. Cloning, expression, purification and characterization of his-tagged human glucose-6-phosphate dehydrogenase: a simplified method for protein yield.

    PubMed

    Gómez-Manzo, Saúl; Terrón-Hernández, Jessica; de la Mora-de la Mora, Ignacio; García-Torres, Itzhel; López-Velázquez, Gabriel; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2013-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.

  13. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana.

    PubMed Central

    Vieille, C; Hess, J M; Kelly, R M; Zeikus, J G

    1995-01-01

    The xylA gene coding for xylose isomerase from the hyperthermophile Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 444 residues with a calculated molecular weight of 50,892. The native enzyme was a homotetramer with a molecular weight of 200,000. This xylose isomerase was a member of the family II enzymes (these differ from family I isomerases by the presence of approximately 50 additional residues at the amino terminus). The enzyme was extremely thermostable, with optimal activity above 95 degrees C. The xylose isomerase showed maximum activity at pH 7.1, but it had high relative activity over a broad pH range. The catalytic efficiency (kcat/Km) of the enzyme was essentially constant between 60 and 90 degrees C, and the catalytic efficiency decreased between 90 and 98 degrees C primarily because of a large increase in Km. The T. neapolitana xylose isomerase had a higher turnover number and a lower Km for glucose than other family II xylose isomerases. Comparisons with other xylose isomerases showed that the catalytic and cation binding regions were well conserved. Comparison of different xylose isomerase sequences showed that numbers of asparagine and glutamine residues decreased with increasing enzyme thermostability, presumably as a thermophilic strategy for diminishing the potential for chemical denaturation through deamidation at elevated temperatures. PMID:7646024

  14. A New Substrate Cycle in Plants. Evidence for a High Glucose-Phosphate-to-Glucose Turnover from in Vivo Steady-State and Pulse-Labeling Experiments with [13C]Glucose and [14C]Glucose1

    PubMed Central

    Alonso, Ana Paula; Vigeolas, Hélène; Raymond, Philippe; Rolin, Dominique; Dieuaide-Noubhani, Martine

    2005-01-01

    Substrate (futile) cycling involving carbohydrate turnover has been widely reported in plant tissues, although its extent, mechanisms, and functions are not well known. In this study, two complementary approaches, short and steady-state labeling experiments, were used to analyze glucose metabolism in maize (Zea mays) root tips. Unidirectional rates of synthesis for storage compounds (starch, Suc, and cell wall polysaccharides) were determined by short labeling experiments using [U-14C]glucose and compared with net synthesis fluxes to determine the rate of glucose production from these storage compounds. Steady-state labeling with [1-13C]glucose and [U-13C]glucose showed that the redistribution of label between carbon C-1 and C-6 in glucose is close to that in cytosolic hexose-P. These results indicate a high resynthesis flux of glucose from hexose-P that is not accounted for by glucose recycling from storage compounds, thus suggesting the occurrence of a direct glucose-P-to-glucose conversion. An enzyme assay confirmed the presence of substantial glucose-6-phosphatase activity in maize root tips. This new glucose-P-to-glucose cycle was shown to consume around 40% of the ATP generated in the cell, whereas Suc cycling consumes at most 3% to 6% of the ATP produced. The rate of glucose-P cycling differs by a factor of 3 between a maize W22 line and the hybrid maize cv Dea, and is significantly decreased by a carbohydrate starvation pretreatment. PMID:16024683

  15. Glucose Metabolism via the Pentose Phosphate Pathway, Glycolysis and Krebs Cycle in an Orthotopic Mouse Model of Human Brain Tumors

    PubMed Central

    Marin-Valencia, Isaac; Cho, Steve K.; Rakheja, Dinesh; Hatanpaa, Kimmo J.; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B.; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M.; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Malloy, Craig R.; Bachoo, Robert M.

    2013-01-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using an orthotopic mouse model of primary human glioblastoma (GBM) and a brain metastatic renal tumor of clear cell renal cell carcinoma (CCRCC) histology, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-13C2]glucose. The [3-13C]lactate/[2,3-13C2]lactate ratio was similar for both the GBM and renal tumor and their respective surrounding brains (GBM: 0.197 ± 0.011 and 0.195 ± 0.033 (p=1); CCRCC: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than PPP flux in these tumors, and that PPP flux into the lactate pool was similar in both tissues. Remarkably, 13C-13C coupling was observed in molecules derived from Krebs cycle intermediates in both tumors, denoting glucose oxidation. In the renal tumor, in contrast to GBM and surrounding brain, 13C multiplets of GABA differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. Additionally, the orthotopic renal tumor, the patient’s primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a CCRCC tissue microarray suggesting that GABA synthesis is cell-autonomous in at least a subset of renal tumors. Taken together, these data demonstrate that 13C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. PMID:22383401

  16. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors.

    PubMed

    Marin-Valencia, Isaac; Cho, Steve K; Rakheja, Dinesh; Hatanpaa, Kimmo J; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M; Deberardinis, Ralph J; Maher, Elizabeth A; Malloy, Craig R; Bachoo, Robert M

    2012-10-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-(13) C(2) ]glucose. The [3-(13) C]lactate/[2,3-(13) C(2) ]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, (13) C-(13) C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, (13) C multiplets of γ-aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that (13) C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Glucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea.

    PubMed

    Lama, Judeh L; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH) gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/hypoxia with the tide cycle and shows multiple metabolic and enzymatic adaptations that support anaerobiosis. This study investigated the kinetic, physical and regulatory properties of G6PDH from hepatopancreas of L. littorea to determine if the enzyme is differentially regulated in response to anoxia, thereby providing altered pentose phosphate pathway functionality under oxygen stress conditions. Several kinetic properties of G6PDH differed significantly between aerobic and 24 h anoxic conditions; compared with the aerobic state, anoxic G6PDH (assayed at pH 8) showed a 38% decrease in K m G6P and enhanced inhibition by urea, whereas in pH 6 assays K m NADP and maximal activity changed significantly between the two states. The mechanism underlying anoxia-responsive changes in enzyme properties proved to be a change in the phosphorylation state of G6PDH. This was documented with immunoblotting using an anti-phosphoserine antibody, in vitro incubations that stimulated endogenous protein kinases versus protein phosphatases and significantly changed K m G6P, and phosphorylation of the enzyme with (32)P-ATP. All these data indicated that the aerobic and anoxic forms of G6PDH were the high and low phosphate forms, respectively, and that phosphorylation state was modulated in response to selected endogenous protein kinases (PKA or PKG) and protein phosphatases (PP1 or PP2C). Anoxia-induced changes in the phosphorylation state of G6PDH may facilitate sustained or increased production of NADPH to enhance antioxidant defense during long term anaerobiosis and/or during the transition

  18. Inactivation of sll1556 in Synechocystis strain PCC 6803 impairs isoprenoid biosynthesis from pentose phosphate cycle substrates in vitro.

    PubMed

    Poliquin, Kelly; Ershov, Yuri V; Cunningham, Francis X; Woreta, Tinsay T; Gantt, R Raymond; Gantt, Elisabeth

    2004-07-01

    In cyanobacteria many compounds, including chlorophylls, carotenoids, and hopanoids, are synthesized from the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate. Isoprenoid biosynthesis in extracts of the cyanobacterium Synechocystis strain PCC 6803 grown under photosynthetic conditions, stimulated by pentose phosphate cycle substrates, does not appear to require methylerythritol phosphate pathway intermediates. The sll1556 gene, distantly related to type 2 IPP isomerase genes, was disrupted by insertion of a Kanr cassette. The mutant was fully viable under photosynthetic conditions although impaired in the utilization of pentose phosphate cycle substrates. Compared to the parental strain the Deltasll1556 mutant (i) is deficient in isoprenoid biosynthesis in vitro with substrates including glyceraldehyde-3-phosphate, fructose-6-phosphate, and glucose-6-phosphate; (ii) has smaller cells (diameter ca. 13% less); (iii) has fewer thylakoids (ca. 30% less); and (iv) has a more extensive fibrous outer wall layer. Isoprenoid biosynthesis is restored with pentose phosphate cycle substrates plus the recombinant Sll1556 protein in the Deltasll1556 supernatant fraction. IPP isomerase activity could not be demonstrated for the purified Sll1556 protein under our in vitro conditions. The reduction of thylakoid area and the effect on outer wall layer components are consistent with an impairment of isoprenoid biosynthesis in the mutant, possibly via hopanoid biosynthesis. Our findings are consistent with an alternate metabolic shunt for biosynthesis of isoprenoids. Copyright 2004 American Society for Microbiology

  19. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    PubMed Central

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  20. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    PubMed

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  1. Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic-metabolic model.

    PubMed

    Valancin, Alexandre; Srinivasan, Balasubrahmanyan; Rivoal, Jean; Jolicoeur, Mario

    2013-03-01

    A kinetic-metabolic model of Solanum tuberosum hairy roots is presented in the interest of understanding the effect on the plant cell metabolism of a 90% decrease in cytosolic triosephosphate isomerase (cTPI, EC 5.3.1.1) expression by antisense RNA. The model considers major metabolic pathways including glycolysis, pentose phosphate pathway, and TCA cycle, as well as anabolic reactions leading to lipids, nucleic acids, amino acids, and structural hexoses synthesis. Measurements were taken from shake flask cultures for six extracellular nutrients (sucrose, fructose, glucose, ammonia, nitrate, and inorganic phosphate) and 15 intracellular compounds including sugar phosphates (G6P, F6P, R5P, E4P) and organic acids (PYR, aKG, SUCC, FUM, MAL) and the six nutrients. From model simulations and experimental data it can be noted that plant cell metabolism redistributes metabolic fluxes to compensate for the cTPI decrease, leading to modifications in metabolites levels. Antisense roots showed increased exchanges between the pentose phosphate pathway and the glycolysis, an increased oxygen uptake and growth rate. Copyright © 2012 Wiley Periodicals, Inc.

  2. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.

    PubMed

    Zhao, Gang; Zhao, Yanxin; Wang, Xingyu; Xu, Ying

    2012-07-01

    NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP.

    PubMed

    Liao, Hehuan; Myung, Suwan; Zhang, Y-H Percival

    2012-02-01

    The discovery of stable and active polyphosphate glucokinase (PPGK, EC 2.7.1.63) would be vital to cascade enzyme biocatalysis that does not require a costly ATP input. An open reading frame Tfu_1811 from Thermobifida fusca YX encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was overexpressed in Escherichia coli. Mg²⁺ was an indispensible activator. This enzyme exhibited the highest activity in the presence of 4 mM Mg²⁺ at 55°C and pH 9.0. Under its suboptimal conditions (pH 7.5), the k (cat) and K(m) values of CBM-PPGK on glucose were 96.9 and 39.7 s⁻¹ as well as 0.77 and 0.45 mM at 37°C and 50°C respectively. The thermoinactivation of CBM-PPGK was independent of its mass concentration. Through one-step enzyme purification and immobilization on a high-capacity regenerated amorphous cellulose, immobilized CBM-PPGK had an approximately eightfold half lifetime enhancement (i.e., t(1/2) = 120 min) as compared to free enzyme at 50°C. To our limited knowledge, this enzyme was the first thermostable PPGK reported. Free PPGK and immobilized CBM-PPGK had total turnover number values of 126,000 and 961,000 mol product per mol enzyme, respectively, suggesting their great potential in glucose-6-phosphate generation based on low-cost polyphosphate.

  4. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression

    PubMed Central

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.1 In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes’ adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.2 PMID:24575366

  5. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    PubMed

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  6. Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Chen, Ye; Leary, Julie A.

    2005-02-01

    A mass spectrometry based method for the direct determination of kinetic constants for phosphoglucose isomerase (PGI) and phosphomannose isomerase (PMI) is described. PGI catalyzes the interconversion between glucose-6-phosphate (Glc6P) and fructose-6-phosphate (Fru6P) and PMI performs the same function between mannose-6-phosphate (Man6P) and Fru6P. These two enzymes are essential in the pathways of glycolytic or oxidative metabolism of carbohydrates and have been considered as potential therapeutic targets. Traditionally, they are assayed either by spectrophotometric detection of Glc6P with one or more coupling enzymes or by a colorimetric detection of Fru6P. However, no suitable assay for Man6P has been developed yet to study the reaction of PMI in the direction from Fru6P to Man6P. In the work presented herein, a general assay for the isomeric substrate-product pair between Glc6P and Fru6P or between Man6P and Fru6P was developed, with the aim of directly studying the kinetics of PGI and PMI in both directions. The 6-phosphorylated aldose and ketose isomers were distinguished based on their corresponding tandem mass spectra (MS2) obtained on a quadrupole ion trap mass spectrometer, and a multicomponent quantification method was utilized to determine the composition of binary mixtures. Using this method, the conversion between Fru6P and Glc6P and that between Fru6P and Man6P are directly monitored. The equilibrium constants for the reversible reactions catalyzed by PGI and PMI are measured to be 0.3 and 1.1, respectively, and the kinetic parameters for both substrates of PGI and PMI are also determined. The values of KM and Vmax for Fru6P as substrate of PMI are reported to be 0.15 mM and 7.78 [mu]mol/(min mg), respectively. All other kinetic parameters measured correlate well with those obtained using traditional methods, demonstrating the accuracy and reliability of this assay.

