Sample records for glucose study phase

  1. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model

    PubMed Central

    Ranasinghe, Priyanga; Perera, Sanja; Gunatilake, Mangala; Abeywardene, Eranga; Gunapala, Nuwan; Premakumara, Sirimal; Perera, Kamal; Lokuhetty, Dilani; Katulanda, Prasad

    2012-01-01

    Objectives: To evaluate short- and long-term effects of Cinnamomum zeylanicum on food consumption, body weight, glycemic control, and lipids in healthy and diabetes-induced rats. Materials and Methods: The study was conducted in two phases (Phase I and Phase II), using Sprague-Dawley rats in four groups. Phase I evaluated acute effects on fasting blood glucose (FBG) (Groups 1 and 2) and on post-oral glucose (Groups 3 and 4) blood glucose. Groups 1 and 3 received distilled-water and Groups 2 and 4 received cinnamon-extracts. Phase II evaluated effects on food consumption, body weight, blood glucose, and lipids over 1 month. Group A (n = 8, distilled-water) and Group B (n = 8, cinnamon-extracts) were healthy rats, while Group C (n = 5, distilled-water) and Group D (n = 5, cinnamon-extracts) were diabetes-induced rats. Serum lipid profile and HbA1c were measured on D-0 and D-30. FBG, 2-h post-prandial blood glucose, body weight, and food consumption were measured on every fifth day. Results: Phase I: There was no significant difference in serial blood glucose values in cinnamon-treated group from time 0 (P > 0.05). Following oral glucose, the cinnamon group demonstrated a faster decline in blood glucose compared to controls (P < 0.05). Phase II: Between D0 and D30, the difference in food consumption was shown only in diabetes-induced rats (P < 0.001). Similarly, the significant difference following cinnamon-extracts in FBG and 2-h post-prandial blood glucose from D0 to D30 was shown only in diabetes-induced rats. In cinnamon-extracts administered groups, total and LDL cholesterol levels were lower on D30 in both healthy and diabetes-induced animals (P < 0.001). Conclusions: C. zeylanicum lowered blood glucose, reduced food intake, and improved lipid parameters in diabetes-induced rats. PMID:22518078

  2. Relationship between serum secreted frizzled-related protein 4 levels and the first-phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance.

    PubMed

    Liu, Fang; Qu, Hua; Li, Yingjie; Tang, Qian; Yang, Zesong; Wang, Hang; Deng, Huacong

    2015-01-01

    Recent evidence suggests that serum secreted frizzled-related protein (SFRP) 4 may affect β-cell function. In a cross-sectional clinical study, 56 subjects with type 2 diabetes mellitus (T2DM), 52 subjects with impaired glucose tolerance (IGT) and 42 normal glucose tolerance (NGT) subjects were enrolled to investigate the relationship between SFRP4 levels and the first-phase of glucose-stimulated insulin secretion, glucose metabolism and inflammation. Intravenous glucose tolerance tests were conducted, and acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC), and the glucose disposition index (GDI) were calculated. The serum levels of SFRP4, IL-1β, plasma glucose, serum lipid, and glycated hemoglobin (HbA1c) were measured. Levels of serum SFRP4 and IL-1β in the T2DM group and IGT group were significantly higher than those in the NGT group (P < 0.01). The AIR, AUC and GDI between the three groups showed a progressive decrease from the NGT to IGT groups with the lowest value in the T2DM groups (P < 0.01). The serum SFRP4 levels were negatively correlated with AIR, AUC, GDI and HOMA-β (P < 0.01) and were positively correlated with fasting plasma glucose, HbA1c, hs-CRP, and IL-1β (P < 0.01). Our study provides evidence that the concentrations of serum SFRP4 in T2DM and IGT subjects were increased and were correlated closely with glycose metabolic disorder, the first-phase of glucose-stimulated insulin secretion and chronic low-grade inflammation. SFRP4 may participate in the development of type 2 diabetes mellitus.

  3. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans

    PubMed Central

    Morris, Christopher J.; Yang, Jessica N.; Garcia, Joanna I.; Myers, Samantha; Bozzi, Isadora; Wang, Wei; Buxton, Orfeu M.; Shea, Steven A.; Scheer, Frank A. J. L.

    2015-01-01

    Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show—by using two 8-d laboratory protocols—in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers. PMID:25870289

  4. Impact of incretin on early-phase insulin secretion and glucose excursion.

    PubMed

    Shen, Jie; Chen, Zhi; Chen, Chaofeng; Zhu, Xiao; Han, Yajuan

    2013-10-01

    This study investigated the impact of incretin on early-phase insulin secretion and glucose excursion. The normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) groups included 16, 8, and 19 subjects, respectively. Subjects underwent continuous glucose monitoring for 3 days, followed by an oral glucose tolerance test. Plasma glucose, insulin, glucagon, total glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-l (GLP-1) levels were measured at 30-min increments for 2 h after glucose intake. Differences with P < 0.05 were considered statistically significant. The area under the curve (AUC) of total GIP (120-min GIP-AUC) of the T2DM group was significantly lower than those of the NGT and IGT groups. The 120-min GLP-1-AUC of the NGT group was significantly larger than those of the T2DM and IGT groups. The early-phase insulin secretion index (ΔI30/ΔG30) of the T2DM group was significantly lower than those of the NGT and IGT groups. Mean amplitudes of glycemic excursions (MAGEs) went in the order of NGT < IGT < T2DM (P < 0.01, IGT vs. NGT; P < 0.001, T2DM vs. IGT). The 120-min GIP-AUC was negatively correlated with MAGE (r = -0.464), but uncorrelated with ΔI30/ΔG30. The 120-min GLP-1-AUC was positively correlated with ΔI30/ΔG30 (r = 0.580), but negatively correlated with MAGE (r = -0.606). Incretin may ameliorate glucose excursions, and GLP-1 may exert them by promoting early-phase insulin secretion. No correlation was observed between GIP secretion and early-phase insulin secretion.

  5. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    PubMed

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  6. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    PubMed

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial.

    PubMed

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-12-01

    Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)-sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P < 0.003 for each), with no difference between the fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject's estimated total energy requirements (P = 0.880). In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals consuming SSBs occurred independently of the relative amounts of fructose and glucose in the beverages. These trials were registered at clinicaltrials.gov as NCT00475475 and NCT01424306. © 2015 American Society for Nutrition.

  8. No difference in ad libitum energy intake in healthy men and women consuming beverages sweetened with fructose, glucose, or high-fructose corn syrup: a randomized trial1

    PubMed Central

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Callahan, Holly S; Weigle, David S; Kratz, Mario

    2015-01-01

    Background: Increased energy intake is consistently observed in individuals consuming sugar-sweetened beverages (SSBs), likely mainly because of an inadequate satiety response to liquid calories. However, SSBs have a high content of fructose, the consumption of which acutely fails to trigger responses in key signals involved in energy homeostasis. It is unclear whether the fructose content of SSBs contributes to the increased energy intake in individuals drinking SSBs. Objective: We investigated whether the relative amounts of fructose and glucose in SSBs modifies ad libitum energy intake over 8 d in healthy adults without fructose malabsorption. Design: We conducted 2 randomized, controlled, double-blind crossover studies to compare the effects of consuming 4 servings/d of a fructose-, glucose-, or aspartame-sweetened beverage (study A; n = 9) or a fructose-, glucose-, or high-fructose corn syrup (HFCS)–sweetened beverage (study B; n = 24) for 8 d on overall energy intake. SSBs were provided at 25% of estimated energy requirement, or an equivalent volume of the aspartame-sweetened beverage, and consumption was mandatory. All solid foods were provided at 125% of estimated energy requirements and were consumed ad libitum. Results: In study A, ad libitum energy intake was 120% ± 10%, 117% ± 12%, and 102% ± 15% of estimated energy requirements when subjects consumed the fructose-, glucose-, and aspartame-sweetened beverages. Energy intake was significantly higher in the fructose and glucose phases than in the aspartame phase (P < 0.003 for each), with no difference between the fructose and glucose phases (P = 0.462). In study B, total energy intake during the fructose, HFCS, and glucose phases was 116% ± 14%, 116% ± 16%, and 116% ± 16% of the subject’s estimated total energy requirements (P = 0.880). Conclusions: In healthy adults, total 8-d ad libitum energy intake was increased in individuals consuming SSBs compared with aspartame-sweetened beverages. The energy overconsumption observed in individuals consuming SSBs occurred independently of the relative amounts of fructose and glucose in the beverages. These trials were registered at clinicaltrials.gov as NCT00475475 and NCT01424306. PMID:26537945

  9. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.

    PubMed

    Baumgartner, Kai; Galm, Lara; Nötzold, Juliane; Sigloch, Heike; Morgenstern, Josefine; Schleining, Kristina; Suhm, Susanna; Oelmeier, Stefan A; Hubbuch, Jürgen

    2015-02-01

    Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen

    PubMed Central

    Schwalbach, Michael S.; Tremaine, Mary; Marner, Wesley D.; Zhang, Yaoping; Bothfeld, William; Higbee, Alan; Grass, Jeffrey A.; Cotten, Cameron; Reed, Jennifer L.; da Costa Sousa, Leonardo; Jin, Mingjie; Balan, Venkatesh; Ellinger, James; Dale, Bruce; Kiley, Patricia J.

    2012-01-01

    The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates. PMID:22389370

  11. Very slow growth of Escherichia coli.

    PubMed Central

    Chesbro, W; Evans, T; Eifert, R

    1979-01-01

    A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells. Images PMID:378981

  12. New insights on diabetes in Turner syndrome: results from an observational study in adulthood.

    PubMed

    Ibarra-Gasparini, Daniela; Altieri, Paola; Scarano, Emanuela; Perri, Annamaria; Morselli-Labate, Antonio M; Pagotto, Uberto; Mazzanti, Laura; Pasquali, Renato; Gambineri, Alessandra

    2018-03-01

    To explore the characteristics of diabetes mellitus in adults with Turner syndrome. Observational study consisting of a prospective phase after the access of adults with Turner syndrome to the Endocrinology Unit (median period of follow-up 15.6, interquartile range: 12.0-24.5 months) and a retrospective collection of data from the diagnosis of Turner syndrome until the time of access to the Endocrinology Unit. A total of 113 Italian Turner syndrome patients were included in the study. During the prospective phase of the study, each patient underwent physical examination, fasting blood sampling, and an oral glucose tolerance test on a yearly basis. Oral glucose tolerance test was used to perform the diagnosis of diabetes mellitus. Before access to the Endocrinology Unit, diabetes mellitus was diagnosed in two Turner syndrome patients. Another five cases of diabetes mellitus were diagnosed at the first access to the Endocrinology Unit, whereas seven new cases of diabetes mellitus were diagnosed during the prospective phase of the study. At the diagnosis of diabetes mellitus, only one patient had fasting glucose above 126 mg/dL, and only two had an HbA1c value >6.5% (48 mmol/mol). When compared to normo-glucose tolerant patients, the diabetic patients had a significantly lower insulin-to-glucose ratio at 30 and 60 min of the oral glucose tolerance test. In the regression analyses, only age was associated with the development of diabetes mellitus. This study confirms that diabetes mellitus is frequent in Turner syndrome and suggests that it is specific to the syndrome. In addition, this study demonstrates that oral glucose tolerance test is a more sensitive test than HbA1c for the diagnosis of diabetes mellitus in Turner syndrome.

  13. DreamTel; Diabetes risk evaluation and management tele-monitoring study protocol

    PubMed Central

    Tobe, Sheldon W; Wentworth, Joan; Ironstand, Laurie; Hartman, Susan; Hoppe, Jackie; Whiting, Judi; Kennedy, Janice; McAllister, Colin; Kiss, Alex; Perkins, Nancy; Vincent, Lloyd; Pylypchuk, George; Lewanczuk, Richard Z

    2009-01-01

    Background The rising prevalence of type 2 diabetes underlines the importance of secondary strategies for the prevention of target organ damage. While access to diabetes education centers and diabetes intensification management has been shown to improve blood glucose control, these services are not available to all that require them, particularly in rural and northern areas. The provision of these services through the Home Care team is an advance that can overcome these barriers. Transfer of blood glucose data electronically from the home to the health care provider may improve diabetes management. Methods and design The study population will consist of patients with type 2 diabetes with uncontrolled A1c levels living on reserve in the Battlefords region of Saskatchewan, Canada. This pilot study will take place over three phases. In the first phase over three months the impact of the introduction of the Bluetooth enabled glucose monitor will be assessed. In the second phase over three months, the development of guidelines based treatment algorithms for diabetes intensification will be completed. In the third phase lasting 18 months, study subjects will have diabetes intensification according to the algorithms developed. Discussion The first phase will determine if the use of the Bluetooth enabled blood glucose devices which can transmit results electronically will lead to changes in A1c levels. It will also determine the feasibility of recruiting subjects to use this technology. The rest of the Diabetes Risk Evaluation and Management Tele-monitoring (DreamTel) study will determine if the delivery of a diabetes intensification management program by the Home Care team supported by the Bluetooth enabled glucose meters leads to improvements in diabetes management. Trial Registration Protocol NCT00325624 PMID:19426530

  14. DreamTel; Diabetes risk evaluation and management tele-monitoring study protocol.

    PubMed

    Tobe, Sheldon W; Wentworth, Joan; Ironstand, Laurie; Hartman, Susan; Hoppe, Jackie; Whiting, Judi; Kennedy, Janice; McAllister, Colin; Kiss, Alex; Perkins, Nancy; Vincent, Lloyd; Pylypchuk, George; Lewanczuk, Richard Z

    2009-05-09

    The rising prevalence of type 2 diabetes underlines the importance of secondary strategies for the prevention of target organ damage. While access to diabetes education centers and diabetes intensification management has been shown to improve blood glucose control, these services are not available to all that require them, particularly in rural and northern areas. The provision of these services through the Home Care team is an advance that can overcome these barriers. Transfer of blood glucose data electronically from the home to the health care provider may improve diabetes management. The study population will consist of patients with type 2 diabetes with uncontrolled A1c levels living on reserve in the Battlefords region of Saskatchewan, Canada. This pilot study will take place over three phases. In the first phase over three months the impact of the introduction of the Bluetooth enabled glucose monitor will be assessed. In the second phase over three months, the development of guidelines based treatment algorithms for diabetes intensification will be completed. In the third phase lasting 18 months, study subjects will have diabetes intensification according to the algorithms developed. The first phase will determine if the use of the Bluetooth enabled blood glucose devices which can transmit results electronically will lead to changes in A1c levels. It will also determine the feasibility of recruiting subjects to use this technology. The rest of the Diabetes Risk Evaluation and Management Tele-monitoring (DreamTel) study will determine if the delivery of a diabetes intensification management program by the Home Care team supported by the Bluetooth enabled glucose meters leads to improvements in diabetes management. Protocol NCT00325624.

  15. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions.

    PubMed

    Raman, Babu; Nandakumar, M P; Muthuvijayan, Vignesh; Marten, Mark R

    2005-11-05

    Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. Copyright (c) 2005 Wiley Periodicals, Inc.

  16. Fatty liver disease, glucose tolerance and insulin resistance in obese adolescents.

    PubMed

    Slyper, A H; Rosenberg, H; Kabra, A; Huang, W-M; Blech, B; Matsumura, M M

    2015-12-01

    Adult studies suggest that intra-hepatic fat predicts 2-h blood glucose levels and type 2 diabetes, and may have a role in the development of insulin resistance. Our study objective was to explore relationships between intra-hepatic fat and (i) blood glucose levels and (ii) insulin resistance determined by homeostasis model assessment (HOMA) in a group of obese adolescents. Subjects were 61 obese non-diabetic male and female volunteers aged 12-18 years inclusive with a body mass index >95th percentile for age and 2-h blood glucose <200 mg dL(-1) . Each subject underwent 2-h glucose tolerance testing and measurement of haemoglobin A1c, ultrasensitive C-reactive protein and fasting insulin. Visceral, subcutaneous abdominal and intra-hepatic fat were determined by magnetic resonance imaging. Intra-hepatic fat was measured by gradient echo chemical shift imaging. Alanine aminotransferase levels and hepatic phase difference were not significant correlates of fasting or 2-h glucose. In a multiple regression model including hepatic phase difference and visceral fat volume, visceral fat volume was the sole predictor of HOMA. This study provides no support to the notion that intra-hepatic fat has a role in the regulation of fasting blood glucose, 2-h postprandial blood glucose or systemic insulin resistance. © 2014 World Obesity.

  17. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  18. Reforming and decomposition of glucose in an aqueous phase

    NASA Technical Reports Server (NTRS)

    Amin, S.; Reid, R. C.; Modell, M.

    1975-01-01

    Exploratory experiments have been carried out to study the decomposition of glucose, a typical carbohydrate, in a high temperature-high pressure water reactor. The objective of the study was to examine the feasibility of such a process to decompose cellulosic waste materials in long-term space missions. At temperatures below the critical point of water, glucose decomposed to form liquid products and char. Little gas was noted with or without reforming catalysts present. The rate of the primary glucose reaction increased significantly with temperature. Partial identification of the liquid phase was made and the C:H:O ratios determined for both the liquid and solid products. One of the more interesting results from this study was the finding that when glucose was injected into a reactor held at the critical temperature (and pressure) of water, no solid products formed. Gas production increased, but the majority of the carbon was found in soluble furans (and furan derivatives). This significant result is now being investigated further.

  19. Blood glucose regulation during living-donor liver transplant surgery.

    PubMed

    Gedik, Ender; İlksen Toprak, Hüseyin; Koca, Erdinç; Şahin, Taylan; Özgül, Ülkü; Ersoy, Mehmet Özcan

    2015-04-01

    The goal of this study was to compare the effects of 2 different regimens on blood glucose levels of living-donor liver transplant. The study participants were randomly allocated to the dextrose in water plus insulin infusion group (group 1, n = 60) or the dextrose in water infusion group (group 2, n = 60) using a sealed envelope technique. Blood glucose levels were measured 3 times during each phase. When the blood glucose level of a patient exceeded the target level, extra insulin was administered via a different intravenous route. The following patient and procedural characteristics were recorded: age, sex, height, weight, body mass index, end-stage liver disease, Model for End-Stage Liver Disease score, total anesthesia time, total surgical time, and number of patients who received an extra bolus of insulin. The following laboratory data were measured pre- and postoperatively: hemoglobin, hematocrit, platelet count, prothrombin time, international normalized ratio, potassium, creatinine, total bilirubin, and albumin. No hypoglycemia was noted. The recipients exhibited statistically significant differences in blood glucose levels during the dissection and neohepatic phases. Blood glucose levels at every time point were significantly different compared with the first dissection time point in group 1. Excluding the first and second anhepatic time points, blood glucose levels were significantly different as compared with the first dissection time point in group 2 (P < .05). We concluded that dextrose with water infusion alone may be more effective and result in safer blood glucose levels as compared with dextrose with water plus insulin infusion for living-donor liver transplant recipients. Exogenous continuous insulin administration may induce hyperglycemic attacks, especially during the neohepatic phase of living-donor liver transplant surgery. Further prospective studies that include homogeneous patient subgroups and diabetic recipients are needed to support the use of dextrose plus water infusion without insulin.

  20. Aspects on mediated glucose oxidation at a supported cubic phase.

    PubMed

    Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2017-12-01

    A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide.

    PubMed

    Owens, D R; Cozma, L S; Luzio, S D

    2002-12-01

    The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.

  2. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis.

    PubMed

    Grotz, V Lee; Pi-Sunyer, Xavier; Porte, Daniel; Roberts, Ashley; Richard Trout, J

    2017-08-01

    The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control. Copyright © 2017 Heartland Food Products Group. Published by Elsevier Inc. All rights reserved.

  3. High pressure dielectric studies on the structural and orientational glass.

    PubMed

    Kaminska, E; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2016-02-07

    High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.

  4. Glucose enhancement of a facial recognition task in young adults.

    PubMed

    Metzger, M M

    2000-02-01

    Numerous studies have reported that glucose administration enhances memory processes in both elderly and young adult subjects. Although these studies have utilized a variety of procedures and paradigms, investigations of both young and elderly subjects have typically used verbal tasks (word list recall, paragraph recall, etc.). In the present study, the effect of glucose consumption on a nonverbal, facial recognition task in young adults was examined. Lemonade sweetened with either glucose (50 g) or saccharin (23.7 mg) was consumed by college students (mean age of 21.1 years) 15 min prior to a facial recognition task. The task consisted of a familiarization phase in which subjects were presented with "target" faces, followed immediately by a recognition phase in which subjects had to identify the targets among a random array of familiar target and novel "distractor" faces. Statistical analysis indicated that there were no differences on hit rate (target identification) for subjects who consumed either saccharin or glucose prior to the test. However, further analyses revealed that subjects who consumed glucose committed significantly fewer false alarms and had (marginally) higher d-prime scores (a signal detection measure) compared to subjects who consumed saccharin prior to the test. These results parallel a previous report demonstrating glucose enhancement of a facial recognition task in probable Alzheimer's patients; however, this is believed to be the first demonstration of glucose enhancement for a facial recognition task in healthy, young adults.

  5. Toxicity features of high glucose on endothelial cell cycle and protection by Dan Gua-Fang in ECV-304 in high glucose medium.

    PubMed

    Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Lin, Jiu-Mao; Zheng, Hai-Xia; Yang, Liu-Qing; Huang, Su-Ping; Lan, Yuan-Long; Chen, Ling; Guo, Fang

    2013-08-01

    To study the toxicity features of high glucose on the endothelial cell cycle and the influence of Dan Gua-Fang, a Chinese herbal compound prescription, on the reproductive cycle of vascular endothelial cells cultivated under a high glucose condition; to reveal the partial mechanisms of Dan Gua-Fang in the prevention and treatment of endothelial injury caused by hyperglycemia in diabetes mellitus (DM); and offer a reference for dealing with the vascular complications of DM patients with long-term high blood glucose. Based on the previous 3-(4,5)-dimethylthiahiazo (z-y1)-3-5-diphenytetrazoliumromide (MTT) experiment, under different medium concentrations of glucose and Dangua liquor, the endothelial cells of vein-304 (ECV-304) were divided into 6 groups as follows: standard culture group (Group A, 5.56 mmol/L glucose); 1/300 herb-standard group (Group B); high glucose culture group (Group C, 16.67 mmol/L glucose); 1/150 herb-high glucose group (Group D); 1/300 herb-high glucose group (Group E); and 1/600 herb-high glucose group (Group F). The cell cycle was assayed using flow cytometry after cells were cultivated for 36, 72 and 108 h, respectively. (1) The percentage of cells in the G0/G1 phase was significantly increased in Group C compared with that in Group A (P<0.05), while the percentage of S-phase (S%) cells in Group C was significantly reduced compared with Group A (P<0.05); the latter difference was dynamically related to the length of growing time of the endothelial cells in a high glucose environment. (2) The S% cells in Group A was decreased by 30.25% (from 40.23% to 28.06%) from 36 h to 72 h, and 12.33% (from 28.06% to 24.60%) from 72 h to 108 h; while in Group C, the corresponding decreases were 23.05% and 21.87%, respectively. The difference of S% cells between the two groups reached statistical significance at 108 h (P<0.05). (3) The percentage difference of cells in the G2/M phase between Group C and Group A was statistically significant at 72 h (P<0.01). (4) 1/300 Dan Gua-Fang completely reversed the harmful effect caused by 16.67 mmol/L high glucose on the cell cycle; moreover it did not disturb the cell cycle when the cell was cultivated in a glucose concentration of 5.56 mmol/L. High glucose produces an independent impact on the cell cycle. Persistent blocking of the cell cycle and its arrest at the G0/G1 phase are toxic effects of high glucose on the endothelial cell cycle. The corresponding variation of the arrest appears in the S phase. 1/300 Dan Gua-Fang completely eliminates the blockage of high glucose on the endothelial cell cycle.

  6. Biphasic insulin-releasing effect of BTS 67 582 in rats.

    PubMed

    Storey, D A; Bailey, C J

    1998-12-01

    BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl)guanidine fumarate) is being developed as a short-acting anti-diabetic insulin secretagogue. The effect of BTS 67 582 on the phasic pattern of insulin release was assessed in anaesthetized normal rats by measuring arterial plasma insulin concentrations while arterial glucose concentrations were fixed at 6, 8.5 and 12.5 mM. Intravenous BTS 67 582 (10 mg kg(-1)) induced an immediate but transient increase in insulin concentrations which declined by 10 min (first phase). This was followed by a smaller but sustained increase in insulin concentrations (second phase). The increment from basal to peak insulin release (0-2 min) was independent of glucose, but the first phase was maintained for longer and the second phase was greater at the highest concentration of glucose (12.5 mM). BTS 67 582 also extended the first-phase insulin response to a standard intravenous glucose challenge and enhanced the rate of glucose disappearance by approximately 12%. Thus BTS 67 582 causes biphasic stimulation of insulin release and augments the insulin-releasing effect of glucose.

  7. Study on the injectability of a novel glucose modified magnesium potassium phosphate chemically bonded ceramic.

    PubMed

    Tan, Yongshan; Dong, Jinmei; Yu, Hongfa; Li, Ying; Wen, Jing; Wu, Chengyou

    2017-10-01

    A novel magnesium potassium phosphate chemically bonded ceramic (MKPCBC) was prepared as a byproduct of boron-containing magnesium oxide (B-MgO) after extracting Li 2 CO 3 from salt lakes. In this work, the influence of glucose on the properties of MKPCBC, such as the setting time, compressive strength and hydration heat, was investigated. In addition, we studied the effect of the magnesium-phosphate ratio (M/P) and liquid-solid ratio (L/S) on the injectability of MKPCBC. The pH change in glucose modified MKPCBC paste was also investigated. The phase composition and microstructure were studied in detail by using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS). The results show that the optimal content of glucose is 6wt%. The optimum proportions of M/P and L/S for MKPCBC are 1.5 and 0.25, respectively. The properties of the novel MPCBC can meet the requirements of biomaterials. In addition, the retardation mechanism of glucose on MKPCBC and the hydration mechanism of novel MKPCBC were studied in detail through the continuous monitoring of the phase composition and microstructure. Copyright © 2017. Published by Elsevier B.V.

  8. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. © 2016 The Author(s).

  9. Effect of Powder Leaf Breadfruit Disposals (Arthocarpus Altilis) in Oil Mandar District and Polman Against Cholesterol and Glucose Mice (Mus Musculus)

    NASA Astrophysics Data System (ADS)

    Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni

    2018-01-01

    The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.

  10. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  11. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    PubMed Central

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P < 0.001). BMI remained unchanged in both treatment groups (P = 0.89). CONCLUSIONS Twenty-six weeks of valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  12. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.

    PubMed

    Guidi, Francesca; Francesca, Guidi; Magherini, Francesca; Francesca, Magherini; Gamberi, Tania; Tania, Gamberi; Borro, Marina; Marina, Borro; Simmaco, Maurizio; Maurizio, Simmaco; Modesti, Alessandra; Alessandra, Modesti

    2010-07-01

    We performed a proteomic study to understand how Saccharomyces cerevisiae adapts its metabolism during the exponential growth on three different concentrations of glucose; this information will be necessary to understand yeast carbon metabolism in different environments. We induced a natural diauxic shift by growing yeast cells in glucose restriction thus having a fast and complete glucose exhaustion. We noticed differential expressions of groups of proteins. Cells in high glucose have a decreased growth rate during the initial phase of fermentation; in glucose restriction and in high glucose we found an over-expression of a protein (Peroxiredoxin) involved in protection against oxidative stress insult. The information obtained in our study validates the application of a proteomic approach for the identification of the molecular bases of environmental variations such as fermentation in high glucose and during a naturally induced diauxic shift. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Time-dependent Mechanisms in Beta-cell Glucose Sensing

    PubMed Central

    Vagn Korsgaard, Thomas

    2006-01-01

    The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase is a more steady increase of insulin release over minutes to hours, if the elevated glucose concentration is sustained. The paper describes the glucose sensing mechanism via the complex dynamics of the key enzyme glucokinase, which controls the first step in glucose metabolism: phosphorylation of glucose to glucose-6-phosphate. Three time-dependent phenomena (mechanisms) are described. The fastest, corresponding to the first phase, is a delayed negative feedback regulating the glucokinase activity. Due to the delay, a rapid glucose increase will cause a burst of activity in the glucose sensing system, before the glucokinase is down-regulated. The second mechanism corresponds to the translocation of glucokinase from an inactive to an active form. As the translocation is controlled by the product(s) of the glucokinase reaction rather than by the substrate glucose, this mechanism gives a positive, but saturable, feedback. Finally, the release of the insulin granules is assumed to be enhanced by previous glucose exposure, giving a so-called glucose memory to the beta-cells. The effect depends on the insulin release of the cells, and this mechanism constitutes a second positive, saturable feedback system. Taken together, the three phenomena describe most of the glucose sensing behaviour of the beta-cells. The results indicate that the insulin release is not a precise function of the plasma glucose concentration. It rather looks as if the beta-cells just increase the insulin production, until the plasma glucose has returned to normal. This type of integral control has the advantage that the precise glucose sensitivity of the beta-cells is not important for normal glucose homeostasis. PMID:19669468

  14. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  15. Comparison of a Point-of-Care Glucometer and a Laboratory Autoanalyzer for Measurement of Blood Glucose Concentrations in Domestic Pigeons ( Columba livia domestica).

    PubMed

    Mohsenzadeh, Mahdieh Sadat; Zaeemi, Mahdieh; Razmyar, Jamshid; Azizzadeh, Mohammad

    2015-09-01

    Biochemical analysis is necessary for diagnosis and monitoring of diseases in birds; however, the small volume of blood that can be safely obtained from small avian species often limits laboratory diagnostic testing. Consequently, a suitable methodology requiring only a small volume of blood must be used. This study was designed to compare blood glucose concentrations in domestic pigeons ( Columba livia domestica) as measured by a commercial, handheld, human glucometer and a standard autoanalyzer. During the first phase of the study, whole blood samples obtained from 30 domestic pigeons were used to measure the blood glucose concentration with a glucometer, the packed cell volume (PCV), and the total erythrocyte count (nRBC). Plasma separated from the each sample was then used to obtain the plasma glucose concentration with the autoanalyzer. During the second phase of the study, 30 pigeons were assigned to 2 equal groups (n = 15). Hypoglycemia or hyperglycemia was induced in each group by intravenous injection of insulin or glucose, respectively. Blood was collected and processed, and glucose concentrations, PCV, and nRBC were measured as previously described. Linear-regression models demonstrated a significant relationship between results measured by the glucometer and autoanalyzer results from normoglycemic (correlation coefficient [R] = 0.43, P = .02), hypoglycemic (R = 0.95; P < .001), and hyperglycemic (R = 0.81; P < .001) birds. The results of this study suggest that we can predict the real blood-glucose concentration of pigeons by using results obtained by a glucometer.

  16. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  17. Roles of glucose in photoreceptor survival.

    PubMed

    Chertov, Andrei O; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D; Sadilek, Martin; Sweet, Ian R; Hurley, James B

    2011-10-07

    Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.

  18. Oral Glucose Tolerance Test Glucose Peak Time Is Most Predictive of Prediabetes and Hepatic Steatosis in Obese Girls

    PubMed Central

    Cree-Green, Melanie; Xie, Danielle; Rahat, Haseeb; Garcia-Reyes, Yesenia; Bergman, Bryan C; Scherzinger, Ann; Diniz Behn, Cecilia; Chan, Christine L; Kelsey, Megan M; Pyle, Laura; Nadeau, Kristen J

    2018-01-01

    Abstract Obese adolescent girls are at increased risk for type 2 diabetes, characterized by defects in insulin secretion and action. We sought to determine if later glucose peak timing (>30 minutes), 1-hour glucose >155 mg/dl, or monophasic pattern of glucose excursion during an oral glucose tolerance test (OGTT) reflect a worse cardiometabolic risk profile. Post-pubertal overweight/obese adolescent girls without diabetes were studied (N = 88; age, 15.2 ± 0.2 years; body mass index percentile, 97.7 ± 0.5). All participants completed an OGTT and body composition measures. Thirty-two girls had a four-phase hyperinsulinemic euglycemic clamp with isotope tracers, vascular imaging, and muscle mitochondrial assessments. Participants were categorized by glucose peak timing (≤30 min = early; >30 min = late), 1-hour glucose concentration (±155 mg/dL) and glucose pattern (monophasic, biphasic). Girls with a late (N = 54) vs earlier peak (n = 34) timing had higher peak glucose (P < 0.001) and insulin (P = 0.023), HbA1c (P = 0.021); prevalence of hepatic steatosis (62% vs 26%; P = 0.003) and lower oral disposition index (P < 0.001) and glucagon-like peptide-1 response (P = 0.037). When classified by 1-hour glucose, group differences were similar to peak timing, but minimal when classified by glucose pattern. In the >155 mg/dL group only, peripheral insulin sensitivity and fasting free fatty acids were worse. A later glucose peak or >155 mg/dL 1-hour glucose predicts metabolic disease risk in obese adolescent girls. This may defect incretin effects and first phase insulin response, and muscle and adipose insulin resistance.

  19. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    NASA Astrophysics Data System (ADS)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  20. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  1. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    PubMed

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  2. β-Cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ≥155 mg/dL.

    PubMed

    Nyirjesy, Sarah C; Sheikh, Saba; Hadjiliadis, Denis; De Leon, Diva D; Peleckis, Amy J; Eiel, Jack N; Kubrak, Christina; Stefanovski, Darko; Rubenstein, Ronald C; Rickels, Michael R; Kelly, Andrea

    2018-06-08

    Patients with pancreatic insufficient cystic fibrosis (PI-CF) meeting standard criteria for normal glucose tolerance display impaired β-cell secretory capacity and early-phase insulin secretion defects. We sought evidence of impaired β-cell secretory capacity, a measure of functional β-cell mass, among those with early glucose intolerance (EGI), defined as 1-hour oral glucose tolerance test (OGTT) glucose ≥155 mg/dL (8.6 mmol/L). A cross-sectional study was conducted in the Penn and CHOP Clinical & Translational Research Centers. PI-CF categorized by OGTT as normal (PI-NGT: 1-hour glucose <155 mg/dL and 2-hour <140 mg/dL [7.8 mmol/L]; n = 13), PI-EGI (1-hour ≥155 mg/dL and 2-hour <140 mg/dL; n = 13), impaired (PI-IGT: 2-hour ≥140 and <200 mg/dL [11.1 mmol/L]; n = 8), and diabetic (cystic fibrosis-related diabetes, CFRD: 2-hour ≥200 mg/dL; n = 8) participated. Post-prandial glucose tolerance and insulin secretion, and β-cell secretory capacity and demand were derived from mixed-meal tolerance tests (MMTTs), and glucose-potentiated arginine (GPA) tests, respectively. PI-EGI had elevated post-prandial glucose with reduced early-phase insulin secretion during MMTT compared to PI-NGT (P < .05). PI-EGI also exhibited impaired acute insulin and C-peptide responses to GPA (P < .01 vs PI-NGT), measures of β-cell secretory capacity. Proinsulin secretory ratios were higher under hyperglycemic clamp conditions in PI-IGT and CFRD (P < .05 vs PI-NGT), and correlated with 1-hour glucose in PI-CF (P < .01). PI-CF patients with 1-hour OGTT glucose ≥155 mg/dL already manifest impaired β-cell secretory capacity with associated early-phase insulin secretion defects. Avoiding hyperglycemia in patients with EGI may be important for preventing excessive insulin demand indicated by disproportionately increased proinsulin secretion. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    PubMed

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  4. Transient hyperglycemia during liver transplantation does not affect the early graft function.

    PubMed

    Blasi, Annabel; Beltran, Joan; Martin, Nuria; Martinez-Pallí, Graciela; Lozano, Juan J; Balust, Jaume; Torrents, Abigail; Taura, Pilar

    2015-01-01

    Background and rationale for the study. Hyperglycemia after graft reperfusion is a consistent finding in liver transplantation (LT) that remains poorly studied. We aim to describe its appearance in LT recipients of different types of grafts and its relation to the graft function. 436 LT recipients of donors after brain death (DBD), donors after cardiac death (DCD), and familial amyloidotic polyneuropathy (FAP) donors were reviewed. Serum glucose was measured at baseline, during the anhepatic phase, after graft reperfusion, and at the end of surgery. Early graft dysfunction (EAD) was assessed by Olthoff criteria. Caspase-3, IFN-γ, IL1β, and IL6 gene expression were measured in liver biopsy. The highest increase in glucose levels after reperfusion was observed in FAP LT recipients and the lowest in DCD LT recipients. Glucose level during the anhepatic phase was the only modifiable predictive variable of hyperglycemia after reperfusion. No relation was found between hyperglycemia after reperfusion and EAD. However, recipients with the highest glucose levels after reperfusion tended to achieve the best glucose control at the end of surgery and those who were unable to control the glucose value after reperfusion showed EAD more frequently. The highest levels of caspase-3 were found in recipients with the lowest glucose values after reperfusion. In conclusion, glucose levels increased after graft reperfusion to a different extent according to the donor type. Contrary to general belief, transient hyperglycemia after reperfusion does not appear to impact negatively on the liver graft function and could even be suggested as a marker of graft quality.

  5. Cereal processing influences postprandial glucose metabolism as well as the GI effect.

    PubMed

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2013-01-01

    Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the "isotope part," and the 13 other subjects were included in the "glycemic part." On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90-150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions.

  6. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    PubMed Central

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2013-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90–150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions. PMID:24015715

  7. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  8. First-phase insulin secretion has limited impact on postprandial glycemia in subjects with type 2 diabetes: correlations between hyperglycemic glucose clamp and meal test.

    PubMed

    Rave, Klaus; Sidharta, Patricia N; Dingemanse, Jasper; Heinemann, Lutz; Roggen, Kerstin

    2010-02-01

    Lack of first-phase insulin (INS) secretion is regarded as causative for high postprandial glucose excursions in subjects with type 2 diabetes. We aimed to determine the impact of early INS secretion on postprandial glycemia. Twenty subjects with type 2 diabetes (age 54 +/- 8 years, body mass index 28.7 +/- 2.7 kg/m(2) [mean +/- SD]) underwent a hyperglycemic glucose clamp and a meal test twice separated by a washout period of 4 weeks. Multiple regression analysis was used to identify determinants of postprandial glycemia. During hyperglycemic glucose clamps eight subjects showed a preserved first-phase INS secretion (P1+), whereas 12 subjects showed none (P1-). Both subject groups differed in fasting blood glucose (BG) (116 +/- 7 vs. 147 +/- 31 mg/dL, P = 0.011) and glycosylated hemoglobin (6.0 +/- 0.4 vs. 6.7 +/- 0.8, P = 0.041). Total INS secretory response during glucose clamps was higher in P1+ than P1- (INS-area under the concentration vs. time curve [AUC](0-120 min) 6.7 +/- 2.7 vs. 3.2 +/- 2.1 mU.min/mL; P = 0.006). During meal tests, however, INS-AUC(0-120 min) was similar between P1+ and P1-, whereas early INS secretion was still different (INS-AUC(0-60 min) 3.9 +/- 1.8 vs. 2.1 +/- 1.0 mU.min/mL; P = 0.031). Despite higher INS-AUC(0-60 min) in P1+, early postprandial BG was comparable between groups (BG-AUC(0-60 min) 1.5 +/- 0.5 vs. 1.6 +/- 0.6 g.min/dL; difference not significant). Multiple regression analyses showed no impact of first-phase INS secretion on postprandial glycemia, either in P1+ or in P1-. Nevertheless, in P1-, but not in P1+, postprandial glycemia was negatively correlated with INS sensitivity (R(2) = 0.83, P < 0.001). This study, correlating results of hyperglycemic glucose clamps with meal tests, shows that a preserved first-phase INS secretion has only a limited impact on postprandial glucose excursions in a group of subjects in early-stage type 2 diabetes.

  9. Effects of Petrol Exposure on Glucose, Liver and Muscle glycogen levels in the Common African toad Bufo regularis.

    PubMed

    Isehunwa, G O; Yusuf, I O; Alada, A Ar

    2017-03-06

    This study investigated the effects of exposure to petrol on blood glucose, liver and muscle glycogen levels in the common African toad Bufo regularis. A total of 126 adult toads of either sex weighing between 70-100g were used for this study. The experiment was divided into three phases. The phase 1 experiment the acute toxicity test consisted of animals divided into six groups of 10 toads per group and were exposed to water (H2O), H2O + Tween 80, 2ml/l, 3ml/l, 5ml/l, and 10ml/l of petrol respectively for 96 hours using the static renewal bioassay system. In the Phase 2 experiment, the animals were exposed to H2O, H2O + Tween 80, 0.14ml/l, 0.3ml/l, 0.6ml/l, and 1.13ml/l of petrol respectively for 3 days; while in phase 3 experiment they were exposed to petrol solutions for 14 days. After the various exposures, the blood glucose, liver and muscle glycogen contents were determined using standard methods. The results of the study showed that the median lethal concentration of petrol (96 hours LC50) was 4.5ml/l and sub-lethal concentration of petrol caused mortality of animals. Exposure to petrol solutions for 3 days had no significant effect on blood glucose level of the animals but caused significant decrease in the liver and muscle glycogen levels at high concentrations. In the animals exposed to petrol solutions for 14 days, there was a significant increase in glucose levels and significant reduction in liver and muscle glycogen levels at high concentrations when compared with the control. The results show that sub-lethal concentrations of petrol can cause mortality of animals, hyperglycemia and reduction in liver and muscle glycogen levels. The effects of petrol exposure on carbohydrate metabolism depend on the concentration and duration of exposure.

  10. The Development of Diet-Induced Obesity and Glucose Intolerance in C57Bl/6 Mice on a High-Fat Diet Consists of Distinct Phases

    PubMed Central

    Williams, Lynda M.; Campbell, Fiona M.; Drew, Janice E.; Koch, Christiane; Hoggard, Nigel; Rees, William D.; Kamolrat, Torkamol; Thi Ngo, Ha; Steffensen, Inger-Lise; Gray, Stuart R.; Tups, Alexander

    2014-01-01

    High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable. PMID:25170916

  11. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    PubMed Central

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  12. N-acetylcysteine is able to reduce the oxidation status and the endothelial activation after a high-glucose content meal in patients with Type 2 diabetes mellitus.

    PubMed

    Masha, A; Brocato, L; Dinatale, S; Mascia, C; Biasi, F; Martina, V

    2009-04-01

    Post-prandial hyperglycemia seems to play a pivotal role in the pathogenesis of the cardiovascular complications of diabetes mellitus, as it leads to an oxidative stress which in turn causes a reduced NO bioavailability. These conditions produce an endothelial activation. The aim of this study was to assure that the administration of N-acetylcysteine (NAC), thiolic antioxidant, is able to decrease the oxidation status and endothelial activation after a high-glucose content meal. Ten patients with Type 2 diabetes mellitus (DMT2) (Group 1) and 10 normal subjects (Group 2) were studied. They assumed a high-glucose content meal without (phase A) or after (phase B) the administration of NAC. Glycemia, insulinemia, intercellular adhesion molecule 1, vascular adhesion molecule 1 (VCAM-1), E-selectin, malonaldehyde (MDA), and 4-hydroxynonenal (HNE) were assessed at -30, 0, +30, +60, +90, +120, and +180 min with respect to the meal consumption. During the phase A in Group 1, only HNE and MDA levels increased after the meal assumption; all parameters remained unchanged in Group 2. During the phase B, in Group 1, HNE, MDA, VCAM-1, and E-selectin levels after the meal were lower than those in phase A, while no change for all variables were observed in Group 2. A high-glucose meal produces an increase in oxidation parameters in patients with DMT2. The administration of NAC reduces the oxidative stress and, by doing so, reduces the endothelial activation. In conclusion, NAC could be efficacious in the slackening of the progression of vascular damage in DMT2.

  13. Effects of Post-Exercise Honey Drink Ingestion on Blood Glucose and Subsequent Running Performance in the Heat

    PubMed Central

    Ahmad, Nur Syamsina; Ooi, Foong Kiew; Saat Ismail, Mohammed; Mohamed, Mahaneem

    2015-01-01

    Background: Glycogen depletion and hypoglycemia have been associated with fatigue and decrement of performance during prolonged exercise Objectives: This study investigated the effectiveness of Acacia honey drink as a post-exercise recovery aid on glucose metabolism and subsequent running performance in the heat. Patients and Methods: Ten subjects participated in this randomized cross-over study. All subjects performed 2 trials. In each trial, all subjects went through a glycogen depletion phase (Run-1), 2-hour rehydration phase and time trial running phase (Run-2). In Run-1, subjects were required to run on a treadmill at 65% VO2max in the heat (31°C, 70% relative humidity) for 60 min. During 2-hour rehydration phase, subjects drank either plain water (PW) or honey drink (HD) with amount equivalent to 150% of body weight loss in 3 boluses (60%, 50% and 40% subsequently) at 0, 30 and 60 min. In Run-2, the longest distance covered in 20 min was recorded for determining running performance. Two-way repeated measured ANOVA and paired t-test were used for analysis. Results: Running distance in Run-2 covered by the subjects in the honey drink HD trial (3420 ± 350 m) was significantly (P < 0.01) longer compared to plain water PW trial (3120 ± 340 m). In general, plasma glucose, serum insulin and osmolality were significantly (P < 0.05) higher in HD compared to PW during the rehydration phase and Run-2. Conclusions: These findings indicate that rehydration with honey drink improves running performance and glucose metabolism compared to plain water in the heat. Thus, honey drink can be recommended for rehydration purpose for athletes who compete in the heat. PMID:26448850

  14. An observational study of sequential protein-sparing, very low-calorie ketogenic diet (Oloproteic diet) and hypocaloric Mediterranean-like diet for the treatment of obesity.

    PubMed

    Castaldo, Giuseppe; Monaco, Luigi; Castaldo, Laura; Galdo, Giovanna; Cereda, Emanuele

    2016-09-01

    The impact of a rehabilitative multi-step dietary program consisting in different diets has been scantily investigated. In an open-label study, 73 obese patients underwent a two-phase weight loss (WL) program: a 3-week protein-sparing, very low-calorie, ketogenic diet (<500 kcal/day; Oloproteic(®) Diet) and a 6-week hypocaloric (25-30 kcal/kg of ideal body weight/day), low glycemic index, Mediterranean-like diet (hypo-MD). Both phases improved visceral adiposity, liver enzymes, GH levels, blood pressure and glucose and lipid metabolism. However, the hypo-MD was responsible for a re-increase in blood lipids and glucose tolerance parameters. Changes in visceral adiposity and glucose control-related variables were more consistent in patients with metabolic syndrome. However, in these patients the hypo-MD did not result in a consistent re-increase in glucose control-related variables. A dietary program consisting in a ketogenic regimen followed by a balanced MD appeared to be feasible and efficacious in reducing cardiovascular risk, particularly in patients with metabolic syndrome.

  15. The Effect of Glycolytic Modulation on Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    this paradigm in the clinic, we completed a phase I study of 2-deoxyglucose (2DG), and assessed 2DG uptake with fluorodeoxyglucose (FDG) positron ...efficacy. In vitro studies with 2DG have demonstrated activity in osteosarcoma cells that were defective in oxidative phosphorylation implying that cells...diagnostic studies developing positron emission tomography (PET), which uses a trapped glucose analogue, 2-deoxy-D-glucose (2DG), for detec- tion of

  16. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    PubMed Central

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion These data suggest that physiological fluctuations in circulating 17βE levels across the estrous cycle lead to changes in hypothalamic glucose sensing and the response to IIH. PMID:27666162

  17. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    PubMed

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological fluctuations in circulating 17βE levels across the estrous cycle lead to changes in hypothalamic glucose sensing and the response to IIH. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

    PubMed Central

    Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.

    2014-01-01

    Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632

  19. Second generation biofuels: Thermochemistry of glucose and fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmont, A.; Catoire, L.; C.N.R.S. - I.N.S.I.S., I.C.A.R.E., 1C, Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2

    2010-06-15

    The energetic conversion of biomass into syngas or biogas is a more and more important topic. In the framework of these studies, improved understanding of glucose and fructose thermal decomposition and oxidation appears crucial. For this task, thermodynamic data are needed to make possible, for instance, the building of a detailed chemical kinetic model of glucose and fructose reactivity at high temperature. A semitheoretical protocol, presented elsewhere, is used for the estimation of the thermodynamic data of glucose and fructose in the gas phase. Five isomers of glucose and five isomers of fructose are considered and the lowest-energy conformers aremore » found to be {beta}-D-glucopyranose for glucose and {beta}-D-fructopyranose for fructose. The data for all 10 isomers are provided in the CHEMKIN-NASA format. (author)« less

  20. Evaluation of the performance of a novel system for continuous glucose monitoring.

    PubMed

    Zschornack, Eva; Schmid, Christina; Pleus, Stefan; Link, Manuela; Klötzer, Hans-Martin; Obermaier, Karin; Schoemaker, Michael; Strasser, Monika; Frisch, Gerhard; Schmelzeisen-Redeker, Günther; Haug, Cornelia; Freckmann, Guido

    2013-07-01

    The performance of a continuous glucose monitoring (CGM) system in the early stage of development was assessed in an inpatient setting that simulates daily life conditions of people with diabetes. Performance was evaluated at low glycemic, euglycemic, and high glycemic ranges as well as during phases with rapid glucose excursions. Each of the 30 participants with type 1 diabetes (15 female, age 47 ± 12 years, hemoglobin A1c 7.7% ± 1.3%) wore two sensors of the prototype system in parallel for 7 days. Capillary blood samples were measured at least 16 times per day (at least 15 times per daytime and at least once per night). On two subsequent study days, glucose excursions were induced. For performance evaluation, the mean absolute relative difference (MARD) between CGM readings and paired capillary blood glucose readings and precision absolute relative difference (PARD), i.e., differences between paired CGM readings were calculated. Overall aggregated MARD was 9.2% and overall aggregated PARD was 7.5%. During induced glucose excursions, MARD was 10.9% and PARD was 7.8%. Lowest MARD (8.5%) and lowest PARD (6.4%) were observed in the high glycemic range (euglycemic range, MARD 9.1% and PARD 7.4%; low glycemic range, MARD 12.3% and PARD 12.4%). The performance of this prototype CGM system was, particularly in the hypoglycemic range and during phases with rapid glucose fluctuations, better than performance data reported for other commercially available systems. In addition, performance of this prototype sensor was noticeably constant over the whole study period. This prototype system is not yet approved, and performance of this CGM system needs to be further assessed in clinical studies. © 2013 Diabetes Technology Society.

  1. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.

    PubMed

    Raamsdonk, L M; Diderich, J A; Kuiper, A; van Gaalen, M; Kruckeberg, A L; Berden, J A; Van Dam, K; Kruckberg, A L

    2001-08-01

    In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on physiological studies on the hxk2 deletion strain on mixtures of glucose/sucrose, glucose/galactose, glucose/maltose and glucose/ethanol in aerobic batch cultures. The hxk2 deletion strain co-consumed galactose and sucrose, together with glucose. In addition, co-consumption of glucose and ethanol was observed during the early exponential growth phase. In S.cerevisiae, co-consumption of ethanol and glucose (in the presence of abundant glucose) has never been reported before. The specific respiration rate of the hxk2 deletion strain growing on the glucose/ethanol mixture was 900 micromol.min(-1).(g protein)(-1), which is four to five times higher than that of the hxk2 deletion strain growing oxidatively on glucose, three times higher than its parent growing on ethanol (when respiration is fully derepressed) and is almost 10 times higher than its parent growing on glucose (when respiration is repressed). This indicates that the hxk2 deletion strain has a strongly enhanced oxidative capacity when grown on a mixture of glucose and ethanol. Copyright 2001 John Wiley & Sons, Ltd.

  2. Lethality of a Heat- and Phosphate-Catalyzed Glucose By-Product to Escherichia coli O157:H7 and Partial Protection Conferred by the rpoS Regulon

    PubMed Central

    Byrd, Jeffrey J.; Cheville, Ann M.; Bose, Jeffrey L.; Kaspar, Charles W.

    1999-01-01

    A by-product of glucose produced during sterilization (121°C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25°C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25°C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4°C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally injured bacteria may be compromised by the presence of this by-product in recovery media. PMID:10347019

  3. Determination of sugars in honey by liquid chromatography

    PubMed Central

    Kamal, Mohammad A.; Klein, Peter

    2010-01-01

    Honey is a rich conventional natural resource of sweetness and energy for human beings. A protocol for the determination of two important monosaccharide sugars (fructose and glucose) in honey was established in the current study by using normal phase partition liquid chromatography and 1–5% combined working standard of glucose, fructose and sucrose. PMID:23961099

  4. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  5. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  6. Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer

    NASA Astrophysics Data System (ADS)

    Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.

    2003-10-01

    Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.

  7. [Non-pharmacological diabetes therapy].

    PubMed

    Martin, Stephan; Kolb, Hubert

    2008-02-01

    Diabetes mellitus type 2 is a life-style disease that is triggered by obesity and lack of physical activity. The pathophysiological basis of the disease is a reduction of insulin sensitivity, that is caused by the trigger factors. Glucose metabolic disorders appear if overproduction of insulin can not compensate the insulin resistance. In early phases postprandial blood glucose is increased, in late phases elevation of fasting blood glucose is noted. In the general awareness manifestation of type 2 diabetes is associated with an initiation of a pharmacological therapy. This is not the case, as described in detail in this review. Next to epidemiological studies, which indicate trigger factors, intervention trials will be discussed that led to a shift in paradigm in the diabetology. Non-pharmacological interventions are a therapeutical alternative in a lot of patients or are able to reduce the amount of antidiabetic agents significantly.

  8. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium

    PubMed Central

    Waniewski, Jacek; Flessner, Michael F.; Lindholm, Bengt

    2016-01-01

    Clinical and animal studies suggest that peritoneal absorption of fluid and protein from dialysate to peritoneal tissue, and to blood and lymph circulation, occurs concomitantly with opposite flows of fluid and protein, i.e., from blood to dialysate. However, until now a theoretical explanation of this phenomenon has been lacking. A two-phase distributed model is proposed to explain the bidirectional, concomitant transport of fluid, albumin and glucose through the peritoneal transport system (PTS) during peritoneal dialysis. The interstitium of this tissue is described as an expandable two-phase structure with phase F (water-rich, colloid-poor region) and phase C (water-poor, colloid-rich region) with fluid and solute exchange between them. A low fraction of phase F is assumed in the intact tissue, which can be significantly increased under the influence of hydrostatic pressure and tissue hydration. The capillary wall is described using the three-pore model, and the conditions in the peritoneal cavity are assumed commencing 3 min after the infusion of glucose 3.86% dialysis fluid. Computer simulations demonstrate that peritoneal absorption of fluid into the tissue, which occurs via phase F at the rate of 1.8 ml/min, increases substantially the interstitial pressure and tissue hydration in both phases close to the peritoneal cavity, whereas the glucose-induced ultrafiltration from blood occurs via phase C at the rate of 15 ml/min. The proposed model delineating the phenomenon of concomitant bidirectional transport through PTS is based on a two-phase structure of the interstitium and provides results in agreement with clinical and experimental data. PMID:26945084

  9. Decision Support in Diabetes Care: The Challenge of Supporting Patients in Their Daily Living Using a Mobile Glucose Predictor.

    PubMed

    Pérez-Gandía, Carmen; García-Sáez, Gema; Subías, David; Rodríguez-Herrero, Agustín; Gómez, Enrique J; Rigla, Mercedes; Hernando, M Elena

    2018-03-01

    In type 1 diabetes mellitus (T1DM), patients play an active role in their own care and need to have the knowledge to adapt decisions to their daily living conditions. Artificial intelligence applications can help people with type 1 diabetes in decision making and allow them to react at time scales shorter than the scheduled face-to-face visits. This work presents a decision support system (DSS), based on glucose prediction, to assist patients in a mobile environment. The system's impact on therapeutic corrective actions has been evaluated in a randomized crossover pilot study focused on interprandial periods. Twelve people with type 1 diabetes treated with insulin pump participated in two phases: In the experimental phase (EP) patients used the DSS to modify initial corrective decisions in presence of hypoglycemia or hyperglycemia events. In the control phase (CP) patients were asked to follow decisions without knowing the glucose prediction. A telemedicine platform allowed participants to register monitoring data and decisions and allowed endocrinologists to supervise data at the hospital. The study period was defined as a postprediction (PP) time window. After knowing the glucose prediction, participants modified the initial decision in 20% of the situations. No statistically significant differences were found in the PP Kovatchev's risk index change (-1.23 ± 11.85 in EP vs -0.56 ± 6.06 in CP). Participants had a positive opinion about the DSS with an average score higher than 7 in a usability questionnaire. The DSS had a relevant impact in the participants' decision making while dealing with T1DM and showed a high confidence of patients in the use of glucose prediction.

  10. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study.

    PubMed

    Arnason, Terra G; Bowen, Matthew W; Mansell, Kerry D

    2017-04-15

    To determine the short-term biochemical effects and clinical tolerability of intermittent fasting (IF) in adults with type 2 diabetes mellitus (T2DM). We describe a three-phase observational study (baseline 2 wk, intervention 2 wk, follow-up 2 wk) designed to determine the clinical, biochemical, and tolerability of IF in community-dwelling volunteer adults with T2DM. Biochemical, anthropometric, and physical activity measurements (using the Yale Physical Activity Survey) were taken at the end of each phase. Participants reported morning, afternoon and evening self-monitored blood glucose (SMBG) and fasting duration on a daily basis throughout all study stages, in addition to completing a remote food photography diary three times within each study phase. Fasting blood samples were collected on the final days of each study phase. At baseline, the ten participants had a confirmed diagnosis of T2DM and were all taking metformin, and on average were obese [mean body mass index (BMI) 36.90 kg/m 2 ]. We report here that a short-term period of IF in a small group of individuals with T2DM led to significant group decreases in weight (-1.395 kg, P = 0.009), BMI (-0.517, P = 0.013), and at-target morning glucose (SMBG). Although not a study requirement, all participants preferentially chose eating hours starting in the midafternoon. There was a significant increase ( P < 0.001) in daily hours fasted in the IF phase (+5.22 h), although few attained the 18-20 h fasting goal (mean 16.82 ± 1.18). The increased fasting duration improved at-goal (< 7.0 mmol/L) morning SMBG to 34.1%, from a baseline of 13.8%. Ordinal Logistic Regression models revealed a positive relationship between the increase in hours fasted and fasting glucose reaching target values ( χ 2 likelihood ratio = 8.36, P = 0.004) but not for afternoon or evening SMBG (all P > 0.1). Postprandial SMBGs were also improved during the IF phase, with 60.5% readings below 9.05 mmol/L, compared to 52.6% at baseline, and with less glucose variation. Neither insulin resistance (HOMA-IR), nor inflammatory markers (C-reactive protein) normalized during the IF phase. IF led to an overall spontaneous decrease in caloric intake as measured by food photography (Remote Food Photography Method). The data demonstrated discernable trends during IF for lower energy, carbohydrate, and fat intake when compared to baseline. Physical activity, collected by a standardized measurement tool (Yale Physical Activity Survey), increased during the intervention phase and subsequently decreased in the follow-up phase. IF was well tolerated in the majority of individuals with 6/10 participants stating they would continue with the IF regimen after the completion of the study, in a full or modified capacity ( i.e. , every other day or reduced fasting hours). The results from this pilot study indicate that short-term daily IF may be a safe, tolerable, dietary intervention in T2DM patients that may improve key outcomes including body weight, fasting glucose and postprandial variability. These findings should be viewed as exploratory, and a larger, longer study is necessary to corroborate these findings.

  11. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study

    PubMed Central

    Arnason, Terra G; Bowen, Matthew W; Mansell, Kerry D

    2017-01-01

    AIM To determine the short-term biochemical effects and clinical tolerability of intermittent fasting (IF) in adults with type 2 diabetes mellitus (T2DM). METHODS We describe a three-phase observational study (baseline 2 wk, intervention 2 wk, follow-up 2 wk) designed to determine the clinical, biochemical, and tolerability of IF in community-dwelling volunteer adults with T2DM. Biochemical, anthropometric, and physical activity measurements (using the Yale Physical Activity Survey) were taken at the end of each phase. Participants reported morning, afternoon and evening self-monitored blood glucose (SMBG) and fasting duration on a daily basis throughout all study stages, in addition to completing a remote food photography diary three times within each study phase. Fasting blood samples were collected on the final days of each study phase. RESULTS At baseline, the ten participants had a confirmed diagnosis of T2DM and were all taking metformin, and on average were obese [mean body mass index (BMI) 36.90 kg/m2]. We report here that a short-term period of IF in a small group of individuals with T2DM led to significant group decreases in weight (-1.395 kg, P = 0.009), BMI (-0.517, P = 0.013), and at-target morning glucose (SMBG). Although not a study requirement, all participants preferentially chose eating hours starting in the midafternoon. There was a significant increase (P < 0.001) in daily hours fasted in the IF phase (+5.22 h), although few attained the 18-20 h fasting goal (mean 16.82 ± 1.18). The increased fasting duration improved at-goal (< 7.0 mmol/L) morning SMBG to 34.1%, from a baseline of 13.8%. Ordinal Logistic Regression models revealed a positive relationship between the increase in hours fasted and fasting glucose reaching target values (χ2 likelihood ratio = 8.36, P = 0.004) but not for afternoon or evening SMBG (all P > 0.1). Postprandial SMBGs were also improved during the IF phase, with 60.5% readings below 9.05 mmol/L, compared to 52.6% at baseline, and with less glucose variation. Neither insulin resistance (HOMA-IR), nor inflammatory markers (C-reactive protein) normalized during the IF phase. IF led to an overall spontaneous decrease in caloric intake as measured by food photography (Remote Food Photography Method). The data demonstrated discernable trends during IF for lower energy, carbohydrate, and fat intake when compared to baseline. Physical activity, collected by a standardized measurement tool (Yale Physical Activity Survey), increased during the intervention phase and subsequently decreased in the follow-up phase. IF was well tolerated in the majority of individuals with 6/10 participants stating they would continue with the IF regimen after the completion of the study, in a full or modified capacity (i.e., every other day or reduced fasting hours). CONCLUSION The results from this pilot study indicate that short-term daily IF may be a safe, tolerable, dietary intervention in T2DM patients that may improve key outcomes including body weight, fasting glucose and postprandial variability. These findings should be viewed as exploratory, and a larger, longer study is necessary to corroborate these findings. PMID:28465792

  12. Sodiated Sugar Structures: Cryogenic Ion Vibrational Spectroscopy of Na^+(GLUCOSE) Adducts

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2017-06-01

    The recent discovery that ionic liquids help facilitate the dissolution of cellulose has renewed interest in understanding how ionic species interact with carbohydrates. Here we present infrared spectra in the 2800 - 3800 \\wn range of gas-phase mass-selected Na^+(Glucose) adducts. These adducts are further probed with IR-dip spectroscopy to yield conformer specific spectra of at least seven unique species. The relative abundances of conformers show that gas-phase interconversion barriers are sufficiently high to preserve the solution-phase populations. Additionally, our results demonstrate that mM concentrations of NaCl do not strongly perturb the anomeric ratio of glucose in solution.

  13. Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan

    2016-07-01

    Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.

  14. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  15. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner.

    PubMed

    Ramos-Gomez, Minerva; Olivares-Marin, Ivanna Karina; Canizal-García, Melina; González-Hernández, Juan Carlos; Nava, Gerardo M; Madrigal-Perez, Luis Alberto

    2017-06-01

    A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H 2 O 2 ) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H 2 O 2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.

