Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation
Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng
2016-05-01
In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.
The gluon condensation at high energy hadron collisions
NASA Astrophysics Data System (ADS)
Zhu, Wei; Lan, Jiangshan
2017-03-01
We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing-antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton-proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron-hadron colliders.
Gluon condensate, Wilson loops and gauge/string duality
Andreev, Oleg; Zakharov, Valentin I.
2007-08-15
We test gauge/string duality by evaluating expectation values of small Wilson loops in pure Yang-Mills theories. On the gauge theory side, there exists a rich phenomenology. The dual formulation provides a universal language to evaluate the gluon condensate and quadratic correction in terms of the metric in the fifth coordinate. Quantitatively, the estimated value of the gluon condensate is approximately 0.010 GeV{sup 4}.
Gluon condensate in a pion superfluid beyond the mean-field approximation
Jiang Yin; Zhuang Pengfei
2011-03-15
We study gluon condensate in a pion superfluid by calculating the equation of state of the system in the Nambu-Jona-Lasinio model. While in mean-field approximation the growing pion condensate leads to an increasing gluon condensate, meson fluctuations reduce the gluon condensate, and the broken scalar symmetry can be smoothly restored at finite isospin density.
Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge
NASA Astrophysics Data System (ADS)
Dudal, D.; Verschelde, H.; Lemes, V. E. R.; Sarandy, M. S.; Sorella, S. P.; Picariello, M.
2003-11-01
The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU( N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case.
Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||
1997-01-01
It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}
A physical meaning of mixed gluon-ghost condensate of mass dimension two
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
2003-10-01
We demonstrate that a clear physical content and relevance can be attributed to the on-shell BRST-invariant mixed gluon-ghost condensate of mass dimension two which was recently proposed by the author. We argue that a gauge invariant observable is associated with the mixed condensate.
Glueballs, gluon condensate, and pure glue QCD below T{sub c}
Buisseret, F.
2011-05-23
A quasiparticle description of pure glue QCD below T{sub c} is presented. It is shown that the strong decrease of both the gluon condensate and the lightest glueball masses when approaching T{sub c} might be the trigger of the phase transition. The proposed model compares favorably with recent lattice data.
RHIC PHYSICS: THE QUARK GLUON PLASMA AND THE COLOR GLASS CONDENSATE: 4 LECTURES
MCLERRAN,L.
2003-01-01
The purpose of these lectures is to provide an introduction to the physics issues which are being studied in the RHIC heavy ion program. These center around the production of new states of matter. The Quark Gluon Plasma is thermal matter which once existed in the big bang which may be made at RHIC. The Color Glass Condensate is a universal form of matter which controls the high energy limit of strong interactions. Both such forms of matter might be produced and probed at RHIC.
Bali, Gunnar S.; Pineda, Antonio
2016-01-22
We study the operator product expansion of the plaquette (gluon condensate) and the self-energy of an infinitely heavy quark. We first compute their perturbative expansions to order α{sup 35} and α{sup 20}, respectively, in the lattice scheme. In both cases we reach the asymptotic regime where the renormalon behavior sets in. Subtracting the perturbative series, we obtain the leading non-perturbative corrections of their respective operator product expansions. In the first case we obtain the gluon condensate and in the second the binding energy of the heavy quark in the infinite mass limit. The results are fully consistent with the expectations from renormalons and the operator product expansion.
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.
Quark- and gluon-condensate contributions to penguin four-Fermi operators
Ahmady, Mohammad R.; Elias, Victor
1999-10-04
The nonperturbative content of the QCD vacuum permits the occurrence of QCD-vacuum condensate contributions to penguin amplitudes. We calculate the dimension-4
Gluon-gluon contributions to W+ W- production and Higgs interference effects
Campbell, John M.; Ellis, R.Keith; Williams, Ciaran
2011-07-01
In this paper we complete our re-assessment of the production of W boson pairs at the LHC, by calculating analytic results for the gg {yields} W{sup +}W{sup -} {yields} {nu}{ell}{sup +}{ell}{sup -}{bar {nu}} process including the effect of massive quarks circulating in the loop. Together with the one-loop amplitudes containing the first two generations of massless quarks propagating in the loop, these diagrams can give a significant contribution with a large flux of gluons. One of the component parts of this calculation is the production of a standard model Higgs boson, gg {yields} H and its subsequent decay, H {yields} W{sup +}({yields} {nu}{ell}{sup +})W{sup -}({yields} {ell}{sup -}{bar {nu}}). We will quantify the importance of the interference between the Higgs boson production process and the gluon-induced continuum production in the context of searches for the Higgs boson at the Tevatron and the LHC. For instance, for m{sub H} < 140 GeV the effect of the interference typically results in around a 10% reduction in the expected number of Higgs signal events. The majority of this interference is due to non-resonant contributions. Therefore cuts on the transverse mass such as those currently used by the ATLAS collaboration reduce the destructive interference to about a 1% effect. We advocate that a cut on the maximum transverse mass be used in future Higgs searches in this channel.
On effects of multiple gluons in J/ψ hadroproduction
Motyka, Leszek; Sadzikowski, Mariusz
2015-04-10
The three-gluon contribution to J/ψ hadroproduction is calculated within perturbative QCD in the k{sub T}-factorization framework. This mechanism involves double gluon density and enters at a non-leading twist, but it is enhanced at large energies due to large double gluon density at small x. We obtain results for differential p{sub T}-dependent cross-sections for all J/ψ polarisations. The rescattering contribution is found to provide a significant correction to the standard leading twist cross-section at the energies of the Tevatron or the LHC at moderate p{sub T}. We also discuss a possible contribution of the rescattering correction to the anti-shadowing effect for J/ψ production in proton - nucleus collisions.
Tracing the origin of azimuthal gluon correlations in the color glass condensate
Lappi, T.; Schenke, B.; Schlichting, S.; Venugopalan, R.
2016-01-11
Here we examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v_{n} within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. Lastly, we will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.
Tracing the origin of azimuthal gluon correlations in the color glass condensate
Lappi, T.; Schenke, B.; Schlichting, S.; ...
2016-01-11
Here we examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients vn within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. Lastly, we will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlationsmore » can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.« less
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less
Asymmetry of the dimension-two gluon condensate: The finite temperature case
Vercauteren, David; Verschelde, Henri
2010-10-15
In this paper, we continue the work begun in a previous article. We compute, in the formalism of local composite operators, the value of the asymmetry in the dimension two condensate for finite temperatures. We find a positive value for the asymmetry, which disappears when the temperature is increased. We also compute the value of the full dimension two condensate for higher temperatures, and we find that it decreases in absolute value, finally disappearing for sufficiently high temperature. We also comment on the temperature dependence of the electric and magnetic components of the condensate separately. We compare our results with the corresponding lattice date found by Chernodub and Ilgenfritz.
Gluon TMDs in Quarkonium Production
NASA Astrophysics Data System (ADS)
Boer, Daniël
2017-03-01
Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that χ _{b0/2} and η _b production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to cos 2φ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small- x limit this corresponds to the Weizsäcker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small x-values are reached. Quarkonia can also be useful in the study of single transverse spin asymmetries. For transversely polarized hadrons the gluon distribution can be asymmetric, which is referred to as the Sivers effect. It leads to single spin asymmetries in for instance J{/}ψ (pair) production at AFTER@LHC, which probe the WW or f-type gluon Sivers TMD. It allows for a test of a sign-change relation w.r.t. the gluon Sivers TMD probed at an EIC in open heavy quark pair production. Single spin asymmetries in backward inclusive C-odd quarkonium production, such as J{/}ψ production, may offer probes of the DP or d-type gluon Sivers TMD at small x-values in the polarized proton, which in that limit corresponds to a correlator of a single Wilson loop, describing the spin-dependent odderon.
Attractive Casimir effect in an infrared modified gluon bag model
Oxman, L.E.; Amaral, R.L.P.G.
2005-12-15
In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.
Chiral magnetic effect in condensed matter systems
NASA Astrophysics Data System (ADS)
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
Unquenching effects in the quark and gluon propagator
NASA Astrophysics Data System (ADS)
Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo
2007-11-01
In this work we examine the fat-link irrelevant clover (FLIC) overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole-improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalization function, and gluon dressing function in the infrared. The ultraviolet physics is unaffected.
Karl, J.; Hein, D.
1999-07-01
The presence of non condensable gases like nitrogen or air reduces the condensation heat transfer during condensation of binary steam mixtures. The non condensable gas accumulates in the vapor phase boundary layer and causes a high heat transfer resistance. Especially with high pressures and low water temperatures spontaneous condensation reduces heat transfer additionally. Fog forms within the steam-nitrogen boundary layer and the steam condenses on the water droplets of the fog layer. The convective mass transfer to the cooling water interface diminishes. Raman spectroscopy and film theory are used to quantify this effect locally. The calculation of overall condensation rates in large steam nitrogen systems requires to use three dimensional CFD codes. The paper presents equations to predict fog formation in the boundary layer which can be implemented in CFD codes.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σ_{χe}, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current J_{A} that is generated in response to an externally applied electric field eE: J_{A}=σ_{χe}(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σ_{χe}∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESE conductivity for the QGP is found to be σ_{χe} = (#)TT_{rf}Q_{e}Q_{A}/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σχe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current JA that is generated in response to an externally applied electric field eE: JA=σχe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σχe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESEmore » conductivity for the QGP is found to be σχe = (#)TTrfQeQA/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.« less
Non-perturbative effects for the Quark-Gluon Plasma equation of state
NASA Astrophysics Data System (ADS)
Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.
2012-07-01
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.
Strong-coupling effects in a plasma of confining gluons
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Ryblewski, Radoslaw; Su, Nan; Tywoniuk, Konrad
2016-12-01
The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk, ζ, and shear, η, viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, ζ / η ratio, scales linearly with the difference 1 / 3 - cs2, where cs is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.
Weiler, T.
1981-10-01
An overview is presented of the attributes of gluons, deducible from experimental data. Particular attention is given to the photon-gluon fusion model of charm leptoproduction. The agreement with QCD and theoretical prejudice is qualitatively good.
The one-gluon exchange effects to gA/gV of baryon semileptonic decay
NASA Astrophysics Data System (ADS)
Ushio, K.; Konashi, H.
1984-02-01
The one-gluon exchange effects to gA/gV of the processes, B --> B' + l + vl are investigated in the MIT bag model. Their contributions are rather consistent with the data. Sonodagakuen Women's Junior College, Minamitsukaguchicho, Amagasaki 601, Japan.
Searching for gluon number fluctuations effects in eA collisions
Kugeratski, M. S.; Gonçalves, V. P.; Santana Amaral, J. T. de
2014-11-11
We propose to investigate the gluon number fluctuations effects in deep inelastic electron-ion scattering at high energies. We estimate the nuclear structure function F{sub 2}{sup A}(x,Q{sup 2}), as well the longitudinal and charm contributions, using a generalization for nuclear targets of the Golec-Biernat-Wusthoff (GBW) model which describes the electron proton HERA data. Here we consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities. For a first investigation we study the scattering with Ca and Pb nuclei. Our preliminary results predict that the effects of gluon number fluctuations are small in the region of the future electron ion collider.
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-11-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
THE COLOUR GLASS CONDENSATE: AN INTRODUCTION
IANCU,E.; LEONIDOV,A.; MCLERRAN,L.
2001-08-06
In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.
Carbon Vaporization/Condensation Effects
1984-07-31
PARTICLE EFFECTS SPECTROSCOPY Infrared spectroscopy at various positions in a CO2 laser -generated carbon plume is capable of providing the following plume... CO2 laser transfer optics, and the diagnostics. SI. Vacuum Chamber A stainless-steel vacuum chamber was available and measured 2 ft in diameter by 2.5... CO2 laser radiatioti, not falling directly on the sample, is absorbed by a 7-in. diameter carbon plate. This carbon plate is mounted in a 12-in
QCD in the nuclear medium and effects due to Cherenkov gluons
Dremin, I. M.
2010-04-15
The equations of in-medium gluodynamics are proposed. Their classical lowest-order solution is explicitly shown for a color charge moving with constant speed. For chromopermittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The values of the real and imaginary parts of the chromopermittivity are obtained from the fits to experimental data on the double-humped structure around the away-side jet obtained at RHIC. The dispersion of the chromopermittivity is predicted by comparing the RHIC, SPS, and cosmic-ray data. This is important for LHC experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton mass spectra near {rho} meson observed in the SPS experiment with excess in the low-mass wing of the resonance. This feature is predicted to be common for all resonances. The 'color rainbow' quantum effect might appear according to higher-order terms of in-medium QCD if the chromopermittivity depends on color.
Gluons and the NJL coupling constant
Braghin, Fábio L.; Barros Jr, Ednaldo; Paulo Jr, Ademar
2014-11-11
The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable φ(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration φ(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.
Gluons and the NJL coupling constant
NASA Astrophysics Data System (ADS)
Braghin, Fábio L.; Barros, Ednaldo, Jr.; Paulo, Ademar, Jr.
2014-11-01
The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable φ(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration φ(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
NASA Technical Reports Server (NTRS)
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Effects of jet quenching on the hydrodynamical evolution of quark-gluon plasma.
Chaudhuri, A K; Heinz, Ulrich
2006-08-11
We study the effects of jet quenching on the hydrodynamical evolution of the quark-gluon plasma (QGP) fluid created in a heavy-ion collision. In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-pT hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. For partons moving at supersonic speed, vp>cs, and sufficiently large energy loss, a shock wave forms leading to conical flow. The PHENIX Collaboration recently suggested that observed structures in the azimuthal angle distribution might be caused by conical flow. We show here that, for phenomenologically acceptable values of parton energy loss, conical flow effects are too weak to explain these structures.
Edge effects on water droplet condensation
NASA Astrophysics Data System (ADS)
Royon, Laurent; Montgruel, Anne; Medici, Marie Gabrielle; Beysens, Daniel
2014-11-01
The effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate is investigated. Edges, corners, cooled/non cooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicular to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edges effects can be canceled. In certain cases, the growth enhancement can reach nearly 500% on edges or corners which, on an inclined substrate, make droplets near the edges detach sooner than in the middle of the substrate. This effect is frequently observed with dew condensing on windows or car windshields. Such droplets, acting as wipers, can thus appreciably increase dew collection on a substrate.
Edge effects on water droplet condensation
NASA Astrophysics Data System (ADS)
Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel
2014-12-01
In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.
Transverse-momentum-dependent gluon distributions from JIMWLK evolution
NASA Astrophysics Data System (ADS)
Marquet, C.; Petreska, E.; Roiesnel, C.
2016-10-01
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small- x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping N c finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the "dipole" one, the Weizsäcker-Williams one, and the six others involved in forward di-jet production.
Effects of dynamical FLIC fermions in the quark and gluon propagator
NASA Astrophysics Data System (ADS)
Kamleh, W.; Bowman, P. O.; Leinweber, D. B.; Williams, A. G.; Zhang, J.-B.
2006-11-01
In this work we examine the FLIC overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalisation function and gluon dressing function in the infrared. The ultraviolet physics is unaffected.
Effective Action for Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Kita, Takafumi
2014-06-01
We clarify basic properties of an effective action (i.e., self-consistent perturbation expansion) for interacting Bose-Einstein condensates, where field ψ itself acquires a finite thermodynamic average < ψ > besides two-point Green's function hat{G} to form an off-diagonal long-range order. It is shown that the action can be expressed concisely order by order in terms of the interaction vertex and a special combination of < ψ > and hat{G} so as to satisfy both Noether's theorem and Goldstone's theorem (I) corresponding to the first proof. The self-energy is predicted to have a one-particle-reducible structure due to < ψ > ≠ 0 to transform the Bogoliubov mode into a bubbling mode with a substantial decay rate.
Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems
Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.
2004-05-01
In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.
Row effect for R-11 condensation on enhanced tubes
Webb, R.L.; Murawski, C.G. )
1990-08-01
Experimental results of a condensation row effect study on enhanced tubes are presented. A test cell was constructed to condense Refrigerant-11 on the shell side of a vertical bank of five horizontal tubes. Four distinctly different commercially available tubes were tested. The tubes are a 1024-fpm integral fin, the Wolverine Tube-C, Wieland GEWA-SC, and the Tred-D. A modified Turbo-C tube was also tested. Experimental and visual observations are used to understand the row effect due to condensate loading. By plotting the data in the form of the local condensation coefficient versus condensate Reynolds number, the results may be interpreted for any number of tube rows, up to the maximum Reynolds numbers tested. Bundle average condensation coefficients may be established by integrating the h versus Re values over the number of tube rows.
Gluon effects on the equation of state of color superconducting strange stars
NASA Astrophysics Data System (ADS)
Ferrer, E. J.; de la Incera, V.; Paulucci, L.
2015-08-01
Compact astrophysical objects are a window for the study of strongly interacting nuclear matter given the conditions in their interiors, which are not reproduced in a laboratory environment. Much has been debated about their composition with possibilities ranging from a simple mixture of mostly protons and neutrons to deconfined quark matter. Recent observations on the mass of two pulsars, PSR J 1614 -2230 and PSR J 0348 +0432 , have posed a great restriction on their composition, since the equation of state must be hard enough to support masses of about at least two solar masses. The onset of quarks tends to soften the equation of state, but it can get substantially stiffer since in the high-dense medium a repulsive vector interaction channel is opened. Nevertheless, we show that once gluon effects are considered, the equation of state of strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity becomes softer decreasing the maximum stellar mass that can be reached. This may indicate that strange stars made entirely of CFL matter can only be favored if other interactions, as the one corresponding to the vector channel, are taken into consideration and are large enough.
Complex suppression patterns distinguish between major energy loss effects in Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Djordjevic, Magdalena
2016-12-01
Interactions of high momentum partons with Quark-Gluon Plasma created in relativistic heavy-ion collisions provide an excellent tomography tool for this new form of matter. Recent measurements for charged hadrons and unidentified jets at the LHC show an unexpected flattening of the suppression curves at high momentum, exhibited when either momentum or the collision centrality is changed. Furthermore, a limited data available for B probes indicate a qualitatively different pattern, as nearly the same flattening is exhibited for the curves corresponding to two opposite momentum ranges. We here show that the experimentally measured suppression curves are well reproduced by our theoretical predictions, and that the complex suppression patterns are due to an interplay of collisional, radiative energy loss and the dead-cone effect. Furthermore, for B mesons, we predict that the uniform flattening of the suppression indicated by the limited dataset is in fact valid across the entire span of the momentum ranges, which will be tested by the upcoming experiments. Overall, the study presented here, provides a rare opportunity for pQCD theory to qualitatively distinguish between the major energy loss mechanisms at the same (nonintuitive) dataset.
Josephson effects in condensates of excitons and exciton polaritons
Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.
2008-07-15
We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.
Gravitational effects of condensate dark matter on compact stellar objects
Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com
2012-10-01
We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.
NASA Astrophysics Data System (ADS)
Gervino, Gianpiero; Lavagno, Andrea; Pigato, Daniele
2012-06-01
We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.
Quark ACM with topologically generated gluon mass
NASA Astrophysics Data System (ADS)
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Gluon Evolution and Saturation Proceedings
McLerran, L.D.
2010-05-26
Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution of the distributions for quarks and gluon inside a hadron to increased resolution scale of a probe or to smaller values of the fractional momentum of a hadronic constituent. I motivate and discuss the generalization required of these equations needed for high energy processes when the density of constituents is large. This leads to a theory of saturation realized by the Color Glass Condensate
Quark-gluon plasma and topological quantum field theory
NASA Astrophysics Data System (ADS)
Luo, M. J.
2017-03-01
Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark-gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.
Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics
Brodsky, Stanley J.; Shrock, Robert; /YITP, Stony Brook
2008-08-01
Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.
The effect of adiabaticity on strongly quenched Bose Einstein Condensates
NASA Astrophysics Data System (ADS)
Ling, Hong; Kain, Ben
2015-05-01
We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.
Effect of clustered peptide binding on DNA condensation.
Haley, Jennifer; Kabiru, Paul; Geng, Yan
2010-01-01
DNA condensation in-vitro has been studied as a model system to reveal common principles underlying gene packaging in biology, and as the critical first step towards the development of non-viral gene delivery vectors. In this study, we use a bio-inspired approach, where small DNA-binding peptides are controllably clustered by an amphiphilic block copolymer scaffold, to reveal the effect of clustered peptide binding on the energetics, size, shape and physical properties of DNA condensation in-vitro. This provides insights into the general architectural effect of gene-binding proteins on DNA condensation process. Moreover, the versatility afforded by regulating the clustering density and composition of peptides may provide a novel design platform for gene delivery applications in the future.
Quark-gluon plasma effects on hadrons in AdS/QCD
NASA Astrophysics Data System (ADS)
Bartz, Sean; Jacobson, Theodore
2016-09-01
The AdS/CFT correspondence has succeeded in describing qualitatively many features of non-perturbative QCD. An approach known as bottom-up AdS/QCD uses a dilaton field to break conformal symmetry, introducing confinement and describing well the features of hadronic spectra at zero temperature. Introducing a black hole into the AdS metric allows for the study of thermodynamic properties of QCD, mimicking the behavior of hadrons interacting with a hot, dense medium such as the quark-gluon plasma produced in heavy ion collisions. We present an improved AdS/QCD model for meson and glueball spectra at finite temperature and baryon chemical potential. The spectra match the experimental and lattice data qualitatively well at low temperature, but we also find some subtleties in connecting to the best zero-temperature models. We find a melting temperature for light mesons that is below the current estimates for the deconfinement temperature. Finally, we examine the melting and jet-quenching of heavy quarkonia, which more commonly act as probes of the QGP in heavy ion collisions.
Effective interaction and condensation of dipolaritons in coupled quantum wells
NASA Astrophysics Data System (ADS)
Byrnes, Tim; Kolmakov, German V.; Kezerashvili, Roman Ya.; Yamamoto, Yoshihisa
2014-09-01
Dipolaritons are a three-way superposition of a photon, a direct exciton, and an indirect exciton that are formed in coupled quantum well microcavities. As is the case with exciton-polaritons, dipolaritons have a self-interaction due to direct and exchange effects of the underlying electrons and holes. Here we present a theoretical description of dipolaritons and derive simple formulas for their basic parameters. In particular, we derive the effective dipolariton-dipolariton interaction taking into account exchange effects between the excitons. We obtain a simple relation to describe the effective interaction at low densities. We find that dipolaritons should condense under suitable conditions, described by a dissipative Gross-Pitaevskii equation. While the parameters for condensation are promising, we find that the level of tunability of the interactions is limited.
Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.
2009-10-06
Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.
Quark mass correction to chiral separation effect and pseudoscalar condensate
NASA Astrophysics Data System (ADS)
Guo, Er-dong; Lin, Shu
2017-01-01
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
The effect of condensate inundation on steam condensation heat transfer to wire-wrapped tubing
NASA Astrophysics Data System (ADS)
Kanakis, G. D.
1983-06-01
Steam condensation heat transfer measurements were made in a 5-tube test condenser having an additional perforated tube to simulate up to 30 active tubes. Results were obtained for smooth tubes and roped tubes wrapped with wire. A Sieder-Tate equation was used to correlate the inside heat-transfer coefficient. For smooth tubes, a leading coefficient of 0.029 was found, while it was 0.061 for the roped tubes. The average condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt coefficient calculated for the first tube. When the smooth tubes were wrapped with wire, this ratio increased up to 0.86. Further, roped tubes without wire experienced a ratio of 0.63, while roped tubes wrapped with wire resulted in a ratio of 0.86. These preliminary data show that wire-wrapped tubes may lead to a significant reduction in condenser surface area.
Hadrons and Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Letessier, Jean; Rafelski, Johann
2002-06-01
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.
Transport properties of quark and gluon plasmas
Heiselberg, H.
1993-12-01
The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.
Gluon TMDs in Quarkonium Production
NASA Astrophysics Data System (ADS)
Signori, Andrea
2016-08-01
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
Interaction effects on number fluctuations in a Bose-Einstein condensate of light.
van der Wurff, E C I; de Leeuw, A-W; Duine, R A; Stoof, H T C
2014-09-26
We investigate the effect of interactions on condensate-number fluctuations in Bose-Einstein condensates. For a contact interaction we variationally obtain the equilibrium probability distribution for the number of particles in the condensate. To facilitate comparison with experiment, we also calculate the zero-time delay autocorrelation function g((2))(0) for different strengths of the interaction. Finally, we focus on the case of a condensate of photons and find good agreement with recent experiments.
QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function
Nishikawa, Tetsuo; Tanaka, Kazuhiro
2011-10-21
We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters {lambda}{sub E} and {lambda}{sub H}, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for {lambda}{sub E,H} calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order {alpha}{sub s} radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of {lambda}{sub E,H}.
Josephson effects in a Bose–Einstein condensate of magnons
Troncoso, Roberto E.; Núñez, Álvaro S.
2014-07-15
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.
Rocha, M S; Cavalcante, A G; Silva, R; Ramos, E B
2014-05-08
In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.
Non-traditional Aharonov-Bohm effects in condensed matter
Krive, I.V. ); Rozhavsky, A.S. )
1992-05-10
In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential L{sub int} = j{sub {mu}}A{sup {mu}}. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of the interference pattern on the magnetic fluid flux {phi} in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux {phi} in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal.
Lifshitz effects on vector condensate induced by a magnetic field
NASA Astrophysics Data System (ADS)
Wu, Ya-Bo; Lu, Jun-Wang; Liu, Mo-Lin; Lu, Jian-Bo; Zhang, Cheng-Yuan; Yang, Zhuo-Qun
2014-05-01
By numerical and analytical methods, we study in detail the effects of the Lifshitz dynamical exponent z on the vector condensate induced by an applied magnetic field in the probe limit. Concretely, in the presence of the magnetic field, we obtain the Landau level independent of z, and we also find the critical value by coupling a Maxwell complex vector field and an SU(2) field into a (3+1)-dimensional Lifshitz black hole, respectively. The research results show that for the two models with the lowest Landau level, the increasing z improves the response of the critical temperature to the applied magnetic field even without the charge density, and the analytical results uphold the numerical results. In addition, we find that, even in the Lifshitz black hole, the Maxwell complex vector model is still a generalization of the SU(2) Yang-Mills model. Furthermore, we construct the square vortex lattice and discuss the implications of these results.
Internal Josephson effects in spinor dipolar Bose-Einstein condensates
Yasunaga, Masashi; Tsubota, Makoto
2010-02-15
We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.
Effects of Condensate Inundation and Vapor Velocity on Heat Transfer in a Condenser Tube Bundle.
1982-06-01
meter and the tank’s recirculation valve, the flow rate to the porous tube could be controlled with reasonable accuracy. The system was used to supply... flow rate of water to the desuper- heater spray nozzles via the rotameter. 150 5. Porous Tube Water Supply System a. Once steady state conditions have... system operated at test condenser pressures of approximately 2 and 15 DD ~T 1413 EmnTOw OF, I Nov o Is S OSLITe S/N 612.814-61 9CIT CLAGNIFICATIOM OF TNIS
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
Dalton, B.J.
2011-03-15
Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd
Evolution to the quark–gluon plasma
NASA Astrophysics Data System (ADS)
Fukushima, Kenji
2017-02-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed, including pedagogical introductions on the initial condition with small-\\text{x} gluons treated as a color glass condensate, the bottom–up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
Evolution to the quark-gluon plasma.
Fukushima, Kenji
2017-02-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed, including pedagogical introductions on the initial condition with small-[Formula: see text] gluons treated as a color glass condensate, the bottom-up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
Estrogenic effects of marijuana smoke condensate and cannabinoid compounds
Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck . E-mail: khchung@skku.edu
2006-08-01
Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect.
Estrogenic effects of marijuana smoke condensate and cannabinoid compounds.
Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck
2006-08-01
Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect.
Open-beauty production in pPb collisions at √{sNN}=5 TeV: Effect of the gluon nuclear densities
NASA Astrophysics Data System (ADS)
Conesa del Valle, Z.; Ferreiro, E. G.; Fleuret, F.; Lansberg, J. P.; Rakotozafindrabe, A.
2014-06-01
We present our results on open-beauty production in proton-nucleus collisions for the recent LHC pPb run at √{sNN}=5 TeV. We have analyzed the effect of the modification of the gluon PDFs in a nucleus at the level of the nuclear modification factor. Because of the absence of measurements in pp collisions at the same collision energy, √{sNN}, we also propose the study of the forward-to-backward yield ratio in which the unknown proton-proton yield cancels. Our results are compared with the data obtained by the LHCb collaboration and show a good agreement.
NASA Astrophysics Data System (ADS)
Chala, Mikael; Juknevich, José; Perez, Gilad; Santiago, José
2015-01-01
We study the phenomenology of vector resonances in the context of natural composite Higgs models. A mild hierarchy between the fermionic partners and the vector resonances can be expected in these models based on the following arguments. Both direct and indirect (electroweak and flavor precision) constraints on fermionic partners are milder than the ones on spin one resonances. Also the naturalness pressure coming from the top partners is stronger than that induced by the gauge partners. This observation implies that the search strategy for vector resonances at the LHC needs to be modified. In particular, we point out the importance of heavy gluon decays (or other vector resonances) to top partner pairs that were overlooked in previous experimental searches at the LHC. These searches focused on simplified benchmark models in which the only new particle beyond the Standard Model was the heavy gluon. It turns out that, when kinematically allowed, such heavy-heavy decays make the heavy gluon elusive, and the bounds on its mass can be up to 2TeV milder than in the simpler models considered so far for the LHC14. We discuss the origin of this difference and prospects for dedicated searches.
Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
On the effect of pion condensates on the spectrum of neutron stars
Kolevatov, S. S.; Andrianov, A. A.; Espriu, D.
2016-01-22
There is no precise theory describing the structure of neutron stars. However, inside such objects the baryon density is very high and a pion condensation may occur. These condensates, if they exist, might give a significant effect on a spectrum of neutron stars. We investigate this influence with a help of simplified model to give qualitative picture of the effect.
Pu, H.; Zhang, W.; Meystre, P.; Baksmaty, L.O.; Bigelow, N.P.
2003-04-01
We investigate the time evolution of a Bose-Einstein condensate in a periodic optical potential. Using an effective mass formalism, we study the equation of motion for the envelope function modulating the Bloch states of the lattice potential. In particular, we show how the negative effective-mass affects the dynamics of the condensate.
Effects of fermion exchange on the polarization of exciton condensates.
Combescot, Monique; Combescot, Roland; Alloing, Mathieu; Dubin, François
2015-03-06
Exchange interaction is responsible for the stability of elementary boson condensates with respect to momentum fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. Here, we show that their inclusion can produce a spin fragmentation of the dark exciton condensate, i.e., an unpolarized condensate with an equal amount of spin (+2) and (-2) excitons not coupled to light. The composite boson many-body formalism allows us to predict that, for spatially indirect excitons, the condensate polarization switches from unpolarized to fully polarized when the distance between the layers confining electrons and holes increases. Importantly, the threshold distance for this switch lies in a regime fully accessible to experiments.
Subsonic and Supersonic Effects in Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.
Lincoln, Don
2015-05-07
Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.
Lincoln, Don
2016-07-12
Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilabâs Dr. Don Lincoln explains the hottest known state of matter â a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.
Impact of nonlinear effective interactions on group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar
2016-09-01
We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.
NASA Astrophysics Data System (ADS)
Wood, A. A.; McKellar, B. H. J.; Martin, A. M.
2016-06-01
We show that the He-McKellar-Wilkens effect can induce a persistent flow in a Bose-Einstein condensate of polar molecules confined in a toroidal trap, with the dipolar interaction mediated via an electric dipole moment. For Bose-Einstein condensates of atoms with a magnetic dipole moment, we show that although it is theoretically possible to induce persistent flow via the Aharonov-Casher effect, the strength of the electric field required is prohibitive. We also outline an experimental geometry tailored specifically for observing the He-McKellar-Wilkens effect in toroidally trapped condensates.
Wood, A A; McKellar, B H J; Martin, A M
2016-06-24
We show that the He-McKellar-Wilkens effect can induce a persistent flow in a Bose-Einstein condensate of polar molecules confined in a toroidal trap, with the dipolar interaction mediated via an electric dipole moment. For Bose-Einstein condensates of atoms with a magnetic dipole moment, we show that although it is theoretically possible to induce persistent flow via the Aharonov-Casher effect, the strength of the electric field required is prohibitive. We also outline an experimental geometry tailored specifically for observing the He-McKellar-Wilkens effect in toroidally trapped condensates.
Resummation and the gluon damping rate in hot QCD
Pisarski, R.D.
1990-08-01
At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs.
Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size
NASA Astrophysics Data System (ADS)
Nguyen, Toan T.
2016-02-01
The problem of DNA- DNA interaction mediated by divalent counterions is studied using a generalized grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- and tetra-valent counterions are shown to easily condense free DNA molecules in solution into toroidal bundles, the situation with divalent counterions is not as clear cut. Some divalent counterions like Mg+2 are not able to condense free DNA molecules in solution, while some like Mn+2 can condense them into disorder bundles. In restricted environment such as in two dimensional system or inside viral capsid, Mg+2 can have strong effect and able to condense them, but the condensation varies qualitatively with different system, different coions. It has been suggested that divalent counterions can induce attraction between DNA molecules but the strength of the attraction is not strong enough to condense free DNA in solution. However, if the configuration entropy of DNA is restricted, these attractions are enough to cause appreciable effects. The variations among different divalent salts might be due to the hydration effect of the divalent counterions. In this paper, we try to understand this variation using a very simple parameter, the size of the divalent counterions. We investigate how divalent counterions with different sizes can lead to varying qualitative behavior of DNA condensation in restricted environments. Additionally, a grand canonical Monte-Carlo method for simulation of systems with two different salts is presented in detail.
Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size.
Nguyen, Toan T
2016-02-14
The problem of DNA- DNA interaction mediated by divalent counterions is studied using a generalized grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- and tetra-valent counterions are shown to easily condense free DNA molecules in solution into toroidal bundles, the situation with divalent counterions is not as clear cut. Some divalent counterions like Mg(+2) are not able to condense free DNA molecules in solution, while some like Mn(+2) can condense them into disorder bundles. In restricted environment such as in two dimensional system or inside viral capsid, Mg(+2) can have strong effect and able to condense them, but the condensation varies qualitatively with different system, different coions. It has been suggested that divalent counterions can induce attraction between DNA molecules but the strength of the attraction is not strong enough to condense free DNA in solution. However, if the configuration entropy of DNA is restricted, these attractions are enough to cause appreciable effects. The variations among different divalent salts might be due to the hydration effect of the divalent counterions. In this paper, we try to understand this variation using a very simple parameter, the size of the divalent counterions. We investigate how divalent counterions with different sizes can lead to varying qualitative behavior of DNA condensation in restricted environments. Additionally, a grand canonical Monte-Carlo method for simulation of systems with two different salts is presented in detail.
NASA Astrophysics Data System (ADS)
Kondo, Kei-Ichi
2014-05-01
We show that the Nielsen-Olesen instability of the Savvidy vacuum with a homogeneous chromomagnetic condensation disappears in the framework of the functional renormalization group. This result follows from our observations: (i) the vanishing imaginary part of the effective average action is realized for arbitrary infrared cutoff as a novel fixed point solution of the flow equation for the complex-valued effective average action and (ii) an approximate analytical solution for the effective average action is obtained without the pure imaginary part for large infrared cutoff. This result suggests that there exists a physical mechanism for maintaining the stability or staying on the fixed point even for sufficiently small infrared cutoff. We argue that dynamical gluon mass generation (related to two-gluon bound states identified with glueballs) occurs due to the Becchi-Rouet-Stora-Tyutin-invariant vacuum condensate of mass dimension two without causing instability.
Effect of Vapor Velocity during Condensation on Horizontal Finned Tubes
1988-12-01
surface area (m2 ) b Fin spacing (mm) Ci Sieder -Tate type coefficient used in Equation (4.5) C p Specific heat of cooling water (J/kgK) Di Inside diameter...and auxiliary condensers, together with the energy lost to the environment. Raw data were processed immediately using an assumed value for the Sieder ...sets were collected, the data were reprocessed using a new Sieder -Tate coefficient found by the modified Wilson method. 40 F. TUBES TESTED For this
NASA Astrophysics Data System (ADS)
Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.
2016-04-01
We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .
How to Observe Dipolar Effects in Spinor Bose-Einstein Condensates
Gawryluk, Krzysztof; Brewczyk, Miroslaw; Bongs, Kai
2011-04-08
We propose an experiment which proves the possibility of spinning gaseous media via dipolar interactions in the spirit of the famous Einstein-de Haas effect for ferromagnets. The main idea is to utilize resonances that we find in spinor condensates of alkali atoms while these systems are placed in an oscillating magnetic field. A significant transfer of angular momentum from spin to motional degrees of freedom observed on resonance is a spectacular manifestation of dipolar effects in spinor condensates.
Hope, J J; Olsen, M K
2001-04-09
We show that in certain parameter regimes there is a macroscopic dynamical breakdown of the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive- P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The full quantum theory includes the spontaneous processes which will become significant when the atomic population is low. The experimental signature of the quantum effects will be the time scale of the revival of the atomic population after a near total conversion to the molecular condensate.
Heavy Flavour Production as Probe of Gluon Sivers Function
NASA Astrophysics Data System (ADS)
Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav; Sonawane, Bipin
2017-03-01
Heavy flavour production like J/ψ and D-meson production in scattering of electrons/unpolarized protons off polarized proton target offer promising probes to investigate gluon Sivers function. In this talk, I will summarize our recent work on transverse single spin asymmetry in J/ψ -production and D-meson production in p p^\\uparrow scattering using a generalized parton model approach. We compare predictions obtained using different models of gluon Sivers function within this approach and then, taking into account the transverse momentum dependent evolution of the unpolarized parton distribution functions and gluon Sivers function, we study the effect of evolution on asymmetry.
Quark-gluon vertex model and lattice-QCD data
Bhagwat, M.S.; Tandy, P.C.
2004-11-01
A model for the dressed-quark-gluon vertex, at zero gluon momentum, is formed from a nonperturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory. The required input is an existing ladder-rainbow model Bethe-Salpeter kernel from an approach based on the Dyson-Schwinger equations; no new parameters are introduced. The model includes an Ansatz for the triple-gluon vertex. Two of the three vertex amplitudes from the model provide a pointwise description of the recent quenched-lattice-QCD data. An estimate of the effects of quenching is made.
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients
Dan Wendt; Greg Mines
2011-10-01
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF
Li, Chao; Ma, Chunying; Xu, Pengxiang; Gao, Yuxing; Zhang, Jin; Qiao, Renzhong; Zhao, Yufen
2013-07-03
The transfection of DNA in gene therapy largely depends on the possibility of obtaining its condensation. The details of nanoparticle formation are essential for functioning, as mediated by the diverse elements containing molecular structure, ionic strength in mediums, and condensing motivator. Here, we report two kinds of DNA condensing agents based on simple cyclic/rigid polyamine molecules, having evaluated their structural effect on nanoparticle formation. The reversible condensation-dissociation process was achieved by ion-switching, attributing to a possible condensing mechanism-competitive building of external hydrogen bonds. Using poly[(dA-dT)2] and poly[(dG-dC)2] as substrates, respectively, circular dichroism (CD) signals clearly presented dissimilar interactions between polyamines and both rich sequences, implying potential preference for G-C sequence. The presence of divalent ion Zn(2+) as an efficient motivator accelerated the achievement of DNA condensation, and an accessible schematic model was depicted to explain the promotion in detail. In addition, by comparison with the behaviors of linear polyamines, differences between condensation and aggregation were explicitly elucidated in aspects of morphology and surface charges, as well as induced condition. The present work may have the potential to reveal the precise mechanism of DNA nanoparticle formation and, in particular, be applied to gene delivery as an efficient nonviral vector.
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.
2011-03-01
The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd numbers of noise fields are zero and those for even numbers of noise field terms are the sums of products of stochastic averages associated with pairs of noise fields. However each pair is represented by an element of the diffusion matrix rather than products of the noise fields themselves, as in the case of Gaussian-Markov processes. The treatment starts from a generalised mean field theory for two condensate modes, where generalised coupled Gross-Pitaevskii equations are obtained for the modes
Bose-Einstein condensation of magnons pumped by the bulk spin Seebeck effect
NASA Astrophysics Data System (ADS)
Tserkovnyak, Yaroslav; Bender, Scott A.; Duine, Rembert A.; Flebus, Benedetta
2016-03-01
We propose inducing Bose-Einstein condensation of magnons in a magnetic insulator by a heat flow oriented toward its boundary. At a critical heat flux, the oversaturated thermal gas of magnons accumulated at the boundary precipitates the condensate, which then grows gradually as the thermal bias is dialed up further. The thermal magnons thus pumped by the magnonic bulk (spin) Seebeck effect must generally overcome both the local Gilbert damping associated with the coherent magnetic dynamics as well as the radiative spin-wave losses toward the magnetic bulk, in order to achieve the threshold of condensation. We quantitatively estimate the requisite bias in the case of the ferrimagnetic yttrium iron garnet, discuss different physical regimes of condensation, and contrast it with the competing (so-called Doppler-shift) bulk instability.
Effects of interaction on thermodynamics of a repulsive Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bhattacharyya, Satadal; Das, Tapan Kumar; Chakrabarti, Barnali
2013-11-01
We report the effects of interaction on thermodynamic properties of a repulsive Bose-Einstein condensate confined in a harmonic trap by using the correlated potential harmonics expansion method. This many-body technique permits the use of a realistic interactomic interaction, which gives rise to the effective long-range interaction of the condensate in terms of the s-wave scattering length. We have computed temperature (T) dependence of the chemical potential, specific heat, condensate fraction, entropy, pressure, and the average energy per particle of a system containing a large number (A) of 87Rb atoms in the Joint Institute for Laboratory Astrophysics (JILA) trap. The repulsion among the interacting bosons results in a small but measurable drop of condensate fraction and critical temperature (Tc), compared to those of a noninteracting condensate. These are in agreement with the experiment. Although all thermodynamic quantities have a strong dependence on A and to a smaller extent on the interatomic interaction, our numerical calculation appears to show that a thermodynamic quantity per particle follows a universal behavior as a function of T/Tc. This shows the importance of Tc for all thermodynamic properties of the condensate. As expected, for T>Tc, these properties follow those of a trapped noncondensed Bose gas.
Probing the Gluon Self-Interaction in Light Mesons
Fischer, Christian S.; Williams, Richard
2009-09-18
We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.
Probing the gluon self-interaction in light mesons.
Fischer, Christian S; Williams, Richard
2009-09-18
We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.
NASA Technical Reports Server (NTRS)
Blander, M.
1979-01-01
Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam
2014-11-01
Growing observations of brown dwarfs and directly imaged giant planets, including properties of the L/T transition, chemical disequilibrium, brightness variability, and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of brown dwarfs include modeling of convection from the interior both in a two-dimensional and global fashion, a two-layer shallow water model and a global circulation model with dry thermal perturbation at the bottom of atmosphere. These models show that interactions between the stably stratified layer and the convective interior can drive an atmospheric circulation, including zonal jets and/or vortices. However, these models are dry models, not including the condensation cycles such as silicate and iron in hot dwarfs. Condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various species is believed to be an important source in driving the atmospheric circulation of brown dwarfs and directly imaged planets as well. Here we present results from three-dimensional simulations for the stably stratified atmospheres of brown dwarfs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly in our model. We examine the atmospheric circulation patterns of brown dwarfs caused by large-scale latent heating that results from condensation of silicates in hot dwarfs and water in the cold dwarfs. By varying the parameters such as abundances of condensates, effective temperature and rotational period, we explore possible configurations of the circulation, and determine implications for the observed cloud patchiness and brightness variability for brown dwarfs.
Study of leading hadrons in gluon and quark fragmentation
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration
2006-12-01
The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (≲ 2 GeV /c2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.
Study of leading hadrons in gluon and quark fragmentation
NASA Astrophysics Data System (ADS)
DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.
2006-12-01
The study of quark jets in ee reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo simulations with JETSET (with and without Bose Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (≲2 GeV/c) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.
Condensates in quantum chromodynamics and the cosmological constant
Brodsky, Stanley J.; Shrock, Robert
2011-01-01
Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, R.C.; Biermann, W.J.
1993-04-27
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, Robert C.; Biermann, Wendell J.
1993-01-01
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation
Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Théberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.
2013-12-23
We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 μs. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.
Bose-Einstein condensates in strong electric fields: Effective gauge potentials and rotating states
Kailasvuori, J.M.; Hansson, T.H.; Kavoulakis, G.M.
2002-11-01
Magnetically trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms acquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an electric field, there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.
Equilibration in quark gluon plasma
NASA Astrophysics Data System (ADS)
Das, S. K.; Alam, J.; Mohanty, P.
2011-07-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.
2010-08-01
We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.
Coste, P.; Bestion, D.
1995-09-01
This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.
Some effects of non-condensible gas in geothermal reservoirs with steam-water counterflow
McKibbin, Robert; Pruess, Karsten
1988-01-01
A mathematical model is developed for fluid and heat flow in two-phase geothermal reservoirs containing non-condensible gas (CO{sub 2}). Vertical profiles of temperature, pressures and phase saturations in steady-state conditions are obtained by numerically integrating the coupled ordinary differential equations describing conservation of water, CO{sub 2}, and energy. Solutions including binary diffusion effects in the gas phase are generated for cases with net mass throughflow as well as for balanced liquid-vapor counterflow. Calculated examples illustrate some fundamental characteristics of two-phase heat transmission systems with non-condensible gas.
Control of a Bose-Einstein condensate by dissipation: Nonlinear Zeno effect
Shchesnovich, V. S.; Konotop, V. V.
2010-05-15
We show that controlled dissipation can be used as a tool for exploring fundamental phenomena and managing mesoscopic systems of cold atoms and Bose-Einstein condensates. Even the simplest boson-Josephson junction, that is, a Bose-Einstein condensate in a double-well trap, subjected to removal of atoms from one of the two potential minima allows one to observe such phenomena as the suppression of losses and the nonlinear Zeno effect. In such a system the controlled dissipation can be used to create desired macroscopic states and implement controlled switching among different quantum regimes.
Elementary excitations of a Bose-Einstein condensate in an effective magnetic field
Murray, D. R.; Barnett, Stephen M.; Oehberg, P.; Gomila, Damia
2007-11-15
We calculate the low-energy elementary excitations of a Bose-Einstein condensate in an effective magnetic field. The field is created by the interplay between light beams carrying orbital angular momentum and the trapped atoms [G. Juzeliunas et al., Phys. Rev. A 71, 053614 (2005)]. We examine the role of the homogeneous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector potentials with a more general radial dependence. We discuss the instabilities which arise and how these may be manifested.
Effect of thermal fluctuations on spin degrees of freedom in spinor Bose-Einstein condensates
Pogosov, W. V.; Machida, K.
2006-08-15
We consider the effect of thermal fluctuations on rotating spinor F=1 condensates in axially symmetric vortex phases, when all the three hyperfine states are populated. We show that the relative phase among different components of the order parameter can fluctuate strongly due to the weakness of the interaction in the spin channel. These fluctuations can be significant even at low temperatures. Fluctuations of relative phase lead to significant fluctuations of the local transverse magnetization of the condensate. We demonstrate that these fluctuations are much more pronounced for the antiferromagnetic state than for the ferromagnetic one.
General Exact Solutions for the Full Gluon Propagator in QCD with the Mass Gap
NASA Astrophysics Data System (ADS)
Gogokhia, V.; Barnaföldi, G. G.
We have explicitly shown that Quantum Chromodynamics is a color gauge invariant theory with non-zero mass gap, which has been defined as the value of the regularized full gluon self-energy at a finite scale point. The mass gap itself is mainly generated by the nonlinear interaction of massless gluon modes. All this allows one to establish the structure of the full gluon propagator in the explicit presence of the mass gap. In this case, the two independent general types of formal solutions for the full gluon propagator as a function of the regularized mass gap have been found: (i) The nonlinear iteration solution at which the gluons remain massless is explicitly present. (ii) Existence of the solution with an effective gluon mass is also demonstrated.
Technology Transfer Automated Retrieval System (TEKTRAN)
Almond shells were torrefied in a fixed bed reactor and their solid and condensate products were collected for analysis. A central composite design and response surface methodology were used to examine effects of torrefaction temperature and time on mass and energy yields of solid products as well a...
ERIC Educational Resources Information Center
Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor
2012-01-01
This article reports on the development of a Predict-Observe-Explain, POE-based teaching strategy to facilitate conceptual change and its effectiveness on student understanding of condensation. The sample consisted of 52 first-year students in primary science education department. Students' ideas were elicited using a test consisting of five probe…
Condensation model for the ESBWR passive condensers
Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)
Relational evolution of effectively interacting group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi
2017-03-01
We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.
Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)
2000-01-01
Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.
Bugaev, K. A.; Petrov, V. K.; Zinovjev, G. M.
2009-05-15
The influence of the medium-dependent finite width of quark gluon plasma (QGP) bags on their equation of state is analyzed within an exactly solvable model. It is argued that the large width of the QGP bags not only explains the observed deficit in the number of hadronic resonances but also clarifies the reason why the heavy QGP bags cannot be directly observed as metastable states in a hadronic phase. The model allows us to estimate the minimal value of the width of QGP bags being heavier than 2 GeV from a variety of the lattice QCD data and get that the minimal resonance width at zero temperature is about 600 MeV, whereas the minimal resonance width at the Hagedorn temperature is about 2000 MeV. As shown, these estimates are almost insensitive to the number of the elementary degrees of freedom. The recent lattice QCD data are analyzed and it is found that in addition to the {sigma}T{sup 4} term the lattice QCD pressure contains T-linear and T{sup 4}lnT terms in the range of temperatures between 240 and 420 MeV. The presence of the last term in the pressure bears almost no effect on the width estimates. Our analysis shows that at high temperatures the average mass and width of the QGP bags behave in accordance with the upper bound of the Regge trajectory asymptotics (the linear asymptotics), whereas at low temperatures they obey the lower bound of the Regge trajectory asymptotics (the square root one). Since the model explicitly contains the Hagedorn mass spectrum, it allows us to remove an existing contradiction between the finite number of hadronic Regge families and the Hagedorn idea of the exponentially growing mass spectrum of hadronic bags.
Effect of Condensed Tannin Profile on Wheat Flour Dough Rheology.
Girard, Audrey L; Castell-Perez, M Elena; Bean, Scott R; Adrianos, Sherry L; Awika, Joseph M
2016-10-05
Proanthocyanidins (PA) cross-link proteins and could expand wheat gluten functionality; however, how the PA MW or gluten profile affect these interactions is unknown. Effect of PA MW profile (sorghum versus grape seed PA) on dough rheology of high versus low insoluble polymeric protein (IPP) wheat flour was evaluated using mixograph, large (TA.XT2i) and small (HAAKE Rheostress 6000) deformation rheometry. Sorghum PA (93% polymeric) more effectively (p < 0.05) strengthened both glutens than grape seed PA (45% polymeric), without reducing gluten extensibility. These effects were higher in low IPP (weak gluten) flour, e.g., sorghum PA doubled IPP, increased mix time by 75%, dough elasticity by 82%, and peak angle by 17° versus control. Grape seed PA increased IPP by 75% and elasticity by 36%, but reduced peak angle by 15°, indicating reduced mixing tolerance. Sorghum PA, but not grape seed PA, increased (p < 0.05) all above parameters in high IPP dough. Polymeric PA more effectively strengthened gluten than oligomeric PA, likely via more efficient protein cross-linking to overcome strong antioxidant effect of PA. High MW PA may be useful natural gluten strengtheners for diverse applications.
Unruh thermalization, gluon condensation, and freeze-out
NASA Astrophysics Data System (ADS)
Castorina, P.; Lanteri, D.
2016-10-01
The deconfinement transition and the hadronization mechanism at high energy are related to the quark-antiquark string breaking, and the corresponding temperature depends on the string tension σ . In the Unruh scheme of hadron production, it turns out T =√{σ /2 π }, with σ ≃ɛvac , the vacuum energy density. In heavy ion collisions at lower energy, i.e., large baryonchemical potential, μB, the dynamics is dominated by Fermi statistics and baryon repulsion. However, one can still consider ɛvac as the relevant physical scale, and its evaluation as a function of the baryon density, in a nuclear matter approach, gives dynamical information on the μB dependence of the hadronization temperature and on the value of the critical end point in the T -μB plane.
High pressure effects on the structural functionality of condensed globular-protein matrices.
Savadkoohi, Sobhan; Kasapis, Stefan
2016-07-01
High pressure technology is the outcome of consumer demand for better quality control of processed foods. There is great potential to apply HPP to condensed systems of globular proteins for the generation of industry-relevant biomaterials with advanced techno- and biofunctionality. To this end, research demonstrates that application of high hydrostatic pressure generates a coherent structure and preserves the native conformation in condensed globular proteins, which is an entirely unexpected but interesting outcome on both scientific and technological grounds. In microbiological challenge tests, high pressure at conventional commercial conditions, demonstrated to effectively reduce the concentration of typical Gram negative or Gram positive foodborne pathogens, and proteolytic enzymes in high-solid protein samples. This may have industrial significance in relation to the formulation and stabilisation of "functional food" products as well as in protein ingredients and concentrates by replacing spray dried powders with condensed HPP-treated pastes that maintain structure and bioactivity. Fundamental concepts and structural functionality of condensed matrices of globular proteins are the primary interest in this mini-review, which may lead to opportunities for industrial exploitation, but earlier work on low-solid systems is also summarised presently to put recent developments in context of this rapidly growing field.
Numerical studies of the effects of jet-induced mixing on liquid-vapor interface condensation
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun
1989-01-01
Numerical solutions of jet-induced mixing in a partially full cryogenic tank are presented. An axisymmetric laminar jet is discharged from the central part of the tank bottom toward the liquid-vapor interface. Liquid is withdrawn at the same volume flow rate from the outer part of the tank. The jet is at a temperature lower than the interface, which is maintained at a certain saturation temperature. The interface is assumed to be flat and shear-free and the condensation-induced velocity is assumed to be negligibly small compared with radial interface velocity. Finite-difference method is used to solve the nondimensional form of steady state continuity, momentum, and energy equations. Calculations are conducted for jet Reynolds numbers ranging from 150 to 600 and Prandtl numbers ranging from 0.85 to 2.65. The effects of above stated parameters on the condensation Nusselt and Stanton numbers which characterize the steady-state interface condensation process are investigated. Detailed analysis to gain a better understanding of the fundamentals of fluid mixing and interface condensation is performed.
Effect of Evaporation-Condensation on Photoacoustics of Aerosols
2007-11-02
Gases and Liquids, (Wiley, New York, 1954). 9F. Reif , Fundamentals of Statistical and Thermal Physics, (McGraw - Hill, New York, 1965). l0Alan D. Pierce...been provided for the mechanism of decrease. The data set will be further analyzed, and compared with theory. 4 2. THEORY OF THE EFFECT OF EVPORATION...and E.M. Lifshitz, Fluid Mechanics , (Butterworth-Heinemann, Oxford 1997), 2 nd Ed. 8J.V. Hirschfelder, C. Curtiss, R. B. Bird, Molecular Theory of
Quark Gluon Plasma: Surprises from strongly coupled QCD matter
NASA Astrophysics Data System (ADS)
Jacak, Barbara
2017-01-01
Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.
Two-gluon and trigluon glueballs from dynamical holography QCD
NASA Astrophysics Data System (ADS)
Chen, Yi-dian; Huang, Mei
2016-12-01
We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS
What is the effective molecular polarizability of water in condensed phases?
NASA Astrophysics Data System (ADS)
Ge, Xiaochuan; Lu, Deyu
Electronic polarization plays a crucial role in determining the structural and dynamical properties of water with different boundary conditions. Although it is well known that the molecular polarization in condensed phases behaves substantially differently from that in the vacuum due to the intermolecular interaction, these environmental effects have not been fully understood from first principles methods. As a result, how to rigorously define and calculate the effective molecular polarizability of a water molecule in different chemical environments remains an open question. The answer to this question not only improves our fundamental understanding of water, but also has immediate practical impact on computational modeling of water, e.g, through an accurate polarizable force field model. A main challenge to this puzzle arises from the intrinsic non-local nature of the electronic susceptibility.Recently we developed an ab initio local dielectric response theory [arxiv 1508.03563] that partitions dielectric response in real space based on a Wannier representation. In this work we apply this method to compute the effective molecular polarizability of water in the condensed phase, and discuss how the effective molecular polarizability evolves from gas phase to the condensed phase. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
Smith, Alexandra H.; Imlay, James A.; Mackie, Roderick I.
2003-01-01
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H2O2. The oxidative stress response helps E. coli strains to overcome their inhibitory effect. PMID:12788743
Effective one-component description of two-component Bose-Einstein condensate dynamics
Dutton, Zachary; Clark, Charles W.
2005-06-15
We investigate dynamics in two-component Bose-Einstein condensates in the context of coupled Gross-Pitaevskii equations and derive results for the evolution of the total density fluctuations. Using these results, we show how, in many cases of interest, the dynamics can be accurately described with an effective one-component Gross-Pitaevskii equation for one of the components, with the trap and interaction coefficients determined by the relative differences in the scattering lengths. We discuss the model in various regimes, where it predicts breathing excitations, and the formation of vector solitons. An effective nonlinear evolution is predicted for some cases of current experimental interest. We then apply the model to construct quasistationary states of two-component condensates.
SUSY-QCD Effects in Top Quark Pair Production in Association with a Gluon at the ILC
NASA Astrophysics Data System (ADS)
Zhang, Yan-Ming; Liu, Ning
2015-08-01
Given the null results of searches for new physics at the LHC, we investigate the one-loop effects SUSY QCD in the process e^ + e^ - \\to t\\bar tg at the ILC in Minimal Supersymmetric Standard Model (MSSM). We find that the relative SUSY-QCD corrections to the cross section of e^ + e^ - \\to t\\bar tg can maximally reach 6.5%(3.2%) at the ILC with \\sqrt s = 1000 GeV when m\\bar t1 = 313.4 GeV and m\\bar g = 500≤ft( {1500} \\right) GeV. Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11305049, 11275057, and 11405047, by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20134104120002 and by the Startup Foundation for Doctors of Henan Normal University under Grant No. 11112
Worldline calculation of the three-gluon vertex
Ahmadiniaz, N.; Schubert, C.
2012-10-23
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
Effect of impurities on the vortex lattice in Bose-Einstein condensates on optical lattice
NASA Astrophysics Data System (ADS)
Mithun, T.; Porsezian, K.; Dey, Bishwajyoti
2015-06-01
We numerically solve the Gross-Pitaeveskii equation to study the Bose-Einstein condensate in the rotating harmonical tarp and co-rotating optical lattice. The effect of a pinning site or impurity shows that it is able to move the vortex lattice center to either left or right depending on the position of the impurity. Also, it is observed that the impurity at the random positions can destroy the vortex lattice and the resulting disordered lattice has more energy.
Closed-string tachyon condensation and the worldsheet super-higgs effect.
Horava, Petr; Keeler, Cynthia A
2008-02-08
Alternative gauge choices for worldsheet supersymmetry can elucidate dynamical phenomena obscured in the usual superconformal gauge. In the particular example of the tachyonic E8 heterotic string, we use a judicious gauge choice to show that the process of closed-string tachyon condensation can be understood in terms of a worldsheet super-Higgs effect. The worldsheet gravitino assimilates the goldstino and becomes a dynamical propagating field. Conformal, but not superconformal, invariance is maintained throughout.
Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.
Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia
2015-05-19
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.
Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation
Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia
2015-01-01
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416
Quark-gluon vertex in arbitrary gauge and dimension
NASA Astrophysics Data System (ADS)
Davydychev, A. I.; Osland, P.; Saks, L.
2001-01-01
One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.
Gluon mass generation in the massless bound-state formalism
NASA Astrophysics Data System (ADS)
Ibañez, D.; Papavassiliou, J.
2013-02-01
We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation itself, such as the “transition amplitude” and the corresponding “bound-state wave function.” As a result, the dynamical evolution of the gluon mass is largely determined by a Bethe-Salpeter equation that controls the dynamics of the relevant wave function, rather than the Schwinger-Dyson equation of the gluon propagator, as happens in the standard treatment. The precise structure and field-theoretic properties of the transition amplitude are scrutinized in a variety of independent ways. In particular, a parallel study within the linear-covariant (Landau) gauge and the background-field method reveals that a powerful identity, known to be valid at the level of conventional Green’s functions, also relates the background and quantum transition amplitudes. Despite the differences in the ingredients and terminology employed, the massless bound-state formalism is absolutely equivalent to the standard approach based on Schwinger-Dyson equations. In fact, a set of powerful relations allows one to demonstrate the exact coincidence of the integral equations governing the momentum evolution of the gluon mass in both frameworks.
NASA Astrophysics Data System (ADS)
Panajotovic, Radmila
2009-05-01
Since the first experiments of low-energy electron scattering from condensed DNA [1] have been performed, the interest in studying low-energy electron-biomolecule interactions has been increasing. Knowledge of effective cross sections for single- and double-strand breaks of DNA and for vibrational and electronic excitation of nucleic bases and nucleosides are opening the door to better understanding of effects of radiation on live tissue and possibly indicating interaction pathways leading to gene mutations and cancer. The strong variation of effective cross sections for DNA single-strand breaks with incident electron energy and the resonant enhancement at 1 eV suggested that considerable damage is inflicted by very low-energy electrons to DNA, and indicates the important role of π* shape resonances in the bond-breaking process. However, the complexity of DNA, even if studied as a short single-strand chain, imposes a need to perform measurements on its isolated constituents, such as nucleic bases and nucleosides. Thymidine is one of the most important nucleosides of DNA and an important component of antiviral compounds. In the condensed phase, thymidine's 2'-deoxyribose ring is in the pentose sugar ring form, which is a true conformation of this nucleoside in DNA. Results from High-Resolution Electron Energy Loss [2] study of monomolecular films of thymidine will be discussed and the presence of resonances in the effective cross sections at incident energy below 5 eV will be commented as a possible indication of the dissociative electron attachment. In addition, results on the resonance structures in the effective cross sections for electronic excitations for the incident electron energy from 1.5 to 12 eV will be discussed as a possible pathway for strand brakes in DNA. [4pt] [1] Boudaiffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2002 Rad. Res. 157 227-234[0pt] [2] Panajotovic R, Martin F, Cloutier P, Hunting, D, and Sanche L, 2006 Rad.Res. 165 452
Choi, Jae-yoon; Kang, Seji; Seo, Sang Won; Kwon, Woo Jin; Shin, Yong-il
2013-12-13
For a spin-carrying particle moving in a spatially varying magnetic field, effective electromagnetic forces can arise due to the geometric phase associated with adiabatic spin rotation of the particle. We report the observation of a geometric Hall effect in a spinor Bose-Einstein condensate with a Skyrmion spin texture. Under translational oscillations of the spin texture, the condensate resonantly develops a circular motion in a harmonic trap, demonstrating the existence of an effective Lorentz force. When the condensate circulates, quantized vortices are nucleated in the boundary region of the condensate and the vortex number increases over 100 without significant heating. We attribute the vortex nucleation to the shearing effect of the effective Lorentz force from the inhomogeneous effective magnetic field.
Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant
Luangdilok, W.; Bennett, R.B.
1995-05-01
A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.
Lorentz-violating effects in the Bose-Einstein condensation of an ideal bosonic gas
NASA Astrophysics Data System (ADS)
Casana, Rodolfo; da Silva, Kleber A. T.
2015-03-01
We have studied the effects of Lorentz-violation in the Bose-Einstein condensation (BEC) of an ideal boson gas, by assessing both the nonrelativistic and ultrarelativistic limits. Our model describes a massive complex scalar field coupled to a CPT-even and Lorentz-violating background. We first analyze the nonrelativistic case, at this level by using experimental data, we obtain upper-bounds for some LIV parameters. In the sequel, we have constructed the partition function for the relativistic ideal boson gas which to be able of a consistent description requires the imposition of severe restrictions on some LIV coefficients. In both cases, we have demonstrated that the LIV contributions are contained in an overall factor, which multiplies almost all thermodynamical properties. An exception is the fraction of the condensed particles.
The Dynamics of Partial Cavities and Effect of Non-Condensable Gas
NASA Astrophysics Data System (ADS)
Makiharju, Simo A.; Ganesh, Harish; Ceccio, Steven L.
2015-11-01
Partial cavitation is encountered in a variety of common applications, from fuel injectors to lifting surfaces, and in general it has detrimental effects on the system wear and performance. Partial cavities undergoing auto-oscillation can cause large pressure oscillations, unsteady hydrodynamic loading, and significant noise. In the present study, experiments were conducted focusing on the dynamics of shedding cavities forming in a canonical geometry (downstream of a wedge apex). The inlet cavitation number was fixed at 2.0 and the Reynolds number based on the hydraulic diameter was 6x105. The effects of dissolved gas content and of non-condensable gas injection into the cavity were carefully studied utilizing dynamic pressure transducers and x-ray densitometry. Gas was injected either immediately downstream of the wedge's apex or further downstream into mid-cavity. The gas injected near the wedge apex was found to end up in the separated shear layer, and relatively miniscule amounts of gas were enough to significantly reduce the vapor production rate and dampen the cavity's auto-oscillations. In addition, the results suggest that non-condensable gas injection can cause the shedding mechanism to switch from one dominated by condensation shock to one dominated by re-entrant liquid jet. Work supported by the Office of Naval Research Grant N00014-14-1-0292, program manager Dr. Ki-Han Kim.
Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature
NASA Astrophysics Data System (ADS)
Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang
2016-05-01
DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College
Gluon Contribution To The Nucleon Spin
Arash, Firooz; Shahveh, Abolfazl; Taghavi-Shahri, Fatemeh
2011-07-15
Gluon polarization in Nucleon is evaluated in the valon representation of hadrons. It is shown that although {delta}g/g is small at the currently measured kinematics, it does not imply that the gluon contribution to the nucleon spin is small. In fact the first moment of gluon polarization in the nucleon, {Delta}g(Q{sup 2}), is sizable. We also notice that the majority of {Delta}g is concentrated at around x = 0.08.
Effect of makeup water properties on the condenser fouling in power planr cooling system
Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.
2011-01-01
The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.