  7. Inhibition of beta-glucosidase activity in Trichoderma reesei C30 cellulase by derivatives and isomers of glucose

    SciTech Connect

    Woodward, J.; Arnold, S.L.

    1981-07-01

    The inhibition of Beta-glucosidase in Trichoderma reesei C30 cellulase by D-glucose, its isomers, and derivatives was studied using cellobiose and p-nitrophenyl-beta-glucoside (PNPG) as substrates for determining enzyme activity. The enzymatic hydrolysis of both substrates was inhibited competitively by glucose with approximate K1 values of 0.5mM and 8.7mM for cellobiose and PNPG as substrate, respectively. This inhibition by glucose was maximal at pH 4.8 and no inhibition was observed at pH 6.5 and above. The alpha anomer of glucose inhibited beta-glucosidase to a greater extent than did the beta form. Compared with D-glucose, L-glucose, D-glucose-6-phosphate, and D-glucose-1-phosphate inhibited the enzyme to a much lesser extent, unlike D-glucose-L-cysteine which was almost as inhibitory as glucose itself when cellobiose was used as substrate. Fructose (2-100mM) was found to be a poor inhibitor of the enzyme. It is suggested that high rates of cellobiose hydrolysis catalyzed by beta-glucosidase may be prolonged by converting the reaction product glucose to fructose using a suitable preparation of glucose isomerase.

  8. Inhibition of /beta/-glucosidase activity in Trichoderma reesei C30 cellulase by derivatives and isomers of glucose

    SciTech Connect

    Woodward, J.; Arnold, S.L.

    1981-07-01

    The inhibition of /beta/-glucosidase in Trichoderma reesei C30 cellulase by D-glucose, its isomers, and derivatives was studied using cellobiose and p-nitrophenyl-/beta/-glucoside as substrates for determining enzyme activity. The enzymatic hydrolysis of both substrates was inhibited competitively by glucose. This inhibition by glucose was maximal at pH 4.8 and no inhibition was observed at pH 6.5 and above. The /alpha/anomer of glucose inhibited /beta/-glucosidase to a greater extent than did the /beta/form. Compared with D-glucose, L-glucose, D-glucose-6-phosphate, and D-glucose-1-phosphate inhibited the enzyme to a much lesser extent, unlike D-glucose-L-cysteine which was almost as inhibitory as glucose itself when cellobiose was used as substrate. Fructose (2-100mM) was found to be a poor inhibitor of the enzyme. It is suggested that high rates of cellobiose hydrolysis catalyzed by /beta/-glucosidase may be prolonged by converting the reaction product glucose to fructose using a suitable preparation of glucose isomerase. 20 refs.

  9. Glucose metabolism in the mucosa of the small intestine

    PubMed Central

    Srivastava, L. M.; Hübscher, G.

    1966-01-01

    1. The occurrence of five enzymes of the pentose phosphate pathway in cell-free preparations of the mucosa of rat small intestine is described. These enzymes were found to be localized mainly in the supernatant fraction (6240000g-min.). 2. The properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were studied with respect to Km values for substrates and NADP+, pH optima and the effects of p-chloromercuribenzoate and palmitoyl-CoA. Higher total and specific activities of these two dehydrogenases were noted in the proximal half of the small intestine of the rat than in the distal half. 3. The specific activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the mucosa of the small intestine of the rat, cat, rabbit and guinea pig were compared. 4. In the rat the specific activities of ribose 5-phosphate isomerase, transketolase and transaldolase were higher in the supernatant fractions from the intestinal mucosa than in those from the liver. 5. The role of the pentose phosphate pathway is discussed in relation to the metabolism of hexose phosphates in the intestinal mucosa. PMID:4382012

  10. An unexpected emergency request for glucose-6-phosphate dehydrogenase testing in a 9-year-old African American boy.

    PubMed

    Platteborze, Peter; Matos, Renee; Gidvany-Diaz, Vinod; Wilhelms, Kelly

    2015-01-01

    9-year-old African American male. Recently diagnosed with acute lymphoblastic leukemia (ALL) after investigation into a large anterior mediastinal mass causing airway compression. The day before the unexpected urgent glucose-6-phosphate dehydrogenase (G6PD) request, the patient was diagnosed with an aggressive form of leukemia and a significant tumor mass causing airway compression. A computed tomography (CT) scan indicated potential renal involvement. Based on this information and the size of the mass, the patient was referred for immediate chemotherapy. However, there was a concern that he could develop tumor lysis syndrome (TLS) during treatment. To avoid this condition, the pediatric intensive care unit (ICU) sought to pretreat the child with rasburicase, which led to the emergency G6PD request. Unknown. Largely unknown, but no apparent chronic diseases. Three weeks of progressively worsening lymphadenopathy, coughing, night sweats, mild hepatosplenomegaly, and breathing difficulty when supine. The patient arrived at the medical center for airway management and had a temperature of 36.1°C; blood pressure, 120/87 mmHg; pulse, 115 bpm; respiratory rate, 22 breaths per minute, with labored breathing but normal O(2) saturation while upright and awake, in room air. Table 1. Copyright© by the American Society for Clinical Pathology (ASCP).

  11. Determination of the inhibitory effect of green tea extract on glucose-6-phosphate dehydrogenase based on multilayer capillary enzyme microreactor.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li

    2016-08-01

    Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Guo, Liping; Yang, Li

    2015-05-15

    In this study, we present an on-line measurement of enzyme activity and inhibition of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme using capillary electrophoresis based immobilized enzyme micro-reactor (CE-based IMER). The IMER was prepared using a two-step protocol based on electrostatic assembly. The micro-reactor exhibited good stability and reproducibility for on-line assay of G6PDH enzyme. Both the activity as well as the inhibition of the G6PDH enzyme by six inhibitors, including three metals (Cu(2+), Pb(2+), Cd(2+)), vancomycin, urea and KMnO4, were investigated using on-line assay of the CE-based IMERs. The enzyme activity and inhibition kinetic constants were measured using the IMERs which were found to be consistent with those using traditional off-line enzyme assays. The kinetic mechanism of each inhibitor was also determined. The present study demonstrates the feasibility of using CE-based IMERs for rapid and efficient on-line assay of G6PDH, an important enzyme in the pentosephosphate pathway of human metabolism.

  13. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh

    PubMed Central

    Shannon, Kerry L.; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S.; Khyang, Jacob; Ram, Malathi; Zahirul Haq, M.; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E.; Shields, Timothy; Nyunt, Myaing M.; Khan, Wasif A.; Sack, David A.; Sullivan, David J.

    2015-01-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case–uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07–46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42–1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria. PMID:26101273

  14. Incidence and molecular characterization of Glucose-6-Phosphate Dehydrogenase deficiency among neonates for newborn screening in Chaozhou, China.

    PubMed

    Yang, H; Wang, Q; Zheng, L; Zhan, X-F; Lin, M; Lin, F; Tong, X; Luo, Z-Y; Huang, Y; Yang, L-Y

    2015-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in southern China. The aim of this study is to assess the extent of this disease in Chinese neonates and determine its molecular characteristics using a novel molecular screening method. A total of 2500 neonates were routinely screened for G6PD deficiency using a modified fluorescent spot test (FST). PCR-high-resolution melting (HRM) analysis was then used for the molecular assay. The overall incidence of G6PD deficiency was 2.68% in our study cohort. Frequency in male population was 3.22% (44 neonates of 1365 male neonates), and in female population was 2.03% (23 neonates of 1135 female neonates). Of the 67 newborns suspected to be G6PD deficient based on FST (44 males, 23 females), 58 of 67 (87%) were detected with gene alterations. Seven kinds of mutations [c.95A>G, c.392G>T, c.493A>G, c.871G>A, c.1360C>T, c.1376G>T, and c.1388G>A] were identified by HRM analysis. Routine newborn screening in Chaozhou, China with a relatively high prevalence of G6PD deficiency is justified and meets the World Health Organization recommendation. The usage of molecular diagnosis can favor the detection of heterozygotes which can be a supplement to regular newborn screening and useful for premarital and prenatal diagnosis for G6PD deficiency. © 2014 John Wiley & Sons Ltd.

  15. Cloning, characterization and computational analysis of the 5' regulatory region of ovine glucose 6-phosphate dehydrogenase gene.

    PubMed

    Laliotis, George P; Bizelis, Iosif; Argyrokastritis, Alexandros; Rogdakis, Emmanuel

    2007-08-01

    To better understand the structure and the function of ovine glucose 6-phosphate dehydrogenase (G6PD) promoter region, a genome-walking procedure was followed to isolate and sequence a 1628 bp fragment, containing the 5' regulatory region of the G6PD gene. In silico analysis of the sequence showed many conserved blocks and features with other known mammalian G6PD promoter regions. The analysis also revealed the presence of one TATA box, three GC boxes, two E-boxes and several binding sites for Stimulating Protein 1 (Sp1) and Activator Protein 2 (AP2). Moreover, elements involved in the regulation of lipogenesis like USF (Upstream stimulating factor), HSF (Heat Shock Factor), F2F (Prolactin receptor), RAR (Retinoid Acid Receptor), STRE (STress Response Element), RORa (Retinoid related Orphan Receptor alpha), GATA (GATA binding factor), RFX (Regulatory Factor X), SREBP (Sterol Regulatory Element Binding Protein), MEP (Metal Element Protein), CREB (insulin receptor), PRE (Progesterone receptor), and HNF4 (Hepatic Nuclear Factor 4) were detected. The most important regulatory motifs were found to be conserved as compared to those in human and mouse counterparts. However, some differences were noted, likely indicating differences in the transcription regulation of G6PD gene between ruminant and non-ruminant species.

  16. Regulation of Enzyme Activities in Drosophila: Genetic Variation Affecting Induction of Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in Larvae

    PubMed Central

    Cochrane, Bruce J.; Lucchesi, John C.; Laurie-Ahlberg, C. C.

    1983-01-01

    The genetic basis of modulation by dietary sucrose of the enzyme activities glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities in third instar larvae of Drosophila melanogaster was investigated, using isogenic lines derived from wild populations. Considerable genetically determined variation in response was detected among lines that differed only in their third chromosome constitution. Comparison of crossreacting material between a responding and a nonresponding line showed that the G6PD activity variation is due to changes in G6PD protein level. These differences in responses are localized in the fat body, with 300 m m sucrose in the diet resulting in a sixfold stimulation of G6PD activity and a fourfold one of 6PGD in the line showing the strongest response. In this tissue, the responses of the two enzymes are closely correlated with one another. Using recombinant lines, we obtained data that suggested the existence of more than one gene on chromosome III involved in the regulation of G6PD in the fat body, and at least one of these genes affects the level of 6PGD as well. PMID:6416921

  17. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-)

    SciTech Connect

    Hirono, A.; Beutler, E. )

    1988-06-01

    Glucose-6-phosphate dehydrogenase A(-) is a common variant in Blacks that causes sensitivity to drug- and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3{prime} end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C{sup 33} {yields} G, G{sup 202} {yields} A, and A{sup 376} {yields} G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The findings of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein.

  18. On-plate enzyme and inhibition assay of glucose-6-phosphate dehydrogenase using thin-layer chromatography.

    PubMed

    Tian, Miaomiao; Mohamed, Amara Camara; Wang, Shengtian; Yang, Li

    2015-08-01

    We performed on-plate enzyme and inhibition assays of glucose 6-phosphate dehydrogenase using thin-layer chromatography. The assays were accomplished based on different retardation factors of the substrates, enzyme, and products. All the necessary steps were integrated on-plate in one developing process, including substrate/enzyme mixing, reaction starting, and quenching as well as product separation. In order to quantitatively measure the enzyme reaction, the developed plate was then densitometrically evaluated to determine the peak area of the product. Rapid and high-throughput assays were achieved by loading different substrate spots and/or enzyme (and inhibition) spots in different tracks on the plate. The on-plate enzyme assay could be finished in a developing time of only 4 min, with good track-to-track and plate-to-plate repeatability. Moreover, we determined the Km values of the enzyme reaction and Ki values of the inhibition (Pb(2+) Cd(2+) and Cu(2+) as inhibitors), as well as the corresponding kinetics using the on-plate assay. Taken together, our method expanded the application of thin-layer chromatography in enzyme assays, and it could be potentially used in research fields for rapid and quantitative measurement of enzyme activity and inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  20. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-05-21

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.

