Science.gov

Sample records for glucose-6-phosphate dehydrogenase deficient

  1. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  2. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  3. [Glucose-6-phosphate dehydrogenase deficiency in Japan].

    PubMed

    Kanno, Hitoshi; Ogura, Hiromi

    2015-07-01

    In the past 10 years, we have diagnosed congenital hemolytic anemia in 294 patients, approximately 33% of whom were found to have glucose-6-phosphate dehydrogenase (G6PD) deficiency. It is becoming more common for Japanese to marry people of other ethnic origins, such that G6PD deficiency is becoming more prevalent in Japan. Japanese G6PD deficiency tends to be diagnosed in the neonatal period due to severe jaundice, while G6PD-deficient patients with foreign ancestors tend to be diagnosed at the onset of an acute hemolytic crisis before the age of six. It is difficult to predict the clinical course of each patient by G6PD activity, reduced glutathione content, or the presence/absence of severe neonatal jaundice. We propose that both neonatal G6PD screening and systematic analyses of G6PD gene mutations may be useful for personalized management of patients with G6PD-deficient hemolytic anemia.

  4. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    PubMed

    De Rose, Aldo Franco; Mantica, Guglielmo; Tosi, Mattia; Bovio, Giulio; Terrone, Carlo

    2016-10-05

    Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  5. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... Elsevier Saunders; 2012:chap 42. Read More Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Review Date 2/11/2016 Updated by: ... A.M. Editorial team. Related MedlinePlus Health Topics G6PD Deficiency Browse the Encyclopedia A.D.A.M., Inc. ...

  6. Drug-induced haemolysis in glucose-6-phosphate dehydrogenase deficiency.

    PubMed Central

    Chan, T K; Todd, D; Tso, S C

    1976-01-01

    People with the variants of glucose-6-phosphate dehydrogenase (GPD) deficiency common in the southern Chinese (Canton, B(-)Chinese, and Hong Kong-Pokfulam) have a moderate shortening of red-cell survival but no anaemia when they are in the steady state. With a cross-transfusion technique, primaquine, nitrofurantoin, and large doses of aspirin were found to aggravate the haemolysis while sulphamethoxazole did so only in some people. Individual differences in drug metabolism may be the reason for this. Many commonly used drugs reported to accentuate haemolysis in GPD deficiency did not shorten red-cell survival. PMID:990860

  7. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M

    1996-05-01

    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  8. Hemolytic anemia caused by glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Olivares, N; Medina, C; Sánchez-Corona, J; Rivas, F; Rivera, H; Hernández, A; Delgado, J L; Ibarra, B; Cantú, J M; Vaca, G; Martínez, C

    1979-01-01

    Results are reported concerning quantitation of glucose -6- phosphate dehydrogenase (G6PD) enzyme activity where in one of the members of a family a clinical diagnosis of acute hemolytic anemia due to G6PD deficiency had been established. In the propositus, G6PD levels were found to be less than 10 per cent thus confirming diagnosis; the same enzymatic deficiency was identified in one of the siblings without a history of hematologic pathology and in a maternal cousin with a history of neonatal jaundice as well as two obliged carriers. Electrophoretical enzyme phenotype was similar to A variant in three affected males. Advantages of prevention and medical care possible with early diagnosis of G6PD deficiency are discussed.

  9. Glucose-6-phosphate dehydrogenase deficiency: not exclusively in males.

    PubMed

    van den Broek, Leonie; Heylen, Evelien; van den Akker, Machiel

    2016-12-01

    Glucose-6-phosphate (G6PD) deficiency is the most common human enzyme defect, often presenting with neonatal jaundice and/or acute hemolytic anemia, triggered by oxidizing agents. G6PD deficiency is an X-linked, hereditary disease, mainly affecting men, but should also be considered in females with an oxidative hemolysis.

  10. Psychotic mania in glucose-6-phosphate-dehydrogenase-deficient subjects

    PubMed Central

    Bocchetta, Alberto

    2003-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been associated with acute psychosis, catatonic schizophrenia, and bipolar disorders by previous inconclusive reports. A particularly disproportionate rate of enzyme deficiency was found in manic schizoaffective patients from 662 lithium patients surveyed in Sardinia. The purpose of this study was to describe clinical characteristics which may be potentially associated with G6PD deficiency. Methods Characteristics of episodes, course of illness, family pattern of illness, laboratory tests, and treatment response of 29 G6PD-deficient subjects with a Research Diagnostic Criteria diagnosis of manic schizoaffective disorder were abstracted from available records. Results The most peculiar pattern was that of acute recurrent psychotic manic episodes, mostly characterized by loosening of associations, agitation, catatonic symptoms, and/or transient confusion, concurrent hyperbilirubinemia, positive psychiatric family history, and partial response to long-term lithium treatment. Conclusions A relationship between psychiatric disorder and G6PD deficiency is to be searched in the bipolar spectrum, particularly among patients with a history of acute episodes with psychotic and/or catatonic symptoms or with transient confusion. PMID:12844366

  11. Glucose-6-phosphate dehydrogenase deficiency: the added value of cytology.

    PubMed

    Roelens, Marie; Dossier, Claire; Fenneteau, Odile; Couque, Nathalie; Da Costa, Lydie

    2016-06-01

    We report the case of a 2 year-old boy hospitalized into the emergency room for influenza pneumonia infection. The evolution was marked by a respiratory distress syndrome, a severe hemolytic anemia, associated with thrombocytopenia and kidney failure. First, a diagnosis of hemolytic uremic syndrome (HUS) has been judiciously suggested due to the classical triad: kidney failure, hemolytic anemia and thrombocytopenia. But, strikingly, blood smears do not exhibit schizocytes, but instead ghosts and hemighosts, some characteristic features of a glucose-6-phosphate dehydrogenase deficiency. Our hypothesis has been confirmed by enzymatic dosage and molecular biology. The unusual initial aplastic feature of this anemia could be the result of a transient erythroblastopenia due to the viral agent, at the origin of the G6PD crisis on a background of a major erythrocyte anti-oxydant enzyme defect. This case of G6PD defect points out the continuously importance of the cytology, which was able to redirect the diagnosis by the hemighost and ghost detection.

  12. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  13. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  14. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  15. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  16. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    MedlinePlus

    ... trigger, is removed. In rare cases, G6PD deficiency leads to chronic anemia . With the right precautions, a child with G6PD deficiency can lead a healthy and active life. About G6PD Deficiency ...

  17. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old G6PD Deficiency KidsHealth > For Parents > G6PD Deficiency Print A A ... can lead a healthy and active life. About G6PD Deficiency G6PD is one of many enzymes that help ...

  18. Ischaemic Priapism and Glucose-6-Phosphate Dehydrogenase Deficiency: A Mechanism of Increased Oxidative Stress?

    PubMed

    Morrison, B F; Thompson, E B; Shah, S D; Wharfe, G H

    2014-07-03

    Ischaemic priapism is a devastating urological condition that has the potential to cause permanent erectile dysfunction. The disorder has been associated with numerous medical conditions and the use of pharmacotherapeutic agents. The aetiology is idiopathic in a number of cases. There are two prior case reports of the association of ischaemic priapism and glucose-6-phosphate dehydrogenase (G6PD) deficiency. We report on a third case of priapism associated with G6PD deficiency and review recently described molecular mechanisms of increased oxidative stress in the pathophysiology of ischaemic priapism. The case report of a 32-year old Afro-Caribbean male with his first episode of major ischaemic priapism is described. Screening for common causes of ischaemic priapism, including sickle cell disease was negative. Glucose-6-phosphate dehydrogenase deficiency was discovered on evaluation for priapism. Penile aspiration was performed and erectile function was good post treatment.Glucose-6-phosphate dehydrogenase deficiency is a cause for ischaemic priapism and should be a part of the screening process in idiopathic causes of the disorder. Increased oxidative stress occurs in G6PD deficiency and may lead to priapism.

  19. Glucose-6-phosphate dehydrogenase deficiency: an unusual cause of acute jaundice after paracetamol overdose.

    PubMed

    Phillpotts, Simon; Tash, Elliot; Sen, Sambit

    2014-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest human enzyme defect causing haemolytic anaemia after exposure to specific triggers. Paracetamol-induced haemolysis in G6PD deficiency is a rare complication and mostly reported in children. We report the first case (to the best of our knowledge) of acute jaundice without overt clinical features of a haemolytic crisis, in an otherwise healthy adult female following paracetamol overdose, due to previously undiagnosed G6PD deficiency. It is important that clinicians consider this condition when a patient presents following a paracetamol overdose with significant and disproportionate jaundice, without transaminitis or coagulopathy.

  20. Glucose-6-phosphate dehydrogenase deficiency in the Greek population of Cape Town.

    PubMed

    Bonafede, R P; Botha, M C; Beighton, P

    1984-04-07

    A sample of 250 unrelated members of the Greek community of Cape Town was studied in order to establish the prevalence of glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in the community. A gene frequency of 0,067 in males and a prevalence of 6,7% are estimated for this group. It is recommended that persons with G-6-PD deficiency should have access to a list of medicinal agents which have the potential for precipitating acute haemolytic crises and that they should wear Medic-Alert discs bearing information concerning the disorder.

  1. Is glucose-6-phosphate dehydrogenase deficiency more prevalent in Carrion's disease endemic areas in Latin America?

    PubMed

    Mazulis, Fernando; Weilg, Claudia; Alva-Urcia, Carlos; Pons, Maria J; Del Valle Mendoza, Juana

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention. Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria, giving G6PD a major role in its stability. G6PD deficiency (G6PDd) is the most common enzyme deficiency in humans; it affects approximately 400 million individuals worldwide. The overall G6PDd allele frequency across malaria endemic countries is estimated to be 8%, corresponding to approximately 220 million males and 133 million females. However, there are no reports on the prevalence of G6PDd in Andean communities where bartonellosis is prevalent.

  2. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    PubMed

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues.

  3. In vivo lability of glucose-6-phosphate dehydrogenase in GdA- and Gdmediterranean deficiency

    PubMed Central

    Piomelli, Sergio; Corash, Laurence M.; Davenport, Deatra D.; Miraglia, Janet; Amorosi, Edward L.

    1968-01-01

    A decreased level of glucose-6-phosphate dehydrogenase might result from decreased rate of synthesis, synthesis of an enzyme of lower catalytic efficiency, increased lability, or a combined mechanism. To test the hypothesis of increased lability, the rate of decline of the enzyme in vivo was measured in three groups of individuals, controls, Gd(—),A-males, and Gd(—), Mediterranean males, by the slope of decline of activity in fractions containing erythrocytes of progressively increasing mean age. These fractions were obtained by ultracentrifugation on a discontinuous density gradient of erythrocyte suspensions free of contaminating platelets and leukocytes. The rate of in vivo decline of pyruvate kinase (another age-dependent enzyme) was also measured and found very similar in the three groups. The in vivo decline of glucose-6-phosphate dehydrogenase was found to follow an exponential rate, with a half-life of 62 days for controls and 13 days for Gd(—),A- erythrocytes. The activity in normal reticulocytes was estimated at 9.7 U and in Gd(—),A- reticulocytes at 8.8 U. These estimates were confirmed by direct measurements in reticulocytes isolated from patients with extreme reticulocytosis. In Gd(—),Mediterranean erythrocytes activity could be demonstrated only in reticulocytes, which were estimated to average 1.4 U. The rate of decline is so extreme that no activity could be detected in mature erythrocytes. These data suggest that the glucose-6-phosphate dehydrogenase deficiency of both the GdA- and the GdMediterranean variant results from different degrees of in vivo instability of the abnormal enzyme. PMID:5641629

  4. Should we screen newborns for glucose-6-phosphate dehydrogenase deficiency in the United States?

    PubMed

    Watchko, J F; Kaplan, M; Stark, A R; Stevenson, D K; Bhutani, V K

    2013-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common X-linked enzymopathy can lead to severe hyperbilirubinemia, acute bilirubin encephalopathy and kernicterus in the United States. Neonatal testing for G6PD deficiency is not yet routine and the American Academy of Pediatrics recommends testing only in jaundiced newborns who are receiving phototherapy whose family history, ethnicity, or geographic origin suggest risk for the condition, or for infants whose response to phototherapy is poor. Screening tests for G6PD deficiency are available, are suitable for use in newborns and have been used in birth hospitals. However, US birth hospitals experience is limited and no national consensus has emerged regarding the need for newborn G6PD testing, its effectiveness or the best approach. Our review of current state of G6PD deficiency screening highlights research gaps and informs specific operational challenges to implement universal newborn G6PD testing concurrent to bilirubin screening in the United States.

  5. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    LaRue, Nicole; Kahn, Maria; Murray, Marjorie; Leader, Brandon T; Bansil, Pooja; McGray, Sarah; Kalnoky, Michael; Zhang, Hao; Huang, Huiqiang; Jiang, Hui; Domingo, Gonzalo J

    2014-10-01

    A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline-based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests.

  6. Glucose-6-phosphate dehydrogenase and red cell pyruvate kinase deficiency in neonatal jaundice cases in egypt.

    PubMed

    Abdel Fattah, Mohammed; Abdel Ghany, Eman; Adel, Alia; Mosallam, Dalia; Kamal, Shahira

    2010-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency can lead to acute hemolytic anemia, chronic nonspherocytic hemolytic anemia, and neonatal jaundice. Neonatal red cell pyruvate kinase (PK) deficiency may cause clinical patterns, ranging from extremely severe hemolytic anemia to moderate jaundice. The authors aimed at studying the prevalence of G6PD and PK deficiency among Egyptian neonates with pathological indirect hyperbilirubinemia in Cairo. This case-series study included 69 newborns with unconjugated hyperbilirubinemia. All were subjected to clinical history, laboratory investigations, e.g., complete blood counts, reticulocytic counts, direct and indirect serum bilirubin levels, Coombs tests, qualitative assay of G6PD activity by methemoglobin reduction test, and measurement of erythrocytic PK levels. The study detected 10 neonates with G6PD deficiency, which means that the prevalence of G6PD deficiency among Egyptian neonates with hyperbilirubinemia is 14.4% (21.2% of males). G6PD deficiency was significantly higher in males than females (P = .01). The authors detected 2 cases with PK deficiency, making the prevalence of its deficiency 2.8%. These data demonstrate that G6PD deficiency is an important cause for neonatal jaundice in Egyptians. Neonatal screening for its deficiency is recommended. PK deficiency is not a common cause of neonatal jaundice. However, this needs further investigation on a larger scale.

  7. Anemia in patients with coinherited thalassemia and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Pornprasert, Sakorn; Phanthong, Siratcha

    2013-01-01

    Thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency are genetic disorders that cause hemolytic anemia. In areas with high frequencies of both hematological disorders, coinheritance of G-6-PD deficiency with thalassemia can be found. Whether G-6-PD deficiency, coinherited with thalassemia, enhances severe anemia is still unclear. Hematological parameters between thalassemia carriers with G-6-PD deficiency and those without G-6-PD deficiency were compared. The G-6-PD deficiency was diagnosed in 410 blood samples from thalassemia patients using a fluorescent spot test. The levels of hemoglobin (Hb), packed cell volume (PCV), mean corpuscular volume (MCV) and Hb A2/Hb E [β26(B8)Glu→Lys; HBB: c.79G>A] were measured using an automated blood counter and high performance liquid chromatography (HPLC), respectively. The G-6-PD deficiency was found in 37 samples (9.02%). Mean levels of Hb, PCV, MCV and Hb A2/E were similar between the two groups. Thus, G-6-PD deficiency did not enhance red blood cell pathology or induce more anemic severity in thalassemia patients.

  8. Glucose-6-Phosphate Dehydrogenase-Deficiency in Transfusion Medicine: The Unknown Risks

    PubMed Central

    Francis, Richard O.; Jhang, Jeffrey S.; Pham, Huy P.; Hod, Eldad A.; Zimring, James C.; Spitalnik, Steven L.

    2013-01-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce hemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing hemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage, and mechanisms of hemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. PMID:23815264

  9. Glucose-6-phosphate dehydrogenase deficiency (G6PD) as a risk factor of male neonatal sepsis.

    PubMed

    Rostami-Far, Z; Ghadiri, K; Rostami-Far, M; Shaveisi-Zadeh, F; Amiri, A; Rahimian Zarif, B

    2016-01-01

    Introduction.Neonatal sepsis is a disease process, which represents the systemic response of bacteria entering the bloodstream during the first 28 days of life. The prevalence of sepsis is higher in male infants than in females, but the exact cause is unknown. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway, which leads to the production of NADPH. NADPH is required for the respiratory burst reaction in white blood cells (WBCs) to destroy microorganisms. The purpose of this study was to evaluate the prevalence of G6PD deficiency in neonates with sepsis. Materials and methods.This study was performed on 76 neonates with sepsis and 1214 normal neonates from February 2012 to November 2014 in the west of Iran. The G6PD deficiency status was determined by fluorescent spot test. WBCs number and neutrophils percentages were measured and compared in patients with and without G6PD deficiency. Results.The prevalence of the G6PD deficiency in neonates with sepsis was significantly higher compared to the control group (p=0.03). WBCs number and neutrophils percentages in G6PD deficient patients compared with patients without G6PD deficiency were decreased, but were not statistically significant (p=0.77 and p=0.86 respectively). Conclusions.G6PD deficiency is a risk factor of neonatal sepsis and also a justification for more male involvement in this disease. Therefore, newborn screening for this disorder is recommended.

  10. Prevalence and molecular characterization of glucose-6-phosphate dehydrogenase deficiency in northern Thailand.

    PubMed

    Charoenkwan, Pimlak; Tantiprabha, Watcharee; Sirichotiyakul, Supatra; Phusua, Arunee; Sanguansermsri, Torpong

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common inherited enzymopathies in endemic areas of malaria including Southeast Asia. The molecular features of G6PD deficiency are similar among Southeast Asian population, with differences in the type of the prominent variants in each region. This study determined the prevalence and molecular characteristics of G6PD deficiency in northern Thailand. Quantitative assay of G6PD activity was conducted in 566 neonatal cord blood samples and 6 common G6PD mutations were determined by PCR-restriction fragment length polymorphism method on G6PD complete and intermediate deficiency samples. Ninety newborns had G6PD deficiency, with prevalence in male newborns of 17% and that of female newborns having an intermediate and complete deficiency of 13% and 2%, respectively. From 95 G6PD alleles tested, G6PD Mahidol, G6PD Kaiping, G6PD Canton, G6PD Viangchan, G6PD Union, and G6PD Chinese-5 was detected in 19, 17, 15, 13, 7, and 2 alleles, respectively. Our study shows that the prevalence of G6PD deficiency in northern Thai population is high and combination of the common Chinese mutations is the majority, a distribution different from central and southern Thailand where G6PD Viangchan is the prominent variant. These findings suggest a higher proportion of assimilated Chinese ethnic group in the northern Thai population.

  11. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks.

    PubMed

    Francis, R O; Jhang, J S; Pham, H P; Hod, E A; Zimring, J C; Spitalnik, S L

    2013-11-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce haemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing haemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage and mechanisms of haemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed.

  12. Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: a systematic review and meta-analysis.

    PubMed

    Lai, Yin Key; Lai, Nai Ming; Lee, Shaun Wen Huey

    2017-05-01

    Emerging epidemiological evidence suggests that patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency may have a higher risk of developing diabetes. The aim of the review was to synthesise the evidence on the association between G6PD deficiency and diabetes. A systematic search on Medline, EMBASE, AMED and CENTRAL databases for studies published between January 1966 and September 2016 that assessed the association between G6PD deficiency and diabetes was conducted. This was supplemented by a review of the reference list of retrieved articles. We extracted data on study characteristics, outcomes and performed an assessment on the methodological quality of the studies. A random-effects model was used to compute the summary risk estimates. Fifteen relevant publications involving 949,260 participants were identified, from which seven studies contributed to the meta-analysis. G6PD deficiency was associated with a higher odd of diabetes (odds ratio 2.37, 95% confidence interval 1.50-3.73). The odds ratio of diabetes among men was higher (2.22, 1.31-3.75) compared to women (1.87, 1.12-3.12). This association was broadly consistent in the sensitivity analysis. Current evidence suggests that G6PD deficiency may be a risk factor for diabetes, with higher odds among men compared to women. Further research is needed to determine how G6PD deficiency moderates diabetes.

  13. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation.

    PubMed

    García-Magallanes, N; Luque-Ortega, F; Aguilar-Medina, E M; Ramos-Payán, R; Galaviz-Hernández, C; Romero-Quintana, J G; Del Pozo-Yauner, L; Rangel-Villalobos, H; Arámbula-Meraz, E

    2014-08-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); the mutations in 86% of these samples were G6PD A(-202A/376G), G6PDA(-376G/968C) and G6PD Santamaria(376G/542T). Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country (P = 0.48336), and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF(193A>G) (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.

  14. Molecular characterization of a German variant of glucose-6-phosphate dehydrogenase deficiency (G6PD Aachen).

    PubMed

    Efferth, T; Osieka, R; Beutler, E

    2000-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-chromosome-linked hereditary disorder. Clinically, patients with G6PD deficiency often present with drug- or food-induced hemolytic crises or neonatal jaundice. G6PD is involved in the generation of NADPH and reduced glutathione. In contrast to American, Mediterranean, and African ancestries, only few variants are known from Middle and Northern Europe. We describe the molecular characterization of a distinct variant from the northwestern area of Germany, G6PD Aachen. The sequence of the G6PD gene from three afflicted males was found to be hemizygous at cDNA residue 1089 for a C-->G mutation with a predicted amino acid change of Asn363Lys. The 1089 C-->G point mutation is unique, but produces the identical amino acid change found in a Mexican variant of G6PD deficiency, G6PD Loma Linda. This G6PD-deficient variant is caused by a 1089 C-->A mutation. The 363-amino-acid replacement is located outside a known mutation cluster region between amino acid residues 380 and 450, but may disrupt or weaken dimer interactions of G6PD enzyme subunits.

  15. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: biochemical versus genetic technologies.

    PubMed

    Kaplan, Michael; Hammerman, Cathy

    2011-06-01

    Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, a commonly occurring genetic condition, is associated in neonates with severe hemolytic episodes, extreme hyperbilirubinemia, and bilirubin encephalopathy. Neonatal screening programs for the condition should increase parental and caretaker awareness, thereby facilitating early access to treatment with resultant diminished mortality and morbidity. However, screening for G-6-PD deficiency is not widely performed. Although G-6-PD-deficient males may be accurately identified, females are more difficult to categorize because many in this group may be heterozygotes with phenotype overlap between normal homozygotes, heterozygotes, and deficient homozygotes. Screening methodologies include biochemical qualitative assays, quantitative enzymatic activity measurements and DNA-based polymerase chain reaction molecular screening. The appropriateness of any of these technologies for any particular population group or geographic area must be assessed before setting up a screening program. The pros and cons of each method, including ease of testing, cost, need for sophisticated laboratory equipment and degree of personnel training, as well as the ability to identify females, are discussed.

  16. Glucose-6-phosphate dehydrogenase (G6PD) deficiency among tribal populations of India - Country scenario.

    PubMed

    Mukherjee, Malay B; Colah, Roshan B; Martin, Snehal; Ghosh, Kanjaksha

    2015-05-01

    It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from India more than 50 years ago. t0 he prevalence varies from 2.3 to 27.0 per cent with an overall prevalence of 7.7 per cent in different tribal groups. Since the tribal populations live in remote areas where malaria is/has been endemic, irrational use of antimalarial drugs could result in an increased number of cases with drug induced haemolysis. Therefore, before giving antimalarial therapy, routine screening for G6PD deficiency should be undertaken in those tribal communities where its prevalence is high.

  17. Detection of Occult Acute Kidney Injury in Glucose-6-Phosphate Dehydrogenase Deficiency Anemia

    PubMed Central

    Abdel Hakeem, Gehan Lotfy; Abdel Naeem, Emad Allam; Swelam, Salwa Hussein; El Morsi Aboul Fotoh, Laila; El Mazary, Abdel Azeem Mohamed; Abdel Fadil, Ashraf Mohamed; Abdel Hafez, Asmaa Hosny

    2016-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency anemia is associated with intravascular hemolysis. The freely filtered hemoglobin can damage the kidney. We aimed to assess any subclinical renal injury in G6PD children. Methods Sixty children were included. Thirty G6PD deficiency anemia children were enrolled during the acute hemolytic crisis and after the hemolytic episode had elapsed. Another thirty healthy children were included as controls. Serum cystatin C, creatinine levels, and urinary albumin/creatinine (A/C) ratio were measured, and the glomerular filtration rate (GFR) was calculated. Results Significantly higher urinary A/C ratio (p=0.001,0.002 respectively) and lower GFR (p=0.001 for both) were found during hemolysis and after the hemolytic episode compared to the controls. Also, significant higher serum cystatin C (p=0.001), creatinine (p=0.05) and A/C (p= 0.001) ratio and insignificant lower GFR (p=0.3) during acute hemolytic crisis compared to the same children after the hemolytic episode subsided. Conclusions G6PD deficiency anemia is associated with a variable degree of acute renal injury during acute hemolytic episodes which may persist after elapsing of the hemolytic crises. PMID:27648201

  18. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females.

    PubMed

    Abdulrazzaq, Y M; Micallef, R; Qureshi, M; Dawodu, A; Ahmed, I; Khidr, A; Bastaki, S M; Al-Khayat, A; Bayoumi, R A

    1999-01-01

    The aims of this study were to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the United Arab Emirates (UAE), to describe the different mutations in the population, to determine its prevalence, and to study inheritance patterns in families of G6PD-deficient individuals. All infants born at Tawam Hospital, Al-Ain, UAE from January 1994 to September 1996 were screened at birth for their G6PD status. In addition, those attending well-baby clinics during the period were also screened for the disorder. Families of 40 known G6PD-deficient individuals, selected randomly from the records of three hospitals in the country, were assessed for G6PD deficiency. Where appropriate, this was followed by definition of G6PD mutations. Of 8198 infants, 746 (9.1%), comprising 15% of males and 5% of females tested, were found to be G6PD deficient. A total of 27 families were further assessed: of these, all but one family had the nt563 Mediterranean mutation. In one family, two individuals had the nt202 African mutation. The high manifestation of G6PD deficiency in women may be due to the preferential expression of the G6PD-deficient gene and X-inactivation of the normal gene, and/or to the presence of an 'enhancer' gene that makes the expression of the G6PD deficiency more likely. The high level of consanguinity which, theoretically, should result in a high proportion of homozygotes and consequently a higher proportion of females with the deficiency, was not found to be a significant factor.

  19. A hemolysis trigger in glucose-6-phosphate dehydrogenase enzyme deficiency. Vicia sativa (Vetch).

    PubMed

    Bicakci, Zafer

    2009-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme, playing an important role in the redox metabolism of all aerobic cells. It was reported that certain medications, fava beans, and infections can trigger acute hemolytic anemia in patients with G6PD deficiency. An 8-year-old male patient was admitted to the hospital with blood in the urine, headache, dizziness, fatigue, loss of appetite, and jaundice in the eyes, 24 hours after eating large amounts of fresh, vetch grains. Laboratory investigation revealed hemolytic anemia, hyperbilirubinemia, and G6PD deficiency. Approximately 0.5% of fava bean seeds have 2 pyrimidine beta-glycosides called, vicine and convicine. Vetch has 0.731% vicine, 0.081% convicine, and 0.530% beta cyanoalanine glycosides. The aim of this case report is to emphasize the importance of vetch seeds as a cause for hemolytic crisis in our country, where approximately one million tons of vetch is produced per year, especially in the agricultural regions.

  20. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates.

    PubMed

    Kaplan, M; Vreman, H J; Hammerman, C; Leiter, C; Abramov, A; Stevenson, D K

    1996-06-01

    We determined the contribution of haemolysis to the development of hyperbilirubinaemia in glucose-6-phosphate dehydrogenase (G-6-PD) deficient neonates and G-6-PD normal controls. Blood carboxyhaemoglobin (COHb), sampled on the third day of life, was measured by gas chromatography, corrected for inhaled carbon monoxide (COHbC), and expressed as a percentage of total haemoglobin concentration (Hb). Serum bilirubin was tested as clinically necessary. 37 non-jaundiced (peak serum total bilirubin (PSTB) < or = 255 mumol/l) and 20 jaundiced (PSTB > or = 257 mumol/l) G-6-PD-deficient neonates were compared to 31 non-jaundiced and 24 jaundiced controls with comparable PSTB values, respectively. COHbC values for the entire G-6-PD deficient group were higher than in the controls (0.75 +/- 0.17% v 0.62 +/- 0.19%, P < 0.001). COHbC and PSTB values did not correlate in the G-6-PD-deficient group (r = 0.15, P > 0.05) but did in the controls (r = 0.58, P < 0.001). COHbC values were increased to a similar extent in the G-6-PD-deficient, non-jaundiced (0.72 +/- 0.16%), the G-6-PD-deficient, jaundiced (0.80 +/- 0.19%) and the control, jaundiced (0.75 +/- 0.18%) subgroups, compared to the control, non-jaundiced subgroup (0.53 +/- 0.13%) (P < 0.05). Although present in G-6-PD deficient neonates, increased haemolysis was not directly related to the PSTB.

  1. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence

    PubMed Central

    Kwok, Man Ki; Leung, Gabriel M.; Schooling, C. Mary

    2016-01-01

    Background To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. Methods In a population-representative Chinese birth cohort: “Children of 1997” (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Results Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. Conclusions G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation. PMID:27824927

  2. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    PubMed

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency.

  3. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats

    PubMed Central

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L.; Becker, Katja; Arese, Paolo; Elhabiri, Mourad

    2015-01-01

    Abstract Aims: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. Results: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure–activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. Innovation: The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. Conclusion: This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations. Antioxid. Redox Signal. 22, 1337–1351. PMID:25714942

  4. Screening and prevention of neonatal glucose 6-phosphate dehydrogenase deficiency in Guangzhou, China.

    PubMed

    Jiang, J; Li, B; Cao, W; Jiang, X; Jia, X; Chen, Q; Wu, J

    2014-06-09

    We aimed to summarize the results of screening protocol and prevention of neonatal glucose 6-phosphate dehydrogenase (G6PD) deficiency during a 22-year-long period to provide a basis of reference for the screening of this disease. About 1,705,569 newborn subjects in Guangzhou City were screened for this deficiency. Specimens were collected according to the conventional method of specimen acquisition for "newborn dried bloodspot screening", preserved, and inspected. The specimens were studied with fluorescent spot test and quantitative fluorescence assay. Diagnosis was performed using the modified NBTG6PD/6PGD ratio method. Bloodspot filter paper specimens were sent to the laboratory within 24 h via EMS Express, and the G6PD test was performed on the same day. The G6PD deficiency-positive rate was 4.2% in the samples screened using the fluorescent spot test, while it was 5% in case of the quantitative fluorescence assay. Neonatal screening for G6PD deficiency for 11,437 cases (6117 boys and 5320 girls) showed positive results in 481 cases. About 420 cases (318 boys and 102 girls) of G6PD deficiency were confirmed with the modified Duchenne NBT ratio method. The total detection rate was 3.7:5.2% for boys and 1.9% for girls. Quantitative fluorescence assay improved the sensitivity and detection rate. Accelerating the speed of sample delivery by using Internet network systems and ensuring online availability of screening results can aid the screening and diagnosis of this deficiency within 1 week of birth.

  5. Haemoglobinopathies, glucose-6-phosphate dehydrogenase deficiency and allied problems in the Indian subcontinent

    PubMed Central

    Chatterjea, J. B.

    1966-01-01

    The present world-wide interest in haemoglobinopathies and allied disorders has given rise to a very considerable literature over the past two decades. This communication reviews this literature in so far as it refers to the Indian subcontinent. The most common abnormality is thalassaemia, which has been discovered in all regions under consideration: India, Pakistan, Nepal, Bhutan and Ceylon. Haemoglobins S, D and E are also quite common: Hb S has been found mostly in the aboriginal tribes, Hb D in Gujaratis and Punjabis and Hb E in Bengalis, Assamese and Nepalese. A few instances of haemoglobins F, H, J, K, L and M have also been reported. However, there remain many population groups to be investigated. Studies of the distribution of glucose-6-phosphate dehydrogenase deficiency are also reviewed, and the correlation between the various haemoglobin disorders and various environmental factors is discussed, but it is pointed out that the relevant data are still insufficient to allow any definite conclusions to be drawn. PMID:5338376

  6. Glucose-6-phosphate dehydrogenase deficiency A- variant in febrile patients in Haiti.

    PubMed

    Carter, Tamar E; Maloy, Halley; von Fricken, Michael; St Victor, Yves; Romain, Jean R; Okech, Bernard A; Mulligan, Connie J

    2014-08-01

    Haiti is one of two remaining malaria-endemic countries in the Caribbean. To decrease malaria transmission in Haiti, primaquine was recently added to the malaria treatment public health policy. One limitation of primaquine is that, at certain doses, primaquine can cause hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd). In this study, we genotyped two mutations (A376G and G202A), which confer the most common G6PDd variant in West African populations, G6PDd A-. We estimated the frequency of G6PDd A- in a sample of febrile patients enrolled in an on-going malaria study who represent a potential target population for a primaquine mass drug administration. We found that 33 of 168 individuals carried the G6PDd A- allele (includes A- hemizygous males, A- homozygous or heterozygous females) and could experience toxicity if treated with primaquine. These data inform discussions on safe and effective primaquine dosing and future malaria elimination strategies for Haiti.

  7. Splenic artery pseudoaneurysm due to seatbelt injury in a glucose-6-phosphate dehydrogenase-deficient adult.

    PubMed

    Lau, Yu Zhen; Lau, Yuk Fai; Lai, Kang Yiu; Lau, Chu Pak

    2013-11-01

    A 23-year-old man presented with abdominal pain after suffering blunt trauma caused by a seatbelt injury. His low platelet count of 137 × 10(9)/L was initially attributed to trauma and his underlying hypersplenism due to glucose-6-phosphate dehydrogenase (G6PD) deficiency. Despite conservative management, his platelet count remained persistently reduced even after his haemoglobin and clotting abnormalities were stabilised. After a week, follow-up imaging revealed an incidental finding of a pseudoaneurysm (measuring 9 mm × 8 mm × 10 mm) adjacent to a splenic laceration. The pseudoaneurysm was successfully closed via transcatheter glue embolisation; 20% of the spleen was also embolised. A week later, the platelet count normalised, and the patient was subsequently discharged. This case highlights the pitfalls in the detection of a delayed occurrence of splenic artery pseudoaneurysm after blunt injury via routine delayed phase computed tomography. While splenomegaly in G6PD may be a predisposing factor for injury, a low platelet count should arouse suspicion of internal haemorrhage rather than hypersplenism.

  8. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis.

    PubMed

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-04-06

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59-1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40-0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96-1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57-0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46-1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61-1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender.

  9. A new paper-based analytical device for detection of Glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Kaewarsa, Phuritat; Laiwattanapaisal, Wanida; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic haemolytic disorder. Most persons with G6PD deficiency are asymptomatic, but exposure to oxidant drugs, such as the anti-malarial drug primaquine, may induce haemolysis, which is commonly found in Asian countries. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis. This study proposes a novel quantitative method to detect G6PD deficiency using paper-based analytical devices (G6PDD-PAD). Wax printing was utilized for fabricating circular reaction zone patterns in paper. The colorimetric assay is based on the formation of formazan via a reduction of tetra-nitro blue tetrazolium (TNBT) by the G6PD enzyme on G6PDD-PAD. Detection was achieved by capturing the colour using a desktop scanner and the colour intensity was analysed with Adobe Photoshop C56. The results showed that the G6PD activity analysed by G6PDD-PAD was highly correlated with the standard biochemical assay (SBA) (r(2)=0.87, p<0.01). Moreover, good agreement by Bland-Altman bias plot was demonstrated between G6PDD-PAD and the SBA (mean bias 1.4 IU/gHb). The detection limit was 0 IU/gHb of G6PD activity. This study demonstrates the feasibility of using G6PDD-PAD. This simple, low-cost test ($0.1/test) should be useful for diagnosing G6PD deficiency in resource-limited settings.

  10. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    PubMed

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  11. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis

    PubMed Central

    Mbanefo, Evaristus Chibunna; Ahmed, Ali Mahmoud; Titouna, Afaf; Elmaraezy, Ahmed; Trang, Nguyen Thi Huyen; Phuoc Long, Nguyen; Hoang Anh, Nguyen; Diem Nghi, Tran; The Hung, Bui; Van Hieu, Mai; Ky Anh, Nguyen; Huy, Nguyen Tien; Hirayama, Kenji

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD alteration in malaria patients. Twenty-eight of the included 30 studies were eligible for the meta-analysis. Results showed absence of negative association between G6PD deficiency and uncomplicated falciparum malaria (odds ratio (OR), 0.77; 95% confidence interval (CI), 0.59–1.02; p = 0.07). However, this negative association happened in Africa (OR, 0.59; 95% CI, 0.40–0.86; p = 0.007) but not in Asia (OR, 1.24; 95% CI, 0.96–1.61; p = 0.10), and in the heterozygotes (OR, 0.70; 95% CI, 0.57–0.87; p = 0.001) but not the homo/hemizygous (OR, 0.70; 95% CI, 0.46–1.07; p = 0.10). There was no association between G6PD deficiency and total severe malaria (OR, 0.82; 95% CI, 0.61–1.11; p = 0.20). Similarly, there was no association with other malaria species. G6PD deficiency can potentially protect against uncomplicated malaria in African countries, but not severe malaria. Interestingly, this protection was mainly in heterozygous, being x-linked thus related to gender. PMID:28382932

  12. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border.

    PubMed

    Li, Qing; Yang, Fang; Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24

  13. Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes.

    PubMed

    Peters, Anna L; van Noorden, Cornelis J F

    2017-01-01

    Cytochemistry is the discipline that is applied to visualize specific molecules in individual cells and has become an essential tool in life sciences. Immunocytochemistry was developed in the sixties of last century and is the most frequently used cytochemical application. However, metabolic mapping is the oldest cytochemical approach to localize activity of specific enzymes, but in the last decades of the previous century and the first decade of the present century it almost became obsolete. The popularity of this approach revived in the past few years. Metabolism gained interest as player in chronic and complex diseases such as cancer, diabetes, neurodegenerative diseases, and vascular diseases and both enzyme cytochemistry and metabolic mapping have become important tools in life sciences.In this chapter, we present glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most prevalent enzyme deficiency worldwide, to illustrate recent developments in enzyme cytochemistry or metabolic mapping. The first assays which were developed quantified enzyme activity but were unreliable for single cell evaluation. The field has expanded with the development of cytochemical single cell assays and DNA testing. Still, all assays-from the earliest developed tests up to the most recently developed tests-have their place in investigations on G6PD activity. Recently, nanoscopy has become available for light and fluorescence microscopy at the nanoscale. For nanoscopy, cytochemistry is an essential tool to visualize intracellular molecular processes. The ultimate goal in the coming years will be nanoscopy of living cells so that the molecular dynamics can be studied. Cytochemistry will undoubtedly play a critical role in these developments.

  14. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.

    PubMed

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-05-02

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans

  15. Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Lee, Jaewoong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack-Gyun

    2017-01-01

    Background We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. Methods In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. Results One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. Conclusions The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability. PMID:28028996

  16. Hereditary sideroblastic anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro family.

    PubMed

    Prasad, A S; Tranchida, L; Konno, E T; Berman, L; Albert, S; Sing, C F; Brewer, G J

    1968-06-01

    Detailed clinical and genetic studies have been performed in a Negro family, which segregated for sex-linked sideroblastic anemia and glucose-6-phosphate dehydrogenase (G-6-DP) deficiency. This is the first such pedigree reported. Males affected with sideroblastic anemia had growth retardation, hypochromic microcytic anemia, elevated serum iron, decreased unsaturated iron-binding capacity, increased (59)Fe clearance, low (59)Fe incorporation into erythrocytes, normal erythrocyte survival ((51)Cr), normal hemoglobin electrophoretic pattern, erythroblastic hyperplasia of marrow with increased iron, and marked increase in marrow sideroblasts, particularly ringed sideroblasts. Perinuclear deposition of ferric aggregates was demonstrated to be intramitochondrial by electron microscopy. Female carriers of the sideroblastic gene were normal but exhibited a dimorphic population of erythrocytes including normocytic and microcytic cells. The bone marrow studies in the female (mother) showed ringed marrow sideroblasts. Studies of G-6-PD involved the methemoglobin elution test for G-6-PD activity of individual erythrocytes, quantitative G-6-PD assay, and electrophoresis. In the pedigree, linkage information was obtained from a doubly heterozygous woman, four of her sons, and five of her daughters. Three sons were doubly affected, and one was normal. One daughter appeared to be a recombinant. The genes appeared to be linked in the coupling phase in the mother. The maximum likelihood estimate of the recombination value was 0.14. By means of Price-Jones curves, the microcytic red cells in peripheral blood were quantitated in female carriers. The sideroblast count in the bone marrow in the mother corresponded closely to the percentage of microcytic cells in peripheral blood. This is the second example in which the cellular expression of a sex-linked trait has been documented in the human red cells, the first one being G-6-PD deficiency. The coexistence of the two genes in doubly

  17. The Preterm Infant: A High-Risk Situation for Neonatal Hyperbilirubinemia Due to Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Kaplan, Michael; Hammerman, Cathy; Bhutani, Vinod K

    2016-06-01

    Prematurity and glucose-6-phosphate dehydrogenase (G6PD) deficiency are risk factors for neonatal hyperbilirubinemia. The 2 conditions may interact additively or synergistically, contributing to extreme hyperbilirubinemia, with the potential for bilirubin neurotoxicity. This hyperbilirubinemia is the result of sudden, unpredictable, and acute episodes of hemolysis in combination with immaturity of bilirubin elimination, primarily of conjugation. Avoidance of contact with known triggers of hemolysis in G6PD-deficient individuals will prevent some, but not all, episodes of hemolysis. All preterm infants with G6PD deficiency should be vigilantly observed for the development of jaundice both in hospital and after discharge home.

  18. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report.

    PubMed

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management.

  19. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report

    PubMed Central

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management. PMID:26435857

  20. Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern Indonesian populations.

    PubMed

    Tantular, Indah S; Matsuoka, Hiroyuki; Kasahara, Yuichi; Pusarawati, Suhintam; Kanbe, Toshio; Tuda, Josef S B; Kido, Yasutoshi; Dachlan, Yoes P; Kawamoto, Fumihiko

    2010-12-01

    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka.

  1. Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: A retrospective observational study.

    PubMed

    Dore, Maria P; Davoli, Agnese; Longo, Nunzio; Marras, Giuseppina; Pes, Giovanni M

    2016-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been associated with a lower cancer risk, possibly via a reduction of mutagenic oxygen-free radicals and by reducing nicotinamide-adeninedinucleotide-phosphate for replicating cells. In Sardinia, the enzyme defect is frequent as a consequence of selection by malaria in the past. This study investigated the relationship between G6PD deficiency and colorectal cancer (CRC).A retrospective case-control study of 3901 patients from Sardinia, who underwent a colonoscopy between 2006 and 2016, was performed. G6PD phenotype was assessed for each subject. The proportion of pre and malignant colorectal lesions was compared in cases (G6PD-deficient) and controls (G6PD-normal). Data concerning age, sex, family history of CRC, smoking habits, body height, and weight, and also associated diseases were collected.The CRC risk reduction was 43.2% among G6PD-deficient compared with G6PD-normal subjects (odds ratio 0.57, 95% confidence interval 0.37-0.87, P = 0.010). Age, sex, family history of CRC, and also comorbidities such as type 1 diabetes and ischemic heart disease, were significantly associated with CRC risk. The protective effect of G6PD deficiency remained significant after adjusting for all covariates by logistic regression analysis, and was consistently lower across all age groups.Glucose-6-phosphate dehydrogenase enzyme deficiency is associated with a reduced risk of CRC.

  2. Periodontal considerations in a patient with glucose-6-phosphate dehydrogenase deficiency with associated pancytopenia: A rare case report.