  16. Plasma Insulin Levels and Hypoglycemia Affect Subcutaneous Interstitial Glucose Concentration.

    PubMed

    Moscardó, Vanessa; Bondia, Jorge; Ampudia-Blasco, Francisco J; Fanelli, Carmine G; Lucidi, Paola; Rossetti, Paolo

    2018-04-01

    Continuous glucose monitoring (CGM) accuracy during hypoglycemia is suboptimal. This might be partly explained by insulin or hypoglycemia-induced changes in the plasma interstitial subcutaneous (SC) fluid glucose gradient. The aim of the present study was to assess the role of plasma insulin (PI) and hypoglycemia itself in the plasma and interstitial SC fluid glucose concentration in patients with type 1 diabetes mellitus. Eleven subjects with type 1 diabetes (age 36.5 ± 9.1 years, HbA 1c 7.9 ± 0.4% [62.8 ± 2.02 mmol/mol]; mean ± standard deviation) were evaluated under hyperinsulinemic euglycemia and hypoglycemia. Each subject underwent two randomized crossover clamps with either a primed 0.3 (low insulin) or 1 mU/(kg·min) (high insulin) insulin infusion. The raw CGM signal was normalized with median preclamp values to obtain a standardized measure of the interstitial glucose (IG) concentration before statistical analysis. The mean PI concentration was greater in high insulin studies (HISs) versus low insulin studies (LISs) (412.89 ± 13.63 vs. 177.22 ± 10.05 pmol/L). During hypoglycemia, glucagon, adrenaline, free fatty acids, glycerol, and beta-OH-butyrate were higher in the LIS (P < 0.0001). Likewise, the IG concentration was significantly different (P < 0.0001). This was due to lower IG concentration than plasma glucose (PG) concentration during the euglycemic hyperinsulinemic phases in the HIS. In contrast, no difference was observed during hypoglycemia. This was the result of an unchanged PG/IG gradient during the entire LIS, while in the HIS, this gradient increased during the hyperinsulinemic euglycemia phase. Both PI levels and hypoglycemia affect the relationship between IG and PG concentration. ClinicalTrials.gov Identifier: NCT01714895.

  17. ASPIRE In-Home: rationale, design, and methods of a study to evaluate the safety and efficacy of automatic insulin suspension for nocturnal hypoglycemia.

    PubMed

    Klonoff, David C; Bergenstal, Richard M; Garg, Satish K; Bode, Bruce W; Meredith, Melissa; Slover, Robert H; Ahmann, Andrew; Welsh, John B; Lee, Scott W

    2013-07-01

    Nocturnal hypoglycemia is a barrier to therapy intensification efforts in diabetes. The Paradigm® Veo™ system may mitigate nocturnal hypoglycemia by automatically suspending insulin when a prespecified sensor glucose threshold is reached. ASPIRE (Automation to Simulate Pancreatic Insulin REsponse) In-Home (NCT01497938) was a multicenter, randomized, parallel, adaptive study of subjects with type 1 diabetes. The control arm used sensor-augmented pump therapy. The treatment arm used sensor-augmented pump therapy with threshold suspend, which automatically suspends the insulin pump in response to a sensor glucose value at or below a prespecified threshold. To be randomized, subjects had to have demonstrated ≥2 episodes of nocturnal hypoglycemia, defined as >20 consecutive minutes of sensor glucose values ≤65 mg/dl starting between 10:00 PM and 8:00 AM in the 2-week run-in phase. The 3-month study phase evaluated safety by comparing changes in glycated hemoglobin (A1C) values and evaluated efficacy by comparing the mean area under the glucose concentration time curves for nocturnal hypoglycemia events in the two groups. Other outcomes included the rate of nocturnal hypoglycemia events and the distribution of sensor glucose values. Data from the ASPIRE In-Home study should provide evidence on the safety of the threshold suspend feature with respect to A1C and its efficacy with respect to severity and duration of nocturnal hypoglycemia when used at home over a 3-month period. © 2013 Diabetes Technology Society.

  18. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias.

    PubMed

    Chaumont, F; Schanck, A N; Blum, J J; Opperdoes, F R

    1994-10-01

    Metabolic studies on Phytomonas sp. isolated from the lactiferous tubes of the latex-bearing spurge Euphorbia characias indicate that glucose is the preferred energy and carbon substrate during logarithmic growth. In stationary phase cells glucose consumption was dramatically reduced. Glucose consumption and end-product formation were measured on logarithmically growing cells, both under aerobic (air and 95% O2/5% CO2) and anaerobic (95% N2/5% CO2 and 100% N2) conditions. The rate of glucose consumption slightly increased under anaerobic conditions indicating that Phytomonas lacks a 'reverse Pasteur' effect contrary to the situation encountered in Leishmania major. Major end-products of glucose catabolism under aerobic conditions, detected by enzymatic and NMR measurements, were acetate, ethanol and carbon dioxide and under anaerobic conditions ethanol, glycerol and carbon dioxide. Smaller amounts of pyruvate, succinate, L-malate, L-lactate, phosphoenolpyruvate, alanine and aspartate were also detected.

  19. Complete factorial design to adjust pH and sugar concentrations in the inoculum phase of Ralstonia solanacearum to optimize P(3HB) production

    PubMed Central

    Alves, Mariane Igansi; Rodrigues, Amanda Ávila; Furlan, Lígia; da Silva Rodrigues, Rosane; Diaz de Oliveira, Patrícia; Vendruscolo, Claire Tondo; da Silveira Moreira, Angelita

    2017-01-01

    Poly(3-hydroxybutyrate) (P(3HB)) is a biodegradable plastic biopolymer that accumulates as lipophilic inclusions in the cytoplasm of some microorganisms. The biotechnological process by which P(3HB) is synthesized occurs in two phases. The first phase involves cell growth in a complex culture medium, while the second phase involves polymer accumulation in the presence of excess carbon sources. As such, the efficiency of the second phase depends on the first phase. The aim of this study was to evaluate culture media with different concentrations of sucrose and glucose and different pH values in the inoculum phase of Ralstonia solanacearum RS with the intention of identifying methods by which the biomass yield could be increased, subsequently enhancing the yield of P(3HB). The culture medium was formulated according to the experimental planning type of central composite rotational design 22. The independent variables were pH and sugar concentration (sucrose and glucose), and the dependent variables were OD600nm, dry cell weight (DCW), and P(3HB) yield. The highest cell growth, estimated by the OD600nm (20.6) and DCW (5.35) values, was obtained when sucrose was used in the culture medium at a concentration above 35 g.L-1 in combination with an acidic pH. High polymer (45%) accumulation was also achieved under these conditions. Using glucose, the best results for OD600nm (12.5) and DCW (2.74) were also obtained at acidic pH but with a sugar concentration at the minimum values evaluated. Due to the significant accumulation of polymer in the cells that were still in the growth phase, the accumulating microorganism P(3HB) Ralstonia solanacearum RS can be classified as having type II metabolism in relation to the polymer accumulation phase, which is different from other Ralstonia spp. studied until this time. PMID:28704411

  20. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-12-01

    Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tagatose: from a sweetener to a new diabetic medication?

    PubMed

    Espinosa, Ikna; Fogelfeld, Leon

    2010-02-01

    Tagatose is a naturally occurring simple sugar that is a more palatable bulk low-calorie (1.5 kcal/g) sweetener. It was approved as a food additive by the FDA in 2003. Tagatose has been studied as a potential antidiabetic and antiobesity medication. In preliminary studies in humans, tagatose has shown a low postprandial blood glucose and insulin response. Its proposed mechanism of action may involve interference in the absorption of carbohydrates by inhibiting intestinal disaccharidases and glucose transport. It may also act through hepatic inhibition of glycogenolysis. This article summarizes tagatose Phase I and II diabetes trials. It describes the pharmacodynamics and possible mechanism of action of this agent. Literature from 1974 to 2009 is reviewed. Better understanding of the implications of postprandial hyperglycemia. An appreciation of the liver as a target of glucose control. Increased awareness of tagatose, a sweetener, as a potential new medication that operates through improvement of postprandial hyperglycemia. Tagatose is currently being studied as a postprandial antihyperglycemic agent that may be safer with regard to hypoglycemia. Ongoing Phase III clinical trials will provide more definitive answers.

  2. Impaired insulin secretion in the spontaneous diabetes rats.

    PubMed

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  3. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    PubMed

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.

  4. Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum.

    PubMed

    Nishimoto, H; Matsutani, R; Yamamoto, S; Takahashi, T; Hayashi, K-G; Miyamoto, A; Hamano, S; Tetsuka, M

    2006-01-01

    Glucose is the main energy substrate in the bovine ovary, and a sufficient supply of it is necessary to sustain the ovarian activity. Glucose cannot permeate the plasma membrane, and its uptake is mediated by a number of glucose transporters (GLUT). In the present study, we investigated the gene expression of GLUT1, 3 and 4 in the bovine follicle and corpus luteum (CL). Ovaries were obtained from Holstein x Japanese Black F1 heifers. Granulosa cells and theca interna layers were harvested from follicles classified into five categories by their physiologic status: follicular size (>or= 8.5 mm: dominant; < 8.5 mm: subordinate), ratio of estradiol (E(2)) to progesterone in follicular fluid (>or= 1: E(2) active;<1: E(2) inactive), and stage of estrous cycle (luteal phase, follicular phase). CL were also classified by the stage of estrous cycle. Expression levels of GLUT1, 3 and 4 mRNA were quantified by a real-time PCR. The mRNA for GLUT1 and 3 were detected in the bovine follicle and CL at comparable levels to those in classic GLUT-expressing organs such as brain and heart. Much lower but appreciable levels of GLUT4 were also detected in these tissues. The gene expression of these GLUT showed tissue- and stage-specific patterns. Despite considerable differences in physiologic conditions, similar levels of GLUT1, 3 and 4 mRNA were expressed in subordinate follicles as well as dominant E(2)-active follicles in both luteal and follicular phases, whereas a notable increase in the gene expression of these GLUT was observed in dominant E(2)-inactive follicles undergoing the atretic process. In these follicles, highly significant negative correlations were observed between the concentrations of glucose in follicular fluid and the levels of GLUT1 and 3 mRNA in granulosa cells, implying that the local glucose environment affects glucose uptake of follicles. These results indicate that GLUT1 and 3 act as major transporters of glucose while GLUT4 may play a supporting role in the bovine follicle and CL.

  5. Effects of a beverage containing an enzymatically induced-viscosity dietary fiber, with or without fructose, on the postprandial glycemic response to a high glycemic index food in humans.

    PubMed

    Wolf, B W; Wolever, T M S; Lai, C S; Bolognesi, C; Radmard, R; Maharry, K S; Garleb, K A; Hertzler, S R; Firkins, J L

    2003-09-01

    Dietary supplementation with guar gum or fructose has been reported to reduce the postprandial glycemic response to an oral glucose challenge. As a result of the poor palatability of most foods containing guar gum, a novel low-viscosity beverage with guar gum was developed that becomes viscous in vivo through an enzymatic induction. The primary study objective was to determine the effect of an amylase-induced viscosity (I-V) product, with or without supplemental fructose, on the postprandial glycemic response to a high glycemic index test meal in healthy nondiabetic subjects. The study was a four-treatment, placebo-controlled, double-blind, randomized block protocol. The study was performed at Glycaemic Index Testing, Inc., Toronto, Ontario, Canada. A total of 30 healthy nondiabetic volunteers (13 male, 17 female, mean+/-s.e.m. age of 51+/-3 y and body mass index of 24.2+/-0.4 kg/m(2)) participated in the study. In the morning after an overnight fast, subjects participated in four 3-h meal glucose tolerance tests on separate occasions. The test meals contained 50 g of available carbohydrate from maltodextrin and white bread (control) or the same meal with either 5 g of guar gum (3.6 g galactomannan), 5 g of fructose, or 5 g of guar gum +5 g of fructose. Treatments containing guar gum had a reduced (P<0.01) baseline-adjusted peak glucose response and incremental area under the glucose curve. In contrast to previous studies, fructose increased (P<0.05) the baseline-adjusted peak glucose concentration. Guar gum incorporated into an amylase I-V product provided a means to stabilize blood glucose levels by reducing the early phase excursion and then by appropriately maintaining the later phase excursion in healthy nondiabetic humans.

  6. Use of a glucose management service improves glycemic control following vascular surgery: an interrupted time-series study.

    PubMed

    Wallaert, Jessica B; Chaidarun, Sushela S; Basta, Danielle; King, Kathryn; Comi, Richard; Ogrinc, Greg; Nolan, Brian W; Goodney, Philip P

    2015-05-01

    The optimal method for obtaining good blood glucose control in noncritically ill patients undergoing peripheral vascular surgery remains a topic of debate for surgeons, endocrinologists, and others involved in the care of patients with peripheral arterial disease and diabetes. A prospective trial was performed to evaluate the impact of routine use of a glucose management service (GMS) on glycemic control within 24 hours of lower-extremity revascularization (LER). In an interrupted time-series design (May 1, 2011-April 30, 2012), surgeon-directed diabetic care (Baseline phase) to routine GMS involvement (Intervention phase) was compared following LER. GMS assumed responsibility for glucose management through discharge. The main outcome measure was glycemic control, assessed by (1) mean hospitalization glucose and (2) the percentage of recorded glucose values within target range. Statistical process control charts were used to assess the impact of the intervention. Clinically important differences in patient demographics were noted between groups; the 19 patients in the Intervention arm had worse peripheral vascular disease than the 19 patients in the Baseline arm (74% critical limb ischemia versus 58%; p = .63). Routine use of GMS significantly reduced mean hospitalization glucose (191 mg/dL Baseline versus 150 mg/dL Intervention, p < .001). Further, the proportion of glucose values in target range increased (48% Baseline versus 78% Intervention, p = .05). Following removal of GMS involvement, measures of glycemic control did not significantly decrease for the 19 postintervention patients. Routine involvement of GMS improved glycemic control in patients undergoing LER. Future work is needed to examine the impact of improved glycemic control on clinical outcomes following LER.

  7. IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.

    Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less

  8. IR-IR Conformation Specific Spectroscopy of Na +(Glucose) Adducts

    DOE PAGES

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; ...

    2017-09-27

    Here in this paper we report an IR-IR double resonance study of the structural landscape present in the Na +(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na +(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctivemore » Na+ coordination.« less

  9. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  10. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  11. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection.

    PubMed

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-04-14

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.

  12. Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Ghanbari, Davood

    Graphical abstract: - Highlights: • CuI nanostructures were prepared via a simple precipitation method. • Glucose as a green capping agent and reductant was applied. • The effect of glucose concentration on the morphology of CuI was investigated. • According to XRD results, pure cubic phase CuI have been formed by using glucose. - Abstract: In this work, CuI micro/nanostructures have been successfully prepared via a simple precipitation route at room temperature. By using glucose as a clean reducing agent with different concentrations, CuI micro/nanostructures with various morphologies were obtained. Besides glucose, Na{sub 2}SO{sub 3}, KBH{sub 4} and N{sub 2}H{submore » 4}·H{sub 2}O have been applied as reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy, X-ray energy dispersive spectroscopy (EDS) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the as-produced CuI micro/nanostructures. According to the XRD results, it was found that pure cubic phase CuI have been formed by using glucose.« less

  13. Dynamical Analysis in the Mathematical Modelling of Human Blood Glucose

    ERIC Educational Resources Information Center

    Bae, Saebyok; Kang, Byungmin

    2012-01-01

    We want to apply the geometrical method to a dynamical system of human blood glucose. Due to the educational importance of model building, we show a relatively general modelling process using observational facts. Next, two models of some concrete forms are analysed in the phase plane by means of linear stability, phase portrait and vector…

  14. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  15. Elevated glucose levels in early puerperium, and association with high cortisol levels during parturition.

    PubMed

    Risberg, Anitha; Sjöquist, Mats; Wedenberg, Kaj; Larsson, Anders

    2016-07-01

    Background Gestational diabetes is one of the commonest metabolic problems associated with pregnancy and an accurate diagnosis is critical for the care. Research has shown that pregnant women have high levels of cortisol during the last stage of parturition. As cortisol is a diabetogenic hormone causing increased glucose levels, we wanted to study the association between cortisol and glucose levels during parturition. Materials and methods Glucose and cortisol were analyzed during parturition in 50 females divided according to slow (n = 11) and normal labors (n = 39). Blood samples were analyzed three times during the parturition and four times in the first day after delivery. Glucose levels were also measured once in each trimester. Results In the normal group, the glucose concentration increased from 6.2 (IQR 5.6-8.0) mmol/L in the latency phase to 11.6 (10.0-13.3) mmol/L at aftercare (p < 0.05). After parturition the glucose concentrations decreased gradually. There were significant Spearman rank correlations between glucose and cortisol values. Conclusions The changes associated with birth cause significant elevations of cortisol and glucose around parturition.

  16. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  17. Modulation of enzyme catalytic properties and biosensor calibration parameters with chlorides: studies with glucose oxidase.

    PubMed

    Kagan, Margarita; Kivirand, Kairi; Rinken, Toonika

    2013-09-10

    We studied the modulation of calibration parameters of biosensors, in which glucose oxidase was used for bio-recognition, in the presence of different chlorides by following the transient phase dynamics of oxygen concentration with an oxygen optrode. The mechanism of modulation was characterized with the changes of the glucose oxidase catalytic constant and oxygen diffusion constant. The modulation of two biosensor calibration parameters were studied: the maximum calculated signal change was amplified for about 20% in the presence of sodium and magnesium chlorides; the value of the kinetic parameter decreased along with the addition of salts and increased only at sodium chloride concentrations over 0.5 mM. Besides glucose bioassay, the amplification of calibration parameters was also studied in cascaded two-enzyme lactose biosensor, where the initial step of lactose bio-recognition, the β-galactosidase - catalyzed lactose hydrolysis, was additionally accelerated by magnesium ions. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

    PubMed Central

    Lahoz-Beneytez, Julio; Schaller, Stephan; Macallan, Derek; Eissing, Thomas; Niederalt, Christoph; Asquith, Becca

    2017-01-01

    In vivo [6,6-2H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day) versus long (7-day) 2H2-glucose studies and very-long (9-week) 2H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a “square pulse” (Sq pulse). Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK) model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the “square pulse” approach—recently suggested as the most plausible hypothesis—only explain a component of the discrepancy in published T cell proliferation rate estimates. PMID:28487698

  19. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice

    PubMed Central

    Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F.; Vasselli, Joseph R.; Sclafani, Anthony

    2015-01-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. PMID:26157055

  20. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    PubMed

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  1. IVGTT-based simple assessment of glucose tolerance in the Zucker fatty rat: Validation against minimal models.

    PubMed

    Morettini, Micaela; Faelli, Emanuela; Perasso, Luisa; Fioretti, Sandro; Burattini, Laura; Ruggeri, Piero; Di Nardo, Francesco

    2017-01-01

    For the assessment of glucose tolerance from IVGTT data in Zucker rat, minimal model methodology is reliable but time- and money-consuming. This study aimed to validate for the first time in Zucker rat, simple surrogate indexes of insulin sensitivity and secretion against the glucose-minimal-model insulin sensitivity index (SI) and against first- (Φ1) and second-phase (Φ2) β-cell responsiveness indexes provided by C-peptide minimal model. Validation of the surrogate insulin sensitivity index (ISI) and of two sets of coupled insulin-based indexes for insulin secretion, differing from the cut-off point between phases (FPIR3-SPIR3, t = 3 min and FPIR5-SPIR5, t = 5 min), was carried out in a population of ten Zucker fatty rats (ZFR) and ten Zucker lean rats (ZLR). Considering the whole rat population (ZLR+ZFR), ISI showed a significant strong correlation with SI (Spearman's correlation coefficient, r = 0.88; P<0.001). Both FPIR3 and FPIR5 showed a significant (P<0.001) strong correlation with Φ1 (r = 0.76 and r = 0.75, respectively). Both SPIR3 and SPIR5 showed a significant (P<0.001) strong correlation with Φ2 (r = 0.85 and r = 0.83, respectively). ISI is able to detect (P<0.001) the well-recognized reduction in insulin sensitivity in ZFRs, compared to ZLRs. The insulin-based indexes of insulin secretion are able to detect in ZFRs (P<0.001) the compensatory increase of first- and second-phase secretion, associated to the insulin-resistant state. The ability of the surrogate indexes in describing glucose tolerance in the ZFRs was confirmed by the Disposition Index analysis. The model-based validation performed in the present study supports the utilization of low-cost, insulin-based indexes for the assessment of glucose tolerance in Zucker rat, reliable animal model of human metabolic syndrome.

  2. Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells.

    PubMed

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2010-12-01

    Functional insulin receptor and its downstream effector PI3K (phosphoinositide 3-kinase) have been identified in pancreatic β-cells, but their involvement in the regulation of insulin secretion from β-cells remains unclear. In the present study, we investigated the physiological role of insulin and PI3K in glucose-induced biphasic insulin exocytosis in primary cultured β-cells and insulinoma Min6 cells using total internal reflection fluorescent microscopy. The pretreatment of β-cells with insulin induced the rapid increase in intracellular Ca2+ levels and accelerated the exocytotic response without affecting the second-phase insulin secretion. The inhibition of PI3K not only abolished the insulin-induced rapid development of the exocytotic response, but also potentiated the second-phase insulin secretion. The rapid development of Ca2+ and accelerated exocytotic response induced by insulin were accompanied by the translocation of the Ca2+-permeable channel TrpV2 (transient receptor potential V2) in a PI3K-dependent manner. Inhibition of TrpV2 by the selective blocker tranilast, or the expression of shRNA (short-hairpin RNA) against TrpV2 suppressed the effect of insulin in the first phase, but the second phase was not affected. Thus our results demonstrate that insulin treatment induced the acceleration of the exocytotic response during the glucose-induced first-phase response by the insertion of TrpV2 into the plasma membrane in a PI3K-dependent manner.

  3. Influence of the presence of Zymomonas anaerobia on the conversion of cellobiose, glucose, and xylose to ethanol by Clostridium saccharolyticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asther, M.; Khan, A.W.

    1984-01-01

    To convert sugar mixtures containing cellobiose, glucose, and xylose to ethanol in a single step, the possibility of using a coculture consisting of Clostridium saccharolyticum and Zymomonas anaerobia was studied. In monoculture, C. saccharolyticum utilized all three sugars; however, it preferentially utilized glucose and produced acetic acid in addition to ethanol. The formation of acetic acid from the metabolism of glucose inhibited the growth of C. saccharolyticum and, consequently, the utilization of cellobiose and xylose. In monoculture, Z. anaerobia utilized glucose at a rate of 50 g/L day, but it did not ferment cellobiose or xylose. In coculture, Z. anaerobiamore » converted most of the glucose to ethanol during the lag phase of growth of C. saccharolyticum, which then converted cellobiose and xylose to ethanol. The use of this coculture increased both the rate and the efficiency of the conversion of these three sugars to ethanol, and produced relatively small amounts of acetic acid.« less

  4. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Hudecki, A.; Wlodarczyk, A.; Kolano-Burian, A.

    2016-08-01

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studies revealed that the α and β anomers don't form solid solutions and have eutectic point for xα = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.

  5. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. Results Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and nitrogen assimilation were induced 1 hour after pulsing. Conclusions The redox and energy metabolism were found to be more severely affected after pulsing of furan aldehydes during the xylose consumption phase than during glucose consumption. Conceivably, this discrepancy resulted from the low xylose utilization rate, hence suggesting that xylose metabolism is a feasible target for metabolic engineering of more robust xylose-utilizing yeast strains. PMID:24341320

  6. Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties.

    PubMed

    Nasirian, Nima; Mirzaie, Maryam; Cicek, Nazim; Levin, David B

    2018-04-01

    Relationships between lipid and carotenoid synthesis by Rhodosporidium diobovatum were investigated for cell cultures in nitrogen-limited medium (GMY) containing equimolar amounts of carbon of glucose or glycerol. The cultures were also supplemented with additional substrate at 120 h postinoculation (pi) and during a fed-batch experiment. Growth of R. diobovatum on glucose resulted in higher yields of triacyglycerides (TAGs) and carotenoid than when grown on glycerol, even though the cultures contained equimolar amounts of carbon. After the addition of fresh substrate at 120 h pi, total carotenoid concentrations were significantly different from the concentrations measured at 120 h pi in both glucose and glycerol cultures, with no concomitant increase in lipid concentrations, suggesting that carotenoid synthesis is linked to exponential-phase growth, while lipid synthesis is linked to stationary phase. We also compared the calculated properties of biodiesel that could be made with TAGs derived from R. diobovatum with properties of biodiesel made from TAGs of other oleaginous yeasts, microalgae, vegetable oils, and animal fats. This study shows that R. diobovatum can be an effective strain for production of neutral lipids containing high percentages of oleic acid, palmitic acid, and linoleic acid, as well as carotenoids.

  7. Lack of effect of bezafibrate and fenofibrate on the pharmacokinetics and pharmacodynamics of repaglinide

    PubMed Central

    Kajosaari, Lauri I; Backman, Janne T; Neuvonen, Mikko; Laitila, Jouko; Neuvonen, Pertti J

    2004-01-01

    Aims Gemfibrozil markedly increases the plasma concentrations and blood glucose-lowering effects of repaglinide, but the effects of other fibrates on repaglinide pharmacokinetics are not known. Our aim was to investigate the effects of bezafibrate and fenofibrate on the pharmacokinetics and pharmacodynamics of repaglinide. Methods In a randomized, three-phase cross-over study, 12 healthy subjects received 400 mg bezafibrate, 200 mg fenofibrate or placebo once daily for 5 days. On day 5, a single 0.25 mg dose of repaglinide was ingested 1 h after the last pretreatment dose. The concentrations of plasma repaglinide, bezafibrate and fenofibrate and blood glucose were measured up to 7 h postdose. Results During the bezafibrate and fenofibrate phases, the total area under the concentration-time curve [AUC(0,∞)] of repaglinide was 99% (95% confidence interval of the ratio to the control phase 73, 143%) and 99% (85, 127%) of the corresponding value during the placebo (control) phase, respectively. Bezafibrate and fenofibrate had no significant effect on the peak concentration (Cmax) of repaglinide. The mean half-life of repaglinide was 1.3 h in all phases. The blood glucose-lowering effect of repaglinide was not affected by bezafibrate or fenofibrate. The AUC(0,8 h) values for bezafibrate and fenofibrate varied 3.0-fold and 4.4-fold between individual subjects, respectively. Neither bezafibrate nor fenofibrate affected the pharmacokinetic variables of repaglinide. Conclusions Bezafibrate and fenofibrate do not affect the pharmacokinetics or pharmacodynamics of repaglinide. PMID:15373931

  8. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    PubMed

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  9. A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells

    PubMed Central

    Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.

    2012-01-01

    Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ~80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release. PMID:23246867

  10. Facile Aqueous Phase Synthesis of Pd3Cu-B/C Nanocatalyst for Glucose Electrooxidation

    NASA Astrophysics Data System (ADS)

    Chai, Dan; Lu, Haibin; Wang, Yaqian; Hua, Xiuwen; Ren, Na; Zhang, Xiongwen

    2018-01-01

    A novel Pd3Cu-B/C nanocatalyst was facilely synthesized through an aqueous phase process. And it was developed for use in the glucose electrooxidation reaction in fuel cells. Cyclic voltammetry shown that the electrochemical surface area of Pd3Cu-B/C is 2.25 times that of Pd/C. Glucose electrooxidation curves revealed that peak current on the Pd3Cu-B/C is actually 1.73 times of the Pd/C. This high performance of Pd3Cu-B/C could be ascribed to the synergistic effect between Pd, Cu and B.

  11. The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study.

    PubMed

    Feast, George C; Hutt, Oliver E; Mulet, Xavier; Conn, Charlotte E; Drummond, Calum J; Savage, G Paul

    2014-03-03

    A new method for the discovery of amphiphiles by using high-throughput (HT) methods to synthesise and characterise a library of galactose- and glucose-containing amphiphilic compounds is presented. The copper-catalysed azide–alkyne cycloaddition (CuAAC) “click” reaction between azide-tethered simple sugars and alkyne-substituted hydrophobic tails was employed to synthesise a library of compounds with systematic variations in chain length and unsaturation in a 24-vial array format. The liquid–crystalline phase behaviour was characterised in a HT manner by using synchrotron small-angle X-ray scattering (SSAXS). The observed structural variation with respect to chain parameters, including chain length and degree of unsaturation, is discussed, as well as hydration effects and degree of hydrogen bonding between head groups. The validity of our HT screening approach was verified by resynthesising a short-chain glucose amphiphile. A separate phase analysis of this compound confirmed the presence of numerous lyotropic liquid–crystalline phases.

  12. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86

    PubMed Central

    Choudhary, Alpa; Modak, Arnab; Apte, Shree K.

    2017-01-01

    ABSTRACT The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation. IMPORTANCE Pseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources. PMID:28733285

  13. A novel CuO-N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Felix, Sathiyanathan; Kollu, Pratap; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2017-10-01

    We report a catalyst of N-doped graphene CuO nanocomposite, for the non-enzymatic electrocatalytic oxidation of glucose. The hybrid nanocomposite was synthesized by copper sulfate, cetyl ammonium bromide and graphite as starting materials. The synthesized composites were characterized with the techniques like X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope to study the crystalline phase and morphological structure. Based on this composite, a non-enzymatic glucose sensor was constructed. Cyclic voltammetry and chronoamperometry methods were done to investigate the electrocatalytic properties of glucose in alkaline medium. For glucose detection, the fabricated sensor showed a linear response over a wide range of concentration from 3 to 1000 µM, with sensitivity of 2365.7 µA mM-1 cm-2 and a fast response time of 5 s. The designed sensor exhibited negligible current response to the normal concentration of common interferents in the presence of glucose. All these favorable advantages of the fabricated glucose sensor suggest that it may have good potential application in biological samples, food and other related areas.

  14. Evidence that downregulation of hexose transport limits intracellular glucose in 3T3-L1 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesell, R.R.; Regen, D.M.; Pelletier, D.

    1990-10-01

    Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of ({sup 14}C)methylglucose and D-({sup 14}C)glucose with (1) L-({sup 3}H)glucose as an extracellular marker together with the ({sup 14}C)glucose or ({sup 14}C)methylglucose in the substrate mixture, (2) sampling times as short as 2 s, (3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and (4) nonlinearmore » regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose.« less

  15. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial.

    PubMed

    van Genugten, Renate E; van Raalte, Daniël H; Muskiet, Marcel H; Heymans, Martijn W; Pouwels, Petra J W; Ouwens, D Margriet; Mari, Andrea; Diamant, Michaela

    2014-03-01

    Anti-inflammatory glucocorticoid (GC) therapy often induces hyperglycemia due to insulin resistance and islet-cell dysfunction. Incretin-based therapies may preserve glucose tolerance and pancreatic islet-cell function. In this study, we hypothesized that concomitant administration of the dipeptidyl peptidase-4 inhibitor sitagliptin and prednisolone in men at high risk to develop type 2 diabetes could protect against the GC-induced diabetogenic effects. Men with the metabolic syndrome but without diabetes received prednisolone 30  mg once daily plus sitagliptin 100  mg once daily (n=14), prednisolone (n=12) or sitagliptin alone (n=14) or placebo (n=12) for 14 days in a double-blind 2 × 2 randomized-controlled study. Glucose, insulin, C-peptide, and glucagon were measured in the fasted state and following a standardized mixed-meal test. β-cell function parameters were assessed both from a hyperglycemic-arginine clamp procedure and from the meal test. Insulin sensitivity (M-value) was measured by euglycemic clamp. Prednisolone increased postprandial area under the curve (AUC)-glucose by 17% (P<0.001 vs placebo) and postprandial AUC-glucagon by 50% (P<0.001). Prednisolone reduced 1st and 2nd phase glucose-stimulated- and combined hyperglycemia-arginine-stimulated C-peptide secretion (all P ≤ 0.001). When sitagliptin was added, both clamp-measured β-cell function (P=NS for 1st and 2nd phase vs placebo) and postprandial hyperglucagonemia (P=NS vs placebo) remained unaffected. However, administration of sitagliptin could not prevent prednisolone-induced increment in postprandial glucose concentrations (P<0.001 vs placebo). M-value was not altered by any treatment. Fourteen-day treatment with high-dose prednisolone impaired postprandial glucose metabolism in subjects with the metabolic syndrome. Concomitant treatment with sitagliptin improved various aspects of pancreatic islet-cell function, but did not prevent deterioration of glucose tolerance by GC treatment.

  16. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification.

    PubMed

    Tang, Siah Ying; Sivakumar, Manickam; Nashiru, Billa

    2013-02-01

    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.

    PubMed

    Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel

    2010-12-01

    This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules.

    PubMed

    Cheng, Gang; Stadler, Florian J

    2015-01-15

    Considerable efforts have focused on functional TiO2@carbonaceous hybrid nanostructured materials (TiO2@C) to satisfy the future requirements of environmental photocatalysis and energy storage using these advanced materials. In this study, we developed a two-step solution-phase reaction to prepare hybrid TiO2@C with tuneable structure and composition from the hydrothermal carbonization (HTC) of glucose. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) were used to determine the crystallite size, composition, and phase purity. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM) showed that the morphology of the as-synthesized TiO2@C hybrids could be controlled by varying the amount of glucose, also acting as the carbon source. Based on the observations made with different glucose concentrations, a formation mechanism of nanoparticulate and nanoporous TiO2@C hybrids was proposed. In addition, the as-synthesized TiO2@C hybrids with different compositions and structures showed enhanced adsorption of visible light and improved dye-adsorption capacity, which supported their potential use as photocatalysts with good activity. This new synthetic approach, using a nanoprecursor, provides a simple and versatile way to prepare TiO2@C hybrids with tuneable composition, structures, and properties, and is expected to lead to a family of composites with designed properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.

    PubMed

    Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio

    2016-02-01

    Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.

  20. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  1. Postoperative hyperglycaemia of diabetic patients undergoing cardiac surgery - a clinical audit.

    PubMed

    Lehwaldt, Daniela; Kingston, Mary; O'Connor, Sheila

    2009-01-01

    Previous studies have shown that hyperglycaemia is associated with postoperative complications in cardiac surgical patients. Conversely, well-controlled glucose levels are said to reduce major infectious complications in diabetic patients. The purpose of this clinical audit was to evaluate the blood glucose levels of diabetic patients undergoing cardiac surgery and to determine the effectiveness of postoperative glycaemic control. A group of 150 patients from a large Irish cardiac surgery centre was selected by convenience sampling. An audit tool was designed to capture the patients' blood glucose levels, treatment regimes and postoperative complications. The findings showed major variations between 'high', 'good' and 'borderline' blood glucose levels in the pre- and postoperative phase. Although blood glucose testing practices seemed inconsistent, mean levels measured 'borderline'. Furthermore, the treatment regimes varied greatly and suggest a lack of consensus regarding the management of postoperative hyperglycaemia. A total of 52% (n = 78) patients developed 114 complications with a level of 21.4% (n = 32) postoperative wound infections. The findings from this audit highlight the importance of regular blood glucose testing to enable early detection of hyperglycaemia and timely initiation of appropriate treatments regimes for diabetic patients undergoing cardiac surgery. Findings also show that hyperglycaemia derangement may make a difference in the recovery phase. While patients will benefit from lesser wound infections, hospitals might save costs involved with treating postoperative complications. More consistent blood glucose testing might be achieved through the use of evidence-based protocols. However, the education of staff is as important as it develops knowledge on the complex metabolic interactions of diabetic patients undergoing cardiac surgery. While this means investing in staff education and policy development, costs for daily care and expensive treatments for complications will be saved as patient recovery will be speedier and less eventful.

  2. Influence of glucosamine on glomerular mesangial cell turnover: implications for hyperglycemia and hexosamine pathway flux

    PubMed Central

    Le, Catherine; Scholey, James W.

    2010-01-01

    Cells exposed to high glucose may undergo hypertrophy, proliferation, and apoptosis, but the role of hexosamine flux in mediating these effects has not been fully elucidated. Accordingly, we studied the effects of glucose and glucosamine on rat glomerular mesangial cells (MC) turnover. Compared with physiological glucose (5.6 mM), treatment with high glucose (25 mM) for 24 h stimulated MC proliferation, an effect that was mimicked by exposure to low concentrations of glucosamine (0.05 mM). The percentage of cells in G0/G1 phase of the cell cycle was reduced with a concomitant increase of the number of cells in G2/M phase. Proliferating cell nuclear antigen, phosphorylated mammalian target of rapamycin [phospho-mTOR (Ser2448)], and total regulatory-associated protein of mTOR were increased by high glucose and glucosamine treatment. Inhibition of glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme for hexosamine flux, with 6-diazo-5-oxonorleucine (10 μM) and of mTOR with rapamycin both attenuated glucose-mediated MC proliferation. Higher glucosamine concentrations (0.25–10 mM) caused MC apoptosis after 48 h, and, in addition, GFAT overexpression also increased MC apoptosis (TdT-dUTP nick end-labeling-positive cells: 3.8 ± 0.3 vs. 1.1 ± 0.2% for empty vector; P < 0.05). Hence, hexosamine flux is an important determinant of MC proliferation and apoptosis. The proliferative response to high glucose and hexosamine flux is rapamycin-sensitive, suggesting that this effect is associated with signaling through rapamycin-sensitive mTOR complex 1 (mTORC1). PMID:19903862

  3. Effects of methyltestosterone on insulin secretion and sensitivity in women.

    PubMed

    Diamond, M P; Grainger, D; Diamond, M C; Sherwin, R S; Defronzo, R A

    1998-12-01

    The frequent coexistence of hyperandrogenism and insulin resistance is well established; however, whether a cause and effect relationship exists remains to be established. In this study we tested the hypothesis that short-term androgen administered to women would induce insulin resistance. To test this hypothesis, regularly menstruating, nonobese women were studied before and during methyltestosterone administration (5 mg tid for 10-12 days) by the hyperglycemic (n=8) and euglycemic, hyperinsulinemic (n=7) clamp techniques. Short-term methyltestosterone administration had no significant effects on the fasting levels of glucose, insulin, c-peptide, glucagon, or glucose turnover. During the hyperglycemic clamp studies, the mean glucose level during the final hour was 203+/-2 and 201+/-1 mg/dL in the methyltestosterone and control studies, respectively. The insulin response to this hyperglycemic challenge was slightly but not significantly greater during methyltestosterone treatment (first phase 59+/-8 vs. 50+/-8 microU/mL in controls; second phase 74+/-9 vs. 67+/-9 microU/mL in controls; total insulin response 133+/-16 vs. 117+/-15 microU/mL in controls). In spite of this, glucose uptake was reduced from the control study value of 10.96+/-1.11 to 7.3+/-0.70 mg/kg/min by methyltestosterone (P < 0.05). The ratio of glucose uptake per unit of insulin was also significantly reduced from a control study value of 14.3+/-1.4 to 9.4+/-1.3 mg/kg/min per microU/mL x 100 during methyltestosterone administration. In the euglycemic hyperinsulinemic clamp studies, insulin was infused at rates of 0.25 and 1.0 mU/kg/min to achieve insulin levels of approximately 25 and 68 microU/mL, respectively. During low-dose insulin infusion, rates of endogenous hepatic glucose production were equivalently suppressed from basal values of 2.37+/-0.29 and 2.40+/-0.27 mg/kg/min to 0.88+/-0.25 and 0.77+/-0.26 mg/kg/min in the methyltestesterone and control studies respectively. Whole body glucose uptake during low-dose insulin infusion was minimally affected. During the high-dose insulin infusion, endogenous hepatic glucose production was nearly totally suppressed in both groups. However, whole body glucose uptake was reduced from the control value of 6.11+/-0.49 mg/kg/min to 4.93+/-0.44 mg/kg/min during methyltestosterone administration (P < 0.05). Our data demonstrate that androgen excess leads to the development of insulin resistance during both hyperglycemic and euglycemic hyperinsulinemia. These findings provide direct evidence for a relationship between hyperandrogenemia and insulin resistance, and its associated risk factors for cardiovascular disease.

  4. A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    PubMed Central

    Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu

    2009-01-01

    Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms. PMID:19738906

  5. Glucose Starvation Inhibits Autophagy via Vacuolar Hydrolysis and Induces Plasma Membrane Internalization by Down-regulating Recycling*

    PubMed Central

    Lang, Michael J.; Martinez-Marquez, Jorge Y.; Prosser, Derek C.; Ganser, Laura R.; Buelto, Destiney; Wendland, Beverly; Duncan, Mara C.

    2014-01-01

    Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation. PMID:24753258

  6. Physical and mathematical aspects of blood-glucose- and insulin-level kinetics in patients with coronary heart disease and high risk of its development

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinova, Lidia I.; Malinov, Igor A.

    2001-05-01

    The intravenous glucose tolerance test was performed to estimate the kinetics of blood glucose and insulin levels. Glucose was injected in individual standardized dose (0.5 g. per 1 kg of body weight). Three groups of patients were checked up: 1) patients with coronary heart disease verified by cicatricial alterations in myocardium found by electrocardiographic and echocardiographic methods; 2) children of patients with transmural myocardial infarction practically healthy at the moment of study; 3) persons practically healthy at the moment of study without any indications on cardiovascular diseases and non-insulin dependent diabetes mellitus among all ancestors and relatives who frequently were long-livers. Last groups didn't differ by age and sex. Peripheral blood glucose level, immunoreactive and free insulin (tested by muscular tissue) were studied just before glucose injection (on an empty stomach) and 4 times after it. The received discrete data were approximated by high degree polynomials, the estimation of blood glucose and insulin time functions symmetric was performed. The deceleration of degradation of insulin circulating in peripheral blood and the time decrease of second phase of insulin secretion were analytically established. This fact proves the complicated mechanism of insulin alterations in atherosclerosis, consisting not only of insulin resistance of peripheral tissues but of decrease of plastic processes in insulin- generating cells.

  7. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    PubMed

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  8. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis

    PubMed Central

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D.; Kapatos, Gregory

    2017-01-01

    ABSTRACT Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. PMID:28461393

  9. Measuring the level of agreement between a veterinary and a human point-of-care glucometer and a laboratory blood analyzer in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Acierno, Mark J; Schnellbacher, Rodney; Tully, Thomas N

    2012-12-01

    Although abnormalities in blood glucose concentrations in avian species are not as common as they are in mammals, the inability to provide point-of-care glucose measurement likely results in underreporting and missed treatment opportunities. A veterinary glucometer that uses different optimization codes for specific groups of animals has been produced. To obtain data for a psittacine bird-specific optimization code, as well as to calculate agreement between the veterinary glucometer, a standard human glucometer, and a laboratory analyzer, blood samples were obtained from 25 Hispaniolan Amazon parrots (Amazona ventralis) in a 2-phase study. In the initial phase, blood samples were obtained from 20 parrots twice at a 2-week interval. For each sample, the packed cell volume was determined, and the blood glucose concentration was measured by the veterinary glucometer. The rest of each sample was placed into a lithium heparin microtainer tube and centrifuged, and plasma was removed and frozen at -30 degrees C. Within 5 days, tubes were thawed, and blood glucose concentrations were measured with a laboratory analyzer. The data from both procedures were used to develop a psittacine bird-specific code. For the second phase of the study, the same procedure was repeated twice at a 2-week interval in 25 birds to determine agreement between the veterinary glucometer, a standard human glucometer, and a laboratory analyzer. Neither glucometer was in good agreement with the laboratory analyzer (veterinary glucometer bias, 9.0; level of agreement, -38.1 to 56.2; standard glucometer bias, 69.4; level of agreement -17.8 to 156.7). Based on these results, the use of handheld glucometers in the diagnostic testing of Hispaniolan Amazon parrots and other psittacine birds cannot be recommended.

  10. Use of First-phase Insulin Secretion in Early Diagnosis of Thyroid Diabetes and Type 2 Diabetes Mellitus

    PubMed Central

    Meng, Li-Heng; Huang, Yao; Zhou, Jia; Liang, Xing-Huan; Xian, Jing; Li, Li; Qin, Ying-Fen

    2017-01-01

    Background: A relationship between hyperthyroidism and insulin secretion in type 2 diabetes mellitus (T2DM) has been reported. Therefore, this study explored the use of first-phase insulin secretion in the differential diagnosis of thyroid diabetes (TDM) and T2DM. Methods: In total, 101 patients with hyperthyroidism were divided into hyperthyroidism with normal glucose tolerance (TNGT), hyperthyroidism with impaired glucose regulation (TIGR), and diabetes (TDM) groups. Furthermore, 96 patients without hyperthyroidism were recruited as control groups (normal glucose tolerance [NGT], impaired glucose regulation [IGR], and T2DM). The following parameters were evaluated: homeostasis model assessment (HOMA)-IR, HOMA-β, modified β-cell function index (MBCI), peak insulin/fasting insulin (IP/I0), AUCins-OGTT, and AUCins-OGTT/AUCglu-OGTT from the oral glucose tolerance test (OGTT) insulin release test were utilized to assess the second-phase insulin secretion, while the IP/I0, AIR0′~10′, and AUCins-IVGTT from the intravenous glucose tolerance test (IVGTT) insulin release test were used to assess the first-phase insulin secretion. Results: In the OGTT, the HOMA-β values of the TNGT and TDM groups were higher than those of the NGT and T2DM groups (all P < 0.05). In the hyperthyroidism groups, the MBCI of the TDM group was lower than that of the TNGT and TIGR groups (all P < 0.05). Among the control groups, the MBCI values of the IGR and T2DM groups were lower than that of the normal glucose tolerance (NGT) group (all P < 0.05). In the IVGTT, insulin secretion peaked for all groups at 2–4 min, except for the T2DM group, which showed a low plateau and no secretion peak. The IP values of the TNGT, TIGR, and TDM groups were higher than those of the NGT, IGR, and T2DM groups (all P < 0.05). The Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the TDM group were higher than those of the T2DM group but were lower than those of the TNGT, TIGR, NGR, and IGR groups (all P < 0.05). Compared with the other five groups, the Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the T2DM group were significantly decreased (all P < 0.05). The Ip/I0 and AUCins-IVGTT values of the TNGT group were higher than those of the NGT group (all P < 0.05). Conclusions: β-cell function in TDM patients is superior to that in T2DM patients. First-phase insulin secretion could be used as an early diagnostic marker to differentiate TDM and T2DM. PMID:28345543

  11. [The correlation between serum uric acid level and early-phase insulin secretion in subjects with normal glucose regulation].

    PubMed

    Lu, L; Zheng, F P; Li, H

    2016-05-01

    To investigate the correlation between serum uric acid (SUA) level and early-phase insulin secretion in subjects with normal glucose regulation (NGR). Totally 367 community NGR residents confirmed by a 75g oral glucose tolerance test were enrolled. The insulin resistance index (HOMA-IR) and the early-phase insulin secretion index after a glucose load (ΔI30/ΔG30) were used to estimate the insulin sensitivity and the early-phase insulin secretion, respectively. The subjects were divided into 4 groups according to the SUA level quartiles. Differences in early-phase insulin levels, ΔI30/ΔG30, and HOMA-IR were compared among the 4 groups. Age, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, fasting insulin (FINS), 30 minutes postprandial insulin(30 minINS), 2 hours postprandial insulin(2hINS), HOMA-IR and TG levels increased across the rising categories of SUA levels, while the HDL-C was decreased across the SUA groups (P<0.01). The SUA level was positively correlated with age(r=0.157, P<0.01), BMI(r=0.262, P<0.01), waist circumference(r=0.372, P<0.01), systolic blood pressure(r=0.200, P<0.01), diastolic blood pressure(r=0.254, P<0.01), 30 minutes postprandial plasma glucose(r=0.118, P=0.023), FINS(r=0.249, P<0.01), 30minINS(r=0.189, P<0.01), 2hINS(r=0.206, P<0.01), glycosylated hemoglobin(HbA1c, r=0.106, P=0.042), HOMA-IR(r=0.244, P<0.01), TG(r=0.350, P<0.01), ΔI30/ΔG30(r=0.144, P<0.01), and negatively correlated with HDL-C level(r=-0.321, P<0.01). Multiple stepwise regression analysis showed that SUA(β=0.292, P<0.01) and HOMA-IR(β=29.821, P<0.01) were positively associated with ΔI30/ΔG30. SUA level is closely related with the early-phase insulin secretion in NGR subjects.

  12. Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells.

    PubMed

    Gebregiworgis, Teklab; Purohit, Vinee; Shukla, Surendra K; Tadros, Saber; Chaika, Nina V; Abrego, Jaime; Mulder, Scott E; Gunda, Venugopal; Singh, Pankaj K; Powers, Robert

    2017-10-06

    Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2-013.Neo) and MUC1-overexpressing (S2-013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2-013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2-013.Neo and S2-013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2-013.MUC1 cells.

  13. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.

    PubMed

    Magoń, A; Pyda, M

    2011-11-29

    The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. European Congress on Biotechnology (4th) Held in Amsterdam, The Netherlands, on June 1987

    DTIC Science & Technology

    1988-02-19

    car be used and thus higher Nmaraso Fumarate enzyme loadings can be achieved with a Glucose isomerase High- fructose corn syrup large effectiveness...is only after most of the the following reactions: glucose + oxy- glucose has been metabolized that aerobic gen + glucose oxidasa + water - gluconic...are obtained by mixing water solutions of two water -soluble * Biocatalysis polymers. Both phases have a high water * Animal cell cultures content and do

  15. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Long; Alamillo, Ricardo; Elliott, William A.

    Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less

  16. Nutrient availability controls the decomposition activities of the ectomycorrhizal fungi Paxillus involutus and Laccaria bicolor

    NASA Astrophysics Data System (ADS)

    Nicolás, César; Martin-Bertelsen, Tomas; Bentzer, Johan; Johansson, Tomas; Smits, Mark; Troein, Carl; Persson, Per; Tunlid, Anders

    2017-04-01

    Ectomycorrhizal (ECM) fungi play an important role in the ecological sustainability of northern temperate and boreal forests by foraging and mining soil organic matter for nutrients to their host plants. In this process, the fungal partner provides the plant host with nutrients and receives in return carbon, which supports the growth of extramatrical mycelium. Here, we examine the chemical changes in the soil organic matter (SOM) and physiological response of two species of ECM fungi Paxillus involutus and Laccaria bicolor during the decomposition of SOM and utilization of glucose. These two ECM fungi were grown in axenic cultures containing a water extract of organic matter (WEOM), which was supplemented with glucose at the start of the experiment. The fungi then went through two phases: a decomposition phase characterized by a WEOM with glucose followed by a starvation phase, with no glucose left in the media. The chemical modifications in the WEOM were followed using techniques such as infrared and X-ray absorption spectroscopy, while the fungal physiological response was studied using transcriptomic (RNAseq) analysis. The spectroscopic techniques showed that both fungi enhanced the amount of oxidized compounds while uptaking glucose or nitrogen from the media. In case of P. involutus, this oxidation process was more pronounced than that occurring with L. bicolor. In addition, the X-ray absorption spectroscopy showed a higher reduced iron content in WEOM incubated with P. involutus in comparison to L. bicolor, which may suggest the preference of P. involutus for oxidative mechanisms via Fenton chemistry. During the decomposition phase, both fungi expressed a large number of transcripts encoding proteins associated with oxidation of lignocellulose in wood decomposing fungi. In parallel, the expression levels of extracellular peptidases, and enzymes involved in the metabolism of amino acids and assimilated glucose were regulated. However, during prolonged starvation, transcripts encoding extracellular enzymes such as peptidases and laccases were upregulated concomitantly with transporters and metabolic enzymes, which suggest that some of the released cellular material were re-assimilated by the mycelium. These results show the concomitant changes in gene expression of EMF and in nutrient availability in the WEOM and reveal the combination of transcriptomic and spectroscopic techniques as a useful tool to better understand the decomposition process in soil.

  17. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions.

    PubMed

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin

    2014-06-17

    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea < glycine < glucose. Illite and kaolinite (unexpandable clays) barely affected the CO2 hydrate phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  18. The pregnane X receptor agonist St John's Wort has no effects on the pharmacokinetics and pharmacodynamics of repaglinide.

    PubMed

    Fan, Lan; Zhou, Gan; Guo, Dong; Liu, Ya-Li; Chen, Wang-Qing; Liu, Zhao-Qian; Tan, Zhi-Rong; Sheng, Deng; Zhou, Hong-Hao; Zhang, Wei

    2011-09-01

    St John's wort (SJW; Hypericum perforatum) has been one of the most commonly used herbal remedies for mood disorders. This study aimed to investigate the effect of SJW, a pregnane X receptor (PXR) agonist, on the pharmacokinetics and pharmacodynamics of repaglinide, a widely consumed glucose-lowering drug. In a two-phase, randomized, crossover study with a 4-week washout period between phases, 15 healthy subjects with specific solute carrier organic anion transporter family member 1B1 (SLCO1B1) genotypes were given pretreatment with SJW 325 mg or placebo three times daily for 14 days, and a single dose of repaglinide 1 mg was administered followed by 75 g glucose at 15 minutes after repaglinide administration. In all subjects, SJW had no effect on the total area under the plasma concentration-time curve from time zero to infinity (AUC(∞)), the peak plasma concentration (C(max)) or the elimination half-life (t(½)) of repaglinide. In addition, SJW had no significant effect on the blood glucose-lowering and insulin-elevating effects of repaglinide. Consumption of SJW for 14 days had no clinically significant effect on the pharmacokinetics and pharmacodynamics of repaglinide.

  19. Suspension properties of whole blood and its components under glucose influence studied in patients with acute coronary syndrome

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Dovgalevsky, Pavel Y.; Tuchin, Valery V.

    2004-05-01

    The protocol of our study includes men with acute myocardial infarction, stable angina pectoris of II and III functional classes and unstable angina pectoris. Patients with arterial hypertension, disorders in carbohydrate metabolism were excluded from the study. Blood samples taken under standardized conditions, were stabilized with citrate sodium 3,8% (1:9). Erythrocytes and platelets aggregation activity under glucose influence (in vitro) was studied by means of computer aided microphotometer -- a visual analyzer. Erythrocyte and platelets were united in special subsystem of whole blood. Temporal and functional characteristics of their aggregation were analyzed by creation of phase patterns fragments. The received data testify to interrelation of erythrocytes and platelets processes of aggregation under conditions of increasing of glucose concentration of the incubatory environment, which temporal and functional characteristics may be used for diagnostics and the prognosis of destabilization coronary blood flow at an acute coronary syndrome.

  20. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  1. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    PubMed

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Non-enzymatic glucose sensing properties of MoO3 nanorods: experimental and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Maneesha; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra

    2017-11-01

    We report the growth of monoclinic MoO3 nanorods by a simple and highly reproducible hydrothermal method. Structural and morphological studies provide significant insights about the phase and crystalline structure of the synthesized samples. Further, the non-enzymatic glucose sensing properties were investigated and the MoO3 nanorods exhibited a sensitivity of 15.4 µA µM-1 cm-2 in the 5-175 µM linear range. Also, a quick response time of 8 s towards glucose molecules was observed, exhibiting an excellent electrochemical activity. We have also performed density functional theory (DFT) simulations to qualitatively support our experimental observations by investigating the interactions and charge-transfer mechanism of glucose on MoO3. There is a strong interaction between glucose and the MoO3 surface due to charge transfer from a bonded O atom of glucose to a Mo atom of MoO3 resulting in a strong hybridization between the p orbital of O and d orbital of Mo. Thus, the MoO3 nanorod-based electrodes are found to be good glucose sensing materials for practical industrial applications.

  3. Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.

    PubMed

    Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio

    2009-01-01

    A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society

  4. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus

    2013-01-01

    In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 102 μA/mMcm2 and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose. PMID:23787727

  5. Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus

    2013-06-20

    In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 10² µA/mMcm² and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.

  6. Women in India with Gestational Diabetes Mellitus Strategy (WINGS): Methodology and development of model of care for gestational diabetes mellitus (WINGS 4)

    PubMed Central

    Kayal, Arivudainambi; Mohan, Viswanathan; Malanda, Belma; Anjana, Ranjit Mohan; Bhavadharini, Balaji; Mahalakshmi, Manni Mohanraj; Maheswari, Kumar; Uma, Ram; Unnikrishnan, Ranjit; Kalaiyarasi, Gunasekaran; Ninov, Lyudmil; Belton, Anne

    2016-01-01

    Aim: The Women In India with GDM Strategy (WINGS) project was conducted with the aim of developing a model of care (MOC) suitable for women with gestational diabetes mellitus (GDM) in low- and middle-income countries. Methodology: The WINGS project was carried out in Chennai, Southern India, in two phases. In Phase I, a situational analysis was conducted to understand the practice patterns of health-care professionals and to determine the best screening criteria through a pilot screening study. Results: Phase II involved developing a MOC-based on findings from the situational analysis and evaluating its effectiveness. The model focused on diagnosis, management, and follow-up of women with GDM who were followed prospectively throughout their pregnancy. An educational booklet was provided to all women with GDM, offering guidance on self-management of GDM including sample meal plans and physical activity tips. A pedometer was provided to all women to monitor step count. Medical nutrition therapy (MNT) was the first line of treatment given to women with GDM. Women were advised to undergo fasting blood glucose and postprandial blood glucose testing every fortnight. Insulin was indicated when the target blood glucose levels were not achieved with MNT. Women were evaluated for pregnancy outcomes and postpartum glucose tolerance status. Conclusions: The WINGS MOC offers a comprehensive package at every level of care for women with GDM. If successful, this MOC will be scaled up to other resource-constrained settings with the hope of improving lives of women with GDM. PMID:27730085

  7. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells

    PubMed Central

    Frim, Yonina G.; Hochman, Ayelet; Lubitz, Gabrielle S.; Basile, Anthony J.; Sclafani, Anthony

    2017-01-01

    The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic β-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR. PMID:28148491

  8. The 10-year trend of adult diabetes, prediabetes and associated risk factors in Tehran: Phases 1 and 4 of Tehran Lipid and Glucose Study.

    PubMed

    Mahtab, Niroomand; Farzad, Hadaegh; Mohsen, Bahaeddini; Nakisa, Darvishi

    Type 2 diabetes is a global problem with significant morbidity and healthcare costs. In this study, we aimed to determine the 10-year trend of diabetes, prediabetes and their risk factors in the adult urban population of Tehran Lipid and Glucose Study (TLGS). In this cross-sectional study, we included all patients above 20 years of age who were registered in phases 1 and 4 of TLGS. Each phase had a 3-year duration. 4580 patients were recruited in each phase (916 patients in each age-group, including 3772 males and 5145 females). Random cluster sampling was used in phase 1 and convenience sampling was used in phase 4. Diabetes and glucose tolerance status were determined according to the 1991 criteria of the American Diabetes Association. In our five age groups, risk factors were compared, which included physical activity, waist circumference, body mass index, education, smoking, lipid profile and family history. Exclusion criteria were placement of an individual in the same age-group in the two phases and pregnancy. We calculated the prevalence of diabetes and dysglycemia in each age-group. Age-specific prevalence rates were determined. Prevalence of risk factors in the two phases were compared using chi-square test and Student t-test. Mann-Whitney U test was used to analyze the variables with non-normal distribution. In this study, 3976 individuals were recruited in phase 1 (2308 women and 1668 men; female to male ratio 1.38) and 4941 individuals were recruited in phase 4 (2837 women and 2104 men; female to male ratio 1.35). Prevalence of prediabetes in all age groups (except for the 30-39 years age-group) were increased in phase 4 compared to phase 1. Prevalence of known diabetes in all age groups were increased in phase 4 compared to phase 1, yet, the increase was significant only in the 30-39 and 60-69 years age groups (1.8% vs. 0.7% and 19.0% vs. 10.2%, respectively). Newly diagnosed diabetes was decreased in all age groups in phase 4, except for the 60-69 years age-group. The incidence of newly diagnosed diabetes in the 60-69 years age-group was significantly higher in phase 4 compared to the similar age-group of phase 1 (15.2% vs. 11.8%; p<0.001). Physical activity, body mass index, waist circumference (central obesity), general obesity, smoking (except for the 30-39 and 40-49 years age groups), and level of education were significantly higher in phase 4 compared to phase 1. Marriage rates were significantly lower in phase 4 compared to phase 1 across all studied age groups. We observed an increasing trend in the prevalence of diabetes over a 10-year period in TLGS. This is an accordance with estimates ​​in this field and highlights the need for education, prevention, treatment and control of diabetes. We also found increased rates of central and general obesity, smoking and divorce along with decreased marriage rates, which should be considered by the healthcare policymakers and state health officials as significant risk factors of diabetes. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  9. The impact of blood glucose levels on stimulated adrenocorticotropin hormone and growth hormone release in healthy subjects.

    PubMed

    Jakobsdóttir, S; Twisk, J W R; Drent, M L

    2009-12-01

    In studies investigating the influence of glucose levels on the pituitary function the methods used have been variable and mainly focused on the change in function as a reaction to unphysiological low or high blood glucose levels. In the present study the impact of physiological and elevated blood glucose levels on adrenocorticotropin hormone (ACTH) and growth hormone release are investigated. The euglycaemic and hyperglycaemic clamp techniques were used to reach stable levels of 4, 8 and 12 mmol/l blood glucose levels. After a stabilization phase of 2 h, a corticotropin releasing hormone (CRH) or a growth hormone releasing hormone (GHRH) stimulation test was performed. Seven and eight healthy male volunteers, belonging to two groups, participated in this study. The area under the curve (AUC), peak values and time to peak of ACTH, cortisol and growth hormone were calculated to evaluate the response to the CRH and GHRH stimulation test. The peak values of ACTH, cortisol and growth hormone seemed to be the highest during the 4 mmol/l clamp sessions, compared with the 8 and 12 mmol/l clamps, although the differences were not statistically significant when analysed for every subject individually. The AUC and time to peak measurements were comparable during the three clamp procedures. The pituitary reaction on CRH and GHRH was not significantly changed by various blood glucose levels. © 2009 Blackwell Publishing Ltd.

  10. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  11. Short term response of insulin, glucose, growth hormone and corticosterone to acute vibration in rats.

    NASA Technical Reports Server (NTRS)

    Dolkas, C. B.; Leon, H. A.; Chackerian, M.

    1971-01-01

    Study carried out to obtain some notion of the initial phasing and interactive effects among some hormones known to be responsive to vibration stress. Sprague-Dawley derived rats were exposed to the acute effects of confinement and confinement with lateral (plus or minus G sub y) vibration. The coincident monitoring of glucose, insulin, growth hormone, and corticosterone plasma levels, during and immediately subsequent to exposure to brief low level vibration, exhibits the effects of inhibition of insulin release by epinephrine. The ability of insulin (IRI) to return rapidly to basal levels, from appreciably depressed levels during vibration, in the face of elevated levels of glucose is also shown. Corticosterone responds with almost equal rapidity, but in opposite phase to the IRI. The immuno-assayable growth hormone (IGH) dropped from a basal level of 32 ng/ml to 7.3 ng/ml immediately subsequent to vibration and remained at essentially that level throughout the experiment (60 min). Whether these levels represent a real fall in the rat or whether they merely follow the immuno-logically deficient form is still in question.

  12. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  13. Nutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae.

    PubMed

    McCleary, David F; Rine, Jasper

    2017-03-01

    Calorie restriction extends life span in organisms as diverse as yeast and mammals through incompletely understood mechanisms.The role of NAD + -dependent deacetylases known as Sirtuins in this process, particularly in the yeast Saccharomyces cerevisiae , is controversial. We measured chronological life span of wild-type and sir2 Δ strains over a higher glucose range than typically used for studying yeast calorie restriction. sir2 Δ extended life span in high glucose complete minimal medium and had little effect in low glucose medium, revealing a partial role for Sir2 in the calorie-restriction response under these conditions. Experiments performed on cells grown in rich medium with a newly developed genetic strategy revealed that sir2 Δ shortened life span in low glucose while having little effect in high glucose, again revealing a partial role for Sir2 In complete minimal media, Sir2 shortened life span as glucose levels increased; whereas in rich media, Sir2 extended life span as glucose levels decreased. Using a genetic strategy to measure the strength of gene silencing at HML , we determined increasing glucose stabilized Sir2-based silencing during growth on complete minimal media. Conversely, increasing glucose destabilized Sir-based silencing during growth on rich media, specifically during late cell divisions. In rich medium, silencing was far less stable in high glucose than in low glucose during stationary phase. Therefore, Sir2 was involved in a response to nutrient cues including glucose that regulates chronological aging, possibly through Sir2-dependent modification of chromatin or deacetylation of a nonhistone protein. Copyright © 2017 by the Genetics Society of America.