NASA Astrophysics Data System (ADS)
Sheikholeslami, Mohsen; Sadoughi, Mohammadkazem; Shariatmadar, Hamed; Akhavan-Behabadi, Mohammad Ali
2015-11-01
An experimental investigation is performed on heat transfer evaluation of a nano-refrigerant flow during condensation and evaporation inside a horizontal round tube. Experiments are carried out for three working fluid types including: i) pure refrigerant (R600a); ii) refrigerant/lubricant (R600a/oil); and iii) nano-refrigerant: refrigerant/lubricant/nanoparticles (R600a/oil/CuO). Nanoparticles are added to the lubricant and their mixture is mixed with pure refrigerant. Therefore, nano-refrigerants (R600a/oil/CuO) are prepared by dispersing CuO nanoparticles with different fractions of 0.5%, 1% and 1.5% in the baseline mixture (R600a/oil). Effects of different factors including vapor quality, mass flux, and nanoparticles on the heat transfer coefficient are examined for both of condensation and evaporation flows, separately. The results shows that maximum heat transfer augmentation of 79% and 83% are achieved by using the refrigerant/lubricant/nanoparticles mixture, in comparison with the pure refrigerant case in condensation and evaporation, respectively which are occurred for nano-refrigerant with 1.5% mass fraction in both of them.
Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles
NASA Astrophysics Data System (ADS)
Zhang, Yuning
2016-11-01
Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).
Saleh Saber, Fariba; Abolfazli, Nader; Kohsoltani, Maryam
2010-01-01
Background and aims The condensation silicone impression materials are available, but there is little knowledge of their accuracy after disinfection. The objective of this study was to evaluate the effect of the disinfection by spray atomization on dimensional accuracy of condensation silicone impressions. Materials and methods Impressions were made on a stainless steel master model containing a simulated two complete crown preparation with an edentulous space interposed using Spidex® and Rapid® impression materials. 44 impressions were made with each material, of which 16 were disinfected with 5.25% sodium hypochlorite, 16 were disinfected with 10% iodophor and 12 were not disinfected. Three dimensional measurements of working casts, including interpreparation distance, height, and diameter, were calculated using a measuring microscope graduated at 0.001 mm. Dimensional changes (mm) between the disinfected and non-disinfected working casts were compared. One-way analysis of variance (ANOVA) was employed to analyze the data (α=0.05). Results Disinfection of each condensation silicone material by spraying atomization with two different disinfectant material resulted in significant change in interpreparation distance (p<0.05). Changes in height and diameter were only significant in Spidex® impressions (p<0.05). Conclusion Significant changes in the mean dimensions were seen as a result of disinfection by spraying; however, the dimensional changes do not seem great enough to cause critical positional distortion of teeth when fixed partial denture restorations are made. PMID:23346339
Ordering Multiple Soft Gluon Emissions
NASA Astrophysics Data System (ADS)
Ángeles Martínez, René; Forshaw, Jeffrey R.; Seymour, Michael H.
2016-05-01
We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full color structure and both the real and imaginary contributions to the amplitude.
A short guide to topological terms in the effective theories of condensed matter
NASA Astrophysics Data System (ADS)
Tanaka, Akihiro; Takayoshi, Shintaro
2015-02-01
This article is meant as a gentle introduction to the topological terms that often play a decisive role in effective theories describing topological quantum effects in condensed matter systems. We first take up several prominent examples, mainly from the area of quantum magnetism and superfluids/superconductors. We then briefly discuss how these ideas are now finding incarnations in the studies of symmetry-protected topological phases, which are in a sense a generalization of the concept of topological insulators to a wider range of materials, including magnets and cold atoms.
A short guide to topological terms in the effective theories of condensed matter
Tanaka, Akihiro; Takayoshi, Shintaro
2015-01-01
This article is meant as a gentle introduction to the topological terms that often play a decisive role in effective theories describing topological quantum effects in condensed matter systems. We first take up several prominent examples, mainly from the area of quantum magnetism and superfluids/superconductors. We then briefly discuss how these ideas are now finding incarnations in the studies of symmetry-protected topological phases, which are in a sense a generalization of the concept of topological insulators to a wider range of materials, including magnets and cold atoms. PMID:27877742
Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum
Williams, Andrew R.; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M.
2014-01-01
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of
Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum.
Williams, Andrew R; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M
2014-01-01
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of
Badrian, Hamid; Davoudi, Amin; Molazem, Meysam; Zare, Mohammad Hossein
2015-01-01
Background: Dentistry equipment are exposed to different types of pathogenic microorganisms. The aim of this study was to investigate the effect of spraying three different types of disinfectants on condensational silicones after 5 and 10 min. Materials and Methods: Totally, 66 circular samples of condensational silicone impression materials of 1 cm diameter and 2 mm thickness were contaminated by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans fungus. Except for control samples, all of them were disinfected with sodium hypochlorite (NaOCl) 0.525%, Deconex and Epimax by spraying method. Afterward, they kept in plastic bags with humid rolled cotton for 5 and 10 min. In order to isolate microbiotas, the samples were immersed in 2% trypsin for 1 h and diluted with normal saline in a portion of 1, 1/2, and 1/4. The trypsin suspensions were transferred to culture plates for incubation and colony-forming unit assay. The data were analyzed by Mann–Whitney test and SPSS software version 16 at a significant level of 0.05. Results: There was a meaningful difference between disinfection effects of Epimax-Deconex for all mentioned microorganisms after 5 min (P = 0.034), and between disinfection effects of NaOCl 0.525%-Epimax for S. aureus (P = 0.043) and P. aeruginosa (P = 0.046) after 5 min. Furthermore, there was a meaningful difference between disinfection effects of Epimax-Deconex (P = 0.034) and NaOCl 0.525%-Epimax (P = 0.034) for P. aeruginosa after 10 min. Conclusion: Condensational silicone can be effectively disinfected by spraying tested three disinfecting agents. More specifically, Deconex showed the best results compared to the other agents. PMID:26929523
Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates
Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.
2010-12-15
We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.
Effect of scattering lengths on the dynamics of a two-component Bose-Einstein condensate
Csire, Gabor; Apagyi, Barnabas
2010-12-15
We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs, stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark, and dark-dark solitons with our analytical prediction and with that of Painleve analysis of the dynamical equation. We demonstrate that tuning the interspecies scattering length away from the predicted value (keeping the intraspecies coupling fixed) breaks the stability of the soliton pairs.
Gommes, Cedric J; Ravikovitch, Peter; Neimark, Alexander
2007-10-15
The adsorption of nitrogen in a collection of spheres that touch or merge in a sintering-like manner is modeled using a Derjaguin-Broeckhof-de Boer approach. The proposed model accounts for both positive curvature effects and for capillary condensation at the contact between two spheres. A methodology is proposed to fit the P/P(0)>0.4 adsorption region with the coordination number of the spheres as the only adjustable parameter. The use of the model is illustrated on a series of silica aerogels. The suitability of various standard isotherms needed for the modeling is also discussed.
Minho, Alessandro P; Bueno, Ives Cláudio Da S; Gennari, Solange Maria; Jackson, Frank; Abdalla, Adibe Luiz
2008-09-01
The aim of this study was to determine the inhibitory effects of condensed tannin extract from acacia on the feeding of first-stage larvae (L1) of Haemonchus contortus, Trichostrongylus vitrinus and Teladorsagia circumcincta. The experiment was developed such that the inhibition of feeding for each of the nematode species could be evaluated. L1 recovered from fecal samples from a donor with monospecific infection was incubated in several dilutions of acacia extract (AE). The LD50 was determined for the three species of nematodes. Polyethylene glycol (PEG) was added to all dilutions of AE to inactivate the condensed tannins (CT) from acacia and to confirm their effects on L1. The impact of CT on larval feeding inhibition was detected for all the species of nematodes (H. contortus, T. colubriformis and T. circumcincta). There were differences between the aqueouswater control and CT treated groups (P < 0.01). The LD50 values were 0.043, 0.038 and 0.050 (SE = 0.0024), for H. contortus, T. vitrinus and T. circumcincta, respectively. A difference was detected between the AE and AE + PEG treatments (P < 0.01). Analysis of these results suggested that the direct effect of CT on L1 of the nematodes studied could be used as an alternative means for controlling nematodes in sheep.
Condensation heat transfer in a microgravity environment
NASA Technical Reports Server (NTRS)
Chow, L. C.; Parish, R. C.
1986-01-01
In the present treatment of the condensation heat transfer process in a microgravity environment, two mechanisms for condensate removal are analyzed in light of two problems: (1) film condensation on a flat, porous plate, with condensate being removed by wall suction; and (2) the analytical prediction of the heat transfer coefficient of condensing annular flows, where the condensate film is driven by vapor shear. Both suction and vapor shear can effectively drain the condensate, ensuring continuous operation in microgravity.
HUNTING THE QUARK GLUON PLASMA.
LUDLAM, T.; ARONSON, S.
2005-04-11
The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high
Effect of coupling strength on atomic-to-molecular condensate conversion in Raman photoassociation
Gupta, Moumita; Dastidar, Krishna Rai
2010-03-15
We study two-photon Raman photoassociation for creating a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. By exploring the dynamics of the coupled system, we show that the atom-to-molecule conversion efficiency can be controlled by changing the atom-molecule coupling strength and the effective two-photon Raman detuning. Atom-molecule coupling strength and the effective two-photon Raman detuning can be controlled by changing the laser intensity. We analyze the dynamics of the coupled atom-molecular condensate system by changing the laser intensity over a broad range, keeping the effective two-photon Raman detuning fixed. The effective two-photon Raman detuning depends on the two-photon detuning, Rabi frequencies, and the light shifting (AC Stark shift) of the levels. To keep the effective two-photon Raman detuning fixed, the two-photon detuning is varied to compensate for the light shifting of levels with laser intensity. The corresponding changes in the effective decay rates and the scattering length due to the change in the Rabi frequencies have been taken into account. Dependence of the conversion efficiency on the effective two-photon Raman detuning has also been studied by varying the laser intensity over a narrow range, keeping the two-photon detuning unchanged. The dynamics of the coupled system has been studied in Gross-Pitaevskii and modified Gross-Pitaevskii approaches to demonstrate the effect of the higher order nonlinearity (Lee-Huang-Yang term) with the increase in the laser intensity.
NASA Astrophysics Data System (ADS)
Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-12-01
Lattice quantum chromodynamics results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb-Pb interactions.
Calcium chloride effects on the glass transition of condensed systems of potato starch.
Chuang, Lillian; Panyoyai, Naksit; Katopo, Lita; Shanks, Robert; Kasapis, Stefan
2016-05-15
The effect of calcium chloride on the structural properties of condensed potato starch undergoing a thermally induced glass transition has been studied using dynamic mechanical analysis and modulated differential scanning calorimetry. Extensive starch gelatinisation was obtained by hot pressing at 120°C for 7 min producing materials that covered a range of moisture contents from 3.7% w/w (11% relative humidity) to 18.8% w/w (75% relative humidity). FTIR, ESEM and WAXD were also performed in order to elucidate the manner by which salt addition affects the molecular interactions and morphology of condensed starch. Experimental protocol ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of calcium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Highly reactive calcium ions form a direct interaction with starch to alter considerably its structural properties via an anti-plasticizing effect, as compared to the polymer-water matrix.
NASA Astrophysics Data System (ADS)
Benić, Sanjin; Fukushima, Kenji; Garcia-Montero, Oscar; Venugopalan, Raju
2017-01-01
We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k ⊥ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.
Effect of Non-Condensable Gas Injection on Cavitation Dynamics of Partial Cavities
NASA Astrophysics Data System (ADS)
Mäkiharju, Simo A.; Ganesh, Harish; Ceccio, Steven L.
2015-12-01
Partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. The cavity dynamics were studied with and without injection of non-condensable gas into the cavity. Gas was injected directly into the cavitation region downstream of the wedge's apex, or into the recirculating region at mid cavity so that for the same amount of injected gas less ended up in the shear layer. It was found that relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapour production and dampen the auto oscillations, and the same amount of gas injected into the mid cavity would not have the same effect. The authors also examined whether the injected gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by reentrant jet.
Gluon and Ghost Dynamics from Lattice QCD
NASA Astrophysics Data System (ADS)
Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.
2017-03-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Graviton and Gluon Scattering from First Principles.
Boels, Rutger H; Medina, Ricardo
2017-02-10
Graviton and gluon scattering are studied from minimal physical assumptions such as Poincare and gauge symmetry as well as unitarity. The assumptions lead to an interesting and surprisingly restrictive set of linear equations. This shows gluon and graviton scattering to be related in many field and string theories, explaining and extending several known results. By systematic analysis exceptional graviton scattering amplitudes are derived, which in general dimensions cannot be related to gluon amplitudes. The simplicity of the formalism guarantees wide further applicability to gauge and gravity theories.
Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.
1962-03-01
An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)
Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges
2014-01-01
We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.
Effects of Condensation on Peri-implant Bone Density and Remodeling.
Wang, L; Wu, Y; Perez, K C; Hyman, S; Brunski, J B; Tulu, U; Bao, C; Salmon, B; Helms, J A
2017-04-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.
Nanostructure-induced DNA condensation
NASA Astrophysics Data System (ADS)
Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian
2013-08-01
The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.
On the zero crossing of the three-gluon vertex
NASA Astrophysics Data System (ADS)
Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.
2016-10-01
We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Gluon saturation in a saturated environment
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan
2011-07-15
A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.
Morey, Alexandre T; de Souza, Felipe C; Santos, Jussevania P; Pereira, Caibe A; Cardoso, Juscelio D; de Almeida, Ricardo S C; Costa, Marco A; de Mello, João C P; Nakamura, Celso V; Pinge-Filho, Phileno; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F
2016-01-01
Candida species are some of the most common causes of fungal infection worldwide. The limited efficacy of clinically available antifungals warrants the search for new compounds for treating candidiasis. This study evaluated the effect of condensed tannin-rich fraction (F2 fraction) of Stryphnodendron adstringens on in vitro and in vivo growth of Candida tropicalis, and on yeast adhesion properties. F2 exhibited a fungistatic effect with the minimum inhibitory concentration ranging from 0.5 to 8.0 μg/mL. A significant reduction in biofilm mass was observed after either pretreatment of planktonic cells for 2 h (mean reduction of 46.31±8.17%) or incubation during biofilm formation (mean reduction of 28.44±13.38%) with 4x MIC of F2. Prior exposure of planktonic cells to this F2 concentration also significantly decreased yeast adherence on HEp-2 cells (mean reduction of 43.13±14.29%), cell surface hydrophobicity (mean reduction of 25.89±10.49%) and mRNA levels of the genes ALST1-3 (2.9-, 1.8- and 1.8-fold decrease, respectively). Tenebrio molitor larvae, which are susceptible to C. tropicalis infection, were used for in vivo testing. Treatment with 128 and 256 μg/mL F2 significantly increased the survival of infected larvae. These results indicate a combined effect of F2 on inhibition of yeast growth and interference in yeast adhesion, which may contribute to the suppression of infection caused by C. tropicalis, thus reinforcing the potential of the condensed tannins from S. adstringens for the development of novel antifungal agents.
Cook, William R; Coalson, Rob D; Evans, Deborah G
2009-08-20
A description of electron transfer in condensed-phase media requires models that adequately describe the coupling of the electronic degrees of freedom to the surrounding nuclear coordinates. The spin-boson model has been the canonical model used to understand quantum dynamic processes in condensed-phase media over the last 25 years. Inherent in the standard model of a two-state quantum system coupled to a bosonic bath is the assumption that the Condon approximation is valid. In this context, the Condon approximation assumes that the bath configurations (coordinates) have no effect on the nonadiabatic coupling matrix element. While this is a useful model for electron transfer in small molecular systems, the validity of this approximation is less likely when large-scale motions of solvent molecules are strongly coupled to the electron transfer event, e.g., in molecular clamps and long-range electron transfer in biopolymers. In the present paper a general model for two-state electron transfer which allows for system-bath coupling in both the diagonal and off-diagonal (nonadiabatic) terms is studied. Time-dependent perturbation theory for this Hamiltonian is developed using a small polaron transformation. As noted in several recent studies, in a certain regime of parameter space, the relevant Hamiltonian admits an exact solution, termed the exactly solvable non-Condon Hamiltonian (or NCE). This limit, for which exact solutions are available, is used to benchmark the short- and long-time accuracy of various perturbative approaches. The validated perturbation equations are subsequently used to explore the role of non-Condon effects on electron transfer by systematically increasing the strength of the non-Condon coupling term from zero (i.e., the canonical spin-boson model) to the value that pertains to the exactly solvable non-Condon model (where non-Condon effects are significant).
The gluon Sivers distribution: Status and future prospects
Boer, Daniël; Lorcé, Cédric; Pisano, Cristian; ...
2015-06-28
In this study, we review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p → πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function.
Statefinder Parameters for the Quantum Effective Yang-Mills Condensate Dark Energy Model
NASA Astrophysics Data System (ADS)
Tong, Minglei; Zhang, Yang; Xia, Tianyang
The quantum effective Yang-Mills condensate (YMC) dark energy model has some distinctive features so that it naturally solves the coincidence problem and, at the same time, is able to give an equation of state w crossing -1. In this work we further employ the statefinder pair (r,s), introduced by Sahni et al., to diagnose the YMC model for three cases: the noncoupling, the YMC decaying into matter only, and the YMC decaying into both matter and radiation. The trajectories (r,s) and (r,q), and the evolutions r(z) and s(z), are explicitly presented. It is found that the YMC model in all three cases has r ≃ 1 for z < 10 and s ≃ 0 for z < 5 with only small deviations, ≃ 0.02, quite close to the cosmological constant model (LCDM), but is obviously differentiated from other dark energy models, such as quiessence or kinessence.
Effect of two-phase maldistribution on the performance of an air-cooled condenser
Henry, J.R.; Farrant, P.E.
1983-07-01
Information is available in the literature for the case where a single-phase vapour is maldistributed by differing tube length or temperature difference. This paper examines the effects when the fluid being distributed is two-phase at entry and it is seen that significant reduction in heat-transfer rate results when the flow separates, although pressure drop is also very much less. It is shown that the performance with arbitrary distribution normally lies between the extremes of homogeneous (ideal) distribution and complete separation and is usually closer to the latter. More important is the large amount of heat which must be transferred by direct contact with subcooled condensate in the downstream header and pipework. This could cause problems if not allowed for.
Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts
NASA Astrophysics Data System (ADS)
Sirghi, L.
2003-05-01
A single nanoasperity contact in ambient air is usually wetted by capillary condensation of water vapor and is surrounded by a water meniscus. This phenomenon strongly affects the contact friction, not only by the effect of meniscus loading force (superficial tension and capillary forces), but also by a friction force that accounts for the energy loss in the meniscus movement along with the sliding contact. Occurrence of the water-meniscus-generated friction is experimentally proved by atomic force microscopy measurements of the tip-sample friction force at minimum possible external load (before pull-off). A qualitative explanation for the observed dependence of the friction force on air humidity and solid surface wettability is proposed.
NASA Technical Reports Server (NTRS)
Tyler, Charles
1996-01-01
Rayleigh scattering, a nonintrusive measurement technique for the measurement of density in a hypersonic wind tunnel, is under investigation at Wright Laboratory's Mach 6 wind tunnel. Several adverse effects, i.e., extraneous scatter off walls and windows, hinder Rayleigh scattering measurements. Condensation and clustering of flow constituents also present formidable obstacles. Overcoming some of these difficulties, measurements have been achieved while the Mach 6 test section was pumped down to a vacuum, as well as for actual tunnel operation for various stagnation pressures at fixed stagnation temperatures. Stagnation pressures ranged from 0.69 MPa to 6.9 MPa at fixed stagnation temperatures of 511, 556, and 611 K. Rayleigh scatter results show signal levels much higher than expected for molecular scattering in the wind tunnel. Even with higher than expected signals, scattering measurements have been made in the flowfield of an 8-degree half-angle blunt nose cone with a nose radius of 1.5 cm.
Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers
NASA Astrophysics Data System (ADS)
Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.
2015-05-01
Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.
High gluon densities in heavy ion collisions
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul
2017-03-01
The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction x of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of ‘saturation’ which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the ‘saturation momentum’, that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small x gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in heavy ion collisions are briefly discussed at the end, for illustration purpose.
Effect of Fodder Tree Species with Condensed Tannin Contents on In vitro Methane Production.
Vázquez, Ernestina Gutiérrez; Medina, Leonardo Hernández; Benavides, Liliana Márquez; Caratachea, Aureliano Juárez; Razo, Guillermo Salas; Burgos, Armin Javier Ayala; Rodríguez, Ruy Ortiz
2016-01-01
The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane (CH4) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at 39°C, and the gas and CH4 production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = -0.40; p<0.001); FTS-volume of CH4 produced (r = -0.40; p<0.001) and between the inclusion level-volume of CH4 produced (r = -0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of CH4 produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce CH4 emission on in vitro trials (>32.7%), taking into account the total CH4 production at 24 h of the forage used as reference (Avena sativa). It's suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of CH4 emissions during the dry season.
NASA Astrophysics Data System (ADS)
Wang, Xiaocong
2017-04-01
Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.
Effect of Fodder Tree Species with Condensed Tannin Contents on In vitro Methane Production
Vázquez, Ernestina Gutiérrez; Medina, Leonardo Hernández; Benavides, Liliana Márquez; Caratachea, Aureliano Juárez; Razo, Guillermo Salas; Burgos, Armin Javier Ayala; Rodríguez, Ruy Ortiz
2016-01-01
The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane (CH4) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at 39°C, and the gas and CH4 production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = −0.40; p<0.001); FTS-volume of CH4 produced (r = −0.40; p<0.001) and between the inclusion level-volume of CH4 produced (r = −0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of CH4 produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce CH4 emission on in vitro trials (>32.7%), taking into account the total CH4 production at 24 h of the forage used as reference (Avena sativa). It’s suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of CH4 emissions during the dry season. PMID:26732330
NASA Technical Reports Server (NTRS)
Hall, R. M.
1986-01-01
In the context of an overall development of transonic, cryogenic wnd tunnel technology, NASA has been investigating the onset of condensation effects in nitrogen gas. The temperature at which condensation occurs determines the minimum operating temperature (MOT) of cryogenic tunnels. The apparatus and airfoils are discussed, taking into account a description of the 0.3-m Transonic Cryogenic Tunnel (TCT), the drag rake, the airfoils, and the technique used for determining the onset of condensation effects. Attention is also given to the types of nucleation processes, the relative sensitivity of drag rake and surface pressure measurements, correlations between data and theory, the prediction of minimum operating temperatures for the 0.3-m TCT, and MOT's for different tunnels.
Glauber gluons in pion-induced Drell-Yan processes
NASA Astrophysics Data System (ADS)
Chang, Chun-peng; Li, Hsiang-nan
2013-10-01
We point out that the existence of Glauber gluons in the kT factorization theorem can account for the violation of the Lam-Tung relation, namely, the anomalous lepton angular distribution observed in pion-induced Drell-Yan processes. The emission of a final-state parton, that balances the lepton-pair transverse momentum, causes the responsible spin-transverse-momentum correlation in the Glauber-gluon background. It is argued that the Glauber effect is significant in the pion due to its unique role of being a Nambu-Goldstone boson and a qqbar bound state simultaneously. This mechanism is compared to other resolutions in the literature by means of vacuum effects and Boer-Mulders functions. We propose to discriminate the above resolutions by measuring the ppbar Drell-Yan process at GSI and J-PARC.
SU (2) Dirac-Yang-Mills quantum mechanics of spatially constant quark and gluon fields
NASA Astrophysics Data System (ADS)
Pavel, H.-P.
2011-06-01
The quantum mechanics of spatially constant SU (2) Yang-Mills- and Dirac-fields minimally coupled to each other is investigated as the strong coupling limit of 2-color-QCD. Using a canonical transformation of the quark and gluon fields, which Abelianises the Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. In the same way as this reduces the colored spin-1 gluons to unconstrained colorless spin-0 and spin-2 gluons, it reduces the colored spin-1/2 quarks to unconstrained colorless spin-0 and spin-1 quarks. These however continue to satisfy anti-commutation relations and hence the Pauli-exclusion principle. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. In this form the low-energy spectrum can be obtained with high accuracy. As an illustrative example, the spin-0 energy-spectrum of the quark-gluon system is calculated for massless quarks of one flavor. It is found, that only for the case of 4 reduced quarks (half-filling) satisfying the boundary condition of particle-antiparticle C-symmetry, states with energy lower than for the pure-gluon case are obtained. These are the ground state, with an energy about 20% lower than for the pure-gluon case and the formation of a quark condensate, and the sigma-antisigma excitation with an energy about a fifth of that of the first glueball excitation.
Geothermal steam condensate reinjection
NASA Technical Reports Server (NTRS)
Chasteen, A. J.
1974-01-01
Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.
Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.
Nowak, Dominika; Christenson, Hugo K
2009-09-01
We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.
Angular correlations in gluon production at high energy
Kovner, Alex; Lublinsky, Michael
2011-02-01
We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.
Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui
2013-03-01
By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts.
D-meson enhancement in pp collisions at the LHC due to nonlinear gluon evolution
Dainese, A.; Vogt, R.; Bondila, M.; Eskola, K.J.; Kolhinen, V.J.
2004-08-22
When nonlinear effects on the gluon evolution are included with constraints from HERA, the gluon distribution in the free proton is enhanced at low momentum fractions, x {approx}< 0.01, and low scales, Q{sup 2} {approx}< 10 GeV{sup 2}, relative to standard, DGLAP-evolved, gluon distributions. Consequently, such gluon distributions can enhance charm production in pp collisions at center of mass energy 14 TeV by up to a factor of five at midrapidity, y {approx} 0, and transverse momentum p{sub T} {yields} 0 in the most optimistic case. We show that most of this enhancement survives hadronization into D mesons. Assuming the same enhancement at leading and next-to-leading order, we show that the D enhancement may be measured by D{sup 0} reconstruction in the K{sup -}{pi}{sup +} decay channel with the ALICE detector.
Dimension-six triple gluon operator in Higgs +jet observables
NASA Astrophysics Data System (ADS)
Ghosh, Diptimoy; Wiebusch, Martin
2015-02-01
Recently a lot of progress has been made towards a full classification of new physics effects in Higgs observables by means of effective dimension-six operators. Specifically, Higgs production in association with a high transverse momentum jet has been suggested as a way to discriminate between operators that modify the Higgs-top coupling (Ot) and operators that induce an effective Higgs-gluon coupling (Og)—a distinction that is hard to achieve with signal strength measurements alone. With this article we would like to draw attention to another source of new physics in Higgs +jet observables: the triple gluon operator O3 g (consisting of three factors of the gluon field strength tensor). We compute the distortions of kinematic distributions in Higgs +jet production at a 14 TeV LHC due to O3 g and compare them with the distortions due to Ot and Og. We find that the transverse momentum distributions alone cannot discriminate between O3 g and Og if the coefficient of the operator Ot treated as an unknown parameter. We further show that the jet rapidity and the difference between the Higgs and jet rapidity are well suited to remove this new degeneracy. Using rough estimates for the expected bounds we find that allowed distortions in kinematic distributions due to Og are of similar size as those due to O3 g. We conclude that a full analysis of new physics in Higgs +jet observables must take the contributions from O3 g into account.
Nonperturbative equation of state of quark gluon plasma: Applications
NASA Astrophysics Data System (ADS)
Komarov, E. V.; Simonov, Yu. A.
2008-05-01
The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.
Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando
2014-03-01
In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.
Key condenser failure mechanisms
Buecker, B.
2009-04-15
Eight practical lessons highlight many of the factors that can influence condenser tube corrosion at coal-fired utilities and the effects contaminant in-leakage can have on steam generating units. 1 ref., 4 figs.
Abelian non-global logarithms from soft gluon clustering
NASA Astrophysics Data System (ADS)
Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba
2012-09-01
Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.
Kengne, E.; Liu, X. X.; Liu, W. M.; Malomed, B. A.; Chui, S. T.
2008-02-15
An effective Gross-Pitaevskii equation, which describes the dynamics of quasi-one-dimensional Bose-Einstein condensates in specific potential traps, is considered, and new families of exact solutions are reported, which include periodic and solitary waves. The solutions are applied to the description of BEC patterns trapped in optical-lattice potentials.
Technology Transfer Automated Retrieval System (TEKTRAN)
Nitrogen emissions from concentrated animal feeding operations are of increasing concern to regulatory agencies and consumers. We evaluated the effect of top-dressing a finishing diet (14.4% crude protein) for beef steers with a commercially-available condensed tannin extract (CT) at three levels (0...
Lee, Jun-Yeob; Choi, Mee Jung; Choe, Eun Sang; Lee, Young-Ju; Seo, Joung-Wook; Yoon, Seong Shoon
2016-06-01
Although it is widely accepted that nicotine plays a key role in tobacco dependence, nicotine alone cannot account for all of the pharmacological effects associated with cigarette smoke found in preclinical models. Thus, the present study aimed to determine the differential effects of the interoceptive cues of nicotine alone versus those of cigarette smoke condensate (CSC) in nicotine-trained rats. First, the rats were trained to discriminate nicotine (0.4mg/kg, subcutaneous [s.c.]) from saline in a two-lever drug discrimination paradigm. Then, to clarify the different neuropharmacological mechanisms underlying the discriminative-stimulus effects in the nicotine and CSC in nicotine-trained rats, either the α4β2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-β-erythroidine (DHβE; 0.3-1.0mg/kg, s.c.) or the α7 nAChR antagonist methyllycaconitine citrate (MLA; 5-10mg/kg, intraperitoneal [i.p.]) was administered prior to the injection of either nicotine or CSC. Separate set of experiments was performed to compare the duration of action of the discriminative-stimulus effects of CSC and nicotine. CSC exhibited a dose-dependent nicotine generalization, and interestingly, 1.0mg/kg of DHβE antagonized the discriminative effects of nicotine (0.4mg/kg) but not CSC (0.4mg/kg nicotine content). However, pretreatment with MLA had no effect. In the time-course study, CSC had a relatively longer half-life in terms of the discriminative-stimulus effects compared with nicotine alone. Taken together, the present findings indicate that CSC has a distinct influence on interoceptive effects relative to nicotine alone and that these differential effects might be mediated, at least in part, by the α4β2, but not the α7, nAChR.
Kaleem, Muhammad; Watts, David C
2017-03-29
Effect of variation in morphology and size of filler particles, temperature and increase in condensation speed on packability of resincomposites was investigated. Eight experimental light-cured resin-composites (RZDn series) were tested. Each material was placed in a cylindrical mould at 26 or 32ºC. A flat-ended stainless-steel probe (φ=6 mm) was mechanically lowered with two different speeds 2 and 8 mm/s onto and into at the surface of the unset sample until a compressive force of 1 N was reached. This was repeated for five cycles, and from each cycle Fp was calculated. All spherical and irregular filler particle resin-composites showed a decrease in Fp with increase in number of compressions. Increase in temperature also decreased Fp, but this effect was not very prominent in the case of irregular filler resin-composites. Filler particle morphology, increase in temperature and compression cycle speed has a prominent effect on packability of resin-composites.
Effects of cigarette smoke condensate on primary urothelial cells in vitro.
Plöttner, Sabine; Behm, Claudia; Bolt, Hermann M; Föllmann, Wolfram
2012-01-01
Cigarette smoking is a risk factor for bladder cancer. Since urothelial cells express phase I and II enzymes these cells are able to metabolize precarcinogens into DNA reactive intermediates. Cigarette smoke is a complex mixture containing at least 80 known carcinogens. In this context especially aromatic amines and polycyclic aromatic hydrocarbons are discussed as being responsible for bladder-carcinogenicity. Cell cultures of primary porcine urinary bladder epithelial cells (PUBEC) have been useful models for studies on bladder-specific effects. These cells are metabolically competent and found to be a valuable tool for examining effects of cigarette smoke constituents. In the present study PUBEC were utilized to investigate the effects of the complex mixture cigarette smoke condensate total particulate matter (CSC TPM) with emphasis on induction of cytochrome P-450 1A1 (CYP1A1) and genotoxic effects. CYP1A1 induction was investigated by Western blot and flow cytometry. The most pronounced effects were found after 24 h of incubation with 1-10 μg/ml CSC TPM. Maximal induction was observed at 5 μg/ml by flow cytometry and at 10 μg/ml by Western blot analysis. Genotoxic effects were investigated by means of alkaline single-cell gel electrophoresis ("comet assay") with and without the use of the DNA repair enzyme formamidopyrimidine-DNA glycosylase (Fpg) and the micronucleus (MN) test. A numerical concentration-dependent increase in Fpg-sensitive sites indicating oxidative DNA damage and a quantitative rise in MN formation were noted. The CSC utilized in this study contained low amounts of benzo[a]pyrene, 4-aminobiphenyl, and 2-naphthylamine. With regard to the observed CYP1A1 induction, these substances cannot explain the CYP1A1 inducing effect of CSC TPM. It is possible that other compounds within CSC TPM contribute to CYP1A1 induction in our cellular model.
Gun'ko, Vladimir M; Nasiri, Rasoul; Sazhin, Sergei S
2015-01-21
The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that β depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of β for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/Tc < 0.8) or slightly larger (at T/Tc > 0.8) than the values of β calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of β by the MD FF methods, except at temperatures close to the critical temperature.
Gun’ko, Vladimir M.; Nasiri, Rasoul; Sazhin, Sergei S.