    PubMed

    Gupta, Harinder; Arora, Ruchika; Kamboj, Monika

    2014-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme defect in humans. G6PD deficiency is widely distributed in tropical and subtropical parts of the world and a conservative estimate is that at least 500 million people have a G6PD deficient gene. In several of these areas, the frequency of a G6PD deficiency gene may be as high as 20% or more. The vast majority of people with G6PD deficiency remain clinically asymptomatic throughout their lifetime. However, all of them have an increased risk of developing neonatal jaundice and a risk of developing acute hemolytic anemia when challenged by a number of oxidative agents. The most important treatment measure is prevention: Avoidance of the drugs and foods that cause hemolysis.

  3. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hemolytic anemia associated with a glucose-6-phosphate dehydrogenase deficiency. This generic device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An...

  4. High frequency of diabetes and impaired fasting glucose in patients with glucose-6-phosphate dehydrogenase deficiency in the Western brazilian Amazon.

    PubMed

    Santana, Marli S; Monteiro, Wuelton M; Costa, Mônica R F; Sampaio, Vanderson S; Brito, Marcelo A M; Lacerda, Marcus V G; Alecrim, Maria G C

    2014-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase-deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria.

  5. Co-occurrence of biphenotypic acute leukaemia, glucose 6-phosphate dehydrogenase deficiency and haemoglobin E trait in a single child.

    PubMed

    Mallick, Debkrishna; Thapa, Rajoo; Biswas, Biswajit

    2016-02-01

    Acute leukaemias occur as the result of clonal expansion subsequent to transformation and arrest at a normal differentiation stage of haematopoietic precursors, which commit to a single lineage, such as myeloid or B-lymphoid or T-lymphoid cells. Biphenotypic acute leukaemia (BAL) constitutes a biologically different group of leukaemia arising from a precursor stem cell and co-expressing more than one lineage specific marker. The present report describes a child with unusual co-occurrence of biphenotypic (B-precursor cell and Myeloid) acute leukaemia, haemoglobin E trait and glucose 6-phosphate dehydrogenase (G6-PD) deficiency. To the best of our knowledge, this constellation of haematological conditions in a single child has never been described before.

  6. False-Positive Newborn Screen Using the Beutler Spot Assay for Galactosemia in Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Stuhrman, Grace; Perez Juanazo, Stefanie J; Crivelly, Kea; Smith, Jennifer; Andersson, Hans; Morava, Eva

    2017-01-12

    Classical galactosemia is detected through newborn screening by measuring galactose-1-phosphate uridylyltransferase (GALT) in the USA primarily via the Beutler spot assay. We report on an 18-month-old patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency that was originally diagnosed with classical galactosemia. The patient presented with elevated liver function enzymes and bilirubinemia and was immediately treated with soy-based formula. Confirmatory tests revealed deficiency of the GALT enzyme, however, full-sequencing of GALT was normal, suggestive of a different ideology. The Beutler spot assay uses three other enzymatic steps in addition to GALT. A deficiency in either of these enzymes can result in suspected decreased GALT activity when using the Beutler assay. Congenital Disorders of Glycosylation screening for phosphoglucomutase-1 deficiency was negative. Quantitative analysis of G6PD enzyme in red blood cells showed a severe deficiency and a deletion in G6PD. Soy-formula, the standard treatment for galactosemia, has been reported to trigger hemolysis in G6PD deficient patients. G6PD and phosphoglucomutase-1 deficiencies should be considered when confirmatory tests are negative for pathogenic variants in GALT and galactose-1-phosphate level is normal.

  7. Decreased Glutathione S-transferase Level and Neonatal Hyperbilirubinemia Associated with Glucose-6-phosphate Dehydrogenase Deficiency: A Perspective Review.

    PubMed

    Al-Abdi, Sameer Yaseen

    2017-02-01

    Classically, genetically decreased bilirubin conjugation and/or hemolysis account for the mechanisms contributing to neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, these mechanisms are not involved in most cases of this hyperbilirubinemia. Additional plausible mechanisms for G6PD deficiency-associated hyperbilirubinemia need to be considered. Glutathione S-transferases (GST) activity depends on a steady quantity of reduced form of glutathione (GSH). If GSH is oxidized, it is reduced back by glutathione reductase, which requires the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). The main source of NADPH is the pentose phosphate pathway, in which G6PD is the first enzyme. Rat kidney GSH, rat liver GST, and human red blood cell GST levels have been found to positively correlate with G6PD levels in their respective tissues. As G6PD is expressed in hepatocytes, it is expected that GST levels would be significantly decreased in hepatocytes of G6PD-deficient neonates. As hepatic GST binds bilirubin and prevents their reflux into circulation, hypothesis that decreased GST levels in hepatocytes is an additional mechanism contributing to G6PD deficiency-associated hyperbilirubinemia seems plausible. Evidence for and against this hypothesis are discussed in this article hoping to stimulate further research on the role of GST in G6PD deficiency-associated hyperbilirubinemia.

  8. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti.

    PubMed

    von Fricken, Michael E; Weppelmann, Thomas A; Eaton, Will T; Alam, Meer T; Carter, Tamar E; Schick, Laura; Masse, Roseline; Romain, Jean R; Okech, Bernard A

    2014-07-01

    Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%-24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti.

  9. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Shannon, Kerry L; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S; Khyang, Jacob; Ram, Malathi; Haq, M Zahirul; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E; Shields, Timothy; Nyunt, Myaing M; Khan, Wasif A; Sack, David A; Sullivan, David J

    2015-08-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case-uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07-46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42-1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria.

  10. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Fang, Zishui; Jiang, Chengrui; Tang, Jia; He, Ming; Lin, Xiaoying; Chen, Xiaodan; Han, Luhao; Zhang, Zhiqiang; Feng, Yi; Guo, Yibin; Li, Hongyi; Jiang, Weiying

    2016-06-01

    Acute hemolytic anemia could be triggered by oxidative stress in the patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, the underlying hemolytic mechanism is unknown. To make clear the hemolytic mechanisms, a systematic study on membrane ultrastructure had been undertaken. A comprehensive method was used including atomic force microscopy, scanning electron microscopy, flow cytometer and fluorescence microscopy to analyze the membrane ultrastructure, externalized phosphatidylserine (PS), intracellular Ca(2+) concentration, morphology and the distributions of band 3 protein in G6PD deficient red blood cells (RBCs) after tert-butyl-hydroperoxide (t-BHP) oxidation. The results showed that erythrocyte shrinkage, annexin-V binding to externalized PS on the membrane of early-stage apoptotic cells, the increased membrane roughness and intracellular Ca(2+) concentration, as well as the change of distributions of band 3 protein in RBCs. Compared with the control RBCs, as the concentration of t-BHP up to 0.1mM, the membrane roughness of G6PD deficient RBCs showed significant difference (p<0.05) and as the concentration of t-BHP up to 0.3mM, externalized PS showed significant difference (p<0.05). Furthermore, the population types of RBCs showed dramatic difference between control groups and G6PD deficient groups. Oxidative stress induced more serious erythrocyte apoptosis and resulted in increased roughness of erythrocyte membrane and abnormal distributed band 3 protein in G6PD deficient RBCs. Echinocytes are the predominant abnormal erythrocyte shape occurring in the peripheral blood from patients with G6PD deficiency, which may shorten the RBCs lifespan. The results in the present study will give an increased understanding for the hemolytic mechanism of G6PD deficiency.

  11. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets.

    PubMed

    Hecker, Peter A; Mapanga, Rudo F; Kimar, Charlene P; Ribeiro, Rogerio F; Brown, Bethany H; O'Connell, Kelly A; Cox, James W; Shekar, Kadambari C; Asemu, Girma; Essop, M Faadiel; Stanley, William C

    2012-10-15

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects.

  12. Impact of glucose-6-phosphate dehydrogenase deficiency on sickle cell anaemia expression in infancy and early childhood: a prospective study.

    PubMed

    Benkerrou, Malika; Alberti, Corinne; Couque, Nathalie; Haouari, Zinedine; Ba, Aissatou; Missud, Florence; Boizeau, Priscilla; Holvoet, Laurent; Ithier, Ghislaine; Elion, Jacques; Baruchel, André; Ducrocq, Rolande

    2013-12-01

    In patients with sickle cell anaemia (SCA), concomitant glucose-6-phosphate dehydrogenase (G6PD) deficiency is usually described as having no effect and only occasionally as increasing severity. We analysed sequential clinical and biological data for the first 42 months of life in SCA patients diagnosed by neonatal screening, including 27 G6PD-deficient patients, who were matched on sex, age and parents' geographic origin to 81 randomly selected patients with normal G6PD activity. In the G6PD-deficient group, steady-state haemoglobin was lower (-6·2 g/l, 95% confidence interval (CI), [-10·1; -2·3]) and reticulocyte count higher (247 × 10(9) /l, 95%CI, [97; 397]). The acute anaemic event rate was 3 times higher in the G6PD-deficient group (P < 10(-3) ). A higher proportion of G6PD-deficient patients required blood transfusion (20/27 [74%] vs. 37/81 [46%], P < 10(-3) ), for acute anaemic events, and also vaso-occlusive and infectious events. No significant between-group differences were found regarding the rates of vaso-occlusive, infectious, or cerebrovascular events. G6PD deficiency in babies with SCA worsens anaemia and increases blood transfusion requirements in the first years of life. These effects decrease after 2 years of age, presumably as the decline in fetal haemoglobin levels leads to increased sickle cell haemolysis and younger red blood cells with higher G6PD activity.

  13. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    PubMed

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p < 0.0001) and in controls (13.6 ± 2.9 U/g Hb, p < 0.0001). In C563T heterozygote females, the estimated enzyme activity was lower than that determined in non-C563T females. Male C563T hemizygotes suffer from G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  14. Relationship between exposure to icterogenic agents, glucose-6-phosphate dehydrogenase deficiency and neonatal jaundice in Nigeria.

    PubMed

    Owa, J A

    1989-11-01

    In a study of the relationship between exposure to icterogenic agents, G-6-PD deficiency and severe neonatal jaundice (NNJ) (serum bilirubin greater than or equal to 205 mumol/l) in 234 Nigerian term male neonates, 106 infants with severe NNJ and 128 controls, it was found that 62.3% of the jaundiced infants and 13.3% of the infants without NNJ were G6PD deficient (p less than 0.01). The proportion of infants exposed to icterogenic agents in the two groups was very similar (p greater than or equal to 0.5). There was a strong association between exposure to icterogenic agents and NNJ in 83 G6PD deficient infants (p less than 0.01), but there was no association between exposure to icterogenic agents and NNJ in the whole group of 234 infants or in 151 infants with normal G6PD status. It is concluded that there is an association between genetically determined G-6-PD deficiency and exogenous agents in causing severe NNJ in Nigerian infants.

  15. The risk of jaundice in glucose-6-phosphate dehydrogenase deficient babies exposed to menthol.

    PubMed

    Olowe, S A; Ransome-Kuti, O

    1980-05-01

    A major cause of neonatal morbidity and mortality in Lagos, Nigeria, is severe neonatal jaundice seen in G-6-PD deficient babies. The observation that the jaundice is more severe in outpatient than in inpatient babies suggests that its cause is exogenous. "Mentholated" powder which is commonly used in many clinics and at home to dress umbilical cords was suspected to be the offending agent. A controlled study of the effects of one of these powders was carried out on 60 consecutive G-6-PD deficient babies. In 30 of them the umbilical cords were dressed daily with the powder while the remaining half who were untreated served as controls. The treated babies developed statistically more significant jaundice than the controls. Inability of neonates to conjugate menthol in this power is probably responsible for the jaundice developed by these G-6-PD deficient babies. It is concluded that the use of menthol and/or camphor-containing commerical products on neonates be discontinued, especially in communities where the incidence of G-6-PD deficiency is high as the use of such products may be contributiing to the severity of neonatal jaundice.

  16. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

    PubMed

    Isaac, Iz; Mainasara, As; Erhabor, Osaro; Omojuyigbe, St; Dallatu, Mk; Bilbis, Ls; Adias, Tc

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3%) males and 41 (34.7%) females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4%) were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%). Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01). The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2%) were moderately deficient, while five (29.4%) were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD deficiency in our environment, to allow for evidence-based management of these children and to ensure the avoidance of food, drugs, and infective agents that can potentially predispose these children to oxidative stress as well as diseases that deplete micronutrients that protect against oxidative stress. There is need to build capacity in our

  17. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobinophaties in Resident of Arso PIR, Irian Jaya

    DTIC Science & Technology

    1990-01-01

    6-PD associated with the use of pri- deficiency and hemoglobinopathy occur14 . maquine as a tissue schizonto- There are indictions that G-6-PD defi... hemoglobinopathies . 6 Irianese were found to be G-6- I’D def icient. G-6-PD levels in these individuals ranged from 4-50% of minimum normal values. 5 cases of... hemoglobinopathy were detected. 1 Irianese had a hemoglobinopathy consistent with hemog tobin-Lepore Hollandia. 3 Javanese subjects expressed a variant

  18. Should blood donors be routinely screened for glucose-6-phosphate dehydrogenase deficiency? A systematic review of clinical studies focusing on patients transfused with glucose-6-phosphate dehydrogenase-deficient red cells.

    PubMed

    Renzaho, Andre M N; Husser, Eliette; Polonsky, Michael

    2014-01-01

    The risk factors associated with the use of glucose-6-phosphate dehydrogenase (G6PD)-deficient blood in transfusion have not yet been well established. Therefore, the aim of this review was to evaluate whether whole blood from healthy G6PD-deficient donors is safe to use for transfusion. The study undertook a systematic review of English articles indexed in COCHRANE, MEDLINE, EMBASE, and CINHAL, with no date restriction up to March 2013, as well as those included in articles' reference lists and those included in Google Scholar. Inclusion criteria required that studies be randomized controlled trials, case controls, case reports, or prospective clinical series. Data were extracted following the Preferred Reporting Items for Systematic Reviews using a previously piloted form, which included fields for study design, population under study, sample size, study results, limitations, conclusions, and recommendations. The initial search identified 663 potentially relevant articles, of which only 13 studies met the inclusion criteria. The reported effects of G6PD-deficient transfused blood on neonates and children appear to be more deleterious than effects reported on adult patients. In most cases, the rise of total serum bilirubin was abnormal in infants transfused with G6PD-deficient blood from 6 hours up to 60 hours after transfusion. All studies on neonates and children, except one, recommended a routine screening for G6PD deficiency for this at-risk subpopulation because their immature hepatic function potentially makes them less able to handle any excess bilirubin load. It is difficult to make firm clinical conclusions and recommendations given the equivocal results, the lack of standardized evaluation methods to categorize red blood cell units as G6PD deficient (some of which are questionable), and the limited methodological quality and low quality of evidence. Notwithstanding these limitations, based on our review of the available literature, there is little to

  19. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia.

    PubMed Central

    Vulliamy, T J; D'Urso, M; Battistuzzi, G; Estrada, M; Foulkes, N S; Martini, G; Calabro, V; Poggi, V; Giordano, R; Town, M

    1988-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. We have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A we have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. In one of the commonest, G6PD Mediterranean, which is associated with favism among other clinical manifestations, a single amino acid replacement was found (serine----phenylalanine): it must be responsible for the decreased stability and the reduced catalytic efficiency of this enzyme. Single point mutations were also found in G6PD Metaponto (Southern Italy) and in G6PD Ilesha (Nigeria), which are asymptomatic, and in G6PD Chatham, which was observed in an Indian boy with neonatal jaundice. In G6PD "Matera," which is now known to be the same as G6PD A-, two separate point mutations were found, one of which is the same as in G6PD A. In G6PD Santiago, a de novo mutation (glycine----arginine) is associated with severe chronic hemolytic anemia. The mutations observed show a striking predominance of C----T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency. Images PMID:3393536

  20. Acute viral hepatitis E presenting with haemolytic anaemia and acute renal failure in a patient with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Tomar, Laxmikant Ramkumarsingh; Aggarwal, Amitesh; Jain, Piyush; Rajpal, Surender; Agarwal, Mukul P

    2015-10-01

    The association of acute hepatitis E viral (HEV) infection with glucose-6-phosphate dehydrogenase (G6PD) deficiency leading to extensive intravascular haemolysis is a very rare clinical entity. Here we discuss such a patient, who presented with acute HEV illness, developed severe intravascular haemolysis and unusually high levels of bilirubin, complicated by acute renal failure (ARF), and was later on found to have a deficiency of G6PD. The patient recovered completely with haemodialysis and supportive management.

  1. Screening for Glucose-6-Phosphate Dehydrogenase Deficiency Using Three Detection Methods: A Cross-Sectional Survey in Southwestern Uganda.

    PubMed

    Roh, Michelle E; Oyet, Caesar; Orikiriza, Patrick; Wade, Martina; Mwanga-Amumpaire, Juliet; Boum, Yap; Kiwanuka, Gertrude N; Parikh, Sunil

    2016-11-02

    Despite the potential benefit of primaquine in reducing Plasmodium falciparum transmission and radical cure of Plasmodium vivax and Plasmodium ovale infections, concerns over risk of hemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) have hampered its deployment. A cross-sectional survey was conducted in 2014 to assess the G6PDd prevalence among 631 children between 6 and 59 months of age in southwestern Uganda, an area where primaquine may be a promising control measure. G6PDd prevalence was determined using three detection methods: a quantitative G6PD enzyme activity assay (Trinity Biotech(®) G-6-PDH kit), a qualitative point-of-care test (CareStart(™) G6PD rapid diagnostic test [RDT]), and molecular detection of the G6PD A- G202A allele. Qualitative tests were compared with the gold standard quantitative assay. G6PDd prevalence was higher by RDT (8.6%) than by quantitative assay (6.8%), using a < 60% activity threshold. The RDT performed optimally at a < 60% threshold and demonstrated high sensitivity (≥ 90%) and negative predictive values (100%) across three activity thresholds (below 60%, 30%, and 40%). G202A allele frequency was 6.4%, 7.9%, and 6.8% among females, males, and overall, respectively. Notably, over half of the G202A homo-/hemizygous children expressed ≥ 60% enzyme activity. Overall, the CareStart(™) G6PD RDT appears to be a viable screening test to accurately identify individuals with enzyme activities below 60%. The low prevalence of G6PDd across all three diagnostic modalities and absence of severe deficiency in our study suggests that there is little barrier to the use of single-dose primaquine in this region.

  2. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies.

    PubMed

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper; Birgens, Henrik

    2015-09-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigrants in Denmark. We found the allele frequency to be between 2.4 and 2.9% in the female immigrants. Furthermore, the mutation pattern in the studied population showed a high prevalence of the G6PD A-(202A) variant in African and African-American immigrants, a high prevalence of the G6PD Mediterranean variant in Mediterranean European and Western Asian immigrants, and substantial heterogeneity in the variants found in the Eastern Asian/Pacific immigrants. Inasmuch as many of the patients included in this investigation had various thalassaemic syndromes, we were able to evaluate the effects of the interaction between a low mean corpuscular haemoglobin (MCH) value and G6PD activity, particularly in heterozygous females. The activity level was markedly influenced by the MCH value in females with normal G6PD activity, but not in heterozygous and homozygous females. Comparison of patients with normal G6PD activity and heterozygous females indicated considerable overlap in activity levels. To help separating heterozygous females from females with wild-type genes, a DNA analysis is necessary when the female activity level is between 4.0 and 4.9 U/g hgb corresponding to 50-60% of the median activity of unaffected males.

  3. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors.

    PubMed

    Tzounakas, Vassilis L; Kriebardis, Anastasios G; Georgatzakou, Hara T; Foudoulaki-Paparizos, Leontini E; Dzieciatkowska, Monika; Wither, Matthew J; Nemkov, Travis; Hansen, Kirk C; Papassideri, Issidora S; D'Alessandro, Angelo; Antonelou, Marianna H

    2016-09-01

    This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD(+)) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in "Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells" [1].

  4. Prevalence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase deficiency among hill-tribe school children in Omkoi District, Chiang Mai Province, Thailand.

    PubMed

    Yanola, Jintana; Kongpan, Chatpat; Pornprasert, Sakorn

    2014-07-01

    The prevalaence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were examined among 265 hill-tribe school children, 8-14 years of age, from Omkoi District, Chiang Mai Province, Thailand. Anemia was observed in 20 school children, of whom 3 had iron deficiency anemia. The prevalence of G-6-PD deficiency and β-thalassemia trait [codon 17 (A>T), IVSI-nt1 (G>T) and codons 71/72 (+A) mutations] was 4% and 8%, respectively. There was one Hb E trait, and no α-thalassemia-1 SEA or Thai type deletion. Furthermore, anemia was found to be associated with β-thalassemia trait in 11 children. These data can be useful for providing appropriate prevention and control of anemia in this region of Thailand.

  5. Unsuspected glucose-6-phosphate dehydrogenase deficiency presenting as symptomatic methemoglobinemia with severe hemolysis after fava bean ingestion in a 6-year-old boy.

    PubMed

    Odièvre, Marie-Hélène; Danékova, Névéna; Mesples, Bettina; Chemouny, Myriam; Couque, Nathalie; Parez, Nathalie; Ducrocq, Rolande; Elion, Jacques

    2011-05-01

    We report the occurrence of symptomatic methemoglobinemia in a previously healthy boy, who presented with severe acute hemolysis after fava bean ingestion. The methemoglobinemia revealed a previously unrecognized glucose-6-phosphate dehydrogenase (G6PD) deficiency. We discuss the pathophysiology of severe methemoglobinemia when associated with acute hemolysis, favism, and the common African G6PD A-variant [G6PD, VAL68MET, ASN126ASP]. In conclusion, screening for G6PD deficiency must be considered in symptomatic methemoglobinemia, especially in young boys, when associated with intravascular hemolysis.

  6. A Novel de novo Mutation in the G6PD Gene in a Korean Boy with Glucose-6-phosphate Dehydrogenase Deficiency: Case Report.

    PubMed

    Jang, Mi-Ae; Kim, Ji-Yoon; Lee, Ki-O; Kim, Sun-Hee; Koo, Hong Hoe; Kim, Hee-Jin

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive hemolytic anemia caused by a mutation in the G6PD gene on Xq28. Herein, we describe a Korean boy with G6PD deficiency resulting from a novel mutation in G6PD. A 20-month-old boy with hemolytic anemia was referred for molecular diagnosis. He had no relevant family history. The G6PD activity was severely decreased at 0.2 U/g Hb (severe deficiency). Direct sequencing analyses on the G6PD gene revealed that he was hemizygous for a novel missense variant, c.1187C>G (p.Pro396Arg), in exon 10 of G6PD. Family study involving his parents revealed the de novo occurrence of the mutation. This is the first report of genetically confirmed G6PD deficiency in Korea.

  7. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among Arab migrating nomad children, southern Islamic Republic of Iran.

    PubMed

    Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M

    2014-12-17

    This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged < 18 years (51 males, 83 females). Low serum ferritin (< 12 ng/dL) was present in 17.9% of children (21.7% in females and 11.8% in males). Low haemoglobin (Hb) correlated significantly with a low serum ferritin. Only 1 child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.

  8. Red cell glucose 6-phosphate dehydrogenase deficiency in the northern region of Turkey: is G6PD deficiency exclusively a male disease?

    PubMed

    Albayrak, Canan; Albayrak, Davut

    2015-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive genetic defect that can cause hemolytic crisis. However, this disease affects both males and females. In Turkey, the frequency of this enzyme deficiency was reported to vary, from 0.25 to 18%, by the geographical area. Its prevalence in the northern Black Sea region of Turkey is unknown. The aims of this study were to assess the prevalence of G6PD deficiency in the northern region Turkey in children and adults with hyperbilirubinemia and hemolytic anemia. This report included a total of 976 G6PD enzyme results that were analyzed between May 2005 and January 2014. G6PD deficiency was detected in 5.0% of all patients. G6PD deficiency was significantly less frequent in females (1.9%, 6/323) than in males (6.6%, 43/653). G6PD deficiency was detected in 3.7% of infants with hyperbilirubinemia, 9.2% of children, and 4.5% of adults with hemolytic anemia. In both the newborn group and the group of children, G6PD deficiency was significantly more frequent in males. In the combined group of children (groups I and II), the proportion of males was 74% and 67% in all groups (P = .0008). In conclusion, in northern region of Turkey, G6PD deficiency is an important cause of neonatal hyperbilirubinemia and hemolytic crisis in children and adults. This study suggests that most pediatricians thought that G6PD deficiency is exclusively a male disease. For this reason, some female patients may have been undiagnosed.

  9. DNA damage and apoptosis in mononuclear cells from glucose-6-phosphate dehydrogenase-deficient patients (G6PD Aachen variant) after UV irradiation.

    PubMed

    Efferth, T; Fabry, U; Osieka, R

    2001-03-01

    Patients affected with X chromosome-linked, hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency suffer from life-threatening hemolytic crises after intake of certain drugs or foods. G6PD deficiency is associated with low levels of reduced glutathione. We analyzed mononuclear white blood cells (MNC) of three males suffering from the German G6PD Aachen variant, four heterozygote females of this family, one G6PD-deficient male from another family coming from Iran, and six healthy male volunteers with respect to their DNA damage in two different genes (G6PD and T-cell receptor-delta) and their propensity to enter apoptosis after UV illumination (0.08-5.28 J/cm2). As determined by PCR stop assays, there was more UV-induced DNA damage in MNC of G6PD-deficient male patients than in those of healthy subjects. MNC of G6PD-deficient patients showed a higher rate of apoptosis after UV irradiation than MNC of healthy donors. MNC of heterozygote females showed intermediate rates of DNA damage and apoptosis. It is concluded that increased DNA damage may be a result of deficient detoxification of reactive oxygen species by glutathione and may ultimately account for the higher rate of apoptosis in G6PD-deficient MNC.

  10. Molecular Characterization of Glucose-6-phosphate Dehydrogenase Deficiency in Families from the Republic of Macedonia and Genotype-phenotype Correlation

    PubMed Central

    Cherepnalkovski, Anet Papazovska; Zemunik, Tatijana; Glamocanin, Sofijanka; Piperkova, Katica; Gunjaca, Ivana; Kocheva, Svetlana; Jovanova, Biljana Coneska; Krzelj, Vjekoslav

    2015-01-01

    Introduction: Glucose-6-phospahte dehydrogenase deficiency (G6PD) is one of the most common inherited disorders affecting around 400 million people worldwide. Molecular analysis of the G6PD gene identified more than 140 distinct mutations, the majority being single base missense mutations. G6PD Mediterranean is the most common variant found in populations of the Mediterranean area. Aim: The aim of our study was to perform molecular characterization of G6PD deficiency in families from the Republic of Macedonia and correlate the findings to disease phenotype. Patients and methods: Six patients and seven other family members were selected for genetic characterization, the selection procedure involved clinical evaluation and G6PD quantitative testing. All patients were first screened for the Mediterranean mutation, and subsequently for the Seattle mutation. Mutations were detected using PCR amplification and appropriate restriction endonuclease cleavage. Results: Four hemizygote and 3 heterozygous carriers for G6PD Mediterranean were detected. All G6PD deficient patients from this group showed clinical picture of hemolysis, and in 66.6% neonatal jaundice was confirmed based on history data. To our knowledge, this is the first study concerned with molecular aspects of the G6PD deficiency in R. Macedonia. Conclusion: This study represents a step towards a more comprehensive genetic evaluation in our population and better understanding of the health issues involved. PMID:26622077

  11. The use of primaquine in malaria infected patients with red cell glucose-6-phosphate dehydrogenase (G6PD) deficiency in Myanmar.

    PubMed

    Myat-Phone-Kyaw; Myint-Oo; Aung-Naing; Aye-Lwin-Htwe

    1994-12-01

    32 subjects with Plasmodium falciparum gametocytes, and 31 cases with Plasmodium vivax infection from two military hospitals (Lashio, Mandalay) were treated with quinine 600 mg three times a day for 7 days followed by primaquine 45 mg single dose for gametocytes and 45 mg weekly x 8 weeks for vivax malaria. Although screening of red cell glucose-6-phosphate dehydrogenase (G6PD) was done prior to primaquine treatment, G6PD deficient subjects were not excluded from the trial. 20 patients hemizygous for mild G6PD deficiency (GdB- variant), 2 patients hemizygous for severe deficiency (Gd-Myanmar variant) completed the trial. No case of acute hemolysis was observed in all 22 patients with two genotypes of red cell G6PD deficiency status. Therefore, a single dose of primaquine 45 mg and/or weekly for 8 weeks is adequate for the treatment of patients with P. falciparum gametocytes and/or P. vivax malaria ignoring these red cell G6PD enzyme deficient variants in Myanmar.

  12. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    SciTech Connect

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G.

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  13. Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals.

    PubMed

    Turrini, F; Naitana, A; Mannuzzu, L; Pescarmona, G; Arese, P

    1985-08-01

    RBCs from four glucose-6-phosphate dehydrogenase (G6PD)-deficient (Mediterranean variant) subjects were studied during fava bean hemolysis. In the density-fractionated RBC calcium level, Ca2+-ATPase activity, reduced glutathione level, and ghost protein pattern were studied. In the bottom fraction, containing most heavily damaged RBCs, calcium level ranged from 143 to 244 mumol/L RBCs (healthy G6PD-deficient controls: 17 +/- 5 mumol/L RBCs). The Ca2+-ATPase activity ranged from 0.87 to 1.84 mumol ATP consumed/g Hb/min (healthy G6PD-deficient controls: 2.27 +/- 0.4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of ghosts showed: (1) the presence of high mol wt aggregates (in three cases they were reduced by dithioerythritol; in one case, only partial reduction was possible); (2) the presence of multiple, scattered new bands; and (3) the reduction of band 3. Oxidant-mediated damage to active calcium extrusion, hypothetically associated with increased calcium permeability, may explain the large increase in calcium levels. They, in turn, could activate calcium-dependent protease activity, giving rise to the profound changes in the ghost protein pattern.

  14. Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam.

    PubMed

    Mwakasungula, Solomon; Schindler, Tobias; Jongo, Said; Moreno, Elena; Kamaka, Kasimu; Mohammed, Mgeni; Joseph, Selina; Rashid, Ramla; Athuman, Thabit; Tumbo, Anneth Mwasi; Hamad, Ali; Lweno, Omar; Tanner, Marcel; Shekalaghe, Seif; Daubenberger, Claudia A

    2014-01-01

    Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α(+)-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α(+)-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α(+)-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α(+)-thalassemia were identified based on their MCH value < 28.6 pg.

  15. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  16. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  17. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  18. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  19. Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

    PubMed Central

    Roshankhah, Shiva; Rostami-Far, Zahra; Shaveisi-Zadeh, Farhad; Movafagh, Abolfazl; Shaveisi-Zadeh, Jila

    2016-01-01

    Objective Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as H2O2. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of H2O2, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and 120 µM concentrations of H2O2. After 1 hour incubation at 37℃, sperms were evaluated for motility and viability. Results Incubation of sperms with 10 and 20 µM H2O2 led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and 80 µM H2O2, and viability decreased in both groups in 40, 60, 80, and 120 µM H2O2. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2, and the reducing equivalents necessary for protection against H2O2 are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility. PMID:28090457

  20. Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells.

    PubMed

    Ginsburg, H; Atamna, H; Shalmiev, G; Kanaani, J; Krugliak, M

    1996-07-01

    The balanced polymorphism of glucose-6-phosphate dehydrogenase deficiency (G6PD-) is believed to have evolved through the selective pressure of malarial combined with consumption of fava beans. The implicated fava bean constituents are the hydroxypyrimidine glucosides vicine and convicine, which upon hydrolysis of their beta-O-glucosidic bond, became protein pro-oxidants. In this work we show that the glucosides inhibit the growth of Plasmodium falciparum, increase the hexose-monophosphate shunt activity and the phagocytosis of malaria-infected erythrocytes. These activities are exacerbated in the presence of beta-glucosidase, implicating their pro-oxidant aglycones in the toxic effect, and are more pronounced in infected G6PD- erythrocytes. These results suggest that G6PD- infected erythrocytes are more susceptible to phagocytic cells, and that fava bean pro-oxidants are more efficiently suppressing parasite propagation in G6PD- erythrocytes, either by directly affecting parasite growth, or by means of enhanced phagocytic elimination of infected cells. The present findings could account for the relative resistance of G6PD- bearers to falciparum malaria, and establish a link between dietary habits and malaria in the selection of the G6PD- genotype.

  1. The role of reduced glutathione during the course of acute haemolysis in glucose-6-phosphate dehydrogenase deficient patients: clinical and pharmacodynamic aspects.

    PubMed

    Corbucci, G G

    1990-01-01

    Tissue hypoperfusion leads to cellular oxidative and peroxidative damage due to biochemical disorders in the oxygen and substrate metabolism. The metabolic turnover of glutathione (GSH) represents one the main cytoprotective systems against the peroxide attack and the depletion or defect in resynthesis of this compound is accompanied by pathological consequences. In the present study the clinical effects of glutathione depletion were investigated in conditions of acute tissue hypoxia due to marked haemolysis in glucose-6-phosphate dehydrogenase deficient patients (favism syndrome). In these subjects a significant marker of the tissue oxidative damage was represented by the uric acid blood levels, presumably linked to xanthine-hypoxanthine altered metabolism. To antagonize the effects of oxyradical pathology, reduced glutathione was administered to a group of patients and the results confirmed the cytoprotective role played by the GSH supplementation. The GSH action was evident on the tissue metabolism and this supports the opinion that reduced glutathione could represent a new and interesting therapeutic approach in marked and acute hypoxic conditions.

  2. Molecular Epidemiological Survey of Glucose-6-Phosphate Dehydrogenase Deficiency and Thalassemia in Uygur and Kazak Ethnic Groups in Xinjiang, Northwest China.

    PubMed

    Han, Luhao; Su, Hai; Wu, Hao; Jiang, Weiying; Chen, Suqin

    2016-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and thalassemia occur frequently in tropical and subtropical regions, while the prevalence of relationship between the two diseases in Xinjiang has not been reported. We aimed to determine the prevalence of these diseases and clarify the relationship between genotypes and phenotypes of the two diseases in the Uygur and Kazak ethnic groups in Xinjiang. We measured G6PD activity by G6PD:6PGD (glucose acid-6-phosphate dehydrogenase) ratio, identified the gene variants of G6PD and α- and β-globin genes by polymerase chain reaction (PCR)-DNA sequencing and gap-PCR and compared these variants in different ethnic groups in Xinjiang with those adjacent to it. Of the 149 subjects with molecular analysis of G6PD deficiency conducted, a higher prevalence of the combined mutations c.1311C > T/IVSXI + 93T > C and IVSXI + 93T > C, both with normal enzymatic activities, were observed in the Uygur and Kazak subjects. A case of rare mutation HBB: c.135delC [codon 44 (-C) in the heterozygous state], a heterozygous case of HBB: c.68A > G [Hb G-Taipei or β22(B4)Glu→Gly] and several common single nucleotide polymorphisms (SNPs) were found on the β-globin gene. In conclusion, G6PD deficiency with pathogenic mutations and three common α-thalassemia (α-thal) [- -(SEA), -α(3.7) (rightward), -α(4.2) (leftward)] deletions and point mutations of the α-globin gene were not detected in the present study. The average incidence of β-thalassemia (β-thal) in Uygurs was 1.45% (2/138) in Xinjiang. The polymorphisms of G6PD and β-globin genes might be useful genetic markers to trace the origin and migration of the Uygur and Kazak in Xinjiang.

  3. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Mexico: overall results of a 7-year project.

    PubMed

    Vaca, Gerardo; Arámbula, Eliakym; Esparza, Amparo

    2002-01-01

    Several years ago, a project aiming to determine (i) the molecular basis of G-6-PD deficiency, (ii) the distribution of four different mutant alleles previously detected, and (iii) the whole of polymorphic alleles that account for the overall prevalence of G-6-PD deficiency in Mexico was implemented. Nearly 5000 individuals-from the general population and patients with hemolytic anemia-belonging to at least 14 States were screened for G-6-PD deficiency. Seventy-six G-6-PD-deficient subjects were detected and the prevalence of G-6-PD deficiency in 4777 individuals from the general population was 0.71%. Screening for both mutations associated with enzyme deficiency and silent polymorphisms at the G-6-PD gene was performed in the enzyme-deficient individuals by PCR-SSCP combined with restriction enzyme analysis; the silent polymorphisms as well as the nondeficient variant G-6-PD A(376G) were also investigated in 366 G-6-PD normal individuals from the general population. In 88% of the enzyme-deficient individuals it was possible to define the mutation responsible and the type G-6-PD A- variants were the more common in both individuals from the general population and patients with hemolytic anemia. G-6-PD deficiency is heterogeneous at the DNA level in Mexico and up to date 10 different variants-8 in the present project and 2 previously-have been observed: G-6-PD A(-202A/376G), G-6-PD A(-376G/968C), G-6-PD Santamaria(376G/542T), G-6-PD Vanua Lava(383C), G-6-PD Tsukui(del561-563), G-6-PD "Mexico City"(680A), G-6-PD Seattle(844C), G-6PD Guadalajara(1159T),G-6-PD Nashville(1178A), and G-6-PD Union(1360T). The G-6-PD A(-) variants have a relatively homogeneous distribution and along with G-6-PD Santamaria(376G/542T), they account for 82% of the overall prevalence of G-6-PD deficiency in Mexico; all other seven variants represent 9% of the mutant alleles examined, and in the rest of the chromosomes the mutation responsible for the enzyme deficiency remains to be defined

  4. Acute viral hepatitis, intravascular haemolysis, severe hyperbilirubinaemia and renal failure in glucose-6-phosphate dehydrogenase deficient patients.

    PubMed Central

    Agarwal, R. K.; Moudgil, A.; Kishore, K.; Srivastava, R. N.; Tandon, R. K.

    1985-01-01

    Five patients with acute viral hepatitis developed severe intrasvascular haemolysis and unusually high levels of serum bilirubin (427 to 1368 mumol/l). All 5 had high fever, marked anaemia, reticulocytosis and neutrophilic leucocytosis. Three of them developed acute renal failure, which was of non-oliguric type in 2. The clinical course was protracted, but complete recovery occurred in 4 patients between 4 to 10 weeks. One patient with hepatic coma and oliguric renal failure died. Deficiency of the enzyme G-6-PD was confirmed in 4 cases. Massive haemolysis in the patients was probably induced by the administration of chloroquine and other drugs. Intravascular haemolysis should be suspected in patients with acute viral hepatitis, if they show unexplained anaemia and very high serum bilirubin levels, and measures to prevent renal failure should be instituted in such cases. PMID:4070114

  5. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria

    PubMed Central

    2012-01-01

    Background Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria. Methods This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. Results G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G

  6. High prevalence of hemoglobin disorders and glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Republic of Guinea (West Africa).

    PubMed

    Millimono, Tamba S; Loua, Kovana M; Rath, Silvia L; Relvas, Luis; Bento, Celeste; Diakite, Mandiou; Jarvis, Martin; Daries, Nathalie; Ribeiro, Leticia M; Manco, Licínio; Kaeda, Jaspal S

    2012-01-01

    Reliable and accurate epidemiological data is a prerequisite for a cost effective screening program for inherited disorders, which however, is lacking in a number of developing countries. Here we report the first detailed population study in the Republic of Guinea, a sub-Saharan West African country, designed to assess the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies, including screening for thalassemia. Peripheral blood samples from 187 Guinean adults were screened for hemoglobin (Hb) variants by standard hematological methods. One hundred and ten samples from males were screened for G6PD deficiency by the fluorescent spot test. Molecular analysis was performed for the most common α-thalassemia (α-thal) deletions, β-globin gene mutations, G6PD variants B (376A), A (376G), A- (376G/202A) and Betica (376G/968C), using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) or sequencing. Of the 187 subjects screened, 36 were heterozygous for Hb S [β6(A3)Glu→Val, GAG>GTG] (allele frequency 9.62%). Sixty-four subjects were heterozygous and seven were homozygous for the -α(3.7) kb deletion (allele frequency 20.85%). β-Thalassemia alleles were detected in five subjects, four with the -29 (A>G) mutation (allele frequency 1.07%) and one with codon 15 (TGG>TAG) (allele frequency 0.96%). The G6PD A- and G6PD Betica deficient variants were highly prevalent with a frequency of 5.7 and 3.3%, respectively. While we did not test for ferritin levels or α(0)-thal, four females (5.2%) had red cell indices strongly suggestive of iron deficient anemia: Hb <9.7 g/dL; MCH <19.3 pg; MCV <68.2; MCHC <31.6 g/dl; RDW >19.8%. Our results are consistent with high frequency of alleles such as Hb S, α-thal and G6PD deficient alleles associated with malaria resistance. Finding a 9.6% Hb S allele frequency supports the notion for a proficient neonatal screening to identify the sickle cell patients, who might benefit

  7. [Hemoglobin Woodville associated with double point mutation in the gene of glucose-6-phosphate dehydrogenase].

    PubMed

    Mansini, Adrián P; Fernández, Diego A; Aguirre, Fernando M; Pepe, Carolina; Milanesio, Berenice; Chaves, Alejandro; Eandi Eberle, Silvia; Feliú Torres, Aurora

    2015-01-01

    The co-inheritance of erythrocyte defects, hemoglobinopathies, enzymopathies, and membranopathies is not an unusual event. For the diagnosis, a laboratory strategy, including screening and confirmatory tests, additional to molecular characterization, was designed. As the result of this approach, a 24-year-old man carrying a hemoglobinopathy (Hemoglobin Woodville) and an enzymopathy (glucose-6-phosphate dehydrogenase deficiency) was identified. In the heterozygous state hemoglobin Woodville, is asymptomatic, and homozygous or double heterozygous individuals have not been reported thus far. On the other hand, previously described double point mutation in the gene for glucose-6-phosphate dehydrogenase c. [202G>A; 376A>G], p. [Val 68Met; Asn126Asp], causes hemolysis of varying severity after food or drug intake or infections. This case highlights the importance of the methodology carried out for the diagnosis, treatment, and proper genetic counseling.

  8. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    SciTech Connect

    Cho, Sungwoo; Joshi, J.G. )

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  9. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands

    SciTech Connect

    Hirono, A.; Ishii, A.; Hirono, K.; Miwa, S.; Kere, N.; Fujii, H.

    1995-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most prevalent genetic disorders, and >100 million people are considered to have mutant genes. G6PD deficiency is frequent in the area where plasmodium falciparum infection is endemic, probably because the G6PD-deficient subjects are resistant to the parasite. Falciparum and vivax malarias have been highly endemic in the Solomon Islands, and a high frequency of G6PD deficiency has also been expected. A recent investigation showed that the frequency of G6PD deficiency in the Solomon Islands was 8.4%-14.4%. Although >80 G6PD variants from various populations have been molecularly analyzed, little is known about those in Melanesians. G6PD Maewo, which was originally found in Vanuatu, has so far been the only Melanesian variant whose structural abnormality was determined. 14 refs., 1 fig.

  10. [Attempt at characterization of 2 erythrocyte variants of glucose-6-phosphate dehydrogenase in a patient with a partial enzymatic deficit].

    PubMed

    Bansard-Desmidt, N

    1975-09-01

    The electrophoresis shows, in red blood cells of a North African man affected by a glucose-6-phosphate dehydrogenase deficiency, the presence of two enzymes differing by their electrophoretic mobilities: one of them presents in the same mobility as variant Gd (+) B, the other being faster. After partial purification of the enzymes by ionic exchange chromatography on cellex D BIO-RAD, the preparation obtained shows some kinetic abnormalities: an increased value of 2-deoxy-glucose-6-phosphate utilisation and a non linear plot of 1/v versus 1/s, inadequate for Km determination. Assuming that our preparation contains two enzymes differing by their affinities for glucose-6-phosphate, were carried out a study of their Michaelis constants for glucose-6-phosphate by a method based on the densitometric determination of colored spots corresponding to these two variants after electrophoretic separation on cellogel strips. One of these variants is similar to Gd (+) B, the other being characterised by increased values of: electrophoretic mobility (+ 110%), Km for glucose-6-hosphate (194 +/- 38 muM, normal range being 55 to 70 muM), utilisation coefficient of 2-deoxy-glucose-6-phosphate.

  11. Excessive fluoride consumption increases haematological alteration in subjects with iron deficiency, thalassaemia, and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.