  14. Effect of a glucose-triazole-hydrogenated cardanol conjugate on lipid bilayer membrane organization and thermotropic phase transition

    NASA Astrophysics Data System (ADS)

    Swain, Jitendriya; Kamalraj, M.; Surya Prakash Rao, H.; Mishra, Ashok K.

    2015-02-01

    This work focuses on the membrane perturbation, solubilisation and thermotropic phase transition process of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) MLVs induced by a glucose-triazole-hydrogenated cardanol conjugate (GTHCC). GTHCC is a recently introduced non toxic sugar derivative. Differential scanning calorimetry (DSC) and fluorescence molecular probe based techniques have been used to understand the concentration dependent membrane perturbation, solubilisation and thermotropic phase transition process of DPPC MLVs. The phase transition temperature of DPPC MLVs decreases with increase in mol% of GTHCC. At higher concentration above 10 mol%, GTHCC was significantly perturbed the membrane organization. The intrinsic fluorescence of GTHCC is also found to be sensitive towards phase behaviour and changes in membrane organization of DPPC MLVs.

  15. Hypoglycemic effect of cooked Lupinus mutabilis and its purified alkaloids in subjects with type-2 diabetes.

    PubMed

    Baldeón, M E; Castro, J; Villacrés, E; Narváez, L; Fornasini, M

    2012-01-01

    Developing countries are experiencing an epidemic of chronic non-communicable chronic diseases with high socio-economic costs. Studies of traditional foods with beneficial health properties could contribute to diminish these problems. Legumes rich in proteins like Lupinus mutabilis decreases blood glucose and improves insulin sensitivity in animals and humans. We report the results of a phase II clinical trial conducted to assess the role of cooked L. mutabilis and its purified alkaloids on blood glucose and insulin in volunteers with diabetes. Results indicate that consumption of cooked L. mutabilis or its purified alkaloids decreased blood glucose and insulin levels. The decreases in serum glucose concentrations from base line to 90 minutes were statistically significant within both treatment groups; however, there were not differences between groups. Serum insulin levels were also decreased in both groups however the differences were not statistically significant. None of the volunteers in either group presented side effects.

  16. Thermodynamically controlled crystallization of glucose pentaacetates from amorphous phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarczyk, P., E-mail: patrykw@imn.gliwice.pl; Hawelek, L.; Hudecki, A.

    The α and β glucose pentaacetates are known sugar derivatives, which can be potentially used as stabilizers of amorphous phase of active ingredients of drugs (API). In the present work, crystallization behavior of equimolar mixture of α and β form in comparison to both pure anomers is revealed. It was shown that despite the same molecular interactions and similar molecular dynamics, crystallization from amorphous phase is significantly suppressed in equimolar mixture. Time dependent X-ray diffraction studies confirmed higher stability of the quenched amorphous equimolar mixture. Its tendency to crystallization is about 10 times lower than for pure anomers. Calorimetric studiesmore » revealed that the α and β anomers don’t form solid solutions and have eutectic point for x{sub α} = 0.625. Suppressed crystallization tendency in the mixture is probably caused by the altered thermodynamics of the system. The factors such as difference of free energy between crystalline and amorphous state or altered configurational entropy are probably responsible for the inhibitory effect.« less

  17. Regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources and the role of mitochondrial function on gluconeogenesis.

    PubMed

    Wilson, A J; Bhattacharjee, J K

    1986-12-01

    Phosphoenolpyruvate carboxykinase (PEPCKase) and pyruvate kinase (PKase) were measured in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources. The PEPCKase activity was highest in ethanol-grown cells. However, high PEPCKase activity was also observed in cells grown in 1% glucose, especially as compared with the activity of sucrose-, maltose-, or galactose-grown cells. Activity was first detected after 12 h when glucose was exhausted from the growth medium. The PKase activity was very high in glucose-grown cells; considerable activity was also present in ethanol- and pyruvate-grown cells. The absolute requirement of respiration for gluconeogenesis was demonstrated by the absence or significantly low levels of PEPCKase and fructose-1,6-bisphosphatase activities observed in respiratory deficient mutants, as well as in wild-type S. cerevisiae cells grown in the presence of glucose and antimycin A or chloramphenicol. Obligate glycolytic and gluconeogenic enzymes were present simultaneously only in stationary phase cells, but not in exponential phase cells; hence futile cycling could not occur in log phase cells regardless of the presence of carbon source in the growth medium.

  18. Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials

    PubMed Central

    Levine, Matthew J.

    2017-01-01

    Introduction: Sodium glucose cotransporter 2 (SGLT2) inhibitors have a unique mecha-nism of action leading to excretion of glucose in the urine and subsequent lowering of plasma glu-cose. This mechanism is independent of β-cell function; thus, these agents are effective treatment for type 2 diabetes mellitus (T2DM) at theoretically any disease stage. This class should not confer an additional risk of hypoglycemia (unless combined with insulin or an insulin secretagogue) and has the potential to be combined with other classes of glucose-lowering agents. Empagliflozin is one of three currently approved SGLT2 inhibitors in the United States, and has shown a favorable benefit-risk ratio in phase 3 clinical trials as monotherapy and as add-on to other glucose-lowering therapy in broad patient populations. In addition to its glucose-lowering effects, empagliflozin has been shown to reduce body weight and blood pressure without a compensatory increase in heart rate. Moreover, on top of standard of care, empagliflozin is the first glucose-lowering agent to demonstrate cardiovas-cular risk reduction in patients at high risk of cardiovascular disease in a prospective outcomes trial: a 14% reduction in risk of the 3-point composite endpoint of death from cardiovascular causes, nonfa-tal myocardial infarction, or nonfatal stroke. Like other SGLT2 inhibitors, empagliflozin is associated with a higher rate of genital mycotic infections than placebo and has the potential for volume deple-tion–associated events. Conclusion: This review summarizes the empagliflozin phase 3 clinical trials program and its poten-tial significance in the treatment of patients with T2DM. Evidence from these clinical trials show re-ductions in glycated hemoglobin (–0.59 to –0.82%) with a low risk of hypoglycemia except when used with insulin or insulin secretagogues, and moderate reductions in body weight (–2.1 to –2.5 kg) and systolic blood pressure (–2.9 to –5.2 mm Hg), thus supporting the use of empagliflozin as mono-therapy or in addition to other glucose-lowering agents. In addition, evidence from the recent EMPA-REG OUTCOME study, which demonstrated relative risk reductions in major adverse cardiac events (14%), cardiovascular mortality (38%) and all-cause mortality (32%), as well as hospitalization for heart failure (36%), supports use of empagliflozin in patients with T2DM and increased cardiovascu-lar risk. PMID:27296042

  19. Comparison of insulin sensitivity, glucose sensitivity, and first phase insulin secretion in patients treated with repaglinide or gliclazide.

    PubMed

    Wu, Chung-Ze; Pei, Dee; Hsieh, An-Tsz; Wang, Kun; Lin, Jiunn-Diann; Lee, Li-Hsiu; Chu, Yi-Min; Hsiao, Fone-Ching; Pei, Chun; Hsia, Te-Lin

    2010-03-01

    The traditional sulfonylureas with long half-lives have sustained stimulatory effects on insulin secretion compared to the short-acting insulin secretagogue. In this study, we used the frequently sampled intravenous glucose tolerance test (FSIGT) to evaluate the insulin sensitivity (IS), glucose sensitivity (SG), and acute insulin response after glucose load (AIRg) after 4 months treatment with either gliclazide or repaglinide. The design of study was randomizedcrossover. We enrolled 20 patients with new-onset type 2 diabetes (mean age, 49.3 years). Totally three FSIGTs were performed, one before and one after each of the two treatment periods as aforementioned. No significant differences in fasting plasma glucose, insulin, body mass index, blood pressure, glycated hemoglobin, or lipids were noted between the two treatments. After the repaglinide treatment, higher AIRg, lower IS, and lower SG were noted, but they did not reach statistical significance. The disposal index (DI) was also not significantly different between the two treatments. In conclusion, since non-significantly higher DI, AIRg, lower IS and SG were noted after repaglinide treatment, it might be a better treatment for diabetes, relative to gliclazide.

  20. Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation.

    PubMed

    Kim, Hyo Jin; Lee, Hyeong-Rho; Kim, Chang Sup; Jin, Yong-Su; Seo, Jin-Ho

    2013-08-15

    Protein expression patterns of an erythritol-producing yeast, Candida magnoliae, were analyzed to identify differentially expressed proteins in response to glucose perturbation. Specifically, wild type C. magnoliae was grown under high and low glucose conditions and the cells were harvested at both mid-exponential and erythritol production phases for proteomic studies. In order to analyze intracellular protein abundances from the harvested cells quantitatively, total intracellular proteins were extracted and applied to two-dimensional gel electrophoresis for separation and visualization of individual proteins. Among the proteins distributed in the range of pI 4-7 and molecular weight 29-97kDa, five osmo-responsive proteins were drastically changed in response to glucose perturbation. Hsp60 (Heat-shock protein 60), transaldolase and NADH:quinone oxidoreductase were down-regulated under the high glucose condition and Bro1 (BCK1-like Resistance to Osmotic shock) and Eno1 (enolase1) were up-regulated. These proteins are directly or indirectly related with cellular stress response. Importantly, protein expression patterns of Hsp60, Bro1 and Eno1 were strongly correlated with previous studies identifying the proteins perturbed by osmotic stress for other organisms including Saccharomyces cerevisiae. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Weight Loss Decreases Excess Pancreatic Triacylglycerol Specifically in Type 2 Diabetes.

    PubMed

    Steven, Sarah; Hollingsworth, Kieren G; Small, Peter K; Woodcock, Sean A; Pucci, Andrea; Aribisala, Benjamin; Al-Mrabeh, Ahmad; Daly, Ann K; Batterham, Rachel L; Taylor, Roy

    2016-01-01

    This study determined whether the decrease in pancreatic triacylglycerol during weight loss in type 2 diabetes mellitus (T2DM) is simply reflective of whole-body fat or specific to diabetes and associated with the simultaneous recovery of insulin secretory function. Individuals listed for gastric bypass surgery who had T2DM or normal glucose tolerance (NGT) matched for age, weight, and sex were studied before and 8 weeks after surgery. Pancreas and liver triacylglycerol were quantified using in-phase, out-of-phase MRI. Also measured were the first-phase insulin response to a stepped intravenous glucose infusion, hepatic insulin sensitivity, and glycemic and incretin responses to a semisolid test meal. Weight loss after surgery was similar (NGT: 12.8 ± 0.8% and T2DM: 13.6 ± 0.7%) as was the change in fat mass (56.7 ± 3.3 to 45.4 ± 2.3 vs. 56.6 ± 2.4 to 43.0 ± 2.4 kg). Pancreatic triacylglycerol did not change in NGT (5.1 ± 0.2 to 5.5 ± 0.4%) but decreased in the group with T2DM (6.6 ± 0.5 to 5.4 ± 0.4%; P = 0.007). First-phase insulin response to a stepped intravenous glucose infusion did not change in NGT (0.24 [0.13-0.46] to 0.23 [0.19-0.37] nmol ⋅ min(-1) ⋅ m(-2)) but normalized in T2DM (0.08 [-0.01 to -0.10] to 0.22 [0.07-0.30]) nmol ⋅ min(-1) ⋅ m(-2) at week 8 (P = 0.005). No differential effect of incretin secretion was observed after gastric bypass, with more rapid glucose absorption bringing about equivalently enhanced glucagon-like peptide 1 secretion in the two groups. The fall in intrapancreatic triacylglycerol in T2DM, which occurs during weight loss, is associated with the condition itself rather than decreased total body fat. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. A closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism.

    PubMed

    Abbes, Ilham Ben; Richard, Pierre-Yves; Lefebvre, Marie-Anne; Guilhem, Isabelle; Poirier, Jean-Yves

    2013-05-01

    Most closed-loop insulin delivery systems rely on model-based controllers to control the blood glucose (BG) level. Simple models of glucose metabolism, which allow easy design of the control law, are limited in their parametric identification from raw data. New control models and controllers issued from them are needed. A proportional integral derivative with double phase lead controller was proposed. Its design was based on a linearization of a new nonlinear control model of the glucose-insulin system in type 1 diabetes mellitus (T1DM) patients validated with the University of Virginia/Padova T1DM metabolic simulator. A 36 h scenario, including six unannounced meals, was tested in nine virtual adults. A previous trial database has been used to compare the performance of our controller with their previous results. The scenario was repeated 25 times for each adult in order to take continuous glucose monitoring noise into account. The primary outcome was the time BG levels were in target (70-180 mg/dl). Blood glucose values were in the target range for 77% of the time and below 50 mg/dl and above 250 mg/dl for 0.8% and 0.3% of the time, respectively. The low blood glucose index and high blood glucose index were 1.65 and 3.33, respectively. The linear controller presented, based on the linearization of a new easily identifiable nonlinear model, achieves good glucose control with low exposure to hypoglycemia and hyperglycemia. © 2013 Diabetes Technology Society.

  3. Stimulation of GLUT-1 glucose transporter expression in response to hyperosmolarity.

    PubMed

    Hwang, D Y; Ismail-Beigi, F

    2001-10-01

    Glucose transporter isoform-1 (GLUT-1) expression is stimulated in response to stressful conditions. Here we examined the mechanisms mediating the enhanced expression of GLUT-1 by hyperosmolarity. GLUT-1 mRNA, GLUT-1 protein, and glucose transport increased after exposure of Clone 9 cells to 600 mosmol/l (produced by addition of mannitol). The stimulation of glucose transport was biphasic: in the early phase (0-6 h) a approximately 2.5-fold stimulation of glucose uptake was associated with no change in the content of GLUT-1 mRNA, GLUT-1 protein, or GLUT-1 in the plasma membrane, whereas the approximately 17-fold stimulation of glucose transport during the late phase (12-24 h) was associated with increases in both GLUT-1 mRNA (approximately 7.5-fold) and GLUT-1 protein content. Cell sorbitol increased after 3 h of exposure to hyperosmolarity. The increase in GLUT-1 mRNA content was associated with an increase in the half-life of the mRNA from 2 to 8 h. A 44-bp region in the proximal GLUT-1 promoter was necessary for basal activity and for the two- to threefold increases in expression by hyperosmolarity. It is concluded that the increase in GLUT-1 mRNA content is mediated by both enhanced transcription and stabilization of GLUT-1 mRNA and is associated with increases in GLUT-1 content and glucose transport activity.

  4. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  5. Temporal partitioning of adaptive responses of the murine heart to fasting.

    PubMed

    Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E

    2018-03-15

    Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. In-house zinc SAD phasing at Cu Kα edge.

    PubMed

    Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin

    2013-07-01

    De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.

  7. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan

    2016-10-01

    Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Review of Pre-Analytical Errors in Oral Glucose Tolerance Testing in a Tertiary Care Hospital.

    PubMed

    Nanda, Rachita; Patel, Suprava; Sahoo, Sibashish; Mohapatra, Eli

    2018-03-13

    The pre-pre-analytical and pre-analytical phases form a major chunk of the errors in a laboratory. The process has taken into consideration a very common procedure which is the oral glucose tolerance test to identify the pre-pre-analytical errors. Quality indicators provide evidence of quality, support accountability and help in the decision making of laboratory personnel. The aim of this research is to evaluate pre-analytical performance of the oral glucose tolerance test procedure. An observational study that was conducted overa period of three months, in the phlebotomy and accessioning unit of our laboratory using questionnaire that examined the pre-pre-analytical errors through a scoring system. The pre-analytical phase was analyzed for each sample collected as per seven quality indicators. About 25% of the population gave wrong answer with regard to the question that tested the knowledge of patient preparation. The appropriateness of test result QI-1 had the most error. Although QI-5 for sample collection had a low error rate, it is a very important indicator as any wrongly collected sample can alter the test result. Evaluating the pre-analytical and pre-pre-analytical phase is essential and must be conducted routinely on a yearly basis to identify errors and take corrective action and to facilitate their gradual introduction into routine practice.

  9. Cloning and Characterization of the Pseudomonas aeruginosa zwf Gene Encoding Glucose-6-Phosphate Dehydrogenase, an Enzyme Important in Resistance to Methyl Viologen (Paraquat)

    PubMed Central

    Ma, Ju-Fang; Hager, Paul W.; Howell, Michael L.; Phibbs, Paul V.; Hassett, Daniel J.

    1998-01-01

    In this study, we cloned the Pseudomonas aeruginosa zwf gene, encoding glucose-6-phosphate dehydrogenase (G6PDH), an enzyme that catalyzes the NAD+- or NADP+-dependent conversion of glucose-6-phosphate to 6-phosphogluconate. The predicted zwf gene product is 490 residues, which could form a tetramer with a molecular mass of ∼220 kDa. G6PDH activity and zwf transcription were maximal in early logarithmic phase when inducing substrates such as glycerol, glucose, or gluconate were abundant. In contrast, both G6PDH activity and zwf transcription plummeted dramatically when bacteria approached stationary phase, when inducing substrate was limiting, or when the organisms were grown in a citrate-, succinate-, or acetate-containing basal salts medium. G6PDH was purified to homogeneity, and its molecular mass was estimated to be ∼220 kDa by size exclusion chromatography. Estimated Km values of purified G6PDH acting on glucose-6-phosphate, NADP+, and NAD+ were 530, 57, and 333 μM, respectively. The specific activities with NAD+ and NADP+ were calculated to be 176 and 69 μmol/min/mg. An isogenic zwf mutant was unable to grow on minimal medium supplemented with mannitol. The mutant also demonstrated increased sensitivity to the redox-active superoxide-generating agent methyl viologen (paraquat). Since one by-product of G6PDH activity is NADPH, the latter data suggest that this cofactor is essential for the activity of enzymes critical in defense against paraquat toxicity. PMID:9537370

  10. Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes.

    PubMed

    Ye, Risheng; Ni, Min; Wang, Miao; Luo, Shengzhan; Zhu, Genyuan; Chow, Robert H; Lee, Amy S

    2011-08-01

    The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca(2)(+) channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.

  11. Association of late-night carbohydrate intake with glucose tolerance among pregnant African American women.

    PubMed

    Chandler-Laney, Paula C; Schneider, Camille R; Gower, Barbara A; Granger, Wesley M; Mancuso, Melissa S; Biggio, Joseph R

    2016-10-01

    Obesity and late-night food consumption are associated with impaired glucose tolerance. Late-night carbohydrate consumption may be particularly detrimental during late pregnancy because insulin sensitivity declines as pregnancy progresses. Further, women who were obese (Ob) prior to pregnancy have lower insulin sensitivity than do women of normal weight (NW). The aim of this study is to test the hypothesis that night-time carbohydrate consumption is associated with poorer glucose tolerance in late pregnancy and that this association would be exacerbated among Ob women. Forty non-diabetic African American women were recruited based upon early pregnancy body mass index (NW, <25 kg m(-2) ; Ob, ≥30 kg m(-2) ). Third trimester free-living dietary intake was assessed by food diary, and indices of glucose tolerance and insulin action were assessed during a 75-g oral glucose tolerance test. Women in the Ob group reported greater average 24-h energy intake (3055 kcal vs. 2415 kcal, P < 0.05). Across the whole cohort, night-time, but not day-time, carbohydrate intake was positively associated with glucose concentrations after the glucose load and inversely associated with early phase insulin secretion (P < 0.05). Multiple linear regression modelling within each weight group showed that the associations among late-night carbohydrate intake, glucose concentrations and insulin secretion were present only in the Ob group. This is the first study to report an association of night-time carbohydrate intake specifically on glucose tolerance and insulin action during pregnancy. If replicated, these results suggest that late-night carbohydrate intake may be a potential target for intervention to improve metabolic health of Ob women in late pregnancy. © 2015 John Wiley & Sons Ltd.

  12. Repaglinide is more efficient than glimepiride on insulin secretion and post-prandial glucose excursions in patients with type 2 diabetes. A short term study.

    PubMed

    Rizzo, M R; Barbieri, M; Grella, R; Passariello, N; Barone, M; Paolisso, G

    2004-02-01

    To compare the effect of Repaglinide vs Glimepiride on glucose- and meal-induced insulin secretion and on meal-test induced postprandial glucose excursions. After 2 weeks washout period, a 3-Month randomised, cross-over parallel group trial of R (1 mg x 2/die) vs G (2 mg/die) in 14 patients with type 2 diabetes "naive" in diet treatment was made. Both R and G significantly but similarly lowered fasting glucose levels and improved fasting plasma insulin levels vs baseline. Hyperglycemic clamp showed that both 1st (129.15 +/- 23.6 vs 106.90 +/- 18.6 pmol/L; p=0.01) and 2nd phase (189.42 +/- 34.4 vs 144.21 +/- 37.3 pmol/L; p=0.003) B-cell response to glucose as well as area under the curve (52.07 +/- 10.86 vs 39.54 +/- 10.27 micromol/L x 120'; p=0.005) were greater in R than G groups. Insulin action (4.0 +/- 1.1 vs 3.2 +/- 0.9 mg x Kg x 60'/microU/mL; p=0.046) was also improved by R than G administration. In the meal test, R therapy produced a more rapId induction of insulin secretion during the first part. In fact, the mean rise in insulin secretion peaked at 45 min in R (p=0.001 vs G) and at 60 min in G (p=0.001 vs R). Consequently, glucose spike at 60 min was higher in G group compared to glucose spike at 45 min in R group (p=0.002). Our study demonstrates that R is more efficient that G on improving glucose- and meal- induced insulin secretion as well as on controlling for postprandial glucose excursion.

  13. Food grade duplex emulsions designed and stabilised with different osmotic pressures.

    PubMed

    Pawlik, Aleksandra; Cox, Philip W; Norton, Ian T

    2010-12-01

    In this study we have investigated the production of food grade W(1)/O/W(2) duplex emulsions with salt partitioned into one water phase but not the other. Investigations were carried out with and without balancing osmotic pressures with glucose. A stable 30% primary W(1)/O emulsions containing salt could be produced with more than or equal to 2% polyglycerol polyricinoleate (PGPR) in the oil phase. We suggest that the addition of salt strengthens the interactions between surfactant molecules in the adsorbed film. This is supported by interfacial viscosity and elasticity measurements both of which increased on addition of salt and the fact that in the presence of salt the emulsion was more stable. These simple emulsions were then processed to construct duplex emulsions. When osmotic pressures were balanced with glucose there was still a release of salt in storage. The extent and rate of release was proportional to glucose concentration. This effect was followed over a period of 60days. These data suggest that the release is driven by the chemical potential difference between the two water compartments rather than the unbalanced osmotic pressures. These observations are explained in the context of a water structuring effect from the added glucose, which lowers the interfacial tension of oil-water interface and thus facilitates micellar transport of hydrated salt ions across the oil layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  15. Let’s prevent diabetes: study protocol for a cluster randomised controlled trial of an educational intervention in a multi-ethnic UK population with screen detected impaired glucose regulation

    PubMed Central

    2012-01-01

    Background The prevention of type 2 diabetes is a globally recognised health care priority, but there is a lack of rigorous research investigating optimal methods of translating diabetes prevention programmes, based on the promotion of a healthy lifestyle, into routine primary care. The aim of the study is to establish whether a pragmatic structured education programme targeting lifestyle and behaviour change in conjunction with motivational maintenance via the telephone can reduce the incidence of type 2 diabetes in people with impaired glucose regulation (a composite of impaired glucose tolerance and/or impaired fasting glucose) identified through a validated risk score screening programme in primary care. Design Cluster randomised controlled trial undertaken at the level of primary care practices. Follow-up will be conducted at 12, 24 and 36 months. The primary outcome is the incidence of type 2 diabetes. Secondary outcomes include changes in HbA1c, blood glucose levels, cardiovascular risk, the presence of the Metabolic Syndrome and the cost-effectiveness of the intervention. Methods The study consists of screening and intervention phases within 44 general practices coordinated from a single academic research centre. Those at high risk of impaired glucose regulation or type 2 diabetes are identified using a risk score and invited for screening using a 75 g-oral glucose tolerance test. Those with screen detected impaired glucose regulation will be invited to take part in the trial. Practices will be randomised to standard care or the intensive arm. Participants from intensive arm practices will receive a structured education programme with motivational maintenance via the telephone and annual refresher sessions. The study will run from 2009–2014. Discussion This study will provide new evidence surrounding the long-term effectiveness of a diabetes prevention programme conducted within routine primary care in the United Kingdom. Trial registration Clinicaltrials.gov NCT00677937 PMID:22607160

  16. Modelling the growth and ethanol production of Brettanomyces bruxellensis at different glucose concentrations.

    PubMed

    Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P

    2011-08-01

    To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. [Changes in the rates of glucose consumption and lactate release by cells in perfused and nonperfused cultures].

    PubMed

    Berestovskaia, N G; Akatov, V S; Lavrovskaia, V P

    1993-01-01

    The energetic state of Chinese hamster fibroblasts was investigated under stationary cultural conditions and under condition of culture medium perfusion immediately above the cells. Specific rates of glucose utilization and lactate formation under the former conditions (1.88 +/- 0.2) x 10(-13) and (4.3 +/- 0.56) x 10(-13) Mole/cell/h at the logarithmic growth phase, and (0.21 +/- 0.08) x 10(-13) and (0.58 +/- 0.06) x 10(-13) Mole/cell/h at the stationary phase, respectively. In the perfused culture, specific rates of glucose utilization and formation of lactate are (4.86 +/- 0.56) x 10(-13) and (11.0 +/- 1.8) x 10(-13) Mole/cell/h at the logarithmic growth phase, and (1.57 +/- 0.14) x 10(-13) and (4.11 +/- 0.5) x 10(-13) Mole/cell/h at the stationary phase, respectively. It has been proposed that under conditions of stationary culture the fall of the rates, as the culture reaches the survival phase, is due to diffusion-dependent limitations of mass transfer between the medium and the culture. Under perfusion conditions, the fall of the rates can be explained by some deficiency of necessary components and by excessive amounts of metabolic products in the multilayer structure.

  18. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis.

    PubMed

    Meyer, Hanna; Weidmann, Hendrikje; Mäder, Ulrike; Hecker, Michael; Völker, Uwe; Lalk, Michael

    2014-07-01

    In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.

  19. Population Pharmacokinetics and Exposure-Response (Efficacy and Safety/Tolerability) of Empagliflozin in Patients with Type 2 Diabetes.

    PubMed

    Baron, Kyle T; Macha, Sreeraj; Broedl, Uli C; Nock, Valerie; Retlich, Silke; Riggs, Matthew

    2016-09-01

    The aim of the analysis was to characterize the population pharmacokinetics (PKs) and exposure-response (E-R) for efficacy (fasting plasma glucose, glycated hemoglobin) and safety/tolerability [hypoglycemia, genital infections, urinary tract infection (UTI), and volume depletion] of the sodium glucose cotransporter 2 inhibitor, empagliflozin, in patients with type 2 diabetes mellitus. This study extends the findings of previous analyses which described the PK and pharmacodynamics (PD) using early clinical studies of up to 12 weeks in duration. Population pharmacokinetic and E-R models were developed based on two Phase I, four Phase II, and four Phase III studies. Variability in empagliflozin exposure was primarily affected by estimated glomerular filtration rate (eGFR) (less than twofold increase in exposure in patients with severe renal impairment). Consistent with its mode of action, the efficacy of empagliflozin was increased with elevated baseline plasma glucose levels and attenuated with decreasing renal function, but was still maintained to nearly half the maximal effect with eGFR as low as 30 mL/min/1.73 m(2). All other investigated covariates, including sex, body mass index, race, and age did not alter the PK or efficacy of empagliflozin to a clinically relevant extent. Compared with placebo, empagliflozin administration was associated with an exposure-independent increase in the incidence of genital infections and no significant change in the risk of UTI, hypoglycemia, or volume depletion. Based on the results from the PK and E-R analysis, no dose adjustment is required for empagliflozin in the patient population for which the drug is approved. Boehringer Ingelheim.

  20. Automatic method for evaluating the activity of sourdough strains based on gas pressure measurements.

    PubMed

    Wick, M; Vanhoutte, J J; Adhemard, A; Turini, G; Lebeault, J M

    2001-04-01

    A new method is proposed for the evaluation of the activity of sourdough strains, based on gas pressure measurements in closed air-tight reactors. Gas pressure and pH were monitored on-line during the cultivation of commercial yeasts and heterofermentative lactic acid bacteria on a semi-synthetic medium with glucose as the major carbon source. Relative gas pressure evolution was compared both to glucose consumption and to acidification and growth. It became obvious that gas pressure evolution is related to glucose consumption kinetics. For each strain, a correlation was made between maximum gas pressure variation and amount of glucose consumed. The mass balance of CO2 in both liquid and gas phase demonstrated that around 90% of CO2 was recovered. Concerning biomass production, a linear relationship was found between log colony-forming units/ml and log pressure for both yeasts and bacteria during the exponential phase; and for yeasts, relative gas pressure evolution also followed optical density variation.

  1. [Glycemic changes during menstrual cycles in women with type 1 diabetes].

    PubMed

    Herranz, Lucrecia; Saez-de-Ibarra, Lourdes; Hillman, Natalia; Gaspar, Ruth; Pallardo, Luis Felipe

    2016-04-01

    To determine frequency of women with type 1 diabetes showing menstrual cyclic changes in glycemia, analyze their clinical characteristics, and assess the pattern of glycemic changes. We analyzed glucose meter readings along 168 menstrual cycles of 26 women with type 1 diabetes. We evaluated mean glucose, mean glucose standard deviation, mean fasting glucose, percentage of glucose readings>7.8 mmol/L and<3.1 mmol/L, and mean insulin dose in 4 periods for each cycle. A woman was identified as having cyclic changes when mean glucose rose from early follicular to late luteal in two-thirds of her menstrual cycles. A percentage of 65.4 of the women had cyclic changes. Characteristics of women with and without cyclic changes, including self-perception of glycemic changes, were similar with exception of age at diabetes diagnosis (22.5 [7.5] vs. 14.4 [9.5] years; P=.039). In women with cyclic changes mean percentage of glucose readings>7.8 mmol/L rose from early follicular (52.2 [16.3] %) to early and late luteal (58.4 [16.0] %, P=.0269; 61.0 [16.9] %, P=.000). Almost two-thirds of women with type 1 diabetes experience a menstrual cycle phenomenon, attributable to an increase in hyperglycemic excursions during the luteal phase. Enabling women to evaluate their weekly mean glucose from their meter and exploring the causes of hyperglycemic excursions during luteal phase should ensure more accuracy when giving instructions for diabetes management in women with premenstrual hyperglycemia. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  2. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status.

    PubMed

    Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu

    2016-06-07

    Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and TG were significantly correlated with total-phase insulin secretion, but they also were not acceptable predictors of total-phase insulin secretion (0.60 < AUROC < 0.70). In a Chinese population with different levels of glucose tolerance, TG/HDL-C and TG could be the predictors of IR. The lipid ratios could not be reliable makers of β cell function in the population.

  3. Metformin and sitAgliptin in patients with impAired glucose tolerance and a recent TIA or minor ischemic Stroke (MAAS): study protocol for a randomized controlled trial.

    PubMed

    Osei, Elizabeth; Fonville, Susanne; Zandbergen, Adrienne A M; Brouwers, Paul J A M; Mulder, Laus J M M; Lingsma, Hester F; Dippel, Diederik W J; Koudstaal, Peter J; den Hertog, Heleen M

    2015-08-05

    Impaired glucose tolerance is present in one third of patients with a TIA or ischemic stroke and is associated with a two-fold risk of recurrent stroke. Metformin improves glucose tolerance, but often leads to side effects. The aim of this study is to explore the feasibility, safety, and effects on glucose metabolism of metformin and sitagliptin in patients with TIA or minor ischemic stroke and impaired glucose tolerance. We will also assess whether a slow increase in metformin dose and better support and information on this treatment will reduce the incidence of side effects in these patients. The Metformin and sitAgliptin in patients with impAired glucose tolerance and a recent TIA or minor ischemic Stroke trial (MAAS trial) is a phase II, multicenter, randomized, controlled, open-label trial with blinded outcome assessment. Non-diabetic patients (n = 100) with a recent (<6 months) TIA, amaurosis fugax or minor ischemic stroke (modified Rankin scale ≤ 3) and impaired glucose tolerance, defined as 2-hour post-load glucose levels between 7.8 and 11.0 mmol/L after repeated standard oral glucose tolerance test, will be included. Patients with renal or liver impairment, heart failure, chronic hypoxic lung disease stage III-IV, history of lactate acidosis or diabetic ketoacidosis, pregnancy or breastfeeding, pancreatitis and use of digoxin will be excluded. The patients will be randomly assigned in a 1:1:2 ratio to metformin, sitagliptin or "no treatment." Patients allocated to metformin will start with 500 mg twice daily, which will be slowly increased during a 6-week period to a twice daily dose of 1000 mg. Patients allocated to sitagliptin will be treated with a daily fixed dose of 100 mg. The study has been registered as NTR 3196 in The Netherlands Trial Register. Primary outcomes include percentage still on treatment, percentage of (serious) adverse events, and the baseline adjusted difference in 2-hour post-load glucose levels at 6 months. This study will give more information about the feasibility and safety of metformin and sitagliptin as well as the effect on 2-hour post-load glucose levels at 6 months in patients with TIA or ischemic stroke and impaired glucose tolerance. NTR3196 , Date of registration: 15 December 2011.

  4. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice

    PubMed Central

    Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen

    2012-01-01

    Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741

  5. Fasting plasma glucose as initial screening for diabetes and prediabetes in irish adults: The Diabetes Mellitus and Vascular health initiative (DMVhi).

    PubMed

    Sinnott, Margaret; Kinsley, Brendan T; Jackson, Abaigeal D; Walsh, Cathal; O'Grady, Tony; Nolan, John J; Gaffney, Peter; Boran, Gerard; Kelleher, Cecily; Carr, Bernadette

    2015-01-01

    Type 2 diabetes has a long pre clinical asymptomatic phase. Early detection may delay or arrest disease progression. The Diabetes Mellitus and Vascular health initiative (DMVhi) was initiated as a prospective longitudinal cohort study on the prevalence of undiagnosed Type 2 diabetes and prediabetes, diabetes risk and cardiovascular risk in a cohort of Irish adults aged 45-75 years. Members of the largest Irish private health insurance provider aged 45 to 75 years were invited to participate in the study. already diagnosed with diabetes or taking oral hypoglycaemic agents. Participants completed a detailed medical questionnaire, had weight, height, waist and hip circumference and blood pressure measured. Fasting blood samples were taken for fasting plasma glucose (FPG). Those with FPG in the impaired fasting glucose (IFG) range had a 75gm oral glucose tolerance test performed. 122,531 subjects were invited to participate. 29,144 (24%) completed the study. The prevalence of undiagnosed diabetes was 1.8%, of impaired fasting glucose (IFG) was 7.1% and of impaired glucose tolerance (IGT) was 2.9%. Dysglycaemia increased among those aged 45-54, 55-64 and 65-75 years in both males (10.6%, 18.5%, 21.7% respectively) and females (4.3%, 8.6%, 10.9% respectively). Undiagnosed T2D, IFG and IGT were all associated with gender, age, blood pressure, BMI, abdominal obesity, family history of diabetes and triglyceride levels. Using FPG as initial screening may underestimate the prevalence of T2D in the study population. This study is the largest screening study for diabetes and prediabetes in the Irish population. Follow up of this cohort will provide data on progression to diabetes and on cardiovascular outcomes.

  6. Age and body weight effects on glucose and insulin tolerance in colony cats maintained since weaning on high dietary carbohydrate.

    PubMed

    Backus, R C; Cave, N J; Ganjam, V K; Turner, J B M; Biourge, V C

    2010-12-01

    High dietary carbohydrate is suggested to promote development of diabetes mellitus in cats. Glucose tolerance, insulin sensitivity, and insulin secretion were assessed in young [0.8-2.3 (median = 1.1) years, n = 13] and mature [4.0-7.0 (median 5.8) years, n = 12] sexually intact females of a large (n ≅ 700) feline colony in which only dry-type diets (35% metabolizable energy as carbohydrate) were fed from weaning. Insulin sensitivity was assessed from the 'late-phase' (60-120 min) plasma insulin response of intravenous glucose tolerance tests (IVGTTs) and from fractional change in glycaemia from baseline 15 min after an insulin bolus (0.1 U/kg, i.v.). Insulin secretion was assessed from the 'early-phase' (0-15 min) plasma insulin response of IVGTTs. Compared to the young cats, the mature cats had greater body weights [2.3-3.8 (median = 2.9) vs. 3.0-6.3 (median = 4.0) kg, p < 0.01], greater late-phase insulin responses (p < 0.05), lower insulin-induced glycaemic changes (p = 0.06), lower early-phase insulin responses (p < 0.05), and non-significantly different rates of glucose disposal. The late-phase insulin response was correlated with body weight and age (p < 0.05). When group assignments were balanced for body weight, the age-group differences and correlations became non-significant. The findings indicate that body weight gain is more likely than dry-type diets to induce the pre-diabetic conditions of insulin resistance and secretion dysfunction. © 2010 The Authors. Journal of Animal Physiology and Animal Nutrition © 2010 Blackwell Verlag GmbH.

  7. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia.

    PubMed

    Steil, G M; Rebrin, K; Hariri, F; Jinagonda, S; Tadros, S; Darwin, C; Saad, M F

    2005-09-01

    Glucose sensors often measure s.c. interstitial fluid (ISF) glucose rather than blood or plasma glucose. Putative differences between plasma and ISF glucose include a protracted delay during the recovery from hypoglycaemia and an increased gradient during hyperinsulinaemia. These have often been investigated using sensor systems that have delays due to signal smoothing, or require long equilibration times. The aim of the present study was to define these relationships during hypoglycaemia in a well-equilibrated system with no smoothing. Hypoglycaemia was induced by i.v. insulin infusion (360 pmol.m(-2).min(-1)) in ten non-diabetic subjects. Glucose was sequentially clamped at approximately 5, 4.2 and 3.1 mmol/l and allowed to return to normoglycaemia. Subjects wore two s.c. glucose sensors (Medtronic MiniMed, Northridge, CA, USA) that had been inserted for more than 12 h. A two-compartment model was used to quantify the delay and gradient. The delay during the fall in plasma glucose was not different from the delay during recovery (8.3+/-0.67 vs 6.3+/-1.1 min; p=0.27) and no differences were observed in the ratio of sensor current to plasma glucose at basal insulin (2.7+/-0.25 nA.mmol(-1).l) compared with any of the hyperinsulinaemic clamp phases (2.8+/-0.18, 2.7+/-0.021, 2.9+/-0.21; p=NS). The ratio was significantly elevated following recovery to normoglycaemia (3.1+/-0.2 nA.mmol(-1).l; p<0.001). The elevated ratio suggests that the plasma to ISF glucose gradient was decreased following hypoglycaemia, possibly due to increased skin blood flow. Recovery from hypoglycaemia is not accompanied by a protracted delay and insulin does not increase the plasma to s.c. ISF glucose gradient.

  8. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST).

    PubMed

    Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I

    2010-11-01

    Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.

  9. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  10. Glucose abnormalities in Asian patients with chronic hepatitis C.

    PubMed

    Bo, Qingyan; Orsenigo, Roberto; Wang, Junyi; Griffel, Louis; Brass, Clifford

    2015-01-01

    Many studies have demonstrated a potential association between type 2 diabetes (T2D) and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D) and their risk factors between Asian and non-Asian chronic hepatitis C (CHC) patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries). This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025) as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%), and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08). Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had no impact on viral response to peginterferon plus ribavirin.

  11. Glucose abnormalities in Asian patients with chronic hepatitis C

    PubMed Central

    Bo, Qingyan; Orsenigo, Roberto; Wang, Junyi; Griffel, Louis; Brass, Clifford

    2015-01-01

    Many studies have demonstrated a potential association between type 2 diabetes (T2D) and hepatitis C virus infection in Western countries, while similar evidence is limited in Asia. We compared the prevalence of glucose abnormalities (impaired fasting glucose [IFG] and T2D) and their risk factors between Asian and non-Asian chronic hepatitis C (CHC) patients, and evaluated whether glucose abnormalities impacted the viral responses to peginterferon plus ribavirin treatment (current standard of care in most Asian countries). This study retrospectively analyzed data of 1,887 CHC patients from three Phase II/III studies with alisporivir (DEB025) as treatment for CHC. The chi-square test was used to compare the prevalence of IFG/T2D between Asian and non-Asian CHC patients, and logistic regression was used to adjust for sex, age, and cirrhosis status. Risk factors for IFG/T2D were evaluated using univariate and multivariate analysis. Our results indicated that the prevalence of IFG/T2D was high in both Asian and non-Asian CHC patients (23.0% vs 20.9%), and no significant difference was found between these two populations (adjusted odds ratio: 1.3, 95% confidence interval: 0.97, 1.7; P=0.08). Age, sex, and cirrhosis status were risk factors for IFG/T2D in both populations, while body mass index was positively associated with IFG/T2D in non-Asian but not in Asian participants. No significant differences in sustained virological response rates were seen between patients with normal fasting glucose and patients with IFG/T2D for both populations. These results demonstrate that the prevalence of glucose abnormalities in Asian CHC patients was similar to that in non-Asians, and glucose abnormalities had no impact on viral response to peginterferon plus ribavirin. PMID:26609222

  12. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  13. Possible increase in insulin resistance and concealed glucose-coupled potassium-lowering mechanisms during acute coronary syndrome documented by covariance structure analysis.

    PubMed

    Ito, Satoshi; Nagoshi, Tomohisa; Minai, Kosuke; Kashiwagi, Yusuke; Sekiyama, Hiroshi; Yoshii, Akira; Kimura, Haruka; Inoue, Yasunori; Ogawa, Kazuo; Tanaka, Toshikazu D; Ogawa, Takayuki; Kawai, Makoto; Yoshimura, Michihiro

    2017-01-01

    Although glucose-insulin-potassium (GIK) therapy ought to be beneficial for ischemic heart disease in general, variable outcomes in many clinical trials of GIK in acute coronary syndrome (ACS) had a controversial impact. This study was designed to examine whether "insulin resistance" is involved in ACS and to clarify other potential intrinsic compensatory mechanisms for GIK tolerance through highly statistical procedure. We compared the degree of insulin resistance during ACS attack and remission phase after treatment in individual patients (n = 104). During ACS, homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly increased (P<0.001), while serum potassium levels were transiently decreased (degree of which was indicated by ΔK) (P<0.001). This finding provides a renewed paradox, as ΔK, a surrogate marker of intrinsic GIK cascade activation, probably reflects the validated glucose metabolism during ischemic attack. Indeed, multiple regression analysis revealed that plasma glucose level during ACS was positively correlated with ΔK (P = 0.026), whereas HOMA-IR had no impact on ΔK. This positive correlation between ΔK and glucose was confirmed by covariance structure analysis with a strong impact (β: 0.398, P = 0.015). Intriguingly, a higher incidence of myocardial infarction relative to unstable angina pectoris, as well as a longer hospitalization period were observed in patients with larger ΔK, indicating that ΔK also reflects disease severity of ACS. Insulin resistance most likely increases during ACS; however, ΔK was positively correlated with plasma glucose level, which overwhelmed insulin resistance condition. The present study with covariance structure analysis suggests that there are potential endogenous glucose-coupled potassium lowering mechanisms, other than insulin, regulating glucose metabolism during ACS.

  14. Risk factors associated to diabetes in Mexican population and phenotype of the individuals who will convert to diabetes.

    PubMed

    González-Villalpando, Clicerio; Dávila-Cervantes, Claudio Alberto; Zamora-Macorra, Mireya; Trejo-Valdivia, Belem; González-Villalpando, María Elena

    2014-01-01

    To describe risk factors associated to the incidence of type 2 diabetes (T2D) in Mexican population and to define phenotypic (clinical, anthropometric, metabolic) characteristics present in the individual who will convert to diabetes, regardless of time of onset. The Mexico City Diabetes Study began in 1990, with 2 282 participants, and had three subsequent phases: 1994, 1998, and 2008. A systematic evaluation with an oral glucose tolerance test was performed in each phase. For diagnosis of T2D, American Diabetes Association criteria were used. The population at risk was 1939 individuals. Subjects who were in the converter stage (initially non diabetic that eventually converted to T2D) had, at baseline, higher BMI (30 vs 27), systolic blood pressure (119 vs 116 mmHg), fasting glucose (90 vs 82mg/dl), triglycerides (239 vs 196mg/dl), and cholesterol (192 vs 190mg/dl), compared with subjects who remained non converters (p<0.05). The phenotype described represents a potentially identifiable phase and a target for preventive intervention.

  15. Effect of body mass index on diabetogenesis factors at a fixed fasting plasma glucose level.

    PubMed

    Lin, Jiunn-Diann; Hsu, Chun-Hsien; Wu, Chung-Ze; Hsieh, An-Tsz; Hsieh, Chang-Hsun; Liang, Yao-Jen; Chen, Yen-Lin; Pei, Dee; Chang, Jin-Biou

    2018-01-01

    The present study evaluated the relative influence of body mass index (BMI) on insulin resistance (IR), first-phase insulin secretion (FPIS), second-phase insulin secretion (SPIS), and glucose effectiveness (GE) at a fixed fasting plasma glucose level in an older ethnic Chinese population. In total, 265 individuals aged 60 years with a fasting plasma glucose level of 5.56 mmol/L were enrolled. Participants had BMIs of 20.0-34.2 kg/m2. IR, FPIS, SPIS, and GE were estimated using our previously developed equations. Pearson correlation analysis was conducted to assess the correlations between the four diabetogenesis factors and BMI. A general linear model was used to determine the differences in the percentage of change among the four factor slopes against BMI. Significant correlations were observed between BMI and FPIS, SPIS, IR, and GE in both women and men, which were higher than those reported previously. In men, BMI had the most profound effect on SPIS, followed by IR, FPIS, and GE, whereas in women, the order was slightly different: IR, followed by FPIS, SPIS, and GE. Significant differences were observed among all these slopes, except for the slopes between FPIS and SPIS in women (p = 0.856) and IR and FPIS in men (p = 0.258). The contribution of obesity to all diabetes factors, except GE, was higher than that reported previously. BMI had the most profound effect on insulin secretion in men and on IR in women in this 60-year-old cohort, suggesting that lifestyle modifications for obesity reduction in women remain the most important method for improving glucose metabolism and preventing future type 2 diabetes mellitus.

  16. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    PubMed

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test.

    PubMed

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko; Polotsky, Vsevolod Y

    2017-04-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (S I ), insulin independent glucose disposal [glucose effectiveness (S G )], and the insulin response to glucose (AIR G ) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased S G but did not affect S I and AIR G Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased S G , whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. Copyright © 2017 the American Physiological Society.

  18. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko

    2017-01-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (SI), insulin independent glucose disposal [glucose effectiveness (SG)], and the insulin response to glucose (AIRG) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased SG but did not affect SI and AIRG. Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased SG, whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity. PMID:28104753

  19. Sensitive determination of glucose in Dulbecco's modified Eagle medium by high-performance liquid chromatography with 1-phenyl-3-methyl-5-pyrazolone derivatization: application to gluconeogenesis studies.

    PubMed

    Ling, Zhaoli; Xu, Ping; Zhong, Zeyu; Wang, Fan; Shu, Nan; Zhang, Ji; Tang, Xiange; Liu, Li; Liu, Xiaodong

    2016-04-01

    A new pre-column derivative high-performance liquid chromatography (HPLC) method for determination of d-glucose with 3-O-methyl-d-glucose (3-OMG) as the internal standard was developed and validated in order to study the gluconeogenesis in HepG2 cells. Samples were derivatized with 1-phenyl-3-methy-5-pyrazolone at 70°C for 50 min. Glucose and 3-OMG were extracted by liquid-liquid extraction and separated on a YMC-Triart C18 column, with a gradient mobile phase composed of acetonitrile and 20 mm ammonium acetate solution containing 0.09% tri-ethylamine at a flow rate of 1.0 mL/min. The eluate were detected using a UV detector at 250 nm. The assay was linear over the range 0.39-25 μm (R(2) = 0.9997, n = 5) and the lower limit of quantitation was 0.39 μm (0.070 mg/mL). Intra- and inter-day precision and accuracy were <15% and within ±3%, respectively. After validation, the HPLC method was applied to investigate the gluconeogenesis in Dulbecco's modified Eagle medium (DMEM) cultured HepG2 cells. Glucose concentration was determined to be about 1-2.5 μm in this gluconeogenesis assay. In conclusion, this method has been shown to determine small amounts of glucose in DMEM successfully, with lower limit of quantitation and better sensitivity when compared with common commercial glucose assay kits. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Effect of a new hypoglycemic agent, A-4166 [(-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine], on postprandial blood glucose excursion: comparison with voglibose and glibenclamide.

    PubMed

    Ikenoue, T; Okazaki, K; Fujitani, S; Tsuchiya, Y; Akiyoshi, M; Maki, T; Kondo, N

    1997-04-01

    (-)-N-(trans-4-Isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166) is a new nonsulfonylurea hypoglycemic agent that lowers blood glucose by stimulating insulin release. In the present study, we examined the effects of A-4166, voglibose (an alpha-glucosidase inhibitor), and glibenclamide (a sulfonylurea) on the postprandial glycemic increase in rats with or without diabetes mellitus. Oral administration of A-4166 (25-100 mg/kg) dose-dependently decreased blood glucose with a rapid onset and short duration in normal rats. On the other hand, glibenclamide (1-4 mg/kg) showed a slower onset of its hypoglycemic action, and voglibose (0.2 mg/kg) had no effect. In the case of postprandial glucose excursion, the carbohydrate-induced increase in blood glucose was reduced by oral administration of either A-4166 or voglibose without causing sustained hypoglycemia in both normal and neonatal streptozotocin-induced diabetic rats. However, the efficacy of voglibose varied with the type of carbohydrate load. Glibenclamide produced a prolonged decrease in blood glucose without any appreciable effect on the initial glucose excursion. After sucrose loading, plasma insulin levels during the initial 1 h were significantly higher in A-4166-treated rats than in control rats, while voglibose completely inhibited the insulin response to sucrose. In glibenclamide-treated rats, an augmented insulin response was not seen. In conclusion, unlike other hypoglycemic agents, A-4166 suppresses postprandial glucose excursions by stimulating the early phase of insulin secretion.

  1. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes.

    PubMed

    Versteeg, Ruth I; Stenvers, Dirk J; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W; Zwanenburg, Gooitzen; Smilde, Age K; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J; la Fleur, Susanne E; Bisschop, Peter H

    2017-04-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia.

  2. Contracting and Monitoring Relationships for Adolescents with Type 1 Diabetes: A Pilot Study

    PubMed Central

    DiMeglio, Linda A.; Stein, Stephanie; Marrero, David G.

    2011-01-01

    Abstract Background Adolescents are developmentally in a period of transition—from children cared for by their parents to young adults capable of self-care, independent judgment, and self-directed problem solving. We wished to develop a behavioral contract for adolescent diabetes management that addresses some negotiable points of conflict within the parent–child relationship regarding self-monitoring and then assess its effectiveness in a pilot study as part of a novel cell phone–based glucose monitoring system. Methods In the first phase of this study we used semistructured interview techniques to determine the major sources of diabetes-related conflict in the adolescent–parent relationship, to identify factors that could facilitate or inhibit control, and to determine reasonable goals and expectations. These data were then used to inform development of a behavioral contract that addressed the negotiable sources of conflict between parents and their adolescent. The second phase of this research was a 3-month pilot study to measure how a novel cell phone glucose monitoring system would support the contract and have an effect on glucose management, family conflict, and quality of life. Results Interviews were conducted with 10 adolescent–caregiver pairs. The major theme of contention was nagging about diabetes management. Two additional themes emerged as points of negotiation for the behavioral contract: glucose testing and contact with the diabetes clinical team. Ten adolescent–parent pairs participated in the pilot test of the system and contract. There was a significant improvement in the Diabetes Self-Management Profile from 55.2 to 61.1 (P < 0.01). A significant reduction in hemoglobin A1c also occurred, from 8.1% at the start of the trial to 7.6% at 3 months (P < 0.04). Conclusions This study confirms previous findings that mobile technologies do offer significant potential in improving the care of adolescents with type 1 diabetes. Moreover, behavioral contracts may be an important adjunct to reduce nagging and improve outcomes with behavioral changes. PMID:21406011

  3. Artificial Pancreas as an Effective and Safe Alternative in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis.

    PubMed

    Dai, Xia; Luo, Zu-Chun; Zhai, Lu; Zhao, Wen-Piao; Huang, Feng

    2018-05-09

    Insulin injection is the main treatment in patients with type 1 diabetes mellitus (T1DM). Even though continuous glucose monitoring has significantly improved the conditions of these patients, limitations still exist. To further enhance glucose control in patients with T1DM, an artificial pancreas has been developed. We aimed to systematically compare artificial pancreas with its control group during a 24-h basis in patients with T1DM. Electronic databases were carefully searched for English publications comparing artificial pancreas with its control group. Overall daytime and nighttime glucose parameters were considered as the endpoints. Data were evaluated by means of weighted mean differences (WMDs) and 95% confidence intervals (CIs) generated by RevMan 5.3 software. A total number of 354 patients were included. Artificial pancreas significantly maintained a better mean concentration of glucose (WMD - 1.03, 95% CI - 1.32 to - 0.75; P = 0.00001). Time spent in the hypoglycemic phase was also significantly lower (WMD - 1.23, 95% CI - 1.56 to - 0.91; P = 0.00001). Daily insulin requirement also significantly favored artificial pancreas (WMD - 3.43, 95% CI - 4.27 to - 2.59; P = 0.00001). Time spent outside the euglycemic phase and hyperglycemia phase (glucose > 10.0 mmol/L) also significantly favored artificial pancreas. Also, the numbers of hypoglycemic events were not significantly different. Artificial pancreas might be considered an effective and safe alternative to be used during a 24-h basis in patients with T1DM.

  4. Preferred hexoses influence long-term memory and induction of lactose catabolism by Streptococcus mutans.

    PubMed

    Zeng, Lin; Chen, Lulu; Burne, Robert A

    2018-05-11

    Bacteria prioritize sugar metabolism via carbohydrate catabolite repression, which regulates global gene expression to optimize the catabolism of preferred substrates. Here, we report an unusual long-term memory effect in certain Streptococcus mutans strains that alters adaptation to growth on lactose after prior exposure to glucose or fructose. In strain GS-5, cells that were first cultured on fructose then transferred to lactose displayed an exceptionally long lag (>11 h) and slower growth, compared to cells first cultured on glucose or cellobiose, which displayed a reduction in lag phase by as much as 10 h. Mutants lacking the cellobiose-PTS or phospho-β-glucosidase lost the accelerated growth on lactose associated with prior culturing on glucose. The memory effects of glucose or fructose on lactose catabolism were not as profound in strain UA159, but the lag phase was considerably shorter in mutants lacking the glucose-PTS EII Man Interestingly, when S. mutans was cultivated on lactose, significant quantities of free glucose accumulated in the medium, with higher levels found in the cultures of strains lacking EII Man , glucokinase, or both. Free glucose was also detected in cultures that were utilizing cellobiose or trehalose, albeit at lower levels. Such release of hexoses by S. mutans is likely of biological significance as it was found that cells required small amounts of glucose or other preferred carbohydrates to initiate efficient growth on lactose. These findings suggest that S. mutans modulates the induction of lactose utilization based on its prior exposure to glucose or fructose, which can be liberated from common disaccharides. IMPORTANCE. Understanding the molecular mechanisms employed by oral bacteria to control sugar metabolism is key to developing novel therapies for management of dental caries and other oral diseases. Lactose is a naturally occurring disaccharide that is abundant in dairy products and commonly ingested by humans. However, for the dental caries pathogen Streptococcus mutans , relatively little is known about the molecular mechanisms that regulate expression of genes required for lactose uptake and catabolism. Two peculiarities of lactose utilization by S. mutans are explored here: a) S. mutans excretes glucose that it cleaves from lactose and b) prior exposure to certain carbohydrates can result in a long-term inability to use lactose. The study begins to shed light on how S. mutans may bet-hedge to optimize its persistence and virulence in the human oral cavity. Copyright © 2018 American Society for Microbiology.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salminen, S.O.; Streeter, J.G.

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with /sup 14/C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O/sub 2/ (2% in the gas phase). Uptake and conversion of /sup 14/C to CO/sub 2/ were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO/sub 2/, and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO/sub 2/ at a very low but measurable rate (<0.1more » nanomoles per milligram protein per hour). Carbon Number 1 of glucose appeared in CO/sub 2/ at a rate 30 times greater than the conversion of carbon Number 6 to CO/sub 2/, indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase.« less

  6. Adsorption and possible dissociation of glucose by the [BN fullerene-B6]- magnetic nanocomposite. In silico studies

    NASA Astrophysics Data System (ADS)

    Anota, E. Chigo; Villanueva, M. Salazar; Shakerzadeh, E.; Castro, M.

    2018-02-01

    The adsorption, activation and possible dissociation of the glucose molecule on the magnetic [BN fullerene-B6]- system is performed by means of density functional theory calculations. Three models of magnetic nanocomposites were inspected: i) pristine BN fullerene, BN fullerene functionalized with a magnetic B6 cluster which generates two structures: ii) pyramidal (P) and iii) triangular (T). Chemical interactions of glucose appear for all these cases; however, for the BNF:B6(T)—glucose system, the interaction generates an effect of dissociation on glucose, due to the magnetic effects, since it has high spin multiplicity. The latter nanocomposite shows electronic behavior like-conductor and like-semi-conductor for the P and T geometries, respectively. Intrinsic magnetism associated to values of 1.0 magneton bohr (µB) for the pyramidal and 5.0 µB for the triangular structure, high polarity, and low-chemical reactivity are found for these systems. These interesting properties make these functionalized fullerenes a good option for being used as nano-vehicles for drug delivery. These quantum descriptors remain invariant when the [BN]-fullerene and [BNF:B6 (P) or (T)]- nanocomposites are interacting with the glucose molecule. According to the determined adsorption energy, chemisorption regimes occur in both the phases: gas and aqueous medium.

  7. [Modal failure analysis and effects in the detection of errors in the transport of samples to the clinical laboratory].

    PubMed

    Parés-Pollán, L; Gonzalez-Quintana, A; Docampo-Cordeiro, J; Vargas-Gallego, C; García-Álvarez, G; Ramos-Rodríguez, V; Diaz Rubio-García, M P

    2014-01-01

    Owing to the decrease in values of biochemical glucose parameter in some samples from external extraction centres, and the risk this implies to patient safety; it was decided to apply an adaptation of the «Health Services Failure Mode and Effects Analysis» (HFMEA) to manage risk during the pre-analytical phase of sample transportation from external centres to clinical laboratories. A retrospective study of glucose parameter was conducted during two consecutive months. The analysis was performed in its different phases: to define the HFMEA topic, assemble the team, graphically describe the process, conduct a hazard analysis, design the intervention and indicators, and identify a person to be responsible for ensuring completion of each action. The results of glucose parameter in one of the transport routes, were significantly lower (P=.006). The errors and potential causes of this problem were analysed, and criteria of criticality and detectability were applied (score≥8) in the decision tree. It was decided to: develop a document management system; reorganise extractions and transport routes in some centres; quality control of the sample container ice-packs, and the time and temperature during transportation. This work proposes quality indicators for controlling time and temperature of transported samples in the pre-analytical phase. Periodic review of certain laboratory parameters can help to detect problems in transporting samples. The HFMEA technique is useful for the clinical laboratory. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  8. Mechanisms of Action of GLP-1 in the Pancreas

    PubMed Central

    Doyle, Máire E.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past twenty years culminating in a naturally occurring GLP-1 receptor agonist, exendin-4, now being used to treat type 2 diabetes. GLP-1 engages a specific G-protein coupled receptor that is present in tissues other than the pancreas (brain, kidney, lung, heart, major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor activation, adenylyl cyclase is activated and cAMP generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the PKA and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1 receptor activation also increases insulin synthesis, and beta cell proliferation and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in type 2 diabetic patients treated with exendin-4. This review we will focus on the effects resulting from GLP-1 receptor activation in islets of Langerhans PMID:17306374

  9. Effectiveness of a Low-Calorie Weight Loss Program in Moderately and Severely Obese Patients

    PubMed Central

    Winkler, Julia K.; Schultz, Jobst-Hendrik; Woehning, Annika; Piel, David; Gartner, Lena; Hildebrand, Mirjam; Roeder, Eva; Nawroth, Peter P.; Wolfrum, Christian; Rudofsky, Gottfried

    2013-01-01

    Aims To compare effectiveness of a 1-year weight loss program in moderately and severely obese patients. Methods The study sample included 311 obese patients participating in a weight loss program, which comprised a 12-week weight reduction phase (low-calorie formula diet) and a 40-week weight maintenance phase. Body weight and glucose and lipid values were determined at the beginning of the program as well as after the weight reduction and the weight maintenance phase. Participants were analyzed according to their BMI class at baseline (30-34.9 kg/m2; 35-39.9 kg/m2; 40-44.9 kg/m2; 45-49.9 kg/m2; ≥50 kg/m2). Furthermore, moderately obese patients (BMI ℋ 40 kg/m2) were compared to severely obese participants (BMI ≥ 40 kg/m2). Results Out of 311 participants, 217 individuals completed the program. Their mean baseline BMI was 41.8 ± 0.5 kg/m2. Average weight loss was 17.9 ± 0.6%, resulting in a BMI of 34.3 ± 0.4 kg/m2 after 1 year (p ℋ 0.001). Overall weight loss was not significantly different in moderately and severely obese participants. Yet, severely obese participants achieved greater weight loss during the weight maintenance phase than moderately obese participants (−3.1 ± 0.7% vs. −1.2 ± 0.6%; p = 0.04). Improvements in lipid profiles and glucose metabolism were found throughout all BMI classes. Conclusion 1-year weight loss intervention improves body weight as well as lipid and glucose metabolism not only in moderately, but also in severely obese individuals. PMID:24135973

  10. Improved post-prandial ghrelin response by nateglinide or acarbose therapy contributes to glucose stability in Type 2 diabetic patients.

    PubMed

    Zheng, F; Yin, X; Lu, W; Zhou, J; Yuan, H; Li, H

    2013-01-01

    Recent studies highlight an important role of ghrelin in glucose homeostasis, while the association between ghrelin regulation and glucose fluctuation is unclear. We compared the effects of two postprandial hypoglycemic agents on ghrelin response and determined the contribution of ghrelin response to glucose stability in Type 2 diabetic (T2DM) patients. Forty newly- diagnosed T2DM patients were randomly allocated to receive nateglinide or acarbose for 4 weeks, with twenty body mass index (BMI)-matched normoglycemic subjects as controls. Mean glucose values and daily average glucose excursion were assessed using continuous glucose monitoring system. Serum ghrelin levels were determined by enzyme-linked immunosorbent assay. T2DM patients had similar fasting ghrelin levels (p=0.546), while their postprandial ghrelin suppressions at 30 min and 120 min were reduced as compared to BMI-matched normoglycemic controls (p<0.01). Both nateglinide and acarbose increased post-prandial ghrelin suppression at 120 min and reduced ghrelin area under the curve (AUCGHRL) (p<0.05), while only nateglinide increased postprandial ghrelin suppression at 30 min (p<0.01), which was positively correlated with the increased early-phase insulin secretion by 4 weeks of nateglinide therapy (r=0.48, p=0.05). The decrease in AUCGHRL was positively correlated with the decrease in daily average glucose excursion and mean glucose values either by 4 weeks of nateglinide or acarbose therapy (p<0.05). Both nateglinide and acarbose increase post-prandial ghrelin suppression. Improved ghrelin regulation is most likely to play a role in glucose stability in T2DM patients with nateglinide or acarbose therapy.