  1. Inhibition of Glucose-6-Phosphate Dehydrogenase Could Enhance 1,4-Benzoquinone-Induced Oxidative Damage in K562 Cells

    PubMed Central

    Cao, Meng; Yang, Wenwen; Sun, Fengmei; Xu, Cheng

    2016-01-01

    Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD) maintains the reduced state of glutathione (GSH). This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ). G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS) level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure. PMID:27656260

  2. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Shannon, Kerry L; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S; Khyang, Jacob; Ram, Malathi; Haq, M Zahirul; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E; Shields, Timothy; Nyunt, Myaing M; Khan, Wasif A; Sack, David A; Sullivan, David J

    2015-08-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case-uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07-46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42-1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria.

  3. Canine malignant hyperthermia susceptibility: erythrocytic defects--osmotic fragility, glucose-6-phosphate dehydrogenase deficiency and abnormal Ca2+ homeostasis.

    PubMed Central

    O'Brien, P J; Forsyth, G W; Olexson, D W; Thatte, H S; Addis, P B

    1984-01-01

    Two dogs were diagnosed as malignant hyperthermia susceptible based on increased susceptibility (P less than 0.001) of biopsied muscle to caffeine-induced contracture. Erythrocytes from malignant hyperthermia and normal dogs were then examined for an antioxidant system deficiency. Values for serum muscle enzymes, reticulocytes and corpuscular hemoglobin were mildly elevated. Osmotic fragility was increased: hemolysis occurred at a NaCl concentration 10 mM higher than for normal dogs (P less than 0.001). A 35% glucose-6-phosphate dehydrogenase deficiency (P less than 0.001) with a 40% compensatory increase (P less than 0.01) in 6-phosphogluconate dehydrogenase activity was found. The membrane Ca2+-activated ATPase activity was abnormal: 100% increased with a 40% decreased Arrhenius activation energy (P less than 0.005) and increased thermostability. A 40% increased intracellular accumulation of total Ca2+ occurred in response to in vitro energy depletion in erythrocytes from one malignant hyperthermia dog (P less than 0.01). The multifactorial pattern of inheritance and the broad spectrum of malignant hyperthermia susceptibility are proposed to result from an antioxidant system deficit unmasking or aggravating an intrinsic muscle membrane anomaly. An individual from a family with a history of malignant hyperthermia or unexplained anesthetic death should be considered malignant hyperthermia susceptible if erythrocyte osmotic fragility is abnormal and there is a mild, unexplained elevation in serum creatine kinase. PMID:6150753

  4. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    SciTech Connect

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.; Adamson, J.W.

    1988-06-01

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.

  5. Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells.

    PubMed Central

    Di Monaco, M.; Pizzini, A.; Gatto, V.; Leonardi, L.; Gallo, M.; Brignardello, E.; Boccuzzi, G.

    1997-01-01

    Epidemiological and experimental studies suggest that dehydroepiandrosterone (DHEA) exerts a protective effect against breast cancer. It has been proposed that the non-competitive inhibition of glucose-6-phosphate dehydrogenase (G6PD) contributes to DHEA antitumor action. We evaluated the effects of DHEA on G6PD activity and on the in vitro proliferation of two human breast cancer cell lines, MCF-7 (steroid receptor positive) and MDA-MB-231 (steroid receptor negative), in a serum-free assay. DHEA inhibition of G6PD was only found to occur at concentrations above 10 microM; at these high concentrations, the growth curve was parallel to the enzyme inhibition curve in both cell lines. In contrast, at concentrations in the in vivo breast tissue concentration range, neither cell growth nor enzyme activity was inhibited. The results failed to confirm DHEA's putative anti-tumor action on breast cancer through G6PD inhibition, as the enzyme blockade only becomes apparent at pharmacological concentrations of the steroid. PMID:9052415

  6. Red Cell Glucose-6-Phosphate Dehydrogenase Deficiency—A Newly Recognized Cause of Neonatal Jaundice and Kernicterus in Canada

    PubMed Central

    Naiman, J. Lawrence; Kosoy, Martin H.

    1964-01-01

    Seven male newborns of Chinese, Greek and Italian origin presented with severe hemolytic jaundice due to red cell glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. In five, the hemolysis was precipitated by inhalation of mothball vapours in the home. Kernicterus was evident upon admission in six infants and was fatal in four of these. G-6-PD deficiency should be suspected as a cause of jaundice in all full-term male infants of these ethnic groups. The diagnosis can be confirmed in any hospital by the methemoglobin reduction test. In areas similar to Toronto, Canada, where these high-risk ethnic groups prevail, the following measures are recommended: (1) detection of G-6-PD deficient newborns by screening cord bloods of all infants of these ethnic groups; (2) protection of affected infants from potentially hemolytic agents such as naphthalene, certain vitamin K preparations, and sulfonamides; and (3) observation of serum bilirubin levels to assess the need for exchange transfusion for hyperbilirubinemia. ImagesFig. 1 PMID:14226101

  7. Overexpression, purification and enzymatic characterization of a recombinant plastidial glucose-6-phosphate dehydrogenase from barley (Hordeum vulgare cv. Nure) roots.

    PubMed

    Cardi, Manuela; Chibani, Kamel; Castiglia, Daniela; Cafasso, Donata; Pizzo, Elio; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2013-12-01

    In plant cells, the plastidial glucose 6-phosphate dehydrogenase (P2-G6PDH, EC 1.1.1.49) represents one of the most important sources of NADPH. However, previous studies revealed that both native and recombinant purified P2-G6PDHs show a great instability and a rapid loss of catalytic activity. Therefore it has been difficult to describe accurately the catalytic and physico-chemical properties of these isoforms. The plastidial G6PDH encoding sequence from barley roots (Hordeum vulgare cv. Nure), devoid of a long plastidial transit peptide, was expressed as recombinant protein in Escherichia coli, either untagged or with an N-terminal his-tag. After purification from both the soluble fraction and inclusion bodies, we have explored its kinetic parameters, as well as its sensitivity to reduction. The obtained results are consistent with values determined for other P2-G6PDHs previously purified from barley roots and from other land plants. Overall, these data shed light on the catalytic mechanism of plant P2-G6PDH, summarized in a proposed model in which the sequential mechanism is very similar to the mammalian cytosolic G6PDH. This study provides a rational basis to consider the recombinant barley root P2-G6PDH as a good model for further kinetic and structural studies.

  8. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  9. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors.

    PubMed

    Tzounakas, Vassilis L; Kriebardis, Anastasios G; Georgatzakou, Hara T; Foudoulaki-Paparizos, Leontini E; Dzieciatkowska, Monika; Wither, Matthew J; Nemkov, Travis; Hansen, Kirk C; Papassideri, Issidora S; D'Alessandro, Angelo; Antonelou, Marianna H

    2016-09-01

    This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD(+)) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in "Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells" [1].

  10. Second trimester amniotic fluid glucose, uric acid, phosphate, potassium, and sodium concentrations in relation to maternal pre-pregnancy BMI and birth weight centiles.

    PubMed

    Fotiou, Maria; Michaelidou, Alexandra Maria; Athanasiadis, Apostolos P; Menexes, Georgios; Symeonidou, Maria; Koulourida, Vasiliki; Ganidou, Maria; Theodoridis, Theodoros D; Tarlatzis, Basil C

    2015-05-01

    To study the evolution profile of amniotic fluid (AF) glucose, uric acid, phosphate, potassium, and sodium, in the second trimester of pregnancy, and explore the possible relations between the concentration of these components and maternal, as well as neonatal characteristics. AF of 52 pregnant women was analyzed using an automatic multichannel analyzer. Maternal age, pre-pregnancy Body Mass Index (BMI), inter-pregnancy intervals, and smoking status were derived from questionnaires. Information on pregnancy and delivery was collected from medical records. Uric acid increased (r = 0.423, p < 0.01), while phosphate and glucose concentrations decreased during the period of 16-26th week of pregnancy (r = -0.590, p < 0.001 and r = -0.314, p < 0.05, respectively). Maternal pre-pregnancy BMI was significantly correlated with AF uric acid concentration (r = 0.460, p < 0.01) and marginally with AF glucose (r = 0.274, p = 0.052) and sodium (r = 0.254, p = 0.070) levels. Multiple linear regression indicated that mid-trimester AF uric acid and phosphate levels were significantly related to birth weight centiles (R(2)( )= 0.345, p < 0.05). Our results suggest that: (a) AF phosphate levels reflect gestational age to a satisfactory extent, (b) maternal pre-pregnancy BMI is significantly correlated with AF uric acid concentration, and (c) in appropriate for gestational age infants, AF phosphate and uric acid levels may serve as potential biomarkers of birth weight centiles. Further studies on AF composition may help to unravel the biochemical pathways underlying fetal development and could offer insight on the potential impact of maternal nutritional management on fetal growth regulation.

  11. Association studies of calcium-sensing receptor (CaSR) polymorphisms with serum concentrations of glucose and phosphate, and vascular calcification in renal transplant recipients.

    PubMed

    Babinsky, Valerie N; Hannan, Fadil M; Youhanna, Sonia C; Maréchal, Céline; Jadoul, Michel; Devuyst, Olivier; Thakker, Rajesh V

    2015-01-01

    Cardiovascular disease is the major cause of death in renal transplant recipients (RTRs) and linked to arterial calcification. The calcium-sensing receptor (CaSR), a G-protein coupled receptor, plays a pivotal role in extracellular calcium homeostasis and is expressed in the intimal and medial layers of the arterial wall. We investigated whether common CASR gene variants are predictors for aortic and coronary artery calcification or influence risk factors such as serum calcium, phosphate and glucose concentrations in RTRs. Two hundred and eighty four RTRs were investigated for associations between three CASR promoter region single nucleotide polymorphisms (SNPs) (rs115759455, rs7652589, rs1501899), three non-synonymous CASR coding region SNPs (A986S, R990G, Q1011E), and aortic and coronary artery calcium mass scores, cardiovascular outcomes and calcification risk factors that included serum phosphate, calcium, total cholesterol and glucose concentrations. Multivariate analysis revealed that RTRs homozygous for the minor allele (SS) of the A986S SNP, when compared to those homozygous for the major allele (AA), had raised serum glucose concentrations (8.7±5.4 vs. 5.7±2.1 mmol/L, P<0.05). In addition, RTRs who were heterozygous (CT) at the rs115759455 SNP, when compared to those homozygous for the major allele (CC), had higher serum phosphate concentrations (1.1±0.3 vs. 1.0±0.2 mmol/L, P<0.05). CASR SNPs were not significant determinants for aortic or coronary artery calcification, and were not associated with cardiovascular outcomes or mortality in this RTR cohort. Common CASR SNPs may be independent predictors of serum glucose and phosphate concentrations, but are not determinants of vascular calcification or cardiovascular outcomes.

  12. Effect of peptides of the insulin superfamily on glucose-6-phosphate dehydrogenase activity in skeletal muscles of river lamprey (Lampetra fluviatilis) during prespawning starvation.

    PubMed

    Chistyakova, O V; Kuznetsova, L A

    2009-07-01

    Glucose-6-phosphate dehydrogenase activity in skeletal muscles of the lamprey (Lampetra fluviatilis) decreased during prespawning starvation (September-May). The observed changes were particularly pronounced in January. Insulin, insulin-like growth factor 1, and relaxin produce an in vitro stimulatory effect on the enzyme. Insulin was most potent in this respect. Inactivation of the enzyme was accompanied by a decrease in its sensitivity to the stimulatory effect of insulin and insulin-like growth factor 1.

  13. Acute viral hepatitis E presenting with haemolytic anaemia and acute renal failure in a patient with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Tomar, Laxmikant Ramkumarsingh; Aggarwal, Amitesh; Jain, Piyush; Rajpal, Surender; Agarwal, Mukul P

    2015-10-01

    The association of acute hepatitis E viral (HEV) infection with glucose-6-phosphate dehydrogenase (G6PD) deficiency leading to extensive intravascular haemolysis is a very rare clinical entity. Here we discuss such a patient, who presented with acute HEV illness, developed severe intravascular haemolysis and unusually high levels of bilirubin, complicated by acute renal failure (ARF), and was later on found to have a deficiency of G6PD. The patient recovered completely with haemodialysis and supportive management.

  14. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is a reliable internal standard for radiation-inactivation studies of membranes in the frozen state

    SciTech Connect

    McIntyre, J.O.; Churchill, P.

    1985-06-01

    The target size of four soluble enzymes (beta-galactosidase, pyruvate kinase, alcohol dehydrogenase, and glucose-6-phosphate dehydrogenase) in the presence or absence of subcellular membrane fractions has been determined by the radiation-inactivation method using samples in the frozen state. For each of the four enzymes, full activity was recovered after freezing and thawing in the absence of radiation. The authors found minimal (less than 20%) binding of the enzymes to either submitochondrial vesicles or sarcoplasmic reticulum vesicles. Under the conditions tested, beta-galactosidase, pyruvate kinase, and alcohol dehydrogenase exhibited target sizes which varied according to the experimental conditions, i.e., the buffer selected and also the presence or absence of membrane preparations. For these tetrameric enzymes, the target sizes were generally comparable to either a monomer or a dimer. By contrast, the target size of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was found to be essentially invariant when frozen in a variety of buffers and in the presence or absence of either cryoprotectant (sucrose or glycerol) or different membrane preparations. The target size from 19 separate determinations gave an average value of 104 +/- 16 kDa, which is comparable to the molecular weight of the enzyme (104 kDa). The authors conclude that glucose-6-phosphate dehydrogenase from L. mesenteroides is a reliable internal standard for radiation-inactivation studies of membrane preparations in the frozen state.