    PubMed

    Pornprasert, Sakorn; Wanachantararak, Phenphichar; Kantawong, Fahsai; Chamnanprai, Supoj; Kongpan, Chatpat; Pienthai, Nattasit; Yanola, Jintana; Duangmano, Suwit; Prasannarong, Mujalin

    2016-06-18

    Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P < 0.001) higher levels of mean fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.

  12. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  13. Inhibitory effect of a fava bean component on the in vitro development of Plasmodium falciparum in normal and glucose-6-phosphate dehydrogenase deficient erythrocytes.

    PubMed

    Golenser, J; Miller, J; Spira, D T; Navok, T; Chevion, M

    1983-03-01

    We examined the hypothesis that G-6-PD deficiency associated with fava bean ingestion confers resistance to malaria by studying the in vitro interactions between malaria parasites (Plasmodium falciparum), human erythrocytes with varying degrees of G-6-PD deficiency, and isouramil (IU), a fava bean extract that is known to cause oxidant stress and hemolysis of G-6-PD-deficient erythrocytes. Untreated G-6-PD-deficient and normal erythrocytes supported the in vitro growth of P. falciparum equally well. However, after pretreatment with IU, G-6-PD-deficient erythrocytes did not support parasite growth in vitro, whereas growth remained high in normal erythrocytes. Parasite growth was proportional to the G-6-PD activity of the IU-treated erythrocytes. In contrast, when parasitized erythrocytes were exposed to IU, parasites even in normal erythrocytes were destroyed. Ring forms were much less sensitive than late trophozoites and schizonts. The results suggest that there are two modes by which IU affects the development of P. falciparum and demonstrate in vitro that G-6-PD deficiency confers resistance against malaria under conditions of fava-bean-associated oxidant stress.

  14. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes – Role of Redox Stress and Band 3 Modifications

    PubMed Central

    Arese, Paolo; Gallo, Valentina; Pantaleo, Antonella; Turrini, Franco

    2012-01-01

    Summary G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs. PMID:23801924

  15. Chronic nonspherocytic hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency: report of two families with novel mutations causing G6PD Bangkok and G6PD Bangkok Noi.

    PubMed

    Tanphaichitr, Voravarn S; Hirono, Akira; Pung-amritt, Parichat; Treesucon, Ajjima; Wanachiwanawin, Wanchai

    2011-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymopathies worldwide. Mostly G6PD deficient cases are asymptomatic though they may have the risk of neonatal jaundice (NNJ) and acute intravascular hemolysis during oxidative stress. Chronic nonspherocytic hemolytic anemia (CNSHA) due to G6PD deficiency is rare. In Thailand, one case was reported 40 years ago and by biochemical study this G6PD was reported to be a new variant G6PD Bangkok. We, herein, report two families with CNSHA due to G6PD deficiency. In the first family, we have been following up the clinical course of the patient with G6PD Bangkok. In addition to chronic hemolysis, he had three acute hemolytic episodes requiring blood transfusions during childhood period. Multiple gallstones were detected at the age of 27. His two daughters who inherited G6PD Bangkok from him and G6PD Vanua Lava from his wife are asymptomatic. Both of them had NNJ and persistent evidences of compensated hemolysis. Molecular analysis revealed a novel missense mutation 825 G→C predicting 275 Lys→Asn causing G6PD Bangkok. In the second family, two male siblings are affected. They had NNJ and several hemolytic episodes which required blood transfusions. On follow-up they have been diagnosed with chronic hemolysis as evidenced by reticulocytosis and indirect hyperbilirubinemia. Molecular analysis revealed combined missense mutations in exons 12 and 13. The first mutation was 1376 G→T predicting 459 Arg→Leu (known as G6PD Canton) and the second one was 1502 T→G predicting 501 Phe→Cys. We designated the resulting novel G6PD variant, G6PD Bangkok Noi.

  16. Noninferiority of glucose-6-phosphate dehydrogenase deficiency diagnosis by a point-of-care rapid test vs the laboratory fluorescent spot test demonstrated by copper inhibition in normal human red blood cells.

    PubMed

    Baird, J Kevin; Dewi, Mewahyu; Subekti, Decy; Elyazar, Iqbal; Satyagraha, Ari W

    2015-06-01

    Tens of millions of patients diagnosed with vivax malaria cannot safely receive primaquine therapy against repeated attacks caused by activation of dormant liver stages called hypnozoites. Most of these patients lack access to screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency, a highly prevalent disorder causing serious acute hemolytic anemia with primaquine therapy. We optimized CuCl inhibition of G6PD in normal red blood cells (RBCs) to assess G6PD diagnostic technologies suited to point of care in the impoverished rural tropics. The most widely applied technology for G6PD screening-the fluorescent spot test (FST)-is impractical in that setting. We evaluated a new point-of-care G6PD screening kit (CareStart G6PD, CSG) against FST using graded CuCl treatments to simulate variable hemizygous states, and varying proportions of CuCl-treated RBC suspensions to simulate variable heterozygous states of G6PD deficiency. In experiments double-blinded to CuCl treatment, technicians reading FST and CSG test (n = 269) classified results as positive or negative for deficiency. At G6PD activity ≤40% of normal (n = 112), CSG test was not inferior to FST in detecting G6PD deficiency (P = 0.003), with 96% vs 90% (P = 0.19) sensitivity and 75% and 87% (P = 0.01) specificity, respectively. The CSG test costs less, requires no specialized equipment, laboratory skills, or cold chain for successful application, and performs as well as the FST standard of care for G6PD screening. Such a device may vastly expand access to primaquine therapy and aid in mitigating the very substantial burden of morbidity and mortality imposed by the hypnozoite reservoir of vivax malaria.

  17. Acquired hemoglobin variants and exposure to glucose-6-phosphate dehydrogenase deficient red blood cell units during exchange transfusion for sickle cell disease in a patient requiring antigen-matched blood.

    PubMed

    Raciti, Patricia M; Francis, Richard O; Spitalnik, Patrice F; Schwartz, Joseph; Jhang, Jeffrey S

    2013-08-01

    Red blood cell exchange (RBCEx) is frequently used in the management of patients with sickle cell disease (SCD) and acute chest syndrome or stroke, or to maintain target hemoglobin S (HbS) levels. In these settings, RBCEx is a category I or II recommendation according to guidelines on the use of therapeutic apheresis published by the American Society for Apheresis. Matching donor red blood cells (RBCs) to recipient phenotypes (e.g., C, E, K-antigen negative) can decrease the risk of alloimmunization in patients with multi-transfused SCD. However, this may select for donors with a higher prevalence of RBC disorders for which screening is not performed. This report describes a patient with SCD treated with RBCEx using five units negative for C, E, K, Fya, Fyb (prospectively matched), four of which were from donors with hemoglobin variants and/or glucose-6-phosphate dehydrogenase (G6PD) deficiency. Pre-RBCEx HbS quantification by high performance liquid chromatography (HPLC) demonstrated 49.3% HbS and 2.8% hemoglobin C, presumably from transfusion of a hemoglobin C-containing RBC unit during a previous RBCEx. Post-RBCEx HPLC showed the appearance of hemoglobin G-Philadelphia. Two units were G6PD-deficient. The patient did well, but the consequences of transfusing RBC units that are G6PD-deficient and contain hemoglobin variants are unknown. Additional studies are needed to investigate effects on storage, in-vivo RBC recovery and survival, and physiological effects following transfusion of these units. Post-RBCEx HPLC can monitor RBCEx efficiency and detect the presence of abnormal transfused units.

  18. Molecular Analysis of the Gene Encoding F420-Dependent Glucose-6-Phosphate Dehydrogenase from Mycobacterium smegmatis

    PubMed Central

    Purwantini, Endang; Daniels, Lacy

    1998-01-01

    The gene fgd, which codes for F420-dependent glucose-6-phosphate dehydrogenase (FGD), was cloned from Mycobacterium smegmatis, and its sequence was determined and analyzed. A homolog of FGD which has a very high similarity to the M. smegmatis FGD-derived amino acid sequence was identified in Mycobacterium tuberculosis. FGD showed significant homology with F420-dependent N5,N10-methylene-tetrahydromethanopterin reductase (MER) from methanogenic archaea and with several hypothetical proteins from M. tuberculosis and Archaeoglobus fulgidus, but FGD showed no significant homology with NADP-dependent glucose-6-phosphate dehydrogenases. Multiple alignment of FGD and MER proteins revealed four conserved consensus sequences. Multiple alignment of FGD with the hypothetical proteins also revealed portions of the same conserved sequences. Moderately high levels of FGD were expressed in Escherichia coli BL21(DE3) carrying fgd in pBluescript. PMID:9555906

  19. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  20. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-12-09

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.

  1. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  2. Effects of some drugs on human erythrocyte glucose 6-phosphate dehydrogenase: an in vitro study.

    PubMed

    Akkemik, Ebru; Budak, Harun; Ciftci, Mehmet

    2010-12-01

    Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of human have been investigated. For this purpose, at the beginning, erythrocyte glucose 6-phosphate dehydrogenase was purified 2256 times in a yield of 44.22% by using ammonium sulphate precipitation and 2', 5'-ADP Sepharose 4B affinity gel. Temperature of +4°C was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. This method was utilized for all kinetic studies. Ketotifen, dacarbazine, thiocolchicoside, meloxicam, methotrexate, furosemide, olanzapine, methylprednizolone acetate, paricalcitol, ritodrine hydrochloride, and gadobenate-dimeglumine were used as drugs. All the drugs indicated the inhibitory effects on the enzyme. Ki constants for glucose 6-phosphate dehydrogenase were found by means of Lineweaver-Burk graphs. While methylprednizolone acetate showed competitive inhibition, the others displayed non-competitive inhibition. In addition, IC(50) values of the drugs were determined by plotting Activity% vs [I].

  3. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  4. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

    PubMed Central

    Sarker, Suprovath Kumar; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh. PMID:27880809

  5. Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals.

    PubMed

    Sarker, Suprovath Kumar; Islam, Md Tarikul; Eckhoff, Grace; Hossain, Mohammad Amir; Qadri, Syeda Kashfi; Muraduzzaman, A K M; Bhuyan, Golam Sarower; Shahidullah, Mohammod; Mannan, Mohammad Abdul; Tahura, Sarabon; Hussain, Manzoor; Akhter, Shahida; Nahar, Nazmun; Shirin, Tahmina; Qadri, Firdausi; Mannoor, Kaiissar

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

  6. Differential behaviour of glucose 6-phosphate dehydrogenase in two morphological forms of Trypanosoma cruzi.

    PubMed

    Lupiañez, J A; Adroher, F J; Vargas, A M; Osuna, A

    1987-01-01

    1. Glucose 6-phosphate dehydrogenase activity (EC 1.1.1.49) of two morphological forms of Trypanosoma cruzi, epimastigotes and metacyclics, are reported. 2. The kinetic behaviour and some of the kinetic parameters of the enzyme in both forms were studied. The enzymes showed a simple Michaelis-Menten kinetic. 3. The activity in epimastigote forms was alway higher than the metacyclic ones. At subsaturating concentrations of substrate was almost 10-fold higher, whereas at saturating concentrations was about 2-fold higher. 4. In epimastigote forms the specific activity and Km values, at pH 7.5 and 37 degrees C, was found to be 142 mUnits x mg-1 of protein and 0.23 mM, respectively. 5. In the same conditions, the specific activity and Km values in metacyclic forms was 75 mUnits x mg-1 of protein and 1.06 mM, respectively. 6. A possible role in the carbohydrate metabolism of glucose 6-phosphate dehydrogenase in both forms of Trypanosoma cruzi is discussed.

  7. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis.

    PubMed Central

    Purwantini, E; Daniels, L

    1996-01-01

    A variety of Mycobacterium species contained the 5-deazaflavin coenzyme known as F420. Mycobacterium smegmatis was found to have a glucose-6-phosphate dehydrogenase that was dependent on F420 as an electron acceptor and which did not utilize NAD or NADP. The enzyme was purified by ammonium sulfate fractionation, phenyl-Sepharose column chromatography, F420-ether-linked aminohexyl-Sepharose 4B affinity chromatography, and quaternary aminoethyl-Sephadex column chromatography, and the sequence of the first 26 N-terminal amino acids has been determined. The response of enzyme activity to a range of pHs revealed a two-peak pattern, with maxima at pH 5.5 and 8.0. The apparent Km values for F420 and glucose-6-phosphate were, respectively, 0.004 and 1.6 mM. The apparent native and subunit molecular masses were 78,000 and approximately 40,000 Da, respectively. PMID:8631674

  8. Glucose-6-Phosphate Dehydrogenase Protects Escherichia coli from Tellurite-Mediated Oxidative Stress

    PubMed Central

    Sandoval, Juan M.; Arenas, Felipe A.; Vásquez, Claudio C.

    2011-01-01

    The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH), which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS) generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P), suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH), better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress. PMID:21984934

  9. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity

    SciTech Connect

    Snoep, J.L. |; Arfman, N.; Yomano, L.P.; Ingram, L.O.; Westerhoff, H.V.; Conway, T.

    1996-07-20

    Alycolytic genes in Zymomonas mobilis are highly expressed and constitute half of the cytoplasmic protein. The first four genes (glf, zwf, edd, glk) in this pathway form an operon encoding a glucose permease, glucose 6-phosphate dehydrogenase (G6-P dehydrogenase), 6-phosphogluconate dehydratase, and glucokinase, respectively. Each gene was overexpressed from a tac promoter to investigate the control of glycolysis during the early stages of batch fermentation when flux (qCO{sub 2}) is highest. Almost half of flux control appears to reside with G6-P dehydrogenase (C{sub G6-P dehydrogenase}{sup J} = 0.4). Although Z. mobilis exhibits one of the highest rates of glycolysis known, recombinants with elevated G6-P dehydrogenase had a 10% to 13% higher glycolytic flux than the native organism. A small increase in flux was also observed for recombinants expressing glf. Results obtained did not allow a critical evaluation of glucokinase and this enzyme may also represent an important control point. 6-Phosphogluconate dehydratase appears to be saturating at native levels. With constructs containing the full operon, growth rate and flux were both reduced, complicating interpretations. However, results obtained were also consistent with G6-P dehydrogenase as a primary site of control. Flux was 17% higher in operon constructs which exhibited a 17% increase in G6-P dehydrogenase specific activity, relative to the average of other operon constructs which contain a frameshift mutation in zwf.

  10. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    PubMed Central

    Wang, Xiao-Tao; Engel, Paul C

    2009-01-01

    Background Human glucose 6-phosphate dehydrogenase (G6PD), active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP), providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with unaltered properties, paving the

  11. Glutathion peroxidase and glucose-6-phosphate dehydrogenase activities in bovine blood and liver.

    PubMed

    Abd Ellah, Mahmoud Rushdi; Niishimori, Kazuhiro; Goryo, Masanobu; Okada, Keiji; Yasuda, Jun

    2004-10-01

    A total of 46 cattle, including 25 as control, 16 with glycogen degeneration and 5 with severe fatty degeneration were studied. Whole blood and liver tissue specimens were used to measure glutathione peroxidase (GSH-Px) and Glucose-6-Phosphate Dehydrogenase (G6PD) activities. The present study determined the value of these parameters in diagnosing glycogen and fatty degeneration in cattle from the point of the status of antioxidation and lipid peroxidation. The results showed a significant decrease in hepatic GSH-Px activity and a significant increase in hepatic G6PD activity in cases of fatty degeneration. On the other hand, there were no significant changes in erythrocytic and hepatic GSH-Px and G6PD activities in cases of glycogen degeneration. The results indicated lipoperoxidation process in the liver tissues increased in cases of fatty degeneration. Therefore, supplying animals suffering from fatty liver with sufficient quantities of nutrient antioxidants may be valuable when treatment is considered.

  12. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  13. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes.

    PubMed Central

    Gartler, S M; Hornung, S K; Motulsky, A G

    1981-01-01

    The activities of cystathionine synthase [L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22], uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8], and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) have been measured in phytohemagglutinin-stimulated lymphocytes of young and old human subjects. A significant decrease in activity with age was observed for cystathionine synthase and uroporphyrinogen I synthase but not for glucose-6-phosphate dehydrogenase. These changes could not be related to declining phytohemagglutinin response with aging. Age-related decreases in activity of some enzymes may be relevant for an understanding of the biology of aging. False assignment of heterozygosity, and even homozygosity, for certain genetic disorders, such as homocystinuria, may result when low enzyme levels are detected in the lymphocytes of older people. PMID:6940198

  14. Multiple Independent Fusions of Glucose-6-Phosphate Dehydrogenase with Enzymes in the Pentose Phosphate Pathway

    PubMed Central

    Stover, Nicholas A.; Dixon, Thomas A.; Cavalcanti, Andre R. O.

    2011-01-01

    Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms. PMID:21829610

  15. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots.

    PubMed

    Castiglia, Daniela; Cardi, Manuela; Landi, Simone; Cafasso, Donata; Esposito, Sergio

    2015-08-01

    In plant cells, glucose 6 phosphate dehydrogenase (G6PDH-EC 1.1.1.49) regulates the oxidative pentose phosphate pathway (OPPP), a metabolic route involved in the production of NADPH for various biosynthetic processes and stress response. In this study, we report the overexpression of a cytosolic G6PDH isoform from barley (Hordeum vulgare) roots in bacteria, and the biochemical characterization of the purified recombinant enzyme (HvCy-G6PDH). A full-length cDNA coding for a cytosolic isoform of G6PDH was isolated, and the sequence was cloned into pET3d vector; the protein was overexpressed in Escherichia coli BL21 (DE3) and purified by anion exchange and affinity chromatography. The kinetic properties were calculated: the recombinant HvCy-G6PDH showed KMs and KINADPH comparable to those observed for the enzyme purified from barley roots; moreover, the analysis of NADPH inhibition suggested a competitive mechanism. Therefore, this enzyme could be utilised for the structural and regulatory characterization of this isoform in higher plants.

  16. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-05-11

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress.

  17. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse

    SciTech Connect

    Hendriksen, P.J.M. |; Hoogerbrugge, J.W.; Baarends, W.M.

    1997-05-01

    The X-chromosomal gene glucose-6-phosphate dehydrogenase (G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designated G6pd-2, encoding a G6PD isoenzyme. G6pd-2 does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encoded G6pd gene is not transcribed. Expression of the G6pd-2 sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence of G6pd-2-encoded isoenzyme in these cell types. G6pd-2 is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis. 62 refs., 7 figs.

  18. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  19. New PCR Assay Using Glucose-6-Phosphate Dehydrogenase for Identification of Leishmania Species

    PubMed Central

    Castilho, Tiago M.; Shaw, Jeffrey Jon; Floeter-Winter, Lucile M.

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is one of the multilocus enzymes used to identify Leishmania by zymodeme analysis. The polymorphic pattern revealed by partial characterization of the gene encoding G6PD generated molecular markers useful in the identification of different Leishmania species by PCR. Initially degenerate oligonucleotides were designed on the basis of data on the conserved active center described for other organisms. Primers for reverse transcription-PCR experiments, designed from the nucleotide sequence of the PCR product, enabled us to characterize the 5′ and 3′ untranslated regions and the G6PD open reading frame of reference strains of Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) amazonensis. Sets of paired primers were designed and used in PCR assays to discriminate between the parasites responsible for tegumentar leishmaniasis of the subgenera Leishmania (Leishmania) and Leishmania (Viannia) and to distinguish L. (Viannia) braziliensis from others organisms of the subgenus Leishmania (Viannia). No amplification products were detected for the DNA of Crithidia fasciculata, Trypanosoma cruzi, or Leishmania (Sauroleishmania) tarentolae or DNA from a healthy human control. The tests proved to be specific and were sensitive enough to detect parasites in human biopsy specimens. The successful discrimination of L. (Viannia) braziliensis from other parasites of the subgenus Leishmania (Viannia) opens the way to epidemiological studies in areas where more than one species of the subgenus Leishmania (Viannia) exist, such as Amazonia, as well as follow-up studies after chemotherapy and assessment of clinical prognoses. PMID:12574243

  20. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress.

    PubMed Central

    Ursini, M V; Parrella, A; Rosa, G; Salzano, S; Martini, G

    1997-01-01

    Recent reports have demonstrated that glucose-6-phosphate dehydrogenase (G6PD) activity in mammalian cells is necessary in order to ensure cell survival when damage is produced by reactive oxygen intermediates. In this paper we demonstrate that oxidative stress, caused by agents acting at different steps in the biochemical pathway controlling the intracellular redox status, determines the increase in G6PD-specific activity in human cell lines of different tissue origins. The intracellular level of G6PD-specific mRNA also increases, with kinetics compatible with the induction of new enzyme synthesis. We carried out experiments in which cells were exposed to oxidative stress in the presence of inhibitors of protein or RNA synthesis. These demonstrated that increased G6PD expression is mainly due to an increased rate of transcription, with a minor but significant contribution of regulatory mechanisms acting at post-transcriptional levels. These results provide new information on the defence systems that eukaryotic cells possess in order to prevent damage caused by potentially harmful oxygen derivatives. PMID:9169615

  1. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  2. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-05-21

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.

  3. Red Cell Glucose-6-Phosphate Dehydrogenase Deficiency—A Newly Recognized Cause of Neonatal Jaundice and Kernicterus in Canada

    PubMed Central

    Naiman, J. Lawrence; Kosoy, Martin H.

    1964-01-01

    Seven male newborns of Chinese, Greek and Italian origin presented with severe hemolytic jaundice due to red cell glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. In five, the hemolysis was precipitated by inhalation of mothball vapours in the home. Kernicterus was evident upon admission in six infants and was fatal in four of these. G-6-PD deficiency should be suspected as a cause of jaundice in all full-term male infants of these ethnic groups. The diagnosis can be confirmed in any hospital by the methemoglobin reduction test. In areas similar to Toronto, Canada, where these high-risk ethnic groups prevail, the following measures are recommended: (1) detection of G-6-PD deficient newborns by screening cord bloods of all infants of these ethnic groups; (2) protection of affected infants from potentially hemolytic agents such as naphthalene, certain vitamin K preparations, and sulfonamides; and (3) observation of serum bilirubin levels to assess the need for exchange transfusion for hyperbilirubinemia. ImagesFig. 1 PMID:14226101

  4. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.

    PubMed

    Nguyen, Trinh Thi My; Kitajima, Sakihito; Izawa, Shingo

    2014-09-01

    Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major biomass conversion inhibitor, also induces oxidative stress and is reduced in an NAD(P)H-dependent manner to its less toxic alcohol derivative. Therefore, the pentose phosphate pathway (PPP), through which most NADPH is generated, plays a role in tolerance to furfural. Although vanillin also induces oxidative stress and is reduced to vanillyl alcohol in a NADPH-dependent manner, the relationship between vanillin and PPP has not yet been investigated. In the present study, we examined the importance of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the rate-limiting NADPH-producing step in PPP, for yeast tolerance to vanillin. The growth of the null mutant of G6PDH gene (zwf1Δ) was delayed in the presence of vanillin, and vanillin was efficiently reduced in the culture of wild-type cells but not in the culture of zwf1Δ cells. Furthermore, zwf1Δ cells easily induced the activation of Yap1, an oxidative stress responsive transcription factor, mitochondrial fragmentation, and P-body formation with the vanillin treatment, which indicated that zwf1Δ cells were more susceptible to vanillin than wild type cells. These findings suggest the importance of G6PDH and PPP in the response of yeast to vanillin.

  5. Lowering effect of firefly squid powder on triacylglycerol content and glucose-6-phosphate dehydrogenase activity in rat liver.

    PubMed

    Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro

    2014-01-01

    Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.

  6. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  7. Cloning, expression, purification and characterization of his-tagged human glucose-6-phosphate dehydrogenase: a simplified method for protein yield.

    PubMed

    Gómez-Manzo, Saúl; Terrón-Hernández, Jessica; de la Mora-de la Mora, Ignacio; García-Torres, Itzhel; López-Velázquez, Gabriel; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2013-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.

  8. Inhibition of Glucose-6-Phosphate Dehydrogenase Could Enhance 1,4-Benzoquinone-Induced Oxidative Damage in K562 Cells

    PubMed Central

    Cao, Meng; Yang, Wenwen; Sun, Fengmei; Xu, Cheng

    2016-01-01

    Benzene is a chemical contaminant widespread in industrial and living environments. The oxidative metabolites of benzene induce toxicity involving oxidative damage. Protecting cells and cell membranes from oxidative damage, glucose-6-phosphate dehydrogenase (G6PD) maintains the reduced state of glutathione (GSH). This study aims to investigate whether the downregulation of G6PD in K562 cell line can influence the oxidative toxicity induced by 1,4-benzoquinone (BQ). G6PD was inhibited in K562 cell line transfected with the specific siRNA of G6PD gene. An empty vector was transfected in the control group. Results revealed that G6PD was significantly upregulated in the control cells and in the cells with inhibited G6PD after they were exposed to BQ. The NADPH/NADP and GSH/GSSG ratio were significantly lower in the cells with inhibited G6PD than in the control cells at the same BQ concentration. The relative reactive oxygen species (ROS) level and DNA oxidative damage were significantly increased in the cell line with inhibited G6PD. The apoptotic rate and G2 phase arrest were also significantly higher in the cells with inhibited G6PD and exposed to BQ than in the control cells. Our results suggested that G6PD inhibition could reduce GSH activity and alleviate oxidative damage. G6PD deficiency is also a possible susceptible risk factor of benzene exposure. PMID:27656260

  9. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction.

    PubMed Central

    Lee, W. T.; Levy, H. R.

    1992-01-01

    Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction. PMID:1304341

  10. A population survey of the glucose-6-phosphate dehydrogenase (G6PD) 563C>T (Mediterranean) mutation in Afghanistan.

    PubMed

    Jamornthanyawat, Natsuda; Awab, Ghulam R; Tanomsing, Naowarat; Pukrittayakamee, Sasithon; Yamin, Fazel; Dondorp, Arjen M; Day, Nicholas P J; White, Nicholas J; Woodrow, Charles J; Imwong, Mallika

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36-9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73-4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.

  11. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti.

    PubMed

    Barra, Lise; Pica, Nathalie; Gouffi, Kamila; Walker, Graham C; Blanco, Carlos; Trautwetter, Annie

    2003-12-12

    Inactivation of the zwf gene in Sinorhizobium meliloti induces an osmosensitive phenotype and the loss of osmoprotection by trehalose and sucrose, but not by ectoine and glycine betaine. This phenotype is not linked to a defect in the biosynthesis of endogenous solutes. zwf expression is induced by high osmolarity, sucrose and trehalose, but is repressed by betaine. A zwf mutant is more sensitive than its parental strain to superoxide ions, suggesting that glucose 6-phosphate dehydrogenase involvement in the osmotic response most likely results from the production of reactive oxygen species during osmotic stress.

  12. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    PubMed

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  13. Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts.

    PubMed

    Bergandi, Loredana; Aina, Valentina; Garetto, Stefano; Malavasi, Gianluca; Aldieri, Elisabetta; Laurenti, Enzo; Matera, Lina; Morterra, Claudio; Ghigo, Dario

    2010-02-12

    Bioactive glasses such as Hench's 45S5 (Bioglass) have applications to tissue engineering as well as bone repair, and the insertion of fluoride in their composition has been proposed to enhance their bioactivity. In view of a potential clinical application, we investigated whether fluoride-containing glasses exert toxic effects on human MG-63 osteoblasts, and whether and how fluoride, which is released in the cell culture medium, might play a role in such cytotoxicity. A 24h incubation with 50 microg/ml (12.5 microg/cm(2)) of fluoride-containing bioactive glasses termed HCaCaF(2) (F content: 5, 10 and 15 mol.%) caused the release of lactate dehydrogenase in the extracellular medium (index of cytotoxicity), the accumulation of intracellular malonyldialdehyde (index of lipoperoxidation), and the increase of glutathione consumption. Furthermore, fluoride-containing glasses inhibited the pentose phosphate oxidative pathway and the glucose 6-phosphate dehydrogenase activity. These effects are ascribable to the fluoride content/release of glass powders, since they were mimicked by NaF solutions and were prevented by dimethyl sulfoxide and tempol (two radical scavengers), by superoxide dismutase (a superoxide scavenger), and by glutathione (the most important intracellular antioxidant molecule), but not by apocynin (an inhibitor of NADPH oxidase). The presence of fluoride-containing glasses and NaF caused also the generation of reactive oxygen species, which was prevented by superoxide dismutase and catalase. The data suggest that fluoride released from glasses is the cause of MG-63 cell oxidative damage and is independent of NADPH oxidase activation. Our data provide a new mechanism to explain F(-) ions toxicity: fluoride could trigger, at least in part, an oxidative stress via inhibition of the pentose phosphate oxidative pathway and, in particular, through the oxidative inhibition of glucose 6-phosphate dehydrogenase.

  14. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    SciTech Connect

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  15. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  16. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    ... as some antibiotics and medications used to treat malaria). Hemolytic anemia can also occur after eating fava ... a G6PD mutation may be partially protected against malaria, an infectious disease carried by a certain type ...

  17. Regulation of Enzyme Activities in Drosophila: Genetic Variation Affecting Induction of Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in Larvae

    PubMed Central

    Cochrane, Bruce J.; Lucchesi, John C.; Laurie-Ahlberg, C. C.

    1983-01-01

    The genetic basis of modulation by dietary sucrose of the enzyme activities glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities in third instar larvae of Drosophila melanogaster was investigated, using isogenic lines derived from wild populations. Considerable genetically determined variation in response was detected among lines that differed only in their third chromosome constitution. Comparison of crossreacting material between a responding and a nonresponding line showed that the G6PD activity variation is due to changes in G6PD protein level. These differences in responses are localized in the fat body, with 300 m m sucrose in the diet resulting in a sixfold stimulation of G6PD activity and a fourfold one of 6PGD in the line showing the strongest response. In this tissue, the responses of the two enzymes are closely correlated with one another. Using recombinant lines, we obtained data that suggested the existence of more than one gene on chromosome III involved in the regulation of G6PD in the fat body, and at least one of these genes affects the level of 6PGD as well. PMID:6416921

  18. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    SciTech Connect

    Kaeda, J.S.; Bautista, J.M.; Stevens, D.

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  19. Overexpression, purification and enzymatic characterization of a recombinant plastidial glucose-6-phosphate dehydrogenase from barley (Hordeum vulgare cv. Nure) roots.

    PubMed

    Cardi, Manuela; Chibani, Kamel; Castiglia, Daniela; Cafasso, Donata; Pizzo, Elio; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2013-12-01

    In plant cells, the plastidial glucose 6-phosphate dehydrogenase (P2-G6PDH, EC 1.1.1.49) represents one of the most important sources of NADPH. However, previous studies revealed that both native and recombinant purified P2-G6PDHs show a great instability and a rapid loss of catalytic activity. Therefore it has been difficult to describe accurately the catalytic and physico-chemical properties of these isoforms. The plastidial G6PDH encoding sequence from barley roots (Hordeum vulgare cv. Nure), devoid of a long plastidial transit peptide, was expressed as recombinant protein in Escherichia coli, either untagged or with an N-terminal his-tag. After purification from both the soluble fraction and inclusion bodies, we have explored its kinetic parameters, as well as its sensitivity to reduction. The obtained results are consistent with values determined for other P2-G6PDHs previously purified from barley roots and from other land plants. Overall, these data shed light on the catalytic mechanism of plant P2-G6PDH, summarized in a proposed model in which the sequential mechanism is very similar to the mammalian cytosolic G6PDH. This study provides a rational basis to consider the recombinant barley root P2-G6PDH as a good model for further kinetic and structural studies.

  20. Determination of the inhibitory effect of green tea extract on glucose-6-phosphate dehydrogenase based on multilayer capillary enzyme microreactor.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li

    2016-08-01

    Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-)

    SciTech Connect

    Hirono, A.; Beutler, E. )

    1988-06-01

    Glucose-6-phosphate dehydrogenase A(-) is a common variant in Blacks that causes sensitivity to drug- and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3{prime} end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C{sup 33} {yields} G, G{sup 202} {yields} A, and A{sup 376} {yields} G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The findings of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein.

  2. Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Guo, Liping; Yang, Li

    2015-05-15

    In this study, we present an on-line measurement of enzyme activity and inhibition of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme using capillary electrophoresis based immobilized enzyme micro-reactor (CE-based IMER). The IMER was prepared using a two-step protocol based on electrostatic assembly. The micro-reactor exhibited good stability and reproducibility for on-line assay of G6PDH enzyme. Both the activity as well as the inhibition of the G6PDH enzyme by six inhibitors, including three metals (Cu(2+), Pb(2+), Cd(2+)), vancomycin, urea and KMnO4, were investigated using on-line assay of the CE-based IMERs. The enzyme activity and inhibition kinetic constants were measured using the IMERs which were found to be consistent with those using traditional off-line enzyme assays. The kinetic mechanism of each inhibitor was also determined. The present study demonstrates the feasibility of using CE-based IMERs for rapid and efficient on-line assay of G6PDH, an important enzyme in the pentosephosphate pathway of human metabolism.

  3. Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells.

    PubMed Central

    Di Monaco, M.; Pizzini, A.; Gatto, V.; Leonardi, L.; Gallo, M.; Brignardello, E.; Boccuzzi, G.

    1997-01-01

    Epidemiological and experimental studies suggest that dehydroepiandrosterone (DHEA) exerts a protective effect against breast cancer. It has been proposed that the non-competitive inhibition of glucose-6-phosphate dehydrogenase (G6PD) contributes to DHEA antitumor action. We evaluated the effects of DHEA on G6PD activity and on the in vitro proliferation of two human breast cancer cell lines, MCF-7 (steroid receptor positive) and MDA-MB-231 (steroid receptor negative), in a serum-free assay. DHEA inhibition of G6PD was only found to occur at concentrations above 10 microM; at these high concentrations, the growth curve was parallel to the enzyme inhibition curve in both cell lines. In contrast, at concentrations in the in vivo breast tissue concentration range, neither cell growth nor enzyme activity was inhibited. The results failed to confirm DHEA's putative anti-tumor action on breast cancer through G6PD inhibition, as the enzyme blockade only becomes apparent at pharmacological concentrations of the steroid. PMID:9052415

  4. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    SciTech Connect

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.; Adamson, J.W.

    1988-06-01

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.

  5. Autosomal factors with correlated effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster.

    PubMed

    Laurie-Ahlberg, C C; Williamson, J H; Cochrane, B J; Wilton, A N; Chasalow, F I

    1981-09-01

    Isogenic lines, in which chromosomes sampled from natural populations of C. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.--Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.--These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence.

  6. Autosomal Factors with Correlated Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Laurie-Ahlberg, C. C.; Williamson, J. H.; Cochrane, B. J.; Wilton, A. N.; Chasalow, F. I.

    1981-01-01

    Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence. PMID:6804300

  7. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2010-07-01

    Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix

  8. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  9. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-12-02

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  10. Free fatty acid inhibition of the insulin induction of glucose-6-phosphate dehydrogenase in rat hepatocyte monolayers.

    PubMed

    Salati, L M; Adkins-Finke, B; Clarke, S D

    1988-01-01

    Rat hepatocytes in monolayer culture were utilized to determine if the decrease in glucose-6-phosphate dehydrogenase (G6PD) activity resulting from the ingestion of fat can be mimicked by the addition of fatty acids to a chemically, hormonally defined medium. G6PD activity in cultured hepatocytes was induced several-fold by insulin. Dexamethasone or T3 did not amplify the insulin induction of G6PD. Glucose alone increased G6PD activity in cultured hepatocytes from fasted donors by nearly 500%. Insulin in combination with glucose induced G6PD an additional two-fold. The increase in G6PD activity caused by glucose was greater in hepatocytes isolated from 72 hr-fasted rats as compared to fed donor rats. Such a response was reminiscent of the "overshoot" phenomenon in which G6PD activity is induced well above the normal level by fasting-refeeding rats a high glucose diet. Addition of linoleate to the medium resulted in a significant suppression of insulin's ability to induce G6PD, but linoleate had no effect on the induction of G6PD activity by glucose alone. A shift to the right in the insulin-response curve for the induction of G6PD also was detected for the induction of malic enzyme and acetyl-CoA carboxylase. Arachidonate (0.25 mM) was a significantly more effective inhibitor of the insulin action than linoleate was. Apparently rat hepatocytes in monolayer culture can be utilized as a model to investigate the molecular mechanism by which fatty acids inhibit the production of lipogenic enzymes. In part, this mechanism of fatty acid inhibition involves desensitization of hepatocytes to the lipogenic action of insulin.

  11. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.

    PubMed

    Jeppsson, Marie; Johansson, Björn; Jensen, Peter Ruhdal; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2003-11-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wild-type level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate than the strain with wild-type G6PDH-activity, which suggested that the availability of intracellular NADPH correlated with tolerance towards lignocellulose-derived inhibitors. Low G6PDH-activity strains were also more sensitive to H(2)O(2) than the control strain TMB3001.

  12. Glucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea.

    PubMed

    Lama, Judeh L; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH) gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/hypoxia with the tide cycle and shows multiple metabolic and enzymatic adaptations that support anaerobiosis. This study investigated the kinetic, physical and regulatory properties of G6PDH from hepatopancreas of L. littorea to determine if the enzyme is differentially regulated in response to anoxia, thereby providing altered pentose phosphate pathway functionality under oxygen stress conditions. Several kinetic properties of G6PDH differed significantly between aerobic and 24 h anoxic conditions; compared with the aerobic state, anoxic G6PDH (assayed at pH 8) showed a 38% decrease in K m G6P and enhanced inhibition by urea, whereas in pH 6 assays K m NADP and maximal activity changed significantly between the two states. The mechanism underlying anoxia-responsive changes in enzyme properties proved to be a change in the phosphorylation state of G6PDH. This was documented with immunoblotting using an anti-phosphoserine antibody, in vitro incubations that stimulated endogenous protein kinases versus protein phosphatases and significantly changed K m G6P, and phosphorylation of the enzyme with (32)P-ATP. All these data indicated that the aerobic and anoxic forms of G6PDH were the high and low phosphate forms, respectively, and that phosphorylation state was modulated in response to selected endogenous protein kinases (PKA or PKG) and protein phosphatases (PP1 or PP2C). Anoxia-induced changes in the phosphorylation state of G6PDH may facilitate sustained or increased production of NADPH to enhance antioxidant defense during long term anaerobiosis and/or during the transition

  13. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies

    PubMed Central

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  14. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    PubMed

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  15. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production.

    PubMed

    Maleki, Susan; Mærk, Mali; Valla, Svein; Ertesvåg, Helga

    2015-05-15

    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.

  16. Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen Trypanosoma cruzi in complex with substrate

    PubMed Central

    Ortíz, Cecilia; Larrieux, Nicole; Medeiros, Andrea; Botti, Horacio; Comini, Marcelo; Buschiazzo, Alejandro

    2011-01-01

    An N-terminally truncated version of the enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi lacking the first 37 residues was crystallized both in its apo form and in a binary complex with glucose 6-­phosphate. The crystals both belonged to space group P21 and diffracted to 2.85 and 3.35 Å resolution, respectively. Self-rotation function maps were consistent with point group 222. The structure was solved by molecular replacement, confirming a tetrameric quaternary structure. PMID:22102256

  17. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    PubMed Central

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  18. Elevated glucose-6-phosphate dehydrogenase expression in the cervical cancer cases is associated with the cancerigenic event of high-risk human papillomaviruses

    PubMed Central

    Hu, Tao; Li, Ya-Shan; Chen, Bo; Chang, Ye-Fei; Liu, Guang-Cai; Hong, Ying; Chen, Hong-Lan

    2015-01-01

    The most important etiologic agent in the pathogenesis of cervical cancers (CCs) is human papillomavirus (HPV), while the mechanisms underlying are still not well known. Glucose-6-phosphate dehydrogenase (G6PD) is reported to elevate in various tumor cells. However, no available references elucidated the correlation between the levels of G6PD and HPV-infected CC until now. In the present study, we explored the possible role of G6PD in the pathology of CC induced by HPV infection. Totally 48 patients with HPV + CC and another 63 healthy women enrolled in the clinical were employed in the present study. Overall, prevalence of cervical infection with high-risk-HPV (HR-HPV) type examined was HPV-16, followed by HPV-18. The expressions of G6PD in CC samples were also detected by immunohistochemistry (IHC), qRT-PCR, and Western blot. Regression analysis showed elevated G6PD level was positively correlated with the CC development in 30–40 aged patients with HR-HPV-16/18 infection. The HPV16 + Siha, HPV18 + Hela, and HPV-C33A cell lines were employed and transfected with G6PD deficient vectors developed in vitro. MTT and flow cytometry were also employed to determine the survival and apoptosis of CC cells after G6PD expressional inhibition. Our data revealed that G6PD down-regulation induced poor proliferation and more apoptosis of HPV18 + Hela cells, when compared with that of HPV16 + Siha and HPV-C33A cells. These findings suggest that G6PD expressions in the HR-HPV + human CC tissues and cell lines play an important role in tumor growth and proliferation. PMID:25616277

  19. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia.

    PubMed Central

    Jonas, S. K.; Benedetto, C.; Flatman, A.; Hammond, R. H.; Micheletti, L.; Riley, C.; Riley, P. A.; Spargo, D. J.; Zonca, M.; Slater, T. F.

    1992-01-01

    The activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase have been measured in squamous epithelial cells of the uterine cervix from normal patients and cases of cervical intraepithelial neoplasia (CIN). A biochemical cycling method, which uses only simple equipment and is suited to routine use and to automation, was applied to cells separated by gradient centrifugation. In addition, cells were examined cytochemically, and the intensity of staining in the cytoplasm of single whole cells was measured using computerised microcytospectrophotometry. Twenty per cent of cells in samples from normal patients (n=61) showed staining intensities above an extinction of 0.15 at 540 nm, compared to 71% of cases of CIN 1 (n=14), 91% of cases of CIN 2 (n=11) and 67% of cases of CIN 3 (n=15). The cytochemical data do not allow definitive distinctions to be made between different grades of CIN whereas the biochemical assay applied to cell lysates shows convincing differences between normal samples and cases of CIN. There are no false negatives for CIN 3 (n=14) and CIN 2 (n=10) and 11% false negatives for CIN 1 (n=9) and 14% of false positives for normal cases (n=21). The results of this preliminary study with reference to automation are discussed [corrected]. Images Figure 1 PMID:1637668

  20. What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase.

    PubMed

    Norris, Matthew G S; Malys, Naglis

    2011-02-18

    Enzyme kinetic parameters for rate equations are vital in metabolic network simulation, a major part of systems biology research efforts. Measurements of Michaelis-Menten kinetic parameters Km and Kcat have been performed for enzymes glucose-6-phosphate dehydrogenase (G6P DH) under crowded conditions using molecular crowding agents bovine serum albumin (BSA) and polyethylene glycol (PEG) of 8000 Da molecular weight. An increase in Kcat was observed at very low concentrations of crowding agent, and also at high crowder concentrations when the experiment was performed at 45 °C with PEG. The observed pattern in Kcat for G6P DH at high crowder concentrations has been explained via modelling using excluded volume theory. An increase in rate was observed at 45 °C for G6P DH versus 30 °C; this has been modelled via the Arrhenius equation.

  1. Discovery and characterization of an F420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1.

    PubMed

    Nguyen, Quoc-Thai; Trinco, Gianluca; Binda, Claudia; Mattevi, Andrea; Fraaije, Marco W

    2017-04-01

    Cofactor F420, a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F420-dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F420-dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F420 + glucose-6-phosphate → F420H2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F420 cofactor required for numerous F420H2-dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F420-dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F420-dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F420H2-dependent reductases in industry and bioremediation.

  2. Pyruvate kinase deficiency

    MedlinePlus

    ... the second most common cause, after glucose-6-phosphate dehydrogenase (G6PD) deficiency . PKD is found in people ... Read More Anemia Autosomal recessive Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemolytic anemia Review Date 10/27/ ...

  3. Involvement of glucose-6-phosphate dehydrogenase in reduced glutathione maintenance and hydrogen peroxide signal under salt stress.