  11. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans

    PubMed Central

    Michel, Martin C.

    2018-01-01

    Empagliflozin (formerly known as BI 10773) is a potent, competitive, and selective inhibitor of the sodium glucose transporter SGLT2, which mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. Accordingly, empagliflozin treatment increased urinary glucose excretion. This has been observed across multiple species including humans and was reported under euglycemic conditions, in obesity and, most importantly, in type 2 diabetic patients and multiple animal models of type 2 diabetes and of type 1 diabetes. This led to a reduction in blood glucose, smaller blood glucose excursions during oral glucose tolerance tests, and, upon chronic treatment, a reduction in HbA1c in animal models and patients. In rodents, such effects were observed in early and late phases of experimental diabetes and were associated with preservation of pancreatic β-cell function. Combination studies in animals demonstrated that beneficial metabolic effects of empagliflozin may also manifest when added to other types of anti-hyperglycemic treatments including linagliptin and pioglitazone. While some anti-hyperglycemic drugs lead to weight gain, empagliflozin treatment was associated with reduced body weight in normoglycemic obese and non-obese animals despite an increased food intake, largely due to a loss of adipose tissue; on the other hand, empagliflozin preserved body weight in models of type 1 diabetes. Empagliflozin improved endothelial dysfunction in diabetic rats and arterial stiffness, reduced blood pressure in diabetic patients, and attenuated early signs of nephropathy in diabetic animal models. Taken together, the SGLT2 inhibitor empagliflozin improves glucose metabolism by enhancing urinary glucose excretion; upon chronic administration, at least in animal models, the reductions in blood glucose levels are associated with beneficial effects on cardiovascular and renal complications of diabetes. PMID:26108304

  12. Astrocyte-neuronal interactions in epileptogenesis.

    PubMed

    Hadera, Mussie Ghezu; Eloqayli, Haytham; Jaradat, Saied; Nehlig, Astrid; Sonnewald, Ursula

    2015-07-01

    Pentylenetetrazol, kainic acid, or pilocarpine can be used to induce seizures in animal models of epilepsy. The present Review describes disturbances in astrocyte-neuron interactions in the acute, latent, and chronic phases analyzed by magnetic resonance spectroscopy of brain tissue extracts from rats injected with [1-(13)C]glucose and [1,2-(13)C]acetate. The most consistent change after onset of seizures was the decrease in (13)C labeling of glutamate (GLU) from [1-(13) C]glucose regardless of brain area, severity, or duration of the period with seizures and toxin used. In most cases this decrease was accompanied by a reduction in glutamine (GLN) labeling from [1-(13)C]glucose, presumably as a direct consequence of the reduction in labeling of GLU and the GLU-GLN cycle. Amounts of GLN were never changed. Reduction in the content of N-acetyl aspartate (NAA) was first detectable some time after status epilepticus but before the occurrence of spontaneous seizures. This decrease can be an indication of neuronal death and/or mitochondrial impairment and might indicate beginning gliosis. It is known that gliosis occurs in the chronic phase of temporal lobe epilepsy in hippocampus, but astrocyte metabolism appears normal in this phase, indicating that the gliotic astrocytes have a somewhat reduced metabolism per volume. A decrease in (13)C labeling of GLU from [1-(13)C]glucose is a very sensitive measure for the onset of epileptogenesis, whereas reduction of NAA is first detectable later. In the chronic phases of the hippocampal formation, astrocyte metabolism is upregulated given that the number of neurons is reduced. © 2015 Wiley Periodicals, Inc.

  13. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem?

    PubMed

    Iurlo, Alessandra; Orsi, Emanuela; Cattaneo, Daniele; Resi, Veronica; Bucelli, Cristina; Orofino, Nicola; Sciumè, Mariarita; Elena, Chiara; Grancini, Valeria; Consonni, Dario; Orlandi, Ester Maria; Cortelezzi, Agostino

    2015-10-20

    Tyrosine kinase inhibitors (TKIs) have dramatically changed the prognosis of patients with chronic myeloid leukemia (CML). They have a distinct toxicity profile that includes glycometabolic alterations: i.e. diabetes mellitus (DM), impaired fasting glucose (IFG), and the metabolic syndrome (MS). The aim of this study was to evaluate the prevalence of these alterations in a cohort of CML-chronic phase patients treated with imatinib, dasatinib or nilotinib. The study involved 168 consecutive CML-chronic phase patients with no history of DM/IFG or MS. Anthropometric and metabolic parameters were assessed, and DM/IFG and MS were diagnosed based on the criteria of the American Diabetes Association and the National Cholesterol Education Program-Adult Treatment Panel III, respectively. The nilotinib group had significantly higher levels of fasting plasma glucose, insulin, C-peptide, insulin resistance, and total and LDL cholesterol than the imatinib and dasatinib groups. DM/IFG were identified in 25% of the imatinib- and dasatinib-treated patients, and 33% of those in the nilotinib cohort (p = 0.39 vs imatinib and p = 0.69 vs dasatinib). A diagnosis of MS was made in 42.4% of the imatinib-treated patients, 37.5% of the dasatinib-treated patients, and 36.1% of the nilotinib-treated patients (p = 0.46 vs imatinib and p = 0.34 vs dasatinib). Treatment with nilotinib does not seem to induce DM/IFG or the MS to a significantly higher extent than imatinib or dasatinib, though it causes a worse glycometabolic profile. These findings suggest the need for a close monitoring of glucose and lipid metabolism and a multidisciplinary approach in patients treated with nilotinib.

  14. [Management of inpatient glucose in non-critical care setting: impact of a proactive intervention based on a point-of-care of system with remote viewing of capillary blood glucose].

    PubMed

    Amor, Antonio J; Ríos, Paola A; Graupera, Iolanda; Conget, Ignacio; Esmatjes, Enric; Comallonga, Teresa; Vidal, Josep

    2014-05-06

    The management of hyperglycemia in conventional wards is suboptimal. The objective of our study was to evaluate the efficacy of a proactive intervention supported by point-of-care system with remote viewing of capillary blood glucose (CBG) on glycemic control as compared to usual care in non-critical surgical patients. Two sequential periods of 2 months were defined. In the first phase (control, CPh), in which the surgical team was in charge of glycemic control, capillary glucose levels were recorded by StatStrip(®) system, and endocrinological support was provided upon surgeons request. In a second phase (intervention, IPh), the endocrinologist proceeded based on remotely-viewed CBG values. We compared the use of basal-bolus therapy and the degree of glycemic control between the 2 study periods. The IPh was associated with greater use of basal-bolus regimens (21.4 vs. 58.3%; P=.003). The average CBG during the CPh was 161 ± 64 vs. 142 ± 48 mg/dL during the IPh (P<.001). The IPh was associated with an increased frequency of CBG determinations between 70-140 mg/dL (CPh: 41.8 vs. IPh: 52.5%; P<.001), lower frequency of ≥ 250 mg/dL CBG determinations (CPh: 9 vs. IPh: 3.5%; P<.001), with no increase in the frequency of hypoglycemia (CPh: 3 vs. IPh: 3.7%; P=.39). A proactive endocrine intervention facilitated by a point-of-care system with remote viewing of CBG is associated with improved glycemic control in non-critical patients, without any further increase in the number of hypoglycaemic recordings. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    PubMed

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    PubMed Central

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  17. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Cui, Zhenzhen; Qin, Dongyu; Gong, Jianying; Nie, Qiulin

    2017-10-01

    Non-enzymatic electrochemical sensors for the detection of glucose were designed based on amorphous Ni(OH)2/CQDs microspheres. The amorphous Ni(OH)2/CQDs microspheres were prepared by a CQDs assistant crystallization inhibition process. The morphologies and composition of the microspheres were characterized by SEM, TEM, XRD, EDS, and TG/DSC. The results showed that the microspheres had uniform heterogeneous phases with amorphous Ni(OH)2 and CQDs. The sensor based on amorphous Ni(OH)2/CQDs microspheres showed remarkable electrocatalytic activity towards glucose oxidation comparing to the conventional crystalline Ni(OH)2, which included two linear range (20 μM-350 μM and 0.45mM-2.5 mM) with high selectivity of 2760.05 and 1853.64 μA mM-1cm-2. Moreover, the interference from the commonly interfering species such as urea, ascorbic acid, NaCl, L-proline and L-Valine, can be effectively avoided. The high sensitivity, wide glucose detection range and good selectivity of the electrode may be due to their synergistic effect of amorphous phase and CQDs incorporation. These findings may promote the application of amorphous Ni(OH)2 as advanced electrochemical glucose sensing materials.

  18. Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy.

    PubMed

    Erickson, Melissa L; Little, Jonathan P; Gay, Jennifer L; McCully, Kevin K; Jenkins, Nathan T

    2017-08-01

    Metformin is used clinically to reduce fasting glucose with minimal effects on postprandial glucose. Postmeal exercise reduces postprandial glucose and may offer additional glucose-lowering benefit beyond that of metformin alone, yet controversy exists surrounding exercise and metformin interactions. It is currently unknown how postmeal exercise and metformin monotherapy in combination will affect postprandial glucose. Thus, we examined the independent and combined effects of postmeal exercise and metformin monotherapy on postprandial glucose. A randomized crossover design was used to assess the influence of postmeal exercise on postprandial glucose excursions in 10 people treated with metformin monotherapy (57 ± 10 yr, HbA 1C  = 6.3 ± 0.6%). Each participant completed the following four conditions: sedentary and postmeal exercise (5 × 10-min bouts of treadmill walking at 60% V̇o 2max ) with metformin and sedentary and postmeal exercise without metformin. Peak postprandial glucose within a 2-h time window and 2-h total area under the curve was assessed after a standardized breakfast meal, using continuous glucose monitoring. Postmeal exercise significantly blunted 2-h peak ( P = 0.001) and 2-h area under the curve ( P = 0.006), with the lowest peak postprandial glucose excursion observed with postmeal exercise and metformin combined ( P < 0.05 vs. all other conditions: metformin/sedentary: 12 ± 3.4, metformin/exercise: 9.7 ± 2.3, washout/sedentary: 13.3 ± 3.2, washout/exercise: 11.1 ± 3.4 mmol/l). Postmeal exercise and metformin in combination resulted in the lowest peak postprandial glucose excursion compared with either treatment modality alone. Exercise timed to the postprandial phase may be important for optimizing glucose control during metformin monotherapy. NEW & NOTEWORTHY The interactive effects of metformin and exercise on key physiological outcomes remain an area of controversy. Findings from this study show that the combination of metformin monotherapy and moderate-intensity postmeal exercise led to beneficial reductions in postprandial glucose excursions. Postmeal exercise may be a useful strategy for the management of postprandial glucose in people on metformin. Copyright © 2017 the American Physiological Society.

  19. The interaction of insulin with phospholipids

    PubMed Central

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine

  20. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  1. Evaluating the accuracy, reliability, and clinical applicability of continuous glucose monitoring (CGM): Is CGM ready for real time?

    PubMed

    Mazze, Roger S; Strock, Ellie; Borgman, Sarah; Wesley, David; Stout, Philip; Racchini, Joel

    2009-01-01

    This study was designed to assess the accuracy, reliability, and contribution to clinical decision-making of two commercially available continuous glucose monitoring (CGM) devices using a novel analytical approach. Eleven individuals with type 1 diabetes and five with type 2 diabetes wore a Guardian RT (GRT) (Medtronic Minimed, Northridge, CA) or DexCom STS Continuous Monitoring System (DEX) (San Diego, CA) device for 200 h followed by an 8-h laboratory study. A subset of these subjects wore both devices simultaneously. Subjects produced 1,902 +/- 269 readings during the ambulatory phase. During the laboratory study we found: lag time of 21 +/- 5 min for GRT and 7 +/- 7 min for DEX (P < 0.005); mean absolute relative difference of 19.9% and 16.7%, respectively, for GRT and DEX; and glucose exposure (the ratio of study device/laboratory reference device [YSI Instruments, Inc., Yellow Springs, OH] area under the curve) of 95 +/- 6% for GRT and 101 +/- 13% for DEX. Reliability measured during laboratory study showed 82% for DEX and 99% for GRT. Clarke Error Grid analysis (YSI reference) showed for GRT 59% of values in zone A, 34% in zone B, and 7% in zone D and for DEX 70% in zone A, 28% in zone B, 1% in zone C, and 1% in zone D. Bland-Altman plots (YSI standard) yielded for DEX 3 mg/dL (95% confidence interval, -78 to 84 mg/dL) and for GRT -21 mg/dL (95% confidence interval, -124 to 82 mg/dL). Six of eight subjects completed both home and laboratory simultaneous use of DEX and GRT. Lag times were inconsistent between devices, ranging from 0 to 32 min; area under the curve revealed a tendency for DEX to report higher total glucose exposure than GRT for the same patient. CGM detects abnormalities in glycemic control in a manner heretofore impossible to obtain. However, our studies revealed sufficient incongruence between simultaneous laboratory blood glucose levels and interstitial fluid glucose (after calibrations) to question the fundamental assumption that interstitial fluid glucose and blood glucose could be made identical by resorting to algorithms based on concurrent blood glucose levels alone.

  2. Neuroimaging Evidence of Cerebellar Involvement in Premenstrual Dysphoric Disorder

    PubMed Central

    Rapkin, Andrea J.; Berman, Steven M.; Mandelkern, Mark A.; Silverman, Daniel H. S.; Morgan, Melinda; London, Edythe D.

    2010-01-01

    Background Premenstrual dysphoric disorder (PMDD) is a debilitating cyclic disorder that is characterized by affective symptoms, including irritability, depression, and anxiety which arise in the luteal phase of the menstrual cycle and resolve soon after the onset of menses. Despite a prevalence of up to 8% in women of reproductive age, few studies have investigated the brain mechanisms that underlie this disorder. Methods We used positron emission tomography with [18F] fluorodeoxyglucose and self-report questionnaires to assess cerebral glucose metabolism and mood in 12 women with PMDD and 12 healthy comparison subjects in the follicular and late luteal phases of the menstrual cycle. The primary biological endpoint was incorporated regional cerebral radioactivity (scaled to the global mean) as an index of glucose metabolism. Relationships between regional brain activity and mood ratings were assessed. Blood samples were taken before each session for assay of plasma estradiol and progesterone concentrations. Results There were no group differences in hormone levels in either the follicular or late luteal phase, but the groups differed in the effect of menstrual phase on cerebellar activity. Women with PMDD, but not comparison subjects, showed an increase in cerebellar activity (particularly in the right cerebellar vermis) from the follicular phase to the late luteal phase (p = 0.003). In the PMDD group, this increase in cerebellar activity was correlated with worsening of mood (p = 0.018). Conclusions These findings suggest that the midline cerebellar nuclei, which have been implicated in other mood disorders, also contribute to negative mood in PMDD. PMID:21092938

  3. High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet.

    PubMed

    Bissonnette, Simon; Saint-Pierre, Nathalie; Lamantia, Valerie; Leroux, Catherine; Provost, Viviane; Cyr, Yannick; Rabasa-Lhoret, Remi; Faraj, May

    2018-06-18

    To optimize the prevention of type 2 diabetes (T2D), high-risk obese subjects with the best metabolic recovery after a hypocaloric diet should be targeted. Apolipoprotein B lipoproteins (apoB lipoproteins) induce white adipose tissue (WAT) dysfunction, which in turn promotes postprandial hypertriglyceridemia, insulin resistance (IR), and hyperinsulinemia. The aim of this study was to explore whether high plasma apoB, or number of plasma apoB lipoproteins, identifies subjects who best ameliorate WAT dysfunction and related risk factors after a hypocaloric diet. Fifty-nine men and postmenopausal women [mean ± SD age: 58 ± 6 y; body mass index (kg/m2): 32.6 ± 4.6] completed a prospective study with a 6-mo hypocaloric diet (-500 kcal/d). Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured by 1-h intravenous glucose-tolerance test (IVGTT) followed by a 3-h hyperinsulinemic-euglycemic clamp, respectively. Ex vivo gynoid WAT function (i.e., hydrolysis and storage of 3H-triolein-labeled triglyceride-rich lipoproteins) and 6-h postprandial plasma clearance of a 13C-triolein-labeled high-fat meal were measured in a subsample (n = 25). Postintervention first-phase GIISIVGTT and total C-peptide secretion decreased in both sexes, whereas second-phase and total GIISIVGTT and clamp IS were ameliorated in men (P < 0.05). Baseline plasma apoB was associated with a postintervention increase in WAT function (r = 0.61) and IS (glucose infusion rate divided by steady state insulin (M/Iclamp) r = 0.30) and a decrease in first-phase, second-phase, and total GIISIVGTT (r = -0.30 to -0.35) without sex differences. The association with postintervention amelioration in WAT function and GIISIVGTT was independent of plasma cholesterol (total, LDL, and HDL), sex, and changes in body composition. Subjects with high baseline plasma apoB (1.2 ± 0.2 g/L) showed a significant increase in WAT function (+105%; P = 0.012) and a decrease in total GIISIVGTT (-34%; P ≤ 0.001), whereas sex-matched subjects with low plasma apoB (0.7 ± 0.1 g/L) did not, despite equivalent changes in body composition and energy intake and expenditure. High plasma apoB identifies obese subjects who best ameliorate WAT dysfunction and glucose-induced hyperinsulinemia, independent of changes in adiposity after consumption of a hypocaloric diet. We propose that subjects with high plasma apoB represent an optimal target group for the primary prevention of T2D by hypocaloric diets. This trial was registered at BioMed Central as ISRCTN14476404.

  4. Analyzing the biosensor signal in flows: studies with glucose optrodes.

    PubMed

    Kivirand, K; Floren, A; Kagan, M; Avarmaa, T; Rinken, T; Jaaniso, R

    2015-01-01

    Responses of enzymatic bio-optrodes in flow regime were studied and an original model was proposed with the aim of establishing a reliable method for a quick determination of biosensor signal parameters, applicable for biosensor calibration. A dual-optrode glucose biosensor, comprising of a glucose bio-optrode and a reference oxygen optrode, both placed into identical flow channels, was developed and used as a model system. The signal parameters of this biosensor at different substrate concentrations were not dependent on the speed of the probe flow and could be determined from the initial part of the biosensor transient phase signal, providing a valuable tool for rapid analysis. In addition, the model helped to design the biosensor system with reduced impact of enzyme inactivation to the system stability (20% decrease of the enzyme activity lead to only a 1% decrease of the slope of the calibration curve) and hence significantly prolong the effective lifetime of bio-optrodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Interaction of Vasopressin and Splenda on Glucose Metabolism and Long-term Preferences under Ad-libitum and Food-restricted Conditions.

    PubMed

    Murphy, H M; Wideman, C H; Cleary, A M

    1999-01-01

    Previous research has demonstrated that vasopressin-containing rats are capable of adapting to the stress of food restriction; whereas, vasopressin-deficient rats cannot adapt to this stressor. In the present study, the value of using a low-calorie (Splenda) or no-calorie (Equal) artificial sweetener to reverse the deleterious effects of food restriction in vasopressin-deficient rats was examined. In association with this effect, the role of vasopressin in long-term preferences for the two artificial sweeteners was studied. Vasopressin-deficient, Brattleboro (DI) rats and vasopressin-containing, Long-Evans (LE) rats underwent an habituation phase during which they had ad-libitum access to food. This was followed by an experimental phase during which the rats were divided into four groups. (1) DI rats continued with ad-libitum feeding, (2) LE rats continued with ad-libitum feeding, (3) DI rats subjected to 23 h of food restriction, and (4) LE rats subjected to 23 h of food restriction. All rats had ad-libitum access to an 8% Splenda solution, a 1% Equal solution, and water throughout both phases of the experiment. The deleterious effects of food restriction were completely reversed in DI rats, including survival, no stomach pathology, and normal plasma levels of glucose and urea nitrogen.

  6. Design and Methods of a Randomized Trial of Continuous Glucose Monitoring in Persons With Type 1 Diabetes With Impaired Glycemic Control Treated With Multiple Daily Insulin Injections (GOLD Study).

    PubMed

    Lind, Marcus; Polonsky, William; Hirsch, Irl B; Heise, Tim; Bolinder, Jan; Dahlqvist, Sofia; Pehrsson, Nils-Gunnar; Moström, Peter

    2016-05-01

    The majority of individuals with type 1 diabetes today have glucose levels exceeding guidelines. The primary aim of this study was to evaluate whether continuous glucose monitoring (CGM), using the Dexcom G4 stand-alone system, improves glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections (MDI). Individuals with type 1 diabetes and inadequate glycemic control (HbA1c ≥ 7.5% = 58 mmol/mol) treated with MDI were randomized in a cross-over design to the Dexcom G4 versus conventional care for 6 months followed by a 4-month wash-out period. Masked CGM was performed before randomization, during conventional treatment, and during the wash-out period to evaluate effects on hypoglycemia, hyperglycemia, and glycemic variability. Questionnaires were used to evaluate diabetes treatment satisfaction, fear of hypoglycemia, hypoglycemia confidence, diabetes-related distress, overall well-being, and physical activity during the different phases of the trial. The primary endpoint was the difference in HbA1c at the end of each treatment phase. A total of 205 patients were screened, of whom 161 were randomized between February and December 2014. Study completion is anticipated in April 2016. It is expected that the results of this study will establish whether using the Dexcom G4 stand-alone system in individuals with type 1 diabetes treated with MDI improves glycemic control, reduces hypoglycemia, and influences quality-of-life indicators and glycemic variability. © 2016 Diabetes Technology Society.

  7. Tuning the pure monoclinic phase of WO3 and WO3-Ag nanostructures for non-enzymatic glucose sensing application with theoretical insight from electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Rajeswari; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra

    2018-01-01

    Here, we report the controlled hydrothermal synthesis and tuning of the pure monoclinic phase of WO3 and WO3-Ag nanostructures. Comparative electrochemical nonenzymatic glucose sensing properties of WO3 and WO3-Ag were investigated by cyclic voltammetry and chronoamperometric tests. We observed enhanced glucose sensing performance of WO3-Ag porous spheres as compared to bare WO3 nanoslabs. The sensitivity of the pure WO3 nanoslabs is 11.1 μA μM-1 cm-2 whereas WO3-Ag porous spheres exhibit sensitivity of 23.3 μA μM-1 cm-2. The WO3-Ag porous spheres exhibited a good linear range (5-375 μM) with excellent anti-interference property. Our experimental observations are qualitatively supported by density functional theory simulations through investigation of bonding and charge transfer mechanism of glucose on WO3 and Ag doped WO3. As the binding energy of glucose is more on the Ag doped WO3 (100) surface compared to the bare WO3 (100) surface and the Ag doped WO3 (100) surface becomes more conducting due to enhancement of density of states near the Fermi level, we can infer that Ag doped WO3 exhibits a better charge transfer media compared to bare WO3 resulting in enhanced glucose sensitivity in consistency with our experimental data.

  8. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  9. Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man.

    PubMed Central

    Lubbers, J R; Chauan, S; Bianchine, J R

    1982-01-01

    To assess the relative safety of chronically administered chlorine water disinfectants in man, a controlled study was undertaken. The clinical evaluation was conducted in the three phases common to investigational drug studies. Phase I, a rising dose tolerance investigation, examined the acute effects of progressively increasing single doses of chlorine disinfectants to normal healthy adult male volunteers. Phase II considered the impact on normal subjects of daily ingestion of the disinfectants at a concentration of 5 mg/l. for twelve consecutive weeks. Persons with a low level of glucose-6-phosphate dehydrogenase may be expected to be especially susceptible to oxidative stress; therefore, in Phase III, chlorite at a concentration of 5 mg/l. was administered daily for twelve consecutive weeks to a small group of potentially at-risk glucose-6-phosphate dehydrogenase-deficient subjects. Physiological impact was assessed by evaluation of a battery of qualitative and quantitative tests. The three phases of this controlled double-blind clinical evaluation of chlorine dioxide and its potential metabolites in human male volunteer subjects were completed uneventfully. There were no obvious undesirable clinical sequellae noted by any of the participating subjects or by the observing medical team. In several cases, statistically significant trends in certain biochemical or physiological parameters were associated with treatment; however, none of these trends was judged to have physiological consequence. One cannot rule out the possibility that, over a longer treatment period, these trends might indeed achieve proportions of clinical importance. However, by the absence of detrimental physiological responses within the limits of the study, the relative safety of oral ingestion of chlorine dioxide and its metabolites, chlorite and chlorate, was demonstrated. PMID:6961033

  10. Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes

    PubMed Central

    Versteeg, Ruth I.; Stenvers, Dirk J.; Visintainer, Dana; Linnenbank, Andre; Tanck, Michael W.; Zwanenburg, Gooitzen; Smilde, Age K.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.; Bisschop, Peter H.

    2017-01-01

    Ambient light intensity is signaled directly to hypothalamic areas that regulate energy metabolism. Observational studies have shown associations between ambient light intensity and plasma glucose and lipid levels, but human data on the acute metabolic effects of light are scarce. Since light is the main signal indicating the onset of the diurnal phase of physical activity and food intake in humans, we hypothesized that bright light would affect glucose and lipid metabolism. Therefore, we determined the acute effects of bright light on plasma glucose and lipid concentrations in 2 randomized crossover trials: (1) in 8 healthy lean men and (2) in 8 obese men with type 2 diabetes. From 0730 h, subjects were exposed to either bright light (4000 lux) or dim light (10 lux) for 5 h. After 1 h of light exposure, subjects consumed a 600-kcal mixed meal. Primary endpoints were fasting and postprandial plasma glucose levels. In healthy men, bright light did not affect fasting or postprandial plasma glucose levels. However, bright light increased fasting and postprandial plasma triglycerides. In men with type 2 diabetes, bright light increased fasting and postprandial glucose levels. In men with type 2 diabetes, bright light did not affect fasting triglyceride levels but increased postprandial triglyceride levels. We show that ambient light intensity acutely affects human plasma glucose and triglyceride levels. Our findings warrant further research into the consequences of the metabolic effects of light for the diagnosis and prevention of hyperglycemia and dyslipidemia. PMID:28470119

  11. Contribution of partial pancreatectomy, systemic hormone delivery, and duct obliteration to glucose regulation in canine pancreas. Importance in pancreas transplantation.

    PubMed

    van der Burg, M P; Gooszen, H G; Guicherit, O R; Jansen, J B; Frölich, M; van Haastert, F A; Lamers, C B

    1989-09-01

    Our aim was to isolate and determine the contribution of partial pancreatectomy, systemic delivery of pancreatic hormones, and duct obliteration to glucose regulation after segmental pancreas transplantation in dogs. Fasting, postprandial, and intravenous glucose-stimulated glucose, insulin, glucagon, pancreatic polypeptide (PP), and cholecystokinin (CCK) and intravenous bombesin-stimulated PP levels were studied in beagles at three successive intervals in a crossover design. The first was 6 wk after partial (approximately 70%) pancreatectomy with intact regular enteric exocrine drainage from the duodenal pancreatic remnant, the next was 2 wk after venous transposition with systemic delivery of pancreatic hormones, and the third was 6 wk after in situ duct obliteration of the remnant. With partial pancreatectomy, K values were modestly diminished (30%), and a concomitant reduction of second-phase intravenous glucose-stimulated insulin release was observed. Other parameters were not significantly affected. Venous transposition doubled peripheral plasma levels of insulin under all conditions. Fasting glucose, PP, and CCK levels decreased slightly. Other parameters were not affected. Duct obliteration of the systemic draining pancreatic remnants seriously impaired glucose sensitivity, resulting in a 50% reduction of K values and fasting and sustained postprandial hyperglycemia (approximately 8 mM) and a 70-50% reduction (acute and overall responses, respectively) of intravenous glucose-stimulated insulin. Fasting hormone and postprandial insulin, glucagon, and CCK levels were not affected. The postprandial PP response was severely reduced, and bombesin-stimulated PP release was abolished by duct obliteration. We conclude that histological changes associated with duct obliteration are the major determinants of glucose regulation in segmental pancreas transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The potential of SGLT2 inhibitors in phase II clinical development for treating type 2 diabetes.

    PubMed

    Pafili, K; Maltezos, E; Papanas, N

    2016-10-01

    There is now an abundance of anti-diabetic agents. However, only few patients achieve glycemic targets. Moreover, current glucose-lowering agents mainly depend upon insulin secretion or function. Sodium glucose co-transporter type 2 (SGLT2) inhibitors present a novel glucose-lowering therapy, inducing glycosuria in an insulin-independent fashion. In this review, the authors discuss the key efficacy and safety data from phase II clinical trials in type 2 diabetes mellitus (T2DM) of the main SGLT2 inhibitors approved or currently in development, and provide a rationale for their use in T2DM. Despite the very promising characteristics of this new therapeutic class, a number of issues await consideration. One important question is what to expect from head-to-head comparison data. We also need to know if dual inhibition of SGLT1/SGLT2 is more efficacious in reducing HbA1c and how this therapy affects metabolic and cardiovascular parameters. Additionally, several SGLT2 agents that have not yet come to market have hitherto been evaluated in Asian populations, whereas approved SGLT2 inhibitors have been frequently studied in other populations, including Caucasian subjects. Thus, we need more information on the potential role of ethnicity on their efficacy and safety.

  13. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium†

    PubMed Central

    Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel

    2000-01-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802

  14. One-step synthesis of nitrogen, boron co-doped fluorescent carbon nanoparticles for glucose detection.

    PubMed

    Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo

    2017-09-01

    Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Metabolic and steroidogenic alterations related to increased frequency of polycystic ovaries in women with a history of gestational diabetes.

    PubMed

    Koivunen, R M; Juutinen, J; Vauhkonen, I; Morin-Papunen, L C; Ruokonen, A; Tapanainen, J S

    2001-06-01

    The prevalence of polycystic ovaries (PCO) and clinical, endocrine, and metabolic features were investigated in women with previous gestational diabetes (GDM). Thirty-three women with a history of GDM and 48 controls were studied. Glucose and insulin secretion capacity was evaluated by means of the oral glucose tolerance test (OGTT), and insulin action was determined by means of a euglycemic insulin clamp. Compared with control women, women with previous GDM more often had significantly abnormal OGTT, a higher prevalence of PCO (39.4% vs. 16.7%; P = 0.03), higher serum concentrations of cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate and a greater area under the glucose curve. Women with previous GDM showed a lowered early phase insulin response to glucose and impaired insulin sensitivity, which was accounted for mainly by decreased glucose nonoxidation. They also demonstrated a significantly lower fasting serum C peptide/insulin ratio than the controls, indicating that women with previous GDM have impaired hepatic insulin extraction, which tended to be more marked among women with PCO. This may explain why women with PCO and previous GDM were significantly more hyperinsulinemic than women with normal ovaries. In conclusion, our data demonstrate that women with previous GDM often have PCO and abnormal OGTT. They are insulin resistant as a result of lowered glucose nonoxidation and show inappropriately low insulin responses to glucose, reflecting impaired beta-cell function. They also have higher adrenal androgen secretion, which may be associated with abdominal obesity.

  16. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    PubMed

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-06

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.

  17. Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    PubMed Central

    Goto, Shuji; Tada, Yuya; Suzuki, Koji; Yamashita, Youhei

    2017-01-01

    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth’s surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitation–emission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0–24 h) and stationary phases (24–168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humic-like fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine-containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase, while the other humic-like fluorophore, which had a shorter emission wavelength (400 nm) and was categorized as recalcitrant, was stable. These humic-like fluorophore behaviors during incubation indicated that the composition of bacterial humic-like fluorophores, which were unavailable to the strain, differed between growth phases. Our results suggest that bacterial physiology can affect RDOM production and accumulation in the ocean interior. PMID:28400762

  18. [Aspects of perioperative care in patients with diabetes].

    PubMed

    Pestel, G; Closhen, D; Zimmermann, A; Werner, C; Weber, M M

    2013-01-01

    Diabetes is a common disease in Germany. Due to diabetes-associated end-organ disease, such as large and small vessel disease and neuropathy, diabetic patients require more intense anesthesia care during the perioperative phase. An in-depth and comprehensive medical history focusing on hemodynamic alterations, gastroparesis, neuropathy and stiff joint syndrome is a cornerstone of perioperative care and may affect outcome of diabetes patients more than specific anesthetic medications or the anesthetic procedure. Intraoperative anesthetic care needs to focus on preservation of hemodynamic stability, perioperative infection control and maintenance of glucose homeostasis. Whereas some years ago strict glucose control by aggressive insulin therapy was adamantly advocated, the results of recent studies have put the risk of such therapeutic algorithms into perspective. Therefore, optimized perioperative care of diabetic patients consists of setting a predefined targeted blood glucose level, evidence-based therapeutic approaches to reach that goal and finally adequate and continuous monitoring and amendment of the therapeutic approach if required.

  19. Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes

    PubMed Central

    Weinzimer, Stuart A.; Tamborlane, William V.; Buckingham, Bruce A.; Bode, Bruce W.; Bailey, Timothy S.; Brazg, Ronald L.; Ilany, Jacob; Slover, Robert H.; Anderson, Stacey M.; Bergenstal, Richard M.; Grosman, Benyamin; Roy, Anirban; Cordero, Toni L.; Shin, John; Lee, Scott W.; Kaufman, Francine R.

    2017-01-01

    Abstract Background: The safety and effectiveness of the in-home use of a hybrid closed-loop (HCL) system that automatically increases, decreases, and suspends insulin delivery in response to continuous glucose monitoring were investigated. Methods: Adolescents (n = 30, ages 14–21 years) and adults (n = 94, ages 22–75 years) with type 1 diabetes participated in a multicenter (nine sites in the United States, one site in Israel) pivotal trial. The Medtronic MiniMed® 670G system was used during a 2-week run-in phase without HCL control, or Auto Mode, enabled (Manual Mode) and, thereafter, with Auto Mode enabled during a 3-month study phase. A supervised hotel stay (6 days/5 nights) that included a 24-h frequent blood sample testing with a reference measurement (i-STAT) occurred during the study phase. Results: Adolescents (mean ± standard deviation [SD] 16.5 ± 2.29 years of age and 7.7 ± 4.15 years of diabetes) used the system for a median 75.8% (interquartile range [IQR] 68.0%–88.4%) of the time (2977 patient-days). Adults (mean ± SD 44.6 ± 12.79 years of age and 26.4 ± 12.43 years of diabetes) used the system for a median 88.0% (IQR 77.6%–92.7%) of the time (9412 patient-days). From baseline run-in to the end of study phase, adolescent and adult HbA1c levels decreased from 7.7% ± 0.8% to 7.1% ± 0.6% (P < 0.001) and from 7.3% ± 0.9% to 6.8% ± 0.6% (P < 0.001, Wilcoxon signed-rank test), respectively. The proportion of overall in-target (71–180 mg/dL) sensor glucose (SG) values increased from 60.4% ± 10.9% to 67.2% ± 8.2% (P < 0.001) in adolescents and from 68.8% ± 11.9% to 73.8% ± 8.4% (P < 0.001) in adults. During the hotel stay, the proportion of in-target i-STAT® blood glucose values was 67.4% ± 27.7% compared to SG values of 72.0% ± 11.6% for adolescents and 74.2% ± 17.5% compared to 76.9% ± 8.3% for adults. There were no severe hypoglycemic or diabetic ketoacidosis events in either cohort. Conclusions: HCL therapy was safe during in-home use by adolescents and adults and the study phase demonstrated increased time in target, and reductions in HbA1c, hyperglycemia and hypoglycemia, compared to baseline. Trial Registration: Clinicaltrials.gov identifier: NCT02463097. PMID:28134564

  20. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  1. Glycolysis Is Governed by Growth Regime and Simple Enzyme Regulation in Adherent MDCK Cells

    PubMed Central

    Rehberg, Markus; Ritter, Joachim B.; Reichl, Udo

    2014-01-01

    Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses. PMID:25329309

  2. Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.

    PubMed

    Rehberg, Markus; Ritter, Joachim B; Reichl, Udo

    2014-10-01

    Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses.

  3. Characterization of Osmotolerant Yeasts and Yeast-Like Molds from Apple Orchards and Apple Juice Processing Plants in China and Investigation of Their Spoilage Potential.

    PubMed

    Wang, Huxuan; Hu, Zhongqiu; Long, Fangyu; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2015-08-01

    Yeasts and yeast-like fungal isolates were recovered from apple orchards and apple juice processing plants located in the Shaanxi province of China. The strains were evaluated for osmotolerance by growing them in 50% (w/v) glucose. Of the strains tested, 66 were positive for osmotolerance and were subsequently identified by 26S or 5.8S-ITS ribosomal RNA (rRNA) gene sequencing. Physiological tests and RAPD-PCR analysis were performed to reveal the polymorphism of isolates belonging to the same species. Further, the spoilage potential of the 66 isolates was determining by evaluating their growth in 50% to 70% (w/v) glucose and measuring gas generation in 50% (w/v) glucose. Thirteen osmotolerant isolates representing 9 species were obtained from 10 apple orchards and 53 target isolates representing 19 species were recovered from 2 apple juice processing plants. In total, members of 14 genera and 23 species of osmotolerant isolates including yeast-like molds were recovered from all sources. The commonly recovered osmotolerant isolates belonged to Kluyveromyces marxianus, Hanseniaspora uvarum, Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Candida tropicalis, and Pichia kudriavzevii. The polymorphism of isolates belonging to the same species was limited to 1 to 3 biotypes. The majority of species were capable of growing within a range of glucose concentration, similar to sugar concentrations found in apple juice products with a lag phase from 96 to 192 h. Overall, Z. rouxii was particularly the most tolerant to high glucose concentration with the shortest lag phase of 48 h in 70% (w/v) glucose and the fastest gas generation rate in 50% (w/v) glucose. © 2015 Institute of Food Technologists®

  4. O-Hexadecyl-Dextran Entrapped Berberine Nanoparticles Abrogate High Glucose Stress Induced Apoptosis in Primary Rat Hepatocytes

    PubMed Central

    Tripathi, Madhulika; Bhatnagar, Priyanka; Kakkar, Poonam; Gupta, Kailash Chand

    2014-01-01

    Nanotized phytochemicals are being explored by researchers for promoting their uptake and effectiveness at lower concentrations. In this study, O-hexadecyl-dextran entrapped berberine chloride nanoparticles (BC-HDD NPs) were prepared, and evaluated for their cytoprotective efficacy in high glucose stressed primary hepatocytes and the results obtained compared with bulk berberine chloride (BBR) treatment. The nanotized formulation treated primary hepatocytes that were exposed to high glucose (40 mM), showed increased viability compared to the bulk BBR treated cells. BC-HDD NPs reduced the ROS generation by ∼3.5 fold during co-treatment, prevented GSH depletion by ∼1.6 fold, reduced NO formation by ∼5 fold and significantly prevented decline in SOD activity in stressed cells. Lipid peroxidation was also prevented by ∼1.9 fold in the presence of these NPs confirming the antioxidant capacity of the formulation. High glucose stress increased Bax/Bcl2 ratio followed by mitochondrial depolarization and activation of caspase-9/−3 confirming involvement of mitochondrial pathway of apoptosis in the exposed cells. Co- and post-treatment of BC-HDD NPs prevented depolarization of mitochondrial membrane, reduced Bax/Bcl2 ratio and prevented externalization of phosphatidyl-serine confirming their anti-apoptotic capacity in those cells. Sub-G1 phase apparent in high glucose stressed cells was not seen in BC-HDD NPs treated cells. The present study reveals that BC-HDD NPs at ∼20 fold lower concentration are as effective as BBR in preventing high glucose induced oxidative stress, mitochondrial depolarization and downstream events of apoptotic cell death. PMID:24586539

  5. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  6. Changes in plasma levels of adrenaline, noradrenaline, glucose, lactate and CO2 in the green turtle, Chelonia mydas, during peak period of nesting.

    PubMed

    Alkindi, A Y A; Al-Habsi, A A; Mahmoud, I Y

    2008-02-01

    Plasma concentrations of stress hormones [adrenaline (ADR), noradrenaline (NR)], lactate, glucose and CO2 were monitored during peak nesting period (May-October) at different phases of nesting in the green turtle, Chelonia mydas. These include, emergence from sea, excavating body and nest chambers, oviposition, covering and camouflaging the nest and then returning to sea. Turtles that completed all phases of nesting including oviposition before returning to sea were considered "successful" turtles, while those that completed all phases but failed to lay their eggs were "unsuccessful". Blood samples were taken from the cervical sinus within 5min of capture to avoid stress due to handling. The turtles were usually sampled for blood between 20:00 and 1:00h of nesting time to ensure uniformity in the sampling. Plasma ADR and NR values were highly significant (P<0.001) in successful turtles over emergence, excavating and unsuccessful turtles. Plasma glucose levels remained stable throughout the nesting phases while lactate levels were significantly higher in successful turtles over the other phases (P<0.05) which signifies anaerobic metabolism during nesting. Plasma CO2 values were negatively correlated with ADR and NR (r=-0.258, P=0.03; r=-0.304, P=0.010), respectively. Hematocrit was significantly higher in successful phase (P<0.05) compared to other phases, and this may signify a higher degree of stress in successful turtles. Body temperature were significantly lower (P<0.005) in the excavating phase compared to the other three phases. Overall, body temperatures were lower than sand temperatures around the nest, which may indicate a behavioral thermoregulation used by the turtles during nesting. This information will be of value to the ongoing conservation program at Ras Al-Hadd Reserve in the Sultanate of Oman.

  7. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    PubMed

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose variability; its linear dose-response curve rendered the preparation better suited for a sliding-scale protocol. The longer duration of action of subcutaneous regular insulin resulted in better glycemic-control metrics for patients who were continuously postprandial. Clinical trials are needed to examine whether these numerical results represent the glucose-insulin dynamics that occur in intensive care units; if present, their clinical effects should be evaluated.

  8. Production of lactate and acetate by Lactobacillus coryniformis subsp. torquens DSM 20004(T) in comparison with Lactobacillus amylovorus DSM 20531(T).

    PubMed

    Slavica, Anita; Trontel, Antonija; Jelovac, Nuša; Kosovec, Željka; Šantek, Božidar; Novak, Srđan

    2015-05-20

    Lactobacillus coryniformis subsp. torquens DSM20004(T) is a d-lactate producer, with a portion of the d-lactate higher than 99.9% of total lactic acid produced. Acetate was identified as the second end-product that appeared at the end of the exponential growth phase in MRS medium when glucose concentration dropped to 38.41mM (6.92g/L). The acetate production was prolonged to the stationary phase, while the concentration of d-lactate remained constant. Other end-products were not identified by HPLC method. The known metabolic pathways of glucose fermentation in lactic acid bacteria do not produce the particular combination of these two end-products, but besides lactate and acetate also formate, ethanol and CO2 are produced. For comparison, the production of lactate and acetate by a d-/l-lactate producer Lactobacillus amylovorus DSM 20531(T) was also investigated. This strain produced equimolar quantities of d- and l-lactate in the MRS medium. Acetate was produced only when initial concentration of glucose was 55.51mM (10g/L) and production started in the exponential phase when concentration of glucose dropped to 35.52mM (6.40g/L). Similar behavior was observed with the initial concentration of maltose of 29.21mM (10g/L). An unstructured mathematical model was established for the bioprocess simulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On the importance of processing conditions, product thickness and egg addition for the glycaemic and hormonal responses to pasta: a comparison with bread made from 'pasta ingredients'.

    PubMed

    Granfeldt, Y; Björck, I; Hagander, B

    1991-10-01

    The importance of processing conditions, product thickness and effect of egg addition for the glycaemic and hormonal responses to pasta was studied. Healthy subjects were given test meals with an equivalent amount of available carbohydrate from extruded high-temperature dried spaghetti and three varieties of fresh roll-sheeted linguine (thick, thin, thin with egg) made from the same ingredients (durum wheat, water and monoglycerides). As a reference bread was baked from the same ingredients as in the pasta products. Glucose, insulin and C-peptide levels were measured over a 3 h period. Glycaemic, insulin and C-peptide indexes (GI, II, CI) were calculated using 120 min areas under the curves. Glycaemic index was also calculated using the 90 min area. Also studied were the rates of in vitro starch digestion. The four pasta products produced significantly lower peak values (glucose, insulin, C-peptide) and lower GI (90 min), II (120 min) and CI (120 min) than the corresponding bread. The rate of in vitro starch digestion in pasta was also slower than in bread. In contrast to the pasta products, bread resulted in a prominent hypoglycaemia in the late phase, that is a drop below fasting blood glucose level. Minor differences in metabolic responses also appeared in the pasta products. In particular, the insulin and C-peptide response to the thin linguine was accentuated in the phase around 120 min.

  10. Incretin effects, gastric emptying and insulin responses to low oral glucose loads in patients after gastric bypass and lean and obese controls.

    PubMed

    Wölnerhanssen, Bettina K; Meyer-Gerspach, Anne Christin; Peters, Thomas; Beglinger, Christoph; Peterli, Ralph

    2016-08-01

    After laparoscopic Roux-en-Y gastric bypass (LRYGB), many patients suffer from dumping syndrome. Oral glucose tolerance tests are usually carried out with 50-75 g of glucose. The aim of this study was to examine whether minimal glucose loads of 10 g and 25 g induce a reliable secretion of satiation peptides without dumping symptoms after LRYGB. In addition, lean and obese controls were examined. The objective of this study was to determine the effects of low oral glucose loads on incretin release and gastric emptying. All surgical procedures were performed by the same surgeon (RP) at the St. Claraspital Basel in Switzerland. Oral glucose challenges were carried out at the University Hospital of Basel (Phase 1 Research Unit). Eight patients 10±.4 weeks after LRYGB (PostOP; body mass index [BMI]: 38.6 kg/m 2 ±1.7) as well as 12 lean controls (LC; BMI: 21.8 kg/m 2 ±.6) and 12 obese controls (OC; BMI 38.7 kg/m 2 ±1.3) received 10 g and 25 g of oral glucose. We examined clinical signs of dumping syndrome; plasma glucose, insulin, glucagon-like peptide 1, glucose-dependent insulinotropic peptide, and peptide tyrosine tyrosine concentrations; and gastric emptying with a 13 C-sodium acetate breath test. No signs of dumping were seen in PostOP. Compared with OC, LC showed lower fasting glucose, insulin, and C-peptide, and lower homeostasis model assessment (HOMA) and AUC-180 for insulin and C-peptide. In PostOP, fasting insulin, HOMA and AUC-180 for insulin was lower and no difference was found in fasting C-peptide or AUC-180 for C-peptide compared to OC. There was no significant difference in fasting glucose, insulin, C-peptide, HOMA and AUC-180 for insulin in PostOP compared to LC, but AUC-180 for C-peptide was higher in PostOP. AUC-60 for gut hormones was similar in OC and LC and higher in PostOP compared to OC or LC. gastric emptying was slower in LC and OC compared with PostOP. After LRYGB, 25 g oral glucose is well tolerated and leads to reliable secretion of gut hormones. Fasting glucose, insulin and C-peptide are normalized, while glucagon-like peptide 1, glucose-dependent insulinotropic peptide and peptide tyrosine tyrosine are overcorrected. Pouch emptying is accelerated after LRYGB. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  12. Is management of hyperglycaemia in acute phase stroke still a dilemma?

    PubMed

    Savopoulos, C; Kaiafa, G; Kanellos, I; Fountouki, A; Theofanidis, D; Hatzitolios, A I

    2017-05-01

    Close monitoring of blood glucose levels during the immediate post-acute stroke phase is of great clinical value, as there is evidence that the risk of neurological deterioration is associated with both hyper- and hypoglycaemia. The aim of this review paper is to summarise the evidence on post-stroke blood glucose management and its impact on clinical outcomes, during the early post-acute stage. Post-stroke hyperglycaemia has been associated with increased cerebral oedema, haemorrhagic transformation, lower likelihood of recanalisation and deteriorating neurological state. Thus, hyperglycaemia during an acute stroke may result in poorer clinical outcomes, infarct progression, poor functional recovery and increased mortality rates. Although hypoglycaemia may also lead to poorer outcomes via further brain injury, it can be readily reversed by glucose administration. In most patients, the goal of regular treatment is euglycaemia and for acute-stroke patients, a reasonable approach is to target control of glucose level at 100-150 mg/dL. Both hypoglycaemia and hyperglycaemia may lead to further brain injury and clinical deterioration; that is the reason these conditions should be avoided after stroke. Yet, when correcting hyperglycaemia, great care should be taken not to switch the patient into hypoglycaemia, and subsequently aggressive insulin administration treatment should be avoided. Early identification and prompt management of hyperglycaemia, especially in acute ischaemic stroke, is recommended. Although the appropriate level of blood glucose during acute stroke is still debated, a reasonable approach is to keep the patient in a mildly hyperglycaemic state, rather than risking hypoglycaemia, using continuous glucose monitoring.

  13. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  14. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes.

    PubMed

    Wang, X Q; Li, L M; Yang, P P; Gong, C L

    2014-02-01

    In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.

  15. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean

    PubMed Central

    Muñoz-Marín, María del Carmen; Luque, Ignacio; Zubkov, Mikhail V.; Hill, Polly G.; Diez, Jesús; García-Fernández, José Manuel

    2013-01-01

    Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5–2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose. PMID:23569224

  16. Trimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure.

    PubMed

    Breedt, Emilene; Lacerda, Lydia; Essop, M Faadiel

    2017-01-01

    Acute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase-Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase-(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)-(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute stages.

  17. Postoperative effects of intraoperative hyperglycemia in liver transplant patients.

    PubMed

    Kömürcü, Özgür; Camkıran Fırat, Aynur; Kaplan, Şerife; Torgay, Adnan; Pirat, Arash; Haberal, Mehmet; Arslan, Gülnaz

    2015-04-01

    The aim of this study was to determine the effects of intraoperative hyperglycemia on postoperative outcomes in orthotopic liver transplant recipients. After ethics committee approval was obtained, we retrospectively analyzed the records of patients who underwent orthotopic liver transplant from January 2000 to December 2013. A total 389 orthotopic liver transplants were performed in our center, but patients aged < 15 years (179 patients) were not included in the analyses. Patients were divided into 2 groups based on their maximum intraoperative blood glucose level: group 1 (patients with intraoperative blood glucose level < 200 mg/dL) and group 2 (patients with intraoperative blood glucose level > 200 mg/dL). Postoperative complications between the 2 groups were compared. There were 58 patients (37.6%; group 1, blood glucose < 200 mg/dL) who had controlled blood glucose and 96 patients (62.3%; group 2, blood glucose > 200 mg/dL) who had uncontrolled blood glucose. The mean age and weight for groups 1 and 2 were similar. There were no differences between the 2 groups regarding the duration of anhepatic phase (P = .20), operation time (P = .41), frequency of immediate intraoperative extubation (P = .14), and postoperative duration of mechanical ventilation (P = .06). There were no significant differences in frequency of patients who had postoperative infectious complications, acute kidney injury, or need for hemodialysis. Mortality rates after liver transplant were similar between the 2 groups (P = .81). Intraoperative hyperglycemia during orthotopic liver transplant was not associated with an increased risk of postoperative infection, acute renal failure, or mortality.

  18. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota.

    PubMed

    Janssen, Aafke W F; Katiraei, Saeed; Bartosinska, Barbara; Eberhard, Daniel; Willems van Dijk, Ko; Kersten, Sander

    2018-06-01

    Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4 -/- mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity. We chronically fed wild-type (WT) and Angptl4 -/- mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests. Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4 -/- mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4 -/- mice. Despite increasing visceral fat mass, inactivation of ANGPTL4 improves glucose tolerance, at least partly via a gut microbiota-dependent mechanism.

  19. Abdominal Subcutaneous Fat: A Favorable or Nonfunctional Fat Depot for Glucose Metabolism in Chinese Adults?

    PubMed

    Hou, Xuhong; Chen, Peizhu; Hu, Gang; Wei, Li; Jiao, Lei; Wang, Hongmei; Liang, Yebei; Bao, Yuqian; Jia, Weiping

    2018-06-01

    The objective of this study was to assess the associations of abdominal visceral and subcutaneous adipose tissue with blood glucose and beta-cell function. In this study, 11,223 participants without known diabetes were selected for this cross-sectional analysis. Visceral and subcutaneous fat area (VFA and SFA) were measured by magnetic resonance imaging. An oral glucose tolerance test was conducted, and beta-cell function was evaluated. Men had significantly larger VFA but smaller SFA than women. After controlling for age, linear regression showed that SFA was adversely associated with 0-minute, 30-minute, and 2-hour plasma glucose (PG) and early-, first- and second-phase disposition indices (DIs). After further adjustment for BMI and VFA, some associations of SFA with PG indices and DIs disappeared, while the other associations became significantly weaker in men (2-hour PG: 0.05 and DI 2nd : -0.05) or were reversed in women (0-minute, 30-minute, and 2-hour PG: from -0.07 to -0.04; DI 1st : 0.04, P < 0.05). After adjustment for age, BMI, and SFA, VFA was significantly and adversely associated with PG indices and DIs, with the largest standardized regression coefficients with 2-hour PG. The associations of SFA with blood glucose and beta-cell function were clinically insignificant in Chinese adults. VFA had the strongest association with 2-hour PG. © 2018 The Obesity Society.

  20. Plasma lipids profile and erythrocytes system in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatyana P.

    2006-08-01

    Erythrocytes system study can provide a framework for detailed exploration of blood cell-cell and cell-vessel wall interactions, one of the key patterns in blood and vascular pathophysiology. Our objective was to explore erythrocytes system in patients with stable angina pectoris II f.c. (Canadian classification). The participants (N = 56, age 40 - 55 years) without obesity, glucose tolerance violations, lipid lowering drugs treating, heart failure of II and more functional classes (NYHA), coronary episode at least 6 months before study were involved in the study. Blood samples were incubated with glucose solutions of increasing concentrations (from 2.5% to 20% with 2.5% step) during 60 mm (36° C). In prepared blood smears erythrocyte's sizes were studied. Plasma total cholesterol, triglyceride and glucose levels were also measured. Received data were approximated by polynomials of high degree, with after going first and second derivations. Erythrocytes system "behavior" was studied by means of phase pattern constructing. By lipids levels all the patient were divided into five groups: 1) patients with normal lipids levels, 2) patients with borderline total cholesterol level, 3) patients with isolated hypercholesterolemia, 4) patients with isolated hypertriglyceridemia and 5) patients with combined hyperlipidemia. Erythrocytes size lowering process was of set of "stages", which characteristics differ significantly (p > 0.05) in all five groups. Their rate and acceleration characteristics allow us to detect type of lipid profile in patients. Erythrocyte system disturbing by glucose concentration increase show to be most resistant in group of patients with isolated hypercholesterolemia.

  1. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance

    PubMed Central

    Dietrich, Christoph G; Götze, Oliver; Geier, Andreas

    2016-01-01

    Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests. PMID:26755861

  2. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.

    PubMed

    Bossi, E; Kohler, E; Herschkowitz, N

    1989-11-01

    In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.

  3. Outpatient safety assessment of an in-home predictive low-glucose suspend system with type 1 diabetes subjects at elevated risk of nocturnal hypoglycemia.

    PubMed

    Buckingham, Bruce A; Cameron, Fraser; Calhoun, Peter; Maahs, David M; Wilson, Darrell M; Chase, H Peter; Bequette, B Wayne; Lum, John; Sibayan, Judy; Beck, Roy W; Kollman, Craig

    2013-08-01

    Nocturnal hypoglycemia is a common problem with type 1 diabetes. In the home setting, we conducted a pilot study to evaluate the safety of a system consisting of an insulin pump and continuous glucose monitor communicating wirelessly with a bedside computer running an algorithm that temporarily suspends insulin delivery when hypoglycemia is predicted. After the run-in phase, a 21-night randomized trial was conducted in which each night was randomly assigned 2:1 to have either the predictive low-glucose suspend (PLGS) system active (intervention night) or inactive (control night). Three predictive algorithm versions were studied sequentially during the study for a total of 252 intervention and 123 control nights. The trial included 19 participants 18-56 years old with type 1 diabetes (hemoglobin A1c level of 6.0-7.7%) who were current users of the MiniMed Paradigm® REAL-Time Revel™ System and Sof-sensor® glucose sensor (Medtronic Diabetes, Northridge, CA). With the final algorithm, pump suspension occurred on 53% of 77 intervention nights. Mean morning glucose level was 144±48 mg/dL on the 77 intervention nights versus 133±57 mg/dL on the 37 control nights, with morning blood ketones >0.6 mmol/L following one intervention night. Overnight hypoglycemia was lower on intervention than control nights, with at least one value ≤70 mg/dL occurring on 16% versus 30% of nights, respectively, with the final algorithm. This study demonstrated that the PLGS system in the home setting is safe and feasible. The preliminary efficacy data appear promising with the final algorithm reducing nocturnal hypoglycemia by almost 50%.

  4. Repaglinide as monotherapy in Type 2 diabetes.

    PubMed

    Gomis, R

    1999-01-01

    The action of repaglinide, a carbamoylmethyl benzoic acid derivative, mimics the physiological insulin secretion that is deficient in Type 2 diabetes mellitus. Repaglinide stimulates insulin release from beta-cells only in the presence of glucose. Two placebo-controlled studies were performed to establish the effective dose range of repaglinide. In one study, repaglinide (0.25-4.0 mg preprandially) caused a dose-dependent decrease in blood glucose and a non-dose-dependent increase in insulin over 4 weeks (all doses p < 0.001 vs. placebo). In the second study, repaglinide (0.25-8.0 mg preprandially) was titrated over 6 weeks to obtain the optimum response (fasting plasma glucose < 8.9 mmol/L). The titration period was followed by a 12-week dose-maintenance period. At the end of the study, repaglinide had decreased fasting plasma glucose by 3.4 mmol/L (p < 0.05) and 2-h postprandial blood glucose by 5.8 mmol/L (p < 0.001) versus placebo. Glycated haemoglobin (HbA1c) decreased significantly from 8.5% to 7.9% in the repaglinide group and increased significantly from 8.1% to 9.2% in the placebo group (p < 0.001 between groups). In five 1-year, multicentre, randomized, double-blind, phase III trials, repaglinide (0.5-4.0 mg preprandially) was compared with the sulphonylureas glibenclamide, glipizide and gliclazide. Repaglinide was more effective than glipizide at maintaining glycaemic control and was equivalent to glibenclamide and gliclazide on the basis of change in HbA1c. Hypoglycaemic events were reported in 16% of repaglinide-treated patients and 15-20% of sulphonylurea-treated patients. These data indicate that repaglinide monotherapy, with diet and exercise, is effective in patients with Type 2 diabetes.

  5. Effects of monosodium glutamate (umami taste) with and without guanosine 5'-monophosphate on rat autonomic responses to meals.

    PubMed

    Steffens, A B; Leuvenink, H; Scheurink, A J

    1994-07-01

    Monosodium glutamate (MSG) is used as a food additive to improve the taste of food. The effect of MSG on sweet taste is enhanced by guanosine 5'-monophosphate (GMP). Because increased palatability is known to increase the vagally mediated preabsorptive insulin response (PIR), we hypothesized that MSG and GMP will enhance the PIR. To study this, male Wistar rats were provided with permanent cannulas for venous blood sampling and intragastric drug administration. The MSG and GMP were either added to a test meal or infused into the stomach during a test meal. Blood samples were taken to measure concentrations of glucose, insulin, epinephrine (E), and norepinephrine (NE). Addition of 56 mg MSG to a control meal markedly reduced both phases of the meal-induced increase in plasma insulin and had no effects on blood glucose and plasma E and NE responses. Infusion of 56 mg MSG into the stomach at the onset of food intake reduced the PIR with no effect on glucose, E, NE, or the second phase insulin release. Addition of 2 mg MSG in combination with GMP to the test meal or gastric administration of these drugs did not affect the changes in any of the blood components measured. It is concluded that addition of a high dose of MSG to a test meal leads to a reduction in the vagal response to food.

  6. Chocolate HILIC phases: development and characterization of novel saccharide-based stationary phases by applying non-enzymatic browning (Maillard reaction) on amino-modified silica surfaces.

    PubMed

    Schuster, Georg; Lindner, Wolfgang

    2011-06-01

    Novel saccharide-based stationary phases were developed by applying non-enzymatic browning (Maillard Reaction) on aminopropyl silica material. During this process, the reducing sugars glucose, lactose, maltose, and cellobiose served as "ligand primers". The reaction cascade using cellobiose resulted in an efficient chromatographic material which further served as our model Chocolate HILIC column. (Chocolate refers to the fact that these phases are brownish.) In this way, an amine backbone was introduced to facilitate convenient manipulation of selectivity by additional attractive or repulsive ionic solute-ligand interactions in addition to the typical HILIC retention mechanism. In total, six different test sets and five different mobile phase compositions were investigated, allowing a comprehensive evaluation of the new polar column. It became evident that, besides the so-called HILIC retention mechanism based on partition phenomena, additional adsorption mechanisms, including ionic interactions, take place. Thus, the new column is another example of a HILIC-type column characterized by mixed-modal retention increments. The glucose-modified materials exhibited the relative highest overall hydrophobicity of all grafted Chocolate HILIC columns which enabled retention of lipophilic analytes with high water content mobile phases.

  7. Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males.

    PubMed

    Gnanou, Justin V; Caszo, Brinnell A; Khalil, Khalifah M; Abdullah, Shahidah L; Knight, Victor F; Bidin, Mohd Z

    2015-01-01

    Adiponectin is a hormone secreted by adipocytes during the fasting phase of the fast-fed cycle. Ramadan fasting involves prolonged fasting for up to twelve hours and thus could lead to increased secretion of adiponectin by adipocytes. However, studies on the role of adiponectin on glucose and body weight homeostasis during Ramadan fasting is still a matter of controversy. Thus the specific aim of this study was to assess the effect of fasting during Ramadan on the adiponectin levels, body weight and glucose homeostasis in healthy male Malaysian subjects. Twenty healthy male (19-23 years) Muslim subjects were followed up during the fasting month of Ramadan. Anthropometry and blood samples were taken one week before and during the fourth week of fasting. Plasma glucose, insulin and adiponectin were estimated and insulin sensitivity indices were estimated using the Homeostasis Model Assessment. Subjects experienced a significant decrease in body weight (2.4 %, p < 0.001) and body mass index (5.5 %, p < 0.01). There was also a significant decrease of 12.3 %, 52.8 % and 45.6 % of plasma glucose, insulin and adiponectin respectively (p < 0.01). The drop in adiponectin was positively correlated with the decrease in body weight (r = 0.45, p < 0.05). There was also a significant increase in insulin sensitivity and a decrease in insulin resistance (p < 0.01). These results indicate that Ramadan fasting in young healthy individuals has a positive impact on the maintenance of glucose homeostasis. It also shows that adiponectin levels dropped along with significant loss in weight. We feel caloric restriction during the Ramadan fasting is in itself sufficient to improve insulin sensitivity in healthy individuals.

  8. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.

    PubMed

    Kurosaki, Eiji; Ogasawara, Hideaki

    2013-07-01

    Sodium-glucose cotransporter-2 (SGLT2) is expressed in the proximal tubules of the kidneys and plays a key role in renal glucose reabsorption. A novel class of antidiabetic medications, SGLT2-selective inhibitors attempt to improve glycemic control in diabetics by preventing glucose from being reabsorbed through SGLT2 and re-entering circulation. Ipragliflozin is an SGLT2 inhibitor in Phase 3 clinical development for the treatment of type 2 diabetes mellitus (T2DM). In this review, we summarize recent animal and human studies on ipragliflozin and other SGLT2 inhibitors including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin, and luseogliflozin. These agents all show potent and selective SGLT2 inhibition in vitro and reduce blood glucose levels and HbA1c in both diabetic animal models and patients with T2DM. SGLT2 inhibitors offer several advantages over other classes of hypoglycemic agents. Due to their insulin-independent mode of action, SGLT2 inhibitors provide steady glucose control without major risk for hypoglycemia and may also reverse β-cell dysfunction and insulin resistance. Other favorable effects of SGLT2 inhibitors include a reduction in both body weight and blood pressure. SGLT2 inhibitors are safe and well tolerated and can easily be combined with other classes of antidiabetic medications to achieve tighter glycemic control. The long-term safety and efficacy of these agents are under evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  10. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase.