  15. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies

    PubMed Central

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  16. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    PubMed

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  17. Relative weight of glucose, insulin and parathyroid hormone in the urinary loss of phosphate by chronically diabetic rats.

    PubMed

    Locatto, M E; Di Loreto, V; Fernández, M C; Caferra, D; Puche, R C

    1997-10-01

    This report deals with the relationships between glucose (G) and insulin on the tubular transport of phosphate (P) in chronically diabetic rats with high plasma levels of parathyroid hormone (PTH). Alloxan-induced diabetes leads to phosphorus depletion of the soft tissues. This phenomenon appears associated with weight loss and negative P balances caused by the increased urinary P excretion. Administration of 2 IU of insulin/100 g body weight (bw) to diabetic rats normalized their P balance and body weight. The effect of parathyroid function on the P metabolism of diabetic rats was investigated with balance experiments. Diabetic rats, intact or thyroparathyroidectomized (TPTX), have a greater urinary excretion of P than their controls. However, in control rats, the ratio intact:TPTX for urinary P is 1.0:0.76, showing the antiphosphaturic effect of parathyroid ablation. For diabetic animals, on the other hand, the ratio is 1.0:1.44. The simultaneous deficit of insulin and PTH thus quadruples the urinary P loss, instead of compensating for each other. The contribution of insulin deficit and hyperglycemia to the defect in tubular reabsorption (TRP) was investigated with clearance experiments (done on anesthetized, perfused rats). Five experimental groups were used: Controls (C), diabetics (D), controls + glucose (C + G), diabetics + insulin (D + I) and diabetics + insulin + glucose (D + I + G). All experimental groups showed a linear relationship between the TRP of P and G. The regression equation for C is significantly different (F = 40.1, P < 0.001) from that of D animals. The slope value measure the number of mumoles of P per mumol of G reabsorbed. For C and D rats, the ratio P:G approximates 1:4 and 1:20, respectively. The increase in P:G ratios represents the competition between both substrates for tubular resorption. Glycemias up to 11 mM (C and D + I) exist concurrent with the P:G ratio 1:4 Glycemias above 25 mM (D, C + G and D + I + G) produce a P:G ratio of 1

  18. Effects of variant UDP-glucuronosyltransferase 1A1 gene, glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    PubMed Central

    Huang, Yang-Yang; Huang, Ching-Shui; Yang, Sien-Sing; Lin, Min-Shung; Huang, May-Jen; Huang, Ching-Shan

    2005-01-01

    AIM: To test the hypothesis that the variant UDP-glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0 ± 6.5 and 12.7 ± 2.9 μmol/L, respectively; P<0.001, Student’s t test). CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. PMID:16237771

  19. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    PubMed

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hematological parameters and red blood cell morphological abnormality of Glucose-6-Phosphate dehydrogenase deficiency co-inherited with thalassemia.

    PubMed

    Pengon, Jutharat; Svasti, Saovaros; Kamchonwongpaisan, Sumalee; Vattanaviboon, Phantip

    2017-06-15

    Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency and thalassemia are genetically independent hemolytic disorders. Co-inheritance of both disorders may affect red blood cell pathology to a greater extent than normally seen in either disorder alone. This study determines the prevalence and evaluates hematological changes of G-6-PD deficiency and thalassemia co-inheritance. G-6-PD deficiency was screened from 200 male thalassemia blood samples using a fluorescent spot test. Hematological parameters and red blood cell morphology were evaluated among G-6-PD deficiency/thalassemia co-inheritance, G-6-PD deficiency alone, thalassemia alone, and normal individuals. G-6-PD deficiency was detected together with hemoglobin (Hb) E heterozygote, Hb E homozygote, β-thalassemia trait, and β-thalassemia/Hb E, α-thalassemia-2 trait, and Hb H disease. Hb level, hematocrit, mean cell volume, and mean cell Hb of G-6-PD deficiency co-inherited with asymptomatic thalassemia carriers show significantly lower mean values compared to carriers with only the same thalassemia genotypes. Higher mean red blood cell distribution width was observed in G-6-PD deficiency co-inherited with Hb E heterozygote, as with numbers of hemighost cells in G-6-PD deficiency/thalassemia co-inheritance compared to those with either disorder. Apart from Hb level, hematological parameters of co-inheritance disorders were not different from individuals with a single thalassemia disease. G-6-PD deficiency co-inherited with thalassemia in males was present in 10% of the participants, resulting in worsening of red blood cell pathology compared with inheritance of thalassemia alone. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  1. A population survey of the glucose-6-phosphate dehydrogenase (G6PD) 563C>T (Mediterranean) mutation in Afghanistan.

    PubMed

    Jamornthanyawat, Natsuda; Awab, Ghulam R; Tanomsing, Naowarat; Pukrittayakamee, Sasithon; Yamin, Fazel; Dondorp, Arjen M; Day, Nicholas P J; White, Nicholas J; Woodrow, Charles J; Imwong, Mallika

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36-9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73-4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.

  2. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia.

    PubMed Central

    Vulliamy, T J; D'Urso, M; Battistuzzi, G; Estrada, M; Foulkes, N S; Martini, G; Calabro, V; Poggi, V; Giordano, R; Town, M

    1988-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. We have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A we have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. In one of the commonest, G6PD Mediterranean, which is associated with favism among other clinical manifestations, a single amino acid replacement was found (serine----phenylalanine): it must be responsible for the decreased stability and the reduced catalytic efficiency of this enzyme. Single point mutations were also found in G6PD Metaponto (Southern Italy) and in G6PD Ilesha (Nigeria), which are asymptomatic, and in G6PD Chatham, which was observed in an Indian boy with neonatal jaundice. In G6PD "Matera," which is now known to be the same as G6PD A-, two separate point mutations were found, one of which is the same as in G6PD A. In G6PD Santiago, a de novo mutation (glycine----arginine) is associated with severe chronic hemolytic anemia. The mutations observed show a striking predominance of C----T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency. Images PMID:3393536

  3. A Population Survey of the Glucose-6-Phosphate Dehydrogenase (G6PD) 563C>T (Mediterranean) Mutation in Afghanistan

    PubMed Central

    Jamornthanyawat, Natsuda; Awab, Ghulam R.; Tanomsing, Naowarat; Pukrittayakamee, Sasithon; Yamin, Fazel; Dondorp, Arjen M.; Day, Nicholas P. J.; White, Nicholas J.; Woodrow, Charles J.; Imwong, Mallika

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36–9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73–4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine. PMID:24586352

  4. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Fang, Zishui; Jiang, Chengrui; Tang, Jia; He, Ming; Lin, Xiaoying; Chen, Xiaodan; Han, Luhao; Zhang, Zhiqiang; Feng, Yi; Guo, Yibin; Li, Hongyi; Jiang, Weiying

    2016-06-01

    Acute hemolytic anemia could be triggered by oxidative stress in the patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, the underlying hemolytic mechanism is unknown. To make clear the hemolytic mechanisms, a systematic study on membrane ultrastructure had been undertaken. A comprehensive method was used including atomic force microscopy, scanning electron microscopy, flow cytometer and fluorescence microscopy to analyze the membrane ultrastructure, externalized phosphatidylserine (PS), intracellular Ca(2+) concentration, morphology and the distributions of band 3 protein in G6PD deficient red blood cells (RBCs) after tert-butyl-hydroperoxide (t-BHP) oxidation. The results showed that erythrocyte shrinkage, annexin-V binding to externalized PS on the membrane of early-stage apoptotic cells, the increased membrane roughness and intracellular Ca(2+) concentration, as well as the change of distributions of band 3 protein in RBCs. Compared with the control RBCs, as the concentration of t-BHP up to 0.1mM, the membrane roughness of G6PD deficient RBCs showed significant difference (p<0.05) and as the concentration of t-BHP up to 0.3mM, externalized PS showed significant difference (p<0.05). Furthermore, the population types of RBCs showed dramatic difference between control groups and G6PD deficient groups. Oxidative stress induced more serious erythrocyte apoptosis and resulted in increased roughness of erythrocyte membrane and abnormal distributed band 3 protein in G6PD deficient RBCs. Echinocytes are the predominant abnormal erythrocyte shape occurring in the peripheral blood from patients with G6PD deficiency, which may shorten the RBCs lifespan. The results in the present study will give an increased understanding for the hemolytic mechanism of G6PD deficiency.

  5. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    PubMed

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p < 0.0001) and in controls (13.6 ± 2.9 U/g Hb, p < 0.0001). In C563T heterozygote females, the estimated enzyme activity was lower than that determined in non-C563T females. Male C563T hemizygotes suffer from G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  6. Screening for Glucose-6-Phosphate Dehydrogenase Deficiency Using Three Detection Methods: A Cross-Sectional Survey in Southwestern Uganda.

    PubMed

    Roh, Michelle E; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Mwanga-Amumpaire, Juliet; Boum, Yap; Kiwanuka, Gertrude N; Parikh, Sunil

    2016-11-02

    Despite the potential benefit of primaquine in reducing Plasmodium falciparum transmission and radical cure of Plasmodium vivax and Plasmodium ovale infections, concerns over risk of hemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) have hampered its deployment. A cross-sectional survey was conducted in 2014 to assess the G6PDd prevalence among 631 children between 6 and 59 months of age in southwestern Uganda, an area where primaquine may be a promising control measure. G6PDd prevalence was determined using three detection methods: a quantitative G6PD enzyme activity assay (Trinity Biotech(®) G-6-PDH kit), a qualitative point-of-care test (CareStart(™) G6PD rapid diagnostic test [RDT]), and molecular detection of the G6PD A- G202A allele. Qualitative tests were compared with the gold standard quantitative assay. G6PDd prevalence was higher by RDT (8.6%) than by quantitative assay (6.8%), using a < 60% activity threshold. The RDT performed optimally at a < 60% threshold and demonstrated high sensitivity (≥ 90%) and negative predictive values (100%) across three activity thresholds (below 60%, 30%, and 40%). G202A allele frequency was 6.4%, 7.9%, and 6.8% among females, males, and overall, respectively. Notably, over half of the G202A homo-/hemizygous children expressed ≥ 60% enzyme activity. Overall, the CareStart(™) G6PD RDT appears to be a viable screening test to accurately identify individuals with enzyme activities below 60%. The low prevalence of G6PDd across all three diagnostic modalities and absence of severe deficiency in our study suggests that there is little barrier to the use of single-dose primaquine in this region.

  7. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies.

    PubMed

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper; Birgens, Henrik

    2015-09-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigrants in Denmark. We found the allele frequency to be between 2.4 and 2.9% in the female immigrants. Furthermore, the mutation pattern in the studied population showed a high prevalence of the G6PD A-(202A) variant in African and African-American immigrants, a high prevalence of the G6PD Mediterranean variant in Mediterranean European and Western Asian immigrants, and substantial heterogeneity in the variants found in the Eastern Asian/Pacific immigrants. Inasmuch as many of the patients included in this investigation had various thalassaemic syndromes, we were able to evaluate the effects of the interaction between a low mean corpuscular haemoglobin (MCH) value and G6PD activity, particularly in heterozygous females. The activity level was markedly influenced by the MCH value in females with normal G6PD activity, but not in heterozygous and homozygous females. Comparison of patients with normal G6PD activity and heterozygous females indicated considerable overlap in activity levels. To help separating heterozygous females from females with wild-type genes, a DNA analysis is necessary when the female activity level is between 4.0 and 4.9 U/g hgb corresponding to 50-60% of the median activity of unaffected males.

  8. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity.

    PubMed

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-04-01

    The inhibitory effects of thallium-201 ((201)Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the (201)Tl solution including Tl(+), Fe(+3) and Cu(+2) metals and the in vitro effects of the radiation effect of the (201)Tl solution and non-radioactive Tl(+), Fe(+3) and Cu(+2) metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 degrees C. (201)Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC(50) value of (201)Tl solution was 36.86 microl ([Tl(+)]: 0.0036 microM, [Cu(+2)]: 0.0116 microM, [Fe(+3)]: 0.0132 microM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of (201)Tl solution. Furthermore, non-radioactive Tl(+), Fe(+3) and Cu(+2) were found not to have influenced the enzyme in vitro. Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg (201)Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of (201)Tl solution. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in southeast Iran: implications for malaria elimination.