    PubMed

    Wang, Xiaomin; Ma, Yuanyuan; Huang, Chenghong; Li, Jisheng; Wan, Qi; Bi, Yurong

    2008-06-01

    Cellular redox homeostasis is essential for plant growth, development as well as for the resistance to biotic and abiotic stresses, which is governed by the complex network of prooxidant and antioxidant systems. Recently, new evidence has been published that NADPH, produced by glucose-6-phosephate dehydrogenase enzyme (G6PDH), not only acted as the reducing potential for the output of reduced glutathione (GSH), but was involved in the activity of plasma membrane (PM) NADPH oxidase under salt stress, which resulted in hydrogen peroxide (H(2)O(2)) accumulation. H(2)O(2) acts as a signal in regulating G6PDH activity and expression, and the activities of the enzymes in the glutathione cycle as well, through which the ability of GSH regeneration was increased under salt stress. Thus, G6PDH plays a critical role in maintaining cellular GSH levels under long-term salt stress. In this addendum, a hypothetical model for the roles of G6PDH in modulating the intracellular redox homeostasis under salt stress is presented.

  4. Overcompensation in Response to Herbivory in Arabidopsis thaliana: The Role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway

    PubMed Central

    Siddappaji, Madhura H.; Scholes, Daniel R.; Bohn, Martin; Paige, Ken N.

    2013-01-01

    That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (i.e., plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of Arabidopsis thaliana, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensating ecotype Columbia. From the QTL/microarray screen we uncovered one gene that plays a significant role in overcompensation: glucose-6-phosphate-1-dehydrogenase (G6PDH1). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of G6PDH1 verify its role in compensation. G6PDH1 is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression. PMID:23934891

  5. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia.

    PubMed

    Thangarajh, Mathula; Yang, Genyan; Fuchs, Dana; Ponisio, Maria R; McKinstry, Robert C; Jaju, Alok; Noetzel, Michael J; Casella, James F; Barron-Casella, Emily; Hooper, W Craig; Boulet, Sheree L; Bean, Christopher J; Pyle, Meredith E; Payne, Amanda B; Driggers, Jennifer; Trau, Heidi A; Vendt, Bruce A; Rodeghier, Mark; DeBaun, Michael R

    2012-11-01

    Silent cerebral infarct (SCI) is the most commonly recognized cause of neurological injury in sickle cell anaemia (SCA). We tested the hypothesis that magnetic resonance angiography (MRA)-defined vasculopathy is associated with SCI. Furthermore, we examined genetic variations in glucose-6-phosphate dehydrogenase (G6PD) and HBA (α-globin) genes to determine their association with intracranial vasculopathy in children with SCA. Magnetic resonance imaging (MRI) of the brain and MRA of the cerebral vasculature were available in 516 paediatric patients with SCA, enrolled in the Silent Infarct Transfusion (SIT) Trial. All patients were screened for G6PD mutations and HBA deletions. SCI were present in 41·5% (214 of 516) of SIT Trial children. The frequency of intracranial vasculopathy with and without SCI was 15·9% and 6·3%, respectively (P < 0·001). Using a multivariable logistic regression model, only the presence of a SCI was associated with increased odds of vasculopathy (P = 0·0007, odds ratio (OR) 2·84; 95% Confidence Interval (CI) = 1·55-5·21). Among male children with SCA, G6PD status was associated with vasculopathy (P = 0·04, OR 2·78; 95% CI = 1·04-7·42), while no significant association was noted for HBA deletions. Intracranial vasculopathy was observed in a minority of children with SCA, and when present, was associated with G6PD status in males and SCI.

  6. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.

    PubMed

    Lee, Won-Heong; Park, Jin-Byung; Park, Kyungmoon; Kim, Myoung-Dong; Seo, Jin-Ho

    2007-08-01

    Whole-cell conversion of cyclohexanone to epsilon-caprolactone was attempted by recombinant Escherichia coli BL21(DE3) expressing cyclohexanone monooxygenase (CHMO) of Acinetobacter calcoaceticus NCIMB 9871. High concentrations of cyclohexanone and epsilon-caprolactone reduced CHMO-mediated bioconversion of cyclohexanone to epsilon-caprolactone in the resting recombinant E. coli cells. Metabolically active cells were employed by adopting a fed-batch culture to improve the production of epsilon-caprolactone from cyclohexanone. A glucose-limited fed-batch Baeyer-Villiger oxidation where a cyclohexanone level was maintained less than 6 g/l resulted in a maximum epsilon-caprolactone concentration of 11.0 g/l. The maximum epsilon-caprolactone concentration was improved further to 15.3 g/l by coexpression of glucose-6-phosphate dehydrogenase, an NADPH-generating enzyme encoded by the zwf gene which corresponded to a 39% enhancement in epsilon-caprolactone concentration compared with the control experiment performed under the same conditions.

  7. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma

    PubMed Central

    Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-01-01

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target. PMID:25945836

  8. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought.

    PubMed

    Landi, Simone; Nurcato, Roberta; De Lillo, Alessia; Lentini, Marco; Grillo, Stefania; Esposito, Sergio

    2016-08-01

    The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity.

  9. Avoiding Buffer Interference in ITC Experiments: A Case Study from the Analysis of Entropy-Driven Reactions of Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Bianconi, M Lucia

    2016-01-01

    Isothermal titration calorimetry (ITC) is a label-free technique that allows the direct determination of the heat absorbed or released in a reaction. Frequently used to determining binding parameters in biomolecular interactions, it is very useful to address enzyme-catalyzed reactions as both kinetic and thermodynamic parameters can be obtained. Since calorimetry measures the total heat effects of a reaction, it is important to consider the contribution of the heat of protonation/deprotonation that is possibly taking place. Here, we show a case study of the reaction catalyzed by the glucose-6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides. This enzyme is able to use either NAD(+) or NADP(+) as a cofactor. The reactions were done in five buffers of different enthalpy of protonation. Depending on the buffer used, the observed calorimetric enthalpy (ΔH(cal)) of the reaction varied from -22.93 kJ/mol (Tris) to 19.37 kJ/mol (phosphate) for the NADP(+)-linked reaction, and -11.67 kJ/mol (Tris) to 7.32 kcal/mol or 30.63 kJ/mol (phosphate) for the NAD(+) reaction. We will use this system as an example of how to extract proton-independent reaction enthalpies from kinetic data to ensure that the reported accurately represent the intrinsic heat of reaction.

  10. Exposure to chrysotile asbestos causes carbonylation of glucose 6-phosphate dehydrogenase through a reaction with lipid peroxidation products in human lung epithelial cells.

    PubMed

    Ogasawara, Yuki; Ishii, Kazuyuki

    2010-05-19

    Exposure to asbestos is known to lead to a reduction in glucose 6-phosphate dehydrogenase (G6PDH) activity and to cause oxidative damage to cells. In the present study, we exposed the human lung carcinoma cell line A549 to chrysotile. We observed an increase in the production of thiobarbituric acid-reactive substances (TBARS, the breakdown products of lipid peroxide) along with a significant decrease in G6PDH activity. Alternatively, when chrysotile was added directly to the cell extract obtained by removing the cell membrane, no loss of G6PDH activity was observed. To elucidate the mechanism of G6PDH inactivation due to exposure to chrysotile, we focused on the TBARS responsible for protein modification via carbonylation. When malondialdehyde or 4-hydroxy-2-nonenal was added to a membrane-free A549 cell extract, G6PDH activity was reduced markedly. However, when t-butylhydroperoxide was added to the extract, there was no significant decrease in G6PDH activity. Western blot analysis and immunoprecipitation of the carbonylated proteins in the A549 cell lysate that was prepared after exposure to chrysotile demonstrated that G6PDH had been carbonylated. Our findings indicate that the decrease in G6PDH activity that occurs after exposure of the cultured cells to chrysotile results from the carbonylation of G6PDH by TBARS.

  11. Effects of dehydroepiandrosterone on obesity and glucose-6-phosphate dehydrogenase activity in the lethal yellow mouse (strain 129/Sv-Ay/Aw).

    PubMed

    Granholm, N H; Staber, L D; Wilkin, P J

    1987-04-01

    We investigated the anti-obesity effects of the adrenal androgen, dehydroepiandrosterone (DHEA), on genetically predisposed obese lethal yellow mice (Ay/Aw). Secondly, we tested the hypothesis that DHEA promotes its anti-obesity effects by decreasing the activity of glucose-6-phosphate dehydrogenase (G6PDH). We subjected four genotype-sex combinations of yellow and agouti (control) mice to four dietary treatments and determined weight changes, food consumption, and G6PDH activity. Although G6PDH activities of yellow mice were considerably decreased in the 0.4% DHEA treatment group, they were elevated in the 0.0 and 0.1% DHEA treatment groups. In contrast, G6PDH activities of DHEA-treated control agouti mice remained relatively constant. These studies confirm that DHEA prevents the Ay gene from promoting excess fat deposition via some mechanism(s) other than reduced dietary intake. However, the overall absence of agreement between weight change (gain or loss) and G6PDH activity suggests that the anti-obesity activity of DHEA is not mediated via G6PDH. Since yellow obese (Ay/Aw) mice were found to be more susceptible to DHEA's effects than their agouti (Aw/Aw) littermates, Ay appears to induce an altered metabolism in Ay/Aw mice which is more susceptible to the effects of DHEA than the normal metabolism of Aw/Aw mice.

  12. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.

    PubMed

    Lucarelli, Giuseppe; Galleggiante, Vanessa; Rutigliano, Monica; Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-05-30

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target.

  13. Starvation actively inhibits splicing of glucose-6-phosphate dehydrogenase mRNA via a bifunctional ESE/ESS element bound by hnRNP K.

    PubMed

    Cyphert, T J; Suchanek, A L; Griffith, B N; Salati, L M

    2013-09-01

    Regulated expression of glucose-6-phosphate dehydrogenase (G6PD) is due to changes in the rate of pre-mRNA splicing and not changes in its transcription. Starvation alters pre-mRNA splicing by decreasing the rate of intron removal, leading to intron retention and a decrease in the accumulation of mature mRNA. A regulatory element within exon 12 of G6PD pre-mRNA controls splicing efficiency. Starvation caused an increase in the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) K protein and this increase coincided with the increase in the binding of hnRNP K to the regulatory element and a decrease in the expression of G6PD mRNA. HnRNP K bound to two C-rich motifs forming an ESS within exon 12. Overexpression of hnRNP K decreased the splicing and expression of G6PD mRNA, while siRNA-mediated depletion of hnRNP K caused an increase in the splicing and expression of G6PD mRNA. Binding of hnRNP K to the regulatory element was enhanced in vivo by starvation coinciding with a decrease in G6PD mRNA. HnRNP K binding to the C-rich motifs blocked binding of serine-arginine rich, splicing factor 3 (SRSF3), a splicing enhancer. Thus hnRNP K is a nutrient regulated splicing factor responsible for the inhibition of the splicing of G6PD during starvation.

  14. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania.

    PubMed

    Cox, Sharon E; Makani, Julie; Soka, Deogratias; L'Esperence, Veline S; Kija, Edward; Dominguez-Salas, Paula; Newton, Charles R J; Birch, Anthony A; Prentice, Andrew M; Kirkham, Fenella J

    2014-06-01

    Transcranial Doppler ultrasonography measures cerebral blood flow velocity (CBFv) of basal intracranial vessels and is used clinically to detect stroke risk in children with sickle cell anaemia (SCA). Co-inheritance in SCA of alpha-thalassaemia and glucose-6-phosphate dehydrogenase (G6PD) polymorphisms is reported to associate with high CBFv and/or risk of stroke. The effect of a common functional polymorphism of haptoglobin (HP) is unknown. We investigated the effect of co-inheritance of these polymorphisms on CBFv in 601 stroke-free Tanzanian SCA patients aged <24 years. Homozygosity for alpha-thalassaemia 3·7 deletion was significantly associated with reduced mean CBFv compared to wild-type (β-coefficient -16·1 cm/s, P = 0·002) adjusted for age and survey year. Inheritance of 1 or 2 alpha-thalassaemia deletions was associated with decreased risk of abnormally high CBFv, compared to published data from Kenyan healthy control children (Relative risk ratio [RRR] = 0·53 [95% confidence interval (CI):0·35-0·8] & RRR = 0·43 [95% CI:0·23-0·78]), and reduced risk of abnormally low CBFv for 1 deletion only (RRR = 0·38 [95% CI:0·17-0·83]). No effects were observed for G6PD or HP polymorphisms. This is the first report of the effects of co-inheritance of common polymorphisms, including the HP polymorphism, on CBFv in SCA patients resident in Africa and confirms the importance of alpha-thalassaemia in reducing risk of abnormal CBFv.

  15. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation.

    PubMed

    Zhao, Chengzhou; Wang, Xiaomin; Wang, Xiaoyu; Wu, Kunlun; Li, Ping; Chang, Ning; Wang, Jianfeng; Wang, Feng; Li, Jiaolong; Bi, Yurong

    2015-06-01

    In this study, a new mechanism involving glucose-6-phosphate dehydrogenase (G6PDH) and alternative pathways (AP) in salt pretreatment-induced tolerance of highland barley to UV-B radiation was investigated. When highland barley was exposed to UV-B radiation, the G6PDH activity decreased but the AP capacity increased. In contrast, under UV-B+NaCl treatment, the G6PDH activity was restored to the control level and the maximal AP capacity and antioxidant enzyme activities were reached. Glucosamine (Glucm, an inhibitor of G6PDH) obviously inhibited the G6PDH activity in highland barley under UV-B + NaCl treatment and a similar pattern was observed in reduced glutathione (GSH) and ascorbic acid (Asc) contents. Similarly, salicylhydroxamic acid (SHAM, an inhibitor of AOX) significantly reduced the AP capacity in highland barley under UV-B + NaCl treatment. The UV-B-induced hydrogen peroxide (H2O2) accumulation was also followed. Further studies indicated that non-functioning of G6PDH or AP under UV-B+NaCl + Glucm or UV-B + NaCl + SHAM treatment also caused damages in photosynthesis and stomatal movement. Western blot analysis confirmed that the alternative oxidase (AOX) and G6PDH were dependent each other in cross tolerance to UV-B and salt. The inhibition of AP or G6PDH activity resulted in a significant accumulation or reduction of NADPH content, respectively, under UV-B+NaCl treatment in highland barley leaves. Taken together, our results indicate that AP and G6PDH mutually regulate and maintain photosynthesis and stomata movement in the cross adaptation of highland barley seedlings to UV-B and salt by modulating redox homeostasis and NADPH content.

  16. Chemical modification of lysozyme, glucose 6-phosphate dehydrogenase, and bovine eye lens proteins induced by peroxyl radicals: role of oxidizable amino acid residues.

    PubMed

    Arenas, Andrea; López-Alarcón, Camilo; Kogan, Marcelo; Lissi, Eduardo; Davies, Michael J; Silva, Eduardo

    2013-01-18

    Chemical and structural alterations to lysozyme (LYSO), glucose 6-phosphate dehydrogenase (G6PD), and bovine eye lens proteins (BLP) promoted by peroxyl radicals generated by the thermal decomposition of 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) under aerobic conditions were investigated. SDS-PAGE analysis of the AAPH-treated proteins revealed the occurrence of protein aggregation, cross-linking, and fragmentation; BLP, which are naturally organized in globular assemblies, were the most affected proteins. Transmission electron microscopy (TEM) analysis of BLP shows the formation of complex protein aggregates after treatment with AAPH. These structural modifications were accompanied by the formation of protein carbonyl groups and protein hydroperoxides. The yield of carbonyls was lower than that for protein hydroperoxide generation and was unrelated to protein fragmentation. The oxidized proteins were also characterized by significant oxidation of Met, Trp, and Tyr (but not other) residues, and low levels of dityrosine. As the dityrosine yield is too low to account for the observed cross-linking, we propose that aggregation is associated with tryptophan oxidation and Trp-derived cross-links. It is also proposed that Trp oxidation products play a fundamental role in nonrandom fragmentation and carbonyl group formation particularly for LYSO and G6PD. These data point to a complex mechanism of peroxyl-radical mediated modification of proteins with monomeric (LYSO), dimeric (G6PD), and multimeric (BLP) structural organization, which not only results in oxidation of protein side chains but also gives rise to radical-mediated protein cross-links and fragmentation, with Trp species being critical intermediates.

  17. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.

  18. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    PubMed

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  19. Crystal Structures of An F420-Dependent Glucose-6-Phosphate Dehydrogenase Fgd1 Involved in the Activation of the Anti-Tb Drug Candidate Pa-824 Reveal the Basis of Coenzyme And Substrate Binding

    SciTech Connect

    Bashiri, G.; Squire, C.J.; Moreland, N.J.; Baker, E.N.

    2009-05-11

    The modified flavin coenzyme F{sub 420} is found in a restricted number of microorganisms. It is widely distributed in mycobacteria, however, where it is important in energy metabolism, and in Mycobacterium tuberculosis (Mtb) is implicated in redox processes related to non-replicating persistence. In Mtb, the F{sub 420}-dependent glucose-6-phosphate dehydrogenase FGD1 provides reduced F{sub 420} for the in vivo activation of the nitroimidazopyran prodrug PA-824, currently being developed for anti-tuberculosis therapy against both replicating and persistent bacteria. The structure of M. tuberculosis FGD1 has been determined by x-ray crystallography both in its apo state and in complex with F{sub 420} and citrate at resolutions of 1.90 and 1.95{angstrom}, respectively. The structure reveals a highly specific F{sub 420} binding mode, which is shared with several other F{sub 420}-dependent enzymes. Citrate occupies the substrate binding pocket adjacent to F{sub 420} and is shown to be a competitive inhibitor (IC{sub 50} 43 {micro}m). Modeling of the binding of the glucose 6-phosphate (G6P) substrate identifies a positively charged phosphate binding pocket and shows that G6P, like citrate, packs against the isoalloxazine moiety of F{sub 420} and helps promote a butterfly bend conformation that facilitates F{sub 420} reduction and catalysis.

  20. Glucose 6-phosphate dehydrogenase variants: a unique variant (G6PD Kobe) showed an extremely increased affinity for galactose 6-phosphate and a new variant (G6PD Sapporo) resembling G6PD Pea Ridge.

    PubMed

    Fujii, H; Miwa, S; Tani, K; Takegawa, S; Fujinami, N; Takahashi, K; Nakayama, S; Konno, M; Sato, T

    1981-01-01

    Two new glucose 6-phosphate dehydrogenase (G6PD) variants associated with chronic nonspherocytic hemolytic anemia were discovered, G6PD Kobe was found in a 16-year-old male associated with hemolytic crisis after upper respiratory infection. The enzyme activity of the variant was about 22% of that of the normal enzyme. The main enzymatic characteristics were slower than normal anodal electrophoretic mobility, high Km G6P, increased thermal-instability, an acidic pH optimum, and an extremely increased affinity for the substrate analogue, galactose 6-phosphate (Gal-6P). G6PD Sapporo was found in a 3-year-old male associated with drug-induced hemolysis. The enzyme activity was extremely low, being 3.6% of normal. In addition, this variant showed high Ki NADPH and thermal-instability. G6PD Kobe utilized the artificial substrate Gal-6P effectively as compared with the common natural substrate, glucose 6-phosphate. In G6PD Sapporo, NADPH could not exert the effect of product inhibition. The structural changes of these variants are expected to occur at the portions inducing conformational changes of the substrate binding site of the enzyme.

  1. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    PubMed

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients.

  2. Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2,3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation.

    PubMed

    Frederiks, Wilma M; van Marle, Jan; van Oven, Carel; Comin-Anduix, Begonya; Cascante, Marta

    2006-01-01

    Since the introduction of cyano-ditolyl-tetrazolium chloride (CTC), a tetrazolium salt that gives rise to a fluorescent formazan after reduction, it has been applied to quantify activity of dehydrogenases in individual cells using flow cytometry. Confocal laser scanning microscopy (CLSM) showed that the fluorescent formazan was exclusively localized at the surface of individual cells and not at intracellular sites of enzyme activity. In the present study, the technique has been optimized to localize activity of glucose-6-phosphate dehydrogenase (G6PD) intracellularly in individual cells. Activity was demonstrated in cultured fibrosarcoma cells in different stages of the cell cycle. Cells were incubated for the detection of G6PD activity using a medium containing 6% (w/v) polyvinyl alcohol, 5 mM CTC, magnesium chloride, sodium azide, the electron carrier methoxyphenazine methosulphate, NADP, and glucose-6-phosphate. Before incubation, cells were permeabilized with 0.025% glutaraldehyde. Fluorescent formazan was localized exclusively in the cytoplasm of fibrosarcoma cells. The amount of fluorescent formazan in cells increased linearly with incubation time when measured with flow cytometry and CLSM. When combining the Hoechst staining for DNA with the CTC method for the demonstration of G6PD activity, flow cytometry showed that G6PD activity of cells in S phase and G2/M phase is 27 +/- 4% and 43 +/- 4% higher, respectively, than that of cells in G1 phase. CLSM revealed that cells in all phases of mitosis as well as during apoptosis contained considerably lower G6PD activity than cells in interphase. It is concluded that posttranslational regulation of G6PD is responsible for this cell cycle-dependent activity.

  3. The effect of restricted hydration on the rate of reaction of glucose 6-phosphate dehydrogenase, phosphoglucose isomerase, hexokinase and fumarase. Relevance for metabolism in xeric (near-dry) conditions

    PubMed Central

    Stevens, Evelyn; Stevens, Lewis

    1979-01-01

    A method is described for the measurement of enzyme activity under xeric conditions. The reaction mixtures had water contents ranging between 0.1 and 0.6g/g of reaction mixture. For glucose 6-phosphate dehydrogenase, hexokinase and fumarase, enzyme activity became detectable (about 0.05% of the fully hydrated rate) when the water content was about 0.2g/g of reaction mixture, and for phosphoglucose isomerase, around 0.15g/g of reaction mixture. With the water content raised to 0.3g/g of reaction mixture the reaction rates were only increased to 0.1–3% of the fully hydrated rate. When the combined rates for phosphoglucose isomerase and glucose 6-phosphate dehydrogenase were measured, reasonable agreement was found between the experimental data and those calculated from the individual experimentally determined rates on the assumption that diffusion was not further limiting. A method was devised for measuring the diffusion coefficients of low-molecular-weight substances in solutions having low water contents. The diffusion coefficients of riboflavin in sorbitol solution decreased by about 100-fold when the water content of the latter was reduced from 3 to 0.25g/g of sorbitol. It is concluded that to detect enzyme activity a certain minimal amount of water is required and that above this minimum the rate is still restricted by diffusion limitation. The relevance of the results to the physical state of water in reaction mixtures and to metabolism in seeds and spores in xeric conditions is discussed. PMID:475753

  4. Purification of rat kidney glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase enzymes using 2',5'-ADP Sepharose 4B affinity in a single chromatography step.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2012-01-01

    The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.

  5. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    PubMed Central

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  6. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    PubMed

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  7. Effects of test spills of chemically dispersed and nondispersed oil on the activity of aspartate aminotransferase and glucose-6-phosphate dehydrogenase in two intertidal bivalves, Mya arenaria and Mytilus edulis

    SciTech Connect

    Gilfillan, E.S.; Foster, J.; Gerber, R.; Hanson, S.A.; Page, D.S.; Vallas, D.

    1982-10-01

    In 1981, two test oil spills were made in Maine. One spill was 975 L (250 gal) of Murban crude oil; the other was 975 L of Murban crude oil premixed with 97 L (25 gal) of Corexit 9527. The uptake of the oil and its effects on enzymatic activity in two species of common intertidal bivalve mollusks, Mya arenaria and Mytilus edulis, were studied. Data were obtained on uptake and depuration of the oil for each species; data were also obtained on the activity of glucose-6-phosphate dehydrogenase and aspartate aminotransferase for each species. Data were collected both before and after each of the spills. Much less oil was taken up by the populations of animals exposed to chemically dispersed oil than by those exposed to nondispersed oil. Rates of depuration were the same for each species; they were also the same regardless of oil exposure. Significant long-term effects on enzyme activity were detected only in those animals exposed to nondispersed oil.

  8. In vivo effects of curcumin on the paraoxonase, carbonic anhydrase, glucose-6-phosphate dehydrogenase and β-glucosidase enzyme activities in dextran sulphate sodium-induced ulcerative colitis mice.

    PubMed

    Yildirim, Hatice; Sunay, Fatma Bahar; Sinan, Selma; Köçkar, Feray

    2016-12-01

    Increases in the risk of infections and malignancy due to immune suppressive therapies of inflammatory bowel diseases (IBDs) have led the researchers to focus on more nontoxic and acceptable natural products like curcumin. Here we investigate whether prophylactic and therapeutic application of the curcumin alters the enzyme activities of paraoxonase (PON), carbonic anhydrase (CA), glucose-6-phosphate dehydrogenase (G6PD) and cytosolic β-glucosidase in dextran sulphate sodium (DSS)-induced ulcerative colitis mice. Prophylactic application of curcumin resulted in higher MPO activity, less body weight loss and longer colon lengths compared to therapeutic group indicating preventive role of curcumin in IBDs. DSS-induced decrease in liver and serum PON activities were completely recovered by prophylactic administration of curcumin. DSS-induced reduction in liver cytosolic β-glucosidase activity was not affected by curcumin neither in the prophylactic group nor in the therapeutic group. Erythrocyte CA activity was significantly increased in curcumin groups, however no remarkable change in G6PD activity was observed.

  9. Regulation of glucose-6-phosphate dehydrogenase and malic enzyme in liver and adipose tissue: effect of dietary trilinolein level in starved-refed and ad libitum-fed rats.

    PubMed

    Nace, C S; Szepesi, B; Michaelis, O E

    1979-06-01

    The responses of glucose-6-phosphate dehydrogenase (G6PD) (EC 1.1.1.49) and malic enzyme (ME) (EC 1.1.1.40) were studied in liver and adipose tissue of rats fed for 2 days a high glucose diet containing levels of synthetic trilinolein ranging from 0 to 25% (w/w) of the diet (trilinolein was substituted for glucose). One group of rats was starved for 2 days before the trilinolein-containing diets were fed (starved-refed); a second group of rats was fed a fat-free diet for 7 days before the trilinolein-containing diets were fed (ad libitum). Liver G6PD activity decreased exponentially and liver ME activity decreased linearly with increasing dietary trilinolein in starved-refed rats, but did not decrease significantly in ad libitum fed rats. Total liver lipid decreased exponentially with increasing trilinolein in starved-refed rats, but increased exponentially in ad libitum fed rats. Adipose tissue G6PD and ME activities decreased slightly with increasing trilinolein in starved-refed rats, but did not decrease in ad libitum fed rats. When the data were adjusted by analysis of covariance for differences in glucose intake, the liver responses in starved-refed rats were still significant but the adipose tissue responses were not, indicating that the responses of adipose tissue (but not of liver) may have resulted from decreased glucose intake rather than from increased trilinolein intake. The results suggest that dietary trilinolein inhibits the characteristic increase in liver G6PD, ME and total lipids upon starvation-refeeding. However, after the levels of these parameters have been increased by feeding a fat-free diet they cannot be decreased by dietary trilinolein in 2 days.

  10. Glucose-6-phosphate dehydrogenase from brewers' yeast. The effects of pH and temperature on the steady-state kinetic parameters of the two-chain protein species.

    PubMed

    Kuby, S A; Roy, R N

    1976-05-04

    A systematic study has been made of the pH- and temperature-dependency of the steady-state kinetic parameters of the stabilized two-subunit enzyme species of glucose-6-phosphate dehydrogenase, in the absence of superimposed association-dissociation reactions. The Vmax(app) data obtained in several buffers between pH 5 and 10 and at 18-32 degrees C lead to the postulate that at least two sets of protonic equilibria may govern the catalysis (one near pH 5.7 AT 25 DEGREES C and another near pH 9.2); furthermore, two pathways for product formation (i.e., two Vmax's) appear to be required to explain the biphasic nature of the log Vmax(app) vs. pH curves, with Vmax(basic) greater than Vmax(acidic + neutral). Of the several buffers explored, either a uniform degree of interaction or a minimal degree of buffer species interaction could be assessed from the enthalpy changes associated with the derived values for ionization constants attributed to the protonic equilibria in the enzyme-substrates ternary complexes for the case of Tris-acetate-EDTA buffers, at constant ionic strength. With the selection of this buffer at 0.1 (T/2) and at 25 and 32 degrees C, a self-consistent kinetic mechanism has emerged which allows for the random binding of the two fully ionized substrates to the enzyme via two major pathways, and product formation by both E-A--B- and HE-A--B-. As before (Kuby et al. Arch. Biochem, Biophys. 165, 153-178, 1974), a quasi-equilibrium is presumed, with rate-limiting steps (k + 5 and k + 5') at the interconversion of the ternary complexes. Values for the two sets of protonic equilibria defined by this mechanism (viz., pKk, pKH2 for the first ionizations, and pKk', pKH' for the second) could then be estimated. From their numerical values (e.g., at 25 degrees C: pKK = 5.7 PKH2 = 5.2; and pKK' = 9.1, PKH' = 8.2) and from the values for delta H degrees ioniz (e.g., delta H degrees pKK APPROXIMATELY 5.1 KCAL/MOL; DELTA H degrees pKK' APPROXIMATELY 11 KCAL/MOL), A

  11. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii.

    PubMed

    Li, Jisheng; Chen, Guichen; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-03-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.

  12. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    PubMed

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  13. Dissimilar Deficiency of Glucose-6-Phosphate Dehydrogenase (G-6-PD) among the AFARS and the Somalis of Djibouti

    DTIC Science & Technology

    1991-01-01

    ET LES SOMALIS DE DJIBOUI I and/or par W. SIDRAK (1), E. FOX (2), D. POLYCARPE ( 3 ), J.G. OLSON ( 4 ) S.0. SHAKIB (5), J.P. PARRA (6), G. RODIER (7...Baltimore. ( 3 ) Docteur en midecine. Service midical inter-entreprses (SMI-1), Djibouti. ( 4 ) Docteur en philosophic (PhD), Head, Division of...hommes d’origine* phosphate deshvdrogdnase en Italie ( 4 ). Somali. La part relative de l’accis palustre et du dificit en La description relativement

  14. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  15. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  16. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes.

    PubMed

    Marcolongo, Paola; Fulceri, Rosella; Giunti, Roberta; Margittai, Eva; Banhegyi, Gabor; Benedetti, Angelo

    2012-09-21

    A phosphate-linked antiporter activity of the glucose-6-phosphate transporter (G6PT) has been recently described in liposomes including the reconstituded transporter protein. We directly investigated the mechanism of glucose-6-phosphate (G6P) transport in rat liver microsomal vesicles. Pre-loading with inorganic phosphate (Pi) did not stimulate G6P or Pi microsomal inward transport. Pi efflux from pre-loaded microsomes could not be enhanced by G6P or Pi addition. Rapid G6P or Pi influx was registered by light-scattering in microsomes not containing G6P or Pi. The G6PT inhibitor, S3483, blocked G6P transport irrespectively of experimental conditions. We conclude that hepatic G6PT functions as an uniporter.

  17. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  18. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD(+), NADH, NADP(+), and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P)(+) in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  19. AB104. Glucose-6 phospate dehydrogenase deficiency among mongolian neonates

    PubMed Central

    Batjargal, Khishigjargal; Nansal, Gerelmaa; Zagd, Gerelmaa; Ganbaatar, Erdenetuya

    2015-01-01

    Background and objective Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in humans, affecting 400 million people worldwide and a high prevalence in persons of African, Middle Asian countries. The most common clinical manifestations are neonatal jaundice and acute hemolytic anemia, which is caused by the impairment of erythrocyte’s ability to remove harmful oxidative stress triggered by exogenous agents such as drugs, infection, or fava bean ingestion. Neonatal hyperbilirubinemia caused by G6PD is strongly associated with mortality and long-term neurodevelopmental impairment. The study aims to determine a level of G6PD in healthy neonates. Methods We obtained blood spot samples from 268 infants around 24-72 hours in their age who has unsuspected intranatal and neonatal disorders. Glucose 6 phosphate dehydrogenase “Perkin Elmer, Finland” level is determined by Victor 2D Fluorometer assay, developing of neonatal jaundice is examined by recall. Results The76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PD, other 23.5% (n=63) was 0.96±0.51 Ug/Hb with G6PD deficiency. In the both sex, 51.5% of male 0.88±0.46 Ug/Hb (n=33) and 47.6% of female (n=30) 0.97±0.55 Ug/Hb was assessed with G6PD deficiency. Developing Jaundice period in number of 63 neonates with G6PD deficiency, 86% of neonates (n=54) was in 1-4 days, 4% of neonates (n=3) was in 5-7 days and there is no sign of jaundice in 9% (n=6). Therefore neonates with G6PD deficiency, 53.9% (n=34) continued jaundice more than two weeks. Conclusions G6PD deficiency was determined in male neonates (51.5%) more than female (47.6%). The 76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PDH other 23.5% (n=63) of all participants was 0.96±0.51 Ug/Hb with G6PD deficiency. It shows that G6PD might be one potential risk of neonatal jaundice and hyperbilirubinemia in neonates in Mongolia.

  20. Protective effects of glucose-6-phosphate and NADP against alpha-chaconine-induced developmental toxicity in Xenopus embryos.

    PubMed

    Rayburn, J R; Bantle, J A; Qualls, C W; Friedman, M

    1995-12-01

    In previous studies a metabolic activation system (MAS) composed of Aroclor 1254-induced rat liver microsomes led to an apparent reduction of potato glycoalkaloid developmental toxicity in the frog embryo teratogenesis assay-Xenopus (FETAX). The reasons for this reduction were investigated in this study. The effect of the exogenous MAS on glycoalkaloid developmental toxicity was examined in two experiments in which a concentration series of alpha-chaconine was tested with a MAS with and without a reduced nicotinamide adenine dinucleotide (NADPH) generator system consisting of NADPH, oxidized nicotinamide adenine dinucleotide (NADP), glucose-6-phosphate (G6P) and glucose-6-phosphate dehydrogenase. The NADPH generator system and each of its individual components were tested at a single high concentration of alpha-chaconine to evaluate their potential effects on toxicity. The findings indicated that the protective effect of the MAS was not the result of detoxification by microsomal enzyme systems, but was caused by two components of the NADPH generator system, namely NADP and G6P. G6P was more protective of alpha-chaconine-induced toxicity than NADP at the concentrations tested. Thus, FETAX with a MAS must be performed with appropriate controls that take into account the possible interactions with individual components of the system.

  1. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate.

    PubMed Central

    Forsyth, R J; Bartlett, K; Burchell, A; Scott, H M; Eyre, J A

    1993-01-01

    Cells from primary rat astrocyte cultures express a 36.5 kDa protein that cross-reacts with polyclonal antibodies to the catalytic subunit of rat hepatic glucose-6-phosphatase on Western blotting. Glucose-6-phosphate-hydrolysing activity of the order of 10 nmol/min per mg of total cellular protein can be demonstrated in cell homogenates. This activity shows latency, and is localized to the microsomal fraction. Kinetic analysis shows a Km of 15 mM and a Vmax. of 30 nmol/min per mg of microsomal protein in disrupted microsomes. Approx. 40% of the total phosphohydrolase activity is specific glucose-6-phosphatase, as judged by sensitivity to exposure to pH 5 at 37 degrees C. Previous reports that the brain microsomal glucose-6-phosphatase system does not distinguish glucose 6-phosphate and mannose 6-phosphate are confirmed in astrocyte microsomes. However, we demonstrate significant phosphomannose isomerase activity in brain microsomes, allowing for ready interconversion between mannose 6-phosphate and glucose 6-phosphate (Vmax. 15 nmol/min per mg of microsomal protein; apparent Km < 1 mM; pH optimum 5-6 for the two-step conversion). This finding invalidates the past inference from the failure of brain microsomes to distinguish mannose 6-phosphate and glucose 6-phosphate that the cerebral glucose-6-phosphatase system lacks a 'glucose 6-phosphate translocase' [Fishman and Karnovsky (1986) J. Neurochem. 46, 371-378]. Furthermore, light-scattering experiments confirm that a proportion of whole brain microsomes is readily permeable to glucose 6-phosphate. Images Figure 1 PMID:8395816

  2. Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae.

    PubMed

    Alonso, A; Pascual, C; Romay, C; Herrera, L; Kotyk, A

    1989-01-01

    The rate of hexose transport was approximately 60% lower for both the high- and the low-affinity components of hexose uptake when a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae was preincubated with glucose, as compared with preincubation with water. Similarly the Jmax value of the high-affinity system of the mutant was 25-35% of the corresponding Jmax value for normal cells incubated with glucose. Accumulation of glucose 6-phosphate or of some other metabolite, such as fructose 6-phosphate or trehalose, may be responsible for this striking inhibition.

  3. Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum

    DTIC Science & Technology

    2012-04-01

    low millimolar range. Most Ca2+ is sequestered within organelles , including the endoplasmic reticulum (ER), Golgi, mitochondria , and nucleus (Carafoli...G6P and thapsigargin caused generalized reduction in Ca2+ accumulation in remarkably similar patterns with no apparent gray matter regional...with glucose-6-phosphate (10 mM) or thapsigargin (1 µM), revealed very similar pattern of generalized reduction in 45Ca2+ accumulation in gray and

  4. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes.

    PubMed

    Chou, Janice Y; Jun, Hyun Sik; Mansfield, Brian C

    2015-05-01

    Disorders of the glucose-6-phosphatase (G6Pase)/glucose-6-phosphate transporter (G6PT) complexes consist of three subtypes: glycogen storage disease type Ia (GSD-Ia), deficient in the liver/kidney/intestine-restricted G6Pase-α (or G6PC); GSD-Ib, deficient in a ubiquitously expressed G6PT (or SLC37A4); and G6Pase-β deficiency or severe congenital neutropenia syndrome type 4 (SCN4), deficient in the ubiquitously expressed G6Pase-β (or G6PC3). G6Pase-α and G6Pase-β are glucose-6-phosphate (G6P) hydrolases with active sites lying inside the endoplasmic reticulum (ER) lumen and as such are dependent upon the G6PT to translocate G6P from the cytoplasm into the lumen. The tissue expression profiles of the G6Pase enzymes dictate the disease's phenotype. A functional G6Pase-α/G6PT complex maintains interprandial glucose homeostasis, while a functional G6Pase-β/G6PT complex maintains neutrophil/macrophage energy homeostasis and functionality. G6Pase-β deficiency is not a glycogen storage disease but biochemically it is a GSD-I related syndrome (GSD-Irs). GSD-Ia and GSD-Ib patients manifest a common metabolic phenotype of impaired blood glucose homeostasis not shared by GSD-Irs. GSD-Ib and GSD-Irs patients manifest a common myeloid phenotype of neutropenia and neutrophil/macrophage dysfunction not shared by GSD-Ia. While a disruption of the activity of the G6Pase-α/G6PT complex readily explains why GSD-Ia and GSD-Ib patients exhibit impaired glucose homeostasis, the basis for neutropenia and myeloid dysfunction in GSD-Ib and GSD-Irs are only now starting to be understood. Animal models of all three disorders are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.

  5. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    PubMed

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  6. Glucose-6-Phosphate-Dehydrogenase Is Also Increased in Erythrocytes from Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ordonez, Francisco J.; Rosety-Plaza, Manuel; Rosety-Rodriguez, Manuel

    2006-01-01

    For some time it has been claimed that trisomic cells are more sensitive to oxidative stress since there is an imbalance in hydrogen peroxide metabolism due to an increase in superoxide dismutase (SOD) catalytic activity. We designed the present study to assess activity levels of antioxidant enzymes [superoxide dismutase (SOD), glutathione…

  7. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  8. A ROLE FOR AMPK IN THE INHIBITION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE BY POLYUNSATURATED FATTY ACIDS

    PubMed Central

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-01-01

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids. PMID:19646964

  9. Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis

    PubMed Central

    Lu, Ying; Yu, Shan-Shan; Zong, Ming; Fan, Sha-Sha; Lu, Tian-Bao; Gong, Ru-Han; Sun, Li-Shan; Fan, Lie-Ying

    2017-01-01

    The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI. PMID:28067317

  10. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    SciTech Connect

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; Jarboe, Laura R.; Unkefer, Clifford J.; Mark, Brian L.; Michalczyk, Ryszard

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.

  11. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    DOE PAGES

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; ...

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium andmore » solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.« less

  12. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate

    SciTech Connect

    Toroser, D.; Plaut, Z.; Huber, S.C.

    2000-05-01

    One of the major protein kinases (PK{sub III}) that phosphorylates serine-158 of spinach sucrose-phosphate synthase (SPS), which is responsible for light/dark modulation of activity, is known to be a member of the SNF1-related family of protein kinases. In the present study, the authors have developed a fluorescence-based continuous assay for measurement of PK{sub III} activity. Using the continuous assay, along with the fixed-time-point {sup 32}P-incorporation assay, they demonstrate that PK{sub III} activity is inhibited by glucose-6-phosphate (Glc-6-P). Relative inhibition by Glc-6-P was increased by decreasing pH from 8.5 to 5.5 and by reducing the concentration of Mg{sup 2+} in the assay from 10 to 2 nM. Under likely physiological conditions (PH 7.0 and 2 mM Mg{sup 2+}), 10 nM Glc-6-P inhibited kinase activity approximately 70%. Inhibition by Glc-6-P could not be ascribed to contaminants in the commercial preparations. Other metabolites inhibited PK{sub III} in the following order: Glc-6-P > mannose-6-P, fructose-1,6P{sub 2} > ribose-5-P, 3-PGA, fructose-6-P. Inorganic phosphate, Glc, and AMP were not inhibitory, and free Glc did not reverse the inhibition by Glc-6-P. Because SNF1-related protein kinases are thought to function broadly in the regulation of enzyme activity and gene expression, Glc-6-P inhibition of PK{sub III} activity potentially provides a mechanism for metabolic regulation of the reactions catalyzed by these important protein kinases.

  13. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World.

    PubMed

    Doss, C George Priya; Alasmar, Dima R; Bux, Reem I; Sneha, P; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-11-17

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations.

  14. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World

    PubMed Central

    Doss, C. George Priya; Alasmar, Dima R.; Bux, Reem I.; Sneha, P.; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-01-01

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations. PMID:27853304

  15. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    MedlinePlus

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  16. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    PubMed

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  17. AB222. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability

    PubMed Central

    Jiang, Xuping; Wang, Shangqian; Wang, Wei; Xu, Yang; Sun, Hongyong; Wang, Zengjun; Zhang, Wei

    2016-01-01

    Objective Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Methods We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results Results showed that normalized content of enolase1 (ENO1) (P<0.05) and glucose-6-phosphate isomerase (GPI) (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with post thaw sperm viability and motility was confirmed using Pearson’s linear correlation. Conclusions In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure.

  18. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed Central

    Cadefau, J; Bollen, M; Stalmans, W

    1997-01-01

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P. PMID:9148744

  19. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed

    Cadefau, J; Bollen, M; Stalmans, W

    1997-03-15

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P.

  20. Time course of radiolabeled 2-deoxy-D-glucose 6-phosphate turnover in cerebral cortex of goats

    SciTech Connect

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-02-01

    The vivo dephosphorylation rate of 2-deoxy-D-glucose 6-phosphate (DGP) in the cerebral cortex of goats injected intravenously with radiolabeled 2-deoxy-D-glucose (DG) was investigated. Serial rapidly frozen samples of parietal cortical gray tissue were obtained at regular intervals over time periods from 45 min to 3 h in awake goats or in paralyzed and artificially ventilated goats maintained under 70% N/sub 2/O or pentobarbital sodium anesthesia. The samples were analyzed for glucose content and separate DG and DGP activities. The rate parameters for phosphorylation (k/sup *//sub 4/) and dephosphorylation (k/sup *//sub 4/) were estimated in each animal. The glucose phosphorylation rate (PR) was calculated over the intervals 3-5 (or 6), 3-10, 3-20, 3-30, and 3-45 min, assuming k/sup *//sub 4/ = O. As the evaluation period was extended beyond 10 min, the calculated PR became increasingly less when compared with that calculated over the 3- to 5- (or 6) min interval (PR/sub i/). Furthermore, as metabolic activity decreased, the magnitude of the error increased such that at 45 min pentobarbital-anesthetize goats underestimated the PR/sub i/ by 46.5% compared with only 23.1 in N/sub 2/O-anesthetized goats. This was also reflected in the >twofold higher k/sup *//sub 4//k/sup *//sub 3/ ratio in the pentobarbital vs. N/sub 2/O-anesthetized group. It is concluded that when using the DG method in the goat, DGP dephosphorylation cannot be ignored when employing >10-min evaluation periods.