    PubMed

    Filippov, Sergey; Pinkosky, Stephen L; Newton, Roger S

    2014-08-01

    To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase. ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects. Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

  11. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge. PMID:21211044

  12. Insulin degludec/insulin aspart versus biphasic insulin aspart 30 twice daily in insulin-experienced Japanese subjects with uncontrolled type 2 diabetes: Subgroup analysis of a Pan-Asian, treat-to-target Phase 3 Trial.

    PubMed

    Taneda, Shinji; Hyllested-Winge, Jacob; Gall, Mari-Anne; Kaneko, Shizuka; Hirao, Koichi

    2017-03-01

    The present study was a subgroup analysis of a Pan-Asian Phase 3 open-label randomized treat-to-target trial evaluating insulin degludec/insulin aspart (IDegAsp) and biphasic insulin aspart 30 (BIAsp 30) in Japanese subjects with type 2 diabetes inadequately controlled on insulin. Eligible subjects (n = 178) were randomized (2: 1) to twice-daily (b.i.d.) IDegAsp or BIAsp 30 with or without metformin for 26 weeks, titrated to a blood glucose target of between 3.9 and <5.0 mmol/L. Changes in HbA 1c , the proportion of responders reaching the HbA 1c target, and changes in fasting plasma glucose, nine-point self-monitored plasma glucose profiles, and body weight were assessed. At 26 weeks, the decrease in HbA 1c was similar in both groups. Fasting plasma glucose was lower with IDegAsp than BIAsp 30 (estimated treatment difference -1.50 mmol/L; 95 % confidence interval [CI] -1.98, -1.01). Overall confirmed hypoglycemia rates were similar; the nocturnal confirmed hypoglycemia rate was lower with IDegAsp than BIAsp 30 (estimated rate ratio 0.44; 95 % CI 0.20, 0.99). No severe hypoglycemic episodes were reported. The results indicate that IDegAsp b.i.d. improves glycemic control and, compared with BIAsp 30, lowers the rate of nocturnal confirmed hypoglycemia. © 2016 The Authors. Journal of Diabetes published John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  13. Predictors of Hypoglycemia in the ASPIRE In-Home Study and Effects of Automatic Suspension of Insulin Delivery.

    PubMed

    Weiss, Ram; Garg, Satish K; Bergenstal, Richard M; Klonoff, David C; Bode, Bruce W; Bailey, Timothy S; Thrasher, James; Schwartz, Frank; Welsh, John B; Kaufman, Francine R

    2015-05-18

    Hypoglycemia varies between patients with type 1 diabetes and is the main obstacle to therapy intensification. We investigated known and potential risk factors for hypoglycemia in subjects with type 1 diabetes. In the ASPIRE In-Home study (NCT01497938), a randomized trial of the threshold suspend (TS) feature of sensor-augmented insulin pump (SAP) therapy, subjects' propensity to nocturnal hypoglycemia (NH) was established in a 2-week run-in phase and assessed in a 3-month study phase via continuous glucose monitoring. Categorical variables were tested for association with NH rates in both phases. Elevated rates of NH were significantly associated with baseline A1C ≤7%, with bolus insulin deliveries unassisted by the bolus estimation calculator, and with assignment to the control group during the study phase. Routine use of the TS feature and the bolus estimation calculator are strategies that may reduce the risk of NH. © 2015 Diabetes Technology Society.

  14. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ting; Guo, Xiaode, E-mail: guoxiaodenj@sina.com; Zhang, Xiang

    Highlights: • The nano α-Al{sub 2}O{sub 3} with good dispersion was prepared by two-step hydrolysis. • α-Al{sub 2}O{sub 3} powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al{sub 2}O{sub 3} transformed to α-Al{sub 2}O{sub 3} directly. • This article indicated that the addictive of α-Al{sub 2}O{sub 3} seed could improve the phase transformation rate of γ-Al{sub 2}O{sub 3} to α-Al{sub 2}O{sub 3}. • In this article, the pure α-Al{sub 2}O{sub 3} could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powdermore » has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.« less

  15. Impaired glucose metabolism in subjects with the Williams-Beuren syndrome: A five-year follow-up cohort study

    PubMed Central

    Lunati, Maria Elena; Bedeschi, Maria Francesca; Resi, Veronica; Grancini, Valeria; Palmieri, Eva; Salera, Simona; Lalatta, Faustina; Pugliese, Giuseppe

    2017-01-01

    Objective The Williams-Beuren syndrome (WS) is associated with impaired glucose metabolism (IGM) early in adulthood. However, the pathophysiology of IGM remains poorly defined, due to the lack of longitudinal studies investigating the contribution of β-cell dysfunction and impaired insulin sensitivity. This study aimed at assessing incidence of IGM and the underlying mechanisms in WS adults. Methods This observational, longitudinal (5-year), cohort study enrolled thirty-one consecutive WS subjects attending a tertiary referral center. An oral glucose tolerance test (OGTT) was performed yearly and used to classify patients as normal or IGM, including impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) and diabetes mellitus (DM), and to calculate surrogate measures of insulin secretion and/or sensitivity. Results IGM patients were 18 (58.1%, three DM) at baseline and 19 (61.3%, five DM) at end-of-follow-up. However, 13 individuals changed category of glucose homeostasis in both directions during follow-up (8 progressors, 5 regressors) and 18 did not (8 non-progressors, 10 non-regressors). New cases of IGM and DM were 11.1 and 2.53 per 100 persons-year, respectively, and were treated non-pharmacologically. In the whole cohort and, to a higher extent, in progressors, indices of early-phase insulin secretion and insulin sensitivity decreased significantly from baseline to end-of-follow-up, with concurrent reduction of the oral disposition index and insulin secretion-sensitivity index-2 (ISSI-2), compensating insulin secretion for the level of insulin resistance. No baseline measure independently predicted progression, which correlated with change from baseline in ISSI-2. Compared with patients with normal glucose homeostasis, IGT subjects had impaired insulin sensitivity, whereas insulin secretion was reduced only in those with IFG+IGT or DM. Conclusions IGM incidence is high in young adults with WS, suggesting the need of early screening and timed intervention. As in classical type 2 diabetes, impaired insulin sensitivity and β-cell dysfunction contribute, in this sequence, to progression to IGM and DM. PMID:29053727

  16. α-Glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with type 2 diabetes and acute coronary syndrome: a multicenter randomized controlled (MACS) study.

    PubMed

    Shimabukuro, Michio; Tanaka, Atsushi; Sata, Masataka; Dai, Kazuoki; Shibata, Yoshisato; Inoue, Yohei; Ikenaga, Hiroki; Kishimoto, Shinji; Ogasawara, Kozue; Takashima, Akira; Niki, Toshiyuki; Arasaki, Osamu; Oshiro, Koichi; Mori, Yutaka; Ishihara, Masaharu; Node, Koichi

    2017-07-06

    Little is known about clinical associations between glucose fluctuations including hypoglycemia, heart rate variability (HRV), and the activity of the sympathetic nervous system (SNS) in patients with acute phase of acute coronary syndrome (ACS). This pilot study aimed to evaluate the short-term effects of glucose fluctuations on HRV and SNS activity in type 2 diabetes mellitus (T2DM) patients with recent ACS. We also examined the effect of suppressing glucose fluctuations with miglitol on these variables. This prospective, randomized, open-label, blinded-endpoint, multicenter, parallel-group comparative study included 39 T2DM patients with recent ACS, who were randomly assigned to either a miglitol group (n = 19) or a control group (n = 20). After initial 24-h Holter electrocardiogram (ECG) (Day 1), miglitol was commenced and another 24-h Holter ECG (Day 2) was recorded. In addition, continuous glucose monitoring (CGM) was performed throughout the Holter ECG. Although frequent episodes of subclinical hypoglycemia (≤4.44 mmo/L) during CGM were observed on Day 1 in the both groups (35% of patients in the control group and 31% in the miglitol group), glucose fluctuations were decreased and the minimum glucose level was increased with substantial reduction in the episodes of subclinical hypoglycemia to 7.7% in the miglitol group on Day 2. Holter ECG showed that the mean and maximum heart rate and mean LF/HF were increased on Day 2 in the control group, and these increases were attenuated by miglitol. When divided 24-h time periods into day-time (0700-1800 h), night-time (1800-0000 h), and bed-time (0000-0700 h), we found increased SNS activity during day-time, increased maximum heart rate during night-time, and glucose fluctuations during bed-time, which were attenuated by miglitol treatment. In T2DM patients with recent ACS, glucose fluctuations with subclinical hypoglycemia were associated with alterations of HRV and SNS activity, which were mitigated by miglitol, suggesting that these pathological relationships may be a residual therapeutic target in such patients. Trial registration Unique Trial Number, UMIN000005874 ( https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000006929 ).

  17. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  18. Novel hepato-preferential basal insulin peglispro (BIL) does not differentially affect insulin sensitivity compared with insulin glargine in patients with type 1 and type 2 diabetes.

    PubMed

    Porksen, Niels; Linnebjerg, Helle; Garhyan, Parag; Lam, Eric C Q; Knadler, Mary P; Jacober, Scott J; Hoevelmann, Ulrike; Plum-Moerschel, Leona; Watkins, Elaine; Gastaldelli, Amalia; Heise, Tim

    2017-04-01

    Basal insulin peglispro (BIL) is a novel PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and reduced peripheral effects, which results in a hepato-preferential action. In Phase 3 trials, patients with T1DM treated with BIL had lower prandial insulin requirements, yet improved prandial glucose control, relative to insulin glargine (GL). We hypothesized that this may be because of an enhanced sensitivity to prandial insulin with BIL resulting from lower chronic peripheral insulin action. Two open-label, randomized, 2-period crossover clinical studies were conducted in 28 patients with T1DM and 24 patients with T2DM. In each study period, patients received once-daily, individualized, stable, subcutaneous doses of BIL or GL for 5 weeks before a euglycaemic 2-step hyperinsulinemic clamp procedure (with [6,6- 2 H 2 ]-glucose in 12 of the patients with T1DM). M-values were derived from the clamp procedure for all patients, with rate of glucose appearance (Ra) and disappearance (Rd) and insulin sensitivity index (SI) determined from the clamps with [6,6- 2 H 2 ]-glucose. There were no statistically significant differences between BIL and GL in key measures of hepatic (% Ra suppression during the low-dose insulin infusion; 78.7% with BIL, 81.8% with GL) or peripheral (M-value and M/I during the high-dose insulin infusion, Rd and SI) insulin sensitivity in patients with T1DM or T2DM. The need to reduce prandial insulin observed with BIL during phase 3 trials cannot be explained by the differential effects of BIL and GL on sensitivity to prandial insulin in either T1DM or T2DM. © 2016 John Wiley & Sons Ltd.

  19. Effects of propylene glycol drenching before and after luteolysis on blood glucose, ovarian steroids and follicular dynamics in heifers.

    PubMed

    Umeki, A; Tanaka, T; Kamomae, H

    2012-02-01

    The effect of propylene glycol drenching on ovarian and hormonal dynamics was studied in heifers. Five cycling heifers were used twice (as control and treatment) with crossover design. After the confirmation of ovulation (day 0), the heifers in the treatment group received propylene glycol on days 6, 7 and 8 as an oral drench (250 ml of 90% propylene glycol). On day 10, prostaglandin F2α (PGF2α), 15 mg per head of dinoprost, was administered intramuscularly to induce luteal regression followed by the follicular phase and then propylene glycol was again administered twice daily (500 ml/day) on days 10, 11 and 12. Palpation per rectum and ovarian ultrasonography were performed every other day from days 0 to 10, and daily after PGF2α administration until the subsequent ovulation (second ovulation) for analysis of follicular and luteal dynamics. Blood samples were also collected every other day from days 0 to 10, and then at 6 h intervals after PGF2α administration until the second ovulation. For the samples taken at 6-h intervals after PGF2α administration, the concentrations of glucose showed clear daily fluctuations in both groups. Changes in the plasma concentration of glucose in the treatment group were significantly (P < 0.05) higher than those of the control groups during the period between 0 and 72 h after PGF2α administration. No significant difference was detected in the growth of dominant follicles, maximum diameter of the ovulatory follicles and the changes in oestradiol and progesterone during the follicular phase between treatment and control groups. This study showed the clear daily fluctuations and stimulatory changes in the blood glucose concentrations at 24-h intervals during the short-term treatment of propylene glycol drenching in heifers. However, no significant changes in ovarian and hormonal dynamics were found under such metabolic conditions.

  20. Branched-chain amino acid supplementation during bed rest: effect on recovery

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Donaldson, M. R.; Leskiw, M. J.; Schluter, M. D.; Baggett, D. W.; Boden, G.

    2003-01-01

    Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.

  1. Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers.

    PubMed

    Boutegrabet, Lemia; Kanawati, Basem; Gebefügi, Istvan; Peyron, Dominique; Cayot, Philippe; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2012-10-08

    A new method for efficient ionization of sugars in the negative-ion mode of electrospray mass spectrometry is presented. Instead of using strongly hydrophobic dopants such as dichloromethane or chloroform, efficient ionization of sugars has been achieved by using aqueous HCl solution for the first time. This methodology makes it possible to use hydrophilic dopants, which are more appropriate for chromatographic separation techniques with efficient sugar ionization and detection in mass spectrometry. The interaction between chloride anions and monosaccharides (glucose and galactose) was studied by DFT in the gas phase and by implementing the polarizable continuum model (PCM) for calculations in solution at the high B3LYP/6-31+G(d,p)//B3LYP/6-311+G(2d,p) level of theory. In all optimized geometries of identified [M+Cl](-) anions, a non-covalent interaction exists. Differences were revealed between monodentate and bidentate complex anions, with the latter having noticeably higher binding energies. The calculated affinity of glucose and galactose toward the chloride anion in the gas phase and their chloride anion binding energies in solution are in excellent agreement with glucose and galactose [M+Cl](-) experimental intensity profiles that are represented as a function of the chloride ion concentration. Density functional calculations of gas-phase affinities toward chloride anion were also performed for the studied disaccharides sucrose and gentiobiose. All calculations are in excellent agreement with the experimental data. An example is introduced wherein HCl was used to effectively ionize sugars and form chlorinated adduct anions to detect sugars and glycosylated metabolites (anthocyanins) in real biological systems (Vitis vinifera grape extracts and wines), whereas they would not have been easily detectable under standard infusion electrospray mass spectrometry conditions as deprotonated species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Suppression of Oral Sweet Taste Sensation with Gymnema sylvestre Affects Postprandial Gastrointestinal Blood Flow and Gastric Emptying in Humans.

    PubMed

    Kashima, Hideaki; Eguchi, Kohei; Miyamoto, Kanae; Fujimoto, Masaki; Endo, Masako Yamaoka; Aso-Someya, Nami; Kobayashi, Toshio; Hayashi, Naoyuki; Fukuba, Yoshiyuki

    2017-05-01

    An oral sweet taste sensation (OSTS) exaggerates digestive activation transiently, but whether it has a role after swallowing a meal is not known. Gymnema sylvestre (GS) can inhibit the OSTS in humans. We explored the effect of the OSTS of glucose intake on gastrointestinal blood flow, gastric emptying, blood-glucose, and plasma-insulin responses during the postprandial phase. Eight participants ingested 200 g (50 g × 4 times) of 15% glucose solution containing 100 mg of 13C-sodium acetate after rinsing with 25 mL of 2.5% roasted green tea (control) or 2.5% GS solution. During each protocol, gastrointestinal blood flow and gastric emptying were measured by ultrasonography and 13C-sodium acetate breath test, respectively. Decreased subjective sweet taste intensity was observed in all participants in the GS group. The time to attain a peak value of blood flow in the celiac artery and gastric emptying were delayed in the GS group compared with the control group. At the initial phase after glucose intake, blood-glucose and plasma-insulin responses were lower in the GS group than those for the control group. These results suggest that the OSTS itself has a substantial role in controlling postprandial gastrointestinal activities, which may affect subsequent glycemic metabolism. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Efficacy and safety of sotagliflozin in treating diabetes type 1.

    PubMed

    Rendell, Marc S

    2018-02-01

    Sotagliflozin is the first dual SGLT1/SGLT2 inhibitor developed for use in diabetes. Sotagliflozin blocks SGLT2 in the kidneys and SGLT1 in the intestines resulting in reduced early phase glucose absorption and increased blood levels of GLP-1 and PYY. Urinary glucose excretion is lower than with other agents as a result of decreased glucose absorption. The primary development effort to date has been in Type 1 diabetes. Areas covered: The published information on sotagliflozin is reviewed, along with the recent results of several pivotal Type 1 diabetes trials. Expert opinion: Sotagliflozin treatment lowers HbA1c and reduces glucose variability, with a trend to less hypoglycemic events. In the Type 1 trials, sotagliflozin treated individuals experienced DKA at a higher rate than placebo treated patients. An additional safety issue arises from the as yet unknown potential risks in women of child bearing potential in whom DKA is of utmost concern. The sotagliflozin development program has now been extended to trials in Type 2 diabetes, and long term studies will be needed to assess the benefits and risks of the agent in comparison to other currently marketed SGLT2 inhibitors.

  4. Batch and fed-batch cultivation for excretive production of human epidermal growth factor (hEGF) with recombinant E. Coli K12 system.

    PubMed

    Wang, J; Chen, J; Xu, R; Xu, Z

    2008-01-01

    Batch and fed-batch production of recombinant human epidermal growth factor (hEGF) was studied in an E. coli secretary expression system. By using MMBL medium containing 5 g/L glucose, controlling the temperature at 32 degrees C and maintaining the dissolved oxgen level over 20% saturation, a high yield of hEGF (32 mg/L) was obtained after an 18 hr batch cultivation with 0.2 mM IPTG induction at mid-log phase. Three different glucose feeding strategies were employed to further improve hEGF productivity in a bench top fermentor. Compared with the batch results, hEGF yield was improved up to 25.5% or 28.1%, respectively by intermittent or pH-stat glucose feeding, and up to 150% improvement of hEGF production was achieved by constant feeding of 200 g/L glucose solution at a rate of 0.11 mL/min. The effects of further combined feeding with other medium components and inducer on hEGF yield were also examined in the benchtop fermentor. This work is very helpful to further improve the productivity of extracellular hEGF in the recombinant E. coli system.

  5. Functional CuO Microstructures for Glucose Sensing

    NASA Astrophysics Data System (ADS)

    Ali, Gulzar; Tahira, Aneela; Mallah, Arfana Begum; Mallah, Sarfraz Ahmed; Ibupoto, Akila; Khand, Aftab Ahmed; Baradi, Waryani; Willander, Magnus; Yu, Cong; Ibupoto, Zafar Hussain

    2018-02-01

    CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.

  6. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism

    PubMed Central

    Lambert, Carmen; Cubedo, Judit; Padró, Teresa; Vilahur, Gemma; López-Bernal, Sergi; Rocha, Milagros

    2018-01-01

    Background: Patients with type 2 diabetes mellitus (T2DM) have a higher incidence of cardiovascular (CV) events. The ingestion of high-glycemic index (GI) diets, specially sweetened beverage consumption, has been associated with the development of T2DM and CV disease. Objective: We investigated the effects of the intake of a sweetened beverage, obtained from natural carbohydrates containing pinitol (PEB) compared to a sucrose-enriched beverage (SEB) in the context of impaired glucose tolerance (IGT) and diabetes. Methods: The study was divided in three different phases: (1) a discovery phase where the plasma proteomic profile was investigated by 2-DE (two-dimensional electrophoresis) followed by mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight—MALDI-TOF/TOF) in healthy and IGT volunteers; (2) a verification phase where the potential mechanisms behind the observed protein changes were investigated in the discovery cohort and in an additional group of T2DM volunteers; and (3) the results were validated in a proof-of-concept interventional study in an animal model of diabetic rats with complementary methodologies. Results: Six weeks of pinitol-enriched beverage (PEB) intake induced a significant increase in two proteins involved in the insulin secretion pathway, insulin-like growth factor acid labile subunit (IGF1BP-ALS; 1.3-fold increase; P = 0.200) and complement C4A (1.83-fold increase; P = 0.007) in IGT subjects but not in healthy volunteers. Changes in C4A were also found in the serum samples of Zucker diabetic fatty (ZDF) rats after four weeks of PEB intake compared to basal levels (P = 0.042). In addition, an increased expression of the glucose transporter-2 (GLUT2) gene was observed in the jejunum (P = 0.003) of inositol-supplemented rats when compared to sucrose supplementation. This change was correlated with the observed change in C4A (P = 0.002). Conclusions: Our results suggest that the substitution of a common sugar source, such as sucrose, by a naturally-based, pinitol-enriched beverage induces changes in the insulin secretion pathway that could help to reduce blood glucose levels by protecting β-cells and by stimulating the insulin secretion pathway. This mechanism of action could have a relevant role in the prevention of insulin resistance and diabetes progression. PMID:29495516

  7. Assessing the effectiveness of a 3-month day-and-night home closed-loop control combined with pump suspend feature compared with sensor-augmented pump therapy in youths and adults with suboptimally controlled type 1 diabetes: a randomised parallel study protocol

    PubMed Central

    Bally, Lia; Thabit, Hood; Tauschmann, Martin; Allen, Janet M; Hartnell, Sara; Wilinska, Malgorzata E; Exall, Jane; Huegel, Viki; Sibayan, Judy; Borgman, Sarah; Cheng, Peiyao; Blackburn, Maxine; Lawton, Julia; Elleri, Daniela; Leelarathna, Lalantha; Acerini, Carlo L; Campbell, Fiona; Shah, Viral N; Criego, Amy; Evans, Mark L; Dunger, David B; Kollman, Craig; Bergenstal, Richard M; Hovorka, Roman

    2017-01-01

    Introduction Despite therapeutic advances, many individuals with type 1 diabetes are unable to achieve tight glycaemic target without increasing the risk of hypoglycaemia. The objective of this study is to determine the effectiveness of a 3-month day-and-night home closed-loop glucose control combined with a pump suspend feature, compared with sensor-augmented insulin pump therapy in youths and adults with suboptimally controlled type 1 diabetes. Methods and analysis The study adopts an open-label, multi-centre, multi-national (UK and USA), randomised, single-period, parallel design and aims for 84 randomised patients. Participants are youths (6–21 years) or adults (>21 years) with type 1 diabetes treated with insulin pump therapy and suboptimal glycaemic control (glycated haemoglobin (HbA1c) ≥7.5% (58 mmol/mol) and ≤10% (86 mmol/mol)). Following a 4-week run-in period, eligible participants will be randomised to a 3-month use of automated closed-loop insulin delivery combined with pump suspend feature or to sensor-augmented insulin pump therapy. Analyses will be conducted on an intention-to-treat basis. The primary outcome is the time spent in the target glucose range from 3.9 to 10.0 mmol/L based on continuous glucose monitoring levels during the 3-month free-living phase. Secondary outcomes include HbA1c at 3 months, mean glucose, time spent below and above target; time with glucose levels <3.5 and <2.8 mmol/L; area under the curve when sensor glucose is <3.5 mmol/L, time with glucose levels >16.7 mmol/L, glucose variability; total, basal and bolus insulin dose and change in body weight. Participants’ and their families’ perception in terms of lifestyle change, daily diabetes management and fear of hypoglycaemia will be evaluated. Ethics and dissemination Ethics/institutional review board approval has been obtained. Before screening, all participants/guardians will be provided with oral and written information about the trial. The study will be disseminated by peer-reviewed publications and conference presentations. Trial registration number NCT02523131; Pre-results. PMID:28710224

  8. Maternal lipopolysaccharide exposure results in glucose metabolism disorders and sex hormone imbalance in male offspring.

    PubMed

    Zhao, Mei; Yuan, Li; Yuan, Man-Man; Huang, Li-Li; Su, Chang; Chen, Yuan-Hua; Yang, Yu-Ying; Hu, Yan; Xu, De-Xiang

    2018-04-01

    An adverse intrauterine environment may be an important factor contributing to the development of type 2 diabetes in later life. The present study investigated the longitudinal effects of maternal lipopolysaccharide (LPS) exposure during the third trimester on glucose metabolism and sex hormone balance in the offspring. Pregnant mice were intraperitoneally injected with LPS (50 μg/kg) daily from gestational day (GD) 15 to GD17. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed at postnatal day (PND) 60 and PND120. Sex hormones, their receptors, and metabolic enzymes (aromatase) were measured in male offspring at different phases of development (PND14: juvenile; PND35: adolescence; PND60: adulthood; and PND120: middle age). LPS-exposed male offspring exhibited glucose intolerance and insulin resistance by GTT and ITT at middle age, accompanied by an increase in fasting blood glucose and reductions in serum insulin levels and hepatic phosphorylated (p) -AKT/AKT ratio. However, glucose intolerance and insulin resistance were not observed in LPS-exposed female offspring. Maternal LPS exposure upregulated hepatic aromatase proteins and mRNA levels in male offspring at all time points. At adolescence, the testosterone/estradiol ratio (T/E2) was markedly reduced in LPS-exposed male offspring. Moreover, maternal LPS exposure significantly increased hepatic estrogen receptor (ER) α expressions and decreased hepatic androgen receptor (AR) expressions in male offspring. At adulthood, maternal LPS exposure increased serum estradiol levels, decreased serum testosterone levels and elevated hepatic ERβ expressions in male offspring. In conclusion, maternal LPS exposure upregulated aromatase expressions, followed by a reduction in the T/E2 ratio and an alteration in sex hormone receptor activity, which might be involved in the development of glucose metabolism disorders in middle-aged male offspring. This study provides a novel clue and direction to clarify the pathogenesis of maternal infection-related diabetes in male offspring. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    PubMed

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  10. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide.

    PubMed

    Niemi, M; Neuvonen, P J; Kivistö, K T

    2001-07-01

    Our objective was to study the effects of the macrolide antibiotic clarithromycin on the pharmacokinetics and pharmacodynamics of repaglinide, a novel short-acting antidiabetic drug. In a randomized, double-blind, 2-phase crossover study, 9 healthy volunteers were treated for 4 days with 250 mg oral clarithromycin or placebo twice daily. On day 5 they received a single dose of 250 mg clarithromycin or placebo, and 1 hour later a single dose of 0.25 mg repaglinide was given orally. Plasma repaglinide, serum insulin, and blood glucose concentrations were measured up to 7 hours. Clarithromycin increased the mean total area under the concentration-time curve of repaglinide by 40% (P <.0001) and the peak plasma concentration by 67% (P <.005) compared with placebo. The mean elimination half-life of repaglinide was prolonged from 1.4 to 1.7 hours (P <.05) by clarithromycin. Clarithromycin increased the mean incremental area under the concentration-time curve from 0 to 3 hours of serum insulin by 51% (P <.05) and the maximum increase in the serum insulin concentration by 61% (P <.01) compared with placebo. No statistically significant differences were found in the blood glucose concentrations between the placebo and clarithromycin phases. Even low doses of the cytochrome P4503A4 (CYP3A4) inhibitor clarithromycin increase the plasma concentrations and effects of repaglinide. Concomitant use of clarithromycin or other potent inhibitors of CYP3A4 with repaglinide may enhance its blood glucose-lowering effect and increase the risk of hypoglycemia.

  11. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  12. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  13. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation.

    PubMed

    Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Mounir, Majid; Thonart, Philippe; Delvigne, Frank

    2017-05-01

    Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l - 1 glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (q s ) and gluconate production (q p ) reduced progressively. Interestingly, gradual q s and q p reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

  14. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    PubMed

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  15. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat.

    PubMed

    Bake, T; Morgan, D G A; Mercer, J G

    2014-04-10

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study of diet-induced obesity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    PubMed Central

    Newman, Monica A.; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U.

    2017-01-01

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05) and glucose (p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles. PMID:28300770

  17. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model.

    PubMed

    Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U

    2017-03-16

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p < 0.05) and glucose ( p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased ( p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced ( p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased ( p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased ( p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  18. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE PAGES

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej; ...

    2015-07-25

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  19. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  20. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    PubMed

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

  1. Time delay compensation for closed-loop insulin delivery systems: a simulation study.

    PubMed

    Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M

    1991-06-01

    Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.

  2. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients.

    PubMed

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok; Kang, Myung-Hee

    2015-02-01

    Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

  3. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2

    PubMed Central

    Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-01-01

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2. PMID:26934556

  4. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone.

    PubMed

    Terra, Steven G; Focht, Kristen; Davies, Melanie; Frias, Juan; Derosa, Giuseppe; Darekar, Amanda; Golm, Gregory; Johnson, Jeremy; Saur, Didier; Lauring, Brett; Dagogo-Jack, Sam

    2017-05-01

    To conduct a phase III study to evaluate the efficacy and safety of ertugliflozin monotherapy in people with type 2 diabetes. This was a 52-week, double-blind, multicentre, randomized, parallel-group study with a 26-week, placebo-controlled treatment period (phase A), followed by a 26-week active-controlled treatment period (phase B) in 461 men and women, aged ≥18 years with inadequate glycaemic control (glycated haemoglobin [HbA1c] concentration 7.0% to 10.5% [53-91 mmol/mol], inclusive) despite diet and exercise. Results from phase A are reported in the present paper. The primary endpoint was the change in HbA1c from baseline to week 26. At week 26, the placebo-adjusted least squares mean HbA1c changes from baseline were -0.99% and -1.16% for the ertugliflozin 5 and 15 mg doses, respectively ( P  < .001 for both doses). The odds of having HbA1c <7.0% (53 mmol/mol) were significantly greater in the ertugliflozin 5 and 15 mg groups compared with the placebo group. Both doses of ertugliflozin significantly lowered fasting plasma glucose and 2-hour postprandial glucose levels and body weight. The placebo-adjusted differences in changes from baseline in systolic blood pressure were not statistically significant. A higher incidence of genital mycotic infections occurred in men and women treated with ertugliflozin compared with placebo. There was no significant difference between treatments in the proportion of participants with symptomatic hypoglycaemia or adverse events associated with urinary tract infection or hypovolaemia. Ertugliflozin 5 and 15 mg treatment for 26 weeks provides effective glycaemic control, reduces body weight and is generally well tolerated, when used as monotherapy. © 2017 John Wiley & Sons Ltd.

  5. Polarimetric Glucose Sensing Using Brewster Reflection off of Eye Lens: Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Boeckle, Stefan; Rovati, Luigi; Ansari, Rafat R.

    2002-01-01

    An important task of in vivo polarimetric glucose sensing is to find an appropriate way to optically access the aqueous humor of the human eye. In this paper two different approaches are analyzed theoretically and applied to the eye model of Le Grand. First approach is the tangential path of Cote, et al. (G.L. Cot6, M.D. Fox, and R.B. Northrop: Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique. IEEE Transactions on Biomedical Engineering, vol. 39, no. 7, pp. 752-756, 1992.) and the second is a new scheme of this paper of applying Brewster reflection off the eye lens.

  6. Repaglinide--prandial glucose regulator: a new class of oral antidiabetic drugs.

    PubMed

    Owens, D R

    1998-01-01

    The highest demand on insulin secretion occurs in connection with meals. In normal people, following a meal, the insulin secretion increases rapidly, reaching peak concentration in the blood within an hour. The mealtime insulin response in patients with Type 2 diabetes is blunted and delayed, whereas basal levels often remain within the normal range (albeit at elevated fasting glucose levels). Restoration of the insulin secretion pattern at mealtimes (prandial phase)--without stimulating insulin secretion in the 'postabsorptive' phase--is the rationale for the development of 'prandial glucose regulators', drugs that are characterized by a very rapid onset and short duration of action in stimulating insulin secretion. Repaglinide, a carbamoylmethyl benzoic acid (CMBA) derivative is the first such compound, which recently has become available for clinical use. Repaglinide is very rapidly absorbed (t(max) less than 1 hour) with a t1/2 of less than one hour. Furthermore, repaglinide is inactivated in the liver and more than 90% excreted via the bile. The implications of tailoring repaglinide treatment to meals were examined in a study where repaglinide was dosed either morning and evening, or with each main meal (i.e. breakfast, lunch, dinner), with the total daily dose of repaglinide being identical. The mealtime dosing caused a significant improvement in both fasting and 24-hour glucose profiles, as well as a significant decrease in HbA1c. In other studies, repaglinide caused a decrease of 5.8 mmol x l(-1) in peak postprandial glucose levels, and a decrease of 3.1 mmol x l(-1) in fasting levels with a reduction in HbA1c of 1.8% compared with placebo. In comparative studies with either sulphonylurea or metformin, repaglinide caused similar or improved control (i.e. HbA1c, mean glucose levels) and the drug was well tolerated (e.g. reported gastrointestinal side-effects were more than halved when patients were switched from metformin to repaglinide). A hallmark of repaglinide treatment is that this medication follows the eating pattern, and not vice versa. Hence the risk of developing severe hypoglycaemia (BG < or = 2.5 mmol x l(-1)) in connection with flexible lifestyles should be reduced. This concept was examined in a study in which patients well controlled on repaglinide skipped their lunch on one occasion. When a meal (i.e. lunch) was skipped--so was the repaglinide dose, whereas in the comparative group on glibenclamide the recommended morning and evening doses were taken. Twenty-four per cent of the patients in the glibenclamide group developed severe hypoglycaemia, whereas no hypoglycaemic events occurred in the group receiving repaglinide. However, in long-term studies the overall prevalence of hypoglycaemia was similar to that found with other insulin secretagogues. In summary, current evidence shows that the concept of prandial glucose regulation offers good long-term glycaemic control combined with a low risk of severe hypoglycaemia with missed meals. The concept should meet the needs of Type 2 diabetic patients, allowing flexibility in their lifestyle.

  7. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism.

    PubMed

    Prodam, F; Gasco, V; Caputo, M; Zavattaro, M; Pagano, L; Marzullo, P; Belcastro, S; Busti, A; Perino, C; Grottoli, S; Ghigo, E; Aimaretti, G

    2013-08-01

    Hypopituitarism is associated with metabolic alterations but in TBI-induced hypopituitarism data are scanty. The aim of our study was to evaluate the prevalence of naïve hypertension, dyslipidemia, and altered glucose metabolism in TBI-induced hypopituitarism patients. Cross-sectional retrospective study in a tertiary care endocrinology center. 54 adult patients encountering a moderate or severe TBI were evaluated in the chronic phase (at least 12 months after injury) after-trauma. Presence of hypopituitarism, BMI, hypertension, fasting blood glucose and insulin levels, oral glucose tolerance test (if available) and a lipid profile were evaluated. The 27.8% of patients showed various degrees of hypopituitarism. In particular, 9.3% had total, 7.4% multiple and 11.1% isolated hypopituitarism. GHD was present in 22.2% of patients. BMI was similar between the two groups. Hypopituitaric patients presented a higher prevalence of dyslipidemia (p<0.01) and altered glucose metabolism (p<0.005) with respect to non hypopituitaric patients. In particular, triglycerides (p<0.05) and HOMA-IR (p<0.02) were higher in hypopituitaric TBI patients. We showed that long-lasting TBI patients who develop hypopituitarism frequently present metabolic alterations, in particular altered glucose levels, insulin resistance and hypertriglyceridemia. In view of the risk of premature cardiovascular death in hypopituitaric patients, major attention has to been paid in those who encountered a TBI, because they suffer from the same comorbidities and may present other deterioration factors due to complex pharmacological treatments and restriction in participation in life activities and healthy lifestyle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions.

    PubMed

    Xie, Liangzhi; Pilbrough, Warren; Metallo, Christian; Zhong, Tanya; Pikus, Lana; Leung, John; Auniņs, John G; Zhou, Weichang

    2002-12-05

    PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production. Copyright 2002 Wiley Periodicals, Inc.

  9. Metabolism of nitazoxanide in rats, pigs, and chickens: Application of liquid chromatography coupled to hybrid linear ion trap/Orbitrap mass spectrometer.

    PubMed

    Huang, Xianhui; Guo, Chunna; Chen, Zhangliu; Liu, Yahong; He, Limin; Zeng, Zhenling; Yan, Chaoqun; Pan, Guangfang; Li, Shuaipeng

    2015-09-01

    Nitazoxanide (NTZ) is a nitrothiazole benzamide compound with a broad activity spectrum against parasites, Gram-positive and Gram-negative anaerobic bacteria, and viruses. In this study, hybrid linear ion trap/Orbitrap mass spectrometer providing a high mass resolution and accuracy was used to investigate the metabolism of NTZ in rats, pigs, and chickens. The results revealed that acetylation and glucuronidation were the main metabolic pathways in rats and pigs, whereas acetylation and sulfation were the major metabolic pathways in chickens, which indicated interspecies variations in drug metabolism and elimination. With the accurate mass data and the characteristic MS(n) product ions, we identified six metabolites in which tizoxanide and hydroxylated tizoxanide were phase I metabolites and tizoxanide glucuronide, tizoxanide glucose, tizoxanide sulfate and hydroxyl tizoxanide sulfate were phase II metabolites. Hydroxylated tizoxanide and tizoxanide glucose were identified for the first time. All the comprehensive data were provided to make out the metabolism of NTZ in rats, pigs and chickens more clearly. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A Response Surface Methodology study on the role of factors affecting growth and volatile phenol production by Brettanomyces bruxellensis ISA 2211 in wine.

    PubMed

    Chandra, M; Barata, A; Ferreira-Dias, S; Malfeito-Ferreira, M; Loureiro, V

    2014-09-01

    The present study was aimed at determining the effect of glucose, ethanol and sulphur dioxide on the growth and volatile phenol production by Brettanomyces bruxellensis in red wines using a response surface methodology approach. Sulphur dioxide proved to have a significant (p < 0.05) negative linear and quadratic effect on growth and 4-ethylphenol production. Concentrations of sulphur dioxide higher than 20 mg L(-1), at pH 3.50, induced immediate loss of cell culturability under growth permissive levels of ethanol. Under high ethanol concentrations (14% v/v), the lag phase increased from 3 to 10 days, growth being fully arrested at 15% (v/v). Glucose up to 10 g L(-1) was found to be a significant factor (quadratic level) in biomass increase under low ethanol (<12.5% v/v) and low sulphite concentrations. However, when cells were inactivated by sulphur dioxide and ethanol, glucose (up to 10 g L(-1)) did not prevent cell death. Production of more than 50 μg L(-1) day(-1) of 4-ethylphenol was only observed in the presence of high numbers (10(6) CFU mL(-1)) of culturable cells, being stimulated by increasing glucose concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.

    PubMed

    Smolders, Lotte; Mensink, Ronald P; Boekschoten, Mark V; de Ridder, Rogier J J; Plat, Jogchum

    2018-04-01

    Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms have never been studied. The objective was to evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and duodenal gene expression. In a randomized, double-blind crossover study, 44 healthy men and women, with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-h postprandial test. Blood was sampled frequently for analysis of lipid and glucose metabolism. In a subgroup of 10 men, 5 h after meal consumption duodenal biopsies were taken for microarray analysis. 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P = 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In duodenal biopsies, microarray analysis showed no consistent changes in expression of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism. It is not likely that the potential beneficial effects of cocoa on CVD can be ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and duodenal gene expression, and unfavorably affected postprandial glucose and insulin responses. This trial was registered on clinicaltrials.gov under study number NCT02209025. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  13. Management of hyperglycemia associated with pasireotide (SOM230): healthy volunteer study.

    PubMed

    Breitschaft, Astrid; Hu, Ke; Hermosillo Reséndiz, Karina; Darstein, Christelle; Golor, Georg

    2014-03-01

    Pasireotide, a multireceptor-targeted somatostatin analogue with efficacy in Cushing's disease and acromegaly, can affect glucose metabolism due to inhibition of insulin secretion and incretin hormone responses. A study was therefore conducted to evaluate different antihyperglycemic drugs in the management of pasireotide-associated hyperglycemia. This was a 1-week, Phase I, open-label study. Healthy male volunteers were randomized to pasireotide 600 μg sc bid alone or co-administered with metformin 500 mg po bid, nateglinide 60 mg po tid, vildagliptin 50mg po bid, or liraglutide 0.6 mg sc qd. An oral glucose tolerance test (OGTT) was performed on days 1 and 7 to evaluate effects on serum insulin, plasma glucose and glucagon levels. Safety/tolerability and pharmacokinetic effects were also evaluated. Ninety healthy male volunteers were enrolled (n=18 per arm). After 7 days of treatment, plasma glucose AUC post-OGTT increased by 69% with pasireotide alone. The effect was reduced by 13%, 29%, 45% and 72% with co-administration of metformin, nateglinide, vildagliptin and liraglutide, respectively. On day 7, compared with pasireotide alone, the decrease in serum insulin was attenuated with nateglinide, metformin, liraglutide and vildagliptin co-administration (levels were 3%, 6%, 34% and 71% higher, respectively). Minimal changes in plasma glucagon were observed. Adverse events were consistent with the safety profiles of the drugs used. Vildagliptin and liraglutide were most effective in minimizing pasireotide-associated hyperglycemia in healthy volunteers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Efficacy and safety of once-weekly oral trelagliptin switched from once-daily dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: An open-label, phase 3 exploratory study.

    PubMed

    Inagaki, Nobuya; Sano, Hiroki; Seki, Yoshifumi; Kuroda, Shingo; Kaku, Kohei

    2018-03-01

    Trelagliptin, a novel once-weekly oral dipeptidyl peptidase-4 (DPP-4) inhibitor, has shown favorable efficacy and safety in type 2 diabetes mellitus patients. Trelagliptin was launched in Japan, and is expected to be initially used for switchover from a daily DPP-4 inhibitor in the clinical setting. Thus, the present study was carried out to explore the efficacy and safety of trelagliptin after a daily DPP-4 inhibitor was switched to it. This was an open-label, phase 3 exploratory study to evaluate the efficacy and safety of trelagliptin in Japanese type 2 diabetes mellitus patients who had stable glycemic control on once-daily sitagliptin therapy. Eligible patients received trelagliptin 100 mg orally before breakfast once a week for 12 weeks. The primary end-point was blood glucose by the meal tolerance test, and additional end-points were glycemic control (efficacy) and safety. Altogether, 14 patients received the study drug. The blood glucose did not markedly change from baseline at major assessment points in the meal tolerance test, and a decrease in blood glucose was observed at several other assessment points. Adverse events were reported in 42.9% (6/14) of patients, but all adverse events were mild or moderate in severity, and most were not related to the study drug. No cases of death, serious adverse events or hypoglycemia were reported. It is considered possible to switch a once-daily DPP-4 inhibitor to trelagliptin in type 2 diabetes mellitus patients with stable glycemic control in combination with diet and exercise therapy without any major influences on glycemic control or safety. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  15. Dose-finding study of luseogliflozin in Japanese patients with type 2 diabetes mellitus: a 12-week, randomized, double-blind, placebo-controlled, phase II study.

    PubMed

    Seino, Yutaka; Sasaki, Takashi; Fukatsu, Atsushi; Ubukata, Michito; Sakai, Soichi; Samukawa, Yoshishige

    2014-07-01

    Luseogliflozin is a selective sodium glucose cotransporter 2 inhibitor under development for the treatment of type 2 diabetes mellitus (T2DM). This phase II study was conducted to confirm the efficacy and safety of luseogliflozin monotherapy at doses of up to 10 mg in Japanese patients with T2DM. Patients with hemoglobin A1c (HbA1c) of 6.9-10.5% on diet therapy were randomized in a double-blind manner to treatment with 1, 2.5, 5, or 10 mg luseogliflozin or placebo for 12 weeks (n = 56, 56, 54, 58, and 58, respectively). Japan Pharmaceutical Information Center (identifier: Japic CTI-101191). The primary endpoint was the change in HbA1c from baseline to the end of treatment. Other endpoints included fasting plasma glucose (FPG), postprandial plasma glucose (PPG) and body weight. Adverse events were recorded throughout the study. HbA1c decreased significantly at the end of treatment in the 1, 2.5, 5, and 10 mg luseogliflozin groups compared with placebo (-0.29, -0.39, -0.46, and -0.43%, respectively, versus +0.22%; all P < 0.001), as did FPG and PPG (all P < 0.001). Body weight also decreased significantly in all luseogliflozin groups compared with placebo (all P < 0.001). The incidence rates of adverse events (40.0-50.0%) were not significantly different among the five groups. The overall incidence of hypoglycemia was low. Limitations of this study include the short study duration and the relatively small sample size. In Japanese patients with T2DM, luseogliflozin was well tolerated, improved glycemic control, and reduced body weight over 12 weeks of treatment at all tested doses. Doses of ≥2.5 mg achieved similar improvements in glycemic control.

  16. A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity

    PubMed Central

    Ko, Byoung-Seob; Kang, Suna; Moon, Bo Reum; Ryuk, Jin Ah; Park, Sunmin

    2016-01-01

    We investigated that the long-term consumption of the water (KME-W) and 70% ethanol (KME-E) mistletoe extracts had antidiabetic activities in partial pancreatectomized (Px) rats. Px rats were provided with a high-fat diet containing 0.6% KME-E, 0.6% KME-W, and 0.6% dextrin (control) for 8 weeks. As normal-control, Sham-operated rats were provided with 0.6% dextrin. In cell-based studies, the effects of its main terpenoids (betulin, betulinic acid, and oleanolic acid) on glucose metabolism were measured. Both KME-W and KME-E decreased epididymal fat mass by increasing fat oxidation in diabetic rats. KME-E but not KME-W exhibited greater potentiation of first-phase insulin secretion than the Px-control in a hyperglycemic clamp. KME-E also made β-cell mass greater than the control by increasing β-cell proliferation and decreasing its apoptosis. In a euglycemic-hyperinsulinemic clamp, whole-body glucose infusion rate and hepatic glucose output increased with potentiating hepatic insulin signaling in the following order: Px-control, KME-W, KME-E, and normal-control. Betulin potentiated insulin-stimulated glucose uptake via increased PPAR-γ activity and insulin signaling in 3T3-L1 adipocytes, whereas oleanolic acid enhanced glucose-stimulated insulin secretion and cell proliferation in insulinoma cells. In conclusion, KME-E prevented the deterioration of glucose metabolism in diabetic rats more effectively than KME-W and KME-E can be a better therapeutic agent for type 2 diabetes than KME-W. PMID:26884795

  17. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens.

    PubMed Central

    Reiter, B; Marshall, V M; BjörckL; Rosén, C G

    1976-01-01

    Two strains of Escherichia coli and one strain each of Salmonella typhimurium and Pseudomonas aeruginosa were killed by the bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system in milk and in a synthetic medium. H2O2 was supplied exogenously by glucose oxidase, and glucose was produced at a level which was itself noninhibitory. Two phases were distinguished: the first phase was dependent on the oxidation of SCN(-) by lactoperoxidase and H2O2, which was reversed by reducing agent, and the second phase was dependent on the presence of accumulated H2O2, which was reversed by catalase. The latter enzyme could also reverse the first phase, but only when present in excessive and unphysiological levels. The bactericidal activity was greatest at pH 5 and below, and it depended on the SCN(-)concentration and on the number of organisms. Since raw or heated milk neutralizes the acid barrier against infection in the stomach, the bactericidal system discussed may contribute to the prevention of enteric infections in neonates. PMID:5374

  18. A new acetonitrile-free mobile phase method for LC-ELSD quantification of fructooligosaccharides in onion (Allium cepa L.).

    PubMed

    Downes, Katherine; Terry, Leon A

    2010-06-30

    Onion soluble non-structural carbohydrates consist of fructose, glucose and sucrose plus fructooligosaccharides (FOS) with degrees of polymerisation (DP) in the range of 3-19. In onion, sugars and FOS are typically separated using liquid chromatography (LC) with acetonitrile (ACN) as a mobile phase. In recent times, however, the production of ACN has diminished due, in part, to the current worldwide economic recession. A study was therefore undertaken, to find an alternative LC method to quantify sugars and FOS from onion without the need for ACN. Two mobile phases were compared; the first taken from a paper by Vågen and Slimestad (2008) using ACN mobile phase, the second, a newly reported method using ethanol (EtOH). The EtOH mobile phase eluted similar concentrations of all FOS compared to the ACN mobile phase. In addition, limit of detection, limit of quantification and relative standard deviation values were sufficiently and consistently lower for all FOS using the EtOH mobile phase. The drawback of the EtOH mobile phase was mainly the inability to separate all individual sugar peaks, yet FOS could be successfully separated. However, using the same onion extract, a previously established LC method based on an isocratic water mobile phase could be used in a second run to separate sugars. Although the ACN mobile phase method is more convenient, in the current economic climate a method based on inexpensive and plentiful ethanol is a valid alternative and could potentially be applied to other fresh produce types. In addition to the mobile phase solvent, the effect of extraction solvents on sugar and FOS concentration was also investigated. EtOH is still widely used to extract sugars from onion although previous literature has concluded that MeOH is a superior solvent. For this reason, an EtOH-based extraction method was compared with a MeOH-based method to extract both sugars and FOS. The MeOH-based extraction method was more efficacious at extracting sugars and FOS from onion flesh, eluting significantly higher concentrations of glucose, kestose, nystose and DP5-DP8. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Three-component homeostasis control

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  20. Temperature optimum of insulin-stimulated 2-deoxy-D-glucose uptake in rat adipocytes. Correlation of cellular transport with membrane spin-label and fluorescence-label data.

    PubMed Central

    Hyslop, P A; Kuhn, C E; Sauerheber, R D

    1984-01-01

    The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells. PMID:6324752

  1. Fatty Acids Suppress Autophagic Turnover in β-Cells*

    PubMed Central

    Las, Guy; Serada, Sam B.; Wikstrom, Jakob D.; Twig, Gilad; Shirihai, Orian S.

    2011-01-01

    Recent studies have shown that autophagy is essential for proper β-cell function and survival. However, it is yet unclear under what pathogenic conditions autophagy is inhibited in β-cells. Here, we report that long term exposure to fatty acids and glucose block autophagic flux in β-cells, contributing to their toxic effect. INS1 cells expressing GFP-LC3 (an autophagosome marker) were treated with 0.4 mm palmitate, 0.4 mm oleate, and various concentrations of glucose for 22 h. Kinetics of the effect of fatty acids on autophagy showed a biphasic response. During the second phase of autophagy, the size of autophagosomes and the content of autophagosome substrates (GFP-LC3, p62) and endogenous LC3 was increased. During the same phase, fatty acids suppressed autophagic degradation of long lived protein in both INS1 cells and islets. In INS1 cells, palmitate induced a 3-fold decrease in the number and the acidity of Acidic Vesicular Organelles. This decrease was associated with a suppression of hydrolase activity, suppression of endocytosis, and suppression of oxidative phosphorylation. The combination of fatty acids with glucose synergistically suppressed autophagic turnover, concomitantly suppressing insulin secretion. Rapamycin treatment resulted in partial reversal of the inhibition of autophagic flux, the inhibition of insulin secretion, and the increase in cell death. Our results indicate that excess nutrient could impair autophagy in the long term, hence contributing to nutrient-induced β-cell dysfunction. This may provide a novel mechanism that connects diet-induced obesity and diabetes. PMID:21859708

  2. Effect of two types of soy milk and dairy milk on plasma lipids in hypercholesterolemic adults: a randomized trial.

    PubMed

    Gardner, Christopher D; Messina, Mark; Kiazand, Alexandre; Morris, Jennifer L; Franke, Adrian A

    2007-12-01

    To compare the effects of two commercially available soy milks (one made using whole soy beans, the other using soy protein isolate) with low-fat dairy milk on plasma lipid, insulin, and glucose responses. Randomized clinical trial, cross-over design. Participants were 30-65 years of age, n = 28, with pre-study LDL-cholesterol (LDL-C) concentrations of 160-220 mg/dL, not on lipid lowering medications, and with an overall Framingham risk score of or=4 weeks. Mean LDL-C concentration at the end of each phase (+/- SD) was 161 +/- 20, 161 +/- 26 and 170 +/- 24 mg/dL for the whole bean soy milk, the soy protein isolate milk, and the dairy milk, respectively (p = 0.9 between soy milks, p = 0.02 for each soy milk vs. dairy milk). No significant differences by type of milk were observed for HDL-cholesterol, triacylglycerols, insulin, or glucose. A 25 g dose of daily soy protein from soy milk led to a modest 5% lowering of LDL-C relative to dairy milk among adults with elevated LDL-C. The effect did not differ by type of soy milk and neither soy milk significantly affected other lipid variables, insulin or glucose.

  3. The use of 123I-labeled heptadecanoic acid (HDA) as metabolic tracer: preliminary report.

    PubMed

    Dudczak, R; Kletter, K; Frischauf, H; Losert, U; Angelberger, P; Schmoliner, R

    1984-01-01

    The feasibility of using 123I-heptadecanoic acid (HDA) as a metabolic tracer was studied. Different administration routes of HDA were compared. An intracoronary bolus injection was given to calves (n = 3), and an intravenous injection was given to patients (n = 4). In addition, we examined the influence of 4-h halothane anesthesia in calves and in patients the impact of an insulin (1.5 IU/kg) + glucose (1.5 g/kg) infusion on the myocardial kinetics of HDA. Data were accumulated with a scintillation probe in calves (t = 50 min) and a gamma camera in patients (t = 70 min). In calves after an intracoronary bolus injection of HDA the myocardial time-activity curve could be described by two exponentials. The mean elimination half-time of the initial phase (ta 1/2) was 7.3 min and that of the second phase (tb 1/2) was 35 min. The ratio of the size of the initial and second component at to was 0.93. Halothane anesthesia prolonged the elimination half-times and reduced the component ratio. The biphasic behavior of the myocardial time-activity curve was maintained in patients after intravenous administration of HDA under basal conditions (initial ta 1/2 = 8.4 min). However, during infusion of insulin + glucose the decline in the myocardial activity was prolonged and monoexponential. This data shows that insulin glucose, interfering with fatty acid metabolism, influences the myocardial washout of HDA, and thus support its use as a metabolic tracer.

  4. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    PubMed

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  5. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    PubMed

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology.

    PubMed

    Wu, Tao; Sun, Lu; ZhuGe, Fen; Guo, Xichao; Zhao, Zhining; Tang, Ruiqi; Chen, Qinping; Chen, Lin; Kato, Hisanori; Fu, Zhengwei

    2011-12-01

    The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings.

  8. [A cohort study on association between the first trimester phthalates exposure and fasting blood glucose level in the third trimester].

    PubMed

    Zhang, Y W; Gao, H; Huang, K; Xu, Y Y; Sheng, J; Tao, F B

    2017-03-10

    Objective: To examine the association between the phthalate exposure in the first trimester and fasting blood glucose level or gestational diabetes mellitus (GDM) in the third trimester in pregnant women. Methods: A total of 3 474 pregnant women, receiving their prenatal examination in Ma' anshan Maternal and Child Health-Care Hospital of Anhui province, were selected from May 2013 to September 2014. Questionnaires were used to collect the information about their socio-demographic characteristics, clinical characteristics and GDM diagnostic results in the first, second and third trimesters. Urine samples and fasting venous blood samples were collected. Concentrations of 7 kinds of phthalate metabolites in urine samples were detected by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS), and multiple linear regression model was used for statistical analyses. Logistic regression analysis on the risk of the first trimester phthalate exposure for GDM in the third trimester was conducted. Results: The prevalence of GDM in this study was 12.8%, monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEHHP) exposure levels were positively correlated with the fasting blood glucose level in the third trimester ( P <0.05), but mono-(2-ethylhexyl) phthalate (MEHP) and mono-(2-ethyl-5-hydroxylhexyl) phthalate (MEOHP) exposure levels were negatively correlated with the fasting blood glucose level in the third trimester ( P <0.05). Stratified analysis showed a positive correlation between MEHHP exposure and the third trimester fasting blood glucose level in both normal group and GDM group. However, MMP, MEP, MBP, MBzP, MEHP and MEOHP exposure levels had influences on the third trimester fasting blood glucose level in normal group but not in GDM group. MMP and MBP exposure might increase the risk of GDM, but MEOHP exposure might reduce the risk of GDM. Conclusion: The phthalate exposure in the first trimester might be associated with the fasting blood glucose level in the third trimester, MMP, MEP, MBP, MBzP and MEHHP concentrations were positively associated with the third trimester blood glucose level, MEHP and MEOHP concentrations were negatively associated with the third trimester blood glucose level. Moreover, the effects of different kinds of phthalates might be different.

  9. Short-term metabolome dynamics and carbon, electron, and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a glucose pulse.

    PubMed

    Wu, Liang; van Dam, Jan; Schipper, Dick; Kresnowati, M T A Penia; Proell, Angela M; Ras, Cor; van Winden, Wouter A; van Gulik, Walter M; Heijnen, Joseph J

    2006-05-01

    The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses.

  10. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  11. G0-G1 Transition and the Restriction Point in Pancreatic β-Cells In Vivo

    PubMed Central

    Hija, Ayat; Salpeter, Seth; Klochendler, Agnes; Grimsby, Joseph; Brandeis, Michael; Glaser, Benjamin; Dor, Yuval

    2014-01-01

    Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic β-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of β-cells in mice. Quiescent β-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ∼5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing β-cell replication and mass in patients with diabetes. PMID:24130333

  12. Influence of diet on leukocyte telomere length, markers of inflammation and oxidative stress in individuals with varied glucose tolerance: a Chinese population study.

    PubMed

    Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu

    2016-04-12

    To explore influence of carbohydrates/fat proportions, dietary ingredients on telomere length shortening, oxidative stress and inflammation in a Chinese population with different glucose tolerance status. Five hundred and fifty-six Chinese subjects without diabetes history underwent a 75 g, 2 h Oral Glucose Tolerance Test (OGTT). Subjects with diabetes (n = 159), pre-diabetes (n = 197), and normal glucose tolerance (n = 200) were screened. Dietary intakes were evaluated using a semi-quantitative food frequency questionnaire (FFQ). Peripheral blood leukocyte telomere length (LTL) was assessed using a real-time PCR assay. Blood lipid profile, levels of the oxidative stress indicators superoxide dismutase (SOD), glutathione reductase (GR), 8-oxo-2'-deoxyguanosine (8-oxo-dG) and inflammation indicators tumor necrosis factor (TNF-ɑ), interleukine-6 (IL-6) were measured. Levels of HbA1c, plasma glucose, insulin, and C peptide were also determined. Measurements were taken at 0 min, 30 min, 60 min, and 120 min after 75 g OGTT. Insulin sensitivity was evaluated by HOMA-IR. Basal insulin secretion index (HOMA-β), early phase disposition index (DI30) and total phase disposition index (DI120) indicate insulin levels at different phases of insulin secretion. In patients with newly diagnosed diabetes, LTL adjusted by age was longer in HbA1c < 7 % group (log (LTL):1.93 ± 0.25) than in HbA1c ≥ 7 % group (log (LTL):1.82 ± 0.29). LTL was not associated with daily energy intake, diet fat, carbohydrates and protein proportions. Multiple linear regression analysis indicated that legumes, nuts, fish and seaweeds were protective factors for LTL shortening, and sweetened carbonated beverage was a risk factor for LTL shortening ( legumes: β = 0.105, p = 0.018; nuts: β = 0.110, p = 0.011; fish: β = 0.118, p = 0.007; seaweeds: β = 0.116, p = 0.009; sweetened carbonated beverage: β = -0.120, p = 0.004 ). Daily energy intake was positively associated with TNF-ɑ, IL-6 (TNF-ɑ: r = 0.125, p = 0.006;IL-6: r = 0.092, p =0.04). Fat, carbohydrate proportions were positively associated with TNF-ɑ (fat: r = 0.119, p = 0.008 ; carbohydrate: r = 0.094, p = 0.043). Seaweeds and dairy intake were negatively associated with 8-oxo-dG (seaweed: r = -0.496, p = 0.001;dairy: r = -0.246, p = 0.046 ), vegetables and fruits were positively associated with GR ( vegetables: r = 0.101, p = 0.034;fruits: r = 0.125, p = 0.045). Cereal, meat were positively associated with TNF-ɑ ( cereal: r = 0.091, p = 0.048 ; meat: r = 0.405, p = 0.009). Diabetes patients with better plasma glucose (HbA1c < 7 %) had longer LTL, LTL could reflect plasma glucose status in diabetes patients. LTL were probably not influenced by diet carbohydrates/fat proportions but was associated with diet ingredients. Diet ingredients significantly impacted on markers of inflammation and oxidative stress, which probably had an effect on LTL.

  13. Effect of Guava in Blood Glucose and Lipid Profile in Healthy Human Subjects: A Randomized Controlled Study

    PubMed Central

    Rakavi, R; Mangaraj, Manaswini

    2016-01-01

    Introduction The fruit of Psidium guajava (P.guajava) is known to contain free sugars yet the fruit juice showed hypoglycaemic effect. Hypoglycaemic activity of guava leaves has been well documented but not for guava fruit. Aim So we aimed to evaluate the effect of ripe guava (with peel and without peel) fruit supplementation on blood glucose and lipid profile in healthy human subjects. Materials and Methods Randomized Controlled study undertaken in: 1) Baseline; 2) 6 weeks supplementation phase. Forty five healthy MBBS students were included and randomly enrolled into Group A, Group B and Group C. In Baseline phase: Fasting Plasma Glucose (FPG) and serum lipid profile was done in all 3 groups. Group A were supplemented with 400g of ripe guava with peel and group B without peel, for 6 weeks. Rest 15 treated as control i.e., Group C. Result Supplementation of ripe guava fruit with peel reduced BMI as well as blood pressure (p<0.05) in group A, whereas the FPG, Total cholesterol, Triglycerides were found significantly increased (p<0.05). Group B registered a significant fall (p<0.05) in BMI as well as blood pressure. Fall in FPG level after guava pulp supplementation was not significant. Serum Total cholesterol, Triglycerides and Low Density Lipoprotein Cholesterol (LDLc) levels decreased significantly (p<0.05) indicating that guava pulp without peel may have a favourable effect on lipid levels and blood sugar as well. Conclusion Guava fruit without peel is more effective in lowering blood sugar as well as serum total cholesterol, triglycerides and LDLc. It increases HDLc levels also. PMID:27790420

  14. Measurement of glucose concentration by image processing of thin film slides

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Heavner, David

    2012-02-01

    Measurement of glucose concentration is important for diagnosis and treatment of diabetes mellitus and other medical conditions. This paper describes a novel image-processing based approach for measuring glucose concentration. A fluid drop (patient sample) is placed on a thin film slide. Glucose, present in the sample, reacts with reagents on the slide to produce a color dye. The color intensity of the dye formed varies with glucose at different concentration levels. Current methods use spectrophotometry to determine the glucose level of the sample. Our proposed algorithm uses an image of the slide, captured at a specific wavelength, to automatically determine glucose concentration. The algorithm consists of two phases: training and testing. Training datasets consist of images at different concentration levels. The dye-occupied image region is first segmented using a Hough based technique and then an intensity based feature is calculated from the segmented region. Subsequently, a mathematical model that describes a relationship between the generated feature values and the given concentrations is obtained. During testing, the dye region of a test slide image is segmented followed by feature extraction. These two initial steps are similar to those done in training. However, in the final step, the algorithm uses the model (feature vs. concentration) obtained from the training and feature generated from test image to predict the unknown concentration. The performance of the image-based analysis was compared with that of a standard glucose analyzer.