    PubMed

    Tabatabaei, Seyed Mehdi; Salimi Khorashad, Alireza; Sakeni, Mohammad; Raeisi, Ahmad; Metanat, Zahra

    2015-03-15

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is an X-linked genetic disorder with a relatively high frequency in malaria-endemic regions. It is an obstacle to malaria elimination, as primaquine administered in the treatment of malaria can cause hemolysis in G6PD-deficient individuals. This study presents information on the prevalence of G6PD deficiency in Sistan and Balouchetsan province, which hosts more than 90% of Plasmodium vivax malaria cases in Iran. This type of information is needed for a successful malaria elimination program. A total of 526 students were randomly recruited through schools located in southeast Iran. Information was collected by interviewing the students using a structured questionnaire. Blood samples taken on filter papers were examined for G6PD deficiency using the fluorescent spot test. Overall, 72.8% (383/526) of the subjects showed normal G6PD enzyme function. Mild and severe G6PD deficiency was observed in 14.8% (78) and 12.2% (64) of subjects, respectively. A total 193/261 males (73.9%) and 190/265 (72%) females had normal enzyme activity. Mild G6PD deficiency was observed in 10.8% (28) and 18.9% (50) of male and female subjects, respectively. However, in comparison with females, a greater proportion of males showed severe enzyme deficiency (15.3% versus 9.1%). All these differences were statistically significant (p < 0.006). G6PD deficiency is highly prevalent in southeast Iran. G6PD-deficient individuals are susceptible to potentially severe and life-threatening hemolytic reactions after primaquine treatment. In order to achieve malaria elimination goals in the province, G6PD testing needs to be made routinely available within the health system.

  10. Impact of glucose-6-phosphate dehydrogenase deficiency on sickle cell anaemia expression in infancy and early childhood: a prospective study.

    PubMed

    Benkerrou, Malika; Alberti, Corinne; Couque, Nathalie; Haouari, Zinedine; Ba, Aissatou; Missud, Florence; Boizeau, Priscilla; Holvoet, Laurent; Ithier, Ghislaine; Elion, Jacques; Baruchel, André; Ducrocq, Rolande

    2013-12-01

    In patients with sickle cell anaemia (SCA), concomitant glucose-6-phosphate dehydrogenase (G6PD) deficiency is usually described as having no effect and only occasionally as increasing severity. We analysed sequential clinical and biological data for the first 42 months of life in SCA patients diagnosed by neonatal screening, including 27 G6PD-deficient patients, who were matched on sex, age and parents' geographic origin to 81 randomly selected patients with normal G6PD activity. In the G6PD-deficient group, steady-state haemoglobin was lower (-6·2 g/l, 95% confidence interval (CI), [-10·1; -2·3]) and reticulocyte count higher (247 × 10(9) /l, 95%CI, [97; 397]). The acute anaemic event rate was 3 times higher in the G6PD-deficient group (P < 10(-3) ). A higher proportion of G6PD-deficient patients required blood transfusion (20/27 [74%] vs. 37/81 [46%], P < 10(-3) ), for acute anaemic events, and also vaso-occlusive and infectious events. No significant between-group differences were found regarding the rates of vaso-occlusive, infectious, or cerebrovascular events. G6PD deficiency in babies with SCA worsens anaemia and increases blood transfusion requirements in the first years of life. These effects decrease after 2 years of age, presumably as the decline in fetal haemoglobin levels leads to increased sickle cell haemolysis and younger red blood cells with higher G6PD activity. © 2013 John Wiley & Sons Ltd.

  11. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.

    PubMed

    Jeppsson, Marie; Johansson, Björn; Jensen, Peter Ruhdal; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2003-11-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wild-type level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate than the strain with wild-type G6PDH-activity, which suggested that the availability of intracellular NADPH correlated with tolerance towards lignocellulose-derived inhibitors. Low G6PDH-activity strains were also more sensitive to H(2)O(2) than the control strain TMB3001.

  12. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis.

    PubMed

    Zhang, Jingjing; Xiang, Yu; Novak, Donna E; Hoganson, George E; Zhu, Junjie; Lu, Yi

    2015-10-01

    The personal glucose meter (PGM) was recently shown to be a general meter to detect many targets. Most studies, however, focus on transforming either target binding or enzymatic activity that cleaves an artificial substrate into the production of glucose. More importantly, almost all reports exhibit their methods by using artificial samples, such as buffers or serum samples spiked with the targets. To expand the technology to even broader targets and to validate its potential in authentic, more complex clinical samples, we herein report expansion of the PGM method by using alkaline phosphatase (ALP) that links the enzymatic activity of galactose-1-phosphate uridyltransferase to the production of glucose, which allows point-of-care galactosemia diagnosis in authentic human clinical samples. Given the presence of ALP in numerous enzymatic assays for clinical diagnostics, the methods demonstrated herein advance the field closer to point-of-care detection of a wide range of targets in real clinical samples.

  13. Gamma-radiation induced modifications in substrate specificity of glucose dehydrogenase and carbon source utilization pattern of phosphate-solubilizing Pantoea strains.

    PubMed

    Lee, Young-Keun; Senthilkumar, M; Jeong, Il Yun; Annapurna, K; Swarnalakshmi, K

    2011-12-01

    Glucose, maltose, and mannose as sole carbon sources, induced synthesis of glucose dehydrogenase (GDH) in three strains of Pantoea with specific activities from 0.14 to 0.6 U/mg proteins. Utilization of lactose indicated that the enzyme belongs to GDH type B isozyme. Of mutant clones, developed through radiation mutagenesis, P2-M2 utilized ribose with GDH specific activity of 0.57 U/mg protein, P4-M3 grown on glucose gave 1.5 U/mg protein and P4-M5 had high activities, when grown on galactose, maltose, and lactose. Clones P3-M2 and P2-M5 had versatile utilization of sugars and released higher amounts of P from tri-calcium phosphate and can be efficiently used for biofertilization. © Springer Science+Business Media B.V. 2011

  14. Glucose 6-phosphate dehydrogenase variants: a unique variant (G6PD Kobe) showed an extremely increased affinity for galactose 6-phosphate and a new variant (G6PD Sapporo) resembling G6PD Pea Ridge.

    PubMed

    Fujii, H; Miwa, S; Tani, K; Takegawa, S; Fujinami, N; Takahashi, K; Nakayama, S; Konno, M; Sato, T

    1981-01-01

    Two new glucose 6-phosphate dehydrogenase (G6PD) variants associated with chronic nonspherocytic hemolytic anemia were discovered, G6PD Kobe was found in a 16-year-old male associated with hemolytic crisis after upper respiratory infection. The enzyme activity of the variant was about 22% of that of the normal enzyme. The main enzymatic characteristics were slower than normal anodal electrophoretic mobility, high Km G6P, increased thermal-instability, an acidic pH optimum, and an extremely increased affinity for the substrate analogue, galactose 6-phosphate (Gal-6P). G6PD Sapporo was found in a 3-year-old male associated with drug-induced hemolysis. The enzyme activity was extremely low, being 3.6% of normal. In addition, this variant showed high Ki NADPH and thermal-instability. G6PD Kobe utilized the artificial substrate Gal-6P effectively as compared with the common natural substrate, glucose 6-phosphate. In G6PD Sapporo, NADPH could not exert the effect of product inhibition. The structural changes of these variants are expected to occur at the portions inducing conformational changes of the substrate binding site of the enzyme.

  15. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells.

    PubMed

    Nakatani, Yoshihiko; Kobe, Aya; Kuriya, Megumi; Hiroki, Yoko; Yahagi, Tadahiro; Sakakibara, Iwao; Matsuzaki, Keiichi; Amano, Taku

    2017-09-29

    Glycyrrhiza (the roots and rhizomes of licorice) has been used worldwide as both an herbal nutraceutical and herbal medicine. In addition, it is well known that Glycyrrhiza contains various compounds with biological effects, such as anti-viral, anti-inflammatory, immunoregulatory, anti-tumor and neuroprotective effects. Among the various compounds in Glycyrrhiza, the active compounds that show biological activity are thought to include glycyrrhizin, glycyrrhetinic acid, glabridin, licochalcones and liquiritin. In the present study, we investigated the biological effects of three of these compounds (glycyrrhizin, liquiritin and isoliquiritin) on B65 neuroblastoma cells derived from serotonergic neurons. Among these three compounds, only liquiritin enhanced the proliferation of B65 neuroblastoma cells. In contrast, both glycyrrhizin and isoliquiritin, particularly at high concentrations had cytotoxic effects. Cells were treated with various cytotoxic agents and liquiritin could ameliorate the cytotoxicity induced by menadione sodium bisulfate in a dose-dependent manner. We also examined the effect of liquiritin on cell survival by evaluating the expression levels of phospho-p44/42 mitogen-activated protein kinase, cyclin-related proteins and glucose-6-phosphate dehydrogenase, which produces nicotinamide adenine dinucleotide phosphate. Under treatment with liquiritin, the protein expression level of glucose-6-phosphate dehydrogenase increased in a dose-dependent manner. In contrast, the protein expression level of cyclin-related proteins did not change at all under treatment with liquiritin. These results suggest that liquiritin, which is contained in Glycyrrhiza, may enhance cell survival by increasing the protein expression level of glucose-6 phosphate dehydrogenase. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Should blood donors be routinely screened for glucose-6-phosphate dehydrogenase deficiency? A systematic review of clinical studies focusing on patients transfused with glucose-6-phosphate dehydrogenase-deficient red cells.

    PubMed

    Renzaho, Andre M N; Husser, Eliette; Polonsky, Michael

    2014-01-01

    The risk factors associated with the use of glucose-6-phosphate dehydrogenase (G6PD)-deficient blood in transfusion have not yet been well established. Therefore, the aim of this review was to evaluate whether whole blood from healthy G6PD-deficient donors is safe to use for transfusion. The study undertook a systematic review of English articles indexed in COCHRANE, MEDLINE, EMBASE, and CINHAL, with no date restriction up to March 2013, as well as those included in articles' reference lists and those included in Google Scholar. Inclusion criteria required that studies be randomized controlled trials, case controls, case reports, or prospective clinical series. Data were extracted following the Preferred Reporting Items for Systematic Reviews using a previously piloted form, which included fields for study design, population under study, sample size, study results, limitations, conclusions, and recommendations. The initial search identified 663 potentially relevant articles, of which only 13 studies met the inclusion criteria. The reported effects of G6PD-deficient transfused blood on neonates and children appear to be more deleterious than effects reported on adult patients. In most cases, the rise of total serum bilirubin was abnormal in infants transfused with G6PD-deficient blood from 6 hours up to 60 hours after transfusion. All studies on neonates and children, except one, recommended a routine screening for G6PD deficiency for this at-risk subpopulation because their immature hepatic function potentially makes them less able to handle any excess bilirubin load. It is difficult to make firm clinical conclusions and recommendations given the equivocal results, the lack of standardized evaluation methods to categorize red blood cell units as G6PD deficient (some of which are questionable), and the limited methodological quality and low quality of evidence. Notwithstanding these limitations, based on our review of the available literature, there is little to

  17. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

    PubMed

    Wasylenko, Thomas M; Stephanopoulos, Gregory

    2015-03-01

    Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.

  18. Cloning and characterization of an alternative transcript of ovine glucose 6-phosphate dehydrogenase gene: comparative approach between ruminant and non-ruminant species.

    PubMed

    Laliotis, George P; Argyrokastritis, Alexandros; Bizelis, Iosif; Rogdakis, Emmanuel

    2007-02-15

    Glucose 6-phosphate dehydrogenase (G6PD) plays an important role in ruminant's lipogenesis, as it provides necessary compounds of NADPH for the synthesis of fatty acids catalyzing the first committed reaction in the pentose phosphate pathway. In this work the full length ovine glucose 6-phosphate dehydrogenase cDNA was isolated using a polymerase chain reaction based strategy. Two isoforms (OG6PDA and OG6PDB) were detected encoding a protein of 515 and 524 amino acids, respectively. Both deduced amino acid sequences reveal a well conserved protein containing all the important residues for its catalytic role. The extra nine amino acids encoded by OG6PDB cause a frameshift in the polypeptide chain resulting in changes around the area of the potential substrate binding site. A three-dimensional model of ovine G6PD protein shows that this frameshift cause structural changes in the catalytic binding "pocket" of the molecule. Southern blot and RT analysis revealed that ovine G6PD appears as a single copy gene while it is expressed, with slight variability, in all tissues analyzed. Moreover, expression analysis of the ovine G6PD isoforms showed that OG6PDB is expressed only in tissues where lipogenesis is high in ruminants. Thus, we hypothesize that in ruminants G6PD may be regulated by the ratio of the two transcripts, according to the existence stimulus.

  19. Purification and characterization of glucose 6-phosphate dehydrogenase enzyme from rainbow trout (Oncorhynchus mykiss) liver and investigation of the effects of some metal ions on enzyme activity.