  1. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  2. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... conversion is essential to begin the series of chemical reactions that produce energy for cells. The pyruvate dehydrogenase ... E3, each of which performs part of the chemical reaction that converts pyruvate to acetyl-CoA. In addition, ...

  3. Glycogen storage disease type 1b: an early onset severe phenotype associated with a novel mutation (IVS4) in the glucose 6-phosphate translocase (SLC37A4) gene in a Turkish patient.

    PubMed

    Oguz, M M; Aykan, E; Yilmaz, G; Aytekin, C; Karaer, K; Açoğlu, E A

    2014-01-01

    Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders that include types Ia and Ib. GSD-Ib is caused by a deficiency in the glucose-6-phosphate transporter (G6PT) caused by a mutation in the SLC37A4 gene coding for G6PT. Glycogen storage disease is characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver and chronic neutropenia. Herein we describe a 4-month-old Turkish patient with early onset and severe typical clinical features of GSD-1b in which a novel mutation in the SLC37A4 gene was detected. After the bone marrow examination parenteral antibiotic therapy and subcutaneous granulocyte colony-stimulating factor (G-CSF) were started. Due to the severe neutropenia the patient had developed nosocomial sepsis and the dose of G-CSF was increased. After 2 months later from the initial treatment of the G-CSF he developed splenomegaly and urinary complications. Despite maximal therapy he had an extremely poor quality of life and life-threatening complications due to impaired bone marrow function. As the patient required continual hospitalization he was schedule for bone marrow transplantation.

  4. The Two Km's for ATP of Corn-Root H+-ATPase and the Use of Glucose-6-Phosphate and Hexokinase as an ATP-Regenerating System.

    PubMed Central

    Ramos, R. S.; Caldeira, M. T.; Arruda, P.; De Meis, L.

    1994-01-01

    Plasma membrane vesicles derived from corn (Zea mays L.) roots retain a membrane-bound H+-ATPase that is able to form a H+ gradient across the vesicle membranes. The activity of this ATPase is enhanced 2- to 3-fold when Triton X-100 or lysophosphatidylcholine is added to the medium at a protein:detergent ratio of 2:1 (w/w). In the absence of detergent, the ATPase exhibits only one Km for ATP (0.1-0.2 mM), which is the same as for the pumping of H+. After the addition of either Triton X-100 or lysophosphatidylcholine, two Km's for ATP are detected, one in the range of 1 to 3 [mu]M and a second in the range of 0.1 to 0.2 mM. The Vmax of the second Km for ATP increases as the temperature of the assay medium is raised from 15[deg]C to 38[deg]C. The Arrhenius plot reveals a single break at 30[deg]C, both in the absence and in the presence of detergents. In the presence of Triton X-100 the H+-ATPase catalyzes the cleavage of glucose-6-phosphate when both hexokinase and ADP are included in the assay medium. There is no measurable cleavage when the apparent affinity for ATP of the H+-ATPase is not enhanced by Triton X-100 or when 1 mM glucose is included in the assay medium. These data indicate that when the high-affinity Km for ATP is unmasked with the use of detergent, the ATPase can use glucose-6-phosphate and hexokinase as an ATP-regenerating system. PMID:12232248

  5. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage.

    PubMed

    Rolletschek, Hardy; Nguyen, Thuy H; Häusler, Rainer E; Rutten, Twan; Göbel, Cornelia; Feussner, Ivo; Radchuk, Ruslana; Tewes, Annegret; Claus, Bernhard; Klukas, Christian; Linemann, Ute; Weber, Hans; Wobus, Ulrich; Borisjuk, Ljudmilla

    2007-08-01

    The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.

  6. Genetics Home Reference: 2-methylbutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for ... methylbutyryl-CoA dehydrogenase deficiency cannot process a particular amino acid called isoleucine. Most cases of 2-methylbutyryl-CoA ...

  7. Antioxidants and Manganese Deficiency in Needles of Norway Spruce (Picea abies L.) Trees 1

    PubMed Central

    Polle, Andrea; Chakrabarti, Krisanu; Chakrabarti, Sila; Seifert, Friederike; Schramel, Peter; Rennenberg, Heinz

    1992-01-01

    Chlorotic and green needles from Norway spruce (Picea abies L.) trees were sampled in the Calcareous Bavarian Alps in winter. The needles were used for analysis of the mineral and pigment contents, the levels of antioxidants (ascorbate, glutathione), and the activities of protective enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate radical reductase, dehydroascorbate reductase, glutathione reductase). In addition, the activities of two respiratory enzymes (glucose-6-phosphate dehydrogenase, NAD-malate dehydrogenase), which might provide the NADPH necessary for functioning of the antioxidative system, were determined. We found that chlorotic needles were severely manganese deficient (3 to 6 micrograms Mn per gram dry weight as compared with up to 190 micrograms Mn per gram dry weight in green needles) but had a similar dry weight to fresh weight ratio, had a similar protein content, and showed no evidence for enhanced lipid peroxidation as compared with green needles. In chlorotic needles, the level of total ascorbate and the activities of superoxide dismutase, monodehydroascorbate radical reductase, NAD-malate dehydrogenase, and glucose-6-phosphate dehydrogenase were significantly increased, whereas the levels of ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase, and glutathione were not affected. The ratio of ascorbate to dehydroascorbate was similar in both green and chlorotic needles. These results suggest that in spruce needles monodehydroascorbate radical reductase is the key enzyme involved in maintaining ascorbate in its reduced state. The reductant necessary for this process may have been supplied at the expense of photosynthate. PMID:16668974

  8. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency

    PubMed Central

    Tabatabaie, L.; Klomp, L. W. J.; Rubio-Gozalbo, M. E.; Spaapen, L. J. M.; Haagen, A. A. M.; Dorland, L.

    2010-01-01

    3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is considered to be a rare cause of congenital microcephaly, infantile onset of intractable seizures and severe psychomotor retardation. Here, we report for the first time a very mild form of genetically confirmed 3-PGDH deficiency in two siblings with juvenile onset of absence seizures and mild developmental delay. Amino acid analysis showed serine values in CSF and plasma identical to what is observed in the severe infantile form. Both patients responded favourably to relatively low dosages of serine supplementation with cessation of seizures, normalisation of their EEG abnormalities and improvement of well-being and behaviour. These cases illustrate that 3-PGDH deficiency can present with mild symptoms and should be considered as a treatable disorder in the differential diagnosis of mild developmental delay and seizures. Synopsis: we present a novel mild phenotype in patients with 3-PGDH deficiency. PMID:21113737

  9. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression.

    PubMed

    Pérez-Crespo, M; Ramírez, M A; Fernández-González, R; Rizos, D; Lonergan, P; Pintado, B; Gutiérrez-Adán, A

    2005-12-01

    During the preimplantation period, in vitro cultured males have a higher metabolic rate, different gene expression, and grow faster than females. It has been suggested that under some stress conditions male embryos are more vulnerable than females; however, the biological fragility of male embryos is little understood. Since many forms of stress result in the overproduction of cellular reactive oxygen species (ROS), we addressed the hypothesis that the connection between female advantage during early developmental stages and heat stress involves ROS and differential gene expression of G6PD, an X-linked gene related to oxidative stress. We have found that after compaction, female heat-stressed embryos have less relative amounts of H2O2 than males, and female embryos survive better than males under in vivo or in vitro heat stress situations. In addition, in vitro produced female embryos grow slower than male embryos, have differential mRNA transcription of G6PD and also of some genes situated on autosomal-chromosomes (Sox, Bax, and Oct-4). Moreover, by inhibiting G6PD, all differences generated by oxidative stress between male and female embryos disappear. For the first time, we provide an experimental demonstration of a mechanism that explains why following exposure to heat stress-induced ROS, female preimplantation embryos are more resistant than males.

  10. Serine Arginine Splicing Factor 3 Is Involved in Enhanced Splicing of Glucose-6-phosphate Dehydrogenase RNA in Response to Nutrients and Hormones in Liver*

    PubMed Central

    Walsh, Callee M.; Suchanek, Amanda L.; Cyphert, Travis J.; Kohan, Alison B.; Szeszel-Fedorowicz, Wioletta; Salati, Lisa M.

    2013-01-01

    Expression of G6PD is controlled by changes in the degree of splicing of the G6PD mRNA in response to nutrients in the diet. This regulation involves an exonic splicing enhancer (ESE) in exon 12 of the mRNA. Using the G6PD model, we demonstrate that nutrients and hormones control the activity of serine-arginine-rich (SR) proteins, a family of splicing co-activators, and thereby regulate the splicing of G6PD mRNA. In primary rat hepatocyte cultures, insulin increased the amount of phosphorylated SR proteins, and this effect was counteracted by arachidonic acid. The results of RNA affinity analysis with nuclear extracts from intact liver demonstrated that the SR splicing factor proteins SRSF3 and SRSF4 bound to the G6PD ESE. Consequently, siRNA-mediated depletion of SRSF3, but not SRSF4, in liver cells inhibited accumulation of both mRNA expressed from a minigene containing exon 12 and the endogenous G6PD mRNA. Consistent with the functional role of SRSF3 in regulating splicing, SRSF3 was observed to bind to the ESE in both intact cells and in animals using RNA immunoprecipitation analysis. Furthermore, refeeding significantly increased the binding of SRSF3 coincident with increased splicing and expression of G6PD. Together, these data establish that nutritional regulation of SRSF3 activity is involved in the differential splicing of the G6PD transcript in response to nutrients. Nutritional regulation of other SR proteins presents a regulatory mechanism that could cause widespread changes in mRNA splicing. Nutrients are therefore novel regulators of mRNA splicing. PMID:23233666

  11. Quantitative Analysis of X Chromosome Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases of DROSOPHILA MELANOGASTER

    PubMed Central

    Miyashita, Naohiko; Laurie-Ahlberg, Cathy C.; Wilton, Alan N.; Emigh, Ted H.

    1986-01-01

    By combining 20 X chromosomes with five autosomal backgrounds, the relative importance of these factors with respect to the activity variations of G6PD and 6PGD in Drosophila melanogaster were investigated. Analysis of variance revealed that there exist significant X chromosome, autosomal background and genetic interaction effects. The effect of the X chromosome was due mainly to the two allozymic forms of each enzyme, but some within-allozyme effects were also detected. From the estimated variance components, it was concluded that the variation attributed to the autosomal background is much larger than the variation attributed to the X chromosome, even when the effect of the allozymes is included. The segregation of the allozymes seems to account for about 10% of the total activity variation of each enzyme. The variation due to the interaction between the X chromosome and the autosomal background is much smaller than variations attributed either to the X chromosome or to the autosomal background. The interaction effect is indicated by the change of the ranking of the X chromosomes for different autosomal backgrounds. Highly significant and positive correlation between G6PD and 6PGD activities was detected. Again, the contribution of the autosomal background to the correlation was much larger than that attributed to the X chromosome. PMID:3087815

  12. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6-phosphate dehydrogenase RNA in response to nutrients and hormones in liver.

    PubMed

    Walsh, Callee M; Suchanek, Amanda L; Cyphert, Travis J; Kohan, Alison B; Szeszel-Fedorowicz, Wioletta; Salati, Lisa M

    2013-01-25

    Expression of G6PD is controlled by changes in the degree of splicing of the G6PD mRNA in response to nutrients in the diet. This regulation involves an exonic splicing enhancer (ESE) in exon 12 of the mRNA. Using the G6PD model, we demonstrate that nutrients and hormones control the activity of serine-arginine-rich (SR) proteins, a family of splicing co-activators, and thereby regulate the splicing of G6PD mRNA. In primary rat hepatocyte cultures, insulin increased the amount of phosphorylated SR proteins, and this effect was counteracted by arachidonic acid. The results of RNA affinity analysis with nuclear extracts from intact liver demonstrated that the SR splicing factor proteins SRSF3 and SRSF4 bound to the G6PD ESE. Consequently, siRNA-mediated depletion of SRSF3, but not SRSF4, in liver cells inhibited accumulation of both mRNA expressed from a minigene containing exon 12 and the endogenous G6PD mRNA. Consistent with the functional role of SRSF3 in regulating splicing, SRSF3 was observed to bind to the ESE in both intact cells and in animals using RNA immunoprecipitation analysis. Furthermore, refeeding significantly increased the binding of SRSF3 coincident with increased splicing and expression of G6PD. Together, these data establish that nutritional regulation of SRSF3 activity is involved in the differential splicing of the G6PD transcript in response to nutrients. Nutritional regulation of other SR proteins presents a regulatory mechanism that could cause widespread changes in mRNA splicing. Nutrients are therefore novel regulators of mRNA splicing.

  13. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  14. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    PubMed Central

    Belkaid, Anissa; Currie, Jean-Christophe; Desgagnés, Julie; Annabi, Borhane

    2006-01-01

    Background Chlorogenic acid (CHL), the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT), is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase)-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP)-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P), a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP)-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL. PMID:16566826

  15. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    PubMed Central

    Lewis, Evan Cole; De Meulemeester, Christine; Chakraborty, Pranesh; Gibson, K. Michael; Torres, Carlos; Guberman, Alan; Salomons, Gajja S.; Jakobs, Cornelis; Ali-Ridha, Andre; Parviz, Mahsa; Pearl, Phillip L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following hospitalization for progressive decline, escalating seizures, and prolonged periods of altered consciousness. We present a detailed review of his clinical course and reviewed our SSADH deficiency database adult cohort to derive natural history information. Results: Of 95 patients in the database for whom age at diagnosis is recorded, there are 40 individuals currently aged 18 years or older. Only 3 patients were diagnosed after age 18 years. Of 25 adults for whom data are available after age 18, 60% have a history of epilepsy. Predominant seizure types are generalized tonic-clonic, absence, and myoclonic. EEGs showed background slowing or generalized epileptiform discharges in two-thirds of adults for whom EEG data were collected. History of psychiatric symptoms was prominent, with frequent anxiety, sleep disturbances, and obsessive-compulsive disorder. Conclusions: We identified patients older than 18 years with SSADH deficiency in our database following identification and review of a patient diagnosed in the seventh decade of life. The illness had a progressive course with escalating seizures in the index case, with fatality at age 63. Diagnosis in adulthood is rare. Epilepsy is more common in the adult than the pediatric SSADH deficiency cohort; neuropsychiatric morbidity remains prominent. PMID:26268900

  16. Ketonic diet in the management of pyruvate dehydrogenase deficiency.

    PubMed

    Falk, R E; Cederbaum, S D; Blass, J P; Gibson, G E; Kark, R A; Carrel, R E

    1976-11-01

    Two brothers, aged 11 years 6 months and 2 years 3 months, with psychomotor and growth retardation, episodes of weakness, ataxia, ophthalmoplegia, and elevated levels of blood pyruvate were shown to have a deficiency in the pyruvate dehydrogenase complex (PDH). When they ate a diet high enough in fats to cause ketonemia but not acidosis, there was a fall in blood pyruvate levels, a decrease in the frequency and severity of the episodes of neurological deterioration, an increased rate of growth and development in the younger brother, and increased strength and endurance in the older one. The possibility of dietary treatment makes the early diagnosis of PDH deficiency more important. Determination of blood pyruvate and lactate levels following a standard glucose meal (glucose-pyruvate test) appears to be the most reliable screening test for this condition.

  17. Thalassemia and G-6-PD Deficiency in Chinese-Canadians

    PubMed Central

    Gray, G. R.; Marion, R. B.

    1971-01-01

    Admission screening was performed on 684 Chinese-Canadian patients for thalassemia, abnormal hemoglobins and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. Thirty-six healthy Chinese adults were also studied. The incidence of beta-thalassemia minor (hemoglobin A2 greater than 3.5%) was 3.8%. Presumptive alpha-thalassemia minor (demonstration of occasional red cells containing hemoglobin H inclusion bodies) was found in 6.7%. Two patients had findings consistent with alpha-beta-thalassemia. The incidence of G-6-PD deficiency (abnormal methemoglobin reduction test) in adult males was 4.7%. In a parallel study the incidence of hemoglobin Bart's in 310 Chinese newborns was 6.8%. Two mutant hemoglobins were found — hemoglobin E and hemoglobin J (Bangkok). PMID:5563348

  18. Pyruvate Dehydrogenase Complex Activity in Normal and Deficient Fibroblasts

    PubMed Central

    Sheu, Kwan-Fu Rex; Hu, Chii-Whei C.; Utter, Merton F.

    1981-01-01

    Pyruvate dehydrogenase complex (PDC) activity in human skin fibroblasts appears to be regulated by a phosphorylation-dephosphorylation mechanism, as is the case with other animal cells. The enzyme can be activated by pretreating the cells with dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase, before they are disrupted for measurement of PDC activity. With such treatment, the activity reaches 5-6 nmol/min per mg of protein at 37°C with fibroblasts from infants. Such values represent an activation of about 5-20-fold over those observed with untreated cells. That this assay, based on [1-14C]pyruvate decarboxylation, represents a valid measurement of the overall PDC reaction is shown by the dependence of 14CO2 production on the presence of thiamin-PP, coenzyme A (CoA), Mg++, and NAD+. Also, it has been shown that acetyl-CoA and 14CO2 are formed in a 1:1 ratio. A similar degree of activation of PDC can also be achieved by adding purified pyruvate dehydrogenase phosphatase and high concentrations of Mg++ and Ca++, or in some cases by adding the metal ions alone to the cell homogenate after disruption. These results strongly suggest that activation is due to dephosphorylation. Addition of NaF, which inhibits dephosphorylation, leads to almost complete loss of PDC activity. Assays of completely activated PDC were performed on two cell lines originating from patients reported to be deficient in this enzyme (Blass, J. P., J. Avigan, and B. W. Ublendorf. 1970. J. Clin. Invest. 49: 423-432; Blass, J. P., J. D. Schuman, D. S. Young, and E. Ham. 1972. J. Clin. Invest. 51: 1545-1551). Even after activation with DCA, fibroblasts from the patients showed values of only 0.1 and 0.3 nmol/min per mg of protein. A familial study of one of these patients showed that both parents exhibited activity in fully activated cells about half that of normal values, whereas cells from a sibling appeared normal. These results demonstrate the inheritance nature of PDC deficiency

  19. Incidence and Geographic Distribution of Succinic Semialdehyde Dehydrogenase (SSADH) Deficiency.

    PubMed

    Attri, Savita Verma; Singhi, Pratibha; Wiwattanadittakul, Natrujee; Goswami, Jyotindra N; Sankhyan, Naveen; Salomons, Gajja S; Roullett, Jean-Baptiste; Hodgeman, Ryan; Parviz, Mahsa; Gibson, K Michael; Pearl, Phillip L

    2016-11-05

    The incidence of succinic semialdehyde dehydrogenase (SSADH) deficiency, an autosomal recessive inherited disorder of GABA degradation, is unknown. Upon a recent diagnosis of a new family of affected fraternal twins from the Punjabi ethnic group of India, case ascertainment from the literature and our database was done to determine the number of confirmed cases along with their geographic distribution. The probands presented with global developmental delay, infantile onset epilepsy, and a persistent neurodevelopmental disorder upon diagnosis at 10 years of age with intellectual disability, expressive aphasia, and behavioral problems most prominent for hyperactivity. Gamma-hydroxybutyric aciduria and homozygous ALDH5A1 c.608C>T; p.Pro203Leu mutations were confirmed. Identification of all available individual cases with clinical details available including geographic or ethnic origin revealed 182 patients from 40 countries, with the largest number of patients reported from the USA (24%), Turkey (10%), China (7%), Saudi Arabia (6%), and Germany (5%). This study provides an accounting of all published cases of confirmed SSADH deficiency and provides data useful in planning further studies of this rare inborn error of metabolism.

  20. Screening for G6PD Deficiency Among Neonates with Neonatal Jaundice Admitted to Tertiary Care Center: A Need in Disguise.

    PubMed

    Kumar, Kishwer; Sohaila, Arjumand; Tikmani, Shiyam Sunder; Khan, Iqtidar Ahmed; Zafar, Anila

    2015-08-01

    This study was conducted to determine the association of Glucose-6-Phosphate Dehydrogenase (G-6-PD) deficiency among neonates admitted with jaundice at the neonatal intensive care unit, well baby nursery and neonatal step down nursery of the Aga Khan University Hospital, Karachi, Pakistan, from January to June 2010. A total of 205 neonates following the selection criteria were included. All selected neonates have their venous blood drawn, saved in EDTA bottle and sent to laboratory of The Aga Khan University Hospital (AKUH). The laboratory results of whether G-6-PD deficiency was present or not was recorded in the proforma. G-6-PD was deficient in 19 neonates (9.3%). All neonates were male.

  1. Biorhythms of activities of liver and blood dehydrogenases and changes in body weight of the rats feeding normal diet or excess of sugar substitutes.

    PubMed

    Petrovich, Yu A; Volozhin, A I; Zubtsov, V A; Kichenko, S M

    2007-12-01

    Biorhythms with higher levels of activity of sorbitol dehydrogenase and lactate dehydrogenase in blood plasma, specific activity of sorbitol dehydrogenase, lactate dehydrogenase, and malate dehydrogenase in the liver, and body weight of rats were more pronounced in the spring-summer period than in the autumn-winter period. These specific features were revealed in animals feeding a normal diet or food with 54 and 27% sugar substitute sorbitol. However, specific activity of glucose-6-phosphate dehydrogenase in the liver was higher in the autumn-winter period. Activity of sorbitol dehydrogenase in blood plasma increased by tens of times due to induction of sorbitol synthesis (substrate) in the liver. Sugar substitute xylitol is structurally similar to sorbitol, but is not the substrate for sorbitol dehydrogenase. However, the effect of xylitol on activities of lactate dehydrogenase, malate dehydrogenase, and glucose-6-phosphate dehydrogenase in the spring-summer period was similar to that of sorbitol.

  2. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids.

  3. Energy substrate metabolism in pyruvate dehydrogenase complex deficiency.

    PubMed

    Stenlid, Maria Halldin; Ahlsson, Fredrik; Forslund, Anders; von Döbeln, Ulrika; Gustafsson, Jan

    2014-11-01

    Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism, resulting in lactic acidosis and neurological dysfunction. In order to provide energy for the brain, a ketogenic diet has been tried. Both the disorder and the ketogenic therapy may influence energy production. The aim of the study was to assess hepatic glucose production, lipolysis and resting energy expenditure (REE) in an infant, given a ketogenic diet due to neonatal onset of the disease. Lipolysis and glucose production were determined for two consecutive time periods by constant-rate infusions of [1,1,2,3,3-²H₅]-glycerol and [6,6-²H²]-glucose. The boy had been fasting for 2.5 h at the start of the sampling periods. REE was estimated by indirect calorimetry. Rates of glucose production and lipolysis were increased compared with those of term neonates. REE corresponded to 60% of normal values. Respiratory quotient (RQ) was increased, indicating a predominance of glucose oxidation. Blood lactate was within the normal range. Several mechanisms may underlie the increased rates of glucose production and lipolysis. A ketogenic diet will result in a low insulin secretion and reduced peripheral and hepatic insulin sensitivity, leading to increased production of glucose and decreased peripheral glucose uptake. Surprisingly, RQ was high, indicating active glucose oxidation, which may reflect a residual enzyme activity, sufficient during rest. Considering this, a strict ketogenic diet might not be the optimal choice for patients with PDH deficiency. We propose an individualised diet for this group of patients aiming at the highest glucose intake that each patient will tolerate without elevated lactate levels.

  4. Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men.

    PubMed

    Pearl, P L; Gibson, K M; Cortez, M A; Wu, Y; Carter Snead, O; Knerr, I; Forester, K; Pettiford, J M; Jakobs, C; Theodore, W H

    2009-06-01

    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS-742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS-742, form the framework for human trials.

  5. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  6. Acquired multiple acyl-CoA dehydrogenase deficiency and marked selenium deficiency causing severe rhabdomyolysis in a horse

    PubMed Central

    Gomez, Diego E.; Valberg, Stephanie J.; Magdesian, K. Gary; Hanna, Paul E.; Lofstedt, Jeanne

    2015-01-01

    This report describes a case of severe rhabdomyolysis in a pregnant mare associated with histopathologic and biochemical features of both selenium deficiency and acquired multiple acyl-CoA dehydrogenase deficiency (MADD) due to seasonal pasture myopathy (SPM). This case highlights the importance of assessing plasma selenium levels in horses with clinical signs of pasture myopathy as this deficiency may be a contributing or exacerbating factor. PMID:26538673

  7. Acquired multiple acyl-CoA dehydrogenase deficiency and marked selenium deficiency causing severe rhabdomyolysis in a horse.

    PubMed

    Gomez, Diego E; Valberg, Stephanie J; Magdesian, K Gary; Hanna, Paul E; Lofstedt, Jeanne

    2015-11-01

    This report describes a case of severe rhabdomyolysis in a pregnant mare associated with histopathologic and biochemical features of both selenium deficiency and acquired multiple acyl-CoA dehydrogenase deficiency (MADD) due to seasonal pasture myopathy (SPM). This case highlights the importance of assessing plasma selenium levels in horses with clinical signs of pasture myopathy as this deficiency may be a contributing or exacerbating factor.

  8. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  9. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Download PDF Open All Close All Description Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a condition that prevents the body from converting certain fats into energy, especially during periods without food (fasting). Signs and symptoms of SCAD deficiency may ...

  10. [The isotope effect in the glycine dehydrogenase reaction is the cause of the intramolecular isotope inhomogeneity of glucose carbon of starch synthesized during photorespiration].

    PubMed

    Ivlev, A A

    2005-01-01

    The isotope distribution of glucose-6-phosphate in the main pathways of its biosynthesis (in the processes of CO2 assimilation and photorespiration in the Calvin cycle and during resynthesis from the degradation products of lipids and proteins) was analyzed. For reconstructing the isotope distribution of glucoso-6-phosphate synthesized in the Calvin cycle during photorespiration, the functioning of the cycle with regard to its coupling with the glycolate chain, which together constitute the photorespiration chain, was considered. In the glycine dehydrogenase reaction of the glycolate cycle, there arises an isotope effect, which determines the distribution of isotopes in the glucose-6-phosphate and other photorespiration products. The isotope effect of the glycine dehydrogenase reaction increases at the expense of the exhaustion of glucose resources feeding the photorespiration chain. As a result, atoms C-3 and C-4 of glucose become enriched with the heavy isotope, and subsequent mixing of atoms and the specificity of interactions in the photorespiration chain lead to an isotope weighting of the other atoms and an uneven distribution of carbon isotopes in glucose-6-phosphate and other photorespiration products. A comparison of the glucose-6-phosphate isotope patterns in different pathways of the synthesis with the experimental data on the distribution of carbon isotopes in starch glucose of storing plant organs led to the conclusion that the starch resources are predominantly formed at the expense of glucose-6-phosphate of photorespiration. This is consistent with the earlier observed enhancement of photorespiration at the stage of plant maturation.

  11. Formate Dehydrogenase, an Enzyme of Anaerobic Metabolism, Is Induced by Iron Deficiency in Barley Roots1

    PubMed Central

    Suzuki, Kazuya; Itai, Reiko; Suzuki, Koichiro; Nakanishi, Hiromi; Nishizawa, Naoko-Kishi; Yoshimura, Etsuro; Mori, Satoshi

    1998-01-01

    To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants. PMID:9489019

  12. Severe Malaria Complicated by G6PD Deficiency in a Pediatric Tanzanian Immigrant

    PubMed Central

    Damhoff, Heather N.; Stadler, Laura P.

    2014-01-01

    Approximately 1,500 cases of malaria are diagnosed in the United States each year. Most cases are travelers and immigrants returning from parts of the world where malaria transmission occurs. Malaria is the most frequent cause of systemic febrile illness without localizing symptoms in travelers returning from the developing world, so vigilance by providers is needed when evaluating patients returning from areas in which malaria is endemic. Despite the availability of effective treatment, malaria still accounts for more than 1 million deaths per year worldwide, with rates being disproportionately high in young children under the age of 5. We present the case of a 4-year-old refugee who emigrated from Tanzania with severe malaria due to dual infections of Plasmodium falciparum and P. ovale, whose treatment course was complicated by quinidine gluconate cardiotoxicity and glucose-6-phosphate dehydrogenase deficiency. PMID:25762879

  13. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  14. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... from food are broken down into parts called amino acids . Amino acids can be further processed to provide energy for ... an enzyme that helps break down a particular amino acid called valine. Most people with IBD deficiency are ...

  15. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    MedlinePlus

    ... 3 deficiency . At puberty, conversion of androstenedione to testosterone increases in various tissues of the body through processes involving other enzymes. The additional testosterone results in the development of male secondary sex ...

  16. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    PubMed

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation.

  17. Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*

    PubMed Central

    Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas

    2015-01-01

    Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446

  18. Field trials of a rapid test for G6PD deficiency in combination with a rapid diagnosis of malaria.

    PubMed

    Tantular, I S; Iwai, K; Lin, K; Basuki, S; Horie, T; Htay, H H; Matsuoka, H; Marwoto, H; Wongsrichanalai, C; Dachlan, Y P; Kojima, S; Ishii, A; Kawamoto, F

    1999-04-01

    A rapid single-step screening method for detection of glucose-6-phosphate dehydrogenase (G6 PD) deficiency was evaluated on Halmahera Island, Maluku Province, Indonesia, and in Shan and Mon States, Myanmar, in combination with a rapid diagnosis of malaria by an acridine orange staining method. Severe deficiency was detected by the rapid test in 45 of 1126 volunteers in Indonesia and 54 of 1079 in Myanmar, but it was difficult to distinguish blood samples with mild deficiency from those with normal activity. 89 of 99 severely deficient cases were later confirmed by formazan ring method in the laboratory, but 5 with mild and 5 with no deficiency were misdiagnosed as severe. Of the samples diagnosed as mild and no deficiency on-site, none was found to be severely deficient by the formazan method. Malaria patients were simultaenously++ detected on-site in 273 samples on Halmahera island and 277 samples from Shan and Mon States. In Mon State, primaquine was prescribed safely to G6 PD-normal malaria patients infected with Plasmodium vivax and/or gametocytes of P. falciparum. The new rapid test for G6 PD deficiency may be useful for detecting severe cases under field conditions, and both rapid tests combined are can be useful in malaria-endemic areas, facilitating early diagnosis, prompt and radical treatment of malaria and suppression of malaria transmission.

  19. Xanthine Dehydrogenase (XDH) cross-reacting material in mutants of Drosophila melanogaster deficient in XDH activity.

    PubMed

    Browder, L W; Tucker, L; Wilkes, J

    1982-02-01

    Rocket immunoelectrophoresis was used to estimate xanthine dehydrogenase cross-reacting material (XDH-CRM) in strains containing the cin and cin mutant genes, which are deficient in XDH enzymatic activity. CRM levels were determined as percentages of CRM in the Oregon-R wild-type strain. The mutant strains contain 72 and 76% of Oregon-R CRM, respectively. CRM levels in strains containing the XDH-deficient mutant genes lxd and mal are 93 and 105%, respectively. The high levels of CRM in these four mutant strains indicate that the primary effects of the mutant genes are on the function of XDH protein rather than its accumulation.

  20. 17beta-hydroxysteroid dehydrogenase 3 deficiency in a male pseudohermaphrodite

    PubMed Central

    Mains, Lindsay M.; Vakili, Babak; Lacassie, Yves; Andersson, Stefan; Lindqvist, Annika; Rock, John A.

    2008-01-01

    Objective To present the clinical, biochemical, and genetic features of a male pseudohermaphrodite due to 17beta-hydroxysteroid dehydrogenase 3 (17beta-HSD3) deficiency. Design Case report. Setting University teaching hospital Gynecology practice Patient(s) A 15-year-old black American male pseudohermaphrodite with 17beta-HSD3 deficiency. Intervention(s) Laboratory evaluation, genetic mutation analysis, bilateral gonadectomy, hormone replacement. Main Outcome Measure(s) Endocrinologic evaluation and genetic analysis. Result(s) A diagnosis of 17beta-HSD3 deficiency made on the basis of hormone evaluation was confirmed through genetic mutation analysis of the HSD17B3 gene. Female phenotype was attained after gonadectomy, passive vaginal dilatation, and hormone therapy. Conclusion(s) 17beta-HSD3 deficiency was diagnosed in this patient based on endocrinologic evaluation and confirmed with genetic mutation analysis. The patient was able to retain her female sexual identity after surgical and medical treatment. PMID:17509588

  1. Dihydropyrimidine Dehydrogenase Deficiency in Two Malaysian Siblings with Abnormal MRI Findings

    PubMed Central

    Chen, Bee Chin; Mohd Rawi, Rowani; Meinsma, Rutger; Meijer, Judith; Hennekam, Raoul C.M.; van Kuilenburg, André B.P.

    2014-01-01

    Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine metabolism. Deficiency of this enzyme leads to an accumulation of thymine and uracil and a deficiency of metabolites distal to the catabolic enzyme. The disorder presents with a wide clinical spectrum, ranging from asymptomatic to severe neurological manifestations, including intellectual disability, seizures, microcephaly, autistic behavior, and eye abnormalities. Here, we report on an 11-year-old Malaysian girl and her 6-year-old brother with DPD deficiency who presented with intellectual disability, microcephaly, and hypotonia. Brain MRI scans showed generalized cerebral and cerebellar atrophy and callosal body dysgenesis in the boy. Urine analysis showed strongly elevated levels of uracil in the girl and boy (571 and 578 mmol/mol creatinine, respectively) and thymine (425 and 427 mmol/mol creatinine, respectively). Sequence analysis of the DPYD gene showed that both siblings were homozygous for the mutation c.1651G>A (pAla551Thr). PMID:25565930

  2. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism.

    PubMed

    Roe, C R; Cederbaum, S D; Roe, D S; Mardach, R; Galindo, A; Sweetman, L

    1998-12-01

    A 2-year-old female was well until 12 months of age when she was found to be anemic and had dilated cardiomyopathy. Total plasma carnitine was 6 microM and acylcarnitine analysis while receiving carnitine supplement revealed an increase in the four-carbon species. Urine organic acids were normal. In vitro analysis of the mitochondrial pathways for beta oxidation, and leucine, valine, and isoleucine metabolism was performed in fibroblasts using stable isotope-labeled precursors to these pathways followed by acylcarnitine analysis by tandem mass spectrometry. 16-2H3-palmitate was metabolized normally down to the level of butyryl-CoA thus excluding SCAD deficiency. 13C6-leucine and 13C6-isoleucine were also metabolized normally. 13C5-valine incubation revealed a significant increase in 13C4-isobutyrylcarnitine without any incorporation into propionylcarnitine as is observed normally. These same precursors were also evaluated in fibroblasts with proven ETF-QO deficiency in which acyl-CoA dehydrogenase deficiencies in each of these pathways was clearly identified. These results indicate that in the human, there is an isobutyryl-CoA dehydrogenase which exists as a separate enzyme serving only the valine pathway in addition to the 2-methyl branched-chain dehydrogenase which serves both the valine and the isoleucine pathways in both rat and human.

  3. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood.

    PubMed Central

    Van Hove, J L; Zhang, W; Kahler, S G; Roe, C R; Chen, Y T; Terada, N; Chace, D H; Iafolla, A K; Ding, J H; Millington, D S

    1993-01-01

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is a disorder of fatty acid catabolism, with autosomal recessive inheritance. The disease is characterized by episodic illness associated with potentially fatal hypoglycemia and has a relatively high frequency. A rapid and reliable method for the diagnosis of MCAD deficiency is highly desirable. Analysis of specific acylcarnitines was performed by isotope-dilution tandem mass spectrometry on plasma or whole blood samples from 62 patients with MCAD deficiency. Acylcarnitines were also analyzed in 42 unaffected relatives of patients with MCAD deficiency and in other groups of patients having elevated plasma C8 acylcarnitine, consisting of 32 receiving valproic acid, 9 receiving medium-chain triglyceride supplement, 4 having multiple acyl-coenzyme A dehydrogenase deficiency, and 8 others with various etiologies. Criteria for the unequivocal diagnosis of MCAD deficiency by acylcarnitine analysis are an elevated C8-acylcarnitine concentration (> 0.3 microM), a ratio of C8/C10 acylcarnitines of > 5, and lack of elevated species of chain length > C10. These criteria were not influenced by clinical state, carnitine treatment, or underlying genetic mutation, and no false-positive or false-negative results were obtained. The same criteria were also successfully applied to profiles from neonatal blood spots retrieved from the original Guthrie cards of eight patients. Diagnosis of MCAD deficiency can therefore be made reliably through the analysis of acylcarnitines in blood, including presymptomatic neonatal recognition. Tandem mass spectrometry is a convenient method for fast and accurate determination of all relevant acylcarnitine species. PMID:8488845

  4. Re-examination of the roles of PEP and Mg2+ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of Zea mays. Effects of the activators glucose 6-phosphate and glycine.

    PubMed Central

    Tovar-Méndez, A; Rodríguez-Sotres, R; López-Valentín, D M; Muñoz-Clares, R A

    1998-01-01

    To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea mays leaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a near-physiological concentration range. At pH 7.3, in the absence of activators, the initial velocity data obtained with both forms of the enzyme are consistent with the exclusive binding of MgPEP to the active site and of fPEP to an activating allosteric site. At pH 8.3, and in the presence of saturating concentrations of glucose 6-phosphate (Glc6P) or Gly, the free species also combined with the active site in the free enzyme, but with dissociation constants at least 35-fold that estimated for MgPEP. The latter dissociation constant was lowered to the same extent by saturating Glc6P and Gly, to approx. one-tenth and one-sixteenth in the non-phosphorylated and phosphorylated enzymes respectively. When Glc6P is present, fPEP binds to the active site in the free enzyme better than fMg2+, whereas the metal ion binds better in the presence of Gly. Saturation of the enzyme with Glc6P abolished the activation by fPEP, consistent with a common binding site, whereas saturation with Gly increased the affinity of the allosteric site for fPEP. Under all the conditions tested, our results suggest that fPEP is not able to combine with the allosteric site in the free enzyme, i.e. it cannot combine until after MgPEP, fPEP or fMg2+ are bound at the active site. The physiological role of Mg2+ in the regulation of the enzyme is only that of a substrate, mainly as part of the MgPEP complex. The kinetic properties of maize leaf PEPC reported here are consistent with the enzyme being well below saturation under the physiological concentrations of fMg2+ and PEP, particularly during the dark period; it is therefore suggested that the basal PEPC activity in vivo is very low, but highly

  5. Screening for medium chain acyl-CoA dehydrogenase deficiency using electrospray ionisation tandem mass spectrometry

    PubMed Central

    Clayton, P.; Doig, M.; Ghafari, S.; Meaney, C.; Taylor, C.; Leonard, J.; Morris, M.; Johnson, A.

    1998-01-01

    OBJECTIVE—To establish criteria for the diagnosis of medium chain acyl-CoA dehydrogenase (MCAD) deficiency in the UK population using a method in which carnitine species eluted from blood spots are butylated and analysed by electrospray ionisation tandem mass spectrometry (ESI-MS/MS).
DESIGN—Four groups were studied: (1) 35 children, aged 4 days to 16.2 years, with proven MCAD deficiency (mostly homozygous for the A985G mutation, none receiving carnitine supplements); (2) 2168control children; (3) 482 neonates; and (4) 15 MCAD heterozygotes.
RESULTS—All patients with MCAD deficiency had an octanoylcarnitine concentration ([C8-Cn]) > 0.38 µM and no accumulation of carnitine species > C10 or < C6. Among the patients with MCAD deficiency, the [C8-Cn] was significantly lower in children > 10 weeks old and in children with carnitine depletion (free carnitine < 20 µM). Neonatal blood spots from patients with MCAD deficiency had a [C8-Cn] > 1.5 µM, whereas in heterozygotes and other normal neonates the [C8-Cn] was < 1.0 µM. In contrast, the blood spot [C8-Cn] in eight of 27 patients with MCAD deficiency > 10 weeks old fell within the same range as five of 15 MCAD heterozygotes (0.38-1.0 µM). However, the free carnitine concentrations were reduced (< 20 µM) in the patients with MCAD deficiency but normal in the heterozygotes.
CONCLUSIONS—Criteria for the diagnosis of MCAD deficiency using ESI-MS/MS must take account of age and carnitine depletion. If screening is undertaken at 7-10 days, the number of false positive and negative results should be negligible. Because there have been no instances of death or neurological damage following diagnosis of MCAD deficiency in our patient group, a strong case can be made for neonatal screening for MCAD deficiency in the UK.

 PMID:9797589

  6. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  7. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    PubMed Central

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  8. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  9. Eye Findings on Vigabatrin and Taurine Treatment in Two Patients with Succinic Semialdehyde Dehydrogenase Deficiency.

    PubMed

    Horvath, Gabriella-Ana; Hukin, Juliette; Stockler-Ipsiroglu, Sylvia G; Aroichane, Maryam

    2016-08-01

    We describe for the first time two patients with succinic semialdehyde dehydrogenase (SSADH) deficiency, who were found to have abnormal electroretinogram (ERG) examinations at baseline, or 6 months after vigabatrin treatment was started. This was somewhat reversible with L-taurine treatment, or minimally progressive. The mechanism of injury to the retina may be induced by elevations of γ-aminobutyric acid causing peripheral photoreceptor and ganglion cell damage, and this can be exacerbated by the use of vigabatrin. The use of taurine supplementation in tandem with vigabatrin may allow reversal of retinopathy and mitigate or slow down further deterioration. Further prospective clinical trials are required to evaluate this further. We recommend starting L-taurine therapy together with vigabatrin if a trial of vigabatrin is commenced in a patient with SSADH deficiency. Close monitoring of visual fields or ERG is also recommended at baseline and during vigabatrin therapy.

  10. Carboxylate metabolism changes induced by Fe deficiency in barley, a Strategy II plant species.

    PubMed

    López-Millán, Ana-Flor; Grusak, Michael A; Abadía, Javier

    2012-07-15

    The effects of iron (Fe) deficiency on carboxylate metabolism were investigated in barley (Hordeum vulgare L.) using two cultivars, Steptoe and Morex, which differ in their Fe efficiency response. In both cultivars, root extracts of plants grown in Fe-deficient conditions showed higher activities of enzymes related to organic acid metabolism, including citrate synthase, malate dehydrogenase and phosphoenolpyruvate carboxylase, compared to activities measured in root extracts of Fe-sufficient plants. Accordingly, the concentration of total carboxylates was higher in Fe-deficient roots of both cultivars, with citrate concentration showing the greatest increase. In xylem sap, the concentration of total carboxylates was also higher with Fe deficiency in both cultivars, with citrate and malate being the major organic acids. Leaf extracts of Fe-deficient plants also showed increases in citric acid concentration and in the activities of glucose-6-phosphate dehydrogenase and fumarase activities, and decreases in aconitase activity. Our results indicate that changes in root carboxylate metabolism previously reported in Strategy I species also occur in barley, a Strategy II plant species, supporting the existence of anaplerotic carbon fixation via increases in the root activities of these enzymes, with citrate playing a major role. However, these changes occur less intensively than in Strategy I plants. Activities of the anaerobic metabolism enzymes pyruvate decarboxylase and lactate dehydrogenase did not change in barley roots with Fe deficiency, in contrast to what occurs in Strategy I plants, suggesting that these changes may be Strategy I-specific. No significant differences were observed in overall carboxylate metabolism between cultivars, for plants challenged with high or low Fe treatments, suggesting that carboxylate metabolism changes are not behind the Fe-efficiency differences between these cultivars. Citrate synthase was the only measured enzyme with

  11. Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria).