  15. Experimental studies on islets isolation, purification and function in rats

    PubMed Central

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021

  16. AMPK Inhibits ULK1-Dependent Autophagosome Formation and Lysosomal Acidification via Distinct Mechanisms.

    PubMed

    Nwadike, Chinwendu; Williamson, Leon E; Gallagher, Laura E; Guan, Jun-Lin; Chan, Edmond Y W

    2018-05-15

    Autophagy maintains metabolism in response to starvation, but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1), while glucose deficiency promotes AMP-activated protein kinase (AMPK). The MTORC1 and AMPK signaling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and sequestosome 1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine, and arginine levels together. In contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser555, and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid but not of glucose activated lysosomal acidification, which occurred independently of autophagy and ULK1. In addition to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy. Copyright © 2018 Nwadike et al.

  17. Factors associated with screening for glucose abnormalities after gestational diabetes mellitus: baseline cohort of the interventional IMPACT study.

    PubMed

    Bihan, H; Cosson, E; Khiter, C; Vittaz, L; Faghfouri, F; Leboeuf, D; Carbillon, L; Dauphin, H; Reach, G; Valensi, P

    2014-04-01

    Although it is important to screen women who have had gestational diabetes mellitus (GDM) for abnormal post-partum glucose levels, such testing is rarely performed. The aim of this study was to use data from the first observational phase of the IMPACT study to determine rates of screening within 6 months of delivery in a multiethnic cohort, focusing in particular on the effects of social deprivation and the risk of future diabetes. To investigate the frequency of post-partum screening, charts were analyzed, and all women attending four centres located in a deprived area who had had GDM between January 2009 and December 2010 were contacted by phone. The Evaluation of Precarity and Inequalities in Health Examination Centres (EPICES) deprivation index and Finnish Diabetes Risk Score (FINDRISK) questionnaire were also evaluated. Data were evaluable for 589 of the 719 women contacted (mean age: 33.4 ± 5.2 years; mean body mass index: 27.6 ± 5.4 kg/m(2)), and 196 (33.3%) reported having been screened. On multivariate analysis, factors associated with a lack of screening were smoking [odds ratio (OR): 0.42 (0.20-0.90), P<0.05], low consumption of fruit and vegetables [OR: 0.58 (0.39-0.82), P<0.01] and heavier offspring birth weight (P<0.05), although there were no differences in FINDRISK and EPICES scores between screened and unscreened women. One-third of women who had had GDM reported having been screened for dysglycaemia at 6 months post-partum. However, it is expected that the interventional phase of the IMPACT study will increase screening rates, especially in women with the risk factors associated with lower screening rates during this observational phase. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. The Impact of Condensed-Phase Viscosity on Multiphase Oxidation Kinetics Involving O3, NO3, and OH

    NASA Astrophysics Data System (ADS)

    Li, J.; Forrester, S. M.; Knopf, D. A.

    2017-12-01

    Organic aerosol (OA) particles are ubiquitous in the atmosphere and have a significant influence on air quality, human health, cloud formation processes and global climate. By now it is well-recognized that organic particulate species can be amorphous in nature, existing in liquid, semi-solid and solid (glassy) phase states. The phase state is modulated by particle composition and environmental conditions such as relative humidity and temperature. These modifications can influence particle viscosity and molecular diffusion and, therefore, impact the reactive uptake of gas-phase oxidants and radicals by the organic substrate. In this study, we determined the reactive uptake coefficients (γ) of O3 by canola oil, NO3 by levoglucosan (LEV) and a LEV/xylitol mixture, and OH by glucose/sulfuric acid mixtures and glucose/1,2,6-hexanetriol mixtures under dry conditions and for temperatures ranging from 293 K to 213 K. Uptake coefficients have been measured employing a chemical ionization mass spectrometer coupled to a temperature-controlled rotating-wall flow reactor. Glass transition temperatures (Tg) of applied substrates were estimated by the Gordon-Taylor equation. Phase states were qualitatively probed via poking experiment using a temperature-controlled cooling stage. Shattering of the substrates indicated the formation of a glassy state. Results show a significant impact of condensed phase state on reactive uptake kinetics whereby γ changed most profoundly around estimated Tg. For example, γ decreases from 6.5×10-4 to 1.9 ×10-5 for O3 uptake by canola oil and from 8.3×10-4 to 3.1×10-4 for NO3 uptake by the LEV/xylitol mixture, respectively. The decrease in γ will be discussed with regard to phase state, desorption lifetime, and Arrhenius temperature dependence of reaction rates. First results of OH uptakes at low temperatures are presented, together with a discussion of the relevant atmospheric implications.

  19. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  20. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model.

    PubMed

    Stadler, Michaela; Nuyens, Vincent; Boogaerts, Jean G

    2007-01-01

    Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.

  1. FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics.

    PubMed

    Fuller, Miles; Li, Xiaoran; Fisch, Robert; Bughara, Moneb; Wicksteed, Barton; Kovatcheva-Datchary, Petia; Layden, Brian T

    2016-01-01

    During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.

  2. The Shape of the Glucose Response Curve During an Oral Glucose Tolerance Test Heralds Biomarkers of Type 2 Diabetes Risk in Obese Youth

    PubMed Central

    Kim, Joon Young; Michaliszyn, Sara F.; Nasr, Alexis; Lee, SoJung; Tfayli, Hala; Hannon, Tamara; Hughan, Kara S.; Bacha, Fida; Arslanian, Silva

    2016-01-01

    OBJECTIVE The shape of the glucose response curve during an oral glucose tolerance test (OGTT), monophasic versus biphasic, identifies physiologically distinct groups of individuals with differences in insulin secretion and sensitivity. We aimed to verify the value of the OGTT-glucose response curve against more sensitive clamp-measured biomarkers of type 2 diabetes risk, and to examine incretin/pancreatic hormones and free fatty acid associations in these curve phenotypes in obese adolescents without diabetes. RESEARCH DESIGN AND METHODS A total of 277 obese adolescents without diabetes completed a 2-h OGTT and were categorized to either a monophasic or a biphasic group. Body composition, abdominal adipose tissue, OGTT-based metabolic parameters, and incretin/pancreatic hormone levels were examined. A subset of 106 participants had both hyperinsulinemic-euglycemic and hyperglycemic clamps to measure in vivo insulin sensitivity, insulin secretion, and β-cell function relative to insulin sensitivity. RESULTS Despite similar fasting and 2-h glucose and insulin concentrations, the monophasic group had significantly higher glucose, insulin, C-peptide, and free fatty acid OGTT areas under the curve compared with the biphasic group, with no differences in levels of glucagon, total glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and pancreatic polypeptide. Furthermore, the monophasic group had significantly lower in vivo hepatic and peripheral insulin sensitivity, lack of compensatory first and second phase insulin secretion, and impaired β-cell function relative to insulin sensitivity. CONCLUSIONS In obese youth without diabetes, the risk imparted by the monophasic glucose curve compared with biphasic glucose curve, independent of fasting and 2-h glucose and insulin concentrations, is reflected in lower insulin sensitivity and poorer β-cell function, which are two major pathophysiological biomarkers of type 2 diabetes in youth. PMID:27293201

  3. Astroglial pentose phosphate pathway rates in response to high-glucose environments

    PubMed Central

    Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro

    2012-01-01

    ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409

  4. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP-1 agonist or glucagon antagonist usage. PMID:27347379

  5. Affinity adsorption of glucose degradation products improves the biocompatibility of conventional peritoneal dialysis fluid.

    PubMed

    Ishikawa, Naoyoshi; Miyata, Toshio; Ueda, Yasuhiko; Inagi, Reiko; Izuhara, Yuko; Yuzawa, Hiroko; Onogi, Hiroshi; Nishina, Makoto; Nangaku, Masaomi; Van Ypersele De Strihou, Charles; Kurokawa, Kiyoshi

    2003-01-01

    Reactive carbonyl compounds (RCOs) present in peritoneal dialysis (PD) fluid have been incriminated in the progressive deterioration of the peritoneal membrane in long-term PD patients. They are initially present in fresh conventional heat-sterilized glucose PD fluid and are supplemented during dwell time by the diffusion of blood RCOs within the peritoneal cavity. In the present study, RCO entrapping agents were immobilized on affinity beads to adsorb RCOs both in fresh PD fluid and in PD effluent. The RCO trapping potential of various compounds was assessed in vitro first by dissolving them in the tested fluid and subsequently after coupling with either epoxy- or amino-beads. The tested fluids include fresh heat-sterilized glucose and non-glucose PD fluids, and PD effluent. Their RCOs contents, that is, glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG), formaldehyde, 5-hydroxymethylfuraldehyde, acetaldehyde, and 2-furaldehyde were monitored by reverse-phase high-pressure liquid chromatography. The biocompatibility of PD fluid was assessed by a cytotoxic assay with either human epidermoid cell line A431 cells or with primary cultured human peritoneal mesothelial cells. Among the tested RCO entrapping agents, hydrazine coupled to epoxy-beads proved the most efficient. It lowered the concentrations of three dicarbonyl compounds (GO, MGO, and 3-DG) and those of aldehydes present in fresh heat-sterilized glucose PD fluid toward the low levels observed in filter-sterilized glucose PD fluid. It did not change the glucose and electrolytes concentration of the PD fluid but raised its pH from 5.2 to 5.9. Hydrazine-coupled epoxy-bead also lowered the PD effluent content of total RCOs, measured by the 2,4-dinitrophenylhydrazone (DNPH) method. The cytotoxicity of heat-sterilized PD fluid incubated with hydrazine-coupled epoxy-beads was decreased to the level observed in filter-sterilized PD fluid as the result of the raised pH and the lowered RCOs levels. Hydrazine-coupled epoxy-beads reduce the levels of a variety of dicarbonyls and aldehydes present in heat-sterilized glucose PD fluid to those in filter-sterilized PD fluid, without altering glucose, lactate, and electrolytes contents but with a rise in pH. Incubated with PD effluents, it is equally effective in reducing the levels of serum-derived RCOs. RCO entrapping agents immobilized on affinity beads improve in vitro the biocompatibility of conventional heat-sterilized glucose PD fluid. Their clinical applicability requires further studies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Nakamichi, Yoko

    We simultaneously analyzed insulin granule fusion with insulin fused to green fluorescent protein and the subplasma membrane Ca{sup 2+} concentration ([Ca{sup 2+}]{sub PM}) with the Ca{sup 2+} indicator Fura Red in rat {beta} cells by dual-color total internal reflection fluorescence microscopy. We found that rapid and marked elevation in [Ca{sup 2+}]{sub PM} caused insulin granule fusion mostly from previously docked granules during the high KCl-evoked release and high glucose-evoked first phase release. In contrast, the slow and sustained elevation in [Ca{sup 2+}]{sub PM} induced fusion from newcomers translocated from the internal pool during the low KCl-evoked release and glucose-evoked secondmore » phase release. These data suggest that the pattern of the [Ca{sup 2+}]{sub PM} rise directly determines the types of fusing granules.« less

  7. Assessing the effectiveness of a 3-month day-and-night home closed-loop control combined with pump suspend feature compared with sensor-augmented pump therapy in youths and adults with suboptimally controlled type 1 diabetes: a randomised parallel study protocol.

    PubMed

    Bally, Lia; Thabit, Hood; Tauschmann, Martin; Allen, Janet M; Hartnell, Sara; Wilinska, Malgorzata E; Exall, Jane; Huegel, Viki; Sibayan, Judy; Borgman, Sarah; Cheng, Peiyao; Blackburn, Maxine; Lawton, Julia; Elleri, Daniela; Leelarathna, Lalantha; Acerini, Carlo L; Campbell, Fiona; Shah, Viral N; Criego, Amy; Evans, Mark L; Dunger, David B; Kollman, Craig; Bergenstal, Richard M; Hovorka, Roman

    2017-07-13

    Despite therapeutic advances, many individuals with type 1 diabetes are unable to achieve tight glycaemic target without increasing the risk of hypoglycaemia. The objective of this study is to determine the effectiveness of a 3-month day-and-night home closed-loop glucose control combined with a pump suspend feature, compared with sensor-augmented insulin pump therapy in youths and adults with suboptimally controlled type 1 diabetes. The study adopts an open-label, multi-centre, multi-national (UK and USA), randomised, single-period, parallel design and aims for 84 randomised patients. Participants are youths (6-21 years) or adults (>21 years) with type 1 diabetes treated with insulin pump therapy and suboptimal glycaemic control (glycated haemoglobin (HbA1c) ≥7.5% (58 mmol/mol) and ≤10% (86 mmol/mol)). Following a 4-week run-in period, eligible participants will be randomised to a 3-month use of automated closed-loop insulin delivery combined with pump suspend feature or to sensor-augmented insulin pump therapy. Analyses will be conducted on an intention-to-treat basis. The primary outcome is the time spent in the target glucose range from 3.9 to 10.0 mmol/L based on continuous glucose monitoring levels during the 3-month free-living phase. Secondary outcomes include HbA1c at 3 months, mean glucose, time spent below and above target; time with glucose levels <3.5 and <2.8 mmol/L; area under the curve when sensor glucose is <3.5 mmol/L, time with glucose levels >16.7 mmol/L, glucose variability; total, basal and bolus insulin dose and change in body weight. Participants' and their families' perception in terms of lifestyle change, daily diabetes management and fear of hypoglycaemia will be evaluated. Ethics/institutional review board approval has been obtained. Before screening, all participants/guardians will be provided with oral and written information about the trial. The study will be disseminated by peer-reviewed publications and conference presentations. NCT02523131; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes.

    PubMed

    Goldberg, R B; Einhorn, D; Lucas, C P; Rendell, M S; Damsbo, P; Huang, W C; Strange, P; Brodows, R G

    1998-11-01

    The objective of the study was to assess the efficacy and safety of repaglinide compared with placebo in the treatment of patients with type 2 diabetes. This was a phase II multicenter, double-blind, placebo-controlled, randomized, dose-adjustment and maintenance trial. After screening and a 2-week washout period, 99 patients were randomized to receive either repaglinide (n = 66) or placebo (n = 33). Patients underwent 6 weeks of dose adjustment followed by 12 weeks of dose maintenance. Fasting and stimulated glycosylated hemoglobin (HbA1c), plasma glucose, insulin, and C-peptide were measured at predetermined intervals. Adverse events and hypoglycemic episodes were recorded. From baseline to last visit, mean HbA1c decreased from 8.5 to 7.8% in patients treated with repaglinide and increased from 8.1 to 9.3% in patients receiving placebo, with a statistically significant difference of - 1.7% (P < 0.0001) between treatment groups at the last visit. Mean fasting plasma glucose and postprandial glucose increased in patients receiving placebo and decreased in patients treated with repaglinide, with statistically significant (P < 0.01) differences between groups at the last visit. Concentrations of fasting and postprandial insulin and C-peptide were lower at the last visit compared with baseline for patients treated with placebo and higher for patients treated with repaglinide, and the differences between groups were statistically significant (P < 0.05). Overall, repaglinide was well tolerated. This study demonstrated that repaglinide was safe and efficacious in lowering blood glucose concentrations. In addition to overall improvement in glycemic control noted with repaglinide in both sulfonylurea-treated patients and oral hypoglycemic agent-naive patients, repaglinide had a potent glucose-lowering effect in the postprandial period.

  9. SGLT2 inhibitors in the pipeline for the treatment of diabetes mellitus in Japan.

    PubMed

    Ito, Hiroyuki; Shinozaki, Masahiro; Nishio, Shinya; Abe, Mariko

    2016-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been available for the treatment of type 2 diabetes (T2DM) in Japan since April 2014. The prescription rate in Japan is low in comparison to Western countries. We summarize the results obtained from the phase 3 clinical trials and clinical studies involving Japanese T2DM patients. We also discuss the current situation and the future prospects of SGLT2 inhibitors in Japan. Unexpected adverse events, such as cerebral infarction and diabetic ketoacidosis have been reported from clinics shortly after the initiation of SGLT2 inhibitor treatment. However, the reductions in blood glucose levels and body weight have been demonstrated in phase 3 trials using 6 types of SGLT2 inhibitors, while observational studies of Japanese T2DM patients, which were performed in the clinical setting, showed that the incidence of adverse drug reactions, such as severe hypoglycemia, was low. SGLT2 inhibitors are also considered to be effective for treating Japanese patients with T2DM. When prescribing SGLT2 inhibitors, it is necessary to ensure that they are used appropriately because the Japanese T2DM patient population has a high proportion of elderly individuals and a high incidence of cerebrovascular disease.

  10. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation.

    PubMed

    Wei, Wenjie; Yu, Zhiyuan; Xie, Minjie; Wang, Wei; Luo, Xiang

    2017-01-01

    Growing evidence has revealed that brain pericytes are multifunctional and contribute to the pathogenesis of a number of neurological disorders. However, the role of pericytes in cerebral ischemia, and especially the pathophysiological alterations in pericytes, remains unclear. In the present study, our aim was to determine whether the proliferation of pericytes is affected by cerebral ischemia and, if so, to identify the underlying mechanism(s). Cultured brain pericytes subjected to oxygen-glucose deprivation (OGD) were used as our model of cerebral ischemia; the protein expression levels of cyclin D1, cyclin E, cdk4, and cyclin B1 were determined by Western blot analysis, and cell cycle analysis was assessed by flow cytometry. The OGD treatment reduced the brain pericyte proliferation by causing G2/M phase arrest and downregulating the protein levels of cyclin D1, cyclin E, cdk4, and cyclin B1. Further studies demonstrated a simultaneous decrease in the activity of extracellular regulated protein kinases (ERK), suggesting a critical role of the ERK signaling cascade in the inhibition of OGD-induced pericyte proliferation. We suggest that OGD inhibition of the proliferation of brain pericytes is associated with the inactivation of the ERK signaling pathway, which arrests them in the G2/M phase.

  11. Influence of Chronic Exposure to Simulated Shift Work on Disease and Longevity in Disease-Prone Inbred Mice

    PubMed Central

    Toth, Linda A; Trammell, Rita A; Liberati, Teresa; Verhulst, Steve; Hart, Marcia L; Moskowitz, Jacob E; Franklin, Craig

    2017-01-01

    Shift work (SW) is viewed as a risk factor for the development of many serious health conditions, yet prospective studies that document such risks are rare. The current study addressed this void by testing the hypothesis that long-term exposure to repeated diurnal phase shifts, mimicking SW, will accelerate disease onset or death in inbred mice with genetic risk of developing cancer, diabetes, or autoimmune disease. The data indicate that 1) life-long exposure to simulated SW accelerates death in female cancer-prone AKR/J mice; 2) a significant proportion of male NON/ShiLtJ mice, which have impaired glucose tolerance but do not normally progress to type 2 diabetes, develop hyperglycemia, consistent with diabetes (that is, blood glucose 250 mg/dL or greater) after exposure to simulated SW for 8 wk; and 3) MRL/MpJ mice, which are prone to develop autoimmune disease, showed sex-related acceleration of disease development when exposed to SW as compared with mice maintained on a stable photocycle. Thus, long-term exposure to diurnal phase shifts that mimic SW reduces health or longevity in a wide variety of disease models. Our approach provides a simple way to assess the effect of chronic diurnal disruption in disease development in at-risk genotypes. PMID:28381312

  12. Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy.

    PubMed

    Pivovarova, Aleksandra I; MacGregor, Gordon G

    2018-02-01

    This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Quantification of β-cell insulin secretory function using a graded glucose infusion with C-peptide deconvolution in dysmetabolic, and diabetic cynomolgus monkeys.

    PubMed

    Wang, Xiaoli; Hansen, Barbara C; Shi, Da; Fang, Yupeng; Du, Fenglai; Wang, Bingdi; Chen, Yaxiong Michael; Gregoire, Francine M; Wang, Yi-Xin Jim

    2013-07-25

    Quantitation of β-cell function is critical in better understanding of the dynamic interactions of insulin secretion, clearance and action at different phases in the progression of diabetes. The present study aimed to quantify β-cell secretory function independently of insulin sensitivity in the context of differential metabolic clearance rates of insulin (MCRI) in nonhuman primates (NHPs). Insulin secretion rate (ISR) was derived from deconvolution of serial C-peptide concentrations measured during a 5 stage graded glucose infusion (GGI) in 12 nondiabetic (N), 8 prediabetic or dysmetabolic (DYS) and 4 overtly diabetic (DM) cynomolgus monkeys. The characterization of the monkeys was based on the fasting glucose and insulin concentrations, glucose clearance rate measured by intravenous glucose tolerance test, and insulin resistance indices measured in separate experiments. The molar ratio of C-peptide/insulin (C/I) was used as a surrogate index of hepatic MCRI. Compared to the N monkeys, the DYS with normal glycemia and hyperinsulinemia had significantly higher basal and GGI-induced elevation of insulin and C-peptide concentrations and lower C/I, however, each unit of glucose-stimulated ISR increment was not significantly different from that in the N monkeys. In contrast, the DM monkeys with β-cell failure and hyperglycemia had a depressed GGI-stimulated ISR response and elevated C/I. The present data demonstrated that in addition to β-cell hypersecretion of insulin, reduced hepatic MCRI may also contribute to the development of hyperinsulinemia in the DYS monkeys. On the other hand, hyperinsulinemia may cause the saturation of hepatic insulin extraction capacity, which in turn reduced MCRI in the DYS monkeys. The differential contribution of ISR and MCRI in causing hyperinsulinemia provides a new insight into the trajectory of β-cell dysfunction in the development of diabetes. The present study was the first to use the GGI and C-peptide deconvolution method to quantify the β-cell function in NHPs.

  14. The effect of abdominal obesity in patients with polycystic ovary syndrome on metabolic parameters.

    PubMed

    Franik, G; Bizoń, A; Włoch, S; Pluta, D; Blukacz, Ł; Milnerowicz, H; Madej, P

    2017-11-01

    Polycystic ovarian syndrome and obesity contribute to the metabolic complications for women of reproductive age. The aim of present study was to analyze the effect of abdominal obesity expressed using waist/hip ratio (WHR) in patients with polycystic ovary syndrome on metabolic parameters. The study included 659 women with PCOS with WHR <0.8 and ≥0.8 aged between 17 and 44 years. Patients were tested for follicular stimulating hormone, luteinizing hormone, 17-beta-estradiol, dehydroepiandrosterone sulfate, androstenedione, sex hormone binding globulin, and total lipid profile during the follicular phase (within 3 and 5 days of their menstrual cycle). Also, fasting glucose and insulin concentrations, and after, oral-glucose glucose administration, were determinate. De Ritis and Castelli index I and II were calculated. Women with WHR ≥0.8 had higher concentration of glucose and  insulin (both fasting and after 120 min of oral administration of 75 g glucose), as well as HOMA-IR value, than women with WHR value < 0.8. Also, abdominal obesity disorders hormonal parameters. Higher free androgen index and lower concentration of sex hormone binding globulin and dehydroepiandrosterone sulfate were found in female with WHR ≥ 0.8. Follicular stimulating hormone, luteinizing hormone, androstenedione, and 17-beta-estradiol, were on similar level in both groups. Elevation in triglycerides, total cholesterol, and low-density lipoprotein levels, as well as decrease in high density lipoprotein level in serum of women with WHR value ≥ 0.8, were found when compared to women with WHR < 0.8. A statistically significant correlation was found between WHR value and glucose, insulin, sex hormone binding globulin, free androgen index and lipid profile parameters. Abdominal obesity causes additional disorders in metabolic and hormonal parameters in PCOS women, which confirmed changes in analyzed parameters between PCOS women with WHR < 0.8 and WHR ≥ 0.8 and statistically significant correlations between WHR value and analyzed parameters.

  15. A randomized, double-blind, placebo-controlled study of the effect of ezetimibe on glucose metabolism in subjects with type 2 diabetes mellitus and hypercholesterolemia.

    PubMed

    Saito, Itori; Azuma, Kyoichi; Kakikawa, Taro; Oshima, Nobuyuki; Hanson, Mary E; Tershakovec, Andrew M

    2015-05-01

    Recent evidence points to an increased incidence of new-onset diabetes and a negative impact on glucose parameters with statin use. This study examined the safety of ezetimibe vs placebo for change from baseline to week 24 in HbA1c (primary endpoint), glycoalbumin, and fasting plasma glucose (secondary endpoints) in Japanese subjects with type 2 diabetes and hypercholesterolemia. This was a randomized, double-blind, placebo-controlled, parallel-group, multi-site trial. Adults with type 2 diabetes and hypercholesterolemia whose LDL-C measured <140 mg/dl (subjects receiving lipid-lowering drugs) or <160 mg/dl (subjects not receiving lipid-lowering drugs) at the start of the screening phase, were randomized after a 5-week wash-out period to ezetimibe 10 mg or placebo (1:1) for 24 weeks. Changes in HbA1c, glycoalbumin and fasting plasma glucose from baseline to week 24 were evaluated. The non-inferiority margin was set at 0.5% for HbA1c. Overall, 152 subjects were randomized (75 to ezetimibe and 77 to placebo). From baseline to 24 weeks, HbA1c significantly increased in both the ezetimibe and placebo groups (between-treatment difference 0.08 [95% CI: -0.07 to 0.23]). Ezetimibe was statistically non-inferior to placebo. At 24 weeks, the mean change from baseline in glycoalbumin levels (between-treatment differences 0.00 [95% CI: -0.47, 0.47]) and fasting plasma glucose (between-treatment differences -4.8 [95% CI: -12.1, 2.1]) were similar in both treatment groups. These results suggest that ezetimibe 10 mg does not result in dysregulation of glucose metabolism in Japanese patients with type 2 diabetes and hypercholesterolemia over 24 weeks of treatment. ClinicalTrials.gov identifier NCT01611883 .

  16. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    PubMed

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe 2 O 3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H 2 O 2 , an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    PubMed Central

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  18. Long-term treatment with EXf, a peptide analog of Exendin-4, improves β-cell function and survival in diabetic KKAy mice.

    PubMed

    Hou, Guo-jiang; Li, Cai-na; Liu, Shuai-nan; Huan, Yi; Liu, Quan; Sun, Su-juan; Li, Lin-yi; Hou, Shao-cong; Shen, Zhu-fang

    2013-02-01

    EXf is a C-terminally truncated fragment of Exendin-4 with two amino acid substitutions. Previous studies showed that EXf controls plasma glucose level acting as a glucagon-like peptide 1 (GLP-1) receptor agonist. The purpose of this study was to evaluate the effects of EXf on β-cell function and survival in diabetic KKAy mice. EXf treatment significantly improved the glucose intolerance and reduced non-fasting and fasting plasma glucose levels, as well as plasma triglyceride levels in diabetic KKAy mice. In hyperglycemic clamp test, EXf-treated mice displayed an increased glucose infusion rate and first-phase insulin secretion. Treatment with EXf also led to a significant restoration of islet morphology, an increase in Ki67 expression in β-cells, and a reduction in the number of TUNEL positive β-cells. In the pancreas, comparative transcription analysis showed up-regulation of Akt1. The up-regulation of phosphorylated Akt1 was confirmed by Western blot, and changes in the protein levels of members of the Akt1 pathway, such as PI3K, Bim, Bcl-2, Bax, Caspase-3, and Caspase-9, PDX-1, were observed as well. Therefore, EXf treatment could improve β-cell function and survival in diabetic KKAy mice, likely as a result of islet morphology restoration, stimulation of β-cell proliferation, and inhibition of β-cell apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Carbon and Hydrogen Isotope Fractionation in Lipid Biosynthesis of Piezophilic Bacteria - Implications for Studying Microbial Metabolism and Carbon Cycle in Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Fang, J.; Dasgupta, S.; Zhang, L.; Li, J.; Kato, C.; Bartlett, D.

    2012-12-01

    Piezophiles are pressure-loving microorganisms, which reproduce preferentially or exclusively at pressures greater than atmospheric pressure. In this study, we examined stable carbon and hydrogen isotope fractionation in fatty acid biosynthesis of a piezophilic bacterium Moritella japonica DSK1. The bacterium was grown to stationary phase at hydrstatic pressures of 0.1, 10, 20, and 50 MPa (mega-passcal) in media prepared using sterilized natural seawater supplied with glucose as the sole carbon source. Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon and hydrogen isotope fractionations relative to substrates. Average carbon isotope fractionation (delta(FA-glucose)) at high pressures was much higher than that for surface bacteria: -15.7, -15.3, and -18.3‰ at 10, 20, and 50 MPa, respectively. For deltaD, fatty acids are more depleted in D relative to glucose than to water. Monounsaturated fatty acids are more depleted in D than corresponding saturated fatty acids by as much as 36‰. Polyunsaturated fatty acids are most depleted in D. For example, DHA (22:6omega3) has the most negative hydrogen isotope ratio (-170.91‰) (delta(FA-glucose) = -199, delta(FA-water) = -176). The observed isotope effects can be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to operating of two independent lipid biosynthetic pathways of the piezophilic bacteria. Given that most of the biosphere lives under high pressures, our results have important important implications for studying microbial metabolism and carbon cycle in the deep biosphere.

  20. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors.

    PubMed

    Bohacz, Justyna

    2017-02-15

    Environmentally friendly strategies of waste management are both part of legal solutions currently in place and a focus of interest worldwide. Large-scale composting plants are set up across various regions while home composting is becoming increasingly popular. A variety of microbial groups are successively at work during composting and enzymatic activities detected in the composting mass fluctuate accordingly. Changes in the activities of oxidoreductases and hydrolases, i.e. glucose oxidase, horseradish peroxidase, lignin peroxidase, laccase, xylanase, superoxide dismutase and keratinase, low-molecular weight compounds, i.e. methoxyphenolic and hydroxyphenolic compounds, and the relative level of superoxide radicals and glucose were determined periodically in water extracts of composts to investigate the process of biochemical transformations of ligninocellulose in relation to biothermal phases and to identify a potential priming effect in two composts containing different ratios of lignocellulosic waste and chicken feathers. Composting was conducted for 30weeks. An important aim of the study was to demonstrate that a positive priming effect was induced during composting of a variety of lignocellulosic waste types using native keratin (chicken feathers) as a source of N. The effect was more evident in compost containing grass, which was related to a more rapid depletion of easily available sources of C and energy (glucose) during composting. Ligninolytic enzymes known to biodegrade recalcitrant organic matter were induced in subsequent biothermal phases of composting. Compost I enriched with grass (pine bark, grass, sawdust and chicken feathers) exhibited a higher enzymatic activity than compost II which did not contain any grass but which had a greater number of hardly-degradable components (pine bark, wheat straw, sawdust, chicken feathers). Similar observations were made for the concentrations of low-molecular weight compounds. The enzymes activities and concentration of low-molecular weight compounds listed above can be used to estimate the biodegradation of lignocellulose during composting. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hyperglycemic clamp and oral glucose tolerance test for 3-year prediction of clinical onset in persistently autoantibody-positive offspring and siblings of type 1 diabetic patients.

    PubMed

    Balti, Eric V; Vandemeulebroucke, Evy; Weets, Ilse; Van De Velde, Ursule; Van Dalem, Annelien; Demeester, Simke; Verhaeghen, Katrijn; Gillard, Pieter; De Block, Christophe; Ruige, Johannes; Keymeulen, Bart; Pipeleers, Daniel G; Decochez, Katelijn; Gorus, Frans K

    2015-02-01

    In preparation of future prevention trials, we aimed to identify predictors of 3-year diabetes onset among oral glucose tolerance test (OGTT)- and hyperglycemic clamp-derived metabolic markers in persistently islet autoantibody positive (autoAb(+)) offspring and siblings of patients with type 1 diabetes (T1D). The design is a registry-based study. Functional tests were performed in a hospital setting. Persistently autoAb(+) first-degree relatives of patients with T1D (n = 81; age 5-39 years). We assessed 3-year predictive ability of OGTT- and clamp-derived markers using receiver operating characteristics (ROC) and Cox regression analysis. Area under the curve of clamp-derived first-phase C-peptide release (AUC(5-10 min); min 5-10) was determined in all relatives and second-phase release (AUC(120-150 min); min 120-150) in those aged 12-39 years (n = 62). Overall, the predictive ability of AUC(5-10 min) was better than that of peak C-peptide, the best predictor among OGTT-derived parameters (ROC-AUC [95%CI]: 0.89 [0.80-0.98] vs 0.81 [0.70-0.93]). Fasting blood glucose (FBG) and AUC(5-10 min) provided the best combination of markers for prediction of diabetes within 3 years; (ROC-AUC [95%CI]: 0.92 [0.84-1.00]). In multivariate Cox regression analysis, AUC(5-10 min)) (P = .001) was the strongest independent predictor and interacted significantly with all tested OGTT-derived parameters. AUC(5-10 min) below percentile 10 of controls was associated with 50-70% progression to T1D regardless of age. Similar results were obtained for AUC(120-150 min). Clamp-derived first-phase C-peptide release can be used as an efficient and simple screening strategy in persistently autoAb(+) offspring and siblings of T1D patients to predict impending diabetes.

  2. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with ({sup 14}C)glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant ({sup 14}C)glucose release) by either glucagon or norepinephrine. Aftermore » the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, ({sup 14}C)glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6.« less

  3. Characterization of the ZDSD Rat: A Translational Model for the Study of Metabolic Syndrome and Type 2 Diabetes

    PubMed Central

    Peterson, Richard G.; de Winter, Willem; Huebert, Norman; Hansen, Michael K.

    2015-01-01

    Metabolic syndrome and T2D produce significant health and economic issues. Many available animal models have monogenic leptin pathway mutations that are absent in the human population. Development of the ZDSD rat model was undertaken to produce a model that expresses polygenic obesity and diabetes with an intact leptin pathway. A lean ZDF rat with the propensity for beta-cell failure was crossed with a polygenetically obese Crl:CD (SD) rat. Offspring were selectively inbred for obesity and diabetes for >30 generations. In the current study, ZDSD rats were followed for 6 months; routine clinical metabolic endpoints were included throughout the study. In the prediabetic metabolic syndrome phase, ZDSD rats exhibited obesity with increased body fat, hyperglycemia, insulin resistance, dyslipidemia, glucose intolerance, and elevated HbA1c. As disease progressed to overt diabetes, ZDSD rats demonstrated elevated glucose levels, abnormal oral glucose tolerance, increases in HbA1c levels, reductions in body weight, increased insulin resistance with decreasing insulin levels, and dyslipidemia. The ZDSD rat develops prediabetic metabolic syndrome and T2D in a manner that mirrors the development of metabolic syndrome and T2D in humans. ZDSD rats will provide a novel, translational animal model for the study of human metabolic diseases and for the development of new therapies. PMID:25961053

  4. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica.

    PubMed

    Squillaci, Giuseppe; Finamore, Rosario; Diana, Paola; Restaino, Odile Francesca; Schiraldi, Chiara; Arbucci, Salvatore; Ionata, Elena; La Cara, Francesco; Morana, Alessandra

    2016-01-01

    We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.

  5. Post-glucose load changes of plasma key metabolite and insulin concentrations during pregnancy and lactation in ewes with different susceptibility to pregnancy toxaemia.

    PubMed

    Duehlmeier, R; Fluegge, I; Schwert, B; Ganter, M

    2013-10-01

    Insulin resistance during late gestation may act as a predisposing factor of ovine pregnancy toxaemia (OPT). To evaluate the insulin action on energy metabolism in ewes with different susceptibilities to OPT, intravenous glucose tolerance tests (1 mmol glucose/kg body weight) were performed in 5.6 ± 0.7 year old, slightly underfed German Blackheaded Mutton ewes [high-risk (HR) ewes] and 2.5 year old, overnourished Finnish Landrace ewes [low-risk (LR) ewes] during mid and late pregnancy, during early lactation and during the dry period. Plasma samples were analysed for glucose, insulin, non-esterified fatty acids (NEFA) and β-hydroxybutyrate (β-HB). The glucose elimination rate and the glucose-stimulated first-phase insulin secretion were significantly (p < 0.05) lower in the HR, in relation to the LR group combining the data of all gestational stages. The basal rate of lipolysis was significantly increased in the HR ewes during late pregnancy, but the NEFA clearance after the glucose load was similar in both groups during all reproductive stages. Plasma β-HB concentrations decreased only in the LR ewes after the glucose load during late pregnancy. Results indicate an insulin resistance in the HR ewes regarding the glucose utilization and the ketone body formation during late pregnancy. The insulin resistance in the HR ewes may represent one predisposing factor responsible for the susceptibility to OPT. Further scientific work is necessary to elucidate whether this insulin resistance was due to breed, age or nutritional state. © 2012 Blackwell Verlag GmbH.

  6. Identification of key regulators in glycogen utilization in E. coli based on the simulations from a hybrid functional Petri net model.

    PubMed

    Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi

    2013-01-01

    Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.

  7. ["Entero-insular axis" and regulation of blood sugar and insulin levels following oral glucose loading].

    PubMed

    Kuznetsov, B G

    1978-11-01

    The mineral water Essentuki 17 administered per so with glucose exerted a modifying effect on the regulation of glycaemia and insulinaemia in intact rats. This effect undergoes a few phases of changing and disappears by the 30th day. Under conditions of this adaptation, the glycaemia regulation is somewhat worsening. After i.v. administration of glucose during this period the regulation of glycaemia and insulinaemia remains unaltered. This suggests that the mineral water exerts its biological effect, mainly, on the entero-insular axis system (Unger and Eisentraut, 1969) and that the modifying effect is due not to a concrete complex of the mineral water electrolytes but rather to the unspecific factor of "perturbation" in the enteral medium.

  8. The pentose cycle (hexose monophosphate shunt). Rigorous evaluation of limits to the flux from glucose using 14CO2 data, with applications to peripheral ganglia of chicken embryos.

    PubMed

    Larrabee, M G

    1989-09-25

    The difference between the 14CO2 outputs from [1-14C]glucose and [6-14C]glucose has frequently been used as a measure of activity in the hexose monophosphate shunt without considering the exact significance of this difference. Assuming only 1) that all C-1 of glucose is released to CO2 on entry to the shunt and 2) that the shunt provides the only mechanism for increasing C-1 of glucose over C-6 of glucose in CO2, it is very simply shown that the flux from glucose to the shunt is not less than the difference between the 14CO2 outputs at any time after adding labeled glucose nor more than the steady-state output of 14CO2 from [1-14C]glucose. Moreover, absence of a 14CO2 difference does not prove that the shunt is absent or inactive. The value for the minimum flux rate can be maximized by following the time course of the C-1 - C-6 difference in 14CO2 during the transient phase before isotopic equilibration is complete, but useful values can be obtained when the time course is not available. The above relationships are applicable to gluconeogenic as well as non-gluconeogenic tissues. Applications of these relationships to peripheral ganglia from chicken embryos, in which the 14CO2 difference passes through a maximum during incubation, show that 27-37% of the glucose taken up enters the pentose cycle in sympathetic ganglia from 10-day-old embryos, while 17-36% enters the cycle in 15-day-old dorsal root ganglia.

  9. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients

    PubMed Central

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok

    2015-01-01

    BACKGROUND/OBJECTIVES Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes. PMID:25671068

  10. Designing and facilely synthesizing a series of cobalt nitride (Co4N) nanocatalysts as non-enzymatic glucose sensors: A comparative study toward the influences of material structures on electrocatalytic activities.

    PubMed

    Liu, Tingting; Li, Mian; Guo, Liping

    2018-05-01

    Designing high-efficiency electrocatalysts for glucose concentration detection plays a pivotal role in developing various non-enzymatic glucose detection devices. Herein, we have successfully designed and synthesized various cobalt nitrides (Co 4 N) by using different weak bases (i.e. hexamethylenetetramine (HMT), urea, and ammonium hydroxide (AH)) through nitridation treatment in ammonia (NH 3 ) atmosphere. Physical characterization results demonstrate that Co 4 N-NSs (nanosheets) with vast meso/macropores and large BET surface are successfully constructed once adding carbon paper and HMT into precursors. As the synergistic effect of metallic character of Co 4 N phase , excellent electroconductibility of pyrolytic carbon, and large surface area, Co 4 N-NSs surfaces can form more Co 4+ active sites in electrochemical reaction processes. Meanwhile, the abundant meso/macroporous structures constructed in Co 4 N-NSs further promoted its mass transfer ability. Benefitting from the above mentioned advantages, Co 4 N-NSs therefore exhibit more excellent glucose oxidation ability than another three control samples (i.e. Co 4 N-HMT, Co 4 N-Urea and Co 4 N-AH). When used for glucose detection, the optimal Co 4 N-NSs display excellent detection parameters as well, such as: a wide linear range of 0.6-10.0mM, a large sensitivity of 1137.2uAcm -2 mM -1 glucose, a low detection limit of 0.1µM, a small response time of 1.7s, good reproducibility and stability, and the excellent anti-interference to other electroactive molecules and Cl - . Upon utilized for measuring glucose concentrations in human blood serum samples, the detection results on Co 4 N-NSs are accurate and satisfying as well. This work opens a new possibility for boosting electrochemical catalysis abilities of Co 4 N samples by the structure design. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Combining Short-Term Interval Training with Caloric Restriction Improves ß-Cell Function in Obese Adults.

    PubMed

    Francois, Monique E; Gilbertson, Nicole M; Eichner, Natalie Z M; Heiston, Emily M; Fabris, Chiara; Breton, Marc; Mehaffey, J Hunter; Hassinger, Taryn; Hallowell, Peter T; Malin, Steven K

    2018-06-03

    Although low-calorie diets (LCD) improve glucose regulation, it is unclear if interval exercise (INT) is additive. We examined the impact of an LCD versus LCD + INT training on ß-cell function in relation to glucose tolerance in obese adults. Twenty-six adults (Age: 46 ± 12 year; BMI 38 ± 6 kg/m²) were randomized to 2-week of LCD (~1200 kcal/day) or energy-matched LCD + INT (60 min/day alternating 3 min at 90 and 50% HRpeak). A 2 h 75 g oral glucose tolerance test (OGTT) was performed. Insulin secretion rates (ISR) were determined by deconvolution modeling to assess glucose-stimulated insulin secretion ([GSIS: ISR/glucose total area under the curve (tAUC)]) and ß-cell function (Disposition Index [DI: GSIS/IR]) relative to skeletal muscle (Matsuda Index), hepatic (HOMA-IR) and adipose (Adipose-IR fasting ) insulin resistance (IR). LCD + INT, but not LCD alone, reduced glucose and total-phase ISR tAUC (Interactions: p = 0.04 and p = 0.05, respectively). Both interventions improved skeletal muscle IR by 16% ( p = 0.04) and skeletal muscle and hepatic DI (Time: p < 0.05). Improved skeletal muscle DI was associated with lower glucose tAUC ( r = -0.57, p < 0.01). Thus, LCD + INT improved glucose tolerance more than LCD in obese adults, and these findings relate to ß-cell function. These data support LCD + INT for preserving pancreatic function for type 2 diabetes prevention.

  12. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam.

    PubMed

    Josypčuk, Bohdan; Barek, Jiří; Josypčuk, Oksana

    2013-05-17

    A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N'-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02-0.80 mmol L(-1) with detection limit of 0.01 mmol L(-1). The content of glucose in the sample of honey was determined as 35.5±1.0 mass % (number of the repeated measurements n=7; standard deviation SD=1.2%; relative standard deviation RSD=3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Enhancement of C2C12 differentiation by perfluorocarbon-mediated oxygen delivery.

    PubMed

    Fujita, Hideaki; Shimizu, Kazunori; Morioka, Yuki; Nagamori, Eiji

    2010-09-01

    We have studied the effect of enhanced oxygen delivery by perfluorocarbons on the differentiation of C2C12 cells. The extent of differentiation was assessed by means of phase contrast/fluorescence microscopy, active tension measurement and the glucose consumption/lactate production rates. We found that enhanced oxygen delivery is suitable for full differentiation of C2C12 cells. Copyright 2010 The Society for Biotechnology, Japan. All rights reserved.

  14. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans; Kleijer, Susanne J; Smits, Mark M; Geelhoed-Duijvestijn, Petronella H; Kramer, Mark H H; Diamant, Michaela; Snoek, Frank J; Serné, Erik H

    2016-11-01

    Patients with type 1 diabetes who have impaired awareness of hypoglycaemia have a three to six times increased risk of severe hypoglycaemia. We aimed to assess whether continuous glucose monitoring (CGM) improves glycaemia and prevents severe hypoglycaemia compared with self-monitoring of blood glucose (SMBG) in this high-risk population. We did a randomised, open-label, crossover trial (IN CONTROL) at two medical centres in the Netherlands. Eligible participants were patients diagnosed with type 1 diabetes according to American Diabetes Association criteria, aged 18-75 years, with impaired awareness of hypoglycaemia as confirmed by a Gold score of at least 4, and treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections and doing at least three SMBG measurements per day. After screening, re-education about diabetes management, and a 6-week run-in phase (to obtain baseline CGM data), we randomly assigned patients (1:1) with a computer-generated allocation sequence (block size of four) to either 16 weeks of CGM followed by 12 weeks of washout and 16 weeks of SMBG, or 16 weeks of SMBG followed by 12 weeks of washout and 16 weeks of CGM (where the SMBG phase was the control). During the CGM phase, patients used a real-time CGM system consisting of a Paradigm Veo system with a MiniLink transmitter and an Enlite glucose sensor (Medtronic, CA, USA). During the SMBG phase, patients were equipped with a masked CGM device, consisting of an iPro 2 continuous glucose monitor and an Enlite glucose sensor, which does not display real-time glucose values. The number of SMBG measurements per day and SMBG systems were not standardised between patients, to mimic real-life conditions. During both intervention periods, patients attended follow-up visits at the centres each month and had telephone consultations 2 weeks after each visit inquiring about adverse events, episodes of hypoglycaemia, etc. The primary endpoint was the mean difference in percentage of time spent in normoglycaemia (4-10 mmol/L) over the total intervention periods, analysed on an intention-to-treat basis. Severe hypoglycaemia (requiring third party assistance) was a secondary endpoint. This trial is registered with ClinicalTrials.gov, number NCT01787903. Between March 4, 2013, and Feb 9, 2015, we recruited and randomly assigned 52 patients to either the CGM-SMBG sequence (n=26) or the SMBG-CGM sequence (n=26). The last patient visit was on March 21, 2016. Time spent in normoglycaemia was higher during CGM than during SMBG: 65·0% (95% CI 62·8-67·3) versus 55·4% (53·1-57·7; mean difference 9·6%, 95% CI 8·0-11·2; p<0·0001), with reductions in both time spent in hypoglycaemia (ie, blood glucose ≤3·9 mmol/L [6·8% vs 11·4%, mean difference 4·7%, 3·4-5·9; p<0·0001]) and time spent in hyperglycaemia (ie, blood glucose >10 mmol/L [28·2% vs 33·2%, mean difference 5·0%, 3·1-6·9; p<0·0001]). During CGM, the number of severe hypoglycaemic events was lower (14 events vs 34 events, p=0·033). Five serious adverse events other than severe hypoglycaemia occurred during the trial, but all were deemed unrelated to the trial intervention. Additionally, no mild to moderate adverse events were related to the trial intervention. CGM increased time spent in normoglycaemia and reduced severe hypoglycaemia in patients with type 1 diabetes and impaired awareness of hypoglycaemia, compared with SMBG. Our results support the concept of using CGM in this high-risk population. Eli Lilly and Sanofi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less

  16. A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species.

    PubMed

    Domínguez, Elena; Romaní, Aloia; Alonso, José Luis; Parajó, Juan Carlos; Yáñez, Remedios

    2014-12-01

    Acacia dealbata wood (an invasive species) was subjected to fractionation with glycerol (a cheap industrial by-product), and the resulting solid phase was used as a substrate for enzymatic hydrolysis. Glycerol fractionation allowed an extensive delignification while preserving cellulose in solid phase. The solids from the fractionation stage showed high susceptibility to enzymatic hydrolysis. Solids obtained under selected fractionation conditions (glycerol content of media, 80 wt%; duration, 1h; liquid to solid ratio, 6 g/g; alkaline and neutral washing stages) were subjected to enzymatic saccharification to achieve glucose concentrations up to 85.40 g/L, with almost complete cellulose conversion into glucose. The results confirmed the potential of glycerol as a fractionation agent for biorefineries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Recovery of BMIPP uptake and regional wall motion in insulin resistant patients following angioplasty for acute myocardial infarction.

    PubMed

    Fujino, Takayuki; Ishii, Yoshinao; Takeuchi, Toshiharu; Hirasawa, Kunihiko; Tateda, Kunihiko; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2003-09-01

    The effect of insulin resistance (IR) on the fatty acid metabolism of myocardium, and therefore on the recovery of left ventricular (LV) wall motion, has not been established in patients with acute myocardial infarction (AMI). A total of consecutive 58 non-diabetic AMI patients who had successfully undergone emergency coronary angioplasty were analyzed retrospectively. They were categorized into 2 groups, normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), based on a 75-g oral glucose tolerance test (OGTT). The parameters of OGTT, myocardial scintigraphy (n=58) (thallium-201 (Tl) and iodine-123-beta-methyl-iodophenylpentadecanoic acid (BMIPP)) and left ventriculography (n=24) were compared in the 2 groups after reperfusion (acute phase) and 3-4 weeks after the AMI (chronic phase). The insulin resistance (IR), estimated by the serum concentration of insulin at 120 min (IRI 120') of the OGTT and by the HOMA (the homeostasis model assessment) index, was higher in the IGT group than in NGT group. An inverse correlation was found between the recovery of regional LV wall motion in the ischemic lesion and the IRI 120' and HOMA index. Although the recovery of BMIPP uptake from the acute to the chronic phase was higher in the IGT group, it was only correlated with the degree of IRI 120', not with the HOMA. IR accompanied by IGT can negatively influence the recovery of regional LV wall motion.

  18. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus.

    PubMed

    Zhou, Shuai; Ma, Fuying; Zhang, Xiaoyu; Zhang, Jingsong

    2016-01-01

    The carbohydrate distribution in mushrooms is reported changing greatly in its different regions during growth and fruiting. In this study, the carbohydrate distribution in the compost and fruiting bodies of Pleurotus ostreatus was analysed. Sugar, polyol, polysaccharide, and chitin content during different growth phases and in different regions of the mushroom were determined. Results indicate that trehalose, mannitol, and glucose were first accumulated in the compost and then decreased during differentiation and growth of fruiting bodies. Meanwhile, trehalose, mannitol, and glucose also accumulated in the fruiting bodies and primarily distributed in the stipe, base, and pileus region, respectively. Polysaccharides mainly accumulated within the pileus and stipe regions, and chitin was mainly observed in the base region. These findings provide insights into carbohydrate function and utilisation during mushroom growth. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Focusing on cardiovascular disease in type 2 diabetes mellitus: an introduction to bromocriptine QR.

    PubMed

    Bell, David S

    2012-09-01

    Cardiovascular risk reduction is a key priority in patients with diabetes. The relationship between glycemic control and macrovascular outcomes, such as the benefit of intensive glucose control and the importance of postprandial or fasting blood glucose, is still under debate. A number of pharmacologic options are available to treat type 2 diabetes mellitus and these options have differing evidence for their cardiovascular safety. In this article, the novel agent bromocriptine quick release is discussed. Recently approved, this once-daily treatment provides glycemic control as monotherapy or in combination with other antihyperglycemic medications and has been shown in a prospective phase 3 safety study to not increase cardiovascular risk. Therefore, bromocriptine quick release increases the range of options available to treat patients with type 2 diabetes mellitus without increasing cardiovascular risk.

  20. Efficacy and safety of luseogliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a 12-week, randomized, placebo-controlled, phase II study.

    PubMed

    Seino, Yutaka; Sasaki, Takashi; Fukatsu, Atsushi; Sakai, Soichi; Samukawa, Yoshishige

    2014-07-01

    Luseogliflozin is a novel sodium glucose cotransporter 2 inhibitor for type 2 diabetes mellitus (T2DM) treatment. An exploratory Phase II study was conducted to assess the efficacy and safety of several doses of luseogliflozin in Japanese T2DM patients. Japanese T2DM patients aged 20-74 years with hemoglobin A1c (HbA1c) of 6.9-10.5%, fasting plasma glucose (FPG) ≥126 mg/dL and on diet therapy were randomized in a double-blind manner to receive luseogliflozin (0.5, 2.5, or 5 mg) or placebo once daily for 12 weeks (n = 61, 61, 61, and 56, respectively). The primary endpoint was the change in HbA1c from baseline to end of treatment. Other endpoints included FPG, 2 h postprandial plasma glucose (PPG) in a meal tolerance test (MTT), and body weight. Drug safety was also assessed. Japan Pharmaceutical Information Center (identifier: JapicCTI-090908). Changes in HbA1c from baseline to end of treatment were -0.36, -0.62, and -0.75% in the 0.5, 2.5, and 5 mg luseogliflozin groups, respectively, versus +0.06% in the placebo group (all P < 0.001). The reductions in FPG and 2 h-PPG in the MTT were also significantly greater in the luseogliflozin groups (all P < 0.01) without increases in insulin levels from baseline. Luseogliflozin reduced body weight at all doses. There were no significant differences in the incidences of adverse events among groups. Most adverse events were mild in severity. There were no serious adverse events. Although this was a small-scale study with a short duration, all tested doses of luseogliflozin significantly improved glycemic control, reduced body weight, and were well tolerated in Japanese T2DM patients over the 12-week treatment period.

  1. Effects of acute and repeated oral doses of D-tagatose on plasma uric acid in normal and diabetic humans.

    PubMed

    Saunders, J P; Donner, T W; Sadler, J H; Levin, G V; Makris, N G

    1999-04-01

    D-tagatose, a stereoisomer of D-fructose, is a naturally occurring ketohexose proposed for use as a low-calorie bulk sweetener. Ingested D-tagatose appears to be poorly absorbed. The absorbed portion is metabolized in the liver by a pathway similar to that of D-fructose. The main purpose of this study was to determine if acute or repeated oral doses of D-tagatose would cause elevations in plasma uric acid (as is seen with fructose) in normal humans and Type 2 diabetics. In addition, effects of subchronic D-tagatose ingestion on fasting plasma phosphorus, magnesium, lipids, and glucose homeostasis were studied. Eight normal subjects and eight subjects with Type 2 diabetes participated in this two-phase study. Each group was comprised of four males and four females. In the first phase, all subjects were given separate 75 g 3-h oral glucose and D-tagatose tolerance tests. Uric acid, phosphorus, and magnesium were determined in blood samples collected from each subject at 0, 30, 60, 120, and 180 min after dose. In the 8-week phase of the study, the normals were randomly placed into two groups which received 75 g of either D-tagatose or sucrose (25 g with each meal) daily for 8 weeks. The diabetics were randomized into two groups which received either 75 g D-tagatose or no supplements of sugar daily for 8 weeks. Uric acid, phosphorus, magnesium, lipids, glycosylated hemoglobin, glucose, and insulin were determined in fasting blood plasma of all subjects at baseline (time zero) and biweekly over the 8 weeks. The 8-week test did not demonstrate an increase in fasting plasma uric acid in response to the daily intake of D-tagatose. However, a transient increase of plasma uric acid levels was observed after single doses of 75 g of D-tagatose in the tolerance test. Plasma uric acid levels were found to rise and peak at 60 min after such dosing. No clinical relevance was attributed to this treatment-related effect because excursions of plasma uric acid levels above the normal range were small and were of short duration. Consistent with earlier observations on fructose, the increase of plasma uric acid was associated with a slight decrease of plasma phosphorus and a slight increase of magnesium. The daily ingestion of D-tagatose for 8 weeks had no effect on fasting plasma magnesium, phosphorus, cholesterol, triglycerides, glycosylated hemoglobin, glucose, and insulin levels. The ingestion of three 25-g doses per day for a period of 8 weeks resulted in varying amounts of flatulence in seven of the eight subjects, and some degree of diarrhea in six subjects. D-tagatose holds promise as a sweetener with no adverse clinical effects observed in these studies. Copyright 1999 Academic Press.

  2. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    PubMed

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology without the use of additives was developed in which the pH-regulation is executed by the pH-dependent recycling of effluent from the anaerobic filter into the acidification reactor. During this investigation, the influence of the different target pH-values (5.5, 6.0, 7.0 and 7.5) on the degradation rate, the gas composition and the methane yield of the substrate maize silage was determined. With an increase in the target pH-value from 5.5 to 7.5, the acetic acid equivalent decreased by 88.1% and the chemical oxygen demand-concentration by 18.3% in the hydrolysate. In response, there was a 58% increase in the specific methane yield of the overall system. Contrary to earlier studies, a marked increase in biogas production and in substrate degradation was determined with increasing pH-values. However, these led to a successive approximation of a single-phase process. Based on these results, pH-values above 7.0 seem to be favourable for the digestion of fibre-rich substrates.

  3. Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis

    PubMed Central

    Ramos, Ana; Boels, Ingeborg C.; de Vos, Willem M.; Santos, Helena

    2001-01-01

    The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps−) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps− strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation. PMID:11133425

  4. The influence of high glucose on the Cip/Kip family expression profiles in HRECs.

    PubMed

    Tian, Jingyi; Ma, Hongjie; Luo, Yan; Hu, Andina; Lin, Shaofen; Li, Tao; Guo, Kai; Li, Jing; Cai, Meng; Tang, Shibo

    2013-12-01

    Neovascularization is the main characteristic of the proliferative stage of diabetic retinopathy. It has been proven that cell cycle regulation is involved in angiogenesis. The cell cycle regulators, Cip/Kip protein family, belong to the cyclin-dependent kinase inhibitors, are versatile proteins, and except for their function in cell cycle regulation, they also participate in transcription, apoptosis and migration. The expression profiles of the Cip/Kip family in human retina microvascular endothelial cells (HRECs) under normal or high glucose conditions has not been described before. This study was undertaken to determine the expression profiles of the Cip/Kip family proteins, e.g., proteins which are influenced by high glucose and in what manner. Western blot and immunofluorescence analyses were used to investigate the protein expression profiles. Only p21(cip1) and p27(kip1) were detected in HRECs, and they were located in the nucleus. P21(cip1) protein abundance was higher than p27(kip1) in HRECs. Incubation of HRECs in medium containing 30 mM D-glucose for 48 h resulted in downregulation of p21(cip1) protein expression, but had no influence on p27(kip1) protein levels or p21(cip1) mRNA abundance. These results were accompanied by cell cycle G1 phase exit and a lower cell survival rate. Our data show for the first time that high glucose changes the Cip/Kip family expression profiles in HRECs, which may be the foundation for the investigation of the role of the Cip/Kip family in the pathogenesis of diabetic retinopathy.

  5. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  6. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose

    PubMed Central

    Zhang, Jinhui; Li, Li; Kim, Sung-Hoon; Hagerman, Ann E.; Lü, Junxuan

    2010-01-01

    1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) is a polyphenolic compound highly enriched in a number of medicinal herbals. Several in vitro and a handful of in vivo studies have shown that PGG exhibits multiple biological activities which implicate a great potential for PGG in the therapy and prevention of several major diseases including cancer and diabetes. Chemically and functionally, PGG appears to be distinct from its constituent gallic acid or tea polyphenols. For anti-cancer activity, three published in vivo preclinical cancer model studies with PGG support promising efficacy to selectively inhibit malignancy without host toxicity. Potential mechanisms include anti-angiogenesis, anti-proliferative actions through inhibition of DNA replicative synthesis and S-phase arrest and also G1 arrest, induction of apoptosis, anti-inflammation and anti-oxidation. Putative molecular targets include p53, Stat3, Cox-2, VEGFR1, AP-1, SP-1, Nrf-2 and MMP-9. For anti-diabetic activity, PGG and analogues appear to improve glucose uptake. However, very little is known about the absorption, pharmacokinetics and metabolism of PGG, nor its toxicity profile. The lack of large quantity of highly pure PGG has been a bottleneck limiting in vivo validation of cancer preventive and therapeutic efficacies in clinically relevant models. PMID:19575286

  7. Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons.

    PubMed

    Morgenthaler, F D; Kraftsik, R; Catsicas, S; Magistretti, P J; Chatton, J-Y

    2006-08-11

    This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

  8. Relationship between glycaemic variability and hyperglycaemic clamp-derived functional variables in (impending) type 1 diabetes.

    PubMed

    Van Dalem, Annelien; Demeester, Simke; Balti, Eric V; Decochez, Katelijn; Weets, Ilse; Vandemeulebroucke, Evy; Van de Velde, Ursule; Walgraeve, An; Seret, Nicole; De Block, Christophe; Ruige, Johannes; Gillard, Pieter; Keymeulen, Bart; Pipeleers, Daniel G; Gorus, Frans K

    2015-12-01

    We examined whether measures of glycaemic variability (GV), assessed by continuous glucose monitoring (CGM) and self-monitoring of blood glucose (SMBG), can complement or replace measures of beta cell function and insulin action in detecting the progression of preclinical disease to type 1 diabetes. Twenty-two autoantibody-positive (autoAb(+)) first-degree relatives (FDRs) of patients with type 1 diabetes who were themselves at high 5-year risk (50%) for type 1 diabetes underwent CGM, a hyperglycaemic clamp test and OGTT, and were followed for up to 31 months. Clamp variables were used to estimate beta cell function (first-phase [AUC5-10 min] and second-phase [AUC120-150 min] C-peptide release) combined with insulin resistance (glucose disposal rate; M 120-150 min). Age-matched healthy volunteers (n = 20) and individuals with recent-onset type 1 diabetes (n = 9) served as control groups. In autoAb(+) FDRs, M 120-150 min below the 10th percentile (P10) of controls achieved 86% diagnostic efficiency in discriminating between normoglycaemic FDRs and individuals with (impending) dysglycaemia. M 120-150 min outperformed AUC5-10 min and AUC120-150 min C-peptide below P10 of controls, which were only 59-68% effective. Among GV variables, CGM above the reference range was better at detecting (impending) dysglycaemia than elevated SMBG (77-82% vs 73% efficiency). Combined CGM measures were equally efficient as M 120-150 min (86%). Daytime GV variables were inversely correlated with clamp variables, and more strongly with M 120-150 min than with AUC5-10 min or AUC120-150 min C-peptide. CGM-derived GV and the glucose disposal rate, reflecting both insulin secretion and action, outperformed SMBG and first- or second-phase AUC C-peptide in identifying FDRs with (impending) dysglycaemia or diabetes. Our results indicate the feasibility of developing minimally invasive CGM-based criteria for close metabolic monitoring and as outcome measures in trials.

  9. Hypoglycemic effect of Lupinus mutabilis in healthy volunteers and subjects with dysglycemia.

    PubMed

    Fornasini, M; Castro, J; Villacrés, E; Narváez, L; Villamar, M P; Baldeón, M E

    2012-01-01

    Metabolic syndrome and type-2 diabetes are increasing health problems that negatively affect health care systems worldwide. There is a constant urge to develop new therapies with better effects, lower side effects at lower prices to treat these diseases. Lupinus species and their derivates are good candidates to be used as hypoglycaemic agents. A phase II clinical trial was conducted to assess the role of raw Lupinus mutabilis on blood glucose and insulin in normoglycemic and dysglycemic subjects. Results show that consumption of L. mutabilis by normal weight healthy young individuals did not change importantly blood glucose and insulin levels. On the other hand, consumption of similar doses of lupinus by dysglycemic individuals (fasting glucose > 100 mg/dL) decreased significantly blood glucose. Lupinus effects were greater in those subjects with higher basal glucose levels. Glucose lowering effects of lupinus were not observed after soy intake that was used as control. A statistically significant reduction in insulin levels was also observed in the lupinus group compared with the soy group after 60 minutes of treatment. Furthermore, only treatment with lupinus improved insulin resistance in dysglycemic subjects. These data demonstrate that lupinus consumption could be a feasible and low cost alternative to treat chronic hyperglycemic diseases.

  10. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  11. Growth monitoring and control in complex medium: a case study employing fed-batch penicillin fermentation and computer-aided on-line mass balancing.

    PubMed

    Mou, D G; Cooney, C L

    1983-01-01

    To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).

  12. CD64-Neutrophil expression and stress metabolic patterns in early sepsis and severe traumatic brain injury in children.