    PubMed

    Comakli, Veysel; Akkemik, Ebru; Ciftci, Mehmet; Kufrevioglu, Omer Irfan

    2015-05-01

    Glucose 6-phosphate dehydrogenase (d-glucose 6-phosphate: NADP(+) oxidoreductase, EC 1.1.1.49; G6PD) is a key enzyme that is localized in all mammal tissues, especially in cytoplasmic sections and that catalyzes the first step of pentose phosphate metabolic pathway. In this study, G6PD enzyme was purified 1444-fold with a yield of 77% from rainbow trout liver using 2',5'-ADP-sepharose-4B affinity chromatography. Moreover, a purity check of the enzyme was performed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Some characteristic features like optimal pH, stable pH, optimal temperature and optimal ionic strength were determined for the purified enzyme. In addition to this, in vitro effects of ions like silver nitrate (Ag(+)), thallium sulphate (TI(+)), cobalt (II) nitrate (Co(2+)) and arsenic (V) oxide (As(5+)) on enzyme activity were researched. Half-maximal inhibitory concentration (IC50) values of Ag(+), Co(2+) and As(5+) metal ions, which showed an inhibitory effect, were found to be 0.0044, 0.084 and 4.058 mM, respectively; and their inhibition constants (K i) were found to be 0.0052 ± 0.00042, 0.087 ± 0.015700 and 4.833 ± 1.753207 mM, respectively. Tl(+) not exhibited inhibitory effect on the enzyme activity. © The Author(s) 2013.

  20. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways*

    PubMed Central

    Nikel, Pablo I.; Chavarría, Max; Fuhrer, Tobias; Sauer, Uwe; de Lorenzo, Víctor

    2015-01-01

    The soil bacterium Pseudomonas putida KT2440 lacks a functional Embden-Meyerhof-Parnas (EMP) pathway, and glycolysis is known to proceed almost exclusively through the Entner-Doudoroff (ED) route. To investigate the raison d'être of this metabolic arrangement, the distribution of periplasmic and cytoplasmic carbon fluxes was studied in glucose cultures of this bacterium by using 13C-labeled substrates, combined with quantitative physiology experiments, metabolite quantification, and in vitro enzymatic assays under both saturating and non-saturating, quasi in vivo conditions. Metabolic flux analysis demonstrated that 90% of the consumed sugar was converted into gluconate, entering central carbon metabolism as 6-phosphogluconate and further channeled into the ED pathway. Remarkably, about 10% of the triose phosphates were found to be recycled back to form hexose phosphates. This set of reactions merges activities belonging to the ED, the EMP (operating in a gluconeogenic fashion), and the pentose phosphate pathways to form an unforeseen metabolic architecture (EDEMP cycle). Determination of the NADPH balance revealed that the default metabolic state of P. putida KT2440 is characterized by a slight catabolic overproduction of reducing power. Cells growing on glucose thus run a biochemical cycle that favors NADPH formation. Because NADPH is required not only for anabolic functions but also for counteracting different types of environmental stress, such a cyclic operation may contribute to the physiological heftiness of this bacterium in its natural habitats. PMID:26350459

  1. Autocrine/Paracrine Function of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) for Glucose Homeostasis in Pancreatic β-Cells and Adipocytes*

    PubMed Central

    Park, Kwang-Hyun; Kim, Byung-Ju; Shawl, Asif Iqbal; Han, Myung-Kwan; Lee, Hon Cheung; Kim, Uh-Hyun

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger for mobilizing Ca2+ from intracellular stores in various cell types. Extracellular application of NAADP has been shown to elicit intracellular Ca2+ signals, indicating that it is readily transported into cells. However, little is known about the functional role of this NAADP uptake system. Here, we show that NAADP is effectively transported into selected cell types involved in glucose homeostasis, such as adipocytes and pancreatic β-cells, but not the acinar cells, in a high glucose-dependent manner. NAADP uptake was inhibitable by Ned-19, a NAADP mimic; dipyridamole, a nucleoside inhibitor; or NaN3, a metabolic inhibitor or under Ca2+-free conditions. Furthermore, NAADP was found to be released from pancreatic islets upon stimulation by high glucose. Consistently, administration of NAADP to type 2 diabetic mice improved glucose tolerance. We propose that NAADP is functioning as an autocrine/paracrine hormone important in glucose homeostasis. NAADP is thus a potential antidiabetic agent with therapeutic relevance. PMID:24165120

  2. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice.

    PubMed

    Bruce, Clinton R; Risis, Steve; Babb, Joanne R; Yang, Christine; Lee-Young, Robert S; Henstridge, Darren C; Febbraio, Mark A

    2013-01-01

    FTY720 is a sphingosine-1-phosphate analog that has been shown to inhibit ceramide synthesis in vitro. Because ceramide accumulation in muscle is associated with insulin resistance, we aimed to examine whether FTY720 would prevent muscle ceramide accumulation in high fat-fed mice and subsequently improve glucose homeostasis. Male C57Bl/6 mice were fed either a chow or high fat-diet (HFD) for 6 wk, after which they were treated with vehicle or FTY720 (5 mg/kg) daily for a further 6 wk. The ceramide content of muscle was examined and insulin action was assessed. Whereas the HFD increased muscle ceramide, this was prevented by FTY720 treatment. This was not associated with alterations in the expression of genes involved in sphingolipid metabolism. Interestingly, the effects of FTY720 on lipid metabolism were not limited to ceramide because FTY720 also prevented the HFD-induced increase in diacylglycerol and triacylglycerol in muscle. Furthermore, the increase in CD36 mRNA expression induced by fat feeding was prevented in muscle of FTY720-treated mice. This was associated with an attenuation of the HFD-induced increase in palmitate uptake and esterification. In addition, FTY720 improved glucose homeostasis as demonstrated by a reduction in plasma insulin, an improvement in whole-body glucose tolerance, an increase in insulin-stimulated glucose uptake, and Akt phosphorylation in muscle. In conclusion, FTY720 exerts beneficial effects on muscle lipid metabolism that prevent lipid accumulation and improve glucose tolerance in high fat-fed mice. Thus, FTY720 and other compounds that target sphingosine-1-phosphate signaling may have therapeutic potential in treating insulin resistance.

  3. Lethality of a heat- and phosphate-catalyzed glucose by-product to Escherichia coli O157:H7 and partial protection conferred by the rpoS regulon.

    PubMed

    Byrd, J J; Cheville, A M; Bose, J L; Kaspar, C W

    1999-06-01

    A by-product of glucose produced during sterilization (121 degrees C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25 degrees C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25 degrees C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4 degrees C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally

  4. Sub-Saharan red cell antigen phenotypes and glucose-6-phosphate dehydrogenase deficiency variants in French Guiana.

    PubMed

    Petit, Florence; Bailly, Pascal; Chiaroni, Jacques; Mazières, Stéphane

    2016-06-07

    The treatment of Plasmodium vivax infections requires the use of primaquine, which can lead to severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. However, most of the Latin American countries, which are still endemic for vivax malaria, lack information on the distribution of G6PD deficiency (G6PDd). No survey has been performed so far in French Guiana. Herein, 80 individuals of the French Guianan Noir Marron population were scrutinized for red cell surface antigens of six blood group systems (ABO, Rh, Kell, Kidd, Duffy and MNS) and G6PD genetic polymorphisms. First, the sub-Saharan origin of the red cell phenotypes was assessed in relation with the literature. Then, given that the main sub-Saharan G6PDd variants are expected to be encountered, only the G6PD sequences of exons 4, 5, 6 and 9 were screened. This work aims at appraising the G6PD gene variation in this population, and thus, contributing to the G6PD piecemeal information in Latin America. Ninety-seven percent (97 %) of the red cells are Fy(a- b-), either D+ C- E- c+ e+ or D+ C+ E- c+ e+ and 44 % exhibited the Fya-/Jkb-/S- combined phenotype. Noteworthy is the detection of the G6PD(Val68Met) variant characterized by c.202G > A transition, G6PD(Asn126Asp) variant characterized by c.376A>G transition and G6PD(Asp181Val) variant characterized by c.542A>T transversion of the G6PD gene in 22.5 % of the sample, characteristic of the A(-(202)), A and Santamaria G6PDd variants, respectively. French Guianan Noir Marron population represents a pool of Rh-D antigen positive, Duffy-negative and G6PD-deficient erythrocytes, the latter accounting for one in every eight persons. The present study provides the first community-based estimation of the frequency of G6PDd polymorphisms in French Guiana. These results contribute to the G6PD genetic background information puzzle in Latin America.

  5. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

    PubMed

    Isaac, Iz; Mainasara, As; Erhabor, Osaro; Omojuyigbe, St; Dallatu, Mk; Bilbis, Ls; Adias, Tc

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3%) males and 41 (34.7%) females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4%) were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%). Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01). The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2%) were moderately deficient, while five (29.4%) were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD deficiency in our environment, to allow for evidence-based management of these children and to ensure the avoidance of food, drugs, and infective agents that can potentially predispose these children to oxidative stress as well as diseases that deplete micronutrients that protect against oxidative stress. There is need to build capacity in our

  6. 2-O-α-D-Glucosylglycerol Phosphorylase from Bacillus selenitireducens MLS10 Possessing Hydrolytic Activity on β-D-Glucose 1-Phosphate

    PubMed Central

    Nihira, Takanori; Saito, Yuka; Ohtsubo, Ken’ichi; Nakai, Hiroyuki; Kitaoka, Motomitsu

    2014-01-01

    The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates. PMID:24466148

  7. Glucose-6-phosphate dehydrogenase Guadalajara--a case of chronic non-spherocytic haemolytic anaemia responding to splenectomy and the role of splenectomy in this disorder.

    PubMed

    Hamilton, J W; Jones, F G C; McMullin, Mary Frances

    2004-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme of the pentose phosphate shunt pathway a major function of which is to prevent cellular oxidative damage. Deficiency in red blood cells is associated with a number of varied clinical manifestations. Chronic non-spherocytic haemolytic anaemia is uncommon but is usually characterized by chronic haemolysis, often with severe anaemia. In the past splenectomy in this condition has been thought to be of questionable benefit. We report a case of G6PD Guadalajara where splenectomy produced transfusion independence and have reviewed the literature. Those cases with exon 10 mutations often have a severe clinical phenotype, which responds to splenectomy. This procedure should be considered in this condition.

  8. Cupin-Type Phosphoglucose Isomerases (Cupin-PGIs) Constitute a Novel Metal-Dependent PGI Family Representing a Convergent Line of PGI Evolution

    PubMed Central

    Hansen, Thomas; Schlichting, Bettina; Felgendreher, Martina; Schönheit, Peter

    2005-01-01

    Cupin-type phosphoglucose isomerases (cPGIs) were identified in some archaeal and bacterial genomes and the respective coding function of cpgi's from the euryarchaeota Archaeoglobus fulgidus and Methanosarcina mazei, as well as the bacteria Salmonella enterica serovar Typhimurium and Ensifer meliloti, was proven by functional overexpression. These cPGIs and the cPGIs from Pyrococcus and Thermococcus spp. represent the cPGI family and were compared with respect to kinetic, inhibitory, thermophilic, and metal-binding properties. cPGIs showed a high specificity for the substrates fructose-6-phosphate and glucose-6-phosphate and were inhibited by millimolar concentrations of sorbitol-6-phosphate, erythrose-4-phosphate, and 6-phosphogluconate. Treatment of cPGIs with EDTA resulted in a complete loss of catalytic activity, which could be regained by the addition of some divalent cations, most effectively by Fe2+ and Ni2+, indicating a metal dependence of cPGI activity. The motifs TX3PX3GXEX3TXGHXHX6-11EXY and PPX3HX3N were deduced as the two signature patterns of the novel cPGI family. Phylogenetic analysis suggests lateral gene transfer for the bacterial cPGIs from euryarchaeota. PMID:15716432

  9. Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1.

    PubMed

    Nguyen, Quoc-Thai; Trinco, Gianluca; Binda, Claudia; Mattevi, Andrea; Fraaije, Marco W

    2017-04-01

    Cofactor F420, a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F420-dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F420-dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F420 + glucose-6-phosphate → F420H2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F420 cofactor required for numerous F420H2-dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F420-dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F420-dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F420H2-dependent reductases in industry and bioremediation.

  10. Unsuspected glucose-6-phosphate dehydrogenase deficiency presenting as symptomatic methemoglobinemia with severe hemolysis after fava bean ingestion in a 6-year-old boy.

    PubMed

    Odièvre, Marie-Hélène; Danékova, Névéna; Mesples, Bettina; Chemouny, Myriam; Couque, Nathalie; Parez, Nathalie; Ducrocq, Rolande; Elion, Jacques

    2011-05-01

    We report the occurrence of symptomatic methemoglobinemia in a previously healthy boy, who presented with severe acute hemolysis after fava bean ingestion. The methemoglobinemia revealed a previously unrecognized glucose-6-phosphate dehydrogenase (G6PD) deficiency. We discuss the pathophysiology of severe methemoglobinemia when associated with acute hemolysis, favism, and the common African G6PD A-variant [G6PD, VAL68MET, ASN126ASP]. In conclusion, screening for G6PD deficiency must be considered in symptomatic methemoglobinemia, especially in young boys, when associated with intravascular hemolysis.