    PubMed

    Gupta, Maneesh; Greven, Rachel; Jansen, Erwin E W; Jakobs, Cornelis; Hogema, Boris M; Froestl, Wolfgang; Snead, O Carter; Bartels, Hilke; Grompe, Markus; Gibson, K Michael

    2002-07-01

    Therapeutic intervention for human succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria) has been limited to vigabatrin (VGB). Pharmacologically, VGB should be highly effective due to 4-aminobutyrate-transaminase (GABA-transaminase) inhibition, lowering succinic semialdehyde and, thereby, gamma-hydroxybutyric acid (GHB) levels. Unfortunately, clinical efficacy has been limited. Because GHB possesses a number of potential receptor interactions, we addressed the hypothesis that antagonism of these interactions in mice with SSADH deficiency could lead to the development of novel treatment strategies for human patients. SSADH-deficient mice have significantly elevated tissue GHB levels, are neurologically impaired, and die within 4 weeks postnatally. In the current report, we compared oral versus intraperitoneal administration of VGB, CGP 35348 [3-aminopropyl(diethoxymethyl)phosphinic acid, a GABA(B) receptor antagonist], and the nonprotein amino acid taurine in rescue of SSADH-deficient mice from early death. In addition, we assessed the efficacy of the specific GHB receptor antagonist NCS-382 (6,7,8,9-tetrahydro-5-[H]benzocycloheptene-5-ol-6-ylideneacetic acid) using i.p. administration. All interventions led to significant lifespan extension (22-61%), with NCS-382 being most effective (50-61% survival). To explore the limited human clinical efficacy of VGB, we measured brain GHB and gamma-aminobutyric acid (GABA) levels in SSADH-deficient mice receiving VGB. Whereas high-dose VGB led to the expected elevation of brain GABA, we found no parallel decrease in GHB levels. Our data indicate that, at a minimum, GHB and GABA(B) receptors are involved in the pathophysiology of SSADH deficiency. We conclude that taurine and NCS-382 may have therapeutic relevance in human SSADH deficiency and that the poor clinical efficacy of VGB in this disease may relate to an inability to decrease brain GHB concentrations.

  12. G6PD deficiency: global distribution, genetic variants and primaquine therapy.

    PubMed

    Howes, Rosalind E; Battle, Katherine E; Satyagraha, Ari W; Baird, J Kevin; Hay, Simon I

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.

  13. G6PD Deficiency in an HIV Clinic Setting in the Dominican Republic

    PubMed Central

    Xu, Julia Z.; Francis, Richard O.; Lerebours Nadal, Leonel E.; Shirazi, Maryam; Jobanputra, Vaidehi; Hod, Eldad A.; Jhang, Jeffrey S.; Stotler, Brie A.; Spitalnik, Steven L.; Nicholas, Stephen W.

    2015-01-01

    Because human immunodeficiency virus (HIV)-infected patients receive prophylaxis with oxidative drugs, those with glucose-6-phosphate dehydrogenase (G6PD) deficiency may experience hemolysis. However, G6PD deficiency has not been studied in the Dominican Republic, where many individuals have African ancestry. Our objective was to determine the prevalence of G6PD deficiency in Dominican HIV-infected patients and to attempt to develop a cost-effective algorithm for identifying such individuals. To this end, histories, chart reviews, and G6PD testing were performed for 238 consecutive HIV-infected adult clinic patients. The overall prevalence of G6PD deficiency (8.8%) was similar in males (9.3%) and females (8.5%), and higher in Haitians (18%) than Dominicans (6.4%; P = 0.01). By logistic regression, three clinical variables predicted G6PD status: maternal country of birth (P = 0.01) and a history of hemolysis (P = 0.01) or severe anemia (P = 0.03). Using these criteria, an algorithm was developed, in which a patient subset was identified that would benefit most from G6PD screening, yielding a sensitivity of 94.7% and a specificity of 97.2%, increasing the pretest probability (8.8–15.1%), and halving the number of patients needing testing. This algorithm may provide a cost-effective strategy for improving care in resource-limited settings. PMID:26240158

  14. Markers of oxidative stress in umbilical cord blood from G6PD deficient African newborns

    PubMed Central

    Bengo, Derrick; Cusick, Sarah E.; Ndidde, Susan; Slusher, Tina M.

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder that affects as many as 400 million people worldwide, making it the most common enzymatic defect. Subjects with G6PD deficiency are more likely to develop neonatal hyperbilirubinemia potentially leading to kernicterus and are at increased risk for acute hemolytic anemia when exposed to pro-oxidant compounds such as anti-malarial drugs. We collected umbilical cord blood from 300 males born in Uganda to assess for novel markers of systemic oxidative stress. We determined that 10.7% of the samples collected were G6PD A- deficient (G202A/A376G) and when these were compared with unaffected controls, there was significantly higher 8-hydroxy-2’-deoxyguanosine (8-OHdG) concentration, elevated ferritin, increased leukocyte count and higher small molecule antioxidant capacity. These data suggest increased baseline oxidative stress and an elevated antioxidant response in umbilical cord blood of patients with G6PD deficiency. PMID:28235023

  15. The role of nicotinamide–adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide–adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary

    PubMed Central

    Flint, A. P. F.; Denton, R. M.

    1970-01-01

    1. Superovulated rat ovary was found to contain high activities of NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD–malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP–citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective Km values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP–malate dehydrogenase or NADP–isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed

  16. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  17. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis.

    PubMed

    Kipari, Tiina; Hadoke, Patrick W F; Iqbal, Javaid; Man, Tak-Yung; Miller, Eileen; Coutinho, Agnes E; Zhang, Zhenguang; Sullivan, Katie M; Mitic, Tijana; Livingstone, Dawn E W; Schrecker, Christopher; Samuel, Kay; White, Christopher I; Bouhlel, M Amine; Chinetti-Gbaguidi, Giulia; Staels, Bart; Andrew, Ruth; Walker, Brian R; Savill, John S; Chapman, Karen E; Seckl, Jonathan R

    2013-04-01

    11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11β-HSD1 inhibition or deficiency attenuated atherosclerosis (74-76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11β-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11β-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11β-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.

  18. The Spectrum of Pyruvate Dehydrogenase Complex Deficiency: Clinical, Biochemical and Genetic Features in 371 Patients

    PubMed Central

    Patel, Kavi P.; O'Brien, Thomas W.; Subramony, Sankarasubramon H.; Shuster, Jonathan; Stacpoole, Peter W.

    2013-01-01

    Context Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. Objective We reviewed 371 cases of PDC deficiency, published between 1970-2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 Binding Protein of the complex. Data Sources and Extraction English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. Results Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. Conclusions Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤20. PMID:22079328

  19. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients

    PubMed Central

    Patel, Kavi P.; O’Brien, Thomas W.; Subramony, Sankarasubramon H.; Shuster, Jonathan; Stacpoole, Peter W.

    2014-01-01

    Context Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. Objective We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. Data sources and extraction English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. Results Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. Conclusions Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio≤20. PMID:22896851

  20. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase.

    PubMed

    Hogema, B M; Gupta, M; Senephansiri, H; Burlingame, T G; Taylor, M; Jakobs, C; Schutgens, R B; Froestl, W; Snead, O C; Diaz-Arrastia, R; Bottiglieri, T; Grompe, M; Gibson, K M

    2001-10-01

    Succinate semialdehyde dehydrogenase (ALDH5A1, encoding SSADH deficiency is a defect of 4-aminobutyric acid (GABA) degradation that manifests in humans as 4-hydroxybutyric (gamma-hydroxybutyric, GHB) aciduria. It is characterized by a non-specific neurological disorder including psychomotor retardation, language delay, seizures, hypotonia and ataxia. The current therapy, vigabatrin (VGB), is not uniformly successful. Here we report the development of Aldh5a1-deficient mice. At postnatal day 16-22 Aldh5a1-/- mice display ataxia and develop generalized seizures leading to rapid death. We observed increased amounts of GHB and total GABA in urine, brain and liver homogenates and detected significant gliosis in the hippocampus of Aldh5a1-/- mice. We found therapeutic intervention with phenobarbital or phenytoin ineffective, whereas intervention with vigabatrin or the GABAB receptor antagonist CGP 35348 (ref. 2) prevented tonic-clonic convulsions and significantly enhanced survival of the mutant mice. Because neurologic deterioration coincided with weaning, we hypothesized the presence of a protective compound in breast milk. Indeed, treatment of mutant mice with the amino acid taurine rescued Aldh5a1-/- mice. These findings provide insight into pathomechanisms and may have therapeutic relevance for the human SSADH deficiency disease and GHB overdose and toxicity.

  1. Pegloticase Injection

    MedlinePlus

    ... doctor if you have glucose-6-phosphate dehydrogenase (G6PD) deficiency (an inherited blood disease). Your doctor may test you for G6PD deficiency before you start to receive pegloticase injection. If ...

  2. Precautionary Measures for Successful Open Heart Surgery in G6PD Deficient Patient- A Case Report

    PubMed Central

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is among the most common enzymatic disorders of red blood cells. Cardiac surgeries on this group of individuals are associated with an additional risk in terms of impaired oxygenation, prolonged ventilation and increased risk of haemolysis. These patients have a very low threshold for haemolysis due to oxidative stress. Many commonly used drugs also predispose the individual for haemolysis when they are subjected to surgery. Here we present a known case of G6PD deficient patient with symptoms of breathlessness for the last nine years who was taken for surgery with pre-planned precautionary measures to avoid unnecessary haemolysis. The echocardiography report revealed severe mixed mitral lesion and moderate tricuspid regurgitation. On general examination she had mild pallor and icterus. We planned for a thorough investigation to prepare her for mitral valve replacement and tricuspid annuloplasty. These groups of patients are at high risk of haemolysis during perioperative period and need prolonged mechanical ventilation and hospital stay due to impaired oxygen carrying capacity and oxidative stress due to deficient free radical scavenging system. The patient underwent mechanical mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with precautionary measures to prevent the risk of haemolysis and associated complications. She had an uneventful recovery. PMID:28208930

  3. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications.

    PubMed

    Luzzatto, Lucio; Seneca, Elisa

    2014-02-01

    That primaquine and other drugs can trigger acute haemolytic anaemia in subjects who have an inherited mutation of the glucose 6-phosphate dehydrogenase (G6PD) gene has been known for over half a century: however, these events still occur, because when giving the drug either the G6PD status of a person is not known, or the risk of this potentially life-threatening complication is under-estimated. Here we review briefly the genetic basis of G6PD deficiency, and then the pathophysiology and the clinical features of drug-induced haemolysis; we also update the list of potentially haemolytic drugs (which includes rasburicase). It is now clear that it is not good practice to give one of these drugs before testing a person for his/her G6PD status, especially in populations in whom G6PD deficiency is common. We discuss therefore how G6PD testing can be done reconciling safety with cost; this is once again becoming of public health importance, as more countries are moving along the pathway of malaria elimination, that might require mass administration of primaquine. Finally, we sketch the triangular relationship between malaria, antimalarials such as primaquine, and G6PD deficiency: which is to some extent protective against malaria, but also a genetically determined hazard when taking primaquine.

  4. Precautionary Measures for Successful Open Heart Surgery in G6PD Deficient Patient- A Case Report.

    PubMed

    Kumar, Rupesh

    2016-12-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is among the most common enzymatic disorders of red blood cells. Cardiac surgeries on this group of individuals are associated with an additional risk in terms of impaired oxygenation, prolonged ventilation and increased risk of haemolysis. These patients have a very low threshold for haemolysis due to oxidative stress. Many commonly used drugs also predispose the individual for haemolysis when they are subjected to surgery. Here we present a known case of G6PD deficient patient with symptoms of breathlessness for the last nine years who was taken for surgery with pre-planned precautionary measures to avoid unnecessary haemolysis. The echocardiography report revealed severe mixed mitral lesion and moderate tricuspid regurgitation. On general examination she had mild pallor and icterus. We planned for a thorough investigation to prepare her for mitral valve replacement and tricuspid annuloplasty. These groups of patients are at high risk of haemolysis during perioperative period and need prolonged mechanical ventilation and hospital stay due to impaired oxygen carrying capacity and oxidative stress due to deficient free radical scavenging system. The patient underwent mechanical mitral valve replacement and tricuspid annuloplasty under cardiopulmonary bypass with precautionary measures to prevent the risk of haemolysis and associated complications. She had an uneventful recovery.

  5. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications

    PubMed Central

    Luzzatto, Lucio; Seneca, Elisa

    2014-01-01

    That primaquine and other drugs can trigger acute haemolytic anaemia in subjects who have an inherited mutation of the glucose 6-phosphate dehydrogenase (G6PD) gene has been known for over half a century: however, these events still occur, because when giving the drug either the G6PD status of a person is not known, or the risk of this potentially life-threatening complication is under-estimated. Here we review briefly the genetic basis of G6PD deficiency, and then the pathophysiology and the clinical features of drug-induced haemolysis; we also update the list of potentially haemolytic drugs (which includes rasburicase). It is now clear that it is not good practice to give one of these drugs before testing a person for his/her G6PD status, especially in populations in whom G6PD deficiency is common. We discuss therefore how G6PD testing can be done reconciling safety with cost; this is once again becoming of public health importance, as more countries are moving along the pathway of malaria elimination, that might require mass administration of primaquine. Finally, we sketch the triangular relationship between malaria, antimalarials such as primaquine, and G6PD deficiency: which is to some extent protective against malaria, but also a genetically determined hazard when taking primaquine. PMID:24372186

  6. G6PD deficiency and fava bean consumption do not produce hemolysis in Thailand.

    PubMed

    Kitayaporn, D; Charoenlarp, P; Pattaraarechachai, J; Pholpoti, T

    1991-06-01

    Favism, a hemolytic condition associated with fava bean consumption among the glucose-6-phosphate dehydrogenase (G6PD) deficient persons, is well described in the Middle East and Mediterranean areas. However, it is not well documented among the Thais or other Southeast Asians. It is possible that it does exist but that hemolysis which develops is of very minor degree and thus escapes clinical detection. This cross-sectional study hypothesizes that if the fava bean and G6PD deficiency interact in the Thai population, they should cause a significant difference in hematocrit level. The study was carried out in a community hospital in a malaria endemic area. We found that there was a trivial difference of the hematocrit (approximately 1%) which was too small to warrant any clinical significance after controlling for the extraneous effects of age, sex, use of malaria chemoprophylaxis, falciparum infection, use of analgesics/antipyretics and admission status of the patients (p = 0.668). This may be due to the presence of different G6PD mutants to those found elsewhere or due to different consumption patterns of fava beans among the Thais compared to people in other areas with high prevalence of G6PD deficiency.

  7. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia

    PubMed Central

    Clarke, Geraldine M; Rockett, Kirk; Kivinen, Katja; Hubbart, Christina; Jeffreys, Anna E; Rowlands, Kate; Jallow, Muminatou; Conway, David J; Bojang, Kalifa A; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D; Bougouma, Edith C; Sirima, Sodiomon B; Modiano, David; Amenga-Etego, Lucas N; Ghansah, Anita; Koram, Kwadwo A; Wilson, Michael D; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi K; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N; Manjurano, Alphaxard; Sepúlveda, Nuno; Clark, Taane G; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J; Phu, Nguyen Hoan; Quyen, Nguyen Ngoc; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy ME; Michon, Pascal; Mueller, Ivo; Molloy, Síle F; Campino, Susana; Kerasidou, Angeliki; Cornelius, Victoria J; Hart, Lee; Shah, Shivang S; Band, Gavin; Spencer, Chris CA; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara K; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effect has proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual’s level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations. DOI: http://dx.doi.org/10.7554/eLife.15085.001 PMID:28067620

  8. Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia.

    PubMed

    Clarke, Geraldine M; Rockett, Kirk; Kivinen, Katja; Hubbart, Christina; Jeffreys, Anna E; Rowlands, Kate; Jallow, Muminatou; Conway, David J; Bojang, Kalifa A; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D; Bougouma, Edith C; Sirima, Sodiomon B; Modiano, David; Amenga-Etego, Lucas N; Ghansah, Anita; Koram, Kwadwo A; Wilson, Michael D; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi K; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N; Manjurano, Alphaxard; Sepúlveda, Nuno; Clark, Taane G; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J; Phu, Nguyen Hoan; Quyen, Nguyen Ngoc; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy Me; Michon, Pascal; Mueller, Ivo; Molloy, Síle F; Campino, Susana; Kerasidou, Angeliki; Cornelius, Victoria J; Hart, Lee; Shah, Shivang S; Band, Gavin; Spencer, Chris Ca; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara K; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P

    2017-01-09

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effecthas proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual's level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations.

  9. A pivotal role for beta-aminoisobutyric acid and oxidative stress in dihydropyrimidine dehydrogenase deficiency?

    PubMed

    van Kuilenburg, A B P; Stroomer, A E M; Abeling, N G G M; van Gennip, A H

    2006-01-01

    Dihydropyrimidine dehydrogenase (DPD) constitutes the first step of the pyrimidine degradation pathway in which the pyrimidine bases uracil and thymine are catabolised to beta-alanine and beta-aminoisobutyric acid (beta-AIB), respectively. The mean concentration of beta-AIB was approximately 5- to 8-fold lower in urine of patients with a DPD deficiency, when compared to age-matched controls. Comparable levels of 8-hydroxydeoxyguanosine (8-OHdG) were present in urine from controls and DPD patients at the age <2 year. In contrast, slightly elevated levels of 8-OHdG were detected in urine from DPD patients with an age >2 year, suggesting the presence of increased oxidative stress.

  10. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    PubMed

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.

  11. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes.

    PubMed

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H; Skytt, Dorte M; Schousboe, Arne; Waagepetersen, Helle S

    2015-07-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels of extracellular glutamate independently of the GDH expression level. Moreover, increased intracellular glutamate content was observed in the GDH-deficient cells after a 2-hr incubation in the presence of 100 µM glutamate. It is significant that GDH-deficient cells exhibited an increased utilization of glucose in the presence of 250 and 500 µM glutamate, monitored as an increase in the accumulation of tritiated 2-deoxyglucose-6-phosphate. These findings underscore the importance of the expression level of GDH for the ability to utilize glutamate as an energy source fueling its own energy-requiring uptake.

  12. Cardiac Hypertrophy in Mice with Long-Chain Acyl-CoA Dehydrogenase (LCAD) or Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency

    PubMed Central

    Cox, Keith B.; Liu, Jian; Tian, Liqun; Barnes, Stephen; Yang, Qinglin; Wood, Philip A.

    2009-01-01

    Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-CoA dehydrogenase deficiency (VLCAD−/−) or long-chain acyl-CoA dehydrogenase deficiency (LCAD−/−) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD−/− male mice. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all wild-type [WT] mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Based on a clear male predilection, we investigated the role of dietary plant estrogenic compounds commonly found in mouse diets due to soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD−/− mice. Male LCAD−/− mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared to WT mice fed the same diet. There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD deficient mice fed a standard diet at ~3 months of age confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased about 40% in the LCAD−/− mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice due to either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and appeared to be attenuated either by endogenous estrogen in females or phytoestrogens in the diet as isoflavones in males. PMID:19736549

  13. Modelling primaquine-induced haemolysis in G6PD deficiency

    PubMed Central

    Watson, James; Taylor, Walter RJ; Menard, Didier; Kheng, Sim; White, Nicholas J

    2017-01-01

    Primaquine is the only drug available to prevent relapse in vivax malaria. The main adverse effect of primaquine is erythrocyte age and dose-dependent acute haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd). As testing for G6PDd is often unavailable, this limits the use of primaquine for radical cure. A compartmental model of the dynamics of red blood cell production and destruction was designed to characterise primaquine-induced haemolysis using a holistic Bayesian analysis of all published data and was used to predict a safer alternative to the currently recommended once weekly 0.75 mg/kg regimen for G6PDd. The model suggests that a step-wise increase in daily administered primaquine dose would be relatively safe in G6PDd. If this is confirmed, then were this regimen to be recommended for radical cure patients would not require testing for G6PDd in areas where G6PDd Viangchan or milder variants are prevalent. DOI: http://dx.doi.org/10.7554/eLife.23061.001 PMID:28155819

  14. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings.

    PubMed

    Soares-Fernandes, João P; Teixeira-Gomes, Roseli; Cruz, Romeu; Ribeiro, Manuel; Magalhães, Zita; Rocha, Jaime F; Leijser, Lara M

    2008-05-01

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making.

  15. G6PD Deficiency Does Not Enhance Susceptibility for Acquiring Helicobacter pylori Infection in Sardinian Patients

    PubMed Central

    Dore, Maria Pina; Marras, Giuseppina; Rocchi, Chiara; Soro, Sara

    2016-01-01

    Background Subjects with glucose-6-phosphate dehydrogenase (G6PD) deficiency may be more susceptible to infections due to impaired leukocyte bactericidal activity. The disorder is common in the Mediterranean area. The aim of this study was to investigate whether G6PD deficiency may be a risk factor for acquiring H. pylori infection. Methods We performed a retrospective study. Data from clinical records of 6565 patients (2278 men and 4287 women, median age 51, range 7‒94) who underwent upper endoscopy between 2002 and 2014 were collected. H. pylori status, assessed by histology plus rapid urease test or 13C-urea breath test, and G6PD status were also reported. A multiple logistic regression model was used to investigate the association between G6PD deficiency and H. pylori infection. Results Enzyme deficiency was detected in 12% (789/6565) of the entire cohort, and more specifically in 8.3% of men and in 14.0% of women. Overall, the proportion of patients positive for H. pylori was 50.6% and 51.5% among G6PD deficient and non-deficient patients (χ² = 0.271; p = 0.315). Moreover, among G6PD-deficient and normal patients the frequency of previous H. pylori infection was similar. After adjustment for age and gender the risk for acquiring H. pylori infection was similar in G6PD-deficient and normal patients. Only age was a strong statistically significant risk predictor. Conclusions These results demonstrate for the first time that G6PD deficiency does not enhance patients’ susceptibility to acquire H. pylori infection in Sardinia. PMID:27467818

  16. Severe generalized glutathione reductase deficiency after antitumor chemotherapy with BCNU" [1,3-bis(chloroethyl)-1-nitrosourea].

    PubMed

    Frischer, H; Ahmad, T

    1977-05-01

    Patients receiving BCNU [1,3-bis(2 chloroethyl)-1-nitrosourea] acquire a profound deficiency of erythrocytic oxidized glutathione reductase (GSSG-R) within minutes after the first intravenous injection of a single therapeutic dose (75 mg/M.2) of the drug. This effect is not accompanied by changes in the activites of 19 additional erythrocytic enzymes tested, is reproducible in vitro in a dose-related manner, and is not caused by the antitumor agents administered concurrently with the nitrosourea. The inactivation of erythrocytic GSSG-R results in decreased levels of reduced glutathione (GSH), marked GSH instability and disturbed hydrogen peroxide removal with a positibe ascorbate cyanide test and leads to increased susceptibility to oxidative hemolysis, particularly in glucose-6-phosphate dehydrogenase (G-6-D)-deficient patients. BCNU inhibits GSSG-R irreversibly, probably through alkylation rather than carbamylation, and the reappearance of enzyme activity in vivo after each chemotherapy pulse depends on the capacity of the marrow to release erythrocytes with normal activity formed during the drug-free interval. BCNU inhibits GSSG-R not only in erythrocytes but also in human leukocytes and platelets, as well as in yeast, monkey erythrocytes, and all the organs tested in the mouse. This generalized, severe, and specific GSSG-R deficiency caused by therapeutic doses of BCNU may enhance or mediate the toxic and antitumor effects of the nitrosourea and provides a simple yet sensitive biochemical means of monitoring bone marrow reserve in patients receiving multiple courses of chemotherapy with this agent.

  17. Is the flavin-deficient red blood cell common in Maremma, Italy, an important defense against malaria in this area?

    PubMed

    Anderson, B B; Scattoni, M; Perry, G M; Galvan, P; Giuberti, M; Buonocore, G; Vullo, C

    1994-11-01

    There is a high prevalence of a familial flavin-deficient red blood cell in Ferrara province in the Po delta in northern Italy, believed to have been selected for by malaria which was endemic from the 12th century. In the present study, activities of FAD-dependent red-cell glutathione reductase (EGR) in the Grosseto area of Maremma on the west coast of Italy where malaria was endemic from 300 B.C. are compared both with activities in the Ferrara area and with activities where there was no history of endemic malaria--in the Florence area and in London in people of Anglo-Saxon origin. EGR activities were similar in Grosseto and Ferrara and were significantly lower than in Florence and London. As previously found in Ferrara, low EGR activity in Grosseto was shown to be unrelated to low dietary riboflavin intake. These findings in Grosseto, suggesting selection by malaria, are particularly interesting because, unlike the situation in Ferrara and most other malarial areas, the prevalence of thalassemia and glucose-6-phosphate dehydrogenase deficiency is very low, and they do not appear to have been selected for in Maremma. It is possible that a flavin-deficient red cell, known to inhibit growth of the malaria parasite, was an important protecting factor in the population of this area over the centuries.

  18. Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins

    PubMed Central

    Swanson, Nancy L.; Li, Chen

    2016-01-01

    Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process. PMID:27773962

  19. Congenital 6-phosphogluconate dehydrogenase (6PGD) deficiency associated with chronic hemolytic anemia in a Spanish family.

    PubMed

    Vives Corrons, J L; Colomer, D; Pujades, A; Rovira, A; Aymerich, M; Merino, A; Aguilar i Bascompte, J L

    1996-12-01

    Clinical and metabolic studies were performed in four members of a Spanish family with partial (50%) 6 phosphogluconate dehydrogenase (6PGD) deficiency. In all cases the activities of 6 phosphogluconolactone (6PGL) and glutathione reductase (GR) were normal, and the molecular characterization performed in the partially purified 6PGD from the propositus showed normal kinetic and electrophoretic patterns. Two females (the propositus and her sister) suffered from a well-compensated chronic nonspherocytic hemolytic anemia (CNSHA) and exhibited decreased RBC glutathione (GSH) stability with increased oxidative susceptibility, defined by enhanced malonyldialdehyde (MDA) generation "in vitro." The other two members of the family (the propositus's mother and brother) were clinically asymptomatic. In the propositus and her sister, RBC metabolism exhibited a markedly abnormal concentration of glycolytic intermediates, mainly characterized by striking increases in fructose 1,6 bisphosphate (50-fold), dihydroxiacetone-phosphate (20-fold) and glyceraldehyde 3-phosphate (tenfold). Although the precise mechanism of the hemolysis in the two patients is unknown, the enhanced oxidative threat observed in their RBCs may interfere in some way with the glycolytic pathway function, leading to a marked increase in certain metabolic intermediates located before the glyceraldehyde 3 phosphate dehydrogenase (GA3PD) step. Since it seems that GA3PD half-life is modulated by fluctuations of the cytosolic redox status, an "in situ" approach was simulated by using permeabilized RBCs. In these conditions, GA3PD activity was significantly lower in the propositus and her sister than in the asymptomatic members of the family and the simultaneous normal control.

  20. G6PD deficiency in Latin America: systematic review on prevalence and variants

    PubMed Central

    Monteiro, Wuelton M; Val, Fernando FA; Siqueira, André M; Franca, Gabriel P; Sampaio, Vanderson S; Melo, Gisely C; Almeida, Anne CG; Brito, Marcelo AM; Peixoto, Henry M; Fuller, Douglas; Bassat, Quique; Romero, Gustavo AS; Maria Regina F, Oliveira; Marcus Vinícius G, Lacerda

    2014-01-01

    Plasmodium vivax radical cure requires the use of primaquine (PQ), a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA) and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10%) of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available. PMID:25141282

  1. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  2. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    PubMed

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  3. 17Beta-hydroxysteroid dehydrogenase-2 deficiency and progesterone resistance in endometriosis.

    PubMed

    Bulun, Serdar E; Cheng, You-Hong; Pavone, Mary Ellen; Yin, Ping; Imir, Gonca; Utsunomiya, Hiroki; Thung, Stephen; Xue, Qing; Marsh, Erica E; Tokunaga, Hideki; Ishikawa, Hiroshi; Kurita, Takeshi; Su, Emily J

    2010-01-01

    Estradiol (E2) stimulates the growth and inflammation in the ectopic endometriotic tissue that commonly resides on the pelvic organs. Several clinical and laboratory-based observations are indicative of resistance to progesterone action in endometriosis. The molecular basis of progesterone resistance in endometriosis may be related to an overall reduction in the levels of progesterone receptor (PR). In normal endometrium, progesterone acts via PR on stromal cells to induce secretion of paracrine factor(s) that in turn stimulate neighboring epithelial cells to express the enzyme 17beta-hydroxysteroid dehydrogenase type 2 (HSD17B2). HSD17B2 is an extremely efficient enzyme and rapidly metabolizes the biologically potent estrogen E2 to weakly estrogenic estrone. In endometriotic tissue, progesterone is incapable of inducing epithelial HSD17B2 expression due to a defect in stromal cells. The inability of endometriotic stromal cells to produce progesterone-induced paracrine factors that stimulate HSD17B2 may be due to the very low levels of PR observed in vivo in endometriotic tissue. The end result is deficient metabolism of E2 in endometriosis giving rise to high local concentrations of this mitogen. The molecular details of this physiological paracrine interaction between the stroma and epithelium in normal endometrium and its lack thereof in endometriosis are discussed.

  4. Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in Portugal.

    PubMed

    Ventura, F V; Leandro, P; Luz, A; Rivera, I A; Silva, M F B; Ramos, R; Rocha, H; Lopes, A; Fonseca, H; Gaspar, A; Diogo, L; Martins, E; Leão-Teles, E; Vilarinho, L; Tavares de Almeida, I

    2014-06-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.

  5. Medium chain acyl-CoA dehydrogenase deficiency detected among Hispanics by New Jersey newborn screening.

    PubMed

    Anderson, Sharon; Botti, Christina; Li, Bo; Millonig, James H; Lyon, Elaine; Millson, Alison; Karabin, Suzanne S M; Brooks, Susan Sklower

    2012-09-01

    In the follow-up of New Jersey newborn screens suggestive of medium chain acyl-CoA dehydrogenase deficiency (MCADD) during a 30-month period, we identified five patients of Hispanic American ethnicity. With information provided by the New Jersey Department of Health and Human Services Newborn Screening program we calculated an overall cumulative incidence of approximately 7.20/100,000 for MCADD; 7.58/100,000 among Hispanic Americans and 7.08/100,000 among non-Hispanic Americans. Among the five Hispanic American infants who screened positive, a common variant (c.443G>A [p.R148K]) was identified which accounted for 30% of the alleles; c.799G>A (p.G267R) and c.985A>G (p.K329E) each accounted for an additional 20%; and a novel variant c.302G>A (p.G101E) was identified in one patient. Although treated prospectively during interim illnesses to prevent unwanted sequelae; till date, none of the patients carrying the c.443G>A variant have been symptomatic.

  6. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels.

    PubMed

    Stanley, C A; Hale, D E; Coates, P M; Hall, C L; Corkey, B E; Yang, W; Kelley, R I; Gonzales, E L; Williamson, J R; Baker, L

    1983-11-01

    Three children in two families presented in early childhood with episodes of illness associated with fasting which resembled Reye's syndrome: coma, hypoglycemia, hyperammonemia, and fatty liver. One child died with cerebral edema during an episode. Clinical studies revealed an absence of ketosis on fasting (plasma beta-hydroxybutyrate less than 0.4 mmole/liter) despite elevated levels of free fatty acids (2.6-4.2 mmole/liter) which suggested that hepatic fatty acid oxidation was impaired. Urinary dicarboxylic acids were elevated during illness or fasting. Total carnitine levels were low in plasma (18-25 mumole/liter), liver (200-500 nmole/g), and muscle (500-800 nmole/g); however, treatment with L-carnitine failed to correct the defect in ketogenesis. Studies on ketone production from fatty acid substrates by liver tissue in vitro showed normal rates from short-chain fatty acids, but very low rates from all medium and long-chain fatty acid substrates. These results suggested that the defect was in the mid-portion of the intramitochondrial beta-oxidation pathway at the medium-chain acyl-CoA dehydrogenase step. A new assay for the electron transfer flavoprotein-linked acyl-CoA dehydrogenases was used to test this hypothesis. This assay follows the decrease in electron transfer flavoprotein fluorescence as it is reduced by acyl-CoA-acyl-CoA dehydrogenase complex. Results with octanoyl-CoA as substrate indicated that patients had less than 2.5% normal activity of medium-chain acyl-CoA dehydrogenase. The activities of short-chain and isovaleryl acyl-CoA dehydrogenases were normal; the activity of long-chain acyl-CoA dehydrogenase was one-third normal. These results define a previously unrecognized inherited metabolic disorder of fatty acid oxidation due to deficiency of medium-chain acyl-CoA dehydrogenase.

  7. Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse

    PubMed Central

    van Vlies, Naomi; Tian, Liqun; Overmars, Henk; Bootsma, Albert H.; Kulik, Willem; Wanders, Ronald J. A.; Wood, Philip A.; Vaz, Frédéric M.

    2004-01-01

    In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD−/− (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD−/− mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial β-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD−/− tissues, indicating that, in this situation, the β-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD−/− hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD−/− mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse. PMID:15535801

  8. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency

    PubMed Central

    2013-01-01

    Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine

  9. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder.

  10. Equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in 14 horses associated with ingestion of Maple leaves (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum).

    PubMed

    van der Kolk, J H; Wijnberg, I D; Westermann, C M; Dorland, L; de Sain-van der Velden, M G M; Kranenburg, L C; Duran, M; Dijkstra, J A; van der Lugt, J J; Wanders, R J A; Gruys, E

    2010-01-01

    This case-series describes fourteen horses suspected of equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) also known as atypical myopathy of which seven cases were confirmed biochemically with all horses having had access to leaves of the Maple tree (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum). Assessment of organic acids, glycine conjugates, and acylcarnitines in urine was regarded as gold standard in the biochemical diagnosis of equine acquired multiple acyl-CoA dehydrogenase deficiency.

  11. Origins and implications of neglect of G6PD deficiency and primaquine toxicity in Plasmodium vivax malaria

    PubMed Central

    Baird, Kevin

    2015-01-01

    Most of the tens of millions of clinical attacks caused by Plasmodium vivax each year likely originate from dormant liver forms called hypnozoites. We do not systematically attack that reservoir because the only drug available, primaquine, is poorly suited to doing so. Primaquine was licenced for anti-relapse therapy in 1952 and became available despite threatening patients having an inborn deficiency of glucose-6-phosphate dehydrogenase (G6PD) with acute haemolytic anaemia. The standard method for screening G6PD deficiency, the fluorescent spot test, has proved impractical where most malaria patients live. The blind administration of daily primaquine is dangerous, but so too are the relapses invited by withholding treatment. Absent G6PD screening, providers must choose between risking harm by the parasite or its treatment. How did this dilemma escape redress in science, clinical medicine and public health? This review offers critical historic reflection on the neglect of this serious problem in the chemotherapy of P. vivax. PMID:25943156

  12. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Lawson, Alexander J; Walker, Elizabeth A; Lavery, Gareth G; Bujalska, Iwona J; Hughes, Beverly; Arlt, Wiebke; Stewart, Paul M; Ride, Jonathan P

    2011-03-08

    In peripheral target tissues, levels of active glucocorticoid hormones are controlled by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a dimeric enzyme that catalyzes the reduction of cortisone to cortisol within the endoplasmic reticulum. Loss of this activity results in a disorder termed cortisone reductase deficiency (CRD), typified by increased cortisol clearance and androgen excess. To date, only mutations in H6PD, which encodes an enzyme supplying cofactor for the reaction, have been identified as the cause of disease. Here we examined the HSD11B1 gene in two cases presenting with biochemical features indicative of a milder form of CRD in whom the H6PD gene was normal. Novel heterozygous mutations (R137C or K187N) were found in the coding sequence of HSD11B1. The R137C mutation disrupts salt bridges at the subunit interface of the 11β-HSD1 dimer, whereas K187N affects a key active site residue. On expression of the mutants in bacterial and mammalian cells, activity was either abolished (K187N) or greatly reduced (R137C). Expression of either mutant in a bacterial system greatly reduced the yield of soluble protein, suggesting that both mutations interfere with subunit folding or dimer assembly. Simultaneous expression of mutant and WT 11β-HSD1 in bacterial or mammalian cells, to simulate the heterozygous condition, indicated a marked suppressive effect of the mutants on both the yield and activity of 11β-HSD1 dimers. Thus, these heterozygous mutations in the HSD11B1 gene have a dominant negative effect on the formation of functional dimers and explain the genetic cause of CRD in these patients.

  13. Lethal effect of a single dose of rasburicase in a preterm newborn infant.

    PubMed

    Zaramella, Patrizia; De Salvia, Alessandra; Zaninotto, Martina; Baraldi, Maura; Capovilla, Giovanni; De Leo, Domenico; Chiandetti, Lino

    2013-01-01

    This case report describes a preterm newborn infant who was treated with a single dose of rasburicase for an increase in uric acid level. He died on the third day as a result of complications of hemolysis, which appeared to be precipitated by rasburicase. The patient's death was preceded by progressive respiratory insufficiency, lactic acidosis, and hyperbilirubinemia, culminating in refractory hypoxia and hypotension. A postmortem assay for glucose-6-phosphate dehydrogenase showed deficiency and the glucose-6-phosphate dehydrogenase Mediterranean genotype.

  14. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

    PubMed Central

    Andresen, B S; Olpin, S; Poorthuis, B J; Scholte, H R; Vianey-Saban, C; Wanders, R; Ijlst, L; Morris, A; Pourfarzam, M; Bartlett, K; Baumgartner, E R; deKlerk, J B; Schroeder, L D; Corydon, T J; Lund, H; Winter, V; Bross, P; Bolund, L; Gregersen, N

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established. PMID:9973285

  15. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  16. Detection of pyruvate dehydrogenase E1 alpha-subunit deficiencies in females by immunohistochemical demonstration of mosaicism in cultured fibroblasts.

    PubMed

    Lib, Margarita Y; Brown, Ruth M; Brown, Garry K; Marusich, Michael F; Capaldi, Roderick A

    2002-07-01

    Deficiency of the E1 alpha-subunit of the pyruvate dehydrogenase (PDH) complex is an X-linked inborn error of metabolism and one of the major causes of lactic acidosis in children. Although most heterozygous females manifest symptoms of the disease, it is often difficult to establish the diagnosis as results based on measurement of total PDH activity, and E1 alpha-immunoreactive protein in patient fibroblasts may be ambiguous because of the variability in the pattern of X chromosome inactivation. We report the development of a set of monoclonal antibodies (MAbs) specific to four subunits of the PDH complex that can be used for detection of PDH E1 alpha deficiency. We also show that anti-E1 alpha and anti-E2 MAbs, when used in immunocytochemical analysis, can detect mosaicism in cell cultures from female patients in which as few as 2-5% of cells express the deficiency. This immunocytochemical approach, which is fast, reliable, and quantitative, will be particularly useful in identifying females with PDH E1 alpha-subunit deficiency as a precursor to mutation analysis.

  17. G6PD Deficiency at Sumba in Eastern Indonesia Is Prevalent, Diverse and Severe: Implications for Primaquine Therapy against Relapsing Vivax Malaria

    PubMed Central

    Satyagraha, Ari Winasti; Sadhewa, Arkasha; Baramuli, Vanessa; Elvira, Rosalie; Ridenour, Chase; Elyazar, Iqbal; Noviyanti, Rintis; Coutrier, Farah Novita; Harahap, Alida Roswita; Baird, J. Kevin

    2015-01-01

    Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of erythrocytic glucose-6-phosphate dehydrogenase (G6PD) activity because hypnozoitocidal therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic anemia in G6PD deficient patients. Many national malaria control programs recommend primaquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD deficiency screening capacity. The degree of risk in doing so hinges upon the level of residual G6PD activity among the variants present in any given area. We conducted studies on Sumba Island in eastern Indonesia in order to assess the potential threat posed by primaquine therapy without G6PD screening. We sampled 2,033 residents of three separate districts in western Sumba for quantitative G6PD activity and 104 (5.1%) were phenotypically deficient (<4.6U/gHb; median normal 10U/gHb). The villages were in two distinct ecosystems, coastal and inland. A positive correlation occurred between the prevalence of malaria and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001), and 6.7% and 3.1% for G6PD deficiency (P<0.001) at coastal and inland sites, respectively. The dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, accounting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant genotypes all had less than 10% of normal enzyme activities and were thus considered severe variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely impose risk of serious harm. PMID:25746733

  18. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast.

    PubMed

    Haglind, C Bieneck; Nordenström, A; Ask, S; von Döbeln, U; Gustafsson, J; Stenlid, M Halldin

    2015-03-01

    Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.

  19. Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria).

    PubMed Central

    Chambliss, K L; Hinson, D D; Trettel, F; Malaspina, P; Novelletto, A; Jakobs, C; Gibson, K M

    1998-01-01

    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a rare metabolic disorder of 4-aminobutyric acid degradation, has been identified in approximately 150 patients. Affected individuals accumulate large quantities of 4-hydroxybutyric acid, a compound with a wide range of neuropharmacological activities, in physiological fluids. As a first step in beginning an investigation of the molecular genetics of SSADH deficiency, we have utilized SSADH cDNA and genomic sequences to identify two point mutations in the SSADH genes derived from four patients. These mutations, identified by standard methods of reverse transcription, PCR, dideoxy-chain termination, and cycle sequencing, alter highly conserved sequences at intron/exon boundaries and prevent the RNA-splicing apparatus from properly recognizing the normal splice junction. Each family segregated a mutation in a different splice site, resulting in exon skipping and, in one case, a frameshift and premature termination and, in the other case, an in-frame deletion in the resulting protein. Family members, including parents and siblings of these patients, were shown to be heterozygotes for the splicing abnormality, providing additional evidence for autosomal recessive inheritance. Our results provide the first evidence that 4-hydroxybutyric aciduria, resulting from SSADH deficiency, is the result of genetic defects in the human SSADH gene. PMID:9683595

  20. Genetics Home Reference: 17β-hydroxysteroid dehydrogenase type 10 deficiency

    MedlinePlus

    ... involved in breaking down the protein building block ( amino acid ) isoleucine and a group of fats called branched- ... system. Mutations that cause HSD10 deficiency change single amino acids in HSD10, which reduces or eliminates the activity ...

  1. Modeling Plasmodium vivax: relapses, treatment, seasonality, and G6PD deficiency.

    PubMed

    Chamchod, Farida; Beier, John C

    2013-01-07

    Plasmodium vivax (P. vivax) is one of the most important human malaria species that is geographically widely endemic and causes social and economic burden globally. However, its consequences have long been neglected and underestimated as it has been mistakenly considered a benign and inconsequential malaria species as compared to Plasmodium falciparum. One of the important differences between P. falciparum and P. vivax is the formation of P. vivax latent-stage parasites (hypnozoites) that can cause relapses after a course of treatment. In this work, mathematical modeling is employed to investigate how patterns of incubation periods and relapses of P. vivax, variation in treatment, and seasonal abundance of mosquitoes influence the number of humans infected with P. vivax and the mean age at infection of humans in tropical and temperate regions. The model predicts that: (i) the number of humans infected with P. vivax may increase when an incubation period of parasites in humans and a latent period of hypnozoites decrease; (ii) without primaquine, the only licensed drug to prevent relapses, P. vivax may be highly prevalent; (iii) the mean age at infection of humans may increase when a latent period of hypnozoites increases; (iv) the number of infectious humans may peak at a few months before the middle of each dry season and the number of hypnozoite carriers may peak at nearly the middle of each dry season. In addition, glucose-6-phosphate-dehydrogenase (G6PD) deficiency, which is the most common enzyme defect in humans that may provide some protection against P. vivax infection and severity, is taken into account to study its impact on the number of humans infected with P. vivax. Modeling results indicate that the increased number of infected humans may result from a combination of a larger proportion of humans with G6PD deficiency in the population, a lesser protection of G6PD deficiency to P. vivax infection, and a shorter latent period of hypnozoites.

  2. Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies1[C][W][OA

    PubMed Central

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T.

    2012-01-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. PMID:22645069

  3. Gamma-Hydroxybutyrate (GHB) Content in Hair Samples Correlates Negatively with Age in Succinic Semialdehyde Dehydrogenase Deficiency.

    PubMed

    Johansen, S S; Wang, X; Sejer Pedersen, D; Pearl, P L; Roullet, J-B; Ainslie, G R; Vogel, K R; Gibson, K M

    2017-02-18

    Gamma-hydroxybutyrate (GHB) is a drug of abuse, an approved therapeutic for narcolepsy, an agent employed for facilitation of sexual assault, as well as a biomarker of succinic semialdehyde dehydrogenase deficiency (SSADHD). Our laboratory seeks to identify surrogate biomarkers in SSADHD that can shed light on the developmental course of this neurometabolic disease. Since GHB may be quantified in hair as a potential surrogate to identify victims of drug-related assault, we have opted to examine its level in SSADHD. We quantified GHB in hair derived from ten patients with SSADHD, and documented a significant negative age correlation. These findings are consistent with recent results in patient biological fluids, including plasma and red blood cells. These findings may provide additional insight into the developmental course of SSADHD (Jansen et al., J Inherit Metab Dis 39:795-800, 2016).

  4. Thirty years beyond discovery--clinical trials in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism.

    PubMed

    Vogel, Kara R; Pearl, Phillip L; Theodore, William H; McCarter, Robert C; Jakobs, Cornelis; Gibson, K Michael

    2013-05-01

    This review summarizes a presentation made at the retirement Symposium of Prof. Dr. Cornelis Jakobs in November of 2011, highlighting the progress toward clinical trials in succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder first recognized in 1981. Active and potential clinical interventions, including vigabatrin, L-cycloserine, the GHB receptor antagonist NCS-382, and the ketogenic diet, are discussed. Several biomarkers to gauge clinical efficacy have been identified, including cerebrospinal fluid metabolites, neuropsychiatric testing, MRI, EEG, and measures of GABAergic function including (11 C)flumazenil positron emission tomography (PET) and transcranial magnetic stimulation (TMS). Thirty years after its discovery, encompassing extensive studies in both patients and the corresponding murine model, we are now running an open-label trial of taurine intervention, and are poised to undertake a phase II trial of the GABAB receptor antagonist SGS742.

  5. Large Cohort Screening of G6PD Deficiency and the Mutational Spectrum in the Dongguan District in Southern China

    PubMed Central

    Ma, Keze; Li, Wenrui; Ma, Qiang; He, Xiaoguang; He, Yuejing; He, Ting; Lu, Xiaomei

    2015-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China. Method The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis. Results The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote. Conclusion The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency. PMID:25775246

  6. Molecular genetics and pathophysiology of 17{beta}-hydroxysteroid dehydrogenase 3 deficiency

    SciTech Connect

    Andersson, S.; Geissler, W.M.; Wu, L.

    1996-01-01

    Autosomal recessive mutations in the 17{beta}-hydroxysteroid dehydrogenase 3 gene impair the formation of testosterone in the fetal testis and give rise to genetic males with female external genitalia. Such individuals are usually raised as females, but virilize at the time of expected puberty as the result of increases in serum testosterone. Here we describe mutations in 12 additional subjects/families with this disorder. The 14 mutations characterized to date include 10 missense mutations, 3 splice junction abnormalities, and 1 small deletion that results in a frame shift. Three of these mutations have occurred in more than 1 family. Complementary DNAs incorporating 9 of the 10 missense mutations have been constructed and expressed in reporter cells; 8 of the 9 missense mutations cause almost complete loss of enzymatic activity. In 2 subjects with loss of function, missense mutations testosterone levels in testicular venous blood were very low. Considered together, these findings strongly suggest that the common mechanism for testosterone formation in postpubertal subjects with this disorder is the conversion of circulating androstenedione to testosterone by one or more of the unaffected 17{beta}-hydroxysteroid dehydrogenase isoenzymes. 29 refs., 2 figs., 3 tabs.

  7. Gender change in 46,XY persons with 5alpha-reductase-2 deficiency and 17beta-hydroxysteroid dehydrogenase-3 deficiency.

    PubMed

    Cohen-Kettenis, Peggy T

    2005-08-01

    Individuals with 5alpha-reductase-2 deficiency (5alpha-RD-2) and 17beta-hydroxysteroid dehydrogenase-3 deficiency (17beta-HSD-3) are often raised as girls. Over the past number of years, this policy has been challenged because many individuals with these conditions develop a male gender identity and make a gender role change after puberty. The findings also raised doubts regarding the hypothesis that children are psychosexually neutral at birth and emphasized the potential role of prenatal brain exposure to androgens in gender development. If prenatal exposure to androgens is a major contributor to gender identity development, one would expect that all, or nearly all, affected individuals, even when raised as girls, would develop a male gender identity and make a gender role switch later in life. However, an estimation of the prevalence of gender role changes, based on the current literature, shows that gender role changes occur frequently, but not invariably. Gender role changes were reported in 56-63% of cases with 5alpha-RD-2 and 39-64% of cases with 17beta-HSD-3 who were raised as girls. The changes were usually made in adolescence and early adulthood. In these two syndromes, the degree of external genital masculinization at birth does not seem to be related to gender role changes in a systematic way.

  8. Deficient Expression of Aldehyde Dehydrogenase 1A1 is Consistent With Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    PubMed Central

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2016-01-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility. PMID:24285572

  9. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    PubMed

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  10. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGES

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; ...

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  11. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  12. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

    PubMed

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-09-01

    L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

  13. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  14. Mutational study in the PDHA1 gene of 40 patients suspected of pyruvate dehydrogenase complex deficiency.

    PubMed

    Quintana, E; Gort, L; Busquets, C; Navarro-Sastre, A; Lissens, W; Moliner, S; Lluch, M; Vilaseca, M A; De Meirleir, L; Ribes, A; Briones, P

    2010-05-01

    We screened for PDHA1 mutations in 40 patients with biochemically demonstrated PDHc deficiency or strong clinical suspicion, and found changes with probable pathological significance in 20. Five patients presented new mutations: p.A169V, c.932_938del, c.1143_1144 ins24, c.1146_1159dup and c.510-30G> A, this latter is a new undescribed cause of exon 6 skipping. Another four mutations have been found, and previously reported, in our patients: p.H113D, p.P172L, p.Y243del and p.Y369Q. Eleven patients presented seven known mutations: p.R127Q, p.I166I, p.A198T, p.R263G, p.R302C, p.R378C and c.1142_1145dup. The latter three were found in more than one unrelated patient: p.R302C was detected in a heterozygous girl and a mosaic male, p.R378C in two males and finally, c.1142_1145dup in three females; only one in 20 mothers was found to be a carrier (p.R263G). Apart from those 20 patients, the only alteration detected in one girl with clear PDHc and PDH-E1 deficiency was the silent change c.396A> C (p.R132R), and other eight PDHc deficient patients carry combinations of known infrequent polymorphisms that are overrepresented among our 20 unsolved patients. The importance of these changes on PDH activity is unclear. Investigations in the other PDHc genes are in course in order to elucidate the genetic defect in the unresolved patients.

  15. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury.

    PubMed

    Oh, Chang Joo; Ha, Chae-Myeong; Choi, Young-Keun; Park, Sungmi; Choe, Mi Sun; Jeoung, Nam Ho; Huh, Yang Hoon; Kim, Hyo-Jeong; Kweon, Hee-Seok; Lee, Ji-Min; Lee, Sun Joo; Jeon, Jae-Han; Harris, Robert A; Park, Keun-Gyu; Lee, In-Kyu

    2017-04-01

    Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.

  16. Succinic Semialdehyde Dehydrogenase Deficiency in a Chinese Boy: A Novel ALDH5A1 Mutation With Severe Phenotype.

    PubMed

    Tay, Chee Geap; Ariffin, Hany; Yap, Sufin; Rahmat, Kartini; Sthaneshwar, Pavai; Ong, Lai Choo

    2015-06-01

    Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessive disorder affecting catabolism of the neurotransmitter gamma-aminobutyric acid (GABA), with a wide range of clinical phenotype. We report a Malaysian Chinese boy with a severe early onset phenotype due to a previously unreported mutation. Urine organic acid chromatogram revealed elevated 4-hydroxybutyric acid. Magnetic resonance imaging (MRI) of the brain demonstrated cerebral atrophy with atypical putaminal involvement. Molecular genetic analysis showed a novel homozygous 3-bp deletion at the ALDH5A1 gene c.1501_1503del (p.Glu501del). Both parents were confirmed to be heterozygotes for the p.Glu501del mutation. The clinical course was complicated by the development of subdural hemorrhage probably as a result of rocking the child to sleep for erratic sleep-wake cycles. This case illustrates the need to recognize that trivial or unintentional shaking of such children, especially in the presence of cerebral atrophy, can lead to subdural hemorrhage.

  17. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Diekman, E. F.; Visser, G.; Schmitz, J. P. J.; Nievelstein, R. A. J.; de Sain-van der Velden, M.; Wardrop, M.; Van der Pol, W. L.; Houten, S. M.; van Riel, N. A. W.; Takken, T.; Jeneson, J. A. L.

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD. PMID:26881790

  18. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation.

    PubMed

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan; Stenderup, Karin; Gasser, Jürg; Mullins, John J; Seckl, Jonathan R; Kassem, Moustapha

    2004-04-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow composition revealed a total absence of marrow adipocytes in HSD1(-/-) mice. Cells from Wt and HSD1(-/-) mice exhibited similar growth rates as well as similar levels of production of osteoblastic markers. The adipocyte-forming capacity of in vitro cultured bone marrow stromal cells and trabecular osteoblasts was similar in HSD1(-/-) and Wt mice. In conclusion, our results suggest that 11betaHSD1 amplification of intracellular GC actions in mice may be required for bone marrow adipocyte formation, but not for bone formation. The clinical relevance of this observation remains to be determined.

  19. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.

    PubMed

    Diekman, E F; Visser, G; Schmitz, J P J; Nievelstein, R A J; de Sain-van der Velden, M; Wardrop, M; Van der Pol, W L; Houten, S M; van Riel, N A W; Takken, T; Jeneson, J A L

    2016-01-01

    Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.

  20. Activity of select dehydrogenases with Sepharose-immobilized N6-carboxymethyl-NAD

    PubMed Central

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N6-carboxymethyl-NAD (N6-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N6-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N6-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N6-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N6-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N6-amine group on NAD. PMID:25611453

  1. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  2. Recognition of medium-chain acyl-CoA dehydrogenase deficiency in asymptomatic siblings of children dying of sudden infant death or Reye-like syndromes.

    PubMed

    Roe, C R; Millington, D S; Maltby, D A; Kinnebrew, P

    1986-01-01

    The medium-chain acyl-CoA dehydrogenase (MCAD) deficiency of mitochondrial beta oxidation has been identified in two asymptomatic siblings in a family in which two previous deaths had been recorded, one attributed to sudden infant death syndrome and the other to Reye syndrome. Recognition of this disorder in one of the deceased and in the surviving siblings was accomplished by detection of a diagnostic metabolite, octanoylcarnitine, using a new mass spectrometric technique. This resulted in early treatment with L-carnitine supplement in the survivors, which should prevent metabolic deterioration. Further studies suggest that breast-feeding may be protective for infants with MCAD deficiency. Families with children who have had Reye syndrome or in which sudden infant death has occurred are at risk for MCAD deficiency. We suggest that survivors and asymptomatic siblings should be tested for this treatable disorder.

  3. The Genetics of a Small Autosomal Region of DROSOPHILA MELANOGASTER Containing the Structural Gene for Alcohol Dehydrogenase. I. Characterization of Deficiencies and Mapping of ADH and Visible Mutations

    PubMed Central

    Woodruff, R. C.; Ashburner, M.

    1979-01-01

    The position of the structural gene coding for alcohol dehydrogenase (ADH) in Drosophila melanogaster has been shown to be within polytene chromosome bands 35B1 and 35B3, most probably within 35B2. The genetic and cytological properties of twelve deficiencies in polytene chromosome region 34–35 have been characterized, eleven of which include Adh. Also mapped cytogenetically are seven other recessive visible mutant loci. Flies heterozygous for overlapping deficiencies that include both the Adh locus and that for the outspread mutant (osp: a recessive wing phenotype) are homozygous viable and show a complete ADH negative phenotype and strong osp phenotype. These deficiencies probably include two polytene chromosome bands, 35B2 and 35B3. PMID:115743

  4. Deficiency of dihydrolipoamide dehydrogenase due to two mutant alleles (E340K and G101del). Analysis of a family and prenatal testing.

    PubMed

    Hong, Y S; Kerr, D S; Liu, T C; Lusk, M; Powell, B R; Patel, M S

    1997-12-31

    A male child with metabolic acidosis was diagnosed as having dihydrolipoamide dehydrogenase (E3) deficiency. E3 activity of the proband's cultured fibroblasts and blood lymphocytes was 3-9% of normal, while in the parent's lymphocytes it was about 60% of normal. The proband's pyruvate dehydrogenase complex (PDC) and the alpha-ketoglutarate dehydrogenase complex activities from cultured skin fibroblasts were 12% and 6% of normal, respectively. PDC activity in the parents cultured fibroblasts was 25-31% of normal. Western and Northern blot analyses showed similar quantities of E3 protein and mRNA in cultured fibroblasts from the proband and his parents. DNA sequencing of cloned full-length E3 cDNAs, from the proband and the parents, showed two mutations on different alleles of proband were inherited from the parents. One mutation is a three nucleotide (AGG) deletion, from the mother, resulting in deletion of Gly101 in the FAD binding domain. The other mutation is a nucleotide substitution (G to A), from the father, leading to substitution of Lys for Glu340 in the central domain. The same deletion mutation was found in E3 cDNA from a chorionic villus sample and cultured fibroblasts obtained from the mother's subsequent offspring. This finding illustrates the possibility of successful prenatal diagnosis of E3 deficiency utilizing mutations characterized prior to initiation of pregnancy.

  5. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.

    PubMed Central

    Corpas, F J; Barroso, J B; Sandalio, L M; Distefano, S; Palma, J M; Lupiáñez, J A; Del Río, L A

    1998-01-01

    The presence of the two NADP-dependent dehydrogenases of the pentose phosphate pathway has been investigated in plant peroxisomes from pea (Pisum sativum L.) leaves. Both enzymes, glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44), were present in the matrix of leaf peroxisomes, and their kinetic properties were studied. G6PDH and 6PGDH showed a typical Michaelis-Menten kinetic saturation curve, and had specific activities of 12.4 and 29.6 mU/mg protein, respectively. The Km values of G6PDH and 6PGDH for glucose 6-phosphate and for 6-phosphogluconate were 107.3 and 10.2 microM, respectively. Dithiothreitol did not inhibit G6PDH activity. By isoelectric focusing of peroxisomal matrices, the G6PDH activity was resolved into three isoforms with isoelectric points of 5.55, 5.30 and 4.85. The isoelectric point of peroxisomal 6PGDH was 5.10. Immunoblot analyses of peroxisomal matrix with an antibody against yeast G6PDH revealed a single cross-reactive band of 56 kDa. Post-embedment, EM immunogold labelling of G6PDH confirmed that this enzyme was localized in the peroxisomal matrices, the thylakoid membrane and matrix of chloroplasts, and the cytosol. The presence of the two oxidative enzymes of the pentose phosphate pathway in plant peroxisomes implies that these organelles have the capacity to reduce NADP+ to NADPH for its re-utilization in the peroxisomal metabolism. NADPH is particularly required for the ascorbate-glutathione cycle, which has been recently demonstrated in plant peroxisomes [Jiménez, Hernández, del Río and Sevilla (1997) Plant Physiol. 114, 275-284] and represents an important antioxidant protection system against H2O2 generated in peroxisomes. PMID:9480890

  6. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.

    PubMed

    Li, Ming-hua; Wu, Jian; Liu, Xu; Lin, Jin-ping; Wei, Dong-zhi; Chen, Hao

    2010-11-01

    Gluconobacter oxydans can rapidly and incompletely oxidize glycerol to dihydroxyacetone (DHA), a versatile product extensively used in cosmetic, chemical and pharmaceutical industries. To improve DHA production, the glycerol dehydrogenase (GDH) responsible for DHA formation was overexpressed in G. oxydans M5AM, in which the gene coding for the membrane-bound alcohol dehydrogenase (ADH) was interrupted. Real-time PCR and enzyme activity assay revealed that the absence of ADH together with the overexpression of GDH gene resulted in an increased GDH activity in the resulting strain M5AM/GDH, which led to a substantially enhanced production of DHA in a resting cell system. In a batch biotransformation process, M5AM/GDH exhibited a 2.4-fold increased DHA productivity of 2.4g/g CDW/h from 1.0g/g CDW/h, yielding 96g/L DHA from 100g/L glycerol. When 140g/L glycerol was supplied, a final DHA concentration of 134g/L was accumulated within 14h. In four repeated batch runs, 385g DHA over a time period of 34h was achieved from 400g glycerol with an average productivity of 2.2g/g CDW/h. These results indicated that this newly developed strain G. oxydans M5AM/GDH with high productivity and increased tolerance against product inhibition has potential for DHA production in an industrial bioconversion process.

  7. Prevalence of G6PD deficiency in selected populations from two previously high malaria endemic areas of Sri Lanka

    PubMed Central

    Kapilananda, G. M. G.; Samarakoon, Dilhani; Maddevithana, Sashika; Wijesundera, Sulochana; Goonaratne, Lallindra V.; Karunaweera, Nadira D.

    2017-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme deficiency is known to offer protection against malaria and an increased selection of mutant genes in malaria endemic regions is expected. However, anti-malarial drugs such as primaquine can cause haemolytic anaemia in persons with G6PD deficiency. We studied the extent of G6PD deficiency in selected persons attending Teaching Hospitals of Anuradhapura and Kurunegala, two previously high malaria endemic districts in Sri Lanka. A total of 2059 filter-paper blood spots collected between November 2013 and June 2014 were analysed for phenotypic G6PD deficiency using the modified WST-8/1-methoxy PMS method. Each assay was conducted with a set of controls and the colour development assessed visually as well as with a microplate reader at OD450-630nm. Overall, 142/1018 (13.95%) and 83/1041 (7.97%) were G6PD deficient in Anuradhapura and Kurunegala districts respectively. The G6PD prevalence was significantly greater in Anuradhapura when compared to Kurunegala (P<0.0001). Surprisingly, females were equally affected as males in each district: 35/313 (11.18%) males and 107/705 (15.18%) females were affected in Anuradhapura (P = 0.089); 25/313 (7.99%) males and 58/728 (7.97%) females were affected in Kurunegala (P = 0.991). Prevalence was greater among females in Anuradhapura than in Kurunegala (P<0.05), while no such difference was observed between the males (P>0.05). Severe deficiency (<10% normal) was seen among 28/1018 (2.75%) in Anuradhapura (7 males; 21 females) and 17/1041 (1.63%) in Kurunegala (7 males; 10 females). Enzyme activity between 10–30% was observed among 114/1018 (11.20%; 28 males; 86 females) in Anuradhapura while it was 66/1041 (6.34%; 18 males; 48 females) in Kurunegala. Screening and educational programmes for G6PD deficiency are warranted in these high risk areas irrespective of gender for the prevention of disease states related to this condition. PMID:28152025

  8. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  9. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    PubMed

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  10. Cardiac failure in very long chain acyl-CoA dehydrogenase deficiency requiring extracorporeal membrane oxygenation (ECMO) treatment: A case report and review of the literature.

    PubMed

    Katz, Sharon; Landau, Yuval; Pode-Shakked, Ben; Pessach, Itai M; Rubinshtein, Marina; Anikster, Yair; Salem, Yishay; Paret, Gideon

    2017-03-01

    Fatty acid oxidation (FAO) defects often present with multi-system involvement, including several life-threatening cardiac manifestations, such as cardiomyopathy, pericardial effusion and arrhythmias. We report herein a fatal case of cardiac dysfunction and rapid-onset tamponade following an acute illness in a neonate with molecularly proven very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (harboring the known del799_802 mutation), requiring 15 days of extracorporeal membrane oxygenation (ECMO) treatment. As data regarding the use of ECMO in FAO defects in general, and VLCAD in particular, are scarce, we review the literature and discuss insights from in vitro models and several successful reported cases.

  11. G6PD Deficiency and Hemoglobinopathies: Molecular Epidemiological Characteristics and Healthy Effects on Malaria Endemic Bioko Island, Equatorial Guinea

    PubMed Central

    Lin, Min; Yang, Li Ye; Xie, Dong De; Chen, Jiang Tao; Nguba, Santiago-m Monte; Ehapo, Carlos Sala; Zhan, Xiao Fen; Eyi, Juan Urbano Monsuy; Matesa, Rocio Apicante; Obono, Maximo Miko Ondo; Yang, Hui; Yang, Hui Tian; Cheng, Ji Dong

    2015-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies were the inherited conditions found mostly in African. However, few epidemiological data of these disorders was reported in Equatorial Guinea (EQG). This study aimed to assess the prevalence and healthy effects of G6PD deficiency and hemoglobinopathies among the people on malaria endemic Bioko Island, EQG. Materials and Methods Blood samples from 4,144 unrelated subjects were analyzed for G6PD deficieny by fluorescence spot test (FST), high-resolution melting assay and PCR-DNA sequencing. In addition, 1,186 samples were randomly selected from the 4,144 subjects for detection of hemoglobin S (HbS), HbC, and α-thalassemia deletion by complete blood count, PCR-DNA sequencing and reverse dot blot (RDB). Results The prevalence of malaria and anemia was 12.6% (522/4,144) and 32.8% (389/1,186), respectively. Overall, 8.7% subjects (359/4,144) were G6PD-deficient by FST, including 9.0% (249/2,758) males and 7.9% (110/1,386) females. Among the 359 G6PD-deficient individuals molecularly studied, the G6PD A- (G202A/A376G) were detected in 356 cases (99.2%), G6PD Betica (T968C/A376G) in 3 cases. Among the 1,186 subjects, 201 cases were HbS heterozygotes, 35 cases were HbC heterozygotes, and 2 cases were HbCS double heterozygotes; 452 cases showed heterozygous α-thalassemia 3.7 kb deletion (-α3.7 kb deletion) and 85 homozygous - α3.7 kb deletion. The overall allele frequencies were HbS 17.1% (203/1186); HbC, 3.1% (37/1186); and –α3.7 kb deletion 52.4% (622/1186), respectively. Conclusions High G6PD deficiency in this population indicate that diagnosis and management of G6PD deficiency is necessary on Bioko Island. Obligatory newborn screening, prenatal screening and counseling for these genetic disorders, especially HbS, are needed on the island. PMID:25915902

  12. Successful Treatment of Cardiomyopathy due to Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: First Case Report from Oman with Literature Review

    PubMed Central

    Sharef, Sharef Waadallah; Al-Senaidi, Khalfan; Joshi, Surendra Nath

    2013-01-01

    Very long-chain acyl-CoA dehydrogenase deficiency (MIM 201475) is a severe defect of mitochondrial energy production from oxidation of very long-chain fatty acids. This inherited metabolic disorder often presents in early neonatal period with episodes of symptomatic hypoglycemia usually responding well to intravenous glucose infusion. These babies are often discharged without establishment of diagnosis but return by 2-5 months of age with severe and progressive cardiac failure due to hypertrophic cardiomyopathy with or without hepatic failure and steatosis. An early diagnosis and treatment with high concentration medium chain triglycerides based feeding formula can be life saving in such patients. Here, we report the first diagnosed and treated case of Very long-chain acyl-CoA dehydrogenase deficiency in Oman. This infant developed heart failure with left ventricular dilation, hypertrophy and pericardial effusion at the age of 7 weeks. Prompt diagnosis and subsequent intervention with medium chain triglycerides-based formula resulted in a reversal of severe clinical symptoms with significant improvement of cardiac status. This treatment also ensured normal growth and neurodevelopment. It is stressed that the disease must be recognized by the pediatricians and cardiologists since the disease can be identified by Tandem Mass Spectrometry; therefore, it should be considered to be included in expanded newborn screening program, allowing early diagnosis and intervention in order to ensure better outcome and prevent complications. PMID:24044064

  13. [A two-year-old infant with a myopathic form of very-long-chain Acyl-CoA dehydrogenase deficiency].

    PubMed

    Ito, Yasushi; Nakano, Kazutoshi; Shishikura, Keiko; Suzuki, Haruko; Iida, Norihisa; Sasaki, Nobutaka; Kimura, Masahiko; Hasegawa, Yuki; Yamaguchi, Seiji; Osawa, Makiko

    2003-11-01

    A two-year-three-month old girl was hospitalized for detailed examination following repeated hyper-creatine kinasemia and cervical muscle cramps induced by pyrexia and persistent hypertonicity of the cervical muscles. Physical examination showed mild hypotonia but no muscle weakness. Induction of symptoms by continuous cervical muscular exercise and the appearance of dicarboxylic aciduria during the fasting test indicated a disorder of fatty acid oxidation. Free fatty acid and acyl carnitine analyses using dried blood spots, and acyl-CoA dehydrogenase activity assays using cultured skin fibroblasts established a diagnosis of very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. Currently VLCAD deficiency has been divided into three phenotypes; a severe childhood form, a milder childhood form, and an adult form. However, we suggest that the severe and milder childhood forms would be better described as a systemic form, and the adult form and our infant case as a myopathic form. An early onset of the myopathic form within the first year of life, as well as its diagnosis in early infancy, has never been described in the literature.

  14. Long-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy

    PubMed Central

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-01-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 1012 vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD−/− mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD−/− mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD−/− mice maintained euglycemia, whereas untreated VLCAD−/− mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans. PMID:22395529

  15. Tiller number is altered in the ascorbic acid-deficient rice suppressed for L-galactono-1,4-lactone dehydrogenase.

    PubMed

    Liu, Yonghai; Yu, Le; Tong, Jianhua; Ding, Junhui; Wang, Ruozhong; Lu, Yusheng; Xiao, Langtao

    2013-03-01

    The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. L-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO(2) assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.

  16. Familial very long chain acyl-CoA dehydrogenase deficiency as a cause of neonatal sudden infant death: improved survival by prompt diagnosis.

    PubMed

    Scalais, Emmanuel; Bottu, Jean; Wanders, Ronald J A; Ferdinandusse, Sacha; Waterham, Hans R; De Meirleir, Linda

    2015-01-01

    In neonates, very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is often characterized by cardiomyopathy, hepatic encephalopathy, or severe hypoketotic hypoglycemia, or a combination thereof. The purpose of this study was to further elucidate a familial VLCAD deficiency in three patients, two of whom died in the neonatal period. We report on a family with VLCAD deficiency. Acyl-carnitine profiles were obtained from dried blood spot and/or from oxidation of (13) C-palmitate by cultured skin fibroblasts. In the index patient, VLCAD deficiency was ascertained by enzyme activity measurement in fibroblasts and by molecular analysis of ACADVL. At 30 hr of life, the proband was diagnosed with hypoglycemia (1.77 mmol/L), rhabdomyolysis (CK: 12966 IU/L) and hyperlactacidemia (10.6 mmol/L). Acylcarnitine profile performed at 31 hr of life was consistent with VLCAD deficiency and confirmed by cultured skin fibroblast enzyme activity measurement. Molecular analysis of ACADVL revealed a homozygous splice-site mutation (1077 + 2T>C). The acyl-carnitine profile obtained from the sibling's original newborn screening cards demonstrated a similar, but less pronounced abnormal profile. In the proband, the initial metabolic crisis was controlled with 10% dextrose solution and oral riboflavin followed by specific diet (Basic-F and medium chain triglyceride (MCT). This clinical report demonstrates a familial history of repeated neonatal deaths explained by VLCAD deficiency, and the clinical evolution of the latest affected, surviving sibling. It shows that very early metabolic screening is an effective approach to avoid sudden unexpected death.

  17. Radiation effects on rat testes. IX. Studies on oxidative enzymes after partial body gamma irradiation.

    PubMed

    Gupta, G S; Bawa, S R

    1975-08-01

    Oxidative enzymes in the rat testes have been studied after gamma irradiation. The role of these enzymes in relation to spermatogenesis and steroidogenesis after radiation injury to testis has been discussed. Loss of succinic dehydrogenase and sorbitol dehydrogenase reflects the losts of germ cell population. Malic enzyme and malic dehydrogenase seem to the related to the deficiency of steroid hormones, whereas increase in glucose-6-phosphate dehydrogenase and NADP isocitric dehydrogenase is due to secondary stimulation of pituitary.

  18. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    PubMed

    Basner, Alexander; Antranikian, Garabed

    2014-01-01

    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  19. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations.

    PubMed Central

    Johnson, E A; Levine, R L; Lin, E C

    1985-01-01

    Anaerobically induced NAD-linked glycerol dehydrogenase of Klebsiella pneumoniae for fermentative glycerol utilization was reported previously to be inactivated in the cell during oxidative metabolism. In vitro inactivation was observed in this study by incubating the purified enzyme in the presence of O2, Fe2+, and ascorbate or dihydroxyfumarate. It appears that O2 and the reducing agent formed H2O2 and that H2O2 reacted with Fe2+ to generate an activated species of oxygen which attacked the enzyme. The in vitro-oxidized enzyme, like the in vivo-inactivated enzyme, showed an increased Km for NAD (but not glycerol) and could no longer be activated by Mn2+ which increased the Vmax of the native enzyme but decreased its apparent affinity for NAD. Ethanol dehydrogenase and 1,3-propanediol oxidoreductase, two enzymes with anaerobic function, also lost activity when the cells were incubated aerobically with glucose. However, glucose 6-phosphate dehydrogenase (NADP-linked), isocitrate dehydrogenase, and malate dehydrogenase, expected to function both aerobically and anaerobically, were not inactivated. Thus, oxidative modification of proteins in vivo might provide a mechanism for regulating the activities of some anaerobic enzymes. PMID:3900046

  20. Isolation and Biochemical Characterization of a Glucose Dehydrogenase from a Hay Infusion Metagenome

    PubMed Central

    Basner, Alexander; Antranikian, Garabed

    2014-01-01

    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein. PMID:24454935

  1. Biotin deficiency in a glycogen storage disease type 1b girl fed only with glycogen storage disease-related formula.

    PubMed

    Ihara, Kenji; Abe, Kiyomi; Hayakawa, Kou; Makimura, Mika; Kojima-Ishii, Kanako; Hara, Toshiro

    2011-01-01

    Glycogen storage disease type I is an autosomal recessive disorder caused by the defect in the glucose-6-phosphate enzyme system. Frequent intake of glucose-containing glycogen storage disease formula, uncooked cornstarch, or both, are usually needed to maintain normal blood glucose level. We report a glycogen storage disease type 1b girl with biotin deficiency caused by an exclusive glucose-containing glycogen storage disease formula for years, presenting with the appearance of severe skin lesions, and diagnosed by urinary organic acid analysis by gas chromato-spectrometry, and blood acylcarnitine analysis by tandem mass-spectrometry.

  2. A distinct type of alcohol dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient strain of Schizosaccharomyces pombe.

    PubMed

    Sakurai, Masao; Tohda, Hideki; Kumagai, Hiromichi; Giga-Hama, Yuko

    2004-03-01

    In the fission yeast Schizosaccharomyces pombe, only one alcohol dehydrogenase gene, adh1(+), has been identified. To elucidate the influence of adh1(+) on ethanol fermentation, we constructed the adh1 null strain (delta adh1). The delta adh1 cells still produced ethanol and grew fermentatively as the wild-type cells. Both DNA microarray and RT-PCR analysis demonstrated that this ethanol production is caused by the enhanced expression of a Saccharomyces cerevisiae ADH4-like gene product (SPAC5H10.06C named adh4(+)). Since the strain lacking both adh1 and adh4 genes (delta adh1 delta adh4) showed non-fermentative retarded growth, only these two ADHs produce ethanol for fermentative growth. This is the first observation that a S. cerevisiae ADH4-like alcohol dehydrogenase functions in yeast ethanol fermentation.

  3. Genetic basis for correction of very-long-chain acyl-coenzyme A dehydrogenase deficiency by bezafibrate in patient fibroblasts: toward a genotype-based therapy.

    PubMed

    Gobin-Limballe, S; Djouadi, F; Aubey, F; Olpin, S; Andresen, B S; Yamaguchi, S; Mandel, H; Fukao, T; Ruiter, J P N; Wanders, R J A; McAndrew, R; Kim, J J; Bastin, J

    2007-12-01

    Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty-acid beta-oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent-onset myopathy, and for which there is no established treatment. Recent data suggest that bezafibrate could improve the FAO capacities in beta-oxidation-deficient cells, by enhancing the residual level of mutant enzyme activity via gene-expression stimulation. Since VLCAD-deficient patients frequently harbor missense mutations with unpredictable effects on enzyme activity, we investigated the response to bezafibrate as a function of genotype in 33 VLCAD-deficient fibroblasts representing 45 different mutations. Treatment with bezafibrate (400 microM for 48 h) resulted in a marked increase in FAO capacities, often leading to restoration of normal values, for 21 genotypes that mainly corresponded to patients with the myopathic phenotype. In contrast, bezafibrate induced no changes in FAO for 11 genotypes corresponding to severe neonatal or infantile phenotypes. This pattern of response was not due to differential inductions of VLCAD messenger RNA, as shown by quantitative real-time polymerase chain reaction, but reflected variable increases in measured VLCAD residual enzyme activity in response to bezafibrate. Genotype cross-analysis allowed the identification of alleles carrying missense mutations, which could account for these different pharmacological profiles and, on this basis, led to the characterization of 9 mild and 11 severe missense mutations. Altogether, the responses to bezafibrate reflected the severity of the metabolic blockage in various genotypes, which appeared to be correlated with the phenotype, thus providing a new approach for analysis of genetic heterogeneity. Finally, this study emphasizes the potential of bezafibrate, a widely prescribed hypolipidemic drug, for the correction of VLCAD deficiency and

  4. Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype

    PubMed Central

    2012-01-01

    Medium chain acyl CoA dehydrogenase deficiency (MCAD) is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23) mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI) and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death. PMID:23095120

  5. Enhancement of 1,3-propanediol production by expression of pyruvate decarboxylase and aldehyde dehydrogenase from Zymomonas mobilis in the acetolactate-synthase-deficient mutant of Klebsiella pneumoniae.

    PubMed

    Lee, Sung-Mok; Hong, Won-Kyung; Heo, Sun-Yeon; Park, Jang Min; Jung, You Ree; Oh, Baek-Rock; Joe, Min-Ho; Seo, Jeong-Woo; Kim, Chul Ho

    2014-08-01

    The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.

  6. Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: case report and literatures review

    PubMed Central

    An, Se Jin; Kim, Sook Za; Kim, Gu Hwan; Yoo, Han Wook

    2016-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive mitochondrial disorder of fatty acid β-oxidation, and is associated with mutations in the acyl-CoA dehydrogenase (ACADS) gene. Recent advances in spectrometric screening for inborn errors of metabolism have helped detect several metabolic disorders, including SCADD, without symptoms in the neonate period. This allows immediate initiation of treatment and monitoring, so they remain largely symptomless metabolic disease. Here, we report a 15-month-old asymptomatic male, who was diagnosed with SCADD by newborn screening. Spectrometric screening for inborn errors of metabolism 72 hours after birth revealed an elevated butyrylcarnitine (C4) concentration of 2.25 µmol/L (normal, <0.99 µmol/L). Urinary excretion of ethylmalonic acid was also elevated, as detected by urine organic acid analysis. To confirm the diagnosis of SCADD, direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Subsequent sequence analysis revealed compound heterozygous missense mutations c.164C>T (p.Pro55Leu) and c.1031A>G (p.Glu344Gly) on exons 2 and 9, respectively. The patient is now growing up, unretarded by symptoms such as seizure and developmental delay. PMID:28018444

  7. Pyridoxine-dependent seizures caused by alpha amino adipic semialdehyde dehydrogenase deficiency: the first polish case with confirmed biochemical and molecular pathology.

    PubMed

    Kaczorowska, Magdalena; Kmiec, Tomasz; Jakobs, Cornelis; Kacinski, Marek; Kroczka, Slawomir; Salomons, Gajja S; Struys, Eduard A; Jozwiak, Sergiusz

    2008-12-01

    Pyridoxine-dependent seizures are a rare condition recognized when numerous seizures respond to pyridoxine treatment and recur on pyridoxine withdrawal. For decades the diagnosis was confirmed only with pyridoxine treatment withdrawal trial. Recently described biochemical and molecular pathology improved the diagnostic process for those cases in which seizures are caused by alpha amino adipic semialdehyde dehydrogenase deficiency. This article presents a girl with recurrent status epilepticus episodes resistant to phenobarbital and phenytoin and partly responding to midazolam. Eventually the seizures were completely controlled with pyridoxine; however, due to the severe condition of this child when seizing, no trial of withdrawal has been performed. The diagnosis of pyridoxine-dependent seizures was confirmed with biochemical and molecular testing revealing elevated alpha-AASA excretion and the presence of 2 different mutations in the antiquitin ( ALDH7A1) gene. Due to the availability of reliable laboratory testing, confirmation of the diagnosis was made without the life-threatening trial of pyridoxine withdrawal.

  8. Commentary on a Delphi clinical practice protocol for the diagnosis and management of very long chain acyl-CoA dehydrogenase deficiency by Arnold et al.

    PubMed

    Marsden, Deborah Louise

    2009-03-01

    Very long chain acyl-CoA dehydrogenase deficiency (VLCAD) can now be detected by newborn screening by tandem mass spectrometry. The incidence is higher than previously estimated because of the identification of potentially milder later onset variants by screening. Although there is little information in the literature on the optimal management of rare inborn errors, there is a need for management guidelines, especially for non-specialist providers in the community. In the accompanying article, Arnold et al. present a diagnostic and management guideline for VLCAD, developed by the Delphi method for gaining consensus from a panel of 14 metabolic specialists. While consensus was gained for some issues, there was no clear consensus for several important management issues, particularly for the later onset variants. Clearly, there is an urgent need for multinational collaborative protocol driven outcomes studies that will provide the data necessary to establish robust guidelines for inborn errors of metabolism.

  9. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    PubMed

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.

  10. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  11. Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal.

    PubMed

    Ray, M; Basu, N; Ray, S

    1997-12-01

    The effect of methylglyoxal on the activity of glyceraldehyde-3-phosphate dehydrogenase (GA3PD) of several normal human tissues and benign and malignant tumors has been tested. Methylglyoxal inactivated GA3PD of all the malignant cells (47 samples) and the degree of inactivation was in the range of 25-90%, but it had no inhibitory effect on this enzyme from several normal cells (24 samples) and benign tumors (13 samples). When the effect of methylglyoxal on other two dehydrogenases namely glucose 6-phosphate dehydrogenase (G6PD) and L-lactic dehydrogenase (LDH) of similar cells was tested as controls it has been observed that methylglyoxal has some inactivating effect on G6PD of all the normal, benign and malignant samples tested, whereas, LDH remained completely unaffected. These studies indicate that the inactivating effect of methylglyoxal on GA3PD specifically of the malignant cells may be a common feature of all the malignant cells, and this phenomenon can be used as a simple and rapid device for the detection of malignancy.

  12. Defects in the HSD11 gene encoding 11[beta]-hydroxysteriod dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency

    SciTech Connect

    Nikkila, H.; White, P.C. ); Tannin, G.M. ); New, M.I.; Taylor, N.F. ); Kalaitzoglou, G.; Monder, C. )

    1993-09-01

    The syndrome of apparent mineralocorticoid excess (AME) is a form of low renin hypertension that is thought to be caused by congenital deficiency of 11[beta]-hydroxysteroid dehydrogenase (11HSD) activity. This enzyme converts cortisol to cortisone and apparently prevents cortisol from acting as a ligand for the mineralocorticoid (type I) receptor. It also catalyzes the reverse oxoreductase (cortisone to cortisol) reaction. Four patients with AME and the parents of the first patient described (now deceased) were analyzed for mutations in the cloned HSD11 gene encoding an 11HSD enzyme. A patient with suspected cortisone reductase deficiency was also studied. No gross deletions or rearrangements in the HSD11 gene were apparent on hybridizations of blot of genomic DNA. Direct sequencing of polymerase chain reaction-amplified fragments corresponding to the coding sequences, intronexon junctions, and proximal untranslated regions of this gene revealed no mutations. AME may involve mutations in a gene for another enzyme with 11HSD activity or perhaps another cortisol metabolizing enzyme. 48 refs., 2 figs., 2 tabs.

  13. "Any decision is better than none" decision-making about sex of rearing for siblings with 17beta-hydroxysteroid-dehydrogenase-3 deficiency.

    PubMed

    Jürgensen, Martina; Hampel, Eva; Hiort, Olaf; Thyen, Ute

    2006-06-01

    Children with 17beta-hydroxysteroid-dehydrogenase-3 (17beta-HSD-3) deficiency have a defect of testosterone biosynthesis with subsequent diminished virilization in XY individuals. Some are raised as girls and some as boys. There were two purposes of this case report: First, it analyzed the process of decision-making in a family with a pair of siblings with identical mutations leading to 17beta-HSD-3 deficiency whose parents chose to raise one child as a boy and one as a girl. This analysis was based on narrative interviews with the parents. Second, we assessed the gender role behavior and gender identity in the children to examine if the psychosexual development of these children correspond with the sex of rearing their parents chose. When participating in the study, the children were 7 (boy) and 5 (girl) years old. Parents described a difficult process of decision-making and voiced concerns about lack of appropriate and understandable information, and anticipated decision regret. However, they did not feel that the decision to "normalize" the external genitalia should have been deferred. Both children appeared to show age-typical gender-related behavior and did not show any signs of physical or mental distress.

  14. Pyruvate dehydrogenase-E1α deficiency presenting as recurrent acute proximal muscle weakness of upper and lower extremities in an 8-year-old boy.

    PubMed

    Kara, Bülent; Genç, Hülya Maraş; Uyur-Yalçın, Emek; Sakarya-Güneş, Ayfer; Topçu, Uğur; Mülayim, Serap; Ceylaner, Serdar

    2017-01-01

    The mitochondrial pyruvate dehydrogenase enzyme complex (PDHC) plays an important role in aerobic energy metabolism and acid-base equilibrium. PDHC contains of 5 enzymes, 3 catalytic (E1, E2, E3) and 2 regulatory, as well as 3 cofactors and an additional protein (E3-binding protein) encoded by nuclear genes. The clinical presentation of PDHC deficiency ranges from fatal neonatal lactic acidosis to chronic neurologic dysfunction without lactic acidosis. Paroxysmal neurologic problems such as intermittent ataxia, episodic weakness, exercise-induced dystonia and recurrent demyelination may also be seen although they are rare. Here, we present an 8-year-old boy complaining of acute proximal muscle weakness of upper and lower extremities with normal mental status. He had a history of Guillain-Barré-like syndrome at the age of 2 years. Electrophysiologic studies showed sensorial polyneuropathy findings in the first attack and sensorimotor axonal polyneuropathy findings in the last attack. The genetic analysis revealed a previously reported hemizygote novel mutation of the PDHA1 gene (p.A353T/c.1057G > A), which encodes the E1α subunit of PDHC. Thiamine was ordered (15 mg/kg/day), dietary carbohydrates were restricted and clinical findings improved in a few weeks. This rare phenotype of PDHC deficiency is discussed.

  15. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Ribeiro, César Augusto; Lagranha, Valeska Lizzi; Pereira, Carolina Coffi; de Oliveira, Francine Hehn; de Souza, Diogo Gomes; Goodman, Stephen; Woontner, Michael; Wajner, Moacir

    2015-09-16

    Bioenergetics dysfunction has been postulated as an important pathomechanism of brain damage in glutaric aciduria type I, but this is still under debate. We investigated activities of citric acid cycle (CAC) enzymes, lactate release, respiration and membrane potential (ΔΨm) in mitochondrial preparations from cerebral cortex and striatum of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh-/-) and wild type mice fed a baseline or a high lysine (Lys, 4.7%) chow for 60 or 96h. Brain histological analyses were performed in these animals, as well as in 90-day-old animals fed a baseline or a high Lys chow during 30 days starting at 60-day-old. A moderate reduction of citrate synthase and isocitrate dehydrogenase activities was observed only in the striatum from 30-day-old Gcdh-/- animals submitted to a high Lys chow. In contrast, the other CAC enzyme activities, lactate release, the respiratory parameters state 3, state 4, the respiratory control ratio and CCCP-stimulated (uncoupled) state, as well as ΔΨm were not altered in the striatum. Similarly, none of the evaluated parameters were changed in the cerebral cortex from these animals under baseline or Lys overload. On the other hand, histological analyses revealed the presence of intense vacuolation in the cerebral cortex of 60 and 90-day-old Gcdh-/- mice fed a baseline chow and in the striatum of 90-day-old Gcdh-/- mice submitted to Lys overload for 30 days. Taken together, the present data demonstrate mild impairment of bioenergetics homeostasis and marked histological alterations in striatum from Gcdh-/- mice under a high Lys chow, suggesting that disruption of energy metabolism is not mainly involved in the brain injury of these animals.