    PubMed

    Fitrolaki, Diana-Michaela; Dimitriou, Helen; Kalmanti, Maria; Briassoulis, George

    2013-03-01

    Critical illness constitutes a serious derangement of metabolism. The aim of our study was to compare acute phase metabolic patterns in children with sepsis (S) or severe sepsis/septic shock (SS) to those with severe traumatic brain injury (TBI) and healthy controls (C) and to evaluate their relations to neutrophil, lymphocyte and monocyte expressions of CD64 and CD11b. Sixty children were enrolled in the study. Forty-five children with systemic inflammatory response syndrome (SIRS) were classified into three groups: TBI (n = 15), S (n = 15), and SS (n = 15). C consisted of 15 non- SIRS patients undergoing screening tests for minor elective surgery. Blood samples were collected within 6 hours after admission for flow cytometry of neutrophil, lymphocyte and monocyte expression of CD64 and CD11b (n = 60). Procalcitonin (PCT), C-reactive protein (CRP), glucose, triglycerides (TG), total cholesterol (TC), high (HDL) or low-density-lipoproteins (LDL) were also determined in all groups, and repeated on day 2 and 3 in the 3 SIRS groups (n = 150). CRP, PCT and TG (p < 0.01) were significantly increased in S and SS compared to TBI and C; glucose did not differ among critically ill groups. Significantly lower were the levels of TC, LDL, and HDL in septic groups compared to C and to moderate changes in TBI (p < 0.0001) but only LDL differed between S and SS (p < 0.02). Among septic patients, PCT levels declined significantly (p < 0.02) with time, followed by parallel decrease of HDL (p < 0.03) and increase of TG (p < 0.02) in the SS group. Neutrophil CD64 (nCD64) expression was higher in patients with SS (81.2%) and S (78.8%) as compared to those with TBI (5.5%) or C (0.9%, p < 0.0001). nCD64 was positively related with CRP, PCT, glucose, and TG (p < 0.01) and negatively with TC, LDL, and HDL (p < 0.0001), but not with severity of illness, hematologic indices, length of stay or mechanical ventilation duration. In sepsis, the early stress-metabolic pattern is characterized by a high (nCD64, glucose, TG) - low (TC, HDL, LDL) combination in contrast to the moderate pattern of TBI in which only glucose increases combined with a moderate cholesterol - lipoprotein decrease. These early metabolic patterns persist the first 3 days of acute illness and are associated with the acute phase CD64 expression on neutrophils.

  13. The Hepatic Response to Thermal Injury: Is the Liver Important for Postburn Outcomes?

    PubMed Central

    Jeschke, Marc G

    2009-01-01

    Thermal injury produces a profound hypermetabolic and hypercatabolic stress response characterized by increased endogenous glucose production via gluconeogenesis and glycogenolysis, lipolysis, and proteolysis. The liver is the central body organ involved in these metabolic responses. It is suggested that the liver, with its metabolic, inflammatory, immune, and acute phase functions, plays a pivotal role in patient survival and recovery by modulating multiple pathways following thermal injury. Studies have evaluated the role and function of the liver during the postburn response and showed that liver integrity and function are essential for survival, and that hepatic acute phase proteins are strong predictors for postburn survival. This review discusses these studies and delineates the pivotal role of the liver in patients following severe thermal injury. PMID:19603107

  14. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial.

    PubMed

    AbouAssi, Hiba; Slentz, Cris A; Mikus, Catherine R; Tanner, Charles J; Bateman, Lori A; Willis, Leslie H; Shields, A Tamlyn; Piner, Lucy W; Penry, Lorrie E; Kraus, Erik A; Huffman, Kim M; Bales, Connie W; Houmard, Joseph A; Kraus, William E

    2015-06-15

    Most health organizations recommend a combination of aerobic training (AT) and resistance training (RT), yet few studies have compared their acute (within 24 h of the last exercise bout) and sustained (after 14 days of no exercise training) effects alone and in combination on glucose metabolism. The present study (Studies Targeting Risk Reduction Interventions through Defined Exercise-Aerobic Training and/or Resistance Training) compared the effects of AT, RT, and the combination (AT/RT) on insulin action at both acute and sustained phases. Subjects (N = 196) were 18-70 yr old (mean age = 50 yr), overweight (mean body mass index = 30 kg/m2), sedentary with moderate dyslipidemia, and were randomized into one of three 8-mo exercise groups: 1) RT: 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set; 2) AT: equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O2 consumption; 3) AT/RT: the combination of AT and RT. One hundred forty-four subjects completed the intervention. Eighty-eight subjects completed all pre- and postintervention testing visits. Insulin sensitivity, glucose effectiveness, and disposition index were measured via a frequently sampled intravenous glucose tolerance test with subsequent minimal model analyses. AT/RT resulted in greater improvements in insulin sensitivity, β-cell function (disposition index), and glucose effectiveness than either AT or RT alone (all P < 0.05). Approximately 52% of the improvement in insulin sensitivity by AT/RT was retained 14 days after the last exercise training bout. Neither AT or RT led to acute or chronic improvement in sensitivity index. In summary, only AT/RT (which required twice as much time as either alone) led to significant acute and sustained benefits in insulin sensitivity

  15. Glucose metabolism from mouth to muscle: a student experiment to teach glucose metabolism during exercise and rest.

    PubMed

    Engeroff, Tobias; Fleckenstein, Johannes; Banzer, Winfried

    2017-03-01

    We developed an experiment to help students understand basic regulation of postabsorptive and postprandial glucose metabolism and the availability of energy sources for physical activity in the fed and fasted state. Within a practical session, teams of two or three students (1 subject and 1 or 2 investigators) performed one of three different trials: 1) inactive, in which subjects ingested a glucose solution (75 g in 300 ml of water) and rested in the seated position until the end of the trial; 2) prior activity, in which the subject performed 15 min of walking before glucose ingestion and a subsequent resting phase; and 3) postactivity, in which the subject ingested glucose solution, walked (15 min), and rested afterwards. Glucose levels were drawn before trials (fasting value), immediately after glucose ingestion (0 min), and 5, 10, 15, 20, 25, 30, 40, 50, and 60 min thereafter. Students analyzed glucose values and worked on 12 tasks. Students evaluated the usefulness of the experiment; 54.2% of students found the experiment useful to enable them to gain a further understanding of the learning objectives and to clarify items, and 44.1% indicated that the experiment was necessary to enable them to understand the learning objectives. For 6.8% the experiment was not necessary but helpful to check what they had learned, and 3.4% found that the experiment was not necessary. The present article shows the great value of experiments within practical courses to help students gain knowledge of energy metabolism. Using an active learning strategy, students outworked complex physiological tasks and improved beneficial communication and interaction between students with different skill sets and problem-solving strategies. Copyright © 2017 the American Physiological Society.

  16. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: A sequestration mechanism in metabolic regulation

    PubMed Central

    Farrelly, Dennis; Brown, Karen S.; Tieman, Aaron; Ren, Jianming; Lira, Sergio A.; Hagan, Deborah; Gregg, Richard; Mookhtiar, Kasim A.; Hariharan, Narayanan

    1999-01-01

    The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control. PMID:10588736

  17. [Lipid and glucose profile in patients with ischemic cerebrovascular accidents in Dakar].

    PubMed

    Ousmane, Cisse; Lemine, Dadah Samy Mohamed; Fatoumata, Ba; Makhtar, Ba El Hadji; Soda, Diop Marieme; Side, Diagne Ngor; Dieynaba, Sow Adjaratou; Modji, Basse Anna; Kamadore, Touré; Moustapha, Ndiaye; Gallo, Diop Amadou; Mansour, Ndiaye Mouhamadou

    2016-01-01

    Cerebrovascular accident (CVA) is defined as the rapid development of localized or global clinical signs of neurological dysfunction with no apparent cause other than that of vascular origin. A variety of risk factors have been identified and associated with the occurrence of Ischemic CVA, including glucose and lipid metabolism disturbances. We conducted a retrospective study at the Clinic of Neurology, Fann. Our study focused on medical records of patients with ICVA confirmed by imaging, hospitalized from January 1 to December 31 2010. All patients underwent complete lipid profile (total cholesterol, triglycerides, HDL; LDL level was calculated using Friedwald formula), kidney function tests and fasting blood sugar test were performed within 48 hours of admission. Data were analysed using univariate technique and then using bivariate technique tanks to SPSS 16.0 software. We collected 235 files. We here report a case series of patients between ages 10-99 years, with an average age of 67,06 years. Males were 42,55%, sex-ratio was 0,74 in favour of women. 26% of cases had impaired fasting glucose levels during the acute phase of ICVA. The lipid profile showed an increase in total cholesterol level in 52.34% of patients. Low levels of HDL cholesterol were found in 34.47% of patients. Hypertriglyceridemia was only observed in 3% of patients. LDL levels were high in 12,76% of patients. Atherogenicity index was high in 25,53% of patients. Disturbances of blood glucose and lipid profile are often associated with ICVA and should be taken into account to ensure better secondary prevention.

  18. One-Year Data from a Long-Term Phase IV Study of Recombinant Human Growth Hormone in Short Children Born Small for Gestational Age.

    PubMed

    Schwarz, Hans-Peter; Birkholz-Walerzak, Dorota; Szalecki, Mieczyslaw; Walczak, Mieczyslaw; Galesanu, Corina; Metreveli, David; Khan-Boluki, Jasmin; Schuck, Ellen

    2014-12-01

    This prospective, open-label, non-comparative, multicentre, long-term phase IV study is examining the efficacy and safety of somatropin [recombinant human growth hormone (rhGH)] in short children born small for gestational age (SGA) and its impact on the incidence of diabetes. This report is the first interim analysis of patients who have completed 1 year of treatment. A total of 278 pre-pubertal patients were enrolled. Key eligibility criteria included height standard deviation score (HSDS) <-2.5; parental adjusted SDS <-1; birth weight and/or length <-2 SD and failure to show catch-up growth by ≥4 years of age. Patients were treated with rhGH 0.035 mg/kg/day. The primary objective was to evaluate the long-term effect of rhGH on carbohydrate metabolism [including fasting glucose, stimulated glucose (2-h oral glucose tolerance test, OGTT) and glycated haemoglobin (HbA1c)]. Secondary objectives included evaluation of height parameters [body height, HSDS, height velocity (HV), HVSDS]; insulin-like growth factor 1 (IGF-I) and insulin-like growth factor-binding protein 3 (IGFBP-3) serum levels during treatment; and incidence and severity of adverse events (AEs). None of the children developed diabetes mellitus within the first year of treatment. Mean levels of fasting glucose, HbA1c and 2-h OGTT values remained stable during the study period. Treatment with rhGH was effective, as documented by all height parameters. Mean HSDS improved from -3.39 at baseline to -2.57 at Year 1. Mean HV increased markedly from 4.25 cm/year at baseline to 8.99 cm/year during the first year. Similarly, mean peak-centred HVSDS increased from -2.13 at baseline to +4.16 at Year 1. Mean IGF-I SDS and IGFBP-3 SDS also increased within the first year (by +1.80 and +0.41, respectively). 13 patients (4.7%) did not respond adequately to treatment (HVSDS <1); they were withdrawn from the study. In total, 192 children (69.3%) experienced treatment-emergent AEs; most (98.7%) were mild-to-moderate, and the majority (96.5%) were unrelated to study treatment. This interim analysis shows that short children born SGA can be effectively and safely treated with rhGH and that rhGH treatment has no major impact on carbohydrate metabolism after the first year of treatment.

  19. A novel direct screening method for alkyl glucoside production by glucosidases expressed in E. coli in 96-well plates.

    PubMed

    Gräber, Martin; Andersson, Mats; Rundbäck, Fabian; Pozzo, Tania; Karlsson, Eva Nordberg; Adlercreutz, Patrick

    2010-01-15

    The present work describes the development of a novel direct screening method, assayed in 96-well format, for evaluation of enzymatic alkyl glycoside production in a hexanol-water two-phase system. Alkyl glycosides are surfactants with a range of applications and with good biodegradability and low toxicity. Enzymatic synthesis makes it possible to prepare beta-d-glucopyranosides with high purity. In the developed screening assay, hexyl-beta-d-glucopyranoside was chosen as a model product to be synthesised by reversed hydrolysis in a water-hexanol two-phase system. In a first step the model product is produced by glucosidases expressed in E. coli cells in 96-deep-well plates. After phase separation, the hexyl-beta-d-glucopyranoside in the organic phase is degraded enzymatically and the released glucose detected spectrophotometrically at 405nm utilizing peroxidase/glucose oxidase, and the reagent 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The aqueous phase is used to monitor hydrolysis of p-NPG at 405nm, allowing use of a ratio of the two assays to compensate for expression differences. The complete method was used for comparison of two different beta-glucosidases, classified under glycoside hydrolase family 1 and 3, respectively, showing a significant difference in their ability to synthesise hexyl-beta-d-glucopyranoside by reversed hydrolysis.

  20. Type 1 diabetes self-management: developing a web-based telemedicine application.

    PubMed

    Ayatollahi, Haleh; Hasannezhad, Mostafa; Fard, Hedieh Saneei; Haghighi, Mehran Kamkar

    2016-04-01

    Self-management skills are essential for patients with diabetes mellitus to minimise the risks of complications from their condition. The aim of this research was to develop a web-based application for self-management of type 1 diabetes, suitable for use by patients, their carers and physicians. The study was comprised of two phases, the first being analysis of the kind of information and capabilities required by potential users of the system. Based on the results derived from the first phase of the study, the system prototype was designed and then evaluated using the 'think aloud' method and a standard questionnaire. The application was designed for use by patients, their carers and physicians. Patients could enter the level of blood glucose, insulin and activities on a daily basis, and physicians were able to supervise a patient's health status from a distance. Users were generally satisfied with the final version of the system. People with a wide range of literacy skills were able to use the system effectively. Patients or their carers could use the web-based application as a log book by entering the level of blood glucose and insulin doses on a regular basis, and as an educational resource to improve self-management skills. Physicians could use the system at any time convenient to them to support patients by giving medical advice. Further research is needed to report the effectiveness of the system in practice.

  1. Discussion on the alteration of FDG uptake by the breast according to the menstrual cycle in 18F-FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Park, H. H.; Park, M. S.; Lee, C. H.; Cho, J. H.; Dong, K. R.; Chung, W. K.

    2012-09-01

    18F-FDG (fluorodeoxyglucose) PET (positron emission tomography)/CT (computed tomography) is a useful modality for identifying high-glucose-consuming cells, such as cancer cells, by the glucose metabolism of FDG. FDG is taken up by cancer and inflammatory cells, but occasionally there is also some FDG uptake by normal tissues as a result of their individual physiological characteristics. In particular, in fertile females, unusual FDG uptake in the breast changes according to the stages in the menstrual cycle, which can adversely affect a diagnosis. Therefore, this study examined the change in breast FDG uptake in the menstrual cycle on 18F-FDG PET/CT. One hundred and sixty females (34±3.5 years old), who had not undergone a gynecologic anamnesis and had a regular menstrual cycle over the previous 6 months, were examined from March 2010 to February 2011. The subjects were divided into the following four groups (each with 40 patients): flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator Ver. 0.14 and history taking. Discovery Ste was used as the PET/CT. The standardized uptake values (SUVs) on the accumulated region on the breast were analyzed, and three nuclear medicine specialists performed a blind test. The SUVs on the breast were the flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). A high uptake value was observed in the secretory, flow and ovulatory phases. The FDG accumulation of the breast was divided into the following three grades compared with the lung and liver by gross analysis: the breast uptake was equal to the lung (Grade I), between the lung and liver (Grade II) and equal to or greater than the liver (Grade III). These results showed a high uptake value in the secretory, flow and ovulatory phases. In fertile females, the FDG uptake of the breast showed changes according to the menstrual cycle, which can be used to improve the diagnosis of breast disease. Therefore, the false-negative findings of breast disease can be reduced by performing an examination at the appropriate period through history taking and considering the individual menstrual cycle.

  2. Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia.

    PubMed

    Shin, Mi-Kyung; Yao, Qiaoling; Jun, Jonathan C; Bevans-Fonti, Shannon; Yoo, Doo-Young; Han, Woobum; Mesarwi, Omar; Richardson, Ria; Fu, Ya-Yuan; Pasricha, Pankaj J; Schwartz, Alan R; Shirahata, Machiko; Polotsky, Vsevolod Y

    2014-10-01

    Obstructive sleep apnea causes chronic intermittent hypoxia (IH) and is associated with impaired glucose metabolism, but mechanisms are unknown. Carotid bodies orchestrate physiological responses to hypoxemia by activating the sympathetic nervous system. Therefore, we hypothesized that carotid body denervation would abolish glucose intolerance and insulin resistance induced by chronic IH. Male C57BL/6J mice underwent carotid sinus nerve dissection (CSND) or sham surgery and then were exposed to IH or intermittent air (IA) for 4 or 6 wk. Hypoxia was administered by decreasing a fraction of inspired oxygen from 20.9% to 6.5% once per minute, during the 12-h light phase (9 a.m.-9 p.m.). As expected, denervated mice exhibited blunted hypoxic ventilatory responses. In sham-operated mice, IH increased fasting blood glucose, baseline hepatic glucose output (HGO), and expression of a rate-liming hepatic enzyme of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK), whereas the whole body glucose flux during hyperinsulinemic euglycemic clamp was not changed. IH did not affect glucose tolerance after adjustment for fasting hyperglycemia in the intraperitoneal glucose tolerance test. CSND prevented IH-induced fasting hyperglycemia and increases in baseline HGO and liver PEPCK expression. CSND trended to augment the insulin-stimulated glucose flux and enhanced liver Akt phosphorylation at both hypoxic and normoxic conditions. IH increased serum epinephrine levels and liver sympathetic innervation, and both increases were abolished by CSND. We conclude that chronic IH induces fasting hyperglycemia increasing baseline HGO via the CSN sympathetic output from carotid body chemoreceptors, but does not significantly impair whole body insulin sensitivity. Copyright © 2014 the American Physiological Society.

  3. Adipose Tissue Plasticity During Catch-Up Fat Driven by Thrifty Metabolism

    PubMed Central

    Summermatter, Serge; Marcelino, Helena; Arsenijevic, Denis; Buchala, Antony; Aprikian, Olivier; Assimacopoulos-Jeannet, Françoise; Seydoux, Josiane; Montani, Jean-Pierre; Solinas, Giovanni; Dulloo, Abdul G.

    2009-01-01

    OBJECTIVE Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue. PMID:19602538

  4. A randomized, placebo-controlled, double-blind, prospective trial to evaluate the effect of vildagliptin in new-onset diabetes mellitus after kidney transplantation.

    PubMed

    Haidinger, Michael; Werzowa, Johannes; Voigt, Hans-Christian; Pleiner, Johannes; Stemer, Gunar; Hecking, Manfred; Döller, Dominik; Hörl, Walter H; Weichhart, Thomas; Säemann, Marcus D

    2010-10-06

    New-onset diabetes mellitus after transplantation (NODAT), a frequent and serious complication after transplantation, is associated with decreased graft and patient survival. Currently, it is diagnosed and treated primarily according to existing guidelines for type II diabetes. To date, only a few trials have studied antidiabetic drugs in patients with NODAT. Vildagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor that improves pancreatic islet function by enhancing both α- and β-cell responsiveness to increased blood glucose. Experimental data show potential protective effects of DPP-4 inhibitors on islet function after exogenous stress stimuli including immunosuppressants. Therefore, the therapy of NODAT with this class of compounds seems attractive. At present, vildagliptin is used to treat type II diabetes as monotherapy or in combination with other antidiabetic drugs, since that it efficiently decreases glycated hemoglobin (HbA1c) values. Additionally, vildagliptin has been shown to be safe in patients with moderately impaired kidney function. This study will evaluate the safety and efficacy of vildagliptin monotherapy in renal transplant recipients with recently diagnosed NODAT. This study is a randomized, placebo-controlled, double-blind, prospective phase II trial. Using the results of routinely performed oral glucose tolerance tests (OGTT) in stable renal transplant patients at our center, we will recruit patients without a history of diabetes and a 2 h glucose value surpassing 200 mg/dl (11.1 mmol/l). They are randomized to receive either 50 mg vildagliptin or placebo once daily. A total of 32 patients with newly diagnosed NODAT will be included. The primary endpoint is the difference in the 2 h glucose value between baseline and the repeated OGTT performed 3 months after treatment start, compared between the vildagliptin- and the placebo-group. Secondary endpoints include changes in HbA1c and fasting plasma glucose (FPG). The safety of vildagliptin in renal transplant patients will be assessed by the number of symptomatic hypoglycemic episodes (glucose <72 mg/dl or 4 mmol/l), the number of adverse events, and possible medication-associated side-effects. NODAT is a severe complication after kidney transplantation. Few trials have assessed the safety and efficacy of antidiabetic drugs for these patients. The purpose of this study is to assess the safety and efficacy of vildagliptin in renal transplant patients with NODAT. ClinicalTrials.gov NCT00980356.

  5. Effect of carbohydrate-electrolyte consumption on insulin, cortisol hormones and blood glucose after high-intensity exercise.

    PubMed

    Mor, Ahmet; Kayacan, Yildirim; Ipekoglu, Gokhan; Arslanoglu, Erkal

    2018-04-21

    This study aimed to examine the effect of CHO-E consumption after high-intensity exercise on insulin, cortisol hormones and blood glucose responses, which is important for performance and recovery in athletes. Sixteen volunteers, male athletes, participated into this study. Athletes were divided into two groups as experiment (CHO-E) and placebo (PLA). Blood was taken from the athletes three times as basal, post-exercise (PE) and 2 h after ingestion of supplement (PS). When inter-group comparisons, insulin was significantly higher in the CHO-E group than the PLA group at the PS phase (p < .05). Cortisol significantly decreased in the CHO-E group at the PS compared to the PE (p < .05). Carbohydrate-electrolyte consumption after high-intensity exercise, accelerates the recovery process by providing optimal recovery, and enable the metabolism to remain in the anabolic state by preventing it from entering in the catabolic process as well as provides hormonal balance in metabolism.

  6. The effects of breakfast on short-term cognitive function among Chinese white-collar workers: protocol for a three-phase crossover study.

    PubMed

    Tang, Zhenchuang; Zhang, Na; Liu, Ailing; Luan, Dechun; Zhao, Yong; Song, Chao; Ma, Guansheng

    2017-01-18

    As the first meal of the day, breakfast plays an important role in supplying energy and nutrients, which are critical to working and learning activities. A three-phase crossover study was designed to investigate the effects of breakfast on cognitive function among Chinese white-collar workers. The planned study protocol is presented. A total of 264 participants aged 25-45 years will be recruited from Shenyang and Chongqing. Self-administered questionnaires will be used to collect information on age, gender, marital status, education level, occupation, smoking habits, drinking habits, and breakfast behaviours. The participants will be randomly assigned to 3 equal-sized groups (Groups A, B, and C) and will be provided with a nutrition-adequate breakfast, a nutrition-inadequate breakfast, or no breakfast, respectively. Each participant will receive the breakfast treatment on the basis of assignment to one of three sequences (ABC/BCA/CAB). Each participant will complete a battery of cognitive tests assessing short-term memory, attention, and working memory 120 minutes after breakfast. Mood will be measured through a self-administered questionnaire assessing the dimensions of positive and negative frames of mind. Additionally, fasting blood glucose and postprandial 2-hour blood glucose levels will be tested with a blood-glucose meter (Roche ACCU-CHEK®-Performa). All the participants will take all the tests in three successive weeks, and the order of presentation will be counter-balanced across groups. The present study will be the first investigation of the effect of breakfast food type and quality on cognitive function amongst white-collar workers in China. We predict that a nutrition-adequate breakfast, compared with a nutrition-inadequate breakfast and no breakfast, will significantly improve short-term cognitive function. The results of this study should provide scientific evidence of the effect of breakfast quality on cognitive function and provide scientific data to inform nutrition education strategies and promote a healthy lifestyle. Chinese clinical trial registry (Primary registry in the WHO registry network) Registration number: ChiCTR-IPR-15007114 . Date of registration: August 25, 2015.

  7. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.

    PubMed

    Cheng, Hai-Hsuan; Syu, Jyun-Cyuan; Tien, Shih-Yuan; Whang, Liang-Ming

    2018-08-01

    This study investigated the acetate production from gas mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H 2 and CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood.

    PubMed

    Salomäki, Henriikka; Vähätalo, Laura H; Laurila, Kirsti; Jäppinen, Norma T; Penttinen, Anna-Maija; Ailanen, Liisa; Ilyasizadeh, Juan; Pesonen, Ullamari; Koulu, Markku

    2013-01-01

    The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during pregnancy.

  9. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Doan, Thuc N.; Fujihara, Akimasa

    2018-03-01

    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  10. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate.

    PubMed

    Durgan, David J; Moore, Michael W S; Ha, Ngan P; Egbejimi, Oluwaseun; Fields, Anna; Mbawuike, Uchenna; Egbejimi, Anu; Shaw, Chad A; Bray, Molly S; Nannegari, Vijayalakshmi; Hickson-Bick, Diane L; Heird, William C; Dyck, Jason R B; Chandler, Margaret P; Young, Martin E

    2007-10-01

    Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.

  11. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    PubMed

    Sheena, Aswathy; Mohan, Suma S; Haridas, Nidhina Pachakkil A; Anilkumar, Gopalakrishnapillai

    2011-01-01

    GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD) was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  12. β-Cell lipotoxicity after an overnight intravenous lipid challenge and free fatty acid elevation in African American versus American white overweight/obese adolescents.

    PubMed

    Hughan, Kara S; Bonadonna, Riccardo C; Lee, SoJung; Michaliszyn, Sara F; Arslanian, Silva A

    2013-05-01

    Overweight/obese (OW/OB) African American (AA) adolescents have a more diabetogenic insulin secretion/sensitivity pattern compared with their American white (AW) peers. The present study investigated β-cell lipotoxicity to test whether increased free fatty acid (FFA) levels result in greater β-cell dysfunction in AA vs AW OW/OB adolescents. Glucose-stimulated insulin secretion was modeled, from glucose and C-peptide concentrations during a 2-hour hyperglycemic (225 mg/dL) clamp in 22 AA and 24 AW OW/OB adolescents, on 2 occasions after a 12-hour overnight infusion of either normal saline or intralipid (IL) in a random sequence. β-Cell function relative to insulin sensitivity, the disposition index (DI), was examined during normal saline and IL conditions. Substrate oxidation was evaluated with indirect calorimetry and body composition and abdominal adiposity with dual-energy X-ray absorptiometry and magnetic resonance imaging at L4-L5, respectively. Age, sex, body mass index, total and sc adiposity were similar between racial groups, but visceral adiposity was significantly lower in AAs. During IL infusion, FFAs and fat oxidation increased and insulin sensitivity decreased similarly in AAs and AWs. β-Cell glucose sensitivity of first- and second-phase insulin secretion did not change significantly during IL infusion in either group, but DI in each phase decreased significantly and similarly in AAs and AWs. Overweight/obese AA and AW adolescents respond to an overnight fat infusion with significant declines in insulin sensitivity, DI, and β-cell function relative to insulin sensitivity, suggestive of β-cell lipotoxicity. However, contrary to our hypothesis, there does not seem to be a race differential in β-cell lipotoxicity. Longer durations of FFA elevation may unravel such race-related contrasts.

  13. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response.

    PubMed

    Liu, Tie Fu; Vachharajani, Vidula T; Yoza, Barbara K; McCall, Charles E

    2012-07-27

    The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.

  14. Theory of cooperation in a micro-organismal snowdrift game

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Goldenfeld, Nigel

    2011-08-01

    We present a mean-field model for the phase diagram of a community of micro-organisms, interacting through their metabolism so that they are, in effect, engaging in a cooperative social game. We show that as a function of the concentration of the nutrients glucose and histidine, the community undergoes a phase transition separating a state in which one strain is dominant to a state which is characterized by coexisting populations. Our results are in good agreement with recent experimental results, correctly reproducing quantitative trends and predicting the phase diagram.

  15. Renal and cardiac effects of DPP4 inhibitors--from preclinical development to clinical research.

    PubMed

    Hocher, Berthold; Reichetzeder, Christoph; Alter, Markus L

    2012-01-01

    Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials - beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure. Copyright © 2012 S. Karger AG, Basel.

  16. First application of a transcutaneous optical single-port glucose monitoring device in patients with type 1 diabetes mellitus.

    PubMed

    Rumpler, M; Mader, J K; Fischer, J P; Thar, R; Granger, J M; Deliane, F; Klimant, I; Aberer, F; Sinner, F; Pieber, T R; Hajnsek, M

    2017-02-15

    The combination of continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion can be used to improve the treatment of patients with diabetes. The aim of this study was to advance an existing preclinical single-port system for clinical application by integrating the sensors of a phosphorescence based CGM system into a standard insulin infusion set. The extracorporeal optical phase fluorimeter was miniaturised and is now comparable with commercial CGM systems regarding size, weight and wear comfort. Sensor chemistry was adapted to improve the adhesion of the sensor elements on the insulin infusion set. In-vitro tests showed a linear correlation of R 2 =0.998 between sensor values and reference glucose values in the range of 0-300mg/dl. Electrical and cytotoxicity tests showed no negative impact on human health. Two single-port devices were tested in each of 12 patients with type 1 diabetes mellitus in a clinical set-up for 12h. Without additional data processing, the overall median absolute relative difference (median ARD) was 22.5%. For some of the used devices the median ARD was even well below 10%. The present results show that individual glucose sensors performance of the single-port system is comparable with commercial CGM systems but further improvements are needed. The new system offers a high extent of safety and usability by combining insulin infusion and continuous glucose measurement in a single-port system which could become a central element in an artificial pancreas for an improved treatment of patients with type 1 diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Dapagliflozin, the first SGLT-2 inhibitor in the treatment of type 2 diabetes].

    PubMed

    Albarrán, Olga González; Ampudia-Blasco, F Javier

    2013-09-01

    Dapagliflozin is the first novel sodium-glucose co-transporter-2 (SGLT2) inhibitor approved by the European Medicines Agency (EMA) for the treatment of type 2 diabetes. By inhibiting SGLT2, dapagliflozin blocks reabsorption of filtered glucose in the kidney, increasing urinary glucose excretion and reducing blood glucose levels. Its mechanism of action is independent of pancreatic β cell function and modulation of insulin sensitivity. The results of phase III clinical trials showed that dapagliflozin, at a dose of 5 or 10mg/day for 24 weeks as monotherapy in previously untreated patients, or as add-on combination therapy with metformin, glimepiride, pioglitazone or insulin-based therapy, significantly reduced both HbA1c and fasting plasma glucose levels compared with placebo. In addition, dapagliflozin was noninferior to glipizide, in terms of glycemic control after 52 weeks, when used as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin. In most clinical trials, dapagliflozin reduced body weight. The combination of both effects (improved glycemic control and weight loss) is achieved to a greater extent in treatments that include dapaglifozin. Longer-term extension studies indicated that the efficacy of dapagliflozin on the glycemic control and weight reducción is maintained for up to 2 and 4 years. Dapagliflozin was well tolerated. Genital infections and urinary tract infections were more frequent in patients who received dapagliflozin than in placebo recipients. Hypoglycemic episodes were scarce with dapagliflozin. In conclusion, dapagliflozin is a novel option for the management of type 2 diabetes, particularly when used as add-on therapy. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  18. A common variation of the PTEN gene is associated with peripheral insulin resistance.

    PubMed

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, J F P; Poulsen, P; Grunnet, L G; Vaag, A

    2016-09-01

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Physical activity, sedentary behaviors, and estimated insulin sensitivity and secretion in pregnant and non-pregnant women

    PubMed Central

    2011-01-01

    Background Overweight and obesity during pregnancy raise the risk of gestational diabetes and birth complications. Lifestyle factors like physical activity may decrease these risks through beneficial effects on glucose homeostasis. Here we examined physical activity patterns and their relationships with measures of glucose homeostasis in late pregnancy compared to non-pregnant women. Methods Normal weight and overweight women without diabetes (N = 108; aged 25-35 years) were studied; 35 were pregnant (in gestational weeks 28-32) and 73 were non-pregnant. Insulin sensitivity and β-cell response were estimated from an oral glucose tolerance test. Physical activity was measured during 10-days of free-living using a combined heart rate sensor and accelerometer. Total (TEE), resting (REE), and physical activity (PAEE) energy expenditure were measured using doubly-labeled water and expired gas indirect calorimetry. Results Total activity was associated with reduced first-phase insulin response in both pregnant (Regression r2 = 0.11; Spearman r = -0.47; p = 0.007) and non-pregnant women (Regression r2 = 0.11 Spearman; r = -0.36; p = 0.002). Relative to non-pregnant women, pregnant women were estimated to have secreted 67% more insulin and had 10% lower fasting glucose than non-pregnant women. Pregnant women spent 13% more time sedentary, 71% less time in moderate-to-vigorous intensity activity, had 44% lower objectively measured total activity, and 12% lower PAEE than non-pregnant women. Correlations did not differ significantly for any comparison between physical activity subcomponents and measures of insulin sensitivity or secretion. Conclusions Our findings suggest that physical activity conveys similar benefits on glucose homeostasis in pregnant and non-pregnant women, despite differences in subcomponents of physical activity. PMID:21679399

  20. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    PubMed Central

    2011-01-01

    Background Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms. PMID:21507216

  1. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

    PubMed

    Jabbour, Serge A

    2014-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.

  2. Effects of glucose, lactate and basic FGF as limiting factors on the expansion of human induced pluripotent stem cells.

    PubMed

    Horiguchi, Ikki; Urabe, Yusuke; Kimura, Keiichi; Sakai, Yasuyuki

    2018-01-01

    Pluripotent stem cells (PSCs) are one of the promising cell sources for tissue engineering and drug screening. However, mass production of induced pluripotent stem cells (iPSCs) is still developing. Especially, a huge amount of culture medium usage causes expensive cost in the mass production process. In this report, we reduced culture medium usage by extending interval of changing culture medium. In parallel, we also increased glucose concentration and supplied heparan sulfate to avoid depletion of glucose and bFGF, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses showed that reducing medium change frequency increased differentiation marker expressions but high glucose concentration downregulated these expressions. In contrast, heparan sulfate did not prevent differentiation marker expressions. According to analyses of growth rate, cell growth with extended medium change interval was decreased in later stage of log growth phase despite the existence of high glucose concentration and heparan sulfate. This result and culturing iPSCs with lactate showed that the accumulation of excreted lactate decreased the growth rate regardless of pH control. Conclusively, these experiments show that adding glucose and removing lactate are important to expand iPSCs with reduced culture medium usage. This knowledge should be useful to design economical iPSC mass production and differentiation system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Insulin resistance in young adults born small for gestational age (SGA).

    PubMed

    Putzker, Stephanie; Bechtold-Dalla Pozza, Susanne; Kugler, Karl; Schwarz, Hans P; Bonfig, Walter

    2014-03-01

    This work aimed to assess glucose metabolism and insulin sensitivity in young adults born small for gestational age (SGA) as well as to measure the body composition and adipocytokines of these subjects. A total of 108 out of 342 SGA-born participants were invited for reexamination from the former Bavarian Longitudinal Study (BLS), in which 7505 risk-newborns of the years 1985 to 1986 were prospectively followed. Of these, 76 (34 female/42 male) participants at the age of 19.7±0.5 years were enrolled. Clinical examination and oral glucose tolerance testing (oGTT) was performed with assessment of insulin resistance indices, HbA1c, body mass index (BMI), adipocytokines, and body composition by bioimpedance analysis (BIA). A total of 25 out of 76 (32.9%) patients had abnormal fasting and/or glucose-stimulated insulin levels. Glucose values measured during oGTT showed no abnormalities, except one participant who had impaired glucose tolerance. Homeostasis model assessment insulin resistance index (HOMA-IR) was 1.92±4.2, and insulin sensitivity index by Matsuda (ISI(Matsuda)) showed mean values of 7.85±4.49. HOMA-IR>2.5 was found in 8 patients (10.5%), and 20 patients (26.3%) had an ISI(Matsuda)<5, both interpreted as insulin resistant. No alterations of adipocytokines were found. Fat mass (FM) measured by BIA was within the normal range for both genders and correlated significantly with BMI (r=0.465, p<0.001) and leptin (r=0.668, p>0.001), but not with adiponectin. Insulin resistance correlated with change in weight-for-height Z-score during the first 3 months of age, indicating that weight gain during that early phase might be a risk factor for the development of insulin resistance in children born SGA. A high percentage of insulin-resistant subjects were reconfirmed in a large German cohort of young adults born SGA. Therefore, regular screening for disturbances in glucose metabolism is recommended in these subjects.

  4. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    NASA Astrophysics Data System (ADS)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy fabrication, low cost, small size and high sensitivity, the sensor is promising to be used for the biochemical sensing field where simultaneous measurement of glucose concentration and temperature is required.

  5. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    PubMed

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  6. Modeling diffusion control on organic matter decomposition in unsaturated soil pore space

    NASA Astrophysics Data System (ADS)

    Vogel, Laure; Pot, Valérie; Garnier, Patricia; Vieublé-Gonod, Laure; Nunan, Naoise; Raynaud, Xavier; Chenu, Claire

    2014-05-01

    Soil Organic Matter decomposition is affected by soil structure and water content, but field and laboratory studies about this issue conclude to highly variable outcomes. Variability could be explained by the discrepancy between the scale at which key processes occur and the measurements scale. We think that physical and biological interactions driving carbon transformation dynamics can be best understood at the pore scale. Because of the spatial disconnection between carbon sources and decomposers, the latter rely on nutrient transport unless they can actively move. In hydrostatic case, diffusion in soil pore space is thus thought to regulate biological activity. In unsaturated conditions, the heterogeneous distribution of water modifies diffusion pathways and rates, thus affects diffusion control on decomposition. Innovative imaging and modeling tools offer new means to address these effects. We have developed a new model based on the association between a 3D Lattice-Boltzmann Model and an adimensional decomposition module. We designed scenarios to study the impact of physical (geometry, saturation, decomposers position) and biological properties on decomposition. The model was applied on porous media with various morphologies. We selected three cubic images of 100 voxels side from µCT-scanned images of an undisturbed soil sample at 68µm resolution. We used LBM to perform phase separation and obtained water phase distributions at equilibrium for different saturation indices. We then simulated the diffusion of a simple soluble substrate (glucose) and its consumption by bacteria. The same mass of glucose was added as a pulse at the beginning of all simulations. Bacteria were placed in few voxels either regularly spaced or concentrated close to or far from the glucose source. We modulated physiological features of decomposers in order to weight them against abiotic conditions. We could evidence several effects creating unequal substrate access conditions for decomposers, hence inducing contrasted decomposition kinetics: position of bacteria relative to the substrate diffusion pathways, diffusion rate and hydraulic connectivity between bacteria and substrate source, local substrate enrichment due to restricted mass transfer. Physiological characteristics had a strong impact on decomposition only when glucose diffused easily but not when diffusion limitation prevailed. This suggests that carbon dynamics should not be considered to derive from decomposers' physiology alone but rather from the interactions of biological and physical processes at the microscale.

  7. Synthesis, Properties and Application of Glucose Coated Fe3O4 Nanoparticles Prepared by Co-precipitation Method

    NASA Astrophysics Data System (ADS)

    Sari, Ayu Y.; Eko, A. S.; Candra, K.; Hasibuan, Denny P.; Ginting, M.; Sebayang, P.; Simamora, P.

    2017-07-01

    Synthesis of glucose coated Fe3O4 magnetic nanoparticles have been successfully prepared with co-precipitation method. Raw material of natural iron-sand was obtained from Buaya River, Deliserdang, Indonesia. The milled iron-sand was dissolved in HCl (37 mole %), and stirred in 300 rpm at 70°C for 90 minutes. Glucose was added to the filtered powder with varied content of 0.01, 0.02, and 0.03 mole, and precipitated by NH3 (25 mole%). After drying process, the final product subsequently was glucose coated magnetite (Fe3O4) nanoparticles. The characterizations performed were true density measurement, FTIR, VSM, XRD, BET, and adsorbent performance by AAS. The FTIR analysis showed that M-O (bending) with M=Fe (stretching vibration) with υ = 570.92 and 401.19 cm-1. While glucose coated well on nanoparticle Fe3O4, proved by functional groups C=O (stretching), M-O (stretching) and C-H (bending) with υ = 1404.17, 570.92, and 2368.58 cm-1, respectively. Single phase of magnetite (Fe3O4) structure was determined from XRD analysis with cubic spinel structure and lattice parameter of 8.396 Å. The optimum conditions, obtained on the Fe3O4 nanoparticles with 0.01 mole of glucose addition, which has true density value of 4.57 g/cm3, magnetic saturation, M s = 35,41 emu/g, coercivity, H cJ = 83.58 Oe, average particle size = 12.3 nm and surface area = 124.88 m2/g. This type magnetic nanoparticles of glucose-coated Fe3O4 was capable to adsorbed 93.78 % of ion Pb. Therefore, the glucose-coated Fe3O4 nanoparticle is a potential candidate to be used as heavy metal removal from wastewater.

  8. High glucose intake and glycaemic level in critically ill neonates with inherited metabolic disorders of intoxication.

    PubMed

    Grimaud, Marion; de Lonlay, Pascale; Dupic, Laurent; Arnoux, Jean-Baptiste; Brassier, Anais; Hubert, Philippe; Lesage, Fabrice; Oualha, Mehdi

    2016-06-01

    To investigate glycaemic levels in critically ill neonates with inherited metabolic disorders of intoxication. Thirty-nine neonates with a median age of 7 days (0-24) were retrospectively included (urea cycle disorders (n = 18), maple syrup disease (n = 13), organic acidemias (n = 8)). Twenty-seven neonates were intubated, 21 were haemodialysed and 6 died. During the first 3 days, median total and peak blood glucose (BG) levels were 7.1 mmol/L (0.9-50) and 10 mmol/L (5.1-50), respectively. The median glucose intake rate was 11 mg/kg/min (2.7-15.9). Fifteen and 23 neonates exhibited severe hyperglycaemia (≥2 BG levels >12 mmol/L) and mild hyperglycaemia (≥2 BG levels >7 and ≤12 mmol/L), respectively. Glycaemic levels and number of hyperglycaemic neonates decreased over the first 3 days (p < 0.001) while total glucose intake rate was stable (p = 0.11). Enteral route of glucose intake was associated with a lower number of hyperglycaemic neonates (p = 0.04) and glycaemic level (p = 0.02). Hyperglycaemia is common in critically ill neonates receiving high glucose intake with inherited metabolic disorders of intoxication. Physicians should decrease the rate of total glucose intake and begin enteral feeding as quickly as possible in cases of persistent hyperglycaemia. • The risk of hyperglycaemia in the acute phase of critical illness is high. What is New: • Hyperglycaemia is common in the initial management of critically ill neonates with inherited metabolic disorders of intoxication receiving high glucose intake.

  9. Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian Colonocytes

    PubMed Central

    Donohoe, Dallas R.; Wali, Aminah; Brylawski, Bruna P.; Bultman, Scott J.

    2012-01-01

    A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI) tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, 13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH) levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells. PMID:23029553

  10. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis.

    PubMed

    Chen, Li-Jie; Wu, You-Duo; Xue, Chuang; Bai, Feng-Wu

    2017-10-01

    Jerusalem artichoke (JA) can grow well in marginal lands with high biomass yield, and thus is a potential energy crop for biorefinery. The major biomass of JA is from tubers, which contain inulin that can be easily hydrolyzed into a mixture of fructose and glucose, but fructose utilization for producing butanol as an advanced biofuel is poor compared to glucose-based ABE fermentation by Clostridium acetobutylicum. In this article, the impact of extracellular redox potential (ORP) on the process is studied using a mixture of fructose and glucose to simulate the hydrolysate of JA tubers. When the extracellular ORP is controlled above -460 mV, 13.2 g L -1 butanol is produced from 51.0 g L -1 total sugars (40.1 g L -1 fructose and 10.9 g L -1 glucose), leading to dramatically increased butanol yield and butanol/ABE ratio of 0.26 g g -1 and 0.67, respectively. Intracellular metabolite and q-PCR analysis further indicate that intracellular ATP and NADH availabilities are significantly improved together with the fructose-specific PTS expression at the lag phase, which consequently facilitate fructose transport, metabolic shift toward solventogenesis and carbon flux redistribution for butanol biosynthesis. Therefore, the extracellular ORP control can be an effective strategy to improve butanol production from fructose-based feedstock. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Guar gum and reduction of post-prandial glycaemia: effect of incorporation into solid food, liquid food, and both.

    PubMed

    Wolever, T M; Jenkins, D J; Nineham, R; Alberti, K G

    1979-05-01

    1. The influence of the dose and the form in which guar gum was given on the degree of "flattening" of blood glucose curves was studied in five subjects using meals of bread and soup containing 5 or 10 g guar gum. 2. When 5 g guar gum was added to bread the peak increase of blood glucose was reduced by 41% (P less than 0.002), with 5 g guar in soup, the reduction was 54% (P less than 0.001) while a reduction of 68% (P less than 0.001) was seen with 10 g guar gum (5 g in bread and 5 g in soup). The corresponding reduction in insulin peak increases were 37% (P less than 0.002), 50% (P less than 0.001) and 65% (P less than 0.001) respectively. 3. The difference between the two 5 g doses was significant with respect to the reduction of the peak increases in blood glucose and serum insulin; however the difference between the 5 g dose in bread and the 10 g dose was significantly different (P less than 0.02 for glucose, P less than 0.01 for insulin). 4. The results indicate that as little as 5 g guar gum may reduce the glycaemia following a 45 g carbohydrate meal, but perhaps due to earlier and more complete mixing, guar gum is most effective when added to the liquid phase of the meal.

  12. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    PubMed

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The response of Serratia marcescens JG to environmental changes by quorum sensing system.

    PubMed

    Sun, Shu-Jing; Liu, Hui-Jun; Weng, Cai-Hong; Lai, Chun-Fen; Ai, Liu-Ying; Liu, Yu-Chen; Zhu, Hu

    2016-08-01

    Many bacterial cells are known to regulate their cooperative behaviors and physiological processes through a molecular mechanism called quorum sensing. Quorum sensing in Serratia marcescens JG is mediated by the synthesis of autoinducer 2 (AI-2) which is a furanosyl borate diester. In this study, the response of quorum sensing in S. marcescens JG to environment changes such as the initial pH, carbon sources and boracic acid was investigated by a bioreporter and real-time PCR analysis. The results show that glucose can affect AI-2 synthesis to the greatest extent, and 2.0 % glucose can stimulate S. marcescens JG to produce more AI-2, with a 3.5-fold increase in activity compared with control culture. Furthermore, the response of quorum sensing to changes in glucose concentration was performed by changing the amount of luxS RNA transcripts. A maximum of luxS transcription appeared during the exponential growth phase when the glucose concentration was 20.0 g/L. AI-2 production was also slightly impacted by the low initial pH. It is significant for us that the addition of boracic acid at microdosage (0.1-0.2 g/L) can also induce AI-2 synthesis, which probably demonstrated the feasible fact that the 4,5-dihydroxy-2, 3-pentanedione cyclizes by the addition of borate and the loss of water, is hydrated and is converted to the final AI-2 in S. marcescens JG.

  14. Discriminatory ability of simple OGTT-based beta cell function indices for prediction of prediabetes and type 2 diabetes: the CODAM study.

    PubMed

    den Biggelaar, Louise J C J; Sep, Simone J S; Eussen, Simone J P M; Mari, Andrea; Ferrannini, Ele; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Schalkwijk, Casper G; Stehouwer, Coen D A; Dagnelie, Pieter C

    2017-03-01

    The hyperglycaemic clamp technique and the frequently sampled IVGTT are unsuitable techniques to assess beta cell function (BCF) in large cohorts. Therefore, the aim of this study was to evaluate the discriminatory ability of simple OGTT-based BCF indices for prediction of prediabetes (meaning impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes. Glucose metabolism status was assessed by 2 h 75 g OGTT at baseline (n = 476, mean age 59.2 years, 38.7% women) and after 7 years of follow-up (n = 416) in the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study (1999-2009). Baseline plasma glucose, insulin and C-peptide values during OGTTs were used to calculate 21 simple indices of BCF. Disposition indices (BCF index × Matsuda index), to compensate for the prevailing level of insulin resistance, were calculated for the BCF indices with the best discriminatory abilities. The discriminatory ability of the BCF indices was estimated by the area under the receiver operating characteristics curve (ROC AUC) with an outcome of incident prediabetes (n = 73) or type 2 diabetes (n = 60 and n = 18 cases, respectively, in individuals who were non-diabetic or had normal glucose metabolism at baseline). For incident prediabetes (n = 73), all ROC AUCs were less than 70%, whereas for incident type 2 diabetes, I 30 /I 0 , CP 30 /CP 0 , ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 (where I, CP and G are the plasma concentrations of insulin, C-peptide and glucose, respectively, at the times indicated), and corrected insulin response at 30 min had ROC AUCs over 70%. In at-baseline non-diabetic individuals, disposition indices ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 and corrected insulin response at 30 min had ROC AUCs of over 80% for incident type 2 diabetes. Moreover, these BCF disposition indices had significantly better discriminatory abilities for incident type 2 diabetes than the Matsuda index alone. BCF indices reflecting early-phase insulin secretion have the best ability to discriminate individuals who will develop prediabetes and type 2 diabetes. Of these, ΔCP 30 /ΔG 30 , often referred to as the C-peptidogenic index, performed consistently well.

  15. Millimeter-Wave Sensing of Diabetes-Relevant Glucose Concentration Changes in Pigs

    NASA Astrophysics Data System (ADS)

    Cano-Garcia, Helena; Saha, Shimul; Sotiriou, Ioannis; Kosmas, Panagiotis; Gouzouasis, Ioannis; Kallos, Efthymios

    2018-06-01

    The paper presents the first in vivo glucose monitoring animal study in a pig, which correlates radio frequency signal transmission changes with changes in blood glucose concentration in the 58-62 GHz frequency range. The presented non-invasive glucose sensing system consists of two opposite facing patch antennas sandwiching glucose-loaded samples. Prior to the animal study, the system was tested using saline solution samples, for which a linear relationship between changes in transmitted signal and glucose concentration was observed. In the animal study, glucose concentration changes were induced by injecting a known glucose solution in the blood stream. The non-invasive transmission measurements were compared to the glucose levels obtained invasively from the animal. Our results suggest that the system can detect spikes in glucose concentration in the blood, which is an important milestone towards non-invasive glucose monitoring.

  16. Changes in hepatic glucose and lipid metabolism-related parameters in domestic pigeon (Columba livia) during incubation and chick rearing.

    PubMed

    Wan, X P; Xie, P; Bu, Z; Zou, X T

    2018-04-01

    This study aimed to evaluate the hepatic glucose and lipid metabolism-related parameters of adult male and female White King pigeons (Columba livia) during incubation and chick rearing. At day 4 (I4), 10 (I10) and 17 (I17) of incubation and day 1 (R1), 7 (R7), 15 (R15) and 25 (R25) of chick rearing, livers were sampled from six pigeons for each sex. Glycogen and fat contents, activities of glycolytic enzymes (hexokinase, HK; 6-phosphofructokinase, 6-PFK), and genes expressions of key enzymes involved in glycolysis (pyruvate kinase, PK; glucokinase, GK), gluconeogenesis (phosphoenolpyruvate carboxykinase cytosolic, PCK1; fructose-1,6-bisphosphatase, FBP1; glucose-6-phosphatase, G6Pase), fatty acid synthesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and fatty acid β-oxidation (carnitine palmitoyltransferase 1, CPT1; acyl-CoA 1, ACO) were measured. In male and female pigeon livers, glycogen content and HK activity dramatically increased after I17 and after R1, respectively; expressions of FBP1 and G6Pase genes were maximized at R15; activity of 6-PFK and expressions of PK and CPT1 genes were highest at R7; fat content and expressions of FAS and ACC genes steeply increased from I10 to R1. In females, hepatic expressions of GK and PCK1 genes were greatest at R7 and I17, respectively; however, in males, both of them were maximized at R15. Hepatic expression of ACO gene was significantly enhanced at R1 compared to I17 and R7 in males, whereas it was notably up-regulated at I17 and R7 in females. Furthermore, expressions of PCK1, GK, FAS and ACC genes were in significant relation to fat content in the livers of female pigeons, while fat content in male pigeons was highly correlated with expression of PCK1, ACC, CPT1 and ACO genes. In conclusion, regulations of glucose and lipid metabolic processes were enhanced in parent pigeon livers from terminal phases of incubation to mid phase of chick rearing with sexual effects. © 2017 Blackwell Verlag GmbH.

  17. Preclinical Multimodal Molecular Imaging Using 18F-FDG PET/CT and MRI in a Phase I Study of a Knee Osteoarthritis in In Vivo Canine Model.

    PubMed

    Menendez, Maria I; Hettlich, Bianca; Wei, Lai; Knopp, Michael V

    2017-01-01

    The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT) canine model of osteoarthritis (OA). Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18 F-fluoro-d-glucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI). The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs) were traced manually and maximum standardized uptake values (SUV max ) were evaluated. 18 F-fluoro-d-glucose SUV max in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18 F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18 F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18 F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.

  18. Mechanistic Studies of the N-formylation of Edivoxetine, a Secondary Amine-Containing Drug, in a Solid Oral Dosage Form.

    PubMed

    Hoaglund Hyzer, Cherokee S; Williamson, Michele L; Jansen, Patrick J; Kopach, Michael E; Scherer, R Brian; Baertschi, Steven W

    2017-05-01

    Edivoxetine (LY2216684 HCl), although a chemically stable drug substance, has shown the tendency to degrade in the presence of carbohydrates that are commonly used tablet excipients, especially at high excipient:drug ratios. The major degradation product has been identified as N-formyl edivoxetine. Experimental evidence including solution and solid-state investigations, is consistent with the N-formylation degradation pathway resulting from a direct reaction of edivoxetine with (1) formic acid (generated from decomposition of microcrystalline cellulose or residual glucose) and (2) the reducing sugar ends (aldehydic carbons) of either residual glucose or the microcrystalline cellulose polymer. Results of labeling experiments indicate that the primary source of the formyl group is the C1 position from reducing sugars. Presence of water or moisture accelerates this degradation pathway. Investigations in solid and solution states support that the glucose Amadori Rearrangement Product does not appear to be a direct intermediate leading to N-formyl degradation of edivoxetine, and oxygen does not appear to play a significant role. Solution-phase studies, developed to rapidly assess propensity of amines toward Maillard reactivity and formylation, were extended to show comparative behavior with example systems. The cyclic amine systems, such as edivoxetine, showed the highest propensity toward these side reactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Metabolic Consequences of Sleep-Disordered Breathing

    PubMed Central

    Jun, Jonathan; Polotsky, Vsevolod Y.

    2017-01-01

    There is increasing evidence of a causal relationship between sleep-disordered breathing and metabolic dysfunction. Metabolic syndrome (MetS), a cluster of risk factors that promote atherosclerotic cardiovascular disease, comprises central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension, manifestations of altered total body energy regulation. Excess caloric intake is indisputably the key driver of MetS, but other environmental and genetic factors likely play a role; in particular, obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may induce or exacerbate various aspects of MetS. Clinical studies show that OSA can affect glucose metabolism, cholesterol, inflammatory markers, and nonalcoholic fatty liver disease. Animal models of OSA enable scientists to circumvent confounders such as obesity in clinical studies. In the most widely used model, which involves exposing rodents to IH during their sleep phase, the IH alters circadian glucose homeostasis, impairs muscle carbohydrate uptake, induces hyperlipidemia, and upregulates cholesterol synthesis enzymes. Complicating factors such as obesity or a high-fat diet lead to progressive insulin resistance and liver inflammation, respectively. Mechanisms for these effects are not yet fully understood, but are likely related to energy-conserving adaptations to hypoxia, which is a strong catabolic stressor. Finally, IH may contribute to the morbidity of MetS by inducing inflammation and oxidative stress. Identification of OSA as a potential causative factor in MetS would have immense clinical impact and could improve the management and understanding of both disorders. PMID:19506316

  20. Psychological trauma symptoms and Type 2 diabetes prevalence, glucose control, and treatment modality among American Indians in the Strong Heart Family Study

    PubMed Central

    Jacob, Michelle M.; Gonzales, Kelly L.; Calhoun, Darren; Beals, Janette; Muller, Clemma Jacobsen; Goldberg, Jack; Nelson, Lonnie; Welty, Thomas K.; Howard, Barbara V.

    2013-01-01

    Aims The aims of this paper are to examine the relationship between psychological trauma symptoms and Type 2 diabetes prevalence, glucose control, and treatment modality among 3,776 American Indians in Phase V of the Strong Heart Family Study. Methods This cross-sectional analysis measured psychological trauma symptoms using the National Anxiety Disorder Screening Day instrument, diabetes by American Diabetes Association criteria, and treatment modality by four categories: no medication, oral medication only, insulin only, or both oral medication and insulin. We used binary logistic regression to evaluate the association between psychological trauma symptoms and diabetes prevalence. We used ordinary least squares regression to evaluate the association between psychological trauma symptoms and glucose control. We used binary logistic regression to model the association of psychological trauma symptoms with treatment modality. Results Neither diabetes prevalence (22-31%; p = 0.19) nor control (8.0-8.6; p = 0.25) varied significantly by psychological trauma symptoms categories. However, diabetes treatment modality was associated with psychological trauma symptoms categories, as people with greater burden used either no medication, or both oral and insulin medications (odds ratio = 3.1, p < 0.001). Conclusions The positive relationship between treatment modality and psychological trauma symptoms suggests future research investigate patient and provider treatment decision making. PMID:24051029

  1. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis.

    PubMed

    Ripa, Paulus; Robertson, Ian; Cowley, David; Harris, Margaret; Masters, I Brent; Cotterill, Andrew M

    2002-03-01

    Cystic fibrosis-related diabetes mellitus (CFRD) is an increasingly common complication of cystic fibrosis. CFRD is preceded by a progressive decline in insulin secretion but there is no accepted definition of the prediabetic state in CFRD. This prediabetic state appears to have adverse effects on clinical status, nutrition and lung function, but there is no direct evidence that the impaired glucose homeostasis is the cause of these deteriorations. This study examined the prevalence of glucose intolerance and impaired insulin secretion in a population of children with CF without CFRD. Severe CF lung disease is often associated with poor weight gain and slower growth but the mechanism for this is still unclear. The relationships between the current state of glucose homeostasis, insulin secretion and the insulin-like growth factor axis, height velocity, nutrition status and lung function were therefore studied. Eighteen children with cystic fibrosis aged 9.5-15 years had oral glucose tolerance tests and 14 of these also had intravenous glucose tolerance tests (four refused). Blood samples were collected for insulin, C-peptide, glucose, HbA1c, insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-1 and IGFBP-3. Data on height, weight, puberty status, clinical score (Shwachman score) and lung function were recorded. Height velocity, height and weight standard deviation scores (SDS) were calculated using WHO/CDC data. The mean height SDS (-0.52 +/- 0.17) was less than the normal population (P = 0.007) and the mean height velocity was 4.6 +/- 0.5 cm/year, 39% with a height velocity less than the third percentile for age. The weight SDS and body mass index (BMI) were similar to the normal population. Four children had impaired glucose tolerance. The first-phase insulin response (FPIR) was below the first percentile of normal population values in nine (65%). Impaired FPIR or impaired glucose tolerance did not correlate with the Shwachman score, nutritional status or pulmonary function. There was a significant positive correlation between insulin secretion (area under the curve) and height velocity (P = 0.001) and serum IGFBP-3 levels (P = 0.001). Impaired glucose tolerance was present in 20% of children with cystic fibrosis. Impaired insulin secretion was common (65%) even in children with normal glucose tolerance. The mean height SDS for the group was low and the height velocity was abnormally slow in 39%, yet nutritional status as measured by BMI was appropriate for age. Relative insulin deficiency rather than nutritional deprivation or poor clinical status thus appears to be implicated in the poor linear growth of these children with relatively stable lung disease. This was a small study and firm conclusions on this chronic suppurative disease as to the cause of poor growth are not possible. The causes of poor growth are likely to be complex; nevertheless, the apparent decrease in insulin secretion combined with the expected increased demands on insulin production during pubertal growth raises the question as to whether insulin therapy should be considered in children with cystic fibrosis before the onset of cystic fibrosis-related diabetes mellitus.

  2. Comparative study of biogenic and abiotic iron-containing materials

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Shopska, M.; Paneva, D.; Kovacheva, D.; Kadinov, G.; Mitov, I.

    2016-12-01

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media ( Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  3. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice.

    PubMed

    Iwadate, Reiko; Satoh, Yoko; Watanabe, Yukino; Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mashino, Tadahiko; Mitsumoto, Atsushi

    2012-07-01

    It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T(b) or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg(-1)·day(-1)) or glucose (9 g·kg(-1)·day(-1)) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.

  4. Evaluation of Four Diagnostic Tests for Insulin Dysregulation in Adult Light-Breed Horses.

    PubMed

    Dunbar, L K; Mielnicki, K A; Dembek, K A; Toribio, R E; Burns, T A

    2016-05-01

    Several tests have been evaluated in horses for quantifying insulin dysregulation to support a diagnosis of equine metabolic syndrome. Comparing the performance of these tests in the same horses will provide clarification of their accuracy in the diagnosis of equine insulin dysregulation. The aim of this study was to evaluate the agreement between basal serum insulin concentrations (BIC), the oral sugar test (OST), the combined glucose-insulin test (CGIT), and the frequently sampled insulin-modified intravenous glucose tolerance test (FSIGTT). Twelve healthy, light-breed horses. Randomized, prospective study. Each of the above tests was performed on 12 horses. Minimal model analysis of the FSIGTT was considered the reference standard and classified 7 horses as insulin resistant (IR) and 5 as insulin sensitive (IS). In contrast, BIC and OST assessment using conventional cut-off values classified all horses as IS. Kappa coefficients, measuring agreement among BIC, OST, CGIT, and FSIGTT were poor to fair. Sensitivity of the CGIT (positive phase duration of the glucose curve >45 minutes) was 85.7% and specificity was 40%, whereas CGIT ([insulin]45 >100 μIU/mL) sensitivity and specificity were 28.5% and 100%, respectively. Area under the glucose curve (AUCg0-120 ) was significantly correlated among the OST, CGIT, and FSIGTT, but Bland-Altman method and Lin's concordance coefficient showed a lack of agreement. Current criteria for diagnosis of insulin resistance using BIC and the OST are highly specific but lack sensitivity. The CGIT displayed better sensitivity and specificity, but modifications may be necessary to improve agreement with minimal model analysis. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial.

    PubMed

    Bolinder, Jan; Antuna, Ramiro; Geelhoed-Duijvestijn, Petronella; Kröger, Jens; Weitgasser, Raimund

    2016-11-05

    Tight control of blood glucose in type 1 diabetes delays onset of macrovascular and microvascular diabetic complications; however, glucose levels need to be closely monitored to prevent hypoglycaemia. We aimed to assess whether a factory-calibrated, sensor-based, flash glucose-monitoring system compared with self-monitored glucose testing reduced exposure to hypoglycaemia in patients with type 1 diabetes. In this multicentre, prospective, non-masked, randomised controlled trial, we enrolled adult patients with well controlled type 1 diabetes (HbA 1c ≤58 mmol/mol [7·5%]) from 23 European diabetes centres. After 2 weeks of all participants wearing the blinded sensor, those with readings for at least 50% of the period were randomly assigned (1:1) to flash sensor-based glucose monitoring (intervention group) or to self-monitoring of blood glucose with capillary strips (control group). Randomisation was done centrally using the biased-coin minimisation method dependent on study centre and type of insulin administration. Participants, investigators, and study staff were not masked to group allocation. The primary outcome was change in time in hypoglycaemia (<3·9 mmol/L [70 mg/dL]) between baseline and 6 months in the full analysis set (all participants randomised; excluding those who had a positive pregnancy test during the study). This trial was registered with ClinicalTrials.gov, number NCT02232698. Between Sept 4, 2014, and Feb 12, 2015, we enrolled 328 participants. After the screening and baseline phase, 120 participants were randomly assigned to the intervention group and 121 to the control group, with outcomes being evaluated in 119 and 120, respectively. Mean time in hypoglycaemia changed from 3·38 h/day at baseline to 2·03 h/day at 6 months (baseline adjusted mean change -1·39) in the intervention group, and from 3·44 h/day to 3·27 h/day in the control group (-0·14); with the between-group difference of -1·24 (SE 0·239; p<0·0001), equating to a 38% reduction in time in hypoglycaemia in the intervention group. No device-related hypoglycaemia or safety issues were reported. 13 adverse events were reported by ten participants related to the sensor-four of allergy events (one severe, three moderate); one itching (mild); one rash (mild); four insertion-site symptom (severe); two erythema (one severe, one mild); and one oedema (moderate). There were ten serious adverse events (five in each group) reported by nine participants; none were related to the device. Novel flash glucose testing reduced the time adults with well controlled type 1 diabetes spent in hypoglycaemia. Future studies are needed to assess the effectiveness of this technology in patients with less well controlled diabetes and in younger age groups. Abbott Diabetes Care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    PubMed

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a photon-cell interactive monte carlo simulation for non-invasive measurement of blood glucose level by Raman spectroscopy.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2015-01-01

    Turbidity variation is one of the major limitations in Raman spectroscopy for quantifying blood components, such as glucose, non-invasively. To overcome this limitation, we have developed a Raman scattering simulation using a photon-cell interactive Monte Carlo (pciMC) model that tracks photon migration in both the extra- and intracellular spaces without relying on the macroscopic scattering phase function and anisotropy factor. The interaction of photons at the plasma-cell boundary of randomly oriented three-dimensionally biconcave red blood cells (RBCs) is modeled using geometric optics. The validity of the developed pciMCRaman was investigated by comparing simulation and experimental results of Raman spectroscopy of glucose level in a bovine blood sample. The scattering of the excitation laser at a wavelength of 785 nm was simulated considering the changes in the refractive index of the extracellular solution. Based on the excitation laser photon distribution within the blood, the Raman photon derived from the hemoglobin and glucose molecule at the Raman shift of 1140 cm(-1) = 862 nm was generated, and the photons reaching the detection area were counted. The simulation and experimental results showed good correlation. It is speculated that pciMCRaman can provide information about the ability and limitations of the measurement of blood glucose level.

  8. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans.

    PubMed

    Qian, Jingyi; Dalla Man, Chiara; Morris, Christopher J; Cobelli, Claudio; Scheer, Frank Ajl

    2018-06-04

    Glucose tolerance is lower at night and higher in the morning. Shift workers, who often eat at night and experience circadian misalignment (i.e., misalignment between the central circadian pacemaker and the environmental/behavioral cycle), have an increased risk of type 2 diabetes. To determine the separate and relative impacts of the circadian system, behavioral/environmental cycles, and their interaction (i.e., circadian misalignment) on insulin sensitivity and β-cell function, we used the oral minimal model to quantitatively assess the major determinants of glucose control in 14 healthy adults, using a randomized, cross-over design with two 8-day laboratory protocols. Both protocols involved 3 baseline inpatient days with habitual sleep/wake cycle, followed by 4 inpatient days with same nocturnal bedtime (circadian alignment) or with 12-h inverted behavioral/environmental cycles (circadian misalignment). Our data showed that circadian phase and circadian misalignment affect glucose tolerance through different mechanisms. While the circadian system reduces glucose tolerance in the biological evening compared to the biological morning mainly by decreasing both dynamic and static β-cell responsivity, circadian misalignment reduced glucose tolerance mainly by lowering insulin sensitivity, not by affecting β-cell function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Pin-based electrochemical glucose sensor with multiplexing possibilities.

    PubMed

    Rama, Estefanía C; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2017-02-15

    This work describes the use of mass-produced stainless-steel pins as low-cost electrodes to develop simple and portable amperometric glucose biosensors. A potentiostatic three-electrode configuration device is designed using two bare pins as reference and counter electrodes, and a carbon-ink coated pin as working electrode. Conventional transparency film without any pretreatment is used to punch the pins and contain the measurement solution. The interface to the potentiostat is very simple since it is based on a commercial female connection. This electrochemical system is applied to glucose determination using a bienzymatic sensor phase (glucose oxidase/horseradish peroxidase) with ferrocyanide as electron-transfer mediator, achieving a linear range from 0.05 to 1mM. It shows analytical characteristics comparable to glucose sensors previously reported using conventional electrodes, and its application for real food samples provides good results. The easy modification of the position of the pins allows designing different configurations with possibility of performing simultaneous measurements. This is demonstrated through a specific design that includes four pin working-electrodes. Different concentrations of antibody labeled with alkaline phosphatase are immobilized on the pin-heads and after enzymatic conversion of 3-indoxylphosphate and silver nitrate, metallic silver is determined by anodic stripping voltammetry. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. CD64-Neutrophil expression and stress metabolic patterns in early sepsis and severe traumatic brain injury in children

    PubMed Central

    2013-01-01

    Background Critical illness constitutes a serious derangement of metabolism. The aim of our study was to compare acute phase metabolic patterns in children with sepsis (S) or severe sepsis/septic shock (SS) to those with severe traumatic brain injury (TBI) and healthy controls (C) and to evaluate their relations to neutrophil, lymphocyte and monocyte expressions of CD64 and CD11b. Methods Sixty children were enrolled in the study. Forty-five children with systemic inflammatory response syndrome (SIRS) were classified into three groups: TBI (n = 15), S (n = 15), and SS (n = 15). C consisted of 15 non- SIRS patients undergoing screening tests for minor elective surgery. Blood samples were collected within 6 hours after admission for flow cytometry of neutrophil, lymphocyte and monocyte expression of CD64 and CD11b (n = 60). Procalcitonin (PCT), C-reactive protein (CRP), glucose, triglycerides (TG), total cholesterol (TC), high (HDL) or low-density-lipoproteins (LDL) were also determined in all groups, and repeated on day 2 and 3 in the 3 SIRS groups (n = 150). Results CRP, PCT and TG (p < 0.01) were significantly increased in S and SS compared to TBI and C; glucose did not differ among critically ill groups. Significantly lower were the levels of TC, LDL, and HDL in septic groups compared to C and to moderate changes in TBI (p < 0.0001) but only LDL differed between S and SS (p < 0.02). Among septic patients, PCT levels declined significantly (p < 0.02) with time, followed by parallel decrease of HDL (p < 0.03) and increase of TG (p < 0.02) in the SS group. Neutrophil CD64 (nCD64) expression was higher in patients with SS (81.2%) and S (78.8%) as compared to those with TBI (5.5%) or C (0.9%, p < 0.0001). nCD64 was positively related with CRP, PCT, glucose, and TG (p < 0.01) and negatively with TC, LDL, and HDL (p < 0.0001), but not with severity of illness, hematologic indices, length of stay or mechanical ventilation duration. Conclusions In sepsis, the early stress-metabolic pattern is characterized by a high (nCD64, glucose, TG) - low (TC, HDL, LDL) combination in contrast to the moderate pattern of TBI in which only glucose increases combined with a moderate cholesterol - lipoprotein decrease. These early metabolic patterns persist the first 3 days of acute illness and are associated with the acute phase CD64 expression on neutrophils. PMID:23452299

  11. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes.

    PubMed

    Jimenez-Solem, Espen; Rasmussen, Mette H; Christensen, Mikkel; Knop, Filip K

    2010-12-01

    Dulaglutide (LY-2189265) is a novel, long-acting glucagon-like peptide 1 (GLP-1) analog being developed by Eli Lilly for the treatment of type 2 diabetes mellitus (T2DM). Dulaglutide consists of GLP-1(7-37) covalently linked to an Fc fragment of human IgG4, thereby protecting the GLP-1 moiety from inactivation by dipeptidyl peptidase 4. In vitro and in vivo studies on T2DM models demonstrated glucose-dependent insulin secretion stimulation. Pharmacokinetic studies demonstrated a t1/2 in humans of up to 90 h, making dulaglutide an ideal candidate for once-weekly dosing. Clinical trials suggest that dulaglutide reduces plasma glucose, and has an insulinotropic effect increasing insulin and C-peptide levels. Two phase II clinical trials demonstrated a dose-dependent reduction in glycated hemoglobin (HbA1c) of up to 1.52% compared with placebo. Side effects associated with dulaglutide administration were mainly gastrointestinal. To date, there have been no reports on the formation of antibodies against dulaglutide, but, clearly, long-term data will be needed to asses this and other possible side effects. The results of several phase III clinical trials are awaited for clarification of the expected effects on HbA1c and body weight. If dulaglutide possesses similar efficacy to other GLP-1 analogs, the once-weekly treatment will most likely be welcomed by patients with T2DM.

  12. Effect of viscous fiber (guar) on postprandial motor activity in human small bowel.

    PubMed

    Schönfeld, J; Evans, D F; Wingate, D L

    1997-08-01

    Both caloric value and chemical composition of a meal have been shown to regulate postprandial small bowel motility in dog. In the same species, duration of and contractile activity within the postprandial period also depends on mean viscosity. It is unknown, however, whether meal viscosity and fiber content also regulate small bowel motor activity in man. In human volunteers, we therefore studied the effect of guar gum on small bowel motor response to liquid and solid meals. Twenty-six prolonged ambulatory small bowel manometry studies were performed in 12 volunteers. A total of 620 hr of recording were analyzed visually for phase III of the MMC and a validated computer program calculated the incidence and amplitude of contractions after ingestion of water (300 ml), a pure glucose drink (300 ml/330 kcal) or a solid meal (530 kcal) with and without 5 g of guar gum. Addition of 5 g of guar gum did not significantly delay reappearance of phase III after ingestion of water (59 +/- 11 vs 106 +/- 21 min; P = 0.09). However, guar gum significantly prolonged duration of postprandial motility pattern both after the glucose drink (123 +/- 19 vs 199 +/- 24 min; P < 0.05) and after the solid meal (310 +/- 92 vs 419 +/- 22 min; P = 0.005). Contractile activity during these periods was not affected by guar gum. This was true for mean incidence of contractions after water (1.9 +/- 0.3 vs 1.8 +/- 0.5 min-1), after the glucose drink (1.6 +/- 0.4 vs. 1.7 +/- 0.3 min-1) and after the solid meal (2.4 +/- 0.4 vs 2.6 +/- 0.4 min-1). Likewise, mean amplitude of contractions was not affected by guar gum after water (22.8 +/- 1.4 vs 20.9 +/- 1.9 mm Hg), after the glucose drink (20.5 +/- 1.4 vs 21.3 +/- 1.2), and after the solid meal (20.3 +/- 1.5 vs 21.5 +/- 1.6 mm Hg). Thus a guar gum-induced increase in chyme viscosity markedly prolonged duration of postprandial motor activity in the human small bowel. Contractile activity within the postprandial period, however, was not affected. We suggest that the postprandial motility pattern persisted longer after the more viscous meals, because gastric emptying and intestinal transit were delayed by guar gum. We conclude that it is essential to define meal viscosity and fiber contents when studying postprandial small bowel motility.

  13. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  14. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    PubMed

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  15. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches.

    PubMed

    Ni, Bing-Jie; Liu, He; Nie, Yan-Qiu; Zeng, Raymond J; Du, Guo-Cheng; Chen, Jian; Yu, Han-Qing

    2011-02-01

    Homoacetogenesis is an important potential hydrogen sink in acetogenesis, in which hydrogen is used to reduce carbon dioxide to acetate. So far the acetate production from homoacetogenesis, especially its kinetics, has not been given sufficient attention. In this work, enhanced production of acetate from anaerobic conversion of glucose through coupling glucose fermentation and homoacetogenesis is investigated with both experimental and mathematical approaches. Experiments are conducted to explore elevated acetate production in a coupled anaerobic system. Acetate production could be achieved by homoacetogenesis with a relative high acetate yield under mixed fermentation conditions. With the experimental observations, a kinetic model is formulated to describe such a homoacetogenic process. The maximum homoacetogenic rate (k(m,homo)) is estimated to be 28.5 ± 1.7 kg COD kg⁻¹ COD day⁻¹ with an uptake affinity constant of 3.7 × 10⁻⁵± 3.1 × 10⁻⁶kg COD m⁻³. The improved calculation of homoacetogenic kinetics by our approach could correct the underestimation of homoacetogenesis in anaerobic fermentation processes, as it often occurs in these systems supported by literature analysis. The model predictions match the experimental results in different cases well and provide insights into the dynamics of anaerobic glucose conversion and acetate production. Furthermore, acetate production via homoacetogenesis increases by about 40% through utilizing the fed-batch coupling system, attributed to a balance between the hydrogen production in the acetogenesis phase and the hydrogen consumption in the homoacetogenesis phase. This work provides an effective way for increased anaerobic acetate production, and gives us a better understanding about the homoacetogenic kinetics in the anaerobic fermentation process. © 2010 Wiley Periodicals, Inc.

  16. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    PubMed

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.

  17. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    PubMed

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  18. Quality performance of laboratory testing in pharmacies: a collaborative evaluation.

    PubMed

    Zaninotto, Martina; Miolo, Giorgia; Guiotto, Adriano; Marton, Silvia; Plebani, Mario

    2016-11-01

    The quality performance and the comparability between results of pharmacies point-of-care-testing (POCT) and institutional laboratories have been evaluated. Eight pharmacies participated in the project: a capillary specimen collected by the pharmacist and, simultaneously, a lithium-heparin sample drawn by a physician of laboratory medicine for the pharmacy customers (n=106) were analyzed in the pharmacy and in the laboratory, respectively. Glucose, cholesterol, HDL-cholesterol, triglycerides, creatinine, uric acid, aspartate aminotransferase, alanine aminotransferase, were measured using: Reflotron, n=5; Samsung, n=1; Cardiocheck PA, n=1; Cholestech LDX, n=1 and Cobas 8000. The POCT analytical performance only (phase 2) were evaluated testing, in pharmacies and in the laboratory, the lithium heparin samples from a female drawn fasting daily in a week, and a control sample containing high concentrations of glucose, cholesterol and triglycerides. For all parameters, except triglycerides, the slopes showed a satisfactory correlation. For triglycerides, a median value higher in POCT in comparison to the laboratory (1.627 mmol/L vs. 0.950 mmol/L) has been observed. The agreement in the subjects classification, demonstrates that for glucose, 70% of the subjects show concentrations below the POCT recommended level (5.8-6.1 mmol/L), while 56% are according to the laboratory limit (<5.6 mmol/L). Total cholesterol exhibits a similar trend while POCT triglycerides show a greater percentage of increased values (21% vs. 9%). The reduction in triglycerides bias (phase 2) suggests that differences between POCT and central laboratory is attributable to a pre-analytical problem. The results confirm the acceptable analytical performance of POCT pharmacies and specific criticisms in the pre- and post-analytical phases.

  19. Sweetened Blood Cools Hot Tempers: Physiological Self-Control and Aggression

    PubMed Central

    DeWall, C. Nathan; Deckman, Timothy; Gailliot, Matthew T.; Bushman, Brad J.

    2014-01-01

    Aggressive and violent behaviors are restrained by self-control. Self-control consumes a lot of glucose in the brain, suggesting that low glucose and poor glucose metabolism are linked to aggression and violence. Four studies tested this hypothesis. Study 1 found that participants who consumed a glucose beverage behaved less aggressively than did participants who consumed a placebo beverage. Study 2 found an indirect relationship between diabetes (a disorder marked by low glucose levels and poor glucose metabolism) and aggressiveness through low self-control. Study 3 found that states with high diabetes rates also had high violent crime rates. Study 4 found that countries with high rates of glucose-6-phosphate dehydrogenase deficiency (a metabolic disorder related to low glucose levels) also had higher killings rates, both war related and non-war related. All four studies suggest that a spoonful of sugar helps aggressive and violent behaviors go down. PMID:21064166

  20. Incretin-related drug therapy in heart failure.

    PubMed

    Vest, Amanda R

    2015-02-01

    The new pharmacological classes of GLP-1 agonists and DPP-4 inhibitors are now widely used in diabetes and have been postulated as beneficial in heart failure. These proposed benefits arise from the inter-related pathophysiologies of diabetes and heart failure (diabetes increases the risk of heart failure, and heart failure can induce insulin resistance) and also in light of the dysfunctional myocardial energetics seen in heart failure. The normal heart utilizes predominantly fatty acids for energy production, but there is some evidence to suggest that increased myocardial glucose uptake may be beneficial for the failing heart. Thus, GLP-1 agonists, which stimulate glucose-dependent insulin release and enhance myocardial glucose uptake, have become a focus of investigation in both animal models and humans with heart failure. Limited pilot data for GLP-1 agonists shows potential improvements in systolic function, hemodynamics, and quality of life, forming the basis for current phase II trials.

  1. An Overview of Insulin Pumps and Glucose Sensors for the Generalist

    PubMed Central

    McAdams, Brooke H.; Rizvi, Ali A.

    2016-01-01

    Continuous subcutaneous insulin, or the insulin pump, has gained popularity and sophistication as a near-physiologic programmable method of insulin delivery that is flexible and lifestyle-friendly. The introduction of continuous monitoring with glucose sensors provides unprecedented access to, and prediction of, a patient’s blood glucose levels. Efforts are underway to integrate the two technologies, from “sensor-augmented” and “sensor-driven” pumps to a fully-automated and independent sensing-and-delivery system. Implantable pumps and an early-phase “bionic pancreas” are also in active development. Fine-tuned “pancreas replacement” promises to be one of the many avenues that offers hope for individuals suffering from diabetes. Although endocrinologists and diabetes specialists will continue to maintain expertise in this field, it behooves the primary care physician to have a working knowledge of insulin pumps and sensors to ensure optimal clinical care and decision-making for their patients. PMID:26742082

  2. Modulation of postprandial lipaemia by a single meal containing a commonly consumed interesterified palmitic acid-rich fat blend compared to a non-interesterified equivalent.

    PubMed

    Hall, Wendy L; Iqbal, Sara; Li, Helen; Gray, Robert; Berry, Sarah E E

    2017-12-01

    Interesterification of palm stearin and palm kernal (PSt/PK) is widely used by the food industry to create fats with desirable functional characteristics for applications in spreads and bakery products, negating the need for trans fatty acids. Previous studies have reported reduced postprandial lipaemia, an independent risk factor for CVD, following interesterified (IE) palmitic and stearic acid-rich fats that are not currently widely used by the food industry. The current study investigates the effect of the most commonly consumed PSt/PK IE blend on postprandial lipaemia. A randomised, controlled, crossover (1 week washout) double-blind design study (n = 12 healthy males, 18-45 years), compared the postprandial (0-4 h) effects of meals containing 50 g fat [PSt/PK (80:20); IE vs. non-IE] on changes in plasma triacylglycerol (TAG), glucose, glucose-dependent insulinotropic polypeptide (GIP), peptide YY (PYY), insulin, gastric emptying (paracetamol concentrations) and satiety (visual analogue scales). The postprandial increase in plasma TAG was higher following the IE PSt/PK versus the non-IE PSt/PK, with a 51 % greater incremental area under the curve [mean difference with 95 % CI 41 (23, 58) mmol/L min P = 0.001]. The pattern of lipaemia was different between meals; at 4-h plasma TAG concentrations declined following the IE fat but continued to rise following the non-IE fat. Insulin, glucose, paracetamol, PYY and GIP concentrations increased significantly after the test meals (time effect; P < 0.001 for all), but did not differ between test meals. Feelings of fullness were higher following the non-IE PSt/PK meal (diet effect; P = 0.034). No other significant differences were noted. Interesterification of PSt/PK increases early phase postprandial lipaemia (0-4 h); however, further investigation during the late postprandial phase (4-8 h) is warranted to determine the rate of return to baseline values. Clinicaltrials.gov as NCT02365987.

  3. Evaluation of Correlation of Blood Glucose and Salivary Glucose Level in Known Diabetic Patients.

    PubMed

    Gupta, Anjali; Singh, Siddharth Kumar; Padmavathi, B N; Rajan, S Y; Mamatha, G P; Kumar, Sandeep; Roy, Sayak; Sareen, Mohit

    2015-05-01

    Diabetes mellitus is a chronic heterogenous disease in which there is dysregulation of carbohydrates, protein and lipid metabolism; leading to elevated blood glucose levels. The present study was conducted to evaluate the correlation between blood glucose and salivary glucose levels in known diabetic patients and control group and also to evaluate salivary glucose level as a diagnostic tool in diabetic patients. A total number of 250 patients were studied, out of which 212 formed the study group and 38 formed the control group. Among 250 patients, correlation was evaluated between blood glucose and salivary glucose values which on analysis revealed Pearson correlation of 0.073. The p-value was 0.247, which was statistically non significant. Salivary glucose values cannot be considered as a diagnostic tool for diabetic individuals.

  4. C14 Assays and Autoradiographic Studies on the Rooster Comb

    PubMed Central

    Balazs, Endre A.; Szirmai, John A.; Bergendahl, Gudrun

    1959-01-01

    The distribution of C14 was studied in various parts of the rooster comb following treatment with testosterone. The value of gas-phase assay of C14 in tissue has been demonstrated and the results compared with those of autoradiographic studies on the same tissue. The results of these experiments showed that androgen treatment significantly increases the rate of incorporation of C14 in various parts of the comb. The specific activity of carbon in the comb, cornea, and liver differed, depending on which precursor, viz. glucose-6-C14, glucose-1-C14, and glucuronolactone-U-C14, was administered. The highest values were obtained after the administration of glucose-6-C14; glucuronolactone-U-C14 gave the lowest specific activity. The specific activity of carbon in different parts of the comb showed considerable variation. Carbon assay of serial sections of the comb cut at various planes showed that the specific activity of carbon was highest in the mucoid layer. Both C14 assays and autoradiograms indicate that C14 is also present in other parts of the comb. As seen in autoradiography, the concentration of C14 was highest in the epithelium, in the blood vessel walls, and in the avascular collagenous tissue. These results, and indications from previous studies, suggest that the high specific activity of carbon in the mucoid layer is due mainly to the presence of C14-labelled hyaluronic acid. Autoradiograms and PAS staining suggest that a significant amount of C14 is also incorporated into the glycoproteins associated with the collagen fibers. PMID:13654453

  5. Recruitment Into a Pediatric Continuous Glucose Monitoring RCT.

    PubMed

    Volkening, Lisa K; Gaffney, Kaitlin C; Katz, Michelle L; Laffel, Lori M

    2017-01-01

    The purpose was to identify patient/family characteristics and recruitment process characteristics associated with the decision to participate in a 2-year continuous glucose monitoring (CGM) RCT for youth with type 1 diabetes and their families. Study staff approached patients who were conditionally eligible according to medical record review or referred by a provider. We categorized families according to participation decision (agree vs decline) and timing of decision (day of approach vs later ["thinkers"]). Over 18 months, we approached 456 eligible patients; 19% agreed on the day of approach, 10% agreed later, 42% declined on the day of approach, and 30% declined later. Agreers were younger ( P = .002), had shorter diabetes duration ( P = .0003), had a lower insulin dose ( P = .02), checked blood glucose levels more often ( P = .002), and were more likely to use pump therapy ( P = .009) than decliners. Patients/families were more likely to agree in fall/winter (41%) than spring/summer (19%, P < .0001). Of decliners, 50% cited no interest in CGM as the reason for nonparticipation. Among thinkers, 49% of patients who made a decision within 2 weeks of being approached agreed; only 15% of thinkers who made a decision >2 weeks after being approached agreed to participate ( P < .0001). Recruitment is a critical and often challenging phase of clinical trials. Recruitment to pediatric CGM studies may be especially challenging due to youths' reluctance to use CGM. These data provide an opportunity to better understand and possibly optimize recruitment into future pediatric CGM studies and other studies of advanced diabetes technologies.

  6. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study

    PubMed Central

    2017-01-01

    Background High sugar and refined carbohydrate intake is associated with weight gain, increased incidence of diabetes and is linked with increased cardiovascular mortality. Reducing the health impact of poor quality carbohydrate intake is a public health priority. Reducose, a proprietary mulberry leaf extract (ME), may reduce blood glucose responses following dietary carbohydrate intake by reducing absorption of glucose from the gut. Methods A double-blind, randomised, repeat measure, phase 2 crossover design was used to study the glycaemic and insulinaemic response to one reference product and three test products at the Functional Food Centre, Oxford Brooks University, UK. Participants; 37 adults aged 19–59 years with a BMI ≥ 20kg/m2 and ≤ 30kg/m2. The objective was to determine the effect of three doses of mulberry-extract (Reducose) versus placebo on blood glucose and insulin responses when co-administered with 50g maltodextrin in normoglycaemic healthy adults. We also report the gastrointestinal tolerability of the mulberry extract. Results Thirty-seven participants completed the study: The difference in the positive Incremental Area Under the Curve (pIAUC) (glucose (mmol / L x h)) for half, normal and double dose ME compared with placebo was -6.1% (-18.2%, 5.9%; p = 0.316), -14.0% (-26.0%, -2.0%; p = 0.022) and -22.0% (-33.9%, -10.0%; p<0.001) respectively. The difference in the pIAUC (insulin (mIU / L x h)) for half, normal and double dose ME compared with placebo was -9.7% (-25.8%, 6.3%; p = 0.234), -23.8% (-39.9%, -7.8%; p = 0.004) and -24.7% (-40.8%, -8.6%; p = 0.003) respectively. There were no statistically significant differences between any of the 4 groups in the odds of experiencing one or more gastrointestinal symptoms (nausea, abdominal cramping, distension or flatulence). Conclusions Mulberry leaf extract significantly reduces total blood glucose rise after ingestion of maltodextrin over 120 minutes. The pattern of effect demonstrates a classical dose response curve with significant effects over placebo. Importantly, total insulin rises were also significantly suppressed over the same time-period. There were no statistically significant differences between any of the treatment groups (including placebo) in the odds of experiencing one or more gastrointestinal symptoms. Mulberry extract may have multiple modes of action and further studies are necessary to evaluate ME as a potential target for the prevention of type 2 diabetes and the regulation of dysglycaemia. PMID:28225835

  7. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance.

    PubMed

    Sheikh, Saba; Gudipaty, Lalitha; De Leon, Diva D; Hadjiliadis, Denis; Kubrak, Christina; Rosenfeld, Nora K; Nyirjesy, Sarah C; Peleckis, Amy J; Malik, Saloni; Stefanovski, Darko; Cuchel, Marina; Rubenstein, Ronald C; Kelly, Andrea; Rickels, Michael R

    2017-01-01

    Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF. © 2017 by the American Diabetes Association.

  8. Plasma glucose and insulin response to two oral nutrition supplements in adults with type 2 diabetes mellitus.

    PubMed

    Huhmann, Maureen B; Smith, Kristen N; Schwartz, Sherwyn L; Haller, Stacie K; Irvin, Sarah; Cohen, Sarah S

    2016-01-01

    The purpose of this clinical trial was to compare the glucose usage of two oral nutritional supplement (ONS) products and to assess whether a diabetes-specific formulation provides improved glucose stabilization and management compared with a standard formula. A total of 12 subjects with type 2 diabetes (7 males and 5 females) completed a randomized, cross-over design trial. Each subject consumed isocaloric amounts of either the standard ONS or the diabetes-specific formula ONS on different dates, 1 week apart. Glucose and insulin measures were recorded at baseline, and 10, 20, 30, 60, 90, 120, 150, 180, 210 and 240 min after the beverage was consumed and then used to calculate area under the curve (AUC) for each subject. The mean glucose AUC was lower in the diabetes-specific ONS group than in the standard group (p<0.0001), but there was not a significant difference observed for mean insulin AUC (p=0.068). A sensitivity analysis of the mean insulin AUC measures was performed by removing a potential outlier from the analysis, and this resulted in a significant difference between the groups (p=0.012). First-phase insulin measures and an insulinogenic index calculated for the beverages showed no significant differences. On the basis of the results of this trial of 12 subjects, the diabetes-specific ONS appears to provide better glucose maintenance in persons with type 2 diabetes when compared to the standard formula ONS. NCT02612675.

  9. Evaluation of glucose controllers in virtual environment: methodology and sample application.

    PubMed

    Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman

    2004-11-01

    Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.

  10. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    PubMed

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  11. Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore.

    PubMed

    Martinello, Flávia; Luiz da Silva, Edson

    2006-11-01

    Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.

  12. Metabolic influence of lead on polyhydroxyalkanoates (PHA) production and phosphate uptake in activated sludge fed with glucose or acetic acid as carbon source.

    PubMed

    You, Sheng-Jie; Tsai, Yung-Pin; Cho, Bo-Chuan; Chou, Yi-Hsiu

    2011-09-01

    Sludge in a sequential batch reactor (SBR) system was used to investigate the effect of lead toxicity on metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) communities fed with acetic acid or glucose as their sole carbon source, respectively. Results showed that the effect of lead on substrate utilization of both PAOs and GAOs was insignificant. However, lead substantially inhibited both of phosphate release and uptake of PAOs. In high concentration of acetic acid trials, an abnormal aerobic phosphate release was observed instead of phosphate uptake and the release rate increased with increasing lead concentration. Results also showed that PAOs could normally synthesize polyhydroxybutyrate (PHB) in the anaerobic phase even though lead concentration was 40 mg L(-1). However, they could not aerobically utilize PHB normally in the presence of lead. On the other hand, GAOs could not normally metabolize polyhydroxyvalerate (PHV) in both the anaerobic and aerobic phases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus.

    PubMed

    Jun, Min-Ho; Kim, Soochan; Ku, Boncho; Cho, JungHee; Kim, Kahye; Yoo, Ho-Ryong; Kim, Jaeuk U

    2018-01-12

    We investigated segmental phase angles (PAs) in the four limbs using a multi-frequency bioimpedance analysis (MF-BIA) technique for noninvasively diagnosing diabetes mellitus. We conducted a meal tolerance test (MTT) for 45 diabetic and 45 control subjects stratified by age, sex and body mass index (BMI). HbA1c and the waist-to-hip-circumference ratio (WHR) were measured before meal intake, and we measured the glucose levels and MF-BIA PAs 5 times for 2 hours after meal intake. We employed a t-test to examine the statistical significance and the area under the curve (AUC) of the receiver operating characteristics (ROC) to test the classification accuracy using segmental PAs at 5, 50, and 250 kHz. Segmental PAs were independent of the HbA1c or glucose levels, or their changes caused by the MTT. However, the segmental PAs were good indicators for noninvasively screening diabetes In particular, leg PAs in females and arm PAs in males showed best classification accuracy (AUC = 0.827 for males, AUC = 0.845 for females). Lastly, we introduced the PA at maximum reactance (PAmax), which is independent of measurement frequencies and can be obtained from any MF-BIA device using a Cole-Cole model, thus showing potential as a useful biomarker for diabetes.

  14. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  15. Random plasma glucose in serendipitous screening for glucose intolerance: screening for impaired glucose tolerance study 2.

    PubMed

    Ziemer, David C; Kolm, Paul; Foster, Jovonne K; Weintraub, William S; Vaccarino, Viola; Rhee, Mary K; Varughese, Rincy M; Tsui, Circe W; Koch, David D; Twombly, Jennifer G; Narayan, K M Venkat; Phillips, Lawrence S

    2008-05-01

    With positive results from diabetes prevention studies, there is interest in convenient ways to incorporate screening for glucose intolerance into routine care and to limit the need for fasting diagnostic tests. The aim of this study is to determine whether random plasma glucose (RPG) could be used to screen for glucose intolerance. This is a cross-sectional study. The participants of this study include a voluntary sample of 990 adults not known to have diabetes. RPG was measured, and each subject had a 75-g oral glucose tolerance test several weeks later. Glucose intolerance targets included diabetes, impaired glucose tolerance (IGT), and impaired fasting glucose(110) (IFG(110); fasting glucose, 110-125 mg/dl, and 2 h glucose < 140 mg/dl). Screening performance was measured by area under receiver operating characteristic curves (AROC). Mean age was 48 years, and body mass index (BMI) was 30.4 kg/m(2); 66% were women, and 52% were black; 5.1% had previously unrecognized diabetes, and 24.0% had any "high-risk" glucose intolerance (diabetes or IGT or IFG(110)). The AROC was 0.80 (95% CI 0.74-0.86) for RPG to identify diabetes and 0.72 (0.68-0.75) to identify any glucose intolerance, both highly significant (p < 0.001). Screening performance was generally consistent at different times of the day, regardless of meal status, and across a range of risk factors such as age, BMI, high density lipoprotein cholesterol, triglycerides, and blood pressure. RPG values should be considered by health care providers to be an opportunistic initial screening test and used to prompt further evaluation of patients at risk of glucose intolerance. Such "serendipitous screening" could help to identify unrecognized diabetes and prediabetes.

  16. Dapagliflozin--do we need it registered for type 2 diabetes?

    PubMed

    Doggrell, Sheila A; Tuli, Rinku

    2014-08-01

    Inhibitors of the sodium-glucose co-transporter 2 (SGLT2) promote the excretion of glucose to reduce glycated hemoglobin (HbA1c) levels. Canagliflozin was the first SGLT2 inhibitor to be approved by the US FDA for use in the treatment of type 2 diabetes, and recently dapagliflozin has also been approved. We evaluated a recent Phase III clinical trial with dapagliflozin. Dapagliflozin was studied as add-on therapy to sitagliptin with or without metformin, and was shown to lower HbA1c levels and body weight. The incidence of hypoglycaemia was low with dapagliflozin, but it did increase the incidence of urogenital infections. As no clear benefits have been identified for dapagliflozin over canagliflozin, which was the first gliflozin registered by the FDA, we do not fully understand why it was necessary to register dapagliflozin. Given that there are no completed cardiovascular/clinical outcome studies with dapagliflozin, and therefore no evidence of beneficial effect, it also seems premature to be using it extensively or considering it as an alternative to the clinically proven metformin.

  17. Short-term fasting promotes insulin expression in rat hypothalamus.

    PubMed

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis.

    PubMed

    Cano Megías, Marta; González Albarrán, Olga; Guisado Vasco, Pablo; Lamas Ferreiro, Adelaida; Máiz Carro, Luis

    2015-02-01

    diabetes has become a co-morbidity with a negative impact on nutritional status, lung function and survival in cystic fibrosis. To identify any changes in intermediate points after a 2-hour oral glucose tolerance test (OGTT), pancreatic β-cell dysfunction, and insulin resistance in cystic fibrosis-related diabetes. It was carried out a retrospective analysis in a cohort of 64 patients affected of cystic fibrosis, older than 14 years, using the first pathological OGTT. Peripheral insulin resistance was measured using the homeostasis model assessment for insulin resistance (HOMA- IR), and pancreatic β-cell function was calculated according to Wareham. Time to maximum plasma insulin and glucose levels and area under the curve (AUC0-120) were also measured. Twenty-eight women and 36 men with a mean age of 26.8 years were enrolled, of whom 26.7% had normal glucose tolerance (NGT), 18.3% cystic fibrosis-related diabetes without fasting hyperglycemia (CFRD w/o FPG), 10% indeterminate (INDET), and 45% impaired glucose tolerance (IGT). HOMA-IR values were not significantly different between the diagnostic categories. Patients with any pathological change had worse β cell function, with a significant delay in insulin secretion, although there were no differences in total insulin production (AUC0-120). Time to maximum glucose levels was significantly shorter in NGT patients as compared to other categories, with glucose AUC0-120 being higher in the different diagnostic categories as compared to NGT. In over half the cases, peak blood glucose levels during a standard OGTT are reached in the intermediate time points, rather than at the usual time of 120minutes. Patients with cystic fibrosis and impaired glucose metabolism have a delayed insulin secretion during the standard OGTT due to loss of first-phase insulin secretion, with no differences in total insulin production. Absence of significant changes in HOMA-IR suggests that β-cell dysfunction is the main pathogenetic mechanism. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  19. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  20. Assessment of glycemic response to an oral glucokinase activator in a proof of concept study: application of a semi-mechanistic, integrated glucose-insulin-glucagon model.

    PubMed

    Schneck, Karen B; Zhang, Xin; Bauer, Robert; Karlsson, Mats O; Sinha, Vikram P

    2013-02-01

    A proof of concept study was conducted to investigate the safety and tolerability of a novel oral glucokinase activator, LY2599506, during multiple dose administration to healthy volunteers and subjects with Type 2 diabetes mellitus (T2DM). To analyze the study data, a previously established semi-mechanistic integrated glucose-insulin model was extended to include characterization of glucagon dynamics. The model captured endogenous glucose and insulin dynamics, including the amplifying effects of glucose on insulin production and of insulin on glucose elimination, as well as the inhibitory influence of glucose and insulin on hepatic glucose production. The hepatic glucose production in the model was increased by glucagon and glucagon production was inhibited by elevated glucose concentrations. The contribution of exogenous factors to glycemic response, such as ingestion of carbohydrates in meals, was also included in the model. The effect of LY2599506 on glucose homeostasis in subjects with T2DM was investigated by linking a one-compartment, pharmacokinetic model to the semi-mechanistic, integrated glucose-insulin-glucagon system. Drug effects were included on pancreatic insulin secretion and hepatic glucose production. The relationships between LY2599506, glucose, insulin, and glucagon concentrations were described quantitatively and consequently, the improved understanding of the drug-response system could be used to support further clinical study planning during drug development, such as dose selection.

  1. Real-Time State Estimation and Long-Term Model Adaptation: A Two-Sided Approach toward Personalized Diagnosis of Glucose and Insulin Levels

    PubMed Central

    Eberle, Claudia; Ament, Christoph

    2012-01-01

    Background With continuous glucose sensors (CGSs), it is possible to obtain a dynamical signal of the patient’s subcutaneous glucose concentration in real time. How could that information be exploited? We suggest a model-based diagnosis system with a twofold objective: real-time state estimation and long-term model parameter identification. Methods To obtain a dynamical model, Bergman’s nonlinear minimal model (considering plasma glucose G, insulin I, and interstitial insulin X) is extended by two states describing first and second insulin response. Furthermore, compartments for oral glucose and subcutaneous insulin inputs as well as for subcutaneous glucose measurement are added. The observability of states and external inputs as well as the identifiability of model parameters are assessed using the empirical observability Gramian. Signals are estimated for different nondiabetic and diabetic scenarios by unscented Kalman filter. Results (1) Observability of different state subsets is evaluated, e.g., from CGSs, {G, I} or {G, X} can be observed and the set {G, I, X} cannot. (2) Model parameters are included, e.g., it is possible to estimate the second-phase insulin response gain kG2 additionally. This can be used for model adaptation and as a diagnostic parameter that is almost zero for diabetes patients. (3) External inputs are considered, e.g., oral glucose is theoretically observable for nondiabetic patients, but estimation scenarios show that the time delay of 1 h limits application. Conclusions A real-time estimation of states (such as plasma insulin I) and parameters (such as kG2) is possible, which allows an improved real-time state prediction and a personalized model. PMID:23063042

  2. A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes.

    PubMed

    Maahs, David M; Calhoun, Peter; Buckingham, Bruce A; Chase, H Peter; Hramiak, Irene; Lum, John; Cameron, Fraser; Bequette, B Wayne; Aye, Tandy; Paul, Terri; Slover, Robert; Wadwa, R Paul; Wilson, Darrell M; Kollman, Craig; Beck, Roy W

    2014-07-01

    Overnight hypoglycemia occurs frequently in individuals with type 1 diabetes and can result in loss of consciousness, seizure, or even death. We conducted an in-home randomized trial to determine whether nocturnal hypoglycemia could be safely reduced by temporarily suspending pump insulin delivery when hypoglycemia was predicted by an algorithm based on continuous glucose monitoring (CGM) glucose levels. Following an initial run-in phase, a 42-night trial was conducted in 45 individuals aged 15-45 years with type 1 diabetes in which each night was assigned randomly to either having the predictive low-glucose suspend system active (intervention night) or inactive (control night). The primary outcome was the proportion of nights in which ≥1 CGM glucose values ≤60 mg/dL occurred. Overnight hypoglycemia with at least one CGM value ≤60 mg/dL occurred on 196 of 942 (21%) intervention nights versus 322 of 970 (33%) control nights (odds ratio 0.52 [95% CI 0.43-0.64]; P < 0.001). Median hypoglycemia area under the curve was reduced by 81%, and hypoglycemia lasting >2 h was reduced by 74%. Overnight sensor glucose was >180 mg/dL during 57% of control nights and 59% of intervention nights (P = 0.17), while morning blood glucose was >180 mg/dL following 21% and 27% of nights, respectively (P < 0.001), and >250 mg/dL following 6% and 6%, respectively. Morning ketosis was present <1% of the time in each arm. Use of a nocturnal low-glucose suspend system can substantially reduce overnight hypoglycemia without an increase in morning ketosis. © 2014 by the American Diabetes Association.

  3. NPY modulates PYY function in the regulation of energy balance and glucose homeostasis.

    PubMed

    Zhang, L; Nguyen, A D; Lee, I-C J; Yulyaningsih, E; Riepler, S J; Stehrer, B; Enriquez, R F; Lin, S; Shi, Y-C; Baldock, P A; Sainsbury, A; Herzog, H

    2012-08-01

    Both the neuronal-derived neuropeptide Y (NPY) and the gut hormone peptide YY (PYY) have been implicated in the regulation of energy balance and glucose homeostasis. However, despite similar affinities for the same Y receptors, the co-ordinated actions of these two peptides in energy and glucose homeostasis remain largely unknown. To investigate the mechanisms and possible interactions between PYY with NPY in the regulation of these processes, we utilized NPY/PYY single and double mutant mouse models and examined parameters of energy balance and glucose homeostasis. PYY(-/-) mice exhibited increased fasting-induced food intake, enhanced fasting and oral glucose-induced serum insulin levels, and an impaired insulin tolerance, - changes not observed in NPY(-/-) mice. Interestingly, whereas PYY deficiency-induced impairment in insulin tolerance remained in NPY(-/-) PYY(-/-) mice, effects of PYY deficiency on fasting-induced food intake and serum insulin concentrations at baseline and after the oral glucose bolus were absent in NPY(-/-) PYY(-/-) mice, suggesting that NPY signalling may be required for PYY's action on insulin secretion and fasting-induced hyperphagia. Moreover, NPY(-/-) PYY(-/-) , but not NPY(-/-) or PYY(-/-) mice had significantly decreased daily food intake, indicating interactive control by NPY and PYY on spontaneous food intake. Furthermore, both NPY(-/-) and PYY(-/-) mice showed significantly reduced respiratory exchange ratio during the light phase, with no additive effects observed in NPY(-/-) PYY(-/-) mice, indicating that NPY and PYY may regulate oxidative fuel selection via partly shared mechanisms. Overall, physical activity and energy expenditure, however, are not significantly altered by NPY and PYY single or double deficiencies. These findings show significant and diverse interactions between NPY and PYY signalling in the regulation of different aspects of energy balance and glucose homeostasis. © 2012 Blackwell Publishing Ltd.

  4. Herpes simplex virus type 2 serostatus is not associated with inflammatory or metabolic markers in antiretroviral therapy-treated HIV.

    PubMed

    Tan, Darrell H S; Raboud, Janet M; Szadkowski, Leah; Yi, Tae Joon; Shannon, Brett; Kaul, Rupert; Liles, W Conrad; Walmsley, Sharon L

    2015-03-01

    Systemic inflammation and immune activation may persist in HIV-infected persons on suppressive combination antiretroviral therapy (cART) and contribute to adverse health outcomes. We compared markers of immune activation, inflammation, and abnormal glucose and lipid metabolism in HIV-infected adults according to herpes simplex virus type 2 (HSV-2) serostatus in a 6-month observational cohort study in Toronto, Canada. HIV-infected adults on suppressive (viral load <50 copies/ml) cART were categorized as HSV-2 seropositive or seronegative using the HerpeSelect ELISA, and underwent study visits at baseline, 3 months, and 6 months. The primary outcome was the median percentage of activated (CD38(+)HLADR(+)) CD8 T cells. Secondary outcome measures included additional immune (activated CD4, regulatory T cells) and inflammatory (hsCRP, D-dimer, IL-1b, IL-6, MCP-1, TNF, sICAM-1, sVCAM-1, Ang1/Ang2 ratio) markers. Metabolic outcomes included the proportion with impaired fasting glucose/impaired glucose tolerance/diabetes, insulin sensitivity (calculated using the Matsuda index), insulin resistance (homeostasis model assessment of insulin resistance), and fasting lipids. The impact of HSV-2 on each outcome was estimated using generalized estimating equation regression models. Of 84 participants, 38 (45%) were HSV-2 seropositive. HSV signs and symptoms were uncommon. Aside from D-dimer, which was more often detectable in HSV-2 seropositives (adjusted odds ratio=3.58, 95% CI=1.27, 10.07), HSV-2 serostatus was not associated with differences in any other immune, inflammatory cytokine, acute phase reactant, endothelial activation, or metabolic markers examined in univariable or multivariable models. During the study, CD8 and CD4 T cell activation declined by 0.16% and 0.08% per month, respectively, while regulatory T cells increased by 0.05% per month. HSV-2 serostatus was not consistently associated with immune activation, inflammatory, or lipid and glucose metabolic markers in this cohort of HIV-infected adults on suppressive cART.

  5. Biphasic adaptation to osmotic stress in the C. elegans germ line.

    PubMed

    Davis, Michael; Montalbano, Andrea; Wood, Megan P; Schisa, Jennifer A

    2017-06-01

    Cells respond to environmental stress in multiple ways. In the germ line, heat shock and nutritive stress trigger the assembly of large ribonucleoprotein (RNP) granules via liquid-liquid phase separation (LLPS). The RNP granules are hypothesized to maintain the quality of oocytes during stress. The goal of this study was to investigate the cellular response to glucose in the germ line and determine if it is an osmotic stress response. We found that exposure to 500 mM glucose induces the assembly of RNP granules in the germ line within 1 h. Interestingly, the RNP granules are maintained for up to 3 h; however, they dissociate after longer periods of stress. The RNP granules include processing body and stress granule proteins, suggesting shared functions. Based on several lines of evidence, the germ line response to glucose largely appears to be an osmotic stress response, thus identifying osmotic stress as a trigger of LLPS. Although RNP granules are not maintained beyond 3 h of osmotic stress, the quality of oocytes does not appear to decrease after longer periods of stress, suggesting a secondary adaptation in the germ line. We used an indirect marker of glycerol and observed high levels after 5 and 20 h of glucose exposure. Moreover, in gpdh-1;gpdh-2 germ lines, glycerol levels are reduced concomitant with RNP granules being maintained for an extended period. We speculate that increased glycerol levels may function as a secondary osmoregulatory adaptive response in the germ line, following a primary response of RNP granule assembly. Copyright © 2017 the American Physiological Society.

  6. Society for Research on Biological Rhythms (1st) Held on May 11-14, 1988 in Charleston, South Carolina

    DTIC Science & Technology

    1988-08-10

    and applied research in all aspects of biological 8:00 a.m. to 1:00 p.m., May 12-14 and from 4:30 - 6 :30 rhythms , to disseminate important research...NUCLEUS (SCN) NEU- RONS IN VITRO WITHOUT ALTERING THE GLUCOSE Workshop 6 : UTILIZATION RHYTHM OR PHASE OF THE RHYTHM Involvement of Protein Synthesis in...Medical Science, Seta-Tsukinowa, Otsu- city, Shiga, Japan. Circadian Rhythms 74 RUNNING WHEEL AVAILABILITY ENTRAINS SLEEP- 65 PHASE RESPONSE CURVES AS

  7. Microbial mobilization of plutonium and other actinides from contaminated soil

    DOE PAGES

    Francis, A. J.; Dodge, C. J.

    2015-12-01

    Here we examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to themore » soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.« less

  8. Microbial mobilization of plutonium and other actinides from contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A. J.; Dodge, C. J.

    Here we examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to themore » soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.« less

  9. Health status of birds fed diets containing three differently processed discarded vegetable-bovine blood-rumen content mixtures.

    PubMed

    Ekunseitan, D A; Balogun, O O; Sogunle, O M; Yusuf, A O; Ayoola, A A; Egbeyale, L T; Adeyemi, O A; Allison, I B; Iyanda, A I

    2013-04-01

    This study was conducted to determine the effect of feeding three differently processed mixtures on health status of broilers. A total of 1080 day-old Marshal broilers were fed; discarded vegetable-fresh bovine blood-fresh rumen digesta (P1), discarded vegetable-ensiled bovine blood-fresh rumen digesta (P2) and discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) at three levels of inclusion (0, 3 and 6%). Data on blood parameters was taken and were subjected to 3 x 3 factorial arrangements in a completely randomized design. Birds fed P1 had least values (p < 0.05) of serum glucose, total protein, globulin, uric acid and creatinine at starter phase. Birds fed diets containing 3 and 6% level of inclusion recorded the highest (p < 0.05) Packed cell volume, Haemoglobin, White blood cell and Red blood cell values. However, those fed at 0% level of inclusion recorded the highest albumin value. At finisher phase, birds fed P2 and P3 had the highest glucose, uric acid and creatinine values. 6% level of inclusion significantly (p < 0.05) increased the total protein and albumin values. Therefore, for enhanced performance and without comprising the health condition of birds; broiler chickens could be fed diets containing discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) up to 6% level of inclusion.

  10. In glucose-limited continuous culture the minimum substrate concentration for growth, smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium

    PubMed Central

    Füchslin, Hans Peter; Schneider, Christian; Egli, Thomas

    2012-01-01

    The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin. PMID:22030672

  11. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis.

    PubMed

    Heude, M; Chanet, R

    1975-04-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) anc chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the (see article) genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) process for the (see article) induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressed or derepressed state of the mitochondria.

  12. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Zhaojun; Tsurugi, Kunio

    2006-04-01

    The energy-metabolism oscillation in aerobic chemostat cultures of yeast is a periodic change of the respiro-fermentative and respiratory phase. In the respiro-fermentative phase, the NADH level was kept high and respiration was suppressed, and glucose was anabolized into trehalose and glycogen at a rate comparable to that of catabolism. On the transition to the respiratory phase, cAMP levels increased triggering the breakdown of storage carbohydrates and the increased influx of glucose into the glycolytic pathway activated production of glycerol and ethanol consuming NADH. The resulting increase in the NAD(+)/NADH ratio stimulated respiration in combination with a decrease in the level of ATP, which was consumed mainly in the formation of biomass accompanying budding, and the accumulated ethanol and glycerol were gradually degraded by respiration via NAD(+)-dependent oxidation to acetate and the respiratory phase ceased after the recovery of NADH and ATP levels. However, the mRNA levels of both synthetic and degradative enzymes of storage carbohydrates were increased around the early respiro-fermentative phase, when storage carbohydrates are being synthesized, suggesting that the synthetic enzymes were expressed directly as active forms while the degradative enzymes were activated late by cAMP. In summary, the energy-metabolism oscillation is basically regulated by a feedback loop of oxido-reductive reactions of energy metabolism mediated by metabolites like NADH and ATP, and is modulated by metabolism of storage carbohydrates in combination of post-translational and transcriptional regulation of the related enzymes. A potential mechanism of energy-metabolism oscillation is proposed.

  13. Psychosocial stress predicts abnormal glucose metabolism: the Australian Diabetes, Obesity and Lifestyle (AusDiab) study.

    PubMed

    Williams, Emily D; Magliano, Dianna J; Tapp, Robyn J; Oldenburg, Brian F; Shaw, Jonathan E

    2013-08-01

    The evidence supporting a relationship between stress and diabetes has been inconsistent. This study examined the effects of stress on abnormal glucose metabolism, using a population-based sample of 3,759, with normoglycemia at baseline, from the Australian Diabetes, Obesity and Lifestyle study. Perceived stress and stressful life events were measured at baseline, with health behavior and anthropometric information also collected. Oral glucose tolerance tests were undertaken at baseline and 5-year follow-up. The primary outcome was the development of abnormal glucose metabolism (impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes), according to WHO 1999 criteria. Perceived stress predicted incident abnormal glucose metabolism in women but not men, after multivariate adjustment. Life events showed an inconsistent relationship with abnormal glucose metabolism. Perceived stress predicted abnormal glucose metabolism in women. Healthcare professionals should consider psychosocial adversity when assessing risk factor profiles for the development of diabetes.

  14. Placental Glucose Transfer: A Human In Vivo Study

    PubMed Central

    Holme, Ane M.; Roland, Marie Cecilie P.; Lorentzen, Bjørg; Michelsen, Trond M.; Henriksen, Tore

    2015-01-01

    Objectives The placental transfer of nutrients is influenced by maternal metabolic state, placenta function and fetal demands. Human in vivo studies of this interplay are scarce and challenging. We aimed to establish a method to study placental nutrient transfer in humans. Focusing on glucose, we tested a hypothesis that maternal glucose concentrations and uteroplacental arterio-venous difference (reflecting maternal supply) determines the fetal venous-arterial glucose difference (reflecting fetal consumption). Methods Cross-sectional in vivo study of 40 healthy women with uncomplicated term pregnancies undergoing planned caesarean section. Glucose and insulin were measured in plasma from maternal and fetal sides of the placenta, at the incoming (radial artery and umbilical vein) and outgoing vessels (uterine vein and umbilical artery). Results There were significant mean (SD) uteroplacental arterio-venous 0.29 (0.23) mmol/L and fetal venous-arterial 0.38 (0.31) mmol/L glucose differences. The transplacental maternal-fetal glucose gradient was 1.22 (0.42) mmol/L. The maternal arterial glucose concentration was correlated to the fetal venous glucose concentration (r = 0.86, p<0.001), but not to the fetal venous-arterial glucose difference. The uteroplacental arterio-venous glucose difference was neither correlated to the level of glucose in the umbilical vein, nor fetal venous-arterial glucose difference. The maternal-fetal gradient was correlated to fetal venous-arterial glucose difference (r = 0.8, p<0.001) and the glucose concentration in the umbilical artery (r = −0.45, p = 0.004). Glucose and insulin concentrations were correlated in the mother (r = 0.52, p = 0.001), but not significantly in the fetus. We found no significant correlation between maternal and fetal insulin values. Conclusions We did not find a relation between indicators of maternal glucose supply and the fetal venous-arterial glucose difference. Our findings indicate that the maternal-fetal glucose gradient is significantly influenced by the fetal venous-arterial difference and not merely dependent on maternal glucose concentration or the arterio-venous difference on the maternal side of the placenta. PMID:25680194

  15. Men Are from Mars, Women Are from Venus: Sex Differences in Insulin Action and Secretion.

    PubMed

    Basu, Ananda; Dube, Simmi; Basu, Rita

    2017-01-01

    Sex difference plays a substantial role in the regulation of glucose metabolism in healthy glucose-tolerant humans. The factors which may contribute to the sex-related differences in glucose metabolism include differences in lifestyle (diet and exercise), sex hormones, and body composition. Several epidemiological and observational studies have noted that impaired glucose tolerance is more common in women than men. Some of these studies have attributed this to differences in body composition, while others have attributed impaired insulin sensitivity as a cause of impaired glucose tolerance in women. We studied postprandial glucose metabolism in 120 men and 90 women after ingestion of a mixed meal. Rates of meal glucose appearance, endogenous glucose production, and glucose disappearance were calculated using a novel triple-tracer isotope dilution method. Insulin action and secretion were calculated using validated physiological models. While rate of meal glucose appearance was higher in women than men, rates of glucose disappearance were higher in elderly women than elderly men while young women had lower rates of glucose disappearance than young men. Hence, sex has an impact on postprandial glucose metabolism, and sex differences in carbohydrate metabolism may have important implications for approaches to prevent and manage diabetes in an individual.

  16. Efficacy of vildagliptin for prevention of postpartum diabetes in women with a recent history of insulin-requiring gestational diabetes: A phase II, randomized, double-blind, placebo-controlled study.

    PubMed

    Hummel, Sandra; Beyerlein, Andreas; Pfirrmann, Markus; Hofelich, Anna; Much, Daniela; Hivner, Susanne; Bunk, Melanie; Herbst, Melanie; Peplow, Claudia; Walter, Markus; Kohn, Denise; Hummel, Nadine; Kratzsch, Jürgen; Hummel, Michael; Füchtenbusch, Martin; Hasford, Joerg; Ziegler, Anette-G

    2018-03-01

    Women with insulin-requiring gestational diabetes mellitus (GDM) are at high risk of developing diabetes within a few years postpartum. We implemented this phase II study to test the hypothesis that vildagliptin, a dipeptidyl peptidase-4 inhibitor, is superior to placebo in terms of reducing the risk of postpartum diabetes. Women with insulin-requiring GDM were randomized to either placebo or 50 mg vildagliptin twice daily for 24 months followed by a 12-month observation period (EudraCT: 2007-000634-39). Both groups received lifestyle counseling. The primary efficacy outcomes were the diagnosis of diabetes (American Diabetes Association (ADA) criteria) or impaired fasting glucose (IFG)/impaired glucose tolerance (IGT). Between 2008 and 2015, 113 patients (58 vildagliptin, 55 placebo) were randomized within 2.2-10.4 (median 8.6) months after delivery. At the interim analysis, nine diabetic events and 28 IFG/IGT events had occurred. Fifty-two women withdrew before completing the treatment phase. Because of the low diabetes rate, the study was terminated. Lifestyle adherence was similar in both groups. At 24 months, the cumulative probability of postpartum diabetes was 3% and 5% (hazard ratio: 1.03; 95% confidence interval: 0.15-7.36) and IFG/IGT was 43% and 22% (hazard ratio: 0.55; 95% confidence interval: 0.26-1.19) in the placebo and vildagliptin groups, respectively. Vildagliptin was well tolerated with no unexpected adverse events. The study did not show significant superiority of vildagliptin over placebo in terms of reducing the risk of postpartum diabetes. However, treatment was safe and suggested some improvements in glycemic control, insulin resistance, and β-cell function. The study identified critical issues in performing clinical trials in the early postpartum period in women with GDM hampering efficacy assessments. With this knowledge, we have set a basis for which properly powered trials could be performed in women with recent GDM. TRIAL REGISTRATION NUMBER AT CLINICALTRIALS.GOV: NCT01018602. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus.

    PubMed

    Kohno, Daisuke

    2017-07-01

    The hypothalamic feeding center plays an important role in energy homeostasis. The feeding center senses the systemic energy status by detecting hormone and nutrient levels for homeostatic regulation, resulting in the control of food intake, heat production, and glucose production and uptake. The concentration of glucose is sensed by two types of glucose-sensing neurons in the feeding center: glucose-excited neurons and glucose-inhibited neurons. Previous studies have mainly focused on glucose metabolism as the mechanism underlying glucose sensing. Recent studies have indicated that receptor-mediated pathways also play a role in glucose sensing. This review describes sweet taste receptors in the hypothalamus and explores the role of sweet taste receptors in energy homeostasis.

  18. Measurement of glucuronidation by isolated rat liver cells using [14C]fructose.

    PubMed

    Dawson, J; Knowles, R G; Pogson, C I

    1992-03-03

    We have developed a simple and sensitive method for the study of the relative rates of glucuronidation of compounds, in isolated liver cells, based on the incorporation of 14C from fructose into glucuronide conjugates. Liver cells from fasted rats are used to minimize any reduction of the specific activity by glycogenolysis. Although rates of glucuronidation are lower in isolated liver cells from fasted rats than in those from fed rats, because of a reduction in the concentration of UDP-glucuronic acid, it is possible to compare the rates of glucuronidation of different compounds. Radiolabelled glucuronides are separated from [14C]fructose and [14C]glucose, produced by the liver cells, by normal-phase HPLC on a polar amino-cyano column. The specific activity of the glucuronide was found to be approximately 50% of that of the [14C]fructose. Absolute amounts of glucuronide can be determined by measuring the specific activity of the [14C]glucose, also produced by liver cells from fructose, which reflects that of the glucose-6-phosphate and hence the UDP-glucuronic acid used for glucuronidation, although for the measurement of relative rates this would not be necessary. We have used this method to examine the kinetics of the glucuronidation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The method should be applicable to the study of the rates of glucuronidation of a range of aglycones and, unlike other methods, does not require glucuronide standards or radiolabelled aglycone.

  19. Unmasking glucose metabolism alterations in stable renal transplant recipients: a multicenter study.

    PubMed

    Delgado, Patricia; Diaz, Juan Manuel; Silva, Irene; Osorio, José M; Osuna, Antonio; Bayés, Beatriz; Lauzurica, Ricardo; Arellano, Edgar; Campistol, Jose Maria; Dominguez, Rosa; Gómez-Alamillo, Carlos; Ibernon, Meritxell; Moreso, Francisco; Benitez, Rocio; Lampreave, Ildefonso; Porrini, Esteban; Torres, Armando

    2008-05-01

    Emerging information indicates that glucose metabolism alterations are common after renal transplantation and are associated with carotid atheromatosis. The aims of this study were to investigate the prevalence of different glucose metabolism alterations in stable recipients as well as the factors related to the condition. A multicenter, cross-sectional study was conducted of 374 renal transplant recipients without pre- or posttransplantation diabetes. A standard 75-g oral glucose tolerance test was performed. Glucose metabolism alterations were present in 119 (31.8%) recipients: 92 (24.6%) with an abnormal oral glucose tolerance test and 27 (7.2%) with isolated impaired fasting glucose. The most common disorder was impaired glucose tolerance (17.9%), and an abnormal oral glucose tolerance test was observed for 21.5% of recipients with a normal fasting glucose. By multivariate analysis, age, prednisone dosage, triglyceride/high-density lipoprotein cholesterol ratio, and beta blocker use were shown to be factors related to glucose metabolism alterations. Remarkably, triglyceride levels, triglyceride/high-density lipoprotein cholesterol ratio, and the proportion of recipients with impaired fasting glucose were already higher throughout the first posttransplantation year in recipients with a current glucose metabolism alteration as compared with those without the condition. Glucose metabolism alterations are common in stable renal transplant recipients, and an oral glucose tolerance test is required for its detection. They are associated with a worse metabolic profile, which is already present during the first posttransplantation year. These findings may help planning strategies for early detection and intervention.

  20. Low-density-lipoprotein (LDL)-bound flavonoids increase the resistance of LDL to oxidation and glycation under pathophysiological concentrations of glucose in vitro.

    PubMed

    Wu, Chi-Hao; Lin, Jer-An; Hsieh, Wen-Ching; Yen, Gow-Chin

    2009-06-10

    The higher susceptibility of low-density lipoprotein (LDL) to oxidation and glycation in diabetes has been shown to be related to poor glycemic control. The aim of this study was to determine whether LDL-bound flavonoids attenuate high-glucose (HG)-mediated LDL oxidation and glycation. For this purpose, human plasma was preincubated with individual flavonoids for 3 h, followed by sequential ultracentrifugation and extensive dialysis to remove unbound flavonoid samples. Enriched LDL was subsequently isolated and challenged for its resistance to oxidation and glycation. Results showed that glucose (5-30 mM) dose-dependently accelerates copper (Cu(2+))-mediated LDL oxidative modification. The enrichment of flavonoids such as luteolin, naringenin, and kaempferol significantly increased the resistance of LDL to oxidation and prevented endogenous alpha-tocopherol consumption caused by HG/Cu(2+) (p < 0.05). The long-term glycation of LDL, which was measured by advanced glycation endproducts (AGEs)-related fluorescence and boronate affinity chromatography, was found to be inhibited by LDL-bound flavonoids in the following order: rutin > luteolin > quercetin > kaempferol > naringenin > catechin approximately EC > naringin. Moreover, a solid-phase extraction system with HPLC-diode array detection provided evidence that flavonoids were bound to LDL particles to a certain extent concurrently facilitating the lipoprotein antioxidant and antiglycation activities. In conclusion, this study supports the hypothesis that HG promoted oxidative and glycative modifications of LDL. This is the first study to show that the introduction of flavonoids into LDL particles protects the lipoprotein against glycotoxin-mediated adverse effects.

Top