2015-01-21
The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that β depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of β for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/T{sub c} < 0.8) or slightly larger (at T/T{sub c} > 0.8) than the values of β calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of β by the MD FF methods, except at temperatures close to the critical temperature.
The effect of Au condensation in laser desorption/ionization of organic materials
NASA Astrophysics Data System (ADS)
Prabhakaran, Aneesh; Delcorte, Arnaud
2011-03-01
Matrix-assisted desorption/ionization (MALDI) mass spectrometry, where the analyte is mixed in a low molecular weight matrix, often constitutes a limitation for the analysis and imaging of real world samples. Herein, we investigate the influence of a thin layer of gold (1-15nm) deposited on the surface of different organic materials, in the laser ablation using 355nm wavelength light. We see a significant effect of the condensed metal nanoparticles in the laser ablation process. Compared to pristine samples, the metallized samples show a significant intensity of characteristic fragments as well as metal cationized molecules. Relatively soft desorption/ionization is indicated by the observation of characteristic molecular ions of the different analytes. The observed effects can be explained by the increased laser absorption by the gold nanoparticles in this wavelength range and the increased ionization by the gold. Hence the metallization improves the surface characterization using lasers and also proves to be a novel technique for chemical imaging of organic surfaces.
NASA Astrophysics Data System (ADS)
Jung, E.; Albrecht, B. A.; Jonsson, H. H.; Chen, Y.-C.; Seinfeld, J. H.; Sorooshian, A.; Metcalf, A. R.; Song, S.; Fang, M.; Russell, L. M.
2015-01-01
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 μm diameter salt particles (salt powder) were released from an aircraft while flying near cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h-1, and liquid water path decreased from about 52 to 43 g m-2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10-2 to 10-4 cm-3 resulted in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.
NASA Astrophysics Data System (ADS)
Jung, E.; Albrecht, B. A.; Jonsson, H. H.; Chen, Y.-C.; Seinfeld, J. H.; Sorooshian, A.; Metcalf, A. R.; Song, S.; Fang, M.; Russell, L. M.
2015-05-01
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 μm diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h-1, and the liquid water path decreased from about 52 to 43 g m-2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10-2 to 10-4 cm-3 resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.
Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro.
Anderson, Robin C; Vodovnik, Maša; Min, Byeng R; Pinchak, William E; Krueger, Nathan A; Harvey, Roger B; Nisbet, David J
2012-07-01
Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.
NASA Astrophysics Data System (ADS)
Alshaarawi, Amjad; Zhou, Kun; Scribano, Gianfranco; Attili, Antonio; Bisetti, Fabrizio; Clean Combustion Research Center Team
2013-11-01
The effect of residence time on the formation and growth of a condensating aerosol is simulated in a Hiemenz-type stagnation flow setup, for which a unique and well-defined time scale characterizes the velocity field. In this configuration, a hot stream saturated with dibutyle phthalate (DBP) vapor mixes with a cold dry stream. A mixing layer forms at the stagnation plane triggering supersaturation and droplets are generated by homogeneous nucleation. Aerosol dynamics are simulated using the Quadrature Method of Moments (QMOM). Two regimes related to the flow residence time are observed, i.e., a nucleation regime and a condensation regime. The nucleation regime, at short residence times, is characterized by the consumption of DBP vapor into droplets having a negligible effect on the vapor phase. In this regime, both the number density and volume fraction of droplets increase with residence time. In the condensation regime, at long residence times, vapor condensation consumes the vapor phase considerably. For longer residence times, more vapor is consumed, resulting in lower number densities due to the lower nucleation rates, whereas the volume fraction saturates.
The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone
NASA Astrophysics Data System (ADS)
Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David
2016-10-01
The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST
Constituent gluons and the static quark potential
Greensite, Jeff; Szczepaniak, Adam P.
2016-04-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Gluon Bremsstrahlung in Weakly-Coupled Plasmas
NASA Astrophysics Data System (ADS)
Arnold, Peter
2009-11-01
I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≳10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q̂.
Measure Guideline: Evaporative Condensers
German, A.; Dakin, B.; Hoeschele, M.
2012-03-01
The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.
Molecular equilibrium with condensation
NASA Astrophysics Data System (ADS)
Sharp, C. M.; Huebner, W. F.
1990-02-01
Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.
1989-01-01
Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.
NASA Astrophysics Data System (ADS)
Opp, Daniel; Lo, Chun-Min
2007-03-01
We investigated the effects of cigarette smoke condensate (CSC) on barrier function and cellular migration of human umbilical vein endothelial cells (HUVEC), and on the invasive activities of ovarian carcinoma cells through HUVEC monolayers as well. Central to this work was the use of electric cell-substrate impedance sensing (ECIS), a cell-based biosensor that monitors motility and other morphology changes of cells adherent on small gold electrodes. Upon addition of different concentrations of CSC, the junctional resistance and the wound healing rate of the HUVEC layers decrease as CSC concentration increases from 0.01 to 0.25 mg/ml, whereas the average cell-substrate separation increases with CSC concentration. Following the addition of OVCA429 ovarian cancer cells to HUVEC layers with the presence of different CSC concentrations, dose-dependent changes of the transcellular resistance drop were observed. Our results suggest that CSC is detrimental to normal endothelial cell function in maintaining vascular integrity. In addition, the chemicals present in CSC may increase transendothelial invasion of ovarian cancer cells.
Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Byrnes, Tim; Dowling, Jonathan P.
2015-08-01
When vortices are displaced in Bose-Einstein condensates (BECs), the Magnus force gives the system a momentum transverse in the direction to the displacement. We show that BECs in long channels with vortices exhibit a quantization of the current response with respect to the spatial vortex distribution. The quantization originates from the well-known topological property of the phase around a vortex; it is an integer multiple of 2 π . In a way similar to that of the integer quantum Hall effect, the current along the channel is related to this topological phase and can be extracted from two experimentally measurable quantities: the total momentum of the BEC and the spatial distribution. The quantization is in units of m /2 h , where m is the mass of the atoms and h is Planck's constant. We derive an exact vortex momentum-displacement relation for BECs in long channels under general circumstances. Our results present the possibility that the configuration described here can be used as a novel way of measuring the mass of the atoms in the BEC using a topological invariant of the system. If an accurate determination of the plateaus are experimentally possible, this gives the possibility of a topological quantum mass standard and precise determination of the fine structure constant.
NASA Technical Reports Server (NTRS)
Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.
2007-01-01
In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.
Shear Viscosity in a Gluon Gas
Xu Zhe; Greiner, Carsten
2008-05-02
The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio {eta}/s for a gluon gas, which involves elastic gg{yields}gg perturbative QCD (PQCD) scatterings as well as inelastic gg{r_reversible}ggg PQCD bremsstrahlung. For {alpha}{sub s}=0.3 we find {eta}/s=0.13 and for {alpha}{sub s}=0.6, {eta}/s=0.076. The small {eta}/s values, which suggest strongly coupled systems, are due to the gluon bremsstrahlung incorporated.
Amplitude for N-gluon superstring scattering.
Stieberger, Stephan; Taylor, Tomasz R
2006-11-24
We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope alpha'. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in alpha', for the so-called maximally helicity violating configurations, with N = 4, 5 and N = 6. We also obtain the leading O(alpha '2) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.
Amplitude for N-Gluon Superstring Scattering
Stieberger, Stephan; Taylor, Tomasz R.
2006-11-24
We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.
Quarks and gluons at hadron colliders
Bodek, A.; CDF Collaboration
1996-08-01
Data from proton-antiproton collisions at high energy provide important information on constraining the quark and gluon distributions in the nucleon and place limits on quark substructure. The S asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan data at high invariant mass provides strong limits on quark substructure. Information on {alpha}{sub s} and the gluon distributions can be extracted from high P{sub T} jet data and direct photons.
Effect of pyrolysis temperature on the mutagenicity of tobacco smoke condensate.
White, J L; Conner, B T; Perfetti, T A; Bombick, B R; Avalos, J T; Fowler, K W; Smith, C J; Doolittle, D J
2001-05-01
Tobacco smoke aerosols with fewer mutagens in the particulate fraction may present reduced risk to the smoker. The objective of this study was to test the hypothesis that the temperature at which tobacco is pyrolyzed or combusted can affect the mutagenicity of the particulate fraction of the smoke aerosol. Tobacco smoke aerosol was generated under precisely controlled temperature conditions from 250 to 550 degrees C by heating compressed tobacco tablets in air. The tobacco aerosols generated had a cigarette smoke-like appearance and aroma. The tobacco smoke aerosol was passed through a Cambridge filter pad to collect the particulate fraction, termed the smoke condensate. Although condensates of tobacco smoke and whole cigarette mainstream smoke share many of the same chemical components, there are physical and chemical differences between the two complex mixtures. The condensates from smoke aerosols prepared at different temperatures were assayed in the Ames Salmonella microsome test with metabolic activation by rat liver S9 using tester strains TA98 and TA100. Tobacco smoke condensates were not detectably mutagenic in strain TA98 when the tobacco smoke aerosol was generated at temperatures below 400 degrees C. Above 400 degrees C, condensates were mutagenic in strain TA98. Similarly, condensates prepared from tobacco smoke aerosols generated at temperatures below 475 degrees C were not detectably mutagenic in strain TA100. In contrast, tobacco tablets heated to temperatures of 475 degrees C or greater generated smoke aerosol that was detectably mutagenic as measured in TA100. Therefore, heating and pyrolyzing tobacco at temperatures below those found in tobacco burning cigarettes reduces the mutagenicity of the smoke condensate. Highly mutagenic heterocyclic amines derived from the pyrolysis of tobacco leaf protein may be important contributors to the high temperature production of tobacco smoke Ames Salmonella mutagens. The relevance of these findings regarding
Welch, William R W; Piri, Mohammad
2016-01-01
Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.
NASA Astrophysics Data System (ADS)
Frey, M.; Kniesner, B.; Knab, O.
2011-10-01
For the prediction of hot gas side heat transfer in rocket thrust chambers, Astrium Space Transportation (ST) uses the second generation multiphase Navier-Stokes solver Rocflam-II. To account for real-gas and condensation effects, pressure-dependent and even multiphase fluid data are included in the chemistry tables used by the code. Thus, the changing fluid properties near the two-phase region as well as transformation from gaseous to liquid and even solid state are reflected properly. Heat flux measurements for a dedicated subscale test campaign with strongly cooled walls show a clearly increasing heat load as soon as the combustion gases condense at the wall, due to the released latent heat of condensation. Corresponding coupled Rocflam-II/CFX simulations show a good quantitative agreement in heat flux for load cases with and without condensation, showing the ability of the code to correctly simulate flows in the real-gas and even inside the two-phase region.
Condensation heat transfer under a microgravity environment
NASA Technical Reports Server (NTRS)
Chow, L. C.
1986-01-01
A description of the condensation heat transfer process in microgravity is given. A review of the literature is also reported. The most essential element of condensation heat transfer in microgravity is the condensate removal mechanism. Two mechanisms for condensate removal are analyzed by looking into two problems. The first problem is concerned with film condensation on a flat porous plate with the condensate being removed by suction at the wall. The second problem is an analytical prediction of the heat transfer coefficient for condensing annular flows with the condensate film driven by the vapor shear. It is concluded that both suction and vapor shear can effectively drain the condensate to ensure continuous operation of the condensers operated under a microgravity environment. It is recommended that zero-g flight experiments be carried out to verify the prediction made in the present report. The results contained in this report should also aid in the design of future space condensers.
Sidestream condensate polishing for PWRs
Shor, S.W.W.; Yim, S.L.; Rios, J.; Liu, J.
1986-06-01
Condensate polishers are used in power plant condensate system to remove both particulate matter and ionized corrodents. Their conventional location is just downstream of the hotwell pumps (condensate pumps). Most polisher installations have enough flow capacity to polish 100% of the condensate. This inline configuration has some disadvantage, including a flow that varies with unit load and tends to disturb the polisher beds and reduce their effectiveness, and a potential for interrupting flow to the feedwater pumps. An alternate arrangement where water is extracted from either the condenser or the condensate system, polished and returned to the system, has been used in a few plants. Three different ways of doing this have been used: divide the condenser hotwell into two parts, one of which receives condensate from the tube bundles and the other of which is sheltered. Take unpolished condensate from the first part, purify it and return it to the other part from which the condensate pumps take suction; take unpolished condensate from one end of a divided header on the suction side of the hotwell pumps and after polishing it return it to the other end; and take unpolished condensate from a header on the discharge side of the condensate pumps, purify it and return it to the condensate system a short distance downstream. The three variants are analyzed in this report. It is concluded that the variant where the connections are on the discharge side of the condensate pumps is the most desirable for retrofitting, in all cases being far easier to retrofit than an inline polisher. In many cases it will be most desirable for new construction.
Ward, David; Young, Truman P
2002-05-01
Condensed tannins have been considered to be important inducible defenses against mammalian herbivory. We tested for differences in condensed tannin defenses in Acacia drepanolobium in Kenya over two years among different large mammalian herbivore treatments [total exclusion, antelope only, and megaherbivore (elephants and giraffes) + antelope] and with four different ant symbiont species on the trees. We predicted that (1) condensed tannin concentrations would be lowest in the mammal treatment with the lowest level of herbivory (total exclusion), (2) trees occupied by mutualist ants that protect the trees most aggressively would have lower levels of tannins, and (3) if chemical defense production is costly, there would be a trade-off between tannin concentrations, growth, and mechanical defenses. Mean tannin concentrations increased from total exclusion treatments to wildlife-only treatments to megaherbivore + antelope treatments. In 1997, condensed tannin concentrations were significantly lower in trees occupied by the ant Crematogaster nigriceps, the only ant species that actively removed axillary buds. Contrary to our prediction, trees occupied by ant species that protect the trees more aggressively against mammalian herbivores did not have lower overall levels of condensed tannins. There was no consistent evidence of a trade-off between tannin concentrations and growth rate, but there was a positive correlation between mean thorn length and mean tannin concentrations across species of ant inhabitants and across herbivore treatments in 1997. Contrary to our expectation, trees had higher tannin concentrations in the upper parts of the canopy where there is little herbivory by mammals.
Effect of disorder on condensation in the lattice gas model on a random graph
NASA Astrophysics Data System (ADS)
Handford, Thomas P.; Dear, Alexander; Pérez-Reche, Francisco J.; Taraskin, Sergei N.
2014-07-01
The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.
Exploring Quarks, Gluons and the Higgs Boson
ERIC Educational Resources Information Center
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Squeezed colour states in gluon jet
NASA Technical Reports Server (NTRS)
Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.
1993-01-01
The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.
Sambamurti Memorial Lecture: Spotlight on the Gluon
Michael Begelas
2016-07-12
Begel uses results from the Fermilab D0 and E706 experiments to explain how the production rate and energy spectrum of photons produced during proton collisions helped to clarify how the energy inside the proton is shared between quarks and gluons.
Recent COMPASS results on the gluon polarization
Quintans, Catarina
2009-03-23
The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a {sup 6}LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being {delta}g/g -0.49{+-}0.27(stat){+-}0.11(syst), at an average x{sub g} 0.11{sub -0.05}{sup +0.11} and a scale <{mu}{sup 2}> = 13(GeV/c){sup 2}. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value {delta}g/g 0.08{+-}0.10(stat){+-}0.05(syst), at x{sub g}{sup a{nu}} 0.082{sub -0.027}{sup +0.041} and <{mu}{sup 2}> = 3(GeV/c){sup 2}.
On the onset of surface condensation: formation and transition mechanisms of condensation mode
Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng
2016-01-01
Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071
On the onset of surface condensation: formation and transition mechanisms of condensation mode.
Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng
2016-08-02
Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.
Fedichev, Petr O; Fischer, Uwe R
2003-12-12
We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature.
NASA Astrophysics Data System (ADS)
Farkašovský, Pavol
2017-04-01
We study the combined effects of local and nonlocal hybridization on the formation and condensation of the excitonic bound states in the extended Falicov-Kimball model by the density-matrix-renormalization-group (DMRG) method. Analysing the resultant behaviours of the excitonic momentum distribution N(q) we found, that unlike the local hybridization V, which supports the formation of the q=0 momentum condensate, the nonlocal hybridization Vn supports the formation of the q = π momentum condensate. The combined effect of local and nonlocal hybridization further enhances the excitonic correlations in q=0 as well as q = π state, especially for V and Vn values from the charge-density-wave (CDW) region. Strong effects of local and nonlocal hybridization are observed also for other ground-state quantities of the model such as the f-electron density, or the density of unbound d-electrons, which are generally enhanced with increasing V and Vn. The same calculations performed for nonzero values of f-level energy Ef revealed that this model can yield a reasonable explanation for the pressure-induced resistivity anomaly observed experimentally in TmSe0.45Te0.55 compound.
The effect of external boundary conditions on condensation heat transfer in rotating heat pipes
NASA Technical Reports Server (NTRS)
Daniels, T. C.; Williams, R. J.
1979-01-01
Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.
The effect of the exit condition on the performance of intube condensers
Rabas, T.J.; Arman, B.
1995-07-01
Data collected from the open literature plus some new, unpublished data will be used to show that the exit condition can change the flow regimes, introduce certain types of instabilities, and alter flooding velocities with intube condensation. The major orientations will be considered: horizontal, vertical with vapor downflow, and vertical with vapor upflow (refluxing).
Advances in shell side condensation for refrigerants
NASA Astrophysics Data System (ADS)
Webb, Ralph L.
The design of shell and tube condensers used in air conditioning and refrigeration applications is discussed. The geometry of interest involves condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for condensation on the shell side. The heat transfer is removed by water on the tube side, which typically have tube side enhancement. Single tube and row effect condensation data are presented. Thermal design methods for sizing of the condenser are outlined.
The effect of pH on charge inversion and condensation of DNA.
Guo, Zilong; Wang, Yanwei; Yang, Anthony; Yang, Guangcan
2016-08-21
Charge inversion and condensation of DNA in solutions of trivalent and quadrivalent counterions are significantly influenced by the pH value of the solution. We systematically investigated the condensation and charge compensation of DNA by spermidine, hexammine cobalt(iii) (cohex, [Co(NH3)6](3+)) and spermine in solutions of a wide range of pH values from 3 to 9.3 by dynamic light scattering, magnetic tweezers, and atomic force microscopy. In trivalent counterion solution, we found that there is a critical concentration (0.75 mM for cohex and 0.5 mM for spermidine), under which the electrophoresis mobility of DNA initially increases, reaches a maximum, and finally decreases when the pH value is decreased. In contrast, above the critical concentration, the electrophoretic mobility of DNA increases monotonously with decreasing pH value of the solution. The corresponding condensing force has the same dependence on the pH value. However, for the case of quadrivalent counterions, the electrophoretic mobility of DNA is monotonously promoted by lowering the pH value of the solution at any concentration of counterions in which charge inversion of DNA may occur. In atomic force microscopy images and force spectroscopy of magnetic tweezers, we found that maximal charge neutralization and condensation force correspond to the most compact DNA condensation. We propose a mechanism of promoting DNA charge neutralization: small and highly mobile hydrogen ions tend to attach to the DNA-counterion complex to further neutralize its remaining charge, which is related to the surface area of the complex. Therefore, this further neutralization is prominent when the complex is toroidal which corresponds to the case of mild ion concentration while it is less prominent for more compact globules or rod complexes at high counterion concentration.
NASA Technical Reports Server (NTRS)
Hall, R. M.
1979-01-01
Total pressure probes mounted in the test section of a 0.3 meter transonic cryogenic tunnel were used to detect the onset of condensation effects for free stream Mach numbers of 0.50, 0.75, 0.85, and 0.95 and for total pressure between one and five atmospheres. The amount of supercooling was found to be about 3 K and suggests that condensation was occurring on pre-existing liquid nitrogen droplets resulting from incomplete evaporation of the liquid nitrogen injected to cool the tunnel. The liquid nitrogen injection process presently being used for the 0.3 m tunnel was found to result in a wide spectrum of droplet sizes being injected into the flow. Since the relatively larger droplets took much more time to evaporate than the more numerous smaller droplets, the larger ones reached the test section first as the tunnel operating temperature was reduced. However, condensation effects in the test section were not immediately measurable because there was not a sufficient number of the larger droplets to have an influence on the thermodynamics of the flow.
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun; Hasan, Mohammad M.
1989-01-01
The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.
NASA Astrophysics Data System (ADS)
Kurosaki, Kenji; Ikoma, Masahiro
2015-12-01
Though Uranus and Neptune are similar in mass and radius, the former is significantly fainter than the latter. As previous theoretical studies of thermal evolution of the ice giants demonstrated, the faintness of Uranus is not explained by simple three-layer models that are composed of a H/He-dominated envelope, an ice mantle and a rocky core. Namely, the observed effective temperature of Uranus is lower than theoretically predicted (e.g., Fortney et al., 2011; Nettelmann et al., 2013). Since the speed of the thermal evolution is determined by how efficiently the planetary atmosphere radiates energy, the atmospheric structure is important. If the atmosphere contains ice materials such as water, ammonia and methane, those materials have been condensed and removed from the atmosphere during the cooling. In this study, we quantify the impact of the condensation of ice components in the atmosphere on the thermal evolution, which previous studies ignore, to explain the current luminosity of Uranus. To do so, we simulate the thermal cooling of ice giants, based on three layer models with a relatively ice-component-rich, H/He-dominated atmosphere on top of a water mantle that surrounds a rocky core. We demonstrate that the effect of the condensation makes the timescale of the thermal cooling of the planet shorter by an order of magnitude than in the case without condensation. Such accelerated cooling is shown to be fast enough to explain the current faintness of Uranus. We also discuss what caused the difference in current luminosity between Uranus and Neptune.
Quarks and gluons in the nucleon: Proceedings. Volume 6
1997-12-31
The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks.
Threshold region for Higgs boson production in gluon fusion.
Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni
2012-09-07
We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.
Probing Quark-Gluon Interactions with Transverse Polarized Scattering
Slifer, K.; Rondon, O. A.; Crabb, D.; Day, D.; Frlez, E.; Lindgren, R.; McKee, P.; Norum, B.; Pocanic, D.; Prok, Y.; Sawatzky, B.; Smith, C.; Tajima, S.; Wang, K.; Zeier, M.; Zhu, H.; Aghalaryan, A.; Asaturyan, R.; Mkrtchyan, H.; Ahmidouch, A.
2010-09-03
We have extracted QCD matrix elements from our data on doubly polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element d{sub 2}-tilde, which arises strictly from quark-gluon interactions, to be unambiguously nonzero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham sum rule is valid. The fundamental Bjorken sum rule obtained from the a{sub 0} matrix element is satisfied at our low momentum transfer.
Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito
2011-10-15
We investigate the effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate (BEC) under the quadratic Zeeman effect. Due to the large ratio of spin-independent to spin-dependent interactions of {sup 87}Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the broken-axisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero and find that the ground-state phase diagram is significantly altered by quantum depletion.
Matrix effects in the C 1s photoabsorption spectra of condensed naphthalene
NASA Astrophysics Data System (ADS)
Schmidt, Norman; Wenzel, Jan; Dreuw, Andreas; Fink, Rainer H.; Hieringer, Wolfgang
2016-12-01
High-resolution C 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of naphthalene are investigated. By comparing the spectral signatures of condensed naphthalene molecules with those of naphthalene in the gas phase, we are able to unambiguously identify spectral features which are affected by the intermolecular interactions in the condensed phase. With the help of calculations using time-dependent density-functional theory and the second-order algebraic-diagrammatic construction scheme for the polarization propagator, resonances in the relevant energy range can be assigned to valence and Rydberg-like excitations. Thus, we obtain a more detailed identification of NEXAFS resonances beyond the present literature.
The effects of water on beta-D-xylose condensation reactions.
Dong, Haitao; Nimlos, Mark R; Himmel, Michael E; Johnson, David K; Qian, Xianghong
2009-07-30
Car-Parrinello-based ab initio molecular dynamics simulations (CPMD) combined with metadynamics (MTD) simulations were used to determine the reaction energetics for the beta-D-xylose condensation reaction to form beta-1,4-linked xylobiose in a dilute acid solution. Protonation of the hydroxyl group on the xylose molecule and the subsequent breaking of the C-O bond were found to be the rate-limiting step during the xylose condensation reaction. Water and water structure was found to play a critical role in these reactions due to the proton's high affinity for water molecules. The reaction free energy and reaction barrier were determined using CPMD-MTD. We found that solvent reorganization due to proton partial desolvation must be taken into account in order to obtain the correct reaction activation energy. Our calculated reaction free energy and reaction activation energy compare well with available experimental results.
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Drese, John H.; Sager, John C.
1991-01-01
A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.
Gluon-glueball duality and glueball searches
Nussinov, Shmuel; Shrock, Robert
2009-09-01
We discuss a notion of gluon-glueball duality analogous to quark-hadron duality. We apply this idea to the radiative decay of heavy orthoquarkonium, QQ{yields}{gamma}gg, which has been used to search for glueballs. The duality is first introduced in two simplified contexts: (i) a hypothetical version of QCD without any light quarks and (ii) QCD in the large-N{sub c} limit. We then discuss how an approximate form of this duality could hold in real QCD, based on a hierarchy of time scales in the temporal evolution of the gg subsystem in radiative orthoquarkonium decay. We apply this notion of gluon-glueball duality to suggest a method that could be useful in experimental searches for glueballs.
Quarks and gluons in hadrons and nuclei
Close, F.E. Tennessee Univ., Knoxville, TN )
1989-12-01
These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.
How perfect can a gluon plasma be in perturbative QCD?
Chen, Jiunn-Wei; Deng Jian; Dong Hui; Wang Qun
2011-02-01
The shear viscosity to entropy density ratio, {eta}/s, characterizes how perfect a fluid is. We calculate the leading order {eta}/s of a gluon plasma in perturbation using the kinetic theory. The leading order contribution only involves the elastic gg{r_reversible}gg (22) process and the inelastic gg{r_reversible}ggg (23) process. The hard-thermal-loop (HTL) treatment is used for the 22 matrix element, while the exact matrix element in vacuum is supplemented by the gluon Debye mass insertion for the 23 process. Also, the asymptotic mass is used for the external gluons in the kinetic theory. The errors from not implementing HTL and the Landau-Pomeranchuk-Migdal effect in the 23 process, and from the uncalculated higher order corrections, are estimated. Our result smoothly connects the two different approximations used by Arnold, Moore, and Yaffe (AMY) and Xu and Greiner (XG). At small {alpha}{sub s} ({alpha}{sub s}<<1), our result is closer to AMY's collinear result while at larger {alpha}{sub s} the finite angle noncollinear configurations become more important and our result is closer to XG's soft bremsstrahlung result. In the region where perturbation is reliable ({alpha}{sub s} < or approx. 0.1), we find no indication that the proposed perfect fluid limit {eta}/s{approx_equal}1/(4{pi}) can be achieved by perturbative QCD alone. Whether this can be achieve for {alpha}{sub s} > or approx. 0.1 is still an open question.
NASA Astrophysics Data System (ADS)
Perekrestov, Vyacheslav; Kosminska, Yuliya; Mokrenko, Alexander; Davydenko, Taras
2014-04-01
Copper and silicon layers were deposited using the accumulative plasma-condensate system. Their surface was found to possess the complex developed morphology using SEM technique. Competing processes of the field selectivity and Gibbs-Thomson effect are considered to describe the formation of the surface. The mathematical model is created on the basis of these effects which describes self-assembly of the surface at the form of adjoining elements of an elliptic section. The comparative analyses of theoretical and experimental results are given.
Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions
NASA Astrophysics Data System (ADS)
Albino, S.; Kniehl, B. A.; Kramer, G.; Ochs, W.
2006-03-01
We define a general scheme for the evolution of fragmentation functions which resums both soft gluon logarithms and mass singularities in a consistent manner and to any order, and requires no additional theoretical assumptions. Using the double logarithmic approximation and the known perturbative results for the splitting functions, we present our scheme with the complete contribution from the double logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more complete than the modified leading logarithm approximation even with the fixed order contribution calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to experimental data, that this approximation in our scheme gives a good description of the data from the largest xp values to the peak region in ξ=ln(1/xp), in contrast to other approximations. In addition, we develop a treatment of hadron mass effects which gives additional improvements at large ξ.
QCD fixed points: Banks-Zaks scenario or dynamical gluon mass generation?
NASA Astrophysics Data System (ADS)
Gomez, J. D.; Natale, A. A.
2017-01-01
Fixed points in QCD can appear when the number of quark flavors (Nf) is increased above a certain critical value as proposed by Banks and Zaks (BZ). There is also the possibility that QCD possess an effective charge indicating an infrared frozen coupling constant. In particular, an infrared frozen coupling associated to dynamical gluon mass (DGM) generation does lead to a fixed point even for a small number of quarks. We compare the BZ and DGM mechanisms, their β functions and fixed points, and within the approximations of this work, which rely basically on extrapolations of the dynamical gluon masses at large Nf, we verify that between Nf = 8 and Nf = 12 both cases exhibit fixed points at similar coupling constant values (g∗). We argue that the states of minimum vacuum energy, as a function of the coupling constant up to g∗ and for several Nf values, are related to the dynamical gluon mass generation mechanism.
Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions
Albino, S.; Kniehl, B.A.; Kramer, G.; Ochs, W.
2006-03-01
We define a general scheme for the evolution of fragmentation functions which resums both soft gluon logarithms and mass singularities in a consistent manner and to any order, and requires no additional theoretical assumptions. Using the double logarithmic approximation and the known perturbative results for the splitting functions, we present our scheme with the complete contribution from the double logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more complete than the modified leading logarithm approximation even with the fixed order contribution calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to experimental data, that this approximation in our scheme gives a good description of the data from the largest x{sub p} values to the peak region in {xi}=ln(1/x{sub p}), in contrast to other approximations. In addition, we develop a treatment of hadron mass effects which gives additional improvements at large {xi}.
Gluon saturation and Feynman scaling in leading neutron production
NASA Astrophysics Data System (ADS)
Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.
2016-01-01
In this paper we extend the color dipole formalism for the study of leading neutron production in e + p → e + n + X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron-proton (ep) colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.
Wang, J. X.; Lee, Y.- N.; Daum, Peter H.; Jayne, John T.; Alexander, M. L.
2008-11-03
Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/ Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.2% supersaturation to those predicted based on size distribution and chemical composition using K¨ohler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization.
Corrêa, Taís A; Reis, Elaine F C; Alves, Lívia L; Alves, Caio C S; Castro, Sandra B R; Dias, Alyria T; Taveira, Aline F; Le Hyaric, Mireille; Couri, Mara R C; Ferreira, Ana P; De Almeida, Mauro V
2010-11-01
This work reports the preparation of several amino alcohols condensed with d-arabinose, d-glucose, and d-galactose derivatives. These compounds were evaluated in vitro for their cytotoxicity and ability to decrease nitric oxide production in J774A.1 cells. Arabinofuranoside derivatives 5a, 5b and 5c showed a significant inhibition of nitric oxide production (>80% at 5 μg/mL), while the galactopyranoside derivative 8d showed a notable nitric oxide inhibitory activity (126% at 0.5 μg/mL).
Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane.
Cudazzo, Pierluigi; Attaccalite, Claudio; Tokatly, Ilya V; Rubio, Angel
2010-06-04
Using first principles many-body theory methods (GW+Bethe-Salpeter equation) we demonstrate that the optical properties of graphane are dominated by localized charge-transfer excitations governed by enhanced electron correlations in a two-dimensional dielectric medium. Strong electron-hole interaction leads to the appearance of small radius bound excitons with spatially separated electron and hole, which are localized out of plane and in plane, respectively. The presence of such bound excitons opens the path towards an excitonic Bose-Einstein condensate in graphane that can be observed experimentally.
Lee, Kwang-Min; Juhng, Woo-Nam; Choi, Bo-Young
2006-11-01
The finite volume method was applied to the determination of the three-dimensional convection current during inert gas condensation (IGC) processing by using the commercially available software, "Fluent". The lower velocity of the convection current at higher evaporation temperature resulted from the lower value of the coefficient of thermal expansion. The velocity of the convection current increased with increasing chamber pressure, because the driving force of the buoyancy was directly proportional to the gas density. 13% and 17.3% of the particles were trapped during the first period of circulation in the case of the single and double heaters, respectively.
Thermal and quantum fluctuation effects in rotational hysteresis of ring Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Clark, C. W.; Wang, Y.-H.; Heller, C.; Edwards, M.
2015-03-01
In a recent experment a ring Bose-Einstein condensate (BEC) with zero circulation (with winding number m = 0) and stirred by a barrier jumped to an m = 1 state when stirred faster than a certain critical speed, Ωc+. Conversely an m = 1 condensate dropped to m = 0 when stirred below a critical speed, Ωc-, which was lower than Ωc+. The hysteresis loop areas, Ωc+ -Ωc- , disagreed significantly with the predictions of the zero-temperature Gross-Pitaevskii equation. We report the results of simulating this experiment with both the Zaremba-Nikuni-Griffin (ZNG) theory and the Truncated Wigner Approximation (TWA). The ZNG theory can account for thermal fluctuations while the TWA can also account for quantum fluctations of the gas. We compare the results of these simulations with the experimental data and describe how the dynamics of vortex/antivortex pairs formed in the barrier region during the stirring is modified by the presence of a thermal cloud and by quantum fluctuations beyond the mean field. Supported by NSF Grants PHY-1068761 and ARO Atomtronics MURI.