  16. Phenazopyridine

    MedlinePlus

    ... have or have ever had kidney disease or glucose-6-phosphate dehydrogenase (G-6-PD) deficiency (an inherited blood disease).tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking phenazopyridine, call your doctor.

  17. Methemoglobinemia hemotoxicity of some antimalarial 8-aminoquinoline analogues and their hydroxylated derivatives: density functional theory computation of ionization potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The administration of primaquine (PQ), an essential drug for treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose...

  18. Haemolytic anaemia after ingestion of Neem (Azadirachta indica) tea.

    PubMed

    Page, Cristy; Hawes, Emily M

    2013-10-17

    The authors report a clinically relevant and possible cause of haemolytic anaemia from ingestion of a Mexican tea from the Neem tree, also known as Azadirachta indica, in a 35-year-old Hispanic man who was found to have glucose-6-phosphate dehydrogenase deficiency.

  19. Aphrodisiac drug-induced hemolysis.

    PubMed

    Stalnikowicz, Ruth; Amitai, Yona; Bentur, Yedidia

    2004-01-01

    Volatile alkyl nitrites have been used during the past decades for "recreational purposes," and for intensifying sexual experience. Their use has been associated with methemoglobinemia and hemolysis. We report three patients who presented over the past year with acute hemolysis after inhalation of butyl nitrite, two of them had glucose-6-phosphate dehydrogenase (G6PD) deficiency.

  20. Mitochondrial NADP(+)-Dependent Isocitrate Dehydrogenase Deficiency Exacerbates Mitochondrial and Cell Damage after Kidney Ischemia-Reperfusion Injury.

    PubMed

    Han, Sang Jun; Jang, Hee-Seong; Noh, Mi Ra; Kim, Jinu; Kong, Min Jung; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2017-04-01

    Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate, synthesizing NADPH, which is essential for mitochondrial redox balance. Ischemia-reperfusion (I/R) is one of most common causes of AKI. I/R disrupts the mitochondrial redox balance, resulting in oxidative damage to mitochondria and cells. Here, we investigated the role of IDH2 in I/R-induced AKI. I/R injury in mice led to the inactivation of IDH2 in kidney tubule cells. Idh2 gene deletion exacerbated the I/R-induced increase in plasma creatinine and BUN levels and the histologic evidence of tubule injury, and augmented the reduction of NADPH levels and the increase in oxidative stress observed in the kidney after I/R. Furthermore, Idh2 gene deletion exacerbated I/R-induced mitochondrial dysfunction and morphologic fragmentation, resulting in severe apoptosis in kidney tubule cells. In cultured mouse kidney proximal tubule cells, Idh2 gene downregulation enhanced the mitochondrial damage and apoptosis induced by treatment with hydrogen peroxide. This study demonstrates that Idh2 gene deletion exacerbates mitochondrial damage and tubular cell death via increased oxidative stress, suggesting that IDH2 is an important mitochondrial antioxidant enzyme that protects cells from I/R insult.

  1. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  2. A Novel Mutation Causing 17-β-Hydroxysteroid Dehydrogenase Type 3 Deficiency in an Omani Child: First Case Report and Review of Literature

    PubMed Central

    Al-Sinani, Aisha; Mula-Abed, Waad-Allah S.; Al-Kindi, Manal; Al-Kusaibi, Ghariba; Al-Azkawi, Hanan; Nahavandi, Nahid

    2015-01-01

    This is the first case report in Oman and the Gulf region of a 17-β-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) deficiency with a novel mutation in the HSD17B3 gene that has not been previously described in the medical literature. An Omani child was diagnosed with 17-β-HSD3 deficiency and was followed up for 11 years at the Pediatric Endocrinology Clinic, Royal Hospital, Oman. He presented at the age of six weeks with ambiguous genitalia, stretched penile and bilateral undescended testes. Ultrasound showed no evidence of any uterine or ovarian structures with oval shaped solid structures in both inguinal regions that were confirmed by histology to be testicular tissues with immature seminiferous tubules only. The diagnosis was made by demonstrating low serum testosterone and high androstenedione, estrone, and androstenedione:testosterone ratio. Karyotyping confirmed 46,XY and the infant was raised as male. Testosterone injections (25mg once monthly) were given at two and six months and then three months before his surgeries at five and seven years of age when he underwent multiple operations for orchidopexy and hypospadias correction. At the age of 10 years he developed bilateral gynecomastia (stage 4). Laboratory investigations showed raised follicle-stimulating hormone, luteinizing hormone, androstenedione, and estrone with low-normal testosterone and low androstendiol glucurunide. Testosterone injections (50mg once monthly for six months) were given that resulted in significant reduction in his gynecomastia. Molecular analysis revealed a previously unreported homozygous variant in exon eight of the HSD17B3 gene (NM_000197.1:c.576G>A.Trp192*). This variant creates a premature stop codon, which is very likely to result in a truncated protein or loss of protein production. This is the first report in the medical literature of this novel HSD17B3 gene mutation. A literature review was conducted to identify the previous studies related to this disorder. PMID

  3. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    PubMed

    Kim, Seok-Hyung; Scott, Sarah A; Bennett, Michael J; Carson, Robert P; Fessel, Joshua; Brown, H Alex; Ess, Kevin C

    2013-06-01

    Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463) ) that has an inactivating mutation in the etfa gene. dxa(vu463) recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463) zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463) zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  4. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton

    PubMed Central

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-01-01

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition. PMID:26179843

  5. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation.

    PubMed

    Struys, Eduard A; Jakobs, Cornelis

    2010-01-04

    The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.

  6. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.

    PubMed

    Schuck, Patrícia Fernanda; Ferreira, Gustavo da Costa; Tonin, Anelise Miotti; Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Zanatta, Angela; Klamt, Fábio; Wajner, Moacir

    2009-11-03

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.

  7. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp.

    PubMed

    Shigematsu, Toru; Takamine, Kazunori; Kitazato, Masaya; Morita, Tetsuya; Naritomi, Takaaki; Morimura, Shigeru; Kida, Kenji

    2005-04-01

    A gene fragment encoding a putative pyrroloquinoline quinone glucose dehydrogenase (PQQ GDH) was cloned from a bacterial cellulose (BC)-forming acetic acid bacterium, Gluconacetobacter xylinus (=Acetobacter xylinum) strain BPR 2001, which was isolated as a high BC producer when using fructose as the carbon source. A GDH-deficient mutant of strain BPR 2001, namely GD-I, was then generated via gene disruption using the cloned gene fragment. Strain GD-I produced no gluconic acid but produced 4.1 g.l(-1) of BC aerobically in medium containing glucose as the carbon source. The ability of strain GD-I to convert glucose to BC was approximately 1.7-fold higher than that of the wild type. Strain GD-I was also able to produce 5.0 g.l(-1) of BC from a saccharified solution, which was derived from sweet potato pulp by enzymatic saccharification. Supplementation of ethanol during aerobic cultivation further increased the concentration of BC produced by strain GD-I to 7.0 g.l(-1). The rate of conversion from glucose to BC under these cultivation conditions was equivalent to that of strain BPR 2001 cultivated with fructose as the carbon source.

  8. Medium-chain triglycerides impair lipid metabolism and induce hepatic steatosis in very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient mice.

    PubMed

    Tucci, Sara; Primassin, Sonja; Ter Veld, Frank; Spiekerkoetter, Ute

    2010-09-01

    A medium-chain-triglyceride (MCT)-based diet is mainstay of treatment in very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), a long-chain fatty acid beta-oxidation defect. Beneficial effects have been reported with an MCT-bolus prior to exercise. Little is known about the impact of a long-term MCT diet on hepatic lipid metabolism. Here we investigate the effects of MCT-supplementation on liver and blood lipids in the murine model of VLCADD. Wild-type (WT) and VLCAD-knock-out (KO) mice were fed (1) a long-chain triglyceride (LCT)-diet over 5weeks, (2) an MCT diet over 5 weeks and (3) an LCT diet plus MCT-bolus. Blood and liver lipid content were determined. Expression of genes regulating lipogenesis was analyzed by RT-PCR. Under the LCT diet, VLCAD-KO mice accumulated significantly higher blood cholesterol concentrations compared to WT mice. The MCT-diet induced severe hepatic steatosis, significantly higher serum free fatty acids and impaired hepatic lipid mobilization in VLCAD-KO mice. Expression at mRNA level of hepatic lipogenic genes was up-regulated. The long-term MCT diet stimulates lipogenesis and impairs hepatic lipid metabolism in VLCAD-KO mice. These results suggest a critical reconsideration of a long-term MCT-modified diet in human VLCADD. In contrast, MCT in situations of increased energy demand appears to be a safer treatment alternative.

  9. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  10. Sensory integration intervention: historical concepts, treatment strategies and clinical experiences in three patients with succinic semialdehyde dehydrogenase (SSADH) deficiency.

    PubMed

    Kratz, S V

    2009-06-01

    This paper is a review of clinical experiences providing developmental therapy services for three boys diagnosed with paediatric neurotransmitter disease. The clinical presentation of paediatric neurotransmitter diseases might parallel other diagnostic characteristics seen in a typical paediatric therapy clinic (i.e. hypotonia, motor and cognitive delays, coordination, expressive speech, and ocular motor difficulties.) From the clinical perspective of the author, sensory integrative function is but one aspect of a thorough evaluation and treatment plan for all patients. The manifestations of sensory integration dysfunction (SID), also known as sensory processing dysfunction (SPD), can occur alone or be concurrent with a variety of known medical, behavioural and neurological diagnoses. These manifestations of SPD can include, but are not limited to: hypotonia, hyperactivity, irritability, distractibility, attention difficulties, learning difficulties, clumsiness and incoordination, instability, poor motor skills, social-emotional difficulties, and behavioural problems. This paper summarizes the theory and practice applications of sensory integration. The author discusses clinical experiences providing occupational therapy services utilizing sensory integration methods and strategies with clients who were eventually diagnosed with SSADH deficiency.

  11. Anesthetic agents in patients with very long-chain acyl-coenzyme A dehydrogenase deficiency: a literature review.

    PubMed

    Redshaw, Charlotte; Stewart, Catherine

    2014-11-01

    Very long-chain acyl-coenzyme A dehydrongenase deficiency (VLCADD) is a rare disorder of fatty acid metabolism that renders sufferers susceptible to hypoglycemia, liver failure, cardiomyopathy, and rhabdomyolysis. The literature about the management of these patients is hugely conflicting, suggesting that both propofol and volatile anesthesia should be avoided. We have reviewed the literature and have concluded that the source papers do not support the statements that volatile anesthetic agents are unsafe. The reports on rhabdomyolysis secondary to anesthesia appear to be due to inadequate supply of carbohydrate not volatile agents. Catabolism must be avoided with minimal fasting, glucose infusions based on age and weight, and attenuation of emotional and physical stress. General anesthesia appears to be protective of stress-induced catabolism and may offer benefits in children and anxious patients over regional anesthesia. Propofol has not been demonstrated to be harmful in VLCADD but is presented in an emulsion containing very long-chain fatty acids which can cause organ lipidosis and itself can inhibit mitochondrial fatty acid metabolism. It is therefore not recommended. Suxamethonium-induced myalgia may mimic symptoms of rhabdomyolysis and cause raised CK therefore should be avoided. Opioids, NSAIDS, regional anesthesia, and local anesthetic techniques have all been used without complication.

  12. Assessment of Point-of-Care Diagnostics for G6PD Deficiency in Malaria Endemic Rural Eastern Indonesia

    PubMed Central

    Satyagraha, Ari W.; Sadhewa, Arkasha; Elvira, Rosalie; Elyazar, Iqbal; Feriandika, Denny; Antonjaya, Ungke; Oyong, Damian; Subekti, Decy; Rozi, Ismail E.; Domingo, Gonzalo J.; Harahap, Alida R.; Baird, J. Kevin

    2016-01-01

    Background Patients infected by Plasmodium vivax or Plasmodium ovale suffer repeated clinical attacks without primaquine therapy against latent stages in liver. Primaquine causes seriously threatening acute hemolytic anemia in patients having inherited glucose-6-phosphate dehydrogenase (G6PD) deficiency. Access to safe primaquine therapy hinges upon the ability to confirm G6PD normal status. CareStart G6PD, a qualitative G6PD rapid diagnostic test (G6PD RDT) intended for use at point-of-care in impoverished rural settings where most malaria patients live, was evaluated. Methodology/Principal Findings This device and the standard qualitative fluorescent spot test (FST) were each compared against the quantitative spectrophotometric assay for G6PD activity as the diagnostic gold standard. The assessment occurred at meso-endemic Panenggo Ede in western Sumba Island in eastern Indonesia, where 610 residents provided venous blood. The G6PD RDT and FST qualitative assessments were performed in the field, whereas the quantitative assay was performed in a research laboratory at Jakarta. The median G6PD activity ≥5 U/gHb was 9.7 U/gHb and was considered 100% of normal activity. The prevalence of G6PD deficiency by quantitative assessment (<5 U/gHb) was 7.2%. Applying 30% of normal G6PD activity as the cut-off for qualitative testing, the sensitivity, specificity, positive predictive value, and negative predictive value for G6PD RDT versus FST among males were as follows: 100%, 98.7%, 89%, and 100% versus 91.7%, 92%, 55%, and 99%; P = 0.49, 0.001, 0.004, and 0.24, respectively. These values among females were: 83%, 92.7%, 17%, and 99.7% versus 100%, 92%, 18%, and 100%; P = 1.0, 0.89, 1.0 and 1.0, respectively. Conclusions/Significance The overall performance of G6PD RDT, especially 100% negative predictive value, demonstrates suitable safety for G6PD screening prior to administering hemolytic drugs like primaquine and many others. Relatively poor diagnostic performance

  13. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  14. 46,XY DSD with Female or Ambiguous External Genitalia at Birth due to Androgen Insensitivity Syndrome, 5α-Reductase-2 Deficiency, or 17β-Hydroxysteroid Dehydrogenase Deficiency: A Review of Quality of Life Outcomes

    PubMed Central

    Wisniewski, Amy B.; Mazur, Tom

    2009-01-01

    Disorders of sex development refer to a collection of congenital conditions in which atypical development of chromosomal, gonadal, or anatomic sex occurs. Studies of 46,XY DSD have focused largely on gender identity, gender role, and sexual orientation. Few studies have focused on other domains, such as physical and mental health, that may contribute to a person's quality of life. The current review focuses on information published since 1955 pertaining to psychological well-being, cognition, general health, fertility, and sexual function in people affected by androgen insensitivity syndromes, 5-α reductase-2 deficiency, or 17β-hydroxysteroid dehydrogenase-3 deficiency—reared male or female. The complete form of androgen insensitivity syndrome has been the focus of the largest number of investigations in domains other than gender. Despite this, all of the conditions included in the current review are under-studied. Realms identified for further study include psychological well-being, cognitive abilities, general health, fertility, and sexual function. Such investigations would not only improve the quality of life for those affected by DSD but may also provide information for improving physical and mental health in the general population. PMID:19956704

  15. Drug Resistance in Malaria. Investigation of Mechanisms and Patterns of Drug Resistance and Cross Resistance in Malaria.

    DTIC Science & Technology

    1985-01-31

    deficiency (Brewer, Tarlov , and Kellermeyer, 1961) who are not in hemolytic crisis. Similarly, as there is evidence of a decrease in G6PD activity with...Invest. 59, 633. Armbrecht, H. J., Birnbaum, L. S., Zenser, T. V., and Davis, B. B. (1982). Changes in hepatic microsomal membrane fluidity with age...for pyruvate kinase deficiency, glucose 6-phosphate dehydrogenase deficiency, and glutathione reductase deficiency. Blood 28, 553. Brewer, G. J., Tarlov

  16. Acute haemolytic episodes & fava bean consumption in G6PD deficient Iraqis.

    PubMed

    Yahya, H I; al-Allawi, N A

    1993-12-01

    The relation between fava bean ingestion and the occurrence of a haemolytic episode was studied in 102 glucose-6-phosphate dehydrogenate (G6PD) deficient Iraqi patients. None of the patients (mean age 12.8 yr) had a documented similar illness earlier, although all of them gave history of reported regular fava bean ingestion in the past. Further, none of the three patients who were rechallenged (2-3 months later) by the beans developed any clinical or laboratory evidence of haemolysis. The incidence of the haemolytic episodes was found to peak in April, while the fava bean season extends from February to June. This study thus does not support a causal relation between the bean ingestion and the haemolytic episodes in G6PD deficient Iraqis. Possibly, some other factor such as a viral infection may be involved.

  17. A Rare Case of Short-Chain Acyl-COA Dehydrogenase Deficiency: The Apparent Rarity of the Disorder Results in Under Diagnosis.

    PubMed

    Reddy, G Shilpa; Sujatha, M

    2011-07-01

    Short-chain acyl-CoA dehydrogenase (ACAD) deficiency is an extremely rare inherited mitochondrial disorder of fat metabolism. This belongs to a group of diseases known as fatty acid oxidation disorders. Screening programmes have provided evidence that all the fatty acid oxidation disorders combined are among the most common inborn errors of metabolism. Mitochondrial beta oxidation of fatty acids is an essential energy producing pathway. It is a particularly important pathway during prolonged periods of starvation and during periods of reduced caloric intake due to gastrointestinal illness or increased energy expenditure during febrile illness. The most common presentation is an acute episode of life threatening coma and hypoglycemia induced by a period of fasting due to defective hepatic ketogenesis. Here, the case of a 4 month old female patient who had seizures since the third day of her birth and persistent hypoglycemia is described. She was born to parents of second degree consanguinity after 10 years of infertility treatment. There was history of delayed cry after birth. Metabolic screening for TSH, galactosemia, 17-OHP, G6PD, cystic fibrosis, biotinidase were normal. Tandem mass spectrometric (TMS) screening for blood amino acids, organic acids, fatty acids showed elevated butyryl carnitine (C4) as 3.40 μmol/L (normal <2.00 μmol/L), hexanoyl carnitine (C6) as 0.92 μmol/L (normal <0.72 μmol/L), C4/C3 as 2.93 μmol/L (normal <1.18 μmol/L). The child was started immediately on carnitor syrup (carnitine) 1/2 ml twice daily. Limitation of fasting stress and dietary fat was advised. Baby responded well by gaining weight and seizures were controlled. Until now, less than 25 patients have been reported worldwide. The limited number of patients diagnosed until now is due to the rarity of the disorder resulting in under diagnosis.

  18. Data mining methods for classification of Medium-Chain Acyl-CoA dehydrogenase deficiency (MCADD) using non-derivatized tandem MS neonatal screening data.

    PubMed

    Van den Bulcke, Tim; Vanden Broucke, Paul; Van Hoof, Viviane; Wouters, Kristien; Vanden Broucke, Seppe; Smits, Geert; Smits, Elke; Proesmans, Sam; Van Genechten, Toon; Eyskens, François

    2011-04-01

    Newborn screening programs for severe metabolic disorders using tandem mass spectrometry are widely used. Medium-Chain Acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid oxidation defect (1:15,000 newborns) and it has been proven that early detection of this metabolic disease decreases mortality and improves the outcome. In previous studies, data mining methods on derivatized tandem MS datasets have shown high classification accuracies. However, no machine learning methods currently have been applied to datasets based on non-derivatized screening methods. A dataset with 44,159 blood samples was collected using a non-derivatized screening method as part of a systematic newborn screening by the PCMA screening center (Belgium). Twelve MCADD cases were present in this partially MCADD-enriched dataset. We extended three data mining methods, namely C4.5 decision trees, logistic regression and ridge logistic regression, with a parameter and threshold optimization method and evaluated their applicability as a diagnostic support tool. Within a stratified cross-validation setting, a grid search was performed for each model for a wide range of model parameters, included variables and classification thresholds. The best performing model used ridge logistic regression and achieved a sensitivity of 100%, a specificity of 99.987% and a positive predictive value of 32% (recalibrated for a real population), obtained in a stratified cross-validation setting. These results were further validated on an independent test set. Using a method that combines ridge logistic regression with variable selection and threshold optimization, a significantly improved performance was achieved compared to the current state-of-the-art for derivatized data, while retaining more interpretability and requiring less variables. The results indicate the potential value of data mining methods as a diagnostic support tool.

  19. Acylcarnitine profiles during carnitine loading and fasting tests in a Japanese patient with medium-chain acyl-CoA dehydrogenase deficiency.

    PubMed

    Yokoi, Kyoko; Ito, Tetsuya; Maeda, Yasuhiro; Nakajima, Yoko; Ueta, Akihito; Nomura, Takayasu; Koyama, Norihisa; Kato, Ineko; Suzuki, Satoshi; Kurono, Yukihisa; Sugiyama, Naruji; Togari, Hajime

    2007-12-01

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is rare among Asian individuals, and the clinical course and biochemical findings remain unclear. We report herein a 3-year-old Japanese girl with MCADD. The diagnosis was suggested by acylcarnitine profiles and confirmed by enzyme activity and genetic analysis after clinical presentation. Our described method with high-performance liquid chromatography/tandem mass spectrometry allows quantification of levels of n-octanoylcarnitine (C8-N) and other isomers (e.g. valproylcarnitine). We examined the patient's acylcarnitine profiles in serum and urine samples during carnitine loading and 14-hr fasting tests with/without carnitine supplementation. Under hypocarnitinemia, serum level of C8-N was 0.16 micromol/l and C8-N/decanoylcarnitine (C10) ratio was 1.8, which did not correspond to the diagnostic criteria for MCADD. However, intravenous carnitine loading test (100 mg/kg/day for 3 days and 50 mg/kg/day for 1 day) led to increased serum C8-N levels and urinary excretion was obvious, strongly suggesting MCADD. In the fasting test with carnitine supplementation, marked production of acylcarnitines (C8-N > C2 > C6 > C10) was found, compared to the fasting test without carnitine supplementation. These results indicate that carnitine supplementation may be useful for detoxification of accumulated acylcarnitines even in an asymptomatic state. Moreover, the one-point examination for serum C8-N level and/or C8-N/C10 ratio may make the diagnosis of MCADD difficult, particularly in the presence of significant hypocarnitinemia. To avoid this pitfall, attention should be given to serum levels of free carnitine, and carnitine loading may be demanded in hypocarnitinemia.

  20. A Historical Cohort Study on the Efficacy of Glucocorticoids and Riboflavin Among Patients with Late-onset Multiple Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Liu, Xin-Yi; Wang, Zhi-Qiang; Wang, Dan-Ni; Lin, Min-Ting; Wang, Ning

    2016-01-01

    Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common type of lipid storage myopathies in China. Most patients with late-onset MADD are well responsive to riboflavin. Up to now, these patients are often treated with glucocorticoids as the first-line drug because they are misdiagnosed as polymyositis without muscle biopsy or gene analysis. Although glucocorticoids seem to improve the fatty acid metabolism of late-onset MADD, the objective evaluation of their rationalization on this disorder and comparison with riboflavin treatment are unknown. Methods: We performed a historical cohort study on the efficacy of the two drugs among 45 patients with late-onset MADD, who were divided into glucocorticoids group and riboflavin group. Detailed clinical information of baseline and 1-month follow-up were collected. Results: After 1-month treatment, a dramatic improvement of muscle strength was found in riboflavin group (P < 0.05). There was no significant difference in muscle enzymes between the two groups. Significantly, the number of patients with full recovery in glucocorticoids group was less than the number in riboflavin group (P < 0.05). On the other hand, almost half of the patients in riboflavin group still presented high-level muscle enzymes and weak muscle strength after 1-month riboflavin treatment, meaning that 1-month treatment duration maybe insufficient and patients should keep on riboflavin supplement for a longer time. Conclusions: Our results provide credible evidences that the overall efficacy of riboflavin is superior to glucocorticoids, and a longer duration of riboflavin treatment is necessary for patients with late-onset MADD. PMID:26830983

  1. Pre-exercise medium-chain triglyceride application prevents acylcarnitine accumulation in skeletal muscle from very-long-chain acyl-CoA-dehydrogenase-deficient mice.

    PubMed

    Primassin, Sonja; Tucci, Sara; Herebian, Diran; Seibt, Annette; Hoffmann, Lars; ter Veld, Frank; Spiekerkoetter, Ute

    2010-06-01

    Dietary modification with medium-chain triglyceride (MCT) supplementation is one crucial way of treating children with long-chain fatty acid oxidation disorders. Recently, supplementation prior to exercise has been reported to prevent muscular pain and rhabdomyolysis. Systematic studies to determine when MCT supplementation is most beneficial have not yet been undertaken. We studied the effects of an MCT-based diet compared with MCT administration only prior to exercise in very-long-chain acyl-CoA dehydrogenase (VLCAD) knockout (KO) mice. VLCAD KO mice were fed an MCT-based diet in same amounts as normal mouse diet containing long-chain triglycerides (LCT) and were exercised on a treadmill. Mice fed a normal LCT diet received MCT only prior to exercise. Acylcarnitine concentration, free carnitine concentration, and acyl-coenzyme A (CoA) oxidation capacity in skeletal muscle as well as hepatic lipid accumulation were determined. Long-chain acylcarnitines significantly increased in VLCAD-deficient skeletal muscle with an MCT diet compared with an LCT diet with MCT bolus prior to exercise, whereas an MCT bolus treatment significantly decreased long-chain acylcarnitines after exercise compared with an LCT diet. C8-carnitine was significantly increased in skeletal muscle after MCT bolus treatment and exercise compared with LCT and long-term MCT treatment. Increased hepatic lipid accumulation was observed in long-term MCT-treated KO mice. MCT seems most beneficial when given in a single dose directly prior to exercise to prevent acylcarnitine accumulation. In contrast, continuous MCT treatment produces a higher skeletal muscle content of long-chain acylcarnitines after exercise and increases hepatic lipid storage in VLCAD KO mice.

  2. Sexual dimorphism of lipid metabolism in very long-chain acyl-CoA dehydrogenase deficient (VLCAD-/-) mice in response to medium-chain triglycerides (MCT).

    PubMed

    Tucci, Sara; Flögel, Ulrich; Spiekerkoetter, Ute

    2015-07-01

    Medium-chain triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders. Previously it was shown that long-term MCT supplementation strongly affects lipid metabolism in mice. We here investigate sex-specific effects in mice with very-long-chain-acyl-CoA dehydrogenase (VLCAD) deficiency in response to a long-term MCT modified diet. We quantified blood lipids, acylcarnitines, glucose, insulin and free fatty acids, as well as tissue triglycerides in the liver and skeletal muscle under a control and an MCT diet over 1 year. In addition, visceral and hepatic fat content and muscular intramyocellular lipids (IMCL) were assessed by in vivo(1)H magnetic resonance spectroscopy (MRS) techniques. The long-term application of an MCT diet induced a marked alteration of glucose homeostasis. However, only VLCAD-/- female mice developed a severe metabolic syndrome characterized by marked insulin resistance, dyslipidemia, severe hepatic and visceral steatosis, whereas VLCAD-/- males seemed to be protected and only presented with milder insulin resistance. Moreover, the highly saturated MCT diet is associated with a decreased hepatic stearoyl-CoA desaturase 1 (SCD1) activity in females aggravating the harmful effects of a saturated MCT diet. Long-term MCT supplementation deeply affects lipid metabolism in a sexual dimorphic manner resulting in a severe metabolic syndrome only in female mice. These findings are striking since the first signs of insulin resistance already occur in female VLCAD-/- mice during their reproductive period. How these metabolic adaptations are finally regulated needs to be determined. More important, the relevance of these findings for humans under these dietary modifications needs to be investigated.

  3. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    PubMed Central

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  4. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    PubMed

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.

  5. G6PD Deficiency Prevalence and Estimates of Affected Populations in Malaria Endemic Countries: A Geostatistical Model-Based Map

    PubMed Central

    Howes, Rosalind E.; Piel, Frédéric B.; Patil, Anand P.; Nyangiri, Oscar A.; Gething, Peter W.; Dewi, Mewahyu; Hogg, Mariana M.; Battle, Katherine E.; Padilla, Carmencita D.; Baird, J. Kevin; Hay, Simon I.

    2012-01-01

    Background Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. Methods and Findings Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4–8.8) across MECs, and 5.3% (4.4–6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of

  6. Identification of glucose-6-phosphate transporter as a key regulator functioning at the autophagy initiation step.

    PubMed

    Ahn, Hye-Hyun; Oh, Yumin; Lee, Huikyong; Lee, WonJae; Chang, Jae-Woong; Pyo, Ha-Kyung; Nah, Do hyung; Jung, Yong-Keun

    2015-07-22

    Autophagy is a catabolic process involving autophagosome formation via lysosome. However, the initiation step of autophagy is largely unknown. We found an interaction between ULK1 and ATG9 in mammalian cells and utilized the interaction to identify novel regulators of autophagy upstream of ULK1. We established a cell-based screening assay employing bimolecular fluorescence complementation. By performing gain-of-function screening, we identified G6PT as an autophagy activator. G6PT enhanced the interaction between N-terminal Venus-tagged ULK1 and C-terminal Venus-tagged ATG9, and increased autophagic flux independent of its transport activity. G6PT negatively regulated mTORC1 activity, demonstrating that G6PT functions upstream of mTORC1 in stimulating autophagy.

  7. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    SciTech Connect

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  8. The significance of abrupt transitions in Lineweaver-Burk plots with particular reference to glutamate dehydrogenase. Negative and positive co-operativity in catalytic rate constants.

    PubMed

    Engel, P C; Ferdinand, W

    1973-01-01

    1. Lineweaver-Burk plots for glutamate dehydrogenase, glucose 6-phosphate dehydrogenase and several other enzymes show one or more abrupt transitions between apparently linear sections. These transitions correspond to abrupt increases in the apparent K(m) and V(max.) with increasing concentration of the varied substrate. 2. The generalized reciprocal initial-rate equation for a multi-site enzyme requires several restrictions to be put on it in order to generate such plots. These mathematical conditions are explored. 3. It is shown that the effective omission of a term in the denominator of the reciprocal initial-rate equation represents a minimal requirement for generation of abrupt transitions. This corresponds in physical terms to negative co-operativity followed by positive co-operativity affecting the catalytic rate constant for the reaction. 4. Previous models for glutamate dehydrogenase cannot adequately account for the results. On the other hand, the model based on both negative and positive co-operativity gives a good fit to the experimental points. 5. The conclusions are discussed in relation to current knowledge of the structure and mechanism of glutamate dehydrogenase.

  9. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    SciTech Connect

    Rodrigues, Juan; Branco, Vasco; Lu, Jun; Holmgren, Arne; Carvalho, Cristina

    2015-08-01

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibited the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates

  10. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism.

    PubMed

    Andresen, B S; Christensen, E; Corydon, T J; Bross, P; Pilgaard, B; Wanders, R J; Ruiter, J P; Simonsen, H; Winter, V; Knudsen, I; Schroeder, L D; Gregersen, N; Skovby, F

    2000-11-01

    Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We investigated a patient with isolated 2-methylbutyrylglycinuria, suggestive of a defect in isoleucine catabolism. Enzyme assay of the patient's fibroblasts, using 2-methylbutyryl-CoA as substrate, confirmed the defect. Sequence analysis of candidate ACADs revealed heterozygosity for the common short-chain ACAD A625 variant allele and no mutations in ACAD-8 but a 100-bp deletion in short/branched-chain ACAD (SBCAD) cDNA from the patient. Our identification of the SBCAD gene structure (11 exons; >20 kb) enabled analysis of genomic DNA. This showed that the deletion was caused by skipping of exon 10, because of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine catabolism.

  11. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    PubMed

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  12. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    SciTech Connect

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  13. Comparison of Three Screening Test Kits for G6PD Enzyme Deficiency: Implications for Its Use in the Radical Cure of Vivax Malaria in Remote and Resource-Poor Areas in the Philippines

    PubMed Central

    Espino, Fe Esperanza; Sornillo, Johanna Beulah; Tan, Alvin; von Seidlein, Lorenz

    2016-01-01

    Objective We evaluated a battery of Glucose-6-Phosphate Dehydrogenase diagnostic point-of-care tests (PoC) to assess the most suitable product in terms of performance and operational characteristics for remote areas. Methods Samples were collected in Puerto Princesa City, Palawan, Philippines and tested for G6PD deficiency with a fluorescent spot test (FST; Procedure 203, Trinity Biotech, Ireland), the semiquantitative WST8/1-methoxy PMS (WST; Dojindo, Japan) and the Carestart G6PD Rapid Diagnostic Test (CSG; AccessBio, USA). Results were compared to spectrophotometry (Procedure 345, Trinity Biotech, Ireland). Sensitivity and specificity were calculated for each test with cut-off activities of 10%, 20%, 30% and 60% of the adjusted male median. Results The adjusted male median was 270.5 IU/1012 RBC. FST and WST were tested on 621 capillary blood samples, the CSG was tested on venous and capillary blood on 302 samples. At 30% G6PD activity, sensitivity for the FST was between 87.7% (95%CI: 76.8% to 93.9%) and 96.5% (95%CI: 87.9% to 99.5%) depending on definition of intermediate results; the WST was 84.2% (95%CI: 72.1% to 92.5%); and the CSG was between 68.8% (95%CI: 41.3% to 89.0%) and 93.8% (95%CI: 69.8% to 99.8%) when the test was performed on capillary or venous blood respectively. Sensitivity of FST and CSG (tested with venous blood) were comparable (p>0.05). The analysis of venous blood samples by the CSG yielded significantly higher results than FST and CSG performed on capillary blood (p<0.05). Sensitivity of the CSG varied depending on source of blood used (p<0.05). Conclusion The operational characteristics of the CSG were superior to all other test formats. Performance and operational characteristics of the CSG performed on venous blood suggest the test to be a good alternative to the FST. PMID:26849445

  14. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    PubMed

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  15. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.).

    PubMed

    Arikit, Siwaret; Yoshihashi, Tadashi; Wanchana, Samart; Uyen, Tran T; Huong, Nguyen T T; Wongpornchai, Sugunya; Vanavichit, Apichart

    2011-01-01

    2-Acetyl-1-pyrroline (2AP), the volatile compound that provides the 'popcorn-like' aroma in a large variety of cereal and food products, is widely found in nature. Deficiency in amino aldehyde dehydrogenase (AMADH) was previously shown to be the likely cause of 2AP biosynthesis in rice (Oryza sativa L.). In this study, the validity of this mechanism was investigated in soybeans (Glycine max L.). An assay of AMADH activity in soybeans revealed that the aromatic soybean, which contains 2AP, also lacked AMADH enzyme activity. Two genes, GmAMADH1 and GmAMADH2, which are homologous to the rice Os2AP gene that encodes AMADH, were characterized. The transcription level of GmAMADH2 was lower in aromatic varieties than in nonaromatic varieties, whereas the expression of GmAMADH1 did not differ. A double nucleotide (TT) deletion was found in exon 10 of GmAMADH2 in all aromatic varieties. This variation caused a frame-shift mutation and a premature stop codon. Suppression of GmAMADH2 by introduction of a GmAMADH2-RNAi construct into the calli of the two nonaromatic wild-type varieties inhibited the synthesis of AMADH and induced the biosynthesis of 2AP. These results suggest that deficiency in the GmAMADH2 product, AMADH, plays a similar role in soybean as in rice, which is to promote 2AP biosynthesis. This phenomenon might be a conserved mechanism among plant species.

  16. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  17. Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis.

    PubMed

    Zsigmond, Laura; Tomasskovics, Bálint; Deák, Veronika; Rigó, Gábor; Szabados, László; Bánhegyi, Gábor; Szarka, András

    2011-08-01

    The mitochondrial antioxidant homeostasis was investigated in Arabidopsis ppr40-1 mutant, which presents a block of electron flow at complex III. The activity of the ascorbate biosynthetic enzyme, L-galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) (GLDH) was elevated in mitochondria isolated from mutant plants. In addition increased activities of the enzymes of Foyer-Halliwell-Asada cycle and elevated glutathione (GSH) level were observed in the mutant mitochondria. Lower ascorbate and ascorbate plus dehydroascorbate contents were detected at both cellular and mitochondrial level. Moreover, the more oxidized mitochondrial redox status of ascorbate in the ppr40-1 mutant indicated that neither the enhanced activity of GLDH nor Foyer-Halliwell-Asada cycle could compensate for the enhanced ascorbate consumption in the absence of a functional respiratory chain.

  18. A Pale Baby With Blue Blood.

    PubMed

    Berant, Ron; Ratnapalan, Savithiri

    2015-10-01

    A previously healthy 9-month-old boy presented to the emergency department with sudden onset of pallor and reduced activity. A detailed history and initial blood tests revealed the diagnosis of oxidant stress-induced hemolysis caused by glucose-6-phosphate dehydrogenase deficiency. However, the child also had a second diagnosis that was revealed with additional testing. This case is described to illustrate the dual diagnosis and management guidelines for both potentially serious conditions.

  19. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress.

    PubMed

    Bouthour, Donia; Kalai, Tawba; Chaffei, Haouari C; Gouia, Houda; Corpas, Francisco J

    2015-05-01

    Wheat (Triticum durum Desf.) is a common Mediterranean species of considerable agronomic importance. Salinity is one of the major threats to sustainable agricultural production mainly because it limits plant productivity. After exposing the Karim and Azizi durum wheat cultivars, which are of agronomic significance in Tunisia, to 100mM NaCl salinity, growth parameters (dry weight and length), proline content and chlorophylls were evaluated in their leaves and roots. In addition, we analyzed glutathione content and key enzymatic activities, including phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-ICDH), NADP-malic enzyme (NADP-ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), involved in the carbon metabolism and NADPH-generating system. The sensitivity index indicates that cv Karim was more tolerant to salinity than cv Azizi. This higher tolerance was corroborated at the biochemical level, as cv Karim showed a greater capacity to accumulate proline, especially in leaves, while the enzyme activities studied were differentially regulated in both organs, with NADP-ICDH being the only activity to be unaffected in all organs. In summary, the data indicate that higher levels of proline accumulation and the differential responses of some key enzymes involved in the carbon metabolism and NADPH regeneration contribute to the salinity tolerance mechanism and lead to increased biomass accumulation in cv Karim.

  20. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  1. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  2. Fluctuations in metabolite content in the liver of magnesium-deficient rats.

    PubMed

    Shigematsu, Mei; Nakagawa, Ryosuke; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2016-11-09

    Mg deficiency induces various metabolic disturbances including glucose metabolism in the liver. However, no comprehensive information is currently available on the metabolic pathways affected by Mg deficiency. The present study examined metabolite content in the liver of Mg-deficient rats using a metabolomic analysis. In this study, 4-week-old, male Sprague-Dawley rats were fed a control diet or a Mg-deficient diet for 8 weeks. The metabolomic analysis identified 105 metabolites in the liver, and significant differences were observed in the hepatic contents for thirty-three metabolites between the two groups. An analysis by MetaboAnalyst, a web-based metabolome data analysis tool, indicated that the Mg deficiency affected taurine/hypotaurine metabolism, methionine metabolism and glycine/serine/threonine metabolism; taurine, hypotaurine, glycine, serine and threonine contents were increased by Mg deficiency, whereas the amounts of 2-ketobutyric acid (a metabolite produced by the catabolism of cystathionine or threonine) and 5'-methylthioadenosine (a metabolite involved in spermidine synthesis) were decreased. The amount of glucose 6-phosphate, a hub metabolite of glycolysis/gluconeogenesis and the pentose phosphate pathway, was significantly decreased in Mg-deficient rats. Mg deficiency also decreased metabolite contents from the citric acid cycle, including citric acid, fumaric acid and malic acid. Aberrant metabolism may be related to the allosteric regulation of enzymes; the mRNA levels of enzymes were generally similar between the two groups. The present study suggests that the Mg deficiency-mediated modulation of hepatic metabolism is as yet uncharacterised.

  3. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans

    PubMed Central

    Watt, Matthew J; Howlett, Kirsten F; Febbraio, Mark A; Spriet, Lawrence L; Hargreaves, Mark

    2001-01-01

    To evaluate the role of adrenaline in regulating carbohydrate metabolism during moderate exercise, 10 moderately trained men completed two 20 min exercise bouts at 58 ± 2 % peak pulmonary oxygen uptake (V̇O2,peak). On one occasion saline was infused (CON), and on the other adrenaline was infused intravenously for 5 min prior to and throughout exercise (ADR). Glucose kinetics were measured by a primed, continuous infusion of 6,6-[2H]glucose and muscle samples were obtained prior to and at 1 and 20 min of exercise. The infusion of adrenaline elevated (P < 0.01) plasma adrenaline concentrations at rest (pre-infusion, 0.28 ± 0.09; post-infusion, 1.70 ± 0.45 nmol l−1; means ±s.e.m.) and this effect was maintained throughout exercise. Total carbohydrate oxidation increased by 18 % and this effect was due to greater skeletal muscle glycogenolysis (P < 0.05) and pyruvate dehydrogenase (PDH) activation (P < 0.05, treatment effect). Glucose rate of appearance was not different between trials, but the infusion of adrenaline decreased (P < 0.05, treatment effect) skeletal muscle glucose uptake in ADR. During exercise muscle glucose 6-phosphate (G-6-P) (P = 0.055, treatment effect) and lactate (P < 0.05) were elevated in ADR compared with CON and no changes were observed for pyruvate, creatine, phosphocreatine, ATP and the calculated free concentrations of ADP and AMP. The data demonstrate that elevated plasma adrenaline levels during moderate exercise in untrained men increase skeletal muscle glycogen breakdown and PDH activation, which results in greater carbohydrate oxidation. The greater muscle glycogenolysis appears to be due to increased glycogen phosphorylase transformation whilst the increased PDH activity cannot be readily explained. Finally, the decreased glucose uptake observed during exercise in ADR is likely to be due to the increased intracellular G-6-P and a subsequent decrease in glucose phosphorylation. PMID:11433007

  4. Succinate dehydrogenase activity regulates PCB3-quinone induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes

    PubMed Central

    Xiao, Wusheng; Sarsour, Ehab H.; Wagner, Brett A.; Doskey, Claire M.; Buettner, Garry R.; Domann, Frederick E.; Goswami, Prabhat C.

    2015-01-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone-metabolite of 4-Monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ induced toxicity. PMID:25417049

  5. Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches.

    PubMed

    Bonito, Cátia A; Nunes, Joana; Leandro, João; Louro, Filipa; Leandro, Paula; Ventura, Fátima V; Guedes, Rita C

    2016-12-27

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme's activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein's structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer-dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein's motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.

  6. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Furuie, Sumie; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Yamamura, Ken-Ichi; Kobayashi, Keiko

    2012-11-01

    The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial

  7. Lactate dehydrogenase test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  8. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    MedlinePlus

    ... in the production of the protein building block ( amino acid ) serine. Specifically, the enzyme converts a substance called ... Resources MedlinePlus (5 links) Encyclopedia: Microcephaly Health Topic: Amino Acid Metabolism Disorders Health Topic: Developmental Disabilities Health Topic: ...

  9. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... National Institute of Neurological Disorders and Stroke: Epilepsy Information Page Educational Resources (5 links) Boston Children's Hospital: Seizures and Epilepsy Disease InfoSearch: Succinic ...

  10. Genetics Home Reference: dihydrolipoamide dehydrogenase deficiency

    MedlinePlus

    ... cardiomyopathy). Other features of this condition include excess ammonia in the blood (hyperammonemia), a buildup of molecules ... Hepatomegaly Encyclopedia: Lactic Acidosis Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Genetic and ...

  11. Glycogen stor