  11. Calculation of the pentose phosphate and Embden-Myerhoff pathways from a single incubation with (U-/sup 14/C)- and (5-/sup 3/H)glucose

    SciTech Connect

    O'Fallon, J.V.; Wright, R.W. Jr.

    1987-04-01

    A method that simultaneously determines Embden-Myerhoff pathway and pentose phosphate pathway (PPP) activities from an incubation with (U-/sup 14/C)- and (5-/sup 3/H)glucose is presented. The method relies on the use of unlabeled pyruvate and lactate to dilute out radiolabel entering the tricarboxylic acid cycle. Gluconeogenesis from pyruvate is prevented by the use of an incubation chamber that maintains a CO/sub 2/ (and bicarbonate) free environment. The method, which includes the contribution by the recycling steps of the PPP, is especially useful when biological material is limited or developmental timing is critical.

  12. G6PD (Dublin): chronic non-spherocytic haemolytic anaemia resulting from glucose-6-phosphate dehydrogenase deficiency in an Irish kindred.

    PubMed Central

    McCann, S R; Smithwick, A M; Temperley, I J; Tipton, K

    1980-01-01

    A new variant of G6PD associated with chronic non-spherocytic haemolytic anaemia (CNSHA) in an Irish male is described. This variant is unique in that it has a normal electrophoretic mobility, Michaelis constant for G6P and NADP, and a normal pH optimum, together with a marked increase in utilisation of the substrate 2 deoxy glucose-6-phosphate. It is also relatively heat stable when compared with the normal (B) variant. These characteristics distinguish this variant from previously reported variants associated with CNSHA and we have called it G6PD Dublin. PMID:7401130

  13. pH-induced bistable dynamic behaviour in the reaction catalysed by glucose-6-phosphate dehydrogenase and conformational hysteresis of the enzyme.

    PubMed Central

    Aon, M A; Cortassa, S; Hervagault, J F; Thomas, D

    1989-01-01

    1. Bistable (multiple stationary states) dynamic behaviour in the activity of glucose-6-phosphate dehydrogenase that was subjected to successive pH change was demonstrated in an open continuously stirred tank reactor. Although the enzyme under study did not exhibit an autocatalytic effect and was homogeneously distributed, bistability was shown to occur. 2. The successive pH changes of the enzyme solution corresponded to a pH transition (8.3 in equilibrium 2), i.e. an acidification (forward direction) and an alkalinization (reverse direction). By use of intrinsic protein fluorescence methods, a glucose-6-phosphate dehydrogenase conformational hysteresis was shown to exist concomitant with the pH transition before and after enzyme injection into the reactor. 3. The results obtained suggest that the enzyme behaves, conformationally, as a memory device that stores information about its pH history (i.e. the enzyme records information in its structure about the environment to which it was previously exposed) and transduces it in a non-linear dynamic fashion, producing the bistable behaviour observed in the open reactor. PMID:2590166

  14. Avoiding Buffer Interference in ITC Experiments: A Case Study from the Analysis of Entropy-Driven Reactions of Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Bianconi, M Lucia

    2016-01-01

    Isothermal titration calorimetry (ITC) is a label-free technique that allows the direct determination of the heat absorbed or released in a reaction. Frequently used to determining binding parameters in biomolecular interactions, it is very useful to address enzyme-catalyzed reactions as both kinetic and thermodynamic parameters can be obtained. Since calorimetry measures the total heat effects of a reaction, it is important to consider the contribution of the heat of protonation/deprotonation that is possibly taking place. Here, we show a case study of the reaction catalyzed by the glucose-6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides. This enzyme is able to use either NAD(+) or NADP(+) as a cofactor. The reactions were done in five buffers of different enthalpy of protonation. Depending on the buffer used, the observed calorimetric enthalpy (ΔH(cal)) of the reaction varied from -22.93 kJ/mol (Tris) to 19.37 kJ/mol (phosphate) for the NADP(+)-linked reaction, and -11.67 kJ/mol (Tris) to 7.32 kcal/mol or 30.63 kJ/mol (phosphate) for the NAD(+) reaction. We will use this system as an example of how to extract proton-independent reaction enthalpies from kinetic data to ensure that the reported accurately represent the intrinsic heat of reaction.

  15. A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Jeukens, Julie; Salas, Joaquín J; Parveen, Nanhi; Haner, Andrea A; Law, R David; Force, Enrique Martínez; Rivoal, Jean

    2012-10-01

    Triosephosphate isomerase (TPI, EC 5.3.1.1) catalyzes the interconversion of dihydroxyacetone-P and glyceraldehyde 3-P in the glycolytic pathway. A constitutively expressed antisense construct for cytosolic TPI was introduced into potato (Solanum tuberosum) using Agrobacterium rhizogenes to examine the metabolic effects of a reduction in cytosolic TPI in roots. We obtained a population of transgenic root clones displaying ~36 to 100 % of the TPI activity found in control clones carrying an empty binary vector. Ion exchange chromatography and immunoblot analysis showed that the antisense strategy significantly decreased the cytosolic TPI isoform, while levels of plastidial TPI activity remained apparently unaffected. Transgenic roots were characterized with respect to the activity of glycolytic enzymes, their metabolite contents and carbon fluxes. Metabolite profiling of sugars, organic acids, amino acids and lipids showed elevated levels of sucrose, glucose, fructose, fumarate, isocitrate, 4-aminobutyrate, alanine, glycine, aromatic amino acids and saturated long chain fatty acids in roots containing the lowest TPI activity. Labelings with (14)C-glucose, (14)C-sucrose and (14)C-acetate indicated that a reduction of cytosolic TPI activity in roots increased carbon metabolism through the pentose phosphate pathway, O(2) uptake and catabolism of sucrose to CO(2), and capacity for lipid synthesis. These results demonstrate that a large reduction of cytosolic TPI alters the distribution of carbon in plant primary metabolism.

  16. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid

    SciTech Connect

    Carone, F.A.; Nakamura, S.; Goldman, B.

    1985-06-01

    In several models of acute renal failure leakage of glomerular filtrate out of the tubule is an important pathogenetic mechanism; however, bidirectional diffusion of solute to account for certain pathophysiologic features of acute renal failure has received meager attention. Using micropuncture and clearance methods, the authors assessed sequentially leakage of solutes and inulin across proximal straight tubules (PST) injured by two nephrotoxins. In d-serine-treated rats with extensive necrosis of PST, the basis for glucosuria and tubular leakage of inulin was studied. Glucose absorption by the proximal convoluted tubule and glucose delivery to the PST were normal, but glucose delivery to the distal tubule was increased nearly 8-fold, indicating diffusion of glucose from interstitial to tubular luminal fluid across the necrotic PST. Total kidney inulin clearance was greatly reduced, but single nephron glomerular filtration rate, based on proximal convoluted tubule samples, was normal, indicating tubular loss of inulin. Urinary recovery of (/sup 14/C)inulin infused into tubular lumina revealed that proximal convoluted tubule and distal tubule were impermeable to inulin and that inulin diffused out of the necrotic PST. The progressive return over 6 days of tubular impermeability for inulin correlated with relining of PST with new cells. In maleic acid-treated rats the site and extent of tubular necrosis and the nature of urinary loss of solutes were studied. Microdissection revealed that maleic acid caused limited necrosis of PST which averaged 7.4% of total proximal tubular length. Increased urinary excretion of protein, phosphate, and glucose and increased tubular permeability to microinfused (/sup 14/C)inulin occurred with the onset of PST necrosis, and return of these abnormalities to normal correlated with the degree of cellular repair of the PST.

  17. Ablation of Succinate Production from Glucose Metabolism in the Procyclic Trypanosomes Induces Metabolic Switches to the Glycerol 3-Phosphate/Dihydroxyacetone Phosphate Shuttle and to Proline Metabolism*

    PubMed Central

    Ebikeme, Charles; Hubert, Jane; Biran, Marc; Gouspillou, Gilles; Morand, Pauline; Plazolles, Nicolas; Guegan, Fabien; Diolez, Philippe; Franconi, Jean-Michel; Portais, Jean-Charles; Bringaud, Frédéric

    2010-01-01

    Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD+/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/RNAiFAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux. PMID:20702405

  18. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase

  19. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    PubMed Central

    Belkaid, Anissa; Currie, Jean-Christophe; Desgagnés, Julie; Annabi, Borhane

    2006-01-01

    Background Chlorogenic acid (CHL), the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT), is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase)-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP)-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P), a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP)-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL. PMID:16566826

  20. The Two Km's for ATP of Corn-Root H+-ATPase and the Use of Glucose-6-Phosphate and Hexokinase as an ATP-Regenerating System.

    PubMed Central

    Ramos, R. S.; Caldeira, M. T.; Arruda, P.; De Meis, L.

    1994-01-01

    Plasma membrane vesicles derived from corn (Zea mays L.) roots retain a membrane-bound H+-ATPase that is able to form a H+ gradient across the vesicle membranes. The activity of this ATPase is enhanced 2- to 3-fold when Triton X-100 or lysophosphatidylcholine is added to the medium at a protein:detergent ratio of 2:1 (w/w). In the absence of detergent, the ATPase exhibits only one Km for ATP (0.1-0.2 mM), which is the same as for the pumping of H+. After the addition of either Triton X-100 or lysophosphatidylcholine, two Km's for ATP are detected, one in the range of 1 to 3 [mu]M and a second in the range of 0.1 to 0.2 mM. The Vmax of the second Km for ATP increases as the temperature of the assay medium is raised from 15[deg]C to 38[deg]C. The Arrhenius plot reveals a single break at 30[deg]C, both in the absence and in the presence of detergents. In the presence of Triton X-100 the H+-ATPase catalyzes the cleavage of glucose-6-phosphate when both hexokinase and ADP are included in the assay medium. There is no measurable cleavage when the apparent affinity for ATP of the H+-ATPase is not enhanced by Triton X-100 or when 1 mM glucose is included in the assay medium. These data indicate that when the high-affinity Km for ATP is unmasked with the use of detergent, the ATPase can use glucose-6-phosphate and hexokinase as an ATP-regenerating system. PMID:12232248

  1. Prolyl isomerases in gene transcription

    PubMed Central

    Hanes, Steven D.

    2014-01-01

    Background Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. Scope of Review This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. Major Conclusions Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. General Significance Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. More broadly, although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). PMID:25450176

  2. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    SciTech Connect

    Nickbarg, E.B.; Knowles, J.R.

    1988-08-09

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from (1(R)-TH)dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase.

  3. Quantitative analysis of flux along the gluconeogenic, glycolytic and pentose phosphate pathways under reducing conditions in hepatocytes isolated from fed rats.

    PubMed Central

    Crawford, J M; Blum, J J

    1983-01-01

    Hepatocytes were isolated from the livers of fed rats and incubated with a mixture of glucose (10 mM), ribose (1 mM), mannose (4 mM), glycerol (3 mM), acetate (1.25 mM), and ethanol (5 mM) with one substrate labelled with 14C in any given incubation. Incorporation of label into CO2, glucose, glycogen, lipid glycerol and fatty acids, acetate and C-1 of glucose was measured at 20 and 40 min after the start of the incubation. The data (about 48 measurements for each interval) were used in conjunction with a single-compartment model of the reactions of the gluconeogenic, glycolytic and pentose phosphate pathways and a simplified model of the relevant mitochondrial reactions. An improved method of computer analysis of the equations describing the flow of label through each carbon atom of each metabolite under steady-state conditions was used to compute values for the 34 independent flux parameters in this model. A good fit to the data was obtained, thereby permitting good estimates of most of the fluxes in the pathways under consideration. The data show that: net flux above the level of the triose phosphates is gluconeogenic; label in the hexose phosphates is fully equilibrated by the second 20 min interval; the triose phosphate isomerase step does not equilibrate label between the triose phosphates; substrate cycles are operating at the glucose-glucose 6-phosphate, fructose 6-phosphate-fructose 1,6-bisphosphate and phosphoenolpyruvate-pyruvate-oxaloacetate cycles; and, although net flux through the enzymes catalysing the non-oxidative steps of the pentose phosphate pathway is small, bidirectional fluxes are large. PMID:6411069

  4. Subcellular Localization of a UDP-Glucose:Aldehyde Cyanohydrin β-Glucosyl Transferase in Epidermal Plastids of Sorghum Leaf Blades 1

    PubMed Central

    Wurtele, Eve Syrkin; Thayer, Susan S.; Conn, Eric E.

    1982-01-01

    Epidermal and mesophyll protoplasts, prepared from leaf blades of 6-day-old light-grown Sorghum bicolor seedlings were separated by differential sedimentation and assayed for a number of enzymes. The epidermal protoplasts contained higher levels of NADPH-cytochrome c reductase (EC 1.6.2.4), triose phosphate isomerase (EC 5.3.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.31), and a UDP-glucose:cyanohydrin β-glucosyl transferase (EC 2.4.1.85), but lower levels of NADP+ triosephosphate dehydrogenase (EC 1.2.1.13) than did mesophyll protoplasts. When protoplast preparations were lysed and applied to linear sucrose density gradients, triosephosphate isomerase was found to be present in epidermal plastids. A significant fraction (41%) of the glucosyl transferase activity was also associated with the epidermal plastids. Images Fig. 2 PMID:16662753

  5. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3,4)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reducto-isomerase.

    PubMed

    Meyer, Odile; Grosdemange-Billiard, Catherine; Tritsch, Denis; Rohmer, Michel

    2003-12-21

    (3,4)-3,4-Dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate (DXP), was obtained in enantiomerically pure form from (+)-2,3--benzylidene--threitol by a seven-step sequence. This phosphonate did not affect the growth of. It did not inhibit the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), but was converted by this enzyme into (3,4)-3,4,5-trihydroxy-3-methylpentylphosphonic acid, an isosteric analogue of 2-C-methyl-D-erythritol 4-phosphate. The enzyme was, however, less efficient with the methylene phosphonate analogue than with the natural substrate.

  6. Loss of Cytosolic Phosphoglucose Isomerase Affects Carbohydrate Metabolism in Leaves and Is Essential for Fertility of Arabidopsis1[C][W][OPEN

    PubMed Central

    Kunz, Hans-Henning; Zamani-Nour, Shirin; Häusler, Rainer E.; Ludewig, Katja; Schroeder, Julian I.; Malinova, Irina; Fettke, Joerg; Flügge, Ulf-Ingo; Gierth, Markus

    2014-01-01

    Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover. PMID:25104722

  7. [Uptake of FDG (2-fluoro-2-deoxy-D-glucose) as a tumor imaging agent into erythrocytes and accumulation of FDG in tumor cells].

    PubMed

    Minosako, Yoshihito; Nemoto, Masahiro; Ino, Sento; Shirakami, Yoshifumi; Kurami, Miki

    2003-02-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose (18F-FDG) injectable was developed as a tumor imaging agent reflecting glucose metabolism. In membrane transportation studies, the uptake of 14C-FDG into erythrocytes decreased with an increase in glucose concentration, and Cytochalasin B, inhibitor of glucose transporter (GLUT), blocked the uptake about 75%. The results means FDG is transported into tumor cells mainly by GLUT as glucose analogues. 18F-FDG is recognized to be phosphorylated to 18F-FDG-6-phosphate with hexokinase. We found that FDG-6-phosphate was further isomerized to 18F-FDM-6-phosphate by phosphoglucose isomerase (PGI) in vitro. About 27% 18F-FDM-6-phosphate was generated at the reaction with 70 U PGI for 90 min. These results show that the 18F-FDG injectable manufactured by the commercial supply system has equivalent properties; membrane transportation characteristic and enzyme affinity, to FDG synthesized at each PET institution.

  8. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    SciTech Connect

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  9. [Effect of aminotriazole on the activity of catalase and glucose-6-phosphate dehydrogenase in tissues of two frog species--Rana ridibunda and Rana esculenta].

    PubMed

    Lushchak, O V; Bahniukova, T V; Lushchak, V I

    2003-01-01

    Changes of the activity of catalase and glucose-6-phosphate dehydrogenase (G6PDH) during 48 hrs after intraperitoneal injection of 1.0, 0.5 and 0.1 mg aminotriazole per gram of body weight of two frog species as well as catalase inhibition by aminotriazole in vitro were investigated. Both aminotriazole concentration and species affiliation affected the catalase inhibition. The sensitivity of catalase from different tissues was decreased in the order: liver--kidney--lung--muscle--brain. The constant of half inhibition of lung catalase was significantly lower than that of liver and kidney catalase. The activity of G6PDH of AMT-treated frogs R. esculenta was higher comparing to control group. Possible ways of compensation of antioxidant defense under catalase inhibition are discussed.

  10. Prevalence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase deficiency among hill-tribe school children in Omkoi District, Chiang Mai Province, Thailand.

    PubMed

    Yanola, Jintana; Kongpan, Chatpat; Pornprasert, Sakorn

    2014-07-01

    The prevalaence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were examined among 265 hill-tribe school children, 8-14 years of age, from Omkoi District, Chiang Mai Province, Thailand. Anemia was observed in 20 school children, of whom 3 had iron deficiency anemia. The prevalence of G-6-PD deficiency and β-thalassemia trait [codon 17 (A>T), IVSI-nt1 (G>T) and codons 71/72 (+A) mutations] was 4% and 8%, respectively. There was one Hb E trait, and no α-thalassemia-1 SEA or Thai type deletion. Furthermore, anemia was found to be associated with β-thalassemia trait in 11 children. These data can be useful for providing appropriate prevention and control of anemia in this region of Thailand.

  11. A Novel de novo Mutation in the G6PD Gene in a Korean Boy with Glucose-6-phosphate Dehydrogenase Deficiency: Case Report.

    PubMed

    Jang, Mi-Ae; Kim, Ji-Yoon; Lee, Ki-O; Kim, Sun-Hee; Koo, Hong Hoe; Kim, Hee-Jin

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive hemolytic anemia caused by a mutation in the G6PD gene on Xq28. Herein, we describe a Korean boy with G6PD deficiency resulting from a novel mutation in G6PD. A 20-month-old boy with hemolytic anemia was referred for molecular diagnosis. He had no relevant family history. The G6PD activity was severely decreased at 0.2 U/g Hb (severe deficiency). Direct sequencing analyses on the G6PD gene revealed that he was hemizygous for a novel missense variant, c.1187C>G (p.Pro396Arg), in exon 10 of G6PD. Family study involving his parents revealed the de novo occurrence of the mutation. This is the first report of genetically confirmed G6PD deficiency in Korea.

  12. [Frequency of color blindness and glucose-6-phosphate dehydrogenase enzyme deficiency in non-industrialized populations in the state of Nuevo León, México].

    PubMed

    Ceda-Flores, R M; Arriaga-Ríos, G; Muñoz-Campos, J; Bautista-Peña, V A; Angeles Rojas-Alvarado, M; González-Quiróga, G; Leal-Garza, C H; Garza-Chapa, R

    1990-01-01

    In order to know if there would be genetic structural differences among non industrial and industrial populations, two genetic markers were studied: color-blindness (CPC) and glucose-6-phosphate dehydrogenase deficiency (G6PD), in students, males and females that were resident in five non industrial populations in the State of Nuevo Leon. The results were compared with the information for industrial zone from the Monterrey Metropolitan area (AMM). It was found that the frequencies of CPC and G6PD in non industrial populations (2.57 and 0.00 per cent), were lower than the ones in the industrial AMM (4.0 and 0.66 per cent), probably as a result that in the first populations, with minor urbanization, the main factors that influence are: natural selection, interacial mixed or genetic drift and the second population is the immigration, since 1940 to present time, of Mexican populations with greater influence from the Indians and Africans.

  13. What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase.

    PubMed

    Norris, Matthew G S; Malys, Naglis

    2011-02-18

    Enzyme kinetic parameters for rate equations are vital in metabolic network simulation, a major part of systems biology research efforts. Measurements of Michaelis-Menten kinetic parameters Km and Kcat have been performed for enzymes glucose-6-phosphate dehydrogenase (G6P DH) under crowded conditions using molecular crowding agents bovine serum albumin (BSA) and polyethylene glycol (PEG) of 8000 Da molecular weight. An increase in Kcat was observed at very low concentrations of crowding agent, and also at high crowder concentrations when the experiment was performed at 45 °C with PEG. The observed pattern in Kcat for G6P DH at high crowder concentrations has been explained via modelling using excluded volume theory. An increase in rate was observed at 45 °C for G6P DH versus 30 °C; this has been modelled via the Arrhenius equation.

  14. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv

    PubMed Central

    Mathur, Divya; Anand, Kanchan; Mathur, Deepika; Jagadish, Nirmala; Suri, Anil; Garg, Lalit C.

    2007-01-01

    Phosphoglucose isomerase is a ubiquitous enzyme that catalyzes the isomerization of d-glucopyranose-6-phosphate to d-fructofuranose-6-phosphate. The present investigation reports the expression, purification, crystallization and preliminary crystallographic studies of the phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv, which shares 46% sequence identity with that of its human host. The recombinant protein, which was prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group I212121, with unit-cell parameters a = 109.0, b = 119.8, c = 138.9 Å. PMID:17401215

  15. Molecular Epidemiological Survey of Glucose-6-Phosphate Dehydrogenase Deficiency and Thalassemia in Uygur and Kazak Ethnic Groups in Xinjiang, Northwest China.

    PubMed

    Han, Luhao; Su, Hai; Wu, Hao; Jiang, Weiying; Chen, Suqin

    2016-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and thalassemia occur frequently in tropical and subtropical regions, while the prevalence of relationship between the two diseases in Xinjiang has not been reported. We aimed to determine the prevalence of these diseases and clarify the relationship between genotypes and phenotypes of the two diseases in the Uygur and Kazak ethnic groups in Xinjiang. We measured G6PD activity by G6PD:6PGD (glucose acid-6-phosphate dehydrogenase) ratio, identified the gene variants of G6PD and α- and β-globin genes by polymerase chain reaction (PCR)-DNA sequencing and gap-PCR and compared these variants in different ethnic groups in Xinjiang with those adjacent to it. Of the 149 subjects with molecular analysis of G6PD deficiency conducted, a higher prevalence of the combined mutations c.1311C > T/IVSXI + 93T > C and IVSXI + 93T > C, both with normal enzymatic activities, were observed in the Uygur and Kazak subjects. A case of rare mutation HBB: c.135delC [codon 44 (-C) in the heterozygous state], a heterozygous case of HBB: c.68A > G [Hb G-Taipei or β22(B4)Glu→Gly] and several common single nucleotide polymorphisms (SNPs) were found on the β-globin gene. In conclusion, G6PD deficiency with pathogenic mutations and three common α-thalassemia (α-thal) [- -(SEA), -α(3.7) (rightward), -α(4.2) (leftward)] deletions and point mutations of the α-globin gene were not detected in the present study. The average incidence of β-thalassemia (β-thal) in Uygurs was 1.45% (2/138) in Xinjiang. The polymorphisms of G6PD and β-globin genes might be useful genetic markers to trace the origin and migration of the Uygur and Kazak in Xinjiang.

  16. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought.

    PubMed

    Landi, Simone; Nurcato, Roberta; De Lillo, Alessia; Lentini, Marco; Grillo, Stefania; Esposito, Sergio

    2016-08-01

    The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity.

  17. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.

    PubMed

    Zhou, Wei; You, Chun; Ma, Hongwu; Ma, Yanhe; Zhang, Y-H Percival

    2016-03-02

    α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.

  18. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2.

    PubMed

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Bakhtiari, Mitra; Shaveisi-Zadeh, Jila

    2016-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H2O2. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H2O2, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H2O2. After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Incubation of sperms with 10 and 20 µM H2O2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H2O2, and viability decreased in both groups in 40, 60, 80, and 120 µM H2O2. However, no statistically significant differences were found between the G6PD-deficient group and controls. G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2, and the reducing equivalents necessary for protection against H2O2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

  19. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

    PubMed Central

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Shaveisi-Zadeh, Jila

    2016-01-01

    Objective Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H2O2. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H2O2, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H2O2. After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Results Incubation of sperms with 10 and 20 µM H2O2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H2O2, and viability decreased in both groups in 40, 60, 80, and 120 µM H2O2. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2, and the reducing equivalents necessary for protection against H2O2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility. PMID:28090457

  20. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism

    SciTech Connect

    Nickbarg, E.B.; Davenport, R.C.; Petsko, G.A.; Knowles, J.R.

    1988-08-09

    An important active-site residue in the glycolytic enzyme triosephosphate isomerase is His-95, which appears to act as an electrophilic component in catalyzing the enolization of the substrates. With the techniques of site-directed mutagenesis, His-95 has been replaced by Gln in the isomerase from Saccharomyces cerevisiae. The mutant isomerase has been expressed in Escherichia coli strain DF502 and purified to homogeneity. The specific catalytic activity of the mutant enzyme is less than that of wild type by a factor of nearly 400. The mutant enzyme can be resolved from the wild-type isomerase on nondenaturing isoelectric focusing gels, and an isomerase activity stain shows that the observed catalytic activity indeed derives from the mutant protein. The mutant enzyme shows the same stereospecificity of proton transfer as the wild type. Tritium exchange experiments similar to those used to define the free energy profile for the wild-type yeast isomerase, together with a new method of analysis involving /sup 14/C and /sup 3/H doubly labeled substrates, have been used to investigate the energetics of the mutant enzyme catalyzed reaction. The deuterium kinetic isotope effects observed with the mutant isomerase using (1(R)-/sup 2/H)dihydroxyacetone phosphate and (2-/sup 2/H)glyceraldehyde 3-phosphate are 2.15 +/- 0.04 and 2.4 +/- 0.1, respectively. These results lead to the conclusion that substitution of Gln for His-95 so impairs the ability of the enzyme to stabilize the reaction intermediate that there is a change in the pathways of proton transfer mediated by the mutant enzyme.