Thermal and quantum fluctuation effects in rotational hysteresis of ring Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Edwards, M.; Heller, C.; Wang, Y.-H.; Clark, C. W.
2015-05-01
In a recent experiment a ring Bose-Einstein condensate (BEC) with zero circulation (with winding number m = 0) and stirred by a barrier jumped to an m = 1 state when stirred faster than a certain critical speed, Ω+ c. Conversely an m = 1 condensate dropped to m = 0 when stirred below a critical speed, Ω? c, which was lower than Ω+ c. The hysteresis loop areas, Ω+ c -Ω- c , disagreed significantly with the predictions of the zero-temperature Gross-Pitaevskii equation. We report the results of simulating this experiment with both the Zaremba-Nikuni-Griffin (ZNG) theory and the Truncated Wigner Approximation (TWA). The ZNG theory can account for thermal fluctuations while the TWA can also account for quantum fluctations of the gas. We compare the results of these simulations with the experimental data and describe how the dynamics of vortex/antivortex pairs formed in the barrier region during the stirring is modified by the presence of a thermal cloud and by quantum fluctuations beyond the mean field. Supported by NSF grants PHY-1068761 and ARO Atomtronics MURI.
Finite-temperature effects in stirred ring Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Murray, N.; Lanier, C.; Edwards, M.; Wang, Y.-H.; Clark, C. W.
2014-05-01
A ring Bose-Einstein condensate (BEC) with zero circulation (m = 0) stirred by a barrier will eventually jump to an m = 1 state when stirred faster than a certain critical speed, Ωc+. A ring BEC with m = 1 will drop to m = 0 when stirred at a critical speed, Ωc-, which is lower than Ωc+. The loop areas, Ωc+ -Ωc- , of this hysteretic response of the BEC to stirring predicted by zero-temperature Gross-Pitaevskii equation (GPE) disagreed significantly with the results of a recent experiment. In the work reported here, we simulated this experiment with the phenomenologically damped GPE, [S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1999)], and with the Zaremba-Nikuni-Griffin (ZNG) theory. The ZNG theory can account for finite-T, non-equilibrium dynamics. We compare the results of these simulations with the experimental data. The simulations show that a vortex/antivortex pair forms in the barrier region during the stirring and that this drives the hysteresis. We also show how the presence of an interacting, thermal cloud affects the dynamics of these pairs. We also simulate a ring condensate stirred by two barriers and find that the GPE matches the data much more closely. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI.
Villanueva, R D; Yap, H T; Montaño, M N E
2011-11-01
Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes.
Quark-gluon vertex: A perturbation theory primer and beyond
NASA Astrophysics Data System (ADS)
Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.
2017-02-01
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.
Quark mean field model with pion and gluon corrections
NASA Astrophysics Data System (ADS)
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
Telesford, Dana-Marie; Verreault, Dominique; Reick-Mitrisin, Victoria; Allen, Heather C
2015-09-15
The exposure of organic-coated marine aerosols containing cholesterol (Chol) to radiation and/or an oxidizing atmosphere results in the formation of oxidized derivatives or oxysterols and will likely change aerosol surface properties. However, the intermolecular interactions between oxysterols and other lipid components and their influence on the surface properties of marine aerosols are not well-known. To address this question, the interfacial behavior and domain morphology of model Langmuir monolayers of two ring-substituted oxysterols, 7-ketocholesterol (7-KChol) and 5β,6β-epoxycholesterol (5,6β-EChol), mixed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were investigated by means of compression isotherms and Brewster angle microscopy (BAM) over a broad range of surface pressures and sterol molar ratios. Mixed DPPC/cholesterol (Chol) monolayers were also measured for comparison. The results of compression experiments showed that the condensing effect induced on mixed DPPC/sterol monolayers at low surface pressures and for intermediate molar ratios (0.3 ≤ X(sterol) ≤ 0.7) was weaker for oxysterols than for Chol. Additionally, mixed DPPC/oxysterol monolayers exhibited markedly smaller (∼2-3-fold) interfacial rigidity. Examination of the excess free energy of mixing further revealed that DPPC monolayers containing 7-KChol and Chol were thermodynamically more stable at high surface pressures than those with 5,6β-EChol, indicating that the strength of interactions between DPPC and 5,6β-EChol was the smallest. Finally, BAM images in the LE-LC phase of DPPC revealed that in comparison to Chol the addition of small amounts of oxysterols results in larger and less numerous domains, showing that oxysterols are not as effective in fluidizing the condensed phase of DPPC. Taken together, these results suggest that the strength of van der Waals interactions of DPPC alkyl chains with sterols follows the sterol hydrophobicity, with Chol being the most
NASA Astrophysics Data System (ADS)
Ramakumar, R.; Das, A. N.; Sil, S.
2014-05-01
We present a theoretical study of the effects of the next-nearest-neighbor (NNN) hopping (t2) on the properties of non-interacting bosons in optical lattices in the presence of an Aubry-André quasi-disorder. First we investigate, employing exact diagonalization, the effects of t2 on the localization properties of a single boson. The localization is monitored using an entanglement measure as well as with inverse participation ratio. We find that the sign of t2 has a significant influence on the localization effects. We also provide analytical results in support of the trends found in the localization behavior. Further, we extend these results including the effects of a harmonic potential which obtains in experiments. Next, we study the effects of t2 on Bose-Einstein condensation. We find that, a positive t2 strongly enhances the low temperature thermal depletion of the condensate while a negative t2 reduces it. It is also found that, for a fixed temperature, increasing the quasi-disorder strength reduces the condensate fraction in the extended regime while enhancing it in the localized regime. We also investigate the effects of boundary conditions and that of the phase of the AA potential on the condensate. These are found to have significant effects on the condensate fraction in the localization transition region.
Naidon, Pascal; Masnou-Seeuws, Francoise
2006-04-15
In this paper we formulate the time-dependent many-body theory of photo association in an atomic Bose-Einstein condensate with realistic interatomic interactions, using and comparing two approximations: the first-order cumulant approximation [Phys. Rev. A 65, 033601 (2002)], and the reduced pair wave approximation [Phys. Rev. A 68, 033612 (2003)]. The two approximations differ only by the way a pair of condensate atoms is influenced by the mean field at short interatomic separations. In both cases we identify two different regimes of photo association: the adiabatic regime and the coherent regime. The threshold for the so-called 'rogue dissociation' [Phys. Rev. Let t. 88, 090403 (2002)] (where the Gross-Pitaevskii model breaks down) is found to be different in each regime, shedding new light on the experiment of McKenzie et al. [Phys. Rev. Lett. 88, 120403 (2002)]. Comparing numerical solutions for the two approximations with the Gross-Pitaevskii predictions, we find two different effects: reduction of the photoassociation rate at short times, and creation of correlated pairs of atoms when the laser intensity is switched on rapidly. We also observe effects on the symmetry of the photoassociation line shapes, giving the possibility to experimentally distinguish between the two approximations.
Tunable dipolar resonances and Einstein-de Haas effect in a {sup 87}Rb-atom condensate
Swislocki, Tomasz; Sowinski, Tomasz; Pietraszewicz, Joanna; Gajda, Mariusz; Lewenstein, Maciej; Zakrzewski, Jakub
2011-06-15
We theoretically study a spinor condensate of {sup 87}Rb atoms in a F=1 hyperfine state confined in an optical dipole trap. Putting initially all atoms in an m{sub F}=1, component we observe a significant transfer of atoms to other, initially empty Zeeman states exclusively due to dipolar forces. Because of conservation of a total angular momentum the atoms going to other Zeeman components acquire an orbital angular momentum and circulate around the center of the trap. This is a realization of the Einstein-de Haas effect in a system of cold gases. We show that the transfer of atoms via dipolar interactions is possible only when the energies of the initial and the final sates are equal. This condition can be fulfilled utilizing a resonant external magnetic field, which tunes energies of involved states via the linear Zeeman effect. We found that there are many final states of different spatial density, which can be tuned selectively to the initial state. We show a simple model explaining high selectivity and controllability of weak dipolar interactions in the condensate of {sup 87}Rb atoms.
Steam condenser thermal design theories
NASA Astrophysics Data System (ADS)
Davidson, B. J.
Test data and prediction methods for condensation in steam condenser tube banks are reviewed. Standards for thermal rating; effect of vapor velocity; vapor shear and inundation in tube banks; correction factors to the Nusselt equation; and equations for the combined effect of vapor shear and inundation are discussed. Effects of noncondensible gases; tube side heat transfer; and expressions for combined tube side and shell side heat transfer are considered. Frictional, gravitational, momentum, and pressure drop trends; and the role of access lanes to reduce pressure drop are outlined. Computer models of condensers, including algebraic representations of the field equations, are summarized.
Effect of sodium chloride on the glass transition of condensed starch systems.
Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan
2015-10-01
The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix.
Bouncing dynamics of Bose-Einstein condensates under the effects of gravity
NASA Astrophysics Data System (ADS)
Sekh, Golam Ali
2017-03-01
Bouncing dynamics of quasi-one dimensional Bose-Einstein condensates (BECs) falling under gravity on delta-function potentials is investigated. First, we consider a single component BEC in the presence of cubic-quintic nonlinearity and study dynamical behavior of different parameters of the system using variational and numerical approaches. We see that the quintic nonlinearity plays a dominant role over cubic nonlinear interaction to extend the bouncing dynamics in the non-linear regime. We find that a matter-wave performs bouncing motion only for certain discrete values of initial position above the reflecting potential. We then consider bouncing dynamics of binary BECs. It is shown that the pair of matter-waves bounces together if inter-species interaction is attractive. However, their pairing breaks down if the inter-species interaction is made repulsive.
Effects of upper-plenum steam condensation phenomena on heat transfer in a rod bundle. [PWR
Chon, W.Y.; Addabbo, C.; Liao, N.S.
1980-02-01
System performance and thermohydraulic response to simultaneous bottom and top water injection were investigated in a 3 x 3 rod bundle Reflood Test Facility. An extensive series of tests, encompassing both simple bottom and combined injection reflooding, were carried out. A number of phenomenological events governing the thermodynamic coupling between the bottom reflood updraft and the top deluge were identified. Due to the countercurrent motion of the upflowing steam and water injected in the upper plenum counter current flow limiting phenomena hindered the penetration of water from inventory in the upper plenum into the bundle section. Consequently, condensation phenomena in the upper plenum and in the venting pipework characterized the thermohydraulic response of the bundle to simultaneous bottom and top water injection.
NASA Technical Reports Server (NTRS)
Kirby, C. E.
1972-01-01
Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.
Wakes in the quark-gluon plasma
Chakraborty, Purnendu; Mustafa, Munshi G.; Thoma, Markus H.
2006-11-01
Using the high temperature approximation we study, within the linear response theory, the wake in the quark-gluon plasma by a fast parton owing to dynamical screening in the spacelike region. When the parton moves with a speed less than the average speed of the plasmon, we find that the wake structure corresponds to a screening charge cloud traveling with the parton with one sign flip in the induced charge density resulting in a Lennard-Jones type potential in the outward flow with a short range repulsive and a long range attractive part. On the other hand if the parton moves with a speed higher than that of plasmon, the wake structure in the induced charge density is found to have alternate sign flips and the wake potential in the outward flow oscillates analogous to Cerenkov-like wave generation with a Mach cone structure trailing the moving parton. The potential normal to the motion of the parton indicates a transverse flow in the system. We also calculate the potential due to a color dipole and discuss consequences of possible new bound states and J/{psi} suppression in the quark-gluon plasma.
Linearly polarized gluons and the Higgs transverse momentum distribution.
Boer, Daniël; den Dunnen, Wilco J; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner
2012-01-20
We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine whether the Higgs boson is a scalar or a pseudoscalar particle.
Gluon Fragmentation Functions in the Nambu-Jona-Lasinio Model
NASA Astrophysics Data System (ADS)
Yang, Dong-Jing; Li, Hsiang-nan
We derive gluon fragmentation functions in the Nambu-Jona-Lasinio (NJL) model by approximating a gluon as a fictitious color-octet quark-anti-quark (qbar{q}) pair. Gluon elementary fragmentation functions are derived from the quark and anti-quark elementary fragmentation functions for emitting specific mesons in the NJL model under the requirement that the qbar{q} pair maintains in the flavor-singlet state after meson emission. An iteration method and an inverse matrix method based on the gluon elementary fragmentation functions then yield the gluon fragmentation functions at the model scale. It is found that the resultant gluon fragmentation functions are stable with respect to variation of relevant model parameters, especially after QCD evolution to a higher scale is implemented. We show that the inclusion of the gluon fragmentation functions into the theoretical predictions from only the quark fragmentation functions greatly improve the agreement with the SLD data for the pion and kaon productions in e+e- annihilation. Our proposal provides a plausible construct for the gluon fragmentation functions, which are supposed to be null in the NJL model.
NASA Astrophysics Data System (ADS)
Schenke, Björn; Schlichting, Sören; Tribedy, Prithwish; Venugopalan, Raju
2016-10-01
The mass ordering of mean transverse momentum ⟨pT⟩ and of the Fourier harmonic coefficient v2(pT) of azimuthally anisotropic particle distributions in high energy hadron collisions is often interpreted as evidence for the hydrodynamic flow of the matter produced. We investigate an alternative initial state interpretation of this pattern in high-multiplicity proton-proton collisions at the LHC. The QCD Yang-Mills equations describing the dynamics of saturated gluons are solved numerically with initial conditions obtained from the color-glass-condensate-based impact-parameter-dependent glasma model. The gluons are subsequently fragmented into various hadron species employing the well established Lund string fragmentation algorithm of the pythia event generator. We find that this initial state approach reproduces characteristic features of bulk spectra, in particular, the particle mass dependence of ⟨pT⟩ and v2(pT).
Kwak, Ho-Geun; Lim, Heung-Bin
2014-09-01
The aim of this study was to investigate the inhibitory effect of Cnidium monnieri fruit (CM) extracts on pulmonary inflammation induced in mice by cigarette smoke condensate (CSC) and lipopolysaccharide (LPS). Pulmonary inflammation was induced by intratracheal instillation of LPS and CSC five times within 12 days. CM extract was administered orally at a dose of 50 or 200 mg·kg(-1). The number of inflammatory cells in the bronchoalveolar lavage fluid was counted using a fluorescence activated cell sorter. Inflammatory mediator levels were determined by enzyme-linked immunosorbent assay. The administration of LPS and CSC exacerbated airway hyper-responsiveness (AHR) and induced an accumulation of inflammatory cells and mediators, and led to histological changes. However, these responses are modulated by treatment with CM, and the treatment with CM extract produces similar or more extensive results than the treatment with cyclosporin A (CSA). CM extract may have an inhibitory effect on pulmonary inflammation related with chronic obstructive pulmonary disease.
Finite-temperature effects in rotational hysteresis of ring Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Murray, N.; Lanier, C.; Edwards, M.; Wang, Y.-H.; Clark, C. W.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.
2014-03-01
A ring Bose-Einstein condensate (BEC) with zero circulation (m = 0) stirred by a barrier will eventually jump to an m = 1 state when stirred faster than a certain critical speed, Ωc+. A ring BEC with m = 1 will drop to m = 0 when stirred at a critical speed, Ωc-, which is lower than Ωc+. The loop areas, Ωc+ -Ωc- , of this hysteretic response of the BEC to stirring predicted by zero-temperature Gross-Pitaevskii equation (GPE) disagreed significantly with the results of a recent experiment. In the work reported here, we simulated this experiment with the phenomenologically damped GPE, [S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1999)], and with the Zaremba-Nikuni-Griffin (ZNG) theory. The ZNG theory can account for finite-T, non-equilibrium dynamics. We compare the results of these simulations with the experimental data. The simulations show that a vortex/antivortex pair forms in the barrier region during the stirring and that this drives the hysteresis. We also show how the presence of an interacting, thermal cloud affects the dynamics of these pairs. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI
Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols
NASA Astrophysics Data System (ADS)
Petters, Sarah Suda; Petters, Markus Dirk
2016-02-01
This work presents experimental data on the cloud condensation nuclei (CCN) activity of two-component mixtures containing surfactants. Nine binary systems were tested combining strong ionic (sodium dodecyl sulfate) and nonionic surfactants (Zonyl FS-300 and Triton X-100) with nonsurfactant compounds (glucose, ammonium sulfate, or sodium chloride). Control tests were performed for systems combining organic (glucose) and inorganic compounds (ammonium sulfate or sodium chloride). Results show that CCN activity deviates strongly relative to predictions made from measurements of bulk surface tension. Köhler theory accounting for surface tension reduction and surface partitioning underpredicts the CCN activity of particles containing Zonyl FS-300 and Triton X-100. Partitioning theory better describes data for Zonyl FS-300 and Triton X-100 when limiting surface adsorption to 1.5 monolayers of the growing drop. Deviations from predictions were observed. Likely explanations include solute-solute interactions and nonspherical particle shape. The findings presented here examine in detail the perturbation of CCN activity by surfactants and may offer insight into both the success and limitations of physical models describing CCN activity of surface active molecules.
Matulis, D
2001-10-18
Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.
NASA Astrophysics Data System (ADS)
Wong, J. P. S.; Lee, A. K. Y.; Slowik, J. G.; Cziczo, D. J.; Leaitch, W. R.; Macdonald, A.; Abbatt, J. P. D.
2011-11-01
Changes in the hygroscopicity of ambient biogenic secondary organic aerosols (SOA) due to controlled OH oxidation were investigated at a remote forested site at Whistler Mountain, British Columbia during July of 2010. Coupled photo-oxidation and cloud condensation nuclei (CCN) experiments were conducted on: i) ambient particles exposed to high levels of gas-phase OH, and ii) the water-soluble fraction of ambient particles oxidized by aqueous-phase OH. An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition and degree of oxidation (O:C ratio) of the organic component of ambient aerosol due to OH oxidation. The CCN activity of size-selected particles was measured to determine the hygroscopicity parameter ($\\kappa$org,CCN) for particles of various degrees of oxygenation. In both cases, the CCN activity of the oxidized material was higher than that of the ambient particles. In general, $\\kappa$org,CCN of the aerosol increases with its O:C ratio, in agreement with previous laboratory measurements.
[Distortion and vertical fracture of the root: effect produced by condenser design].
Dang, D A; Walton, R E
1990-01-01
The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.
Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition
NASA Astrophysics Data System (ADS)
Makiharju, Simo; Ganesh, Harish; Ceccio, Steven
2014-11-01
Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.
On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number
NASA Technical Reports Server (NTRS)
Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.
2011-01-01
Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.
Film condensation in a horizontal rectangular duct
NASA Technical Reports Server (NTRS)
Lu, Qing; Suryanarayana, N. V.
1992-01-01
Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.
Implementation of Recursion Relations in Gluon Scattering Amplitude Calculations in AdS4 /CFT3
NASA Astrophysics Data System (ADS)
Dokmetzoglou, Nikolaos; Kharel, Savan
2017-01-01
The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence is a duality between a theory of gravity in curved-space (AdS) and a conformally-invariant quantum field theory in flat-space (CFT). Scattering amplitudes are observables associated with the probability of the interaction of a given assembly of particles. Gluons, being the exchange particles associated with the strong nuclear force, which holds quarks together to form protons, are abundant byproducts of fundamental particle collisions. Thus, studying gluon scattering amplitudes is an effective way of deepening our understanding of these observables in AdS/CFT. Traditionally, Feynman diagrams have been used to calculate such scattering amplitudes. In this project, we use factorization properties and recursion relations to simplify these calculations. More specifically, we calculate multiple (different helicity combinations) four-point gluon scattering amplitudes in AdS4 /CFT3 (4-D AdS and 3-D CFT) as sums of products of three-point amplitudes. And then we calculate a five-point gluon scattering amplitude in AdS4 /CFT3 by decomposing it into a sum of products of these four-point and three-point amplitudes. Finally we comment on useful identities for checking these amplitudes. This work was supported by a Weinstein Davidson College Research Initiative Summer Research grant.
Relativistic correction to gluon fragmentation function into pseudoscalar quarkonium
NASA Astrophysics Data System (ADS)
Gao, Xiangrui; Jia, Yu; Li, Liuji; Xiong, Xiaonu
2017-02-01
Inspired by the recent measurements of the ηc meson production at LHC experiments, we investigate the relativistic correction effect for the fragmentation functions of gluon/charm quark fragmenting into ηc, which constitute the crucial nonperturbative element for the ηc production at high p T. Employing three distinct methods, we calculate the next-to-leading-order (NLO) relativistic correction to g → ηc fragmentation function in the NRQCD factorization framework, as well as verifying the existing NLO result for the c → ηc fragmentation function. We also study the evolution behavior of these fragmentation functions with the aid of the DGLAP equation. Supported by National Natural Science Foundation of China (11475188, 11261130311, 11575202, 11222549), IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors
Chen, Liang-Yu; Cheng, Chien-Wei; Liang, Ji-Yuan
2015-03-01
The Folin-Ciocalteu method is widely applied for the determination of the total phenolic contents in natural products. This method is significantly affected by the addition of sodium carbonate. The currently applied Folin-Ciocalteu methods may have been modified without any validation in the quantitative standards and the order of processes. In this study, serial experiments were performed to investigate the effect of phenolic calibrations based on the classic Folin-Ciocalteu method. Esterification condensations were observed in the assays with prior basification for gallic acid and catechin used as quantitative standards. The phenolic contents obtained in the samples differed depending on when basification occurred compared with the gallic acid calibration. The bias of the classic Folin-Ciocalteu method derived from cross-linkage of molecules was first defined in this study. The performance of the Folin-Ciocalteu method is optimised and validated again.
NASA Technical Reports Server (NTRS)
Ochterbeck, J. M.; Peterson, G. P.
1991-01-01
The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.
Desrues, Olivier; Mueller-Harvey, Irene; Pellikaan, Wilbert F; Enemark, Heidi L; Thamsborg, Stig M
2017-02-22
Condensed tannins' (CTs) fate along the digestive tract of ruminants may account for the variable efficacy of CTs against gastrointestinal nematodes. We analyzed CTs in the digesta of cattle fed sainfoin. With the acetone-butanol-HCl assay, the total CTs concentrations in the digesta were close to those in the diets (6.3 and 1.5% of DM in experiments 1 and 2, respectively); thus, CTs remained potentially largely undegraded/unabsorbed. With the thiolysis assay, CTs concentration was much higher in the abomasum (2.3% of DM; expt 1) compared with the rumen and intestines, along with higher mean size and prodelphinidins percentage, corroborating CTs efficacy reported only against Ostertagia ostertagi in the abomasum. In expt 2, the dietary levels of CTs were probably too low to demonstrate anthelmintic effects in the rumen. Overall, the level of CTs accessible to thiolysis is favored under the acidic conditions of the abomasum, which seems critical for anthelmintic activity.
NASA Technical Reports Server (NTRS)
Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.
1980-01-01
Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.
Performance Analysis of a Cost-Effective Electret Condenser Microphone Directional Array
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Gerhold, Carl H.; Zuckerwar, Allan J.; Herring, Gregory C.; Bartram, Scott M.
2003-01-01
Microphone directional array technology continues to be a critical part of the overall instrumentation suite for experimental aeroacoustics. Unfortunately, high sensor cost remains one of the limiting factors in the construction of very high-density arrays (i.e., arrays containing several hundred channels or more) which could be used to implement advanced beamforming algorithms. In an effort to reduce the implementation cost of such arrays, the authors have undertaken a systematic performance analysis of a prototype 35-microphone array populated with commercial electret condenser microphones. An ensemble of microphones coupling commercially available electret cartridges with passive signal conditioning circuitry was fabricated for use with the Langley Large Aperture Directional Array (LADA). A performance analysis consisting of three phases was then performed: (1) characterize the acoustic response of the microphones via laboratory testing and calibration, (2) evaluate the beamforming capability of the electret-based LADA using a series of independently controlled point sources in an anechoic environment, and (3) demonstrate the utility of an electret-based directional array in a real-world application, in this case a cold flow jet operating at high subsonic velocities. The results of the investigation revealed a microphone frequency response suitable for directional array use over a range of 250 Hz - 40 kHz, a successful beamforming evaluation using the electret-populated LADA to measure simple point sources at frequencies up to 20 kHz, and a successful demonstration using the array to measure noise generated by the cold flow jet. This paper presents an overview of the tests conducted along with sample data obtained from those tests.
Caglieri, Andrea; Goldoni, Matteo; Acampa, Olga; Andreoli, Roberta; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio
2006-04-01
Chromium is corrosive, cytotoxic, and carcinogenic for humans and can induce acute and chronic lung tissue toxicity. The aim of this study was to investigate Cr levels in exhaled breath condensate (EBC) of workers exposed to Cr(VI) and to assess their relationship with biochemical changes in the airways by analyzing EBC biomarkers of oxidative stress, namely, hydrogen peroxide (H2O2) and malondialdehyde (MDA). EBC samples were collected from 24 chrome-plating workers employed in a chrome-plating plant both before and after the Friday work shift and before the work shift on the following Monday. Cr-EBC levels increased from the beginning (5.3 microg/L) to the end of Friday (6.4 microg/L) but were considerably lower on Monday morning (2.8 microg/L). A similar trend was observed for H2O2-EBC levels (which increased from 0.36 microM to 0.59 microM on Friday and were 0.19 microM on Monday morning) and MDA-EBC levels (which increased from 8.2 nM to 9.7 nM on Friday and were 6.6 nM on Monday). Cr-EBC levels correlated with those of H2O2-EBC (r = 0.54, p < 0.01) and MDA-EBC (r = 0.59, p < 0.01), as well as with urinary Cr levels (r = 0.25, p < 0.05). The results of this study demonstrate that EBC is a suitable matrix that can be used to investigate both Cr levels and biomarkers of free radical production sampling the epithelial-lining fluid of workers exposed to Cr(VI).
Caglieri, Andrea; Goldoni, Matteo; Acampa, Olga; Andreoli, Roberta; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio
2006-01-01
Chromium is corrosive, cytotoxic, and carcinogenic for humans and can induce acute and chronic lung tissue toxicity. The aim of this study was to investigate Cr levels in exhaled breath condensate (EBC) of workers exposed to Cr(VI) and to assess their relationship with biochemical changes in the airways by analyzing EBC biomarkers of oxidative stress, namely, hydrogen peroxide (H2O2) and malondialdehyde (MDA). EBC samples were collected from 24 chrome-plating workers employed in a chrome-plating plant both before and after the Friday work shift and before the work shift on the following Monday. Cr-EBC levels increased from the beginning (5.3 μg/L) to the end of Friday (6.4 μg/L) but were considerably lower on Monday morning (2.8 μg/L). A similar trend was observed for H2O2-EBC levels (which increased from 0.36 μM to 0.59 μM on Friday and were 0.19 μM on Monday morning) and MDA-EBC levels (which increased from 8.2 nM to 9.7 nM on Friday and were 6.6 nM on Monday). Cr-EBC levels correlated with those of H2O2-EBC (r = 0.54, p < 0.01) and MDA-EBC (r = 0.59, p < 0.01), as well as with urinary Cr levels (r = 0.25, p < 0.05). The results of this study demonstrate that EBC is a suitable matrix that can be used to investigate both Cr levels and biomarkers of free radical production sampling the epithelial-lining fluid of workers exposed to Cr(VI). PMID:16581543
Renormalization group analysis of the gluon mass equation
NASA Astrophysics Data System (ADS)
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2014-04-01
We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
NASA Astrophysics Data System (ADS)
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
The gluon contribution to nucleon spin
Antje Bruell
2006-04-06
EIC is the ideal machine to finally determine the contribution of the gluons to the nucleon spin. Measurements of G{sub 1} will allow: (1) a determination of {Delta}G/G from its scaling violation and (2) a statistically very precise determination of the Bjorken Sum (systematics due to uncertainty in proton beam polarization). Measurements of charm cross section asymmetries will provide a precise determination of {Delta}G/G for 0.003 < x < 0.5 at a fixed value of Q{sup 2} of {approx} GeV{sup 2} provided they can measure the scattered electron at extremely small angles; separate the primary and secondary vertex with sufficient precision; and control the contribution of resolved photons. More work is needed to define the necessary detector requirements.
Anomalous gluon content of the proton
NASA Astrophysics Data System (ADS)
Hatsuda, T.
1990-01-01
The proton matrix element of the flavor singlet axial current is evaluated using the large Nc chiral dynamics satisfying the anomalous Ward-Takahashi identities. We relate the quark and gluon contributions ( Δq and Δg) of the matrix element to the nucleon-meson ( η, η', π0) pseudo-scalar coupling constants. It is shown that the weak η'-nucleon coupling is preferred to reproduce the recent EMC data. The origin of the anomalous value of Δg pointed out by Cheng and Li is clarified in the context of the large isospin violation due to the anomaly. A subtlety related to the matrix element of the gauge-variant topological current Kμ is also discussed.
Characterization of spacecraft humidity condensate
NASA Technical Reports Server (NTRS)
Muckle, Susan; Schultz, John R.; Sauer, Richard L.
1994-01-01
When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.
Condensation in Nanoporous Packed Beds.
Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid
2016-05-10
In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.
Water condensation: a multiscale phenomenon.
Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid
2014-02-01
The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.
Check of the gluon-reggeization condition in the next-to-leading order: Gluon part
Kozlov, M. G. Reznichenko, A. V. Fadin, V. S.
2012-04-15
The last bootstrap condition whose validity has not been verified to date is considered. This condition is an indispensable element in the unitarity-relation-based proof of themulti-Regge form of highenergy gluon-exchange QCD amplitudes in the next-to-leading-logarithm approximation. The approach used here relies on the s-channel unitarity and makes it possible to reproduce successively, in all orders of perturbation theory, themulti-Regge form of the amplitude, provided that specific nonlinear relations, called bootstrap conditions, hold. All of them were derived, and all, with the exception of one, were tested. An explicit verification of fulfillment of the last condition (the bootstrap condition for the inelastic amplitude of the production of one gluon inmulti-Regge kinematics) is performed. In our preceding study, we performed such a verification for purely fermion contributions, while, in the present study, we complete it for one-loop gluon corrections to the components of the condition being considered.
Gluon fragmentation functions in the Nambu-Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Yang, Dong-Jing; Li, Hsiang-nan
2016-09-01
We derive gluon fragmentation functions in the Nambu-Jona-Lasinio (NJL) model by treating a gluon as a pair of color lines formed by a fictitious quark and antiquark (q q ¯). Gluon elementary fragmentation functions are obtained from the quark and antiquark elementary fragmentation functions for emitting specific mesons in the NJL model under the requirement that the q q ¯ pair maintains in the flavor-singlet state after meson emissions. An integral equation, which iterates the gluon elementary fragmentation functions to all orders, is then solved to yield the gluon fragmentation functions at a model scale. It is observed that these solutions are stable with respect to variation of relevant model parameters, especially after QCD evolution to a higher scale is implemented. We show that the inclusion of the gluon fragmentation functions into the theoretical predictions from only the quark fragmentation functions greatly improves the agreement with the SLD data for the pion and kaon productions in e+e- annihilation. Our proposal provides a plausible construct for the gluon fragmentation functions, which are supposed to be null in the NJL model.
Dissociation of heavy quarkonia in the quark-gluon plasma
NASA Astrophysics Data System (ADS)
Wong, Cheuk-Yin
2002-09-01
Using a temperature-dependent potential obtained from lattice gauge calculations of Karsch et al, we study the stability of heavy quarkonia in the quark-gluon plasma. We find that only the Υ(1S) and ηb(1S) are bound in the quark-gluon plasma, and have a small binding energy. The quark-gluon plasma may be revealed by an Υ(1S) dilepton peak with an invariant mass close to twice the current b quark mass, which is lower than the Υ(1S) mass in free space. The quarkonia Υ(1S) and ηb(1S) can dissociate by collision with quarks and gluons in the quark-gluon plasma. The Υ(1S) and the ηb(1S) can also dissociate spontaneously at temperatures above the dissociation temperature 1.11 Tc, where Tc is the quark-gluon plasma phase transition temperature. At temperatures slightly above the dissociation temperature these states appear as resonances, which provides another signature for the quark-gluon plasma.
Naumann, H D; Armstrong, S A; Lambert, B D; Muir, J P; Tedeschi, L O; Kothmann, M M
2014-01-17
The effect of molecular weight of condensed tannins (CT) from a variety of warm-season perennial legumes commonly consumed by sheep and goats on anthelmintic activity has not been previously explored. The objectives of this study were to determine if molecular weight of CT from warm-season perennial legumes could predict the biological activity of CT relative to anthelmintic activity against ivermectin resistant L3 stage Haemonchus contortus (HC) using a larval migration inhibition (LMI) assay. A second objective was to determine if CT from warm-season perennial legumes possess anthelmintic properties against L3 stage (HC). Lespedeza stuevei had the greatest concentration of total condensed tannin (TCT; 11.7%), whereas, with the exception of Arachis glabrata, a CT-free negative control, Leucaena retusa had the least TCT (3.3%). Weight-average molecular weight of CT ranged from 552 Da for L. stuevei to 1483 Da for Lespedeza cuneata. The treatments demonstrating the greatest percent LMI were L. retusa, L. stuevei and Acacia angustissima var. hirta (65.4%, 63.1% and 42.2%, respectively). The ivermectin treatment had the smallest percent LMI (12.5%) against ivermectin resistant L3 HC. There was a weak correlation (R(2)=0.34; P=0.05) between CT MW and percent LMI, suggesting that molecular weight of CT is a weak contributing factor to CT biological activity as it relates to LMI of L3 stage HC. L. stuevei, L. retusa and A. angustissima var. hirta STP5 warrant further evaluation of anthelmintic properties in vivo.
Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.
2012-07-01
The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)
One-loop amplitudes of gluons in supersymmetric QCD
Britto, Ruth; Buchbinder, Evgeny; Cachazo, Freddy; Feng Bo
2005-09-15
One-loop amplitudes of gluons in supersymmetric Yang-Mills are four-dimensional cut-constructible. This means that they can be determined from their unitarity cuts. We present a new systematic procedure to explicitly carry out any finite unitarity cut integral. The procedure naturally separates the contributions from bubble, triangle and box scalar integrals. This technique allows the systematic calculation of N=1 amplitudes of gluons. As an application we compute all next-to-MHV six-gluon amplitudes in N=1 super-Yang-Mills.
Technology Transfer Automated Retrieval System (TEKTRAN)
Two experiments were conducted to evaluate the effects of feeding condensed distillers solubles (DS) and crude glycerin alone or in combination on performance of finishing beef cattle and in vitro fermentation. In both experiments, dietary treatments consisted of a steam flaked corn (SFC) based diet...
Deep-Elastic pp Scattering at Lhc from LOW-x Gluons
NASA Astrophysics Data System (ADS)
Islam, M. M.; Kašpar, J.; Luddy, R. J.
Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV2 ≲ |t| ≲ 10 GeV2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ≃0.3 F. Our prediction is that pp dσ/dt in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp dσ/dt with visible oscillations and smaller cross sections by a large number of other models.
Kamiya, Yuko; Kamiya, Misturu; Hattori, Ikuo; Hayashi, Yoshiro; Funaba, Masayuki; Matsui, Tohru
2017-01-01
Four Japanese Black steers (16 months of age) were assigned to a 4 × 4 Latin square design to investigate the effect of graded levels of sweet-potato condensed distillers solubles (SCDS) in their diets on intake and urinary excretion of minerals. The four diets consisted of 0%, 10%, 20% and 30% (dry matter (DM) basis) SCDS, with SCDS replacing commercial concentrate (CC). Intake of K, Cl, S, P and Mg increased linearly with increasing SCDS content. Urinary pH increased linearly with increasing dietary SCDS content. SCDS feeding increased urinary K concentrations (linear and quadratic effects). Urinary concentrations of Cl increased linearly with increasing SCDS content. In contrast, urinary concentrations of Mg decreased with increasing SCDS content. Feeding of SCDS did not apparently affect urinary NH3 ,P, Na or Ca concentrations. These results suggest that high SCDS feeding is not a risk for crystallization of minerals leading to the formation of magnesium-phosphate type calculi: although SCDS contains large amounts of P and Mg, high SCDS feeding decreased the Mg concentration and did not affect the P concentration in urine. Additionally, high SCDS feeding had no apparent effects on plasma concentrations of Na, K, Cl, Ca or inorganic P.
Shi, H U; Stroshine, Richard L; Ileleji, Klein
2017-01-01
The food additives sodium bisulfite, sodium hypochlorite, citric acid, and ammonium persulfate were evaluated for their effectiveness in degrading aflatoxin in samples of distillers wet grains (DWG) and condensed distillers solubles (CDS) obtained from an industrial ethanol plant. Aqueous food additive solutions, 0.5% by weight, were added to DWG or CDS at the level of 0.5 ml/g of sample, and the materials were heated at 90°C for 1 h. Sodium bisulfite was not effective in degrading aflatoxin in either DWG or CDS. Among the four food additives tested, sodium hypochlorite was the most effective. However, it bleached the substrate and left an off-odor. Citric acid and ammonium persulfate reduced aflatoxin levels by 31 to 51%. Citric acid is the most promising additive for degrading aflatoxin because it has been classified as generally recognized as safe by the U.S. Food and Drug Administration. Aflatoxin reduction was enhanced by increasing the citric acid addition level and prolonging the heating time. Reductions of 65 and 80% in DWG and CDS, respectively, were obtained by the addition of 2.5% (by weight) citric acid and heating at 90°C for 1 h. Aflatoxin levels in DWG and CDS were gradually reduced with prolonged heating at 90°C, even without the addition of food additives. Aflatoxin reductions of 53 and 73% were achieved in DWG and CDS as a result of heating at 90°C for 5 h.
NASA Astrophysics Data System (ADS)
Chen, Qijin
2016-05-01
BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Chen, Qijin
2016-01-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875
Chen, Qijin
2016-05-17
BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Gluon TMD in particle production from low to moderate x
Balitsky, I.; Tarasov, A.
2016-06-28
We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.
Rapidity evolution of gluon TMD from low to moderate x
Balitsky, Ian; Tarasov, A.
2015-10-05
In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x \\ll 1$ to linear evolution at moderate $x \\sim 1$.
Rapidity evolution of gluon TMD from low to moderate x
Balitsky, Ian; Tarasov, A.
2015-10-05
In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at smallmore » $$x \\ll 1$$ to linear evolution at moderate $$x \\sim 1$$.« less
Time evolution of the quark-gluon plasma
Cooper, F. |
1993-03-01
We review progress in our understanding the production and time evolution of the quark gluon plasma starting with boost invariant initial conditions in a filed theory model based on the Schwinger mechanism of particle production via tunneling.
Technology Transfer Automated Retrieval System (TEKTRAN)
Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional bene...
Accessing the Distribution of Linearly Polarized Gluons in Unpolarized Hadrons
Boer, Daniel; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian; /Cagliari U. /INFN, Cagliari
2011-08-19
Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos2{phi} asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future Electron-Ion Collider (EIC) or Large Hadron electron Collider (LHeC) experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.
Schwinger-Dyson Equations and Dynamical gluon mass generation
Aguilar, A.C.; Natale, A.A.
2004-12-02
We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Nagano, Hosei
2007-01-01
This paper describes an experimental study on the effect of gravity on the start-up of a miniature loop heat pipe (MLHP) with two evaporators and two condensers. Each evaporator has an outer diameter of 9 mm and has its own integral compensation chamber (CC). The MLHP was placed under five configurations where the relative elevation and tilt among the loop components were varied. The four well-known initial conditions between the evaporator and CC prior to the LHP start-up were created in this experimental study through combinations of: 1) the test configuration; 2) the method of preconditioning the loop prior to start-up, and 3) the heat load distribution among the evaporators. A total of 165 start-ups were conducted under the five test configurations. All of these start-ups were successful. However, the effect of gravity on start-up transients was clearly seen under otherwise the same heat load distribution and sink temperatures. An analytical model was used to simulate the MLHP transient behaviors, and the model predictions agreed very well with the experimental results.
Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas
2012-01-01
Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.
NASA Astrophysics Data System (ADS)
Vnukov, A. K.; Rozanova, F. A.
2013-07-01
The paper describes the results of the study of the mathematical model of a condensing economizer (CE) interacting with the technological parameter of the particular district heating station. This model has been developed by the authors. It is shown that the CE, due to condensation of water vapor and augmentation of convective heat exchange between products of natural gas combustion, makes it possible to save up to 8% of fuel.
NASA Astrophysics Data System (ADS)
Weigum, Natalie; Schutgens, Nick; Stier, Philip
2016-11-01
A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these
Condensate Mixtures and Tunneling
Timmermans, E.
1998-09-14
The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.
In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiological assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicologist, 2012). For comparison p...
NASA Astrophysics Data System (ADS)
Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming; Franklin, G. Shin
2010-02-01
Transformation field method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropic dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.
Laussy, Fabrice P.; Shelykh, Ivan A.; Malpuech, Guillaume; Kavokin, Alexey
2006-01-15
It is shown theoretically that Bose condensation of spin-degenerated exciton polaritons results in spontaneous buildup of the linear polarization in emission spectra of semiconductor microcavities and therefore that linear polarization is a good order parameter for the polariton Bose condensation under unpolarized pumping. If spin degeneracy is lifted, an elliptically polarized light is emitted by the polariton condensate. The main axis of the ellipse rotates in time due to self-induced Larmor precession of the polariton condensate pseudospin. The polarization decay time is governed by the dephasing induced by the polariton-polariton interaction and is strongly dependent on the statistics of the condensed state. If the elliptical polarization preexists in the system as a result of pumping, the lifetime of the linear part of the polarization is also extremely sensitive to the degree of circular polarization induced in the system by pumping. This decay time can be used to measure the coherence degree of the condensate as a function of the polarization of the emitted light, as opposed to more conventional but harder particle counting experiments of the Hanbury Brown-Twiss type.
Modeling Quark Gluon Plasma Using CHIMERA
NASA Astrophysics Data System (ADS)
Abelev, Betty
2011-09-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.
Condensates in Jovian Atmospheres
NASA Technical Reports Server (NTRS)
West, R.
1999-01-01
Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.
Production of J /ψ +χc and J /ψ +J /ψ with real gluon emission at the LHC
NASA Astrophysics Data System (ADS)
Likhoded, A. K.; Luchinsky, A. V.; Poslavsky, S. V.
2016-09-01
In the present work we study production of J /ψ +χc and J /ψ +J /ψ at the LHC. The first process is forbidden at the leading order in gluon fusion due to the C -parity conservation, and the first nonvanishing contribution is given by the process with the additional emission of a real gluon. Considering the direct production of J /ψ +J /ψ , where the leading order is allowed, we have found that the contribution from the higher order process with real gluon emission is comparable and even more significant than the leading order. Moreover, account of this higher order effect dramatically changes kinematical distributions. Through the present paper we study in detail different channels of paired J /ψ +J /ψ production: direct J /ψ +J /ψ production, feed-down from the J /ψ +χc channel, and double parton scattering. We also try to find kinematical distributions that are most suitable to separate these different channels.
Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips.
Xu, Li-Ping; Chen, Yanxia; Yang, Gao; Shi, Wanxin; Dai, Bing; Li, Guannan; Cao, Yanhua; Wen, Yongqiang; Zhang, Xueji; Wang, Shutao
2015-11-18
A sensitive nucleic acid detection platform based on superhydrophilic microwells spotted on a superhydrophobic substrate is fabricated. Due to the wettability differences, ultratrace DNA molecules are enriched and the fluorescent signals are amplified to allow more sensitive detection. The biosensing interface based on superwettable materials provides a simple and cost-effective way for ultratrace DNA sensing.
A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase
NASA Astrophysics Data System (ADS)
Nagashima, Hiroki; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi; Tokumasu, Takashi
2014-10-01
In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.
A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase
Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi
2014-10-06
In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.
Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin
2016-07-20
Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.
Nanocarbon condensation in detonation
NASA Astrophysics Data System (ADS)
Bastea, Sorin
2017-02-01
We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions.
Nanocarbon condensation in detonation
Bastea, Sorin
2017-01-01
We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827
NASA Astrophysics Data System (ADS)
Chen, Baoyi
2016-04-01
The production of charmonium in heavy ion collisions is investigated based on the Boltzmann-type transport model for charmonium evolution and the Langevin equation for charm quark evolution. Charmonium suppression and regeneration in both quark-gluon plasma (QGP) and hadron phase are considered. Charm quarks are far from thermalization, and regeneration of charmonium in QGP and hadron gas is negligible at the Super Proton Synchrotron (SPS) and the Facility for Antiproton and Ion Research (FAIR). At peripheral collisions, charmonium suppression with hadron gas explains the experimental data well. But at central collisions, additional suppression from deconfined matter (QGP) is necessary for the data. This means there should be QGP produced at central collisions, and no QGP produced at peripheral collisions at SPS energy. Predictions are also made at FAIR √{sN N}=7.7 GeV Au+Au collisions.
García-Hernández, Cesar; Arece-García, Javier; Rojo-Rubio, Rolando; Mendoza-Martínez, German David; Albarrán-Portillo, Benito; Vázquez-Armijo, José Fernando; Avendaño-Reyes, Leonel; Olmedo-Juárez, Agustín; Marie-Magdeleine, Carine; López-Leyva, Yoel
2017-01-01
Forty-five Pelibuey sheep were experimentally infested with nematodes to evaluate the effect of three free condensed tannin (FCT) levels of Lysiloma acapulcensis on fecal egg counts (FECs), packed cell volumes (PCV), ocular mucosa colors (OMC), average daily gain (ADG), and adult nematode count. Five treatments were used: 12.5, 25.0, and 37.5 mg of FCT kg(-1) of body weight (BW); sterile water (control); and ivermectine (0.22 mg kg(-1) of BW) as chemical group. The data were processed through repeated measurement analysis. Even though the three FCT doses decreased (P < 0.05) the FEC, the highest reduction was obtained with 37.5 mg kg(-1) of BW. No differences were observed in PCV and OMC. Higher ADG (P < 0.05) was observed with 37.5 mg kg(-1) of BW of FCT. The count of adult nematodes (females and males) in the higher dose of FCT was similar to chemical treatment. Dose of 37.5 mg kg(-1) of BW decreased the parasite infection and improved the lamb performance. Therefore, this dose could be used as a nutraceutic product in sheep production.
NASA Astrophysics Data System (ADS)
He, Wan-Quan; Gao, Ri-Li; Zhang, Pei; Bi, Xiong-Wei; Pan, Qing-Shan; Xu, Shi-Juan
2015-03-01
Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantum-state manipulation and will contribute to the design and exploration of novel quantum devices. Here we consider a quasi-two-dimensional spin-orbit coupled Bose-Einstein condensate confined in an external harmonic potential, with emphasis on the effects of anisotropic spin-orbit coupling on the equilibrium ground-state structure of such a system. For the cases with spin-orbit coupling solely in x- or y-axis direction, the ground-state structure can develop to the well-known standing wave phase, in which the two components always form an alternative density arrangement. For a two-dimensional anisotropic spin-orbit coupling, the separated lumps first become bend, then form two rows of stripe structure along y direction with further increasing the strength of spin-orbit coupling in x-direction. Furthermore, the distance between these two rows of stripe structure is also investigated in detail. Supported by National Natural Science Foundation of China under Grant No. 61361002, the Applied Fundamental Research Projects of Yunnan Province under Grant No. 2013FZ121
Duncan, Kyle D; Vandergrift, Gregory W; Krogh, Erik T; Gill, Chris G
2015-03-01
Condensed phase membrane introduction mass spectrometry (CP-MIMS) is an online analytical method that allows for the direct, trace level measurement of a wide range of analytes in complex samples. The technique employs a semi-permeable membrane that transfers analytes from a sample into a flowing acceptor solvent, which is directly infused to an atmospheric pressure ionization source, such as electrospray or atmospheric pressure chemical ionization. While CP-MIMS and variants of the technique have been in the literature for nearly a decade, much of the work has focused on instrument development. Few studies have thoroughly addressed quantitative methods related to detection limits, ionization suppression, or linear dynamic range. We examine ionization suppression in the direct rapid quantitation of analytes by CP-MIMS and introduce several analytical strategies to mitigate these effects, including the novel implementation of a continuously infused internal standard in the acceptor phase solvent, and modulation of acceptor phase flow rate. Several representative analytes were used to evaluate this approach with spiked, complex sample matrices, including primary wastewater effluent and artificial urine. Also reported are improved measured detection limits in the low part-per-trillion range, using a 'stopped-flow' acceptor mode.
Choi, C.H.; Chung, D.S.; Seib, P.A.
1995-02-01
Yeast fermentation was performed on grain and bakery byproducts with and without adding the same volume of brewers` condensed solubles (BCS). Starch material in the grain and bakery byproducts effectively was converted to fermentable sugars with conversion ratios of 93-97% by successive treatments of samples with bacterial {alpha}-amylase and fungal glucoamylase. The yeast fermentation of these enzyme-digested byproducts alone showed that ethanol concentrations of 16.4-42.7 mL/100 g dry solid in the broth were achieved with fermentation efficiencies of 87-96%. Addition of BCS to the grain byproducts increased ethanol concentration by 10-86% by increasing the potential glucose content of the broth. The rates of fermentation measured by CO{sub 2} gas production demonstrated that BCS addition to bakery byproducts reduced the fermentation time from 62-72 h to 34-35 h. In bakery byproducts that were low in amino nitrogen, exhaustion of nitrogenous compounds in substrates was found to be a limiting factor for yeast growth. Because BCS is a rich source of nitrogen, adding BCS to these substrates markedly increased the fermentation rate. 15 refs., 4 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Pradhan, S.; Taraphder, A.
2016-10-01
A spinless, extended Falicov-Kimball model in the presence of a perpendicular magnetic field is investigated employing a self-consistent mean-field theory in two dimensions. In the presence of the field the excitonic average Δ =< di † fi > is modified: the exciton responds in subtle different ways for different values of the magnetic flux. We examine the effects of Coulomb interaction and hybridization between the localized and itinerant electrons on the excitonic average, for rational values of the applied magnetic field. The excitonic average is found to get enhanced exponentially with the Coulomb interaction while it saturates at large hybridization. The orbital magnetic field suppresses the excitonic average in general, though a strong commensurability effect of the magnetic flux on the behaviour of the excitonic order parameter is observed.
Torsion effects on condensed matter: like a magnetic field but not so much
NASA Astrophysics Data System (ADS)
Lima, Anderson A.; Filgueiras, Cleverson; Moraes, Fernando
2017-02-01
In this work, we study the effects of torsion due to a uniform distribution of topological defects (screw dislocations) on free spin/carrier dynamics in elastic solids. When a particle moves in such a medium, the effect of the torsion associated to the defect distribution is analogous to that of an applied magnetic field but with subtle differences. Analogue Landau levels are present in this system but they cannot be confined to two dimensions. In the case of spinless carriers, zero modes, which do not appear in the magnetic Landau levels, show up for quantized values of the linear momentum projected on the defects axis. Particles with spin are subjected to a Zeeman-like coupling between spin and torsion, which is insensitive to charge. This suggests the possibility of spin resonance experiments without a magnetic field for charged carriers or quasiparticles without electrical charge, like triplet excitons, for instance.
Yue, Pan; Zhang, Ying; Guo, Zhi-Fo; Cao, Ao-Cheng; Lu, Zhong-Lin; Zhai, Yong-Gong
2015-04-21
A series of bifunctional molecules with different combinations of macrocyclic polyamine [12]aneN3 and coumarin moieties, 4a/b and 5a/b, were synthesized by a two-step copper(I)-mediated alkyne–azide click reactions between 1,3,5-tris(azidomethyl)benzene and Boc-protected N-propynyl-[12]aneN3/7-propynyloxycoumarins. Agarose gel electrophoresis experiments indicated that bifunctional molecules 4b and 5b effectively induced complete plasmid DNA condensation at concentrations up to 40 μM. It was found that the structural variation had a major impact on the condensation behavior of these compounds. The electrostatic interaction involving the [12]aneN3 moiety can be compensated by the binding contribution of the coumarin units during the DNA condensation process. These two types of interaction showed different effects on the reversibility of DNA condensation. Results from studies using dynamic laser scattering, atomic force microscopy, and EB replacement assay further supported the above conclusion. Cytotoxicity assays on bifunctional compounds 4a/b and 5a/b indicated their low cytotoxicity. Results from cellular uptake and cell transfection experiments proved that bifunctional compounds 4b and 5b successfully served as non-viral gene vectors. Furthermore, methyl substituents attached to the coumarin unit (4b and 5b) greatly enhanced their DNA condensation capability and gene transfection. These bifunctional molecules, with the advantages of lower cytotoxicity, good water solubility, and potential structural modification, will have great potential for the development of new non-viral gene delivery agents.
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
Topping, Daniel B
2014-01-01
Anatomy educators are being tasked with delivering the same quantity and quality of material in the face of fewer classroom and laboratory hours. As a result they have turned to computer-aided instruction (CAI) to supplement and augment curriculum delivery. Research on the satisfaction and use of anatomy videos, a form of CAI, on examination performance continues to grow. The purpose of this study was to describe the usage and effect on examination scores of a series of locally produced anatomy videos after an 11% curriculum reduction. First-year medical students (n = 40) were given access to the videos and the prior year's students (n = 40) were used as historical controls. There was no significant difference in demographics between the two groups. The survey response rate was 85% (n = 34) in the experimental group. The students found the videos to be highly satisfying (median = 5 on a five-point Likert scale, interquartile range = 1) and used them on average 1.55 times/week (SD ± 0.77). Availability of the videos did have a statistically significant effect (4% improvement) on the final laboratory examination (p = 0.039). This suggests that the videos were a well-received form of CAI that may be useful in bridging the gap created by a reduction in gross anatomy course contact hours.
Deconfining Phase Transition to a Quark-Gluon Plasma in Different SU(3) Color Representations
NASA Astrophysics Data System (ADS)
Mezouar, K.; Ait El Djoudi, A.; Ghenam, L.
2016-10-01
For a statistical description of the quark gluon plasma (QGP) considering its internal symmetry, we calculate its partition function using the group theoretical projection method. We project out the partition function of a QGP consisting of gluons, massless up and down quarks, and massive strange quarks onto the singlet representation of the SU(3) color group, as well as onto the color octet and the color 27-plet representations. A comparison of these color representations is done, by studying their effects on the behavior of some thermodynamical quantities characterizing the mixed hadronic gas-QGP system undergoing a thermal deconfining phase transition on one side, and on the free energy during the formation of a QGP droplet from the hot hadronic gas on another side.
Phenomenological analysis of Higgs boson production through gluon fusion in association with jets
Greiner, Nicolas; Hoeche, Stefan; Luisoni, Gionata; Schonherr, Marek; Winter, Jan -Christopher; Yundin, Valery
2016-01-27
We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoS_{AM} and SHERPA. We present numerical results for a large variety of observables for both standard cuts and VBF selection cuts.
Phenomenological analysis of Higgs boson production through gluon fusion in association with jets
Greiner, Nicolas; Hoeche, Stefan; Luisoni, Gionata; ...
2016-01-27
We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSAM and SHERPA. We present numerical resultsmore » for a large variety of observables for both standard cuts and VBF selection cuts.« less
Anti pp searches for quark-gluon plasma at TeV I
Turkot, F.
1986-06-01
Three experiments that have been approved to run at TeV I are discussed from the viewpoint of their capability to search for evidence of the QCD phase transition in proton-antiproton collisions at 1.6 TeV. One of these experiments, E-735, was proposed as a dedicated search for quark-gluon plasma effects with a detector designed to study large total E/sub T/, low P/sub T/ individual particles. The other two, E-741 (CDF) and E-740 (DO), embody general purpose four-pi detectors designed primarily to study the physics of W and Z bosons and other large P/sub T/ phenomena. The detectors and their quark-gluon plasma signals are compared. 8 refs., 6 figs., 4 tabs. (LEW)
From quarks and gluons to hadronic matter: A bridge too far?
NASA Astrophysics Data System (ADS)
In the third edition of the QCD-TNT workshop the traditional focus of the last two editions (that is gaining a firmer grasp on the infrared behavior of the QCD Green's functions) will be slightly shifted towards attempts to implement the transition from the fundamental (quarks and gluons) to the effective (mesons and hadrons) degrees of freedom. So in addition to the traditional QCD-TNT themes (e.g., confinement, gluon mass generation, lattice simulations in different gauges, QCD at finite temperature and density) we plan to have more phenomenologically oriented topics (e.g., experimental reviews, determination of form factors from first principle, construction of Bethe-Salpeter kernels). In addition, a special session will be dedicated to review talks, summarizing the state-of-the-art, as well as highlighting the future perspectives, of simulating non-Abelian gauge fields using ultracold neutral atoms trapped in optical lattices, and other systems.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Zaleski, T. A.; Polak, T. P.
2011-02-15
We discuss a system of dilute Bose gas confined in a layered structure of stacked square lattices (slab geometry). A derived phase diagram reveals a nonmonotonic dependence of the ratio of tunneling to on-site repulsion on the artificial magnetic field applied to the system. The effect is reduced when more layers are added, which mimics a two- to quasi-three-dimensional geometry crossover. Furthermore, we establish a correspondence between anisotropic infinite (quasi-three-dimensional) and isotropic finite (slab geometry) systems that share exactly the same critical values, which can be an important clue for choosing experimental setups that are less demanding, but still leading to the identical results. Finally, we show that the properties of the ideal Bose gas in a three-dimensional optical lattice can be closely mimicked by finite (slab) systems when the number of two-dimensional layers is larger than 10 for isotropic interactions, or even less when the layers are weakly coupled.
Collective Flow signals the Quark Gluon Plasma
NASA Astrophysics Data System (ADS)
Bratkovskaya, E. L.; Bleicher, M.; Greiner, C.; Muronga, A.; Paech, K.; Reiter, M.; Scherer, S.; Soff, S.; Xu, Z.; Zeeb, G.; Zschiesche, D.; Tavares, B.; Portugal, L.; Aguiar, C.; Kodama, T.; Grassi, F.; Hama, Y.; Osada, T.; Sokolowski, O.; Werner, K.; Gallmeister, K.; Cassing, W.; Stöcker, H.
2004-12-01
A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 AṡGeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at ˜ 10 AṡGeV; at 40 AṡGeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density ρB. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. We, finally, propose upgrades and second generation experiments at RHIC which inspect the first order phase transition in the fragmentation region, i.e. at μB ≈ 400 MeV (y ≈ 4 - 5), where the collapse of the proton flow should be seen in analogy to the 40 AṡGeV data. The study of Jet-Wake-riding potentials and Bow shocks — caused by jets in the QGP formed at RHIC — can give further information on the equation of state (EoS) and transport coefficients of the Quark Gluon Plasma (QGP).
NASA Astrophysics Data System (ADS)
Richter, J. P.; Mollendorf, J. C.; DesJardin, P. E.
2016-11-01
Accurate knowledge of the absolute combustion gas composition is necessary in the automotive, aircraft, processing, heating and air conditioning industries where emissions reduction is a major concern. Those industries use a variety of sensor technologies. Many of these sensors are used to analyze the gas by pumping a sample through a system of tubes to reach a remote sensor location. An inherent characteristic with this type of sampling strategy is that the mixture state changes as the sample is drawn towards the sensor. Specifically, temperature and humidity changes can be significant, resulting in a very different gas mixture at the sensor interface compared with the in situ location (water vapor dilution effect). Consequently, the gas concentrations obtained from remotely sampled gas analyzers can be significantly different than in situ values. In this study, inherent errors associated with sampled combustion gas concentration measurements are explored, and a correction methodology is presented to determine the absolute gas composition from remotely measured gas species concentrations. For in situ (wet) measurements a heated zirconium dioxide (ZrO2) oxygen sensor (Bosch LSU 4.9) is used to measure the absolute oxygen concentration. This is used to correct the remotely sampled (dry) measurements taken with an electrochemical sensor within the remote analyzer (Testo 330-2LL). In this study, such a correction is experimentally validated for a specified concentration of carbon monoxide (5020 ppmv).
Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.
Winter, Roland
2015-01-01
Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.
Chen, D.T.; Conklin, J.C.
1999-03-15
For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated
Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo
Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.
Resolving gluon fusion loops at current and future hadron colliders
NASA Astrophysics Data System (ADS)
Azatov, Aleksandr; Grojean, Christophe; Paul, Ayan; Salvioni, Ennio
2016-09-01
Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including toverline{t}h and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top- Z couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as toverline{t}Z production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.
Virtual photon emission from a quark-gluon plasma
NASA Astrophysics Data System (ADS)
Suryanarayana, S. V.
2007-10-01
We present phenomenological formulas for virtual photon emission rates from a thermalized quark-gluon plasma (QGP) that include bremsstrahlung and annihilation with scattering (AWS) mechanisms along with the Landau-Pomeranchuk-Migdal (LPM) effects. For this purpose we follow the approach of generalized emission functions (GEF) for virtual photon emission, we showed earlier for a fixed temperature and strong coupling constant. In the present work, we extend the LPM calculations for several temperatures and strong coupling strengths, photon energies (q0), photon mass (Q2), and quark energies (p0). We generalize the dynamical scaling variables, xT,xL, for bremsstrahlung and AWS processes that are now functions of variables p0,q0,Q2,T,αs. The GEF introduced earlier, gTb,gTa,gLb,gLa, are also generalized for any temperatures and coupling strengths. From this, the imaginary part of the photon polarization tensor as a function of photon mass and energy has been calculated as a one-dimensional integral over these GEF and parton distribution functions in the plasma. By fitting these polarization tensors obtained from GEF method, we obtained a phenomenological formula for virtual photon emission rates as a function of {q0,Q2,T,αs} that includes bremsstrahlung and AWS mechanisms with LPM effects.
Kumakura, M.; Hirotani, T.; Okano, M.; Yabuzaki, T.; Takahashi, Y.
2006-06-15
In a Bose-Einstein condensate of {sup 87}Rb (F=2,m{sub F}=2) atoms we have topologically created a quantized vortex with a charge of 4 by reversing the magnetic field of the trap. Experimental conditions of reversal time and initial magnetic field strength for the successful vortex creation were restricted within narrower ranges, compared to those in the case of the {sup 23}Na condensate. The experimental difficulty was explained in terms of a non-negligible gravitational sag arising from its large atomic mass. We have successfully stabilized the vortex formation by compensating gravity with a blue-detuned laser beam.
What (if anything) can few-body strange systems teach us about quark-gluon hadronic substructure
Maltman, K. . Dept. of Physics Los Alamos National Lab., NM )
1990-01-01
We discuss expectation, relevant to the proposed ({pi},K) program at PILAC, for the effects of hadronic quark-gluon substructure on the physics of few-body strangeness {minus}1 systems, in the context of QCD-inspired models used previously to describe the hadron spectrum and short distance nucleon-nucleon scattering. 50 refs., 2 tabs.
Wang, Y; Waghorn, G C; Barry, T N; Shelton, I D
1994-12-01
Fresh Lotus corniculatus containing 27 g extractable condensed tannin (CT)/kg dry matter (DM) and 8 g bound CT/kg DM was fed at hourly intervals to sheep held in metabolism cages to study the effects of CT on nutrient digestion and on metabolism of methionine, cystine and inorganic sulphate in plasma. Polyethylene glycol (PEG) was continuously infused into the rumen of half the sheep to remove the effects of CT. Principal measurements in the two groups were plasma irreversible loss (IRL) rate and interconversions of methionine, cystine and inorganic sulphate using 35S labelling. CT in Lotus corniculatus had no effects on the apparent digestion of cellulose and minerals, slightly depressed DM, organic matter and hemicellulose digestion and markedly reduced the apparent digestion of N (P < 0.01). The concentration of NH3 and molar proportions of iso-butyric acid, iso-valeric acid and n-valeric acid in rumen fluid were markedly increased by the PEG infusion (P < 0.01), whereas total volatile fatty acid concentration and molar proportions of acetic acid, propionic acid and n-butyric acid were not affected. PEG infusion temporarily increased rumen protozoa numbers. CT greatly increased the IRL of plasma cystine (13.1 v. 7.0 mumol/min; P < 0.05) and reduced IRL of plasma inorganic sulphate (36.8 v. 48.1 mumol/min; P < 0.01) but had no effect on methionine IRL. CT increased transulphuration of methionine to cystine (4.37 v. 1.24 mumol/min; P < 0.05), increased cystine entering the plasma from whole-body protein turnover plus absorption from the small intestine (9.34 v. 5.75 mumol/min; P < 0.05) and increased cystine flux to body synthetic reactions (11.89 v. 5.41 mumol/min; P < 0.05). CT had no effect on the proportion of methionine total flux transferred to sulphate (0.05 v. 0.06; P < 0.05), reduced the proportion of methionine flux transferred to body synthetic reactions (0.68 v. 0.86) and markedly reduced the proportion of cystine flux transferred to sulphate (0.09 v
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Hrayr Matevosyan; Anthony Thomas; Peter Tandy
2007-04-01
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.
2007-04-15
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
NASA Astrophysics Data System (ADS)
Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.
2007-04-01
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.
Triple gluon coupling, Adler-Bell-Jackiw anomaly, and polarized deep inelastic scattering
Lam, C.S.; Li, B.A.
1980-05-01
An unusual effect of triple gluon coupling and the Adler-Bell-Jackiw anomaly on the flavor singlet part of the polaried deep inelastic scattering structure function ..nu..G/sub 1/(Q/sup 2/,x) are discussed. Namely, the x-integral I/sub S/(Q/sup 2/) of this function is Q/sup 2/-independent both in parton model and leading logarithm calculations, but the first order nonleading logarithm calculation produces a term growing like (-lnlnQ/sup 2/), dominating over the parton model contributions at large Q/sup 2/. The detection of this unusual term will amount to an experimental confirmation of the existence of triple gluon coupling and the Adler-Bell-Jackiw anomaly. Technically, this term comes from a new axial vector gluon operator which is introduced in the Wilson expansion. Other results of this paper include a discussion of mass-sensitive and mass-insensitive structure functions and the derivation of the expression for, and the relations between, some of these structure functions.
Costa-Júnior, Livio M; Costa, Jailson S; Lôbo, Ítala C P D; Soares, Alexandra M S; Abdala, Adibe L; Chaves, Daniel P; Batista, Zulmira S; Louvandini, Helder
2014-10-15
In this study, the long-term effects of exposure to a drench containing condensed tannins (CTs) from Acacia mearnsii on gastrointestinal nematodes in goats were investigated. Male cross-bred Anglo-Nubian goat kids between 3 and 5 months of age were dewormed at the beginning of the experiment. The goat kids were divided into one group that received weekly 24 g oral doses of A. mearnsii bark extract dissolved in water containing 16.7% CTs (GCT group, n = 8) and a second group that did not receive CTs (GC group, n = 8). All of the animals were kept in an Andropogon gayanus pasture and grazed with a herd of 100 naturally infected adult goats. Each animal was supplemented daily with 200 g of a concentrated mixture containing 18% crude protein. Fecal egg counts (FECs) were performed weekly for 192 days, and weight measurements and blood collections were done at two-week intervals in this period. The packed cell volume of the blood was calculated, and the plasma was used to determine the total protein, albumin, and glucose concentrations. After 192 days, the animals were slaughtered and the carcasses evaluated, with nematodes harvested for identification and counting. The FECs of the animals treated with CTs from A. mearnsii (GCT group) remained lower than the FECs of the control group animals for the majority of the first half of the experimental period. An observed increase in the FECs for both groups coincided with increased rainfall in the region where the experiment was conducted. The worm burden, scrotal circumference, carcass weight, leg circumference, carcass size and blood analysis were not significantly different between the groups. The packed cell volume (PCV) was constant in all of the animals throughout the experiment. In conclusion, repeated and prolonged treatment of goats with CTs from A. mearnsii helped to maintain low FECs in a period of low challenge but did not reduce nematode infections in the goats.
Goldoni, Matteo; Catalani, Simona; De Palma, Giuseppe; Manini, Paola; Acampa, Olga; Corradi, Massimo; Bergonzi, Roberto; Apostoli, Pietro; Mutti, Antonio
2004-01-01
The aim of the present study was to investigate whether exhaled breath condensate (EBC), a fluid formed by cooling exhaled air, can be used as a suitable matrix to assess target tissue dose and effects of inhaled cobalt and tungsten, using EBC malondialdehyde (MDA) as a biomarker of pulmonary oxidative stress. Thirty-three workers exposed to Co and W in workshops producing either diamond tools or hard-metal mechanical parts participated in this study. Two EBC and urinary samples were collected: one before and one at the end of the work shift. Controls were selected among nonexposed workers. Co, W, and MDA in EBC were analyzed with analytical methods based on mass spectrometric reference techniques. In the EBC from controls, Co was detectable at ultratrace levels, whereas W was undetectable. In exposed workers, EBC Co ranged from a few to several hundred nanomoles per liter. Corresponding W levels ranged from undetectable to several tens of nanomoles per liter. A parallel trend was observed for much higher urinary levels. Both Co and W in biological media were higher at the end of the work shift in comparison with preexposure values. In EBC, MDA levels were increased depending on Co concentration and were enhanced by coexposure to W. Such a correlation between EBC MDA and both Co and W levels was not observed with urinary concentration of either element. These results suggest the potential usefulness of EBC to complete and integrate biomonitoring and health surveillance procedures among workers exposed to mixtures of transition elements and hard metals. PMID:15345342
Sinha, Namita; Kumar, Anil; Kumar, Santosh
2016-01-01
While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC
Heavy quarkonium moving in a quark-gluon plasma
NASA Astrophysics Data System (ADS)
Escobedo, Miguel Angel; Giannuzzi, Floriana; Mannarelli, Massimo; Soto, Joan
2013-06-01
By means of effective field theory techniques, we study the modifications of some properties of weakly coupled heavy quarkonium states propagating through a quark-gluon plasma at temperatures much smaller than the heavy quark mass, mQ. Two different cases are considered, corresponding to two different hierarchies between the typical size of the bound state, r, the binding energy, E, the temperature, T, and the screening mass, mD. The first case corresponds to the hierarchy mQ≫1/r≫T≫E≫mD, relevant for moderate temperatures, and the second one to the hierarchy mQ≫T≫1/r, mD≫E, relevant for studying the dissociation mechanism. In the first case we determine the perturbative correction to the binding energy and to the decay width of states with arbitrary angular momentum, finding that the width is a decreasing function of the velocity. A different behavior characterizes the second kinematical case, where the width of s-wave states becomes a nonmonotonic function of the velocity, increasing at moderate velocities and decreasing in the ultrarelativistic limit. We obtain a simple analytical expression of the decay width for T≫1/r≫mD≫E at moderate velocities, and we derive the s-wave spectral function for the more general case T≫1/r, mD≫E. A brief discussion of the possible experimental signatures as well as a comparison with the relevant lattice data are also presented.
The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...
Andreev Reflection in Bosonic Condensates
Zapata, I.; Sols, F.
2009-05-08
We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.
To What Extent is Gluon Confinement an Empirical Fact?
NASA Astrophysics Data System (ADS)
Delgado, R. L.; Hidalgo-Duque, Carlos; Llanes-Estrada, Felipe J.
2013-11-01
Experimental verifications of confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about gluon confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.
Evaporative condensing minimizes system power requirements
Knebel, D.E.
1997-04-01
Evaporative condensing is a heat-rejection technology widely applied with industrial refrigeration. When employed with HVAC systems it can reduce electrical energy and demand consumption of an HVAC system by 20 to 40%, depending on location, compared to air-cooled condensing. Evaporative condensing allows direct-expansion (DX) systems to achieve energy and demand consumption comparable to the most efficient chilled water central plant systems. As the industry focuses its attention on solving the problems of energy conservation, demand reduction, and global warming, high-efficiency air conditioning systems utilizing evaporative condensing provide a reliable and cost-effective solution today. This article addresses the advantages of evaporative condensing over air-cooled and water-cooled condensing in DX packaged systems as well as chiller/cooling tower systems. A review of condensing methods and standard system operating characteristics will be used as examples to illustrate the thermodynamic benefits of evaporative condensing. Requirements for successful operation of evaporative condensers will be discussed.
Boyer, B.D.; Hartzell, J.W.; Lider, S.; Robinson, G.E.; Baratta, A.J. . Dept. of Nuclear Engineering.); Roscioli, A.J. )
1993-08-01
The effects of condensation steam quenching in modeling two-phase flow phenomena during a nuclear reactor transient are studied. The RETRAN-02-MOD002 code, with three field equations and a nonequilibrium pressurizer model option, and the TRAC-BF1 code, with six field equations and a nonequilibrium pressurizer model option, and the TRAC-BF1 code, with six field equations, predicted plant response to a boiling water reactor plant test of a main steam isolation valve closure without safety relief valve opening. The basic RETRAN-02-MOD002 field equations cannot model steam quenching by condensation. However, by activating the nonequilibrium modeling option of the basic RETRAN-02-MOD002 code and by inputting appropriate interfacial heat transfer coefficients, steam quenching by condensation was calculated. This approach gave results closer to those obtained with the test data. The two TRAC-BF1 models used two different methods of tracking water level to approximate the condensation quenching effect. Because the void fraction changes too gradually, the calculation without the TRAC two-phase water level tracking option overquenched the pressure and filled the vessel with too much water. However, because the void fraction changes virtually instantaneously (as it does in the plant), the TRAC two-phase water level tracking option's prediction of the quenching of the pressure was 50% closer to the data than was any RETRAN-02-MOD002 calculation, and it followed the water level almost as well as the RETRAN-02-MOD002 best-estimate case. Both codes overpredicted the pressure spike.
The evolution of the small x gluon TMD
NASA Astrophysics Data System (ADS)
Zhou, Jian
2016-06-01
We study the evolution of the small x gluon transverse momentum dependent (TMD) distribution in the dilute limit. The calculation has been carried out in the Ji-Ma-Yuan scheme using a simple quark target model. As expected, we find that the resulting small x gluon TMD simultaneously satisfies both the Collins-Soper (CS) evolution equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. We thus confirmed the earlier finding that the high energy factorization (HEF) and the TMD factorization should be jointly employed to resum the different type large logarithms in a process where three relevant scales are well separated.
Quarkonium in a weakly-coupled quark-gluon plasma
Vairo, Antonio
2010-12-22
We report about a recent calculation of the heavy quarkonium mass and decay width in a quark-gluon plasma, whose temperature T and screening mass m{sub D} satisfy the hierarchy m{alpha}{sub s}>>T>>m{alpha}{sub s}{sup 2}>>m{sub D}, m being the heavy-quark mass, up to order m{alpha}{sub s}{sup 5}. The calculation may be relevant to understand the behavior of the {Upsilon}(1S) in a quark-gluon plasma at present-day colliders.
Further evidence for zero crossing on the three gluon vertex
NASA Astrophysics Data System (ADS)
Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.
2016-10-01
The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four-dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range 220-260 MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalization group improved perturbation theory.
QCD Factorization, Wilson Loop Space and Unintegrated Gluon Distributions
NASA Astrophysics Data System (ADS)
Cherednikov, Igor O.
2017-03-01
Currently available operator definitions of gauge-invariant unintegrated (transverse momentum dependent) gluon density function available are briefly overviewed, with emphasis on the structure of the associated Wilson lines. A gauge-invariant generating function with maximal path-dependence is proposed, which, as distinct from the common methodology, is based on arbitrary Wilson loops with no reference to any factorization scheme. After the local area differentiation defined in the Wilson loop space, this object can be used to define fully unintegrated gluon distribution functions in a way potentially suitable for the lattice simulations.
Bottomonia suppression in an anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Ryblewski, Radoslaw
2017-03-01
A brief review of recent studies on suppression of bottomonia in an anisotropic quark-gluon plasma created in heavy-ion collisions at the LHC is presented. A reasonable agreement between the model predictions for the inclusive RAA suppression factor and the preliminary CMS experimental data is found. The values of the shear viscosity to the entropy density ratio extracted from the comparison with the data lie between one and two times the gauge/gravity duality lower bound. These values agree very well with the fluid dynamical fits to the light hadron correlation data and confirm that the quark-gluon plasma is a nearly-perfect fluid.
Drell-Yan hadron tensor: Contour gauge and gluon propagator
NASA Astrophysics Data System (ADS)
Anikin, I. V.; Cherednikov, I. O.; Teryaev, O. V.
2017-02-01
We consider the gauge invariant Drell-Yan hadron tensor which includes the standard and nonstandard diagram contributions. The nonstandard diagram contribution appeared owing to the complexity of the twist three BV(x1,x2)-function where the gluon pole manifests. We use the contour gauge conception which allows us to fix easily the spurious uncertainties in the gluon propagator. The contour gauge condition is generated by the corresponding Wilson lines in both the standard and nonstandard diagrams. We demonstrate the substantial role of the nonstandard diagram for forming of the relevant contour in the Wilson path-ordered exponential that leads to the spurious singularity fixing.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id
2014-09-25
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
EPRI condensate polisher guidelines
Larkin, B.A.; Webb, L.C.; Sawochka, S.G.; Crits, G.J.; Pocock, F.J.; Wirth, L.
1995-01-01
Cycle chemistry is one of the most important contributors to the loss of availability of generating units. Condensate polishing can significantly improve cycle chemistry by improving cycle water quality and minimizing the transport of contaminants in the power cycle. The EPRI-funded project described in this paper developed comprehensive guidelines for condensate polishing based upon information gathered from utility surveys, equipment vendors, and resin suppliers. Existing literature was also surveyed for pertinent input. Comprehensive guidelines which outline guidance for design, operation, maintenance, surveillance, management, and retrofitting of condensate polishing systems were developed. Economics of condensate polishing were evaluated and a roadmap for economic evaluation for utilities to follow was produced.
Dschaak, C M; Williams, C M; Holt, M S; Eun, J-S; Young, A J; Min, B R
2011-05-01
A lactation experiment was conducted to determine the influence of quebracho condensed tannin extract (CTE) on ruminal fermentation and lactational performance of dairy cows. The cows were fed a high forage (HF) or a low forage (LF) diet with a forage-to-concentrate ratio of 59:41 or 41:59 on a dry matter (DM) basis, respectively. Eight multiparous lactating Holstein cows (62 ± 8.8 d in milk) were used. The design of the experiment was a double 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, and each period lasted 21 d (14 d of treatment adaptation and 7 d of data collection and sampling). Four dietary treatments were tested: HF without CTE, HF with CTE (HF+CTE), LF without CTE, and LF with CTE (LF+CTE). Commercial quebracho CTE was added to the HF+CTE and the LF+CTE at a rate of 3% of dietary DM. Intake of DM averaged 26.7 kg/d across treatments, and supplementing CTE decreased intakes of DM and nutrients regardless of forage level. Digestibilities of DM and nutrients were not affected by CTE supplementation. Milk yield averaged 35.3 kg/d across treatments, and yields of milk and milk component were not influenced by CTE supplementation. Negative effects of CTE supplementation on feed intake resulted in increased feed efficiency (milk yield/DM intake). Although concentration of milk urea N (MUN) decreased by supplementing CTE in the diets, efficiency of N use for milk N was not affected by CTE supplementation. Feeding the LF diet decreased ruminal pH (mean of 6.47 and 6.33 in HF and LF, respectively). However, supplementation of CTE in the diets did not influence ruminal pH. Supplementing CTE decreased total volatile fatty acid concentration regardless of level of forage. With CTE supplementation, molar proportions of acetate, propionate, and butyrate increased in the HF diet, but not in the LF diet, resulting in interactions between forage level and CTE supplementation. Concentration of ammonia-N tended to decrease with supplementation of
Scrutinizing the pion condensed phase
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Lepori, Luca; Mammarella, Andrea; Mannarelli, Massimo; Pagliaroli, Giulia
2017-02-01
When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the "radial" fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.
Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter
Matevosyan, Hrayr
2007-08-01
Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme
Qian, Xianghong; Liu, Dajiang
2014-03-31
The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results.
McAllister, Tim A; Martinez, Tomas; Bae, Hee Dong; Muir, Alister D; Yanke, L Jay; Jones, Graham A
2005-09-01
To identify simple screening tools for selecting condensed tannin (CT)-containing forages as candidate sources for further study, CT were isolated from nine legumes, and their molecular weights (MW), chromophore production, capacity to precipitate bovine serum albumin (BSA) and Fraction 1 protein (Rubisco) isolated from alfalfa, and inhibition of filter paper digestion were compared. Sources were as follows: leaves of sericea lespedeza (Lespedeza cuneata Dum.-Cours.), crown vetch (Coronilla varia L.), and sainfoin (Onobrychis viciifolia Scop.); stems of hedysarum (Hedysarum alpinum L.); seeds of alfalfa (Medicago sativa L.); and whole plants of birdsfoot trefoil (Lotus corniculatus var. corniculatus L.) and three varieties of big trefoil (Lotus pedunculatus Cav.), viz., Lotus uliginosus Schkuhr, L. uliginosus var. glabriusculus, and L. uliginosus var. villosus. Molecular weights and sizes (degrees of polymerization) of the CT varied considerably within and among plant species. Average MW ranged from 3036 Da (crown vetch) to 7143 Da (lespedeza). All CT exhibited greater capacity (w/w basis) to bind alfalfa Rubisco than BSA. Relative astringencies (microg CT required to precipitate 1 mg protein) against BSA ranged from 262.5 for CT from lespedeza to 435.5 for CT from L. corniculatus, and against Rubisco, from 49.6 (sainfoin) to 108.2 (alfalfa seed). Including CT at 300 microg/ml in cultures of Fibrobacter succinogenes reduced digestion of cellulose filter paper by 19.8% (sainfoin) to 92.4% (crown vetch) and increased the specific activity of cell-associated endoglucanase. There were no correlations between inhibitory effects of CT on filter paper digestion and (1) chromophore formation during CT assay by butanol-HCl, vanillin-HCl, or H2SO4; (2) precipitation of BSA or alfalfa Rubisco; and (3) MW of CT. The most inhibitory CT for cellulose digestion included those with broad and with narrow MW distributions. Sainfoin was the most desirable source of CT, as it had the
5th International conference on Physics and Astrophysics of Quark Gluon Plasma
NASA Astrophysics Data System (ADS)
Sinha, Bikash; Alam, Jan-E.; Nayak, Tapan K.
2006-11-01
The 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005) was held on 8 - 12 February 2005 at the Variable Energy Cyclotron Centre and Saha Institute of Nuclear Physics campus, Kolkata, India. The conference was enriched by the august presence of about 300 participants representing 18 countries across the globe. It had plenary talks and oral presentations, which form a part of these proceedings. Besides invited and contributed talks there were also a large number of poster presentations. The conference was energized by discussions of fresh experimental data from RHIC on strong elliptic flow, jet quenching, single photon spectra etc. Moreover, new theoretical results were brought to the discussion forum during this conference. Colour glass condensates, hydrodynamical flow, jet quenching and sQGP were intensely debated by the participants. The highlight of ICPAQGP 2005 was the presentation of fresh experimental results from the RHIC-IV run. The ICPAQGP series, since its inception in 1988, has placed emphasis on the role of quark matter in the fields of astrophysics and cosmology. The subsequent conferences held in 1993, 1997, 2001 and 2005 had also retained this focus. The conference was preceded by a Fest Colloquium in honour of Professor Bikash Sinha. Professor Sinha, regarded as the pioneer in establishing quark gluon plasma research in India, has successfully encouraged a group of young Indian researchers to devote themselves wholeheartedly to QGP research - both theoretical and experimental. Members of the International Advisory Committee played a pivotal role mainly in the selection of speakers. The contributions of the Organizing Committee in all aspects, from selecting the contributory talks posters down to arranging local hospitality, were much appreciated. We thank the members of both committees for making ICPAQGP 2005 an interesting platform for scientific deliberation. The ICPAQGP 2005 was supported financially by
Yu, F; Moughan, P J; Barry, T N
1996-05-01
The effect of adding cottonseed hulls to casein- and cottonseed-kernel-based diets on the apparent and true ileal digestibility of N and amino acids, and the proportion of this effect accounted for by condensed tannin (CT), were determined using the growing rat. Sixty rats were allocated randomly to ten semipurified diets, containing either casein (four diets) or purified unheated solvent-extracted cottonseed kernel (six diets) as the sole protein source, with Cr2O3 added as an indigestible marker. Two of the casein diets contained no hulls whilst the remaining two diets contained 70 g cottonseed hulls/kg. Two of the cottonseed-kernel-based diets contained no hulls, with two containing 23 g hulls/kg and the remaining two containing 46 g hulls/kg. For each pair of diets, PEG was either included or excluded. The effect of CT was quantified by comparing control rats (-PEG; CT acting) with PEG-supplemented rats (+PEG; CT inactivated) at each level of dietary hulls. The rats were given their respective experimental diets for 14 d. Each rat was given the food ad libitum for 10 min hourly from 08.00 to 18.00 hours. On day 14, samples of digesta were collected at death from the terminal 150 mm of ileum at 7 h from the first meal. Apparent and true ileal digestibilities were calculated for DM, N and the individual amino acids. The principal finding was that the inclusion of hulls depressed the apparent and true ileal digestibilities of N and amino acids, but with the response differing between diets. With the casein-based diet the mean apparent and true ileal amino acid digestibilities were significantly depressed from 0.89 and 0.96 to 0.85 and 0.92 respectively, by the inclusion of 70 g hulls/kg in the diet, and addition of PEG then restored these to 0.89 and 0.95. All of the depression could be explained by the CT content of the hulls. However, with the cottonseed-kernel-based diet the responses fell into three categories. The apparent and true ileal digestibilities of
Magnetofermionic condensate in two dimensions
Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.
2016-01-01
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969
Magnetofermionic condensate in two dimensions.
Kulik, L V; Zhuravlev, A S; Dickmann, S; Gorbunov, A V; Timofeev, V B; Kukushkin, I V; Schmult, S
2016-11-16
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.
Magnetofermionic condensate in two dimensions
NASA Astrophysics Data System (ADS)
Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.
2016-11-01
Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.
Measure Guideline: Evaporative Condensers
German, A; Dakin, B.; Hoeschele, M.
2012-03-01
This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Nonlinear Landau damping in quark-gluon plasma
NASA Astrophysics Data System (ADS)
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Holographic Wilson loops in anisotropic quark-gluon plasma.
NASA Astrophysics Data System (ADS)
Ageev, Dmitry
2016-10-01
The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
The gluon mass generation mechanism: A concise primer
NASA Astrophysics Data System (ADS)
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2016-04-01
We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.
Recent Results on Polarized Quark and Gluon Distributions at Compass
NASA Astrophysics Data System (ADS)
Savin, I.; Jinr; Dubna
2005-04-01
The latest results of deep inelastic scattering (DIS) studies of 160 GeV muons on the deuterated polarized target are reported. They include estimations of virtual photon-deuteron asymmetries, gluon contributions to the nucleon spin and Collins asymmetries in hadron production on the transversely polarized target.
Exploring dynamical gluon mass generation in three dimensions
NASA Astrophysics Data System (ADS)
Cornwall, John M.
2016-01-01
We reexamine the d =3 dynamical gluon mass problem in pure-glue non-Abelian S U (N ) gauge theories, paying particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This is expressed as a large bulge in the propagator at small momentum, due to the d =3 avatar of asymptotic freedom. Mass is defined through m-2=Δ (p =0 ) , where Δ (p ) is the scalar function for the gluon propagator in some chosen gauge; it is not a pole mass and is generally gauge dependent, except in the gauge-invariant pinch technique (PT). We truncate the PT equations with a recently proposed method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the three-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to find a good approximate value for m and at the same time explain the bulge, which by itself leads, in the gap equation for the gluon mass, to excessively large values for the mass. Our point is not to give a high-accuracy determination of m but to clarify the way in which the propagator bulge and a fairly accurate estimate of m can coexist, and we use various approximations that illustrate the underlying mechanisms. The most critical point is to satisfy the Ward identity. In the PT we estimate a gauge-invariant dynamical gluon mass of m ≈N g2/(2.48 π ) . We translate these results to the Landau gauge using a background-quantum identity involving a dynamical quantity κ such that m =κ mL , where mL-2≡ΔL(p =0 ) . Given our estimates for m , κ , the relation is fortuitously well satisfied for S U (2 ) lattice data.
Spatial dynamics, thermalization, and gain clamping in a photon condensate
NASA Astrophysics Data System (ADS)
Keeling, Jonathan; Kirton, Peter
2016-01-01
We study theoretically the effects of pump-spot size and location on photon condensates. By exploring the inhomogeneous molecular excitation fraction, we make clear the relation between spatial equilibration, gain clamping, and thermalization in a photon condensate. This provides a simple understanding of several recent experimental results. We find that as thermalization breaks down, gain clamping is imperfect, leading to "transverse spatial hole burning" and multimode condensation. This opens the possibility of engineering the gain profile to control the condensate structure.
Li, Jun-De
2013-01-01
This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953
Microscopic theory of equilibrium polariton condensates
NASA Astrophysics Data System (ADS)
Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.
2016-12-01
We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.
Sedimentary condensation and authigenesis
NASA Astrophysics Data System (ADS)
Föllmi, Karl
2016-04-01
Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and
NASA Astrophysics Data System (ADS)
Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen
2011-01-01
We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.
Williams, Gustavious Paul; Keenan, Thomas L; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen
2011-01-01
We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.
NASA Astrophysics Data System (ADS)
Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.
2013-11-01
The kinetics of the superluminescence of lead atoms, Pb 3 P {1/0} → 1 D 2 (722.9 nm) and 3 P {1/0} → 3 P 2 (405.8 nm), at the fast adiabatic expansion and cooling of the detonation products of lead azide Pb(N3)2 in vacuum has been studied. The effects of the condensation and scattering of light from drop clusters in an optically active heterophase medium has been analyzed in order to interpret the experiments in laser detonation plasma-dynamic systems based on metal azides.
Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.
1983-02-08
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.
NASA Technical Reports Server (NTRS)
Blander, M.
1983-01-01
Analysis of current experimental results concerned with the kinetic constraints on chondrule formation showed that the major physical properties of chondrules could have been produced by direct condensation of metastable liquid silicates droplets from a hot gas in the primordial nebula. It is argued that such a condensation process would have to be followed by crystallization, accretion, and partial comminution of the droplets. The chemical mechanisms driving this process are described, including: nucleation constraints on comminution and crystallization; slow transformations and chemical reactions in chain silicates; and the slow diffusion of ions. It is shown that the physical mechanisms for chondrule condensation are applicable to a broad spectrum of chondrule sources.
Katiki, Luciana M; Ferreira, Jorge F S; Gonzalez, Javier M; Zajac, Anne M; Lindsay, David S; Chagas, Ana Carolina S; Amarante, Alessandro F T
2013-02-18
Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional benefits, and antioxidant capacity of alternative forages containing hydrolyzable tannins (HT). We evaluated the anthelmintic activity and the antioxidant capacity of plant extracts containing either mostly CT, mostly HT, or both CT and HT. Extracts were prepared with 70% acetone, lyophilized, redissolved to doses ranging from 1.0mg/mL to 25mg/mL, and tested against adult Caenorhabditis elegans as a test model. The extract concentrations that killed 50% (LC(50)) or 90% (LC(90)) of the nematodes in 24h were determined and compared to the veterinary anthelmintic levamisole (8 mg/mL). Extracts were quantified for CT by the acid butanol assay, for HT (based on gallic acid and ellagic acid) by high-performance liquid chromatography (HPLC) and total phenolics, and for their antioxidant activity by the oxygen radical absorbance capacity (ORAC) assay. Extracts with mostly CT were Lespedeza cuneata, Salix X sepulcralis, and Robinia pseudoacacia. Extracts rich in HT were Acer rubrum, Rosa multiflora, and Quercus alba, while Rhus typhina had both HT and CT. The extracts with the lowest LC(50) and LC(90) concentrations, respectively, in the C. elegans assay were Q. alba (0.75 and 1.06 mg/mL), R. typhina collected in 2007 (0.65 and 2.74 mg/mL), A. rubrum (1.03 and 5.54 mg/mL), and R. multiflora (2.14 and 8.70 mg/mL). At the doses of 20 and 25mg/mL, HT-rich, or both CT- and HT-rich, extracts were significantly more lethal to adult C. elegans than extracts containing only CT. All extracts were high in antioxidant capacity, with ORAC values ranging from 1800 μmoles to 4651 μmoles of trolox equivalents/g, but ORAC did not correlate with anthelmintic activity. The total phenolics test had a
Bernabé, Pedro Felício Estrada; Gomes-Filho, João Eduardo; Bernabé, Daniel Galera; Nery, Mauro Juvenal; Otoboni-Filho, José Arlindo; Dezan-Jr, Eloi; Cintra, Luciano Tavares Angelo
2013-01-01
Despite the excellent properties of mineral trioxide aggregate (MTA), the condensation technique may have some influence in its sealing ability. The purpose of this study was to compare the sealing ability of sonic and ultrasonic setting of MTA. Thirty-four extracted human teeth had their canals prepared and filled with Sealapex sealer and gutta-percha using the active lateral condensation technique. The teeth were rendered waterproof and apicoectomy performed at 3 mm from the apex. Root-end cavities (3.0 mm deep and 1.4 mm diameter) were prepared with diamond ultrasonic tips. The root-end cavities were filled with Pro-Root MTA® with ultrasonic vibration, sonic vibration or no vibration. The positive control group did not receive any material while the negative control group was totally rendered waterproof. After material set, the specimens were immersed in Rodhamine B for 24 h, under vacuum in the first 15 min, then washed, dried and split longitudinally for evaluating the infiltration at the dentin/material interface. Data were analyzed using ANOVA and Tukey's tests at 5% significance level. Sonic vibration promoted the lowest infiltration values (p<0.05). It was concluded that sonic vibration could be considered an efficient aid to improve the sealing ability of MTA when used as root-end filling material.
Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk
2012-06-01
We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.
NASA Astrophysics Data System (ADS)
Panchal, C. B.; Bell, K. J.
The open cycle ocean thermal energy conversion condenser was analyzed from a theoretical standpoint. Interfacial temperature profiles and gas concentrations in the axial direction were determined, and their effects on the rate of condensation studied. For the analysis, the vapor phase was modeled using diffusion equations for simultaneous heat and mass transfer processes, while the liquid phase was modeled using a falling film analysis. This analysis was then applied to a plate fin condenser, and the effect of varying the fin density along the condenser lengths was investigated. General engineering aspects of heat exchanger design are discussed for condensation of vapor mixtures in the presence of noncondensable gases.
Dynamical chiral symmetry with an infrared finite gluon propagator
NASA Astrophysics Data System (ADS)
Cardona, J. C.; Aguilar, A. C.
2016-04-01
In this work we study dynamical quark mass generation using an infrared finite gluon propagator obtained from quenched lattice simulations. The quark gap equation is solved using a purely non-Abelian Ansatz for the quark-gluon vertex, which displays a dependence on the ghost dressing function and the scalar component of quark-ghost scattering kernel. For the former quantity we use quenched lattice results, while for the latter we derive its own integral equation at the one-loop-dressed approximation. This latter quantity is then coupled to the system of equations governing the two Dirac structures of the quark propagator. It turns out that when a current quark mass of 5 MeV is introduced, the constituent quark mass generated from the gap equation is of the order of 310 MeV. In addition, the pion decay constant computed from the resulting quark propagator is in good agreement with the physical value.
Measurements of gluon spin-sensitive quantities at the Z{sup 0} resonance
Fan, C.G.
1993-10-01
Measurements have been made of the scaled jet energies (x{sub 1}, x{sub 2}, x{sub 3}) and the Ellis-Karliner angle (cos{theta}{sub EK}), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e{sup +}e{sup {minus}} annihilation at the Z{sup 0} resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z{sup 0} events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x{sub 1}, x{sub 2}, x{sub 3}, and cos{theta}{sub EK} to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x{sub 1}, x{sub 2}, x{sub 3}, and cos{theta}{sub EK} simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data.
Evolution of gluon TMDs from small to moderate x
Tarasov, Andrey
2016-05-01
Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.
Quark-gluon plasma phase transition using cluster expansion method
NASA Astrophysics Data System (ADS)
Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.
2015-08-01
This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).
Coulomb-Gauge Gluon Propagator and the Gribov Formula
Burgio, G.; Quandt, M.; Reinhardt, H.
2009-01-23
We analyze the lattice SU(2) Yang-Mills theory in the Coulomb gauge. We show that the static gluon propagator is multiplicative renormalizable and takes the simple form D(|p-vector|){sup -1}={radical}(|p-vector|{sup 2}+M{sup 4}/|p-vector|{sup 2}), proposed by Gribov through heuristic arguments many years ago. We find M=0.88(1) GeV{approx_equal}2{radical}({sigma})
RHIC AND THE PURSUIT OF THE QUARK-GLUON PLASMA.
MITCHELL,J.T.
2001-07-25
There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far.
Tests of QCD at HERA: determination of the gluon density
Repond, J.
1996-12-31
An overview is given of the various methods available to the colliding beam experiments at HERA to determine the gluon density of the proton. The article includes a description of fits to the structure function F{sub 2}, of studies of dijet and open charm production in deep inelastic scattering, of elastic and inelastic {psi} photoproduction, and of inclusive diffractive scattering. 13 refs., 8 figs.
Dropwise condensation dynamics in humid air
NASA Astrophysics Data System (ADS)
Castillo Chacon, Julian Eduardo
Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 Â°C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity
Non-perturbative inputs for gluon distributions in the hadrons
NASA Astrophysics Data System (ADS)
Ermolaev, B. I.; Troyan, S. I.
2017-03-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.
Polymer Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Castellanos, E.; Chacón-Acosta, G.
2013-05-01
In this work we analyze a non-interacting one-dimensional polymer Bose-Einstein condensate in a harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose-Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for λ2 up to ≲10-16 m2. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.
Scalable graphene coatings for enhanced condensation heat transfer.
Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N
2015-05-13
Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.
NASA Astrophysics Data System (ADS)
Sun, Jie; Wang, Hua Sheng
2016-10-01
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.
Sun, Jie; Wang, Hua Sheng
2016-10-10
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.
Sun, Jie; Wang, Hua Sheng
2016-01-01
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397
NASA Astrophysics Data System (ADS)
Fernandez-Cortes, A.; Benavente, D.; Cuezva, S.; Cañaveras, J. C.; Alvarez-Gallego, M.; Garcia-Anton, E.; Soler, V.; Sanchez-Moral, S.
2013-08-01
Fluctuations of trace gas activity as a response to variations in weather and microclimate conditions were monitored over a year in a shallow volcanic cave (Painted Cave, Galdar, Canary Islands, Spain). 222Rn concentration was used due to its greater sensitivity to hygrothermal variations than CO2 concentration. Radon concentration in the cave increases as effective vapour condensation within the porous system of the rock surfaces inside the cave increases due to humidity levels of more than 70%. Condensed water content in pores was assessed and linked to a reduction in the direct passage of trace gases. Fluctuations in radon activity as a response to variations in weather and microclimate conditions were statistically identified by clustering entropy changes on the radon signal and parameterised to predict radon concentration anomalies. This raises important implications for other research fields, including the surveillance of shallow volcanic and seismic activity, preventive conservation of cultural heritage in indoor spaces, indoor air quality control and studies to improve understanding of the role of subterranean terrestrial ecosystems as reservoirs and/or temporary sources of trace gases.
2013-01-01
TiO2 nanoparticles (NPs) with a size of 240 nm (T240), used as a light-scattering layer, were applied on 25-nm-sized TiO2 NPs (T25) that were used as a dye-absorbing layer in the photoelectrodes of dye-sensitized solar cells (DSSCs). In addition, the incident light was concentrated via a condenser lens, and the effect of light concentration on the capacity of the light-scattering layer was systematically investigated. At the optimized focal length of the condenser lens, T25/T240 double layer (DL)-based DSSCs with the photoactive area of 0.36 cm2 were found to have the short circuit current (Isc) of 11.92 mA, the open circuit voltage (Voc) of 0.74 V, and power conversion efficiency (PCE) of approximately 4.11%, which is significantly improved when they were compared to the T25 single layer (SL)-based DSSCs without using a solar concentrator (the corresponding values were the Isc of 2.53 mA, the Voc of 0.69, and the PCE of 3.57%). Thus, the use of the optimized light harvesting structure in the photoelectrodes of DSSCs in conjunction with light concentration was found to significantly enhance the power output of DSSCs. PMID:23758633
NASA Technical Reports Server (NTRS)
Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.
1978-01-01
In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.
Molecular equilibrium with condensation. [in astrophysics
NASA Technical Reports Server (NTRS)
Sharp, C. M.; Huebner, W. F.
1990-01-01
Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.
Condensate polishers add operating reliability and flexibility
Layman, C.M.; Bennett, L.L.
2008-08-15
Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.
NASA Astrophysics Data System (ADS)
Zhou, Lu; Pu, Han; Zhang, Weiping
2013-03-01
We theoretically investigate the localization properties of a noninteracting atomic Bose-Einstein condensate moving in a one-dimensional quasiperiodic optical lattice potential in the tight-binding regime. The atoms are subject to effective spin-orbit coupling induced by external laser fields. We present the phase diagram in the parameter space of the disorder strength and those related to the effective spin-orbit coupling. The phase diagram are verified via multifractal analysis of the atomic wavefunctions. We found that spin-orbit coupling can lead to the spectra mixing (coexistence of extended and localized states) and the appearance of mobility edges. We acknowledge National Natural Science Foundation of China under Grant No 11004057, Shanghai Rising-Star Program under Grant No. 12QA1401000 and the ``Chen Guang'' project under Grant No 10CG24 for financial supports.
NASA Technical Reports Server (NTRS)
Hall, R. M.
1979-01-01
The onset of condensation effects as determined by varying the stagnation temperature was found to correlate better with the amount of supercooling in the free stream than it did with the supercooling in the region of maximum local Mach number over the air foil. Effects in the pressure distribution over the air foil were seen to appear over its entire length at nearly the same total temperature. Both observations suggest that heterogeneous nucleation does occur in the free stream. The benefits realized from supercooling are presented in terms of increased Reynolds number capability at a given tunnel total pressure and reduced drive-fan power and liquid nitrogen consumption if Reynolds number is held constant. Depending on total pressure and free-stream Mach number, these three benefits are found to vary respectively from 8 to 19 percent, 12 to 24 percent, and 9 to 19 percent. The data analysis and error estimates are given.
Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito
2010-06-15
We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relations but do not belong to the NG modes.
Scanning Tunneling Microscopy Observation of Phonon Condensate.
Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.
Condenser design for AMTEC power conversion
NASA Technical Reports Server (NTRS)
Crowley, Christopher J.
1991-01-01
The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.
Ghost Condensation in N=1 Supergravity
NASA Astrophysics Data System (ADS)
Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt
We present the theory of an N=1 supersymmetric ghost condensate coupled to supergravity using a general formalism for constructing locally supersymmetric higher-derivative chiral superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime. Expanded around this vacuum, the scalar sector is shown to be ghost-free with no spatial gradient instabilities. The fermion sector is found to consist of a massless chiral fermion and a massless gravitino. The ghost condensate vacuum spontaneously breaks local supersymmetry with the chiral field as the Goldstone fermion. Although potentially able to get a mass through the super-Higgs effect, the vanishing superpotential in the ghost condensate theory renders the gravitino massless.
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
Passive control of unsteady condensation shock wave
NASA Astrophysics Data System (ADS)
Setoguchi, Toshiaki; Matsuo, Shigeru; Shimamoto, Katsumi; Yasugi, Shinichi; Yu, Shen
2000-12-01
A rapid expansion of moist air or steam in a supersonic nozzle gives rise to nonequilibrium condensation phenomena. Thereby, if the heat released by condensation of water vapour exceeds a certain quantity, the flow will become unstable and periodic flow oscillations of the unsteady condensation shock wave will occur. For the passive control of shock-boundary layer interaction using the porous wall with a plenum underneath, many papers have been presented on the application of the technique to transonic airfoil flows. In this paper, the passive technique is applied to three types of oscillations of the unsteady condensation shock wave generated in a supersonic nozzle in order to suppress the unsteady behavior. As a result, the effects of number of slits and length of cavity on the aspect of flow field have been clarified numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration.
Condensation Front Migration in a Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2004-01-01
Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.
Voskerician, Gabriela; Rodriguez, Analiz; Gingras, Peter H
2007-08-01
This study investigated the in vivo correlation between construct parameters (surface area, pore size) and polymer chemistry in modulating mesh-intestinal adhesions and mesh-abdominal wall integration of condensed poly(tetra fluoro-ethylene) (cPTFE) in hernia repair. A defect created by excising a 2 cm circular section of the abdominal wall from a rat was repaired with cPTFE or either one of the following synthetic meshes: expanded PTFE (ePTFE), ePTFE + polypropylene (PP), PP or PP + oxidized regenerated cellulose (ORC). The intestinal adhesion and abdominal wall integration were studied quantitatively by measuring the pull-out force required to separate each mesh from the respective tissue at 1 and 3 months postimplantation. The hydrophobic, large pore meshes, such as cPTFE and ePTFE + PP led to reduced adhesions. Further, the presence of ORC contributed to reduction in adhesions of the more hydrophilic PP + ORC mesh. The large pore size, thinner meshes such as cPTFE and PP + ORC led to better tissue integration compared to the other meshes tested. Through hydrophobic chemistry, low profile, and increased pore size, cPTFE balances the rapid resolution of the inflammatory and wound healing response that resists adhesion formation, with efficient integration within the surrounding abdominal tissue.
Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans.
Tuesta, M; Alvear, M; Carbonell, T; García, C; Guzmán-Venegas, R; Araneda, O F
2016-06-01
Exercise promotes pulmonary oxidative imbalance. In this regard, some evidence has been obtained from the study of exhaled breath condensate (EBC) during urban races, in which the factors involved in the occurrence of this process are still not characterized. In this paper, under laboratory conditions, both the role of time of exercise on the generation of pro-oxidants (H2O2, NO2 (-)) and pH have been assessed in EBC of 16 under-trained subjects who completed three tests of cycloergometric exercise at low intensity (30 % of VO2 max) with a duration of 10, 30, and 90 min. Samples were obtained as follows: immediately before and at 80 min post exertion in each test. In the 90-min test, an increase in H2O2, NO2 (-) concentration in EBC at 80 min post exertion with no changes in the pH was observed. Total O2 consumption and total ventilation weakly correlated with the changes in H2O2 and NO2 (-). In conclusion, the concentration of pro-oxidants in the EBC depends on the duration of the exercise when it is performed at low intensity under laboratory conditions.
Wattanakul, Wattana; Wattanakul, Uraiwan; Thongprajukaew, Karun; Muenpo, Chutchawan
2017-02-01
The optimal protein replacement of fish meal (FM) by fish condensate (FC) was investigated in striped snakehead, Channa striata (Bloch) (1.78 ± 0.02 g initial weight). The FM-based diet (0FC) was replaced by substituting protein from FC for 100 (100FC), 200 (200FC), 300 (300FC), 400 (400FC), 500 (500FC) or 600 (600FC) g kg(-1) of the FM, and a commercial diet (CD) for carnivorous fish was included for comparison. The experiment was conducted indoors under completely randomized design (8 treatments × 3 replications × 60 fish per pond) over a 6-month trial. There were no significant differences in water quality during the experiment. The fish fed with 500FC had superior growth performance and feed utilization. This dietary treatment gave similar levels to all observed specific activities of digestive enzymes as did baseline 0FC. Survival, carcass composition, hematological parameters and liver histopathology were not negatively impacted by this protein replacement level. Economic analysis also supports the use of this by-product as a potent protein replacer in striped snakehead diet. Findings from the current study indicate that a 500 g kg(-1) protein replacement of FM by FC is near optimal for striped snakehead, and similar use of it in the aquafeed of other species appears worth further studies.
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1994-01-01
The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.
Tibe, O; Pernthaner, A; Sutherland, I; Lesperance, L; Harding, D R K
2012-05-15
The potential impact of extracts from forage plants on γδ T cell activity in ruminants was evaluated using an in vitro immunoassay. This study investigated whether plant extracts could prime γδ T cells via up-regulation of CD25 (interleukin-2 receptor alpha). Purified Sephadex LH-20 fractions, isolated from Viscum rotundifolium, Viscum verrucosum, Tapinanthus oleifolius and Grewia flava, were screened against γδ T cells on kid, lamb and calf peripheral blood lymphocytes. Condensed tannins (CT) from G. flava significantly primed γδ T cells in kids up to 64.75% at 10 μg/mL, which was statistically significant relative to the negative control at 22.66% (p=0.004). CT from T. oleifolius also induced priming of γδ T cells in kids, while fractions from V. rotundifolium and V. verrucosum induced minimal priming of γδ T cells. In contrast, there was no significant priming of γδ T cells from lambs and calves for any of the tested fractions (p>0.05). These findings suggest that CT from a selected range of Botswanan forage plants can stimulate the immune system in vivo in selected ruminant species and may participate in enhancing host innate immune responses.
NASA Astrophysics Data System (ADS)
Bennett-Kennett, Ross; Herbots, Nicole; Murphy, Ashlee; Sell, David; Kutz, Tyler; Benitez, Sophia; Acharya, Ajjya; Hughes, Brett; Watson, Clarizza; Culbertson, Eric; Sell, Clive; Kwong, H.
2012-10-01
Surgical lenses in laparoscopes and arthroscopes ``fog'' during surgery. Fogging increases by up to 40% surgery duration, infection rates, and scarring due to exposure from repeated scopes withdrawal for cleaning. Modeling nucleation on surfaces shows that 2-D layer-by-layer condensation maintains transparency while 3-D droplets refract at gas/fluid interfaces leading to opacity or ``fogging.'' This ProteinKnoxmodel for lenses made from bio-compatible polymers, and silica led us to a nano-scale molecular mesh applied as a bio-identical emulsion. ProteinKnox[1-5] meets a 100% success rate in eliminating fogging for up to 240 minutes over 300 experiments. Twenty surgical trials in the OR yield a success rate of 90%, with loss of vision due to the presence of blood or blood proteins, not fogging. We studied the common blood protein, heparin, which prevents coagulation, with the ProteinKnoxmodel. Heparin behaves like H2O on hydrophobic surfaces. It does not prevent fogging nor interferes with 2-D condensatio. Next, we investigated fibrinogen as agonist agent because it causes coagulation. Fibrinogen applied to various surfaces in emulsions prepared in accordance with the ProteinKnoxmodel can prevent not only
Condensed matter analogues of cosmology
NASA Astrophysics Data System (ADS)
Kibble, Tom; Srivastava, Ajit
2013-10-01
liveliest. A number of new experiments are reported here studying the dynamical evolution of domains and defects. Another phenomenon that played a key early role was the formation of vortices in the normal-to-superfluid transition in liquid helium-3. The complicated nature of the order parameter energy surface gives rise to a variety of intriguing effects. This too is still a vigorous field. Superconductivity is a special case because the symmetry that is broken is a gauge symmetry. This is also true in fundamental particle physics theories of relevance to cosmology, and for that reason experiments on superconductors are of particular interest to cosmologists. The situation in this case is more complicated because there are competing mechanisms of defect formation. Experiments in the field have not proved easy, either to perform or to interpret, but the papers in this collection show that good progress has been made of late. In recent years a new type of system has proved immensely fruitful, namely atomic Bose-Einstein or Fermi-gas condensates. Experiments on condensates with tunable parameters have in general provided broad support for the theory, and have also revealed a wide range of interesting and novel features, with intriguing possible analogues in cosmology (e.g. causal horizons and particle creation). The basic idea of the Kibble-Zurek mechanism has been shown to be relevant in this whole range of systems. But numerous complexities have also emerged, concerned for example with the role of inhomogeneity or the existence of composite defects. The field is still developing rapidly. Acknowledgments Finally, we would like to thank all the authors who have contributed to this issue, and the staff of Journal of Physics: Condensed Matter who have made it possible. Condensed matter analogues of cosmology contents Condensed matter analogues of cosmologyTom Kibble and Ajit Srivastava Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetismR Repnik, A
Wicker, K.
2006-04-15
The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
Longitudinal oscillations and linear Landau damping in quark-gluon plasma.
Murtaza, G; Khattak, N A D; Shah, H A
2003-12-01
On the basis of the semiclassical kinetic Vlasov equation for quark-gluon plasma and the Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations such as Langmuir waves is investigated for the extreme-relativistic and strongly relativistic cases. It has been observed that for the extreme-relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent as has been reported in the literature. However, a departure from extreme-relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation was obtained. Further, it is also noted that both the real part of the oscillation frequency and the damping rate are sensitive to the choice of the wave number k and the Debye length lambda(D) associated with quark-gluon plasma.
Kaluza-Klein gluon + jets associated production at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.
2016-08-01
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.
Heavy-quark transport coefficients in a hot viscous quark-gluon plasma medium
NASA Astrophysics Data System (ADS)
Das, Santosh K.; Chandra, Vinod; Alam, Jan-e.
2014-01-01
Heavy-quark (HQ) transport coefficients have been estimated for a viscous quark-gluon plasma (QGP) medium, utilizing a recently proposed quasi-particle description based on a realistic QGP equation of state (EoS). Interactions entering through the EoS significantly suppress the temperature dependence of the drag coefficient of QGP, compared to those of an ideal relativistic system of quarks and gluons. The inclusion of shear and bulk viscosities through the corrections to the thermal phase space factors of the bath particles alters the magnitude of the drag coefficient; the enhancement is significant at lower temperatures. In the competition between the effects of the EoS and dissipative corrections through phase space factors, the former eventually dictate how the drag coefficient would behave as a function of temperature and how much it quantitatively digresses from the ideal case. The observations suggest a significant impact of both the realistic EoS and the viscosities on the HQs transport at Relativistic Heavy Ion Collider and Large Hadron Collider collision energies.
Equation of state for hot quark-gluon plasma transitions to hadrons with full QCD potential
NASA Astrophysics Data System (ADS)
Sheikholeslami-Sabzevari, Bijan
2002-05-01
A practical method based on Mayer's cluster expansion to calculate critical values for a quark-gluon plasma (QGP) phase transition to hadrons is represented. It can be applied to a high-temperature QGP for clustering of quarks to mesons and baryons. The potential used is the Cornell potential, i.e., a potential containing both confining and gluon exchange terms. Debye screening effects are included. An equation of state (EOS) for hadron production is found by analytical methods, which is valid near the critical point. The example of the formation of J/ψ and Υ is recalculated. It is shown that in the range of temperatures available by today's accelerators, the latter particles are suppressed. This is further confirmation for heavy quarkonia suppression and, hence, for a signature of a QGP. The EOS presented here also shows that in future colliders there will be no heavy quarkonia production by the mechanism of phase transition. Hence, if there will be heavy quarkonia production, it must be based on some other mechanisms, perhaps on the basis of some recently suggested possibilities.
Jet Tomography of Quark Gluon Plasmas in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Gyulassy, Miklos
2015-04-01
The attenuation pattern of high energy jet fragments in ultra-relativistic nuclear collisions provides information on the space-time evolution and dynamical properties of the Quark Gluon Plasma (QGP) phase of matter discovered at the Relativistic Heavy Ion Collider (RHIC) and observed at higher densities at the Large Hadron Collider (LHC). First I review our jet tomography theory of quark and gluon energy loss in a weakly coupled picture of the QGP. While the average attenuation pattern of light and heavy quark jets were well accounted for in that picture, the predicted azimuthal elliptic asymmetry of jets was underestimated when realistic bulk collective flow effects were taken into account. I then show that the elliptic asymmetry of jet fragments can also be quantitatively understood when nonperturbative lattice QCD constraints on the suppression of color electric fluctuations and the enhancement of color magnetic fluctuations near the critical QCD confinement temperature, Tc ~ 160 MeV, are incorporated into the theory. Our analysis provides a novel quantitative connection between the jet transport properties controlling the hard jet quenching observables and the bulk viscous transport properties controlling the remarkable ``perfect fluidity'' of QGP observed at RHIC and LHC.
Geerke, Daan P; Thiel, Stephan; Thiel, Walter; van Gunsteren, Wilfred F
2007-07-01
In a previous combined QM/MM molecular dynamics (MD) study from our laboratory on the identity SN2 reaction between a chloride anion and an amino chloride in liquid dimethyl ether (DME), an increase in the free energy activation barrier was observed in the condensed phase when compared to the gas-phase activation energy. Here we reproduce these findings, but when comparing the condensed-phase potential of mean force (PMF) with the free energy profile in the gas phase (obtained from Monte Carlo simulations), we observe a smaller solvent effect on the activation barrier of the reaction. In a next step, we introduce an explicit description of electronic polarization in the MM (solvent) part of the system. A polarizable force field for liquid DME was developed based on the charge-on-spring (COS) model, which was calibrated to reproduce thermodynamic properties of the nonpolarizable model in classical MD simulations. The COS model was implemented into the MNDO/GROMOS interface in a special version of the QM/MM software ChemShell, which was used to investigate the effect of solvent polarization on the free energy profile of the reaction under study. A higher activation barrier was obtained using the polarizable solvent model than with the nonpolarizable force field, due to a better solvation of and a stronger polarization of solvent molecules around the separate reactants. The obtained PMFs were subjected to an energy-entropy decomposition of the relative solvation free energies of the reactant complex along the reaction coordinate, to investigate in a quantitative manner whether the solvent (polarization) effects are mainly due to favorable QM-MM (energetic) interactions.
Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon
Brodsky, S.J.; Gardner, S.
2006-08-23
The Sivers mechanism for the single-spin asymmetry in unpolarized lepton scattering from a transversely polarized nucleon is driven by the orbital angular momentum carried by its quark and gluon constituents, combined with QCD final-state interactions. Both quark and gluon mechanisms can generate such a single-spin asymmetry, though only the quark mechanism can explain the small single-spin asymmetry measured by the COMPASS collaboration on the deuteron, suggesting the gluon mechanism is small relative to the quark mechanism. We detail empirical studies through which the gluon and quark orbital angular momentum contributions, quark-flavor by quark-flavor, can be elucidated.
Simple simulations of DNA condensation.
Stevens, M J
2001-01-01
Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored coulombic structure is a charge-ordered state. Condensation is a generic phenomenon and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong. PMID:11159388
Simple Simulations of DNA Condensation
STEVENS,MARK J.
2000-07-12
Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.
Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...
Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ
Pickett, Gavin; Seagrave, Jeanclare; Boggs, Susan; Polzin, Gregory; Richter, Patricia; Tesfaigzi, Yohannes
2010-03-01
Cigarettes vary in tobacco blend, filter ventilation, additives, and other physical and chemical properties, but little is known regarding potential differences in toxicity to a smoker's airway epithelia. We compared changes in gene expression and cytokine production in primary normal human bronchial epithelial cells following treatment for 18 h with cigarette smoke condensates (CSCs) prepared from five commercial and four research cigarettes, at doses of approximately 4 microg/ml nicotine. Nine of the CSCs were produced under a standard International Organization for Standardization smoking machine regimen and one was produced by a more intense smoking machine regimen. Isolated messenger RNA (mRNA) was analyzed by microarray hybridization, and media was analyzed for secreted cytokines and chemokines. Twenty-one genes were differentially expressed by at least 9 of the 10 CSCs by more than twofold, including genes encoding detoxifying and antioxidant proteins. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and NAD(P)H dehydrogenase, quinone 1 (NQO-1) were selected for validation with quantitative real-time PCR (qRT-PCR) and Western blot analyses. NQO-1 expression determined with microarrays, qRT-PCR, and Western blotting differed among the CSC types, with good correlation among the different assays. CYP1A1 mRNA levels varied substantially, but there was little correlation with the protein levels. For each CSC, the three most induced and three most repressed genes were identified. These genes may be useful as markers of exposure to that particular cigarette type. Furthermore, differences in interleukin-8 secretion were observed. These studies lay the foundation for future investigations to analyze differences in the responses of in vivo systems to tobacco products marketed with claims of reduced exposure or reduced harm.
Maddox, James W.; Berger, David D.
1984-01-01
A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.
Enhancement of Condensation on a Vertical Plate
NASA Astrophysics Data System (ADS)
Chu, Rencai; Hatanaka, Tsutomu; Nishio, Shigefumi
In previous study, the characteristic of the condensation heat transfer on the dispersed vertical surface were investigated experimentally for the application of the finned surface to the thermoelectric generator utilizing boiling and condensation as the electrodes of the thermoelectric module. A prediction model for this diapered finned surface was proposed, based on Adamek-Webb model of the condensation on a finned tube. In this study, a condensation heat transfer experiment on a vertical dispersed finned surfaces using FC5312 was carried out, in order to enhance the condensation heat transfer coefficient by optimizing the fin size on a dispersed heat transfer surface. The object of the experiment was limited to the rectangular fin with the height of 3 mm. Experimental parameters were the temperature difference, the fin groove width, the fin thickness and the dispersing size on the vertical direction. As the results, it was found from the experiment that the dependence of the condensation heat transfer coefficient on the dispersed size is controlled by the fin groove width. That is, the condensation heat transfer coefficient will increase for a smaller fin groove width and will decrease for a larger fin groove width, with decreasing of the dispersing size. Moreover, there is an optimum fin thickness at which the condensation heat transfer coefficient becomes the maximum in the case of constant fin groove width for both size of the fin groove width. This effect of the fin thickness is more significant for the smaller fin groove width. Further, the prediction values exhibit a good agreement with the experimental data in the present experiment.
Interstitial Condensation Risk at Thermal Rehabilitated Buildings
NASA Astrophysics Data System (ADS)
Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.
2016-11-01
The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.
Quasilinear transport approach to equilibration of quark-gluon plasmas
Mrowczynski, Stanislaw; Mueller, Berndt
2010-03-15
We derive the transport equations of quark-gluon plasma in the quasilinear approximation. The equations are either of the Balescu-Lenard or Fokker-Planck form. The plasma's dynamics is assumed to be governed by longitudinal chromoelectric fields. The isotropic plasma, which is stable, and the two-stream system, which is unstable, are considered in detail. A process of equilibration is briefly discussed in both cases. The peaks of the two-stream distribution are shown to rapidly dissolve in time.
Heavy quarks, gluons and the confinement potential in Coulomb gauge
Popovici, Carina; Watson, Peter; Reinhardt, Hugo
2011-05-23
We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.
Interactions of quarks and gluons with nuclei at intermediate energies
Mueller, A.H.
1994-04-01
Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.
Quark gluon plasma: Overview and experimental results from E-735
Turkot, F.; Alexopoulos, T.; Allen, C.; Anderson, E.W.; Areti, H.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; Bujak, A.; Carmony, D.D.
1988-12-14
A brief review of the phenomenology associated with the effort to produce and observe quark-gluon plasma in particle collisions is presented. E-735 has taken data during the 1987 Tevatron-Collider run at /square root/s = 1.8 TeV in pursuit of this goal. Results in the correlation of < p/sub t/ > with multiplicity for charged particles and p/sub t/ distributions for ..lambda../sup o/ and /bar Lambda//sup o/ are presented. 32 refs., 10 figs., 2 tabs.
Search for the Quark Gluon Plasma: A Status Report
NASA Astrophysics Data System (ADS)
Nagle, J. L.
2006-07-01
This document is the proceedings from an overview talk on the search for the Quark Gluon Plasma (QGP) given at the Particles and Nuclei International Conference (PANIC) in Santa Fe, New Mexico in October 2005. After five years of successful data taking at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, there is much to report in this field of physics. In this short review, we present a bulleted list of experimental discoveries and conclusions to date on the matter formed in these highest energy nuclear reactions.
Universal behavior of gluon and ghost propagators in the infrared
NASA Astrophysics Data System (ADS)
Siringo, Fabio
2017-03-01
A universal behavior is predicted for ghost and gluon propagators in the infrared. The universal behavior is shown to be a signature of a one-loop approximation and emerges naturally by the massive expansion that predicts universal analytical functions for the inverse dressing functions that do not depend on any parameter or color number. By a scaling of units and by adding an integration constant, all lattice data, for different color numbers (and even quark content for the ghosts), collapse on the same universal curves predicted by the massive expansion.
Eikonal gluon bremsstrahlung at finite Nc beyond two loops
NASA Astrophysics Data System (ADS)
Delenda, Yazid; Khelifa-Kerfa, Kamel
2016-03-01
We present a general formalism for computing the matrix-element squared for the emission of soft energy-ordered gluons beyond two loops in QCD perturbation theory at finite Nc. Our formalism is valid in the eikonal approximation. A Mathematica program has been developed for the automated calculation of all real/virtual eikonal squared amplitudes needed at a given loop order. For the purpose of illustration, we show the explicit forms of the eikonal squared amplitudes up to the fifth-loop order. In the large-Nc limit, our results coincide with those previously reported in literature.
Ando, Taro; Ohtake, Yoshiyuki; Kondo, Jun-ichi; Nakamura, Katsuhiro
2011-02-15
We investigate in detail the effects of nonlinearity on optical diffraction of Bose-Einstein condensates (BECs). By directly integrating the optically coupled two-component Gross-Pitaevskii equation in real space-time, comprehensive analyses of BEC optical diffraction phenomena are done under various conditions of light-pulse irradiation, total number of BEC atoms, etc., without using the adiabatic elimination approximation for an atomic excited state. Calculation results for the optical diffraction of {sup 87}Rb BECs revealed that (1) the effect of nonlinearity on the atomic states causes the ''nonkinetic'' nonlinear effect in the Raman-Nath regime of diffraction, while the dynamics of BEC atoms due to the nonlinearity-induced repulsive forces works dominantly to produce the ''kinetic'' nonlinear effect in the Bragg regime of diffraction; (2) nonlinearity reduces the amplitude and frequency of the two-photon Rabi oscillation between BEC stationary and moving states, suggesting limitations in implementing the BEC Mach-Zehnder interferometer; and (3) the observed nonlinear effects are free from kinetic effects of the atomic excited state and not responsible for the optical transition process.
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro
Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation
Narain, Amitabh; Kulkarni, Shantanu; Mitra, Soumya; Kurita, Jorge H; Kivisalu, Michael T
2009-04-01
Reported experimental and computational results confirm that both the flow features and heat transfer rates inside a condenser depend on the specification of inlet, wall, and exit conditions. The theoretical and experimental results presented in this paper allow us to propose important exit condition based categorization of these flows. Of these, category II flows are defined to be cases for which exit pressures are left unspecified. However it is shown here that steady flows under specified exit pressure conditions (category I flows) are more stable and can be more easily achieved under all conditions (normal or zero-gravity). Existence of self-selected exit pressure conditions for unspecified exit condition cases (category II flows) are more difficult to achieve and are often limited to gravity driven flows. In practice, however, special hardware arrangements are required for repeatable realization of both these categories of flow. If this is not so, one often has an inadvertent category I flow (flows with specified exit pressure) without the explicit knowledge of the exit pressure value. For microgravity situations, the remedy is to run condensers under suitably specified inlet and exit pressures (category I conditions) as well as a proper cooling strategy (i.e., proper wall temperature variations).
Alhakamy, Nabil A; Elandaloussi, Ibrahim; Ghazvini, Saba; Berkland, Cory J; Dhar, Prajnaparamita
2015-04-14
Noncovalently condensed complexes of genetic material, cell penetrating peptides (CPPs), and calcium chloride present a nonviral route to improve transfection efficiency of nucleic acids (e.g., pDNA and siRNA). However, the exact mechanisms of membrane insertion and delivery of macromolecule complexes to intracellular locations as well as their stability in the intracellular environment are not understood. We show that calcium condensed gene complexes containing different hydrophilic (i.e., dTAT, K9, R9, and RH9) and amphiphilic (i.e., RA9, RL9, and RW9) CPPs formed stable cationic complexes of hydrodynamic radii 100 nm at neutral pH. However, increasing the acidity caused the complexes to become neutral or anionic and increase in size. Using zwitterionic and anionic phospholipid monolayers as models that mimic the membrane composition of the outer leaflet of cell membranes and intracellular vesicles and pHs that mimic the intracellular environment, we study the membrane insertion potential of these seven gene complexes (CPP/pDNA/Ca(2+) complexes) into model membranes. At neutral pH, all gene complexes demonstrated the highest insertion potential into anionic phospholipid membranes, with complexes containing amphiphilic peptides showing the maximum insertion. However, at acidic pH, the gene complexes demonstrated maximum monolayer insertion into zwitterionic lipids, irrespective of the chemical composition of the CPP in the complexes. Our results suggest that in the neutral environment the complexes are unable to penetrate the zwitterionic lipid membranes but can penetrate through the anionic lipid membranes. However, the acidic pH mimicking the local environment in the late endosomes leads to a significant increase in adsorption of the complexes to zwitterionic lipid headgroups and decreases for anionic headgroups. These membrane-gene complex interactions may be responsible for the ability of the complexes to efficiently enter the intracellular environment through
Harris, James M; Lopez, Gabriel P; Reichert, William M
2012-11-01
The objectives of this study were to examine the feasibility of using glucose oxidase (GOx) dispersed in a silica matrix for glucose monitoring in whole blood, and then to assess whether the flexibility of silica sol-gel chemistry could be exploited to enhance glucose sensor performance and stability. Silica-dispersed GOx was deployed on platinized platinum (Pt) wire to form a Clark-type amperometric glucose sensor. Sensors were calibrated using buffered glucose standard solutions, and then tested against glucose spiked human serum and whole blood. All serum and whole blood measurements met the minimum FDA requirement of falling within the "A+B region" of a Clark Error Grid. To our knowledge this is the first report of using silica-dispersed GOx to measure glucose in whole blood. The effect of condensation pH on sensor performance was assessed by dispersing GOx in silica condensed at pH 3, 7 and 12, and then testing the sensor response against glucose calibration standards. The pH 12 silica sensors had statistically faster response time, and higher sensor sensitivity compared to pH 7, pH 3 silica and glutaraldehyde crosslinked sensors. Membranes of the pH 12 silica had statistically higher glucose diffusion coefficient than did the pH 7 and 3 sensors. GOx dispersed in pH 12 silica also had the longest half life. We hypothesize that the gel-like pH 12 silica gels provided reduced barriers to glucose diffusion, and the more aqueous microenvironment provided greater stability for the enzyme.
Recovery of condensate water quality in power generator's surface condenser
NASA Astrophysics Data System (ADS)
Kurniawan, Lilik Adib
2017-03-01
In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.
Small shear viscosity in the semiquark gluon plasma
Hidaka, Yoshimasa; Pisarski, Robert D.
2010-04-01
At nonzero temperature in QCD, about the deconfining phase transition there is a semiquark gluon plasma (semi-QGP), where the expectation value of the (renormalized) Polyakov loop is less than one. This can be modeled by a semiclassical expansion about a constant field for the vector potential, A{sub 0}, which is diagonal in color. We compute the shear viscosity in the semi-QGP by using the Boltzmann equation in the presence of this background field. To leading, logarithmic order in weak coupling, the dominant diagrams are given by the usual scattering processes of 2{yields}2 particles. For simplicity we also assume that both the number of colors and flavors are large. Near the critical temperature T{sub c}, where the expectation value of the Polyakov loop is small, the overall density of colored fields decreases according to their color representation, with the density of quarks vanishes linearly with the loop, and that of gluons, quadratically. This decrease in the overall density dominates changes in the transport cross section. As a result, relative to that in the perturbative QGP, near T{sub c} the shear viscosity in the semi-QGP is suppressed by two powers of the Polyakov loop. In a semiclassical expansion, the suppression of colored fields depends only upon which color representation they lie in, and not upon their mass. That light and heavy quarks are suppressed in a common manner may help to explain the behavior of charm quarks at RHIC.
Understanding the Quark-gluon Plasma via String Theory
NASA Astrophysics Data System (ADS)
Liu, Hong
2007-10-01
Collisions of high-energy gold nuclei at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory create exploding droplets of quark-gluon plasma, the stuff which filled the universe microseconds after the Big Bang. The quark- gluon plasma at RHIC exhibits many surprising properties: it is close to an ideal liquid and it strongly attenuates the high energy quarks trying to plow through it. So far calculations in QCD have not been able to explain these properties satisfactorily, but interesting insight has been gained by using techniques from string theory. In the last ten years string theory has revealed a surprising and deep connection between quantum gravity and non-Abelian gauge theories similar to QCD. Such a connection enables one to answer difficult questions in some strongly coupled gauge theories by simple calculations of classical gravity. I will discuss some examples where these string theory techniques have been used to shed light on existing data from RHIC and to make one prediction that can be tested by experiments in the near future.
New signals of quark-gluon-hadron mixed phase formation
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Oliinychenko, D. R.; Ilgenfritz, E.-M.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.
2016-08-01
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center-of-mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center-of-mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low-energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low-energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high-energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations.