Science.gov

Sample records for gluon condensate effects

  1. Effect of the gluon condensate on the holographic heavy quark potential

    SciTech Connect

    Kim, Youngman; Lee, Bum-Hoon; Park, Chanyong; Sin, Sang-Jin

    2009-11-15

    The gluon condensate is very sensitive to the QCD deconfinement transition since its value changes drastically with the deconfinement transition. We calculate the gluon condensate dependence of the heavy quark potential in AdS/CFT to study how the property of the heavy quarkonium is affected by a relic of the deconfinement transition. We observe that the heavy quark potential becomes deeper as the value of the gluon condensate decreases. We interpret this as a dropping of the heavy quarkonium mass just above the deconfinement transition. We finally argue that dropping of the gluon condensate and the pure thermal effect are competing with each other in the physics of heavy quarkonium at high temperature.

  2. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE PAGESBeta

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  3. Thermalization of gluons with Bose-Einstein condensation.

    PubMed

    Xu, Zhe; Zhou, Kai; Zhuang, Pengfei; Greiner, Carsten

    2015-05-01

    We study the thermalization of gluons far from thermal equilibrium in relativistic kinetic theory. The initial distribution of gluons is assumed to resemble that in the early stage of ultrarelativistic heavy ion collisions. Only elastic scatterings in static, nonexpanding gluonic matter are considered. At first we show that the occurrence of condensation in the limit of vanishing particle mass requires a general constraint for the scattering matrix element. Then the thermalization of gluons with Bose-Einstein condensation is demonstrated in a transport calculation. We see a continuously increasing overpopulation of low energy gluons, followed by a decrease to the equilibrium distribution, when the condensation occurs. The times of the completion of the gluon condensation and of the entropy production are calculated. These times scale inversely with the energy density.

  4. Gluon condensate in a pion superfluid beyond the mean-field approximation

    SciTech Connect

    Jiang Yin; Zhuang Pengfei

    2011-03-15

    We study gluon condensate in a pion superfluid by calculating the equation of state of the system in the Nambu-Jona-Lasinio model. While in mean-field approximation the growing pion condensate leads to an increasing gluon condensate, meson fluctuations reduce the gluon condensate, and the broken scalar symmetry can be smoothly restored at finite isospin density.

  5. Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density

    SciTech Connect

    Malheiro, M.; Dey, M.; Delfino, A.; Dey, J. |||

    1997-01-01

    It is known now that chiral symmetry restoration requires the meson-nucleon couplings to be density-dependent in nuclear-matter mean-field models. We further show that, quite generally, the quark and gluon condensates in medium are related to the trace of the energy-momentum tensor of nuclear matter and in these models the incompressibility K must be less than 3 times the chemical potential {mu}. In the critical density {rho}{sub c}, the gluon condensate is only reduced by 20{percent}, indicating a larger effective nucleon mass. {copyright} {ital 1997} {ital The American Physical Society}

  6. Description of gluon propagation in the presence of an A{sup 2} condensate

    SciTech Connect

    Li Xiangdong; Shakin, C.M.

    2005-04-01

    There is a good deal of current interest in the condensate which has been seen to play an important role in calculations which make use of the operator product expansion. That development has led to the publication of a large number of papers which discuss how that condensate could play a role in a gauge-invariant formulation. In the present work we consider gluon propagation in the presence of such a condensate which we assume to be present in the vacuum. We show that the gluon propagator has no on-mass-shell pole and, therefore, a gluon cannot propagate over extended distances. That is, the gluon is a nonpropagating mode in the gluon condensate. In the present work we discuss the properties of both the Euclidean-space and Minkowski-space gluon propagator. In the case of the Euclidean-space propagator we can make contact with the results of QCD lattice calculations of the propagator in the Landau gauge. With an appropriate choice of normalization constants, we present a unified representation of the gluon propagator that describes both the Minkowski-space and Euclidean-space dynamics in which the condensate plays an important role.

  7. Model independent determination of the gluon condensate in four dimensional SU(3) gauge theory.

    PubMed

    Bali, Gunnar S; Bauer, Clemens; Pineda, Antonio

    2014-08-29

    We determine the nonperturbative gluon condensate of four-dimensional SU(3) gauge theory in a model-independent way. This is achieved by carefully subtracting high-order perturbation theory results from nonperturbative lattice QCD determinations of the average plaquette. No indications of dimension-two condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic ambiguity inherent to its definition. We also determine the binding energy of a B meson in the heavy quark mass limit. PMID:25215978

  8. Effective multi-Higgs couplings to gluons

    NASA Astrophysics Data System (ADS)

    Spira, Michael

    2016-10-01

    Standard-Model Higgs bosons are dominantly produced via the gluon-fusion mechanism gg → H at the LHC, i.e. in a loop-mediated process with top loops providing the dominant contribution. For the measured Higgs boson mass of ˜ 125 GeV the limit of heavy top quarks provides a reliable approximation as long as the relative QCD corrections are scaled with the full mass-dependent LO cross section. In this limit the Higgs coupling to gluons can be described by an effective Lagrangian. The same approach can also be applied to the coupling of more than one Higgs boson to gluons. We will derive the effective Lagrangian for multi-Higgs couplings to gluons up to N4LO thus extending previous results for more than one Higgs boson. Moreover we discuss gluonic Higgs couplings up to NNLO, if several heavy quarks contribute.

  9. Dimension-two gluon condensate from large-N{sub c} Regge models

    SciTech Connect

    Ruiz Arriola, Enrique; Broniowski, Wojciech

    2006-05-01

    It is shown that in the large-N{sub c} limit radial, Regge trajectories give rise in a natural way to the presence of the dimension-2 gluon condensate in meson correlators. We match these models to QCD and provide estimates for in terms of other physical quantities. In particular, in the simplest strictly linear radial Regge model with equal residues is proportional to the pion decay constant squared. However, the linear model fails a consistency condition based on matching the short- and long-distance string tensions, nor does it reproduce the phenomenological values of the gluon condensates. On the contrary, in Regge models departing from strict linearity one may reproduce both the consistency condition and the signs of condensates. We demonstrate this in a simple explicit model.

  10. Dynamical equation of the effective gluon mass

    SciTech Connect

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2011-10-15

    In this article, we derive the integral equation that controls the momentum dependence of the effective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the corresponding ''one-loop dressed'' Schwinger-Dyson equation into two distinct contributions, one associated with the mass and one with the standard kinetic part of the gluon. The entire construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation, supplemented by the additional requirement of a positive-definite gluon mass, imposes a rather stringent constraint on the derivative of the gluonic dressing function, which is comfortably satisfied by the large-volume lattice data for the gluon propagator, both for SU(2) and SU(3). The numerical treatment of the mass equation, under some simplifying assumptions, is presented for the aforementioned gauge groups, giving rise to a gluon mass that is a nonmonotonic function of the momentum. Various theoretical improvements and possible future directions are briefly discussed.

  11. RHIC PHYSICS: THE QUARK GLUON PLASMA AND THE COLOR GLASS CONDENSATE: 4 LECTURES

    SciTech Connect

    MCLERRAN,L.

    2003-01-01

    The purpose of these lectures is to provide an introduction to the physics issues which are being studied in the RHIC heavy ion program. These center around the production of new states of matter. The Quark Gluon Plasma is thermal matter which once existed in the big bang which may be made at RHIC. The Color Glass Condensate is a universal form of matter which controls the high energy limit of strong interactions. Both such forms of matter might be produced and probed at RHIC.

  12. Temperature dependence of quarks and gluon vacuum condensate in the Dyson-Schwinger Equations at finite temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Juan; Zheng, Bo; Zhong, Hong-Wei; Ma, Wei-Xing

    2015-03-01

    Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state are investigated by solving the DSEs with rainbow truncation at zero- and finite- temperature, respectively. These condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying hadron physics, as well as predicting the quark mean squared momentum m20- also called quark virtuality in the QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the temperature below the critical point temperature Tc = 131 MeV, and above Tc the chiral symmetry is restored. For comparison we calculate the temperature dependence of the “in-hadron condensate” for pion. At the same time, we also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained. The results show that the ratio m20(T) is almost flat in the temperature region from 0 to Tc, although there are drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our predicted ratio comes out to be m20(T)=2.41 GeV2 at the Chiral limit, which is consistent with other theory model predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the virtuality calculations. Supported by National Natural Science Foundation of China (11365002), Guangxi Natural Science Foundation for Young Researchers (2013GXNSFBB053007, 2011GXNSFA018140), Guangxi Education Department (2013ZD049), Guangxi Grant for Excellent Researchers (2011-54), and Guangxi University of Science and Technology Foundation for PhDs (11Z16)

  13. Composite Gluons and Effective Nonabelian Gluon Dynamics in a Unified Spinor-Isospinor Preon Field Model

    NASA Astrophysics Data System (ADS)

    Stumpf, H.

    1987-03-01

    The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.

  14. Quark- and gluon-condensate contributions to penguin four-Fermi operators

    SciTech Connect

    Ahmady, Mohammad R.; Elias, Victor

    1999-10-04

    The nonperturbative content of the QCD vacuum permits the occurrence of QCD-vacuum condensate contributions to penguin amplitudes. We calculate the dimension-4 and <{alpha}{sub s}G{sup 2}> contributions to the effective Wilson coefficients for penguin four-Fermi operators, and discuss how such contributions may contribute to nonleptonic B decays.

  15. On effects of multiple gluons in J/ψ hadroproduction

    SciTech Connect

    Motyka, Leszek; Sadzikowski, Mariusz

    2015-04-10

    The three-gluon contribution to J/ψ hadroproduction is calculated within perturbative QCD in the k{sub T}-factorization framework. This mechanism involves double gluon density and enters at a non-leading twist, but it is enhanced at large energies due to large double gluon density at small x. We obtain results for differential p{sub T}-dependent cross-sections for all J/ψ polarisations. The rescattering contribution is found to provide a significant correction to the standard leading twist cross-section at the energies of the Tevatron or the LHC at moderate p{sub T}. We also discuss a possible contribution of the rescattering correction to the anti-shadowing effect for J/ψ production in proton - nucleus collisions.

  16. Gluon-gluon contributions to W+ W- production and Higgs interference effects

    SciTech Connect

    Campbell, John M.; Ellis, R.Keith; Williams, Ciaran

    2011-07-01

    In this paper we complete our re-assessment of the production of W boson pairs at the LHC, by calculating analytic results for the gg {yields} W{sup +}W{sup -} {yields} {nu}{ell}{sup +}{ell}{sup -}{bar {nu}} process including the effect of massive quarks circulating in the loop. Together with the one-loop amplitudes containing the first two generations of massless quarks propagating in the loop, these diagrams can give a significant contribution with a large flux of gluons. One of the component parts of this calculation is the production of a standard model Higgs boson, gg {yields} H and its subsequent decay, H {yields} W{sup +}({yields} {nu}{ell}{sup +})W{sup -}({yields} {ell}{sup -}{bar {nu}}). We will quantify the importance of the interference between the Higgs boson production process and the gluon-induced continuum production in the context of searches for the Higgs boson at the Tevatron and the LHC. For instance, for m{sub H} < 140 GeV the effect of the interference typically results in around a 10% reduction in the expected number of Higgs signal events. The majority of this interference is due to non-resonant contributions. Therefore cuts on the transverse mass such as those currently used by the ATLAS collaboration reduce the destructive interference to about a 1% effect. We advocate that a cut on the maximum transverse mass be used in future Higgs searches in this channel.

  17. Tracing the origin of azimuthal gluon correlations in the color glass condensate

    NASA Astrophysics Data System (ADS)

    Lappi, T.; Schenke, B.; Schlichting, S.; Venugopalan, R.

    2016-01-01

    We examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. We will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.

  18. Chiral magnetic effect in condensed matter systems

    DOE PAGESBeta

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less

  19. The Gluon Contribution to the Sivers Effect COMPASS results

    NASA Astrophysics Data System (ADS)

    Kurek, Krzysztof; Szabelski, Adam

    2016-02-01

    The Sivers effect describes the correlation between the spin of the nucleon and the orbital motion of partons. It can be measured via Semi-Inclusive Deep Inelastic Scattering of lepton on a transversely polarised proton and deuteron targets by determining the azimuthal asymmetry related to the modulation in the Sivers angle ϕSiv. In the paper a method of obtaining the Sivers asymmetry for gluons is presented. It is based on the model of lepton nucleon interactions via three single-photon-exchange processes: photon-gluon fusion (PGF), QCD Compton (QCDC) and leading process (LP). A method of simultaneous extraction of the Sivers asymmetries of the three processes with the use of Monte Carlo (MC) and neural networks (NN) approach is presented. The method has been applied to COMPASS data taken with 160GeV/c muon beam scattered off transversely polarised deuteron and transversely polarised proton target. For each target a data sample of events containing at least two hadrons with large transverse momentum has been selected. Finally the results for gluon Sivers asymmetry were obtained to be: Adg = -0.14 ± 0.15(stat.) ± 0.06(syst.) at = 0.13 and Apg = -0.26 ± 0.09(stat.) ± 0.08(syst.) at = 0.15.

  20. Asymmetry of the dimension-two gluon condensate: The finite temperature case

    SciTech Connect

    Vercauteren, David; Verschelde, Henri

    2010-10-15

    In this paper, we continue the work begun in a previous article. We compute, in the formalism of local composite operators, the value of the asymmetry in the dimension two condensate for finite temperatures. We find a positive value for the asymmetry, which disappears when the temperature is increased. We also compute the value of the full dimension two condensate for higher temperatures, and we find that it decreases in absolute value, finally disappearing for sufficiently high temperature. We also comment on the temperature dependence of the electric and magnetic components of the condensate separately. We compare our results with the corresponding lattice date found by Chernodub and Ilgenfritz.

  1. Attractive Casimir effect in an infrared modified gluon bag model

    SciTech Connect

    Oxman, L.E.; Amaral, R.L.P.G.

    2005-12-15

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.

  2. Chiral electric separation effect in the quark-gluon plasma

    DOE PAGESBeta

    Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang

    2015-02-02

    In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σχe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current JA that is generated in response to an externally applied electric field eE: JA=σχe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σχe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESEmore » conductivity for the QGP is found to be σχe = (#)TTrfQeQA/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.« less

  3. Chiral electric separation effect in the quark-gluon plasma

    SciTech Connect

    Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang

    2015-02-02

    In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σχe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current JA that is generated in response to an externally applied electric field eE: JAχe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σχe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESE conductivity for the QGP is found to be σχe = (#)TTrfQeQA/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.

  4. Effect of spontaneous condensation on condensation heat transfer in the presence of non-condensable gases

    SciTech Connect

    Karl, J.; Hein, D.

    1999-07-01

    The presence of non condensable gases like nitrogen or air reduces the condensation heat transfer during condensation of binary steam mixtures. The non condensable gas accumulates in the vapor phase boundary layer and causes a high heat transfer resistance. Especially with high pressures and low water temperatures spontaneous condensation reduces heat transfer additionally. Fog forms within the steam-nitrogen boundary layer and the steam condenses on the water droplets of the fog layer. The convective mass transfer to the cooling water interface diminishes. Raman spectroscopy and film theory are used to quantify this effect locally. The calculation of overall condensation rates in large steam nitrogen systems requires to use three dimensional CFD codes. The paper presents equations to predict fog formation in the boundary layer which can be implemented in CFD codes.

  5. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  6. Gluon TMD studies at EIC

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    2016-03-01

    A high-energy Electron-Ion Collider (EIC) would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gluons inside transversely polarized protons, the so-called gluon Sivers effect. The inherent process dependence of these distributions can be studied by comparing to similar, but often complementary observables at LHC.

  7. Probing gluon number fluctuation effects in future electron-hadron colliders

    NASA Astrophysics Data System (ADS)

    Amaral, J. T.; Gonçalves, V. P.; Kugeratski, M. S.

    2014-10-01

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron-hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive ep observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. Our results indicate that the study of these observables in the future colliders can be useful to constrain the presence of gluon number fluctuations.

  8. Searching for gluon number fluctuations effects in eA collisions

    SciTech Connect

    Kugeratski, M. S.; Gonçalves, V. P.; Santana Amaral, J. T. de

    2014-11-11

    We propose to investigate the gluon number fluctuations effects in deep inelastic electron-ion scattering at high energies. We estimate the nuclear structure function F{sub 2}{sup A}(x,Q{sup 2}), as well the longitudinal and charm contributions, using a generalization for nuclear targets of the Golec-Biernat-Wusthoff (GBW) model which describes the electron proton HERA data. Here we consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities. For a first investigation we study the scattering with Ca and Pb nuclei. Our preliminary results predict that the effects of gluon number fluctuations are small in the region of the future electron ion collider.

  9. Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2015-06-01

    Time evolution of an electromagnetic field created in heavy-ion collisions strongly depends on the electromagnetic response of the quark-gluon plasma, which can be described by the Ohmic and chiral conductivities. The latter is intimately related to the chiral magnetic effect. I argue that a solution to the classical Maxwell equations at finite chiral conductivity is unstable due to the soft modes k <σχ that grow exponentially with time. In the kinematical region relevant for the relativistic heavy-ion collisions, I derive analytical expressions for the magnetic field of a point charge. I show that finite chiral conductivity causes oscillations of magnetic field at early times.

  10. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  11. QCD in the nuclear medium and effects due to Cherenkov gluons

    SciTech Connect

    Dremin, I. M.

    2010-04-15

    The equations of in-medium gluodynamics are proposed. Their classical lowest-order solution is explicitly shown for a color charge moving with constant speed. For chromopermittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The values of the real and imaginary parts of the chromopermittivity are obtained from the fits to experimental data on the double-humped structure around the away-side jet obtained at RHIC. The dispersion of the chromopermittivity is predicted by comparing the RHIC, SPS, and cosmic-ray data. This is important for LHC experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton mass spectra near {rho} meson observed in the SPS experiment with excess in the low-mass wing of the resonance. This feature is predicted to be common for all resonances. The 'color rainbow' quantum effect might appear according to higher-order terms of in-medium QCD if the chromopermittivity depends on color.

  12. Gluons and the NJL coupling constant

    SciTech Connect

    Braghin, Fábio L.; Barros Jr, Ednaldo; Paulo Jr, Ademar

    2014-11-11

    The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable φ(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration φ(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.

  13. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  14. Soliton in the global color model with a sophisticated effective gluon propagator

    SciTech Connect

    Wang Bin; Chen Huan; Chang Lei; Liu Yuxin

    2007-08-15

    With a sophisticated effective gluon propagator, Maris-Tandy model, we solve the Dyson-Schwinger equation to get the quark propagator and then study the soliton solution in the global color model (GCM). Along the constraints on the parameters fitted to the pion decay constant, we take several sets of parameters and find that some of the properties of soliton can be produced in the GCM soliton model with a special choice of parameters. We also discuss the influences of the parameters and the ultraviolet perturbative term on the property of the soliton. We find that the interaction among quarks is the one with self-adjusting characteristic and only the fine-tuned interaction can generate an appropriate solition, but not that much stronger attraction produces more stable soliton.

  15. Polarization effects in hadron structure functions and in quark and gluon fragmentation

    SciTech Connect

    Einhorn, M.B.

    1986-07-20

    The predictions of QCD for the evolution of the quark and gluon structure functions of a polarized proton are discussed. In fact, the parton polarizations increase with energy, for fixed Feynman x. Thus, polarized protons may be useful for the discovery or investigation of new physical phenomena at very high energy, especially if there are new interactions or particles whose behavior violates one of the natural symmetries of QCD, such as parity. The mean gluon asymmetry grows as l-scriptnQ/sup 2/, which implies that the orbital angular momentum of the gluons grows similarly.

  16. Effect of Non-Condensable Gas Mass Fraction on Condensation Heat Transfer for Water-Ethanol Vapor Mixture

    NASA Astrophysics Data System (ADS)

    Wang, Shixue; Utaka, Yoshio

    The condensation heat transfer characteristic curves for a ternary vapor mixture of water, ethanol and air (or nitrogen) under several ethanol concentrations and relatively low concentrations of air (or nitrogen) were measured. The effect of non-condensable gas on several different domains in the condensation curves was discussed. The effect of non-condensable gas in the domains controlled by the diffusion resistance and the filmwise condensation was not notable; whereas that in the domain dominated by the condensate resistance of dropwise mode was remarkable. Moreover, variations due to changes in non-condensable gas concentration of several characteristic points representing the curves were discussed.

  17. Hysteresis effects in rotating Bose-Einstein condensates

    SciTech Connect

    Jackson, B.; Barenghi, C. F.

    2006-10-15

    We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic trap. We find that the number of vortices and angular momentum attained by the condensate depend upon the rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena in this system.

  18. Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems

    SciTech Connect

    Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.

    2004-05-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.

  19. Gluon effects on the equation of state of color superconducting strange stars

    NASA Astrophysics Data System (ADS)

    Ferrer, E. J.; de la Incera, V.; Paulucci, L.

    2015-08-01

    Compact astrophysical objects are a window for the study of strongly interacting nuclear matter given the conditions in their interiors, which are not reproduced in a laboratory environment. Much has been debated about their composition with possibilities ranging from a simple mixture of mostly protons and neutrons to deconfined quark matter. Recent observations on the mass of two pulsars, PSR J 1614 -2230 and PSR J 0348 +0432 , have posed a great restriction on their composition, since the equation of state must be hard enough to support masses of about at least two solar masses. The onset of quarks tends to soften the equation of state, but it can get substantially stiffer since in the high-dense medium a repulsive vector interaction channel is opened. Nevertheless, we show that once gluon effects are considered, the equation of state of strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity becomes softer decreasing the maximum stellar mass that can be reached. This may indicate that strange stars made entirely of CFL matter can only be favored if other interactions, as the one corresponding to the vector channel, are taken into consideration and are large enough.

  20. Row effect for R-11 condensation on enhanced tubes

    SciTech Connect

    Webb, R.L.; Murawski, C.G. )

    1990-08-01

    Experimental results of a condensation row effect study on enhanced tubes are presented. A test cell was constructed to condense Refrigerant-11 on the shell side of a vertical bank of five horizontal tubes. Four distinctly different commercially available tubes were tested. The tubes are a 1024-fpm integral fin, the Wolverine Tube-C, Wieland GEWA-SC, and the Tred-D. A modified Turbo-C tube was also tested. Experimental and visual observations are used to understand the row effect due to condensate loading. By plotting the data in the form of the local condensation coefficient versus condensate Reynolds number, the results may be interpreted for any number of tube rows, up to the maximum Reynolds numbers tested. Bundle average condensation coefficients may be established by integrating the h versus Re values over the number of tube rows.

  1. Effect of condensation in a diffuser on the flow field

    NASA Astrophysics Data System (ADS)

    Shi, Wangxing; Ma, Jiaju

    1990-06-01

    Condensation is possible when the ambient humidity and Mach number of the air flow in the inlet are both sufficiently high. The condensation leads the average turbulence to be increased by 12-25 percent and the steady-state distortion factor DC60 to be changed in the experimental range. The condensation effect on the distortion flowfield should be considered in the study of tolerability between engine and inlet.

  2. Josephson effects in condensates of excitons and exciton polaritons

    NASA Astrophysics Data System (ADS)

    Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.

    2008-07-01

    We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the “tunneling” between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.

  3. Josephson effects in condensates of excitons and exciton polaritons

    SciTech Connect

    Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.

    2008-07-15

    We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.

  4. Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    SciTech Connect

    Hrayr Matevosyan; Anthony Thomas; Peter Tandy

    2007-06-18

    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The guark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.

  5. Effects of Gravitational Correction on Neutron Stars with Antikaon Condensation

    NASA Astrophysics Data System (ADS)

    Ding, Wen-Bo; Hou, Jia-Wei; Qi, Zhan-Qiang; E, Shan-Shan; Bao, Tmurbagan; Liu, Guang-Zhou; Yu, Zi; Zhao, En-Guang

    2016-06-01

    Effects of gravitational correction through the introduction of U bosons on neutron stars with antikaon condensation are studied in the relativistic mean held theory. How the global properties of neutron stars, redshift and the momentum of inertia are modified by gravitational correction and antikaon condensation are discussed here. Results show that antikaon condensation can occur at the core of pulsar PSR J1614-2230. Gravitational correction and antikaon condensation influence each other, and when coupling constant of U bosons and baryons becomes very high, effects of antikaon condensation almost vanish. Moreover, both the redshift and the momentum of inertia of neutron stars are sensitive to the constant of U bosons. Combining with observation data, we can provide a further constraint on coupling constant of U bosons. Supported by National Natural Science Foundation of China under Grant Nos. 11265009, 11271055, and 11175077, and General Project of Liaoning Provincial Department of Education under Grant No. L2015005

  6. Effects of oxaliplatin on DNA condensation

    NASA Astrophysics Data System (ADS)

    Ju, HaiPeng; Zhang, HongYan; Li, Wei; Wang, PengYe

    2014-11-01

    In this paper the interactions between DNA and anti-cancer drug oxaliplatin were investigated by using magnetic tweezers. The dynamics of DNA condensation due to oxaliplatin was traced under various forces. It is found that torsion constraint in DNA enhances the ability of oxaliplatin for shortening DNA. The transplatin helps oxaliplatin combine to DNA and increase the rate of DNA condensation. All these results are consistent to the previously proposed model and are helpful for further investigation of interaction between DNA and oxaliplatin.

  7. Effects of dynamical masses of gluons and quarks on hadronic B decays

    SciTech Connect

    Zanetti, C. M.; Natale, A. A.

    2010-11-12

    We study hadronic annihilation decays of B mesons within the perturbative QCD at collinear approximation. The regulation of endpoint divergences is performed with the help of an infrared finite gluon propagator characterized by a non-perturbative dynamical gluon mass. The divergences at twist-3 are regulated by a dynamical quark mass. Our results fit quite well the existent data of B{sup 0}{yields}D{sub s}{sup -}K{sup +} and B{sup 0}{yields}D{sub s}{sup -*}K{sup +} for the expected range of dynamical gluon masses. We also make predictions for the rare decays B{sup 0}{yields}K{sup -}K{sup +}, B{sub s}{sup 0}{yields}{pi}{sup -}{pi}{sup +}, {pi}{sup 0}{pi}{sup 0}, B{sup +}{yields}D{sub s}{sup (*)+}K-bar{sup 0}, B{sup 0}{yields}D{sub s}{sup {+-}(*)}K{sup {+-}} and B{sub s}{sup 0}{yields}D{sup {+-}(*)}{pi}{sup {+-}}, D{sup 0}{pi}{sup 0}.

  8. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, María; Głazek, Stanisław D.

    2016-07-01

    We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.

  9. Renormalization of dimension 6 gluon operators

    NASA Astrophysics Data System (ADS)

    Kim, HyungJoo; Lee, Su Houng

    2015-09-01

    We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.

  10. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  11. Quark ACM with topologically generated gluon mass

    NASA Astrophysics Data System (ADS)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  12. Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics

    SciTech Connect

    Brodsky, Stanley J.; Shrock, Robert; /YITP, Stony Brook

    2008-08-01

    Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.

  13. Type of condensers and their cooling effect in the loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Nemec, Patrik; Malcho, Milan

    2014-08-01

    This work investigates the cooling effect of three condensers in the loop thermosyphon in horizontal position. The cooling liquid flows in 1-tube condenser circuit. The work compares cooling effect of different types of condensers (flat condenser and ribbed tube condenser) at different thermal load. Cooling effect of condenser is connected with thermal changes in the evaporator. We have found out that the higher the thermal resistance is, the lower the condenser output is. Measurements and calculated values have proved different outputs of condensers.

  14. Effect of Non-condensable gas on Solutal Marangoni Condensation Heat Transfer Characteristics for Water-Ethanol Vapor Mixture

    NASA Astrophysics Data System (ADS)

    Wang, Shixue; Utaka, Yoshio

    The condensation heat transfer characteristic curves for ternary vapor mixture of water, ethanol and air (or nitrogen) under the ethanol mass fraction of 0.01, 0.07, 0.25, 0.45 and relatively low concentrations of air (or nitrogen) were measured.The effect of air (or nitrogen) as a non-condensable gas on several different domains in the Marangoni condensation characteristic curves was discussed. It was shown that the effect of non-condensable gas in the domains controlled by the diffusion resistance and the filmwise condensation was not notable but in the domain dominated by the condensate resistance of dropwise mode was remarkable. Moreover, the variations of the several characteristic points representing the characteristic curves caused by the change in non-condensable gas concentration were discussed. The deteriorations of the maximum heat transfer coefficient and the maximum heat flux for low ethanol concentration and low concentration of non-condensable gas, in which the excellent heat transfer characteristics were exhibited, were more remarkable.

  15. Condensates in Quantum Chromodynamics and the Cosmological Constant

    SciTech Connect

    Brodsky, Stanley J.; Shrock, Robert

    2009-05-08

    Casher and Susskind have noted that in the light-front description, spontaneous chiral symmetry breaking in quantum chromodynamics (QCD) is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon QCD condensates are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of 'in-hadron' condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism for QCD bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, since all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  16. Diquark condensation effects on hot quark star configurations

    NASA Astrophysics Data System (ADS)

    Öztas, A.; Blaschke, D.; Fredriksson, S.; Grigorian, H.

    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form-factors of the interaction on the phase diagram of quark matter. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state under the condition of β- equilibrium and charge neutrality. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of ΔMc2 ~ 1053 erg. We find that this energy could not serve as an engine for explosive phenomena since the phase transition is not first order. Contrary to naive expectations the mass defect increases when for a given temperature we neglect the possibility of diquark condensation.

  17. Diquark condensation effects on hot quark star configurations

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Fredriksson, S.; Grigorian, H.; Öztasş, A. M.

    2004-05-01

    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the formfactors of the interaction on the phase diagram of quark matter. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state under the condition of β-equilibrium and charge neutrality. We calculate the quark star configurations by solving the Tolman-Oppenheimer-Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of ΔMc2~1053 erg. We find that this energy could not serve as an engine for explosive phenomena since the phase transition is not first order. Contrary to naive expectations the mass defect increases when for a given temperature we neglect the possibility of diquark condensation.

  18. Gluons in the chiral bag

    NASA Astrophysics Data System (ADS)

    Kahana, D. E.; Milana, J.

    1987-07-01

    A perturbative QCD calculation of gluon exchange corrections to the cranking moment of inertia of the chiral bag model is done using the full time-dependent cavity propagators. Cranking is used to construct the nucleon and delta states and a value of the effective strong coupling constant is extracted by fitting the empirical Δ N mass splitting. The MIT bag limit (large bag radius) of the chiral bag model is also examined.

  19. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  20. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  1. Gluon TMDs in Quarkonium Production

    NASA Astrophysics Data System (ADS)

    Signori, Andrea

    2016-08-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  2. The effect of condensate inundation on steam condensation heat transfer to wire-wrapped tubing

    NASA Astrophysics Data System (ADS)

    Kanakis, G. D.

    1983-06-01

    Steam condensation heat transfer measurements were made in a 5-tube test condenser having an additional perforated tube to simulate up to 30 active tubes. Results were obtained for smooth tubes and roped tubes wrapped with wire. A Sieder-Tate equation was used to correlate the inside heat-transfer coefficient. For smooth tubes, a leading coefficient of 0.029 was found, while it was 0.061 for the roped tubes. The average condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt coefficient calculated for the first tube. When the smooth tubes were wrapped with wire, this ratio increased up to 0.86. Further, roped tubes without wire experienced a ratio of 0.63, while roped tubes wrapped with wire resulted in a ratio of 0.86. These preliminary data show that wire-wrapped tubes may lead to a significant reduction in condenser surface area.

  3. QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function

    NASA Astrophysics Data System (ADS)

    Nishikawa, Tetsuo; Tanaka, Kazuhiro

    2011-10-01

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters λE and λH, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for λE,H calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order αs radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of λE,H.

  4. QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function

    SciTech Connect

    Nishikawa, Tetsuo; Tanaka, Kazuhiro

    2011-10-21

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters {lambda}{sub E} and {lambda}{sub H}, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for {lambda}{sub E,H} calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order {alpha}{sub s} radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of {lambda}{sub E,H}.

  5. Gluons in glueballs: Spin or helicity?

    SciTech Connect

    Mathieu, Vincent; Buisseret, Fabien; Semay, Claude

    2008-06-01

    In the past decade, lattice QCD has been able to compute the low-lying glueball spectrum with accuracy. Like other effective approaches of QCD, potential models still have difficulties to cope with gluonic hadrons. Assuming that glueballs are bound states of valence gluons with zero current mass, it is readily understood that the use of a potential model, intrinsically noncovariant, could be problematic in this case. The main challenge for this kind of model is actually to find a way to introduce properly the more relevant degree of freedom of the gluon: spin or helicity. In this work, we use the so-called helicity formalism of Jacob and Wick to describe two-gluon glueballs. We show, in particular, that this helicity formalism exactly reproduces the J{sup PC} numbers which are observed in lattice QCD when the constituent gluons have a helicity-1, without introducing extra states as is the case in most of the potential models. These extra states appear when gluons are seen as spin-1 particles. Using a simple spinless Salpeter model with Cornell potential within the helicity formalism, we obtain a glueball mass spectrum which is in good agreement with lattice QCD predictions for helicity-1 gluons provided instanton-induced interactions are taken into account.

  6. Condensed matter effects on the structure of crystalline glucose

    NASA Astrophysics Data System (ADS)

    Molteni, C.; Parrinello, M.

    1997-08-01

    By means of ab initio simulations based on the Car-Parrinello method, we have calculated the crystalline structures of σ-D-glucose, σ-D-glucose monohydrate and β-D-glucose. The good agreement with the available experimental data gives us confidence in the applicability of the method to carbohydrates and opens the path towards the investigation of more complex problems, where a quantum mechanical description is essential. Condensed matter effects are discussed by comparing the structures of the glucose molecule in the crystalline and gas phases.

  7. Effective hydrodynamic field theory and condensation picture of topological insulators

    NASA Astrophysics Data System (ADS)

    Chan, AtMa P. O.; Kvorning, Thomas; Ryu, Shinsei; Fradkin, Eduardo

    2016-04-01

    While many features of topological band insulators are commonly discussed at the level of single-particle electron wave functions, such as the gapless Dirac boundary spectrum, it remains elusive to develop a hydrodynamic or collective description of fermionic topological band insulators in 3+1 dimensions. As the Chern-Simons theory for the 2+1-dimensional quantum Hall effect, such a hydrodynamic effective field theory provides a universal description of topological band insulators, even in the presence of interactions, and that of putative fractional topological insulators. In this paper, we undertake this task by using the functional bosonization. The effective field theory in the functional bosonization is written in terms of a two-form gauge field, which couples to a U (1 ) gauge field that arises by gauging the continuous symmetry of the target system [the U (1 ) particle number conservation]. Integrating over the U (1 ) gauge field by using the electromagnetic duality, the resulting theory describes topological band insulators as a condensation phase of the U (1 ) gauge theory (or as a monopole condensation phase of the dual gauge field). The hydrodynamic description of the surface of topological insulators and the implication of its duality are also discussed. We also touch upon the hydrodynamic theory of fractional topological insulators by using the parton construction.

  8. Universality of Unintegrated Gluon Distributions at small x

    SciTech Connect

    Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng

    2011-01-04

    We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.

  9. On the possible effects of gluon number fluctuations on {gamma}{gamma} collisions at high energies

    SciTech Connect

    Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    We investigate the effects of the fluctuations on the total {gamma}{gamma}, {gamma}*{gamma}* cross sections and the real photon structure function F{sup {gamma}}{sub 2}(x,Q{sup 2}), considering a saturation phenomenological model for the dipole-dipole cross section and scattering amplitude with fluctuations included.

  10. The Discovery of the Gluon

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2015-03-01

    Soon after the postulation of quarks, it was suggested that they interact via gluons, but direct experimental evidence was lacking for over a decade. In 1976, Mary Gaillard, Graham Ross and the author suggested searching for the gluon via 3-jet events due to gluon bremsstrahlung in e+e- collisions. Following our suggestion, the gluon was discovered at DESY in 1979 by TASSO and the other experiments at the PETRA collider.

  11. The discovery of the gluon

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2014-12-01

    Soon after the postulation of quarks, it was suggested that they interact via gluons, but direct experimental evidence was lacking for over a decade. In 1976, Mary Gaillard, Graham Ross and the author suggested searching for the gluon via 3-jet events due to gluon bremsstrahlung in e+ e- collisions. Following our suggestion, the gluon was discovered at DESY in 1979 by TASSO and the other experiments at the PETRA collider.

  12. Josephson effects in a Bose–Einstein condensate of magnons

    SciTech Connect

    Troncoso, Roberto E.; Núñez, Álvaro S.

    2014-07-15

    A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.

  13. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  14. On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study.

    PubMed

    Rocha, M S; Cavalcante, A G; Silva, R; Ramos, E B

    2014-05-01

    In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.

  15. SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    SciTech Connect

    Ilgenfritz, Ernst-Michael; Menz, Christoph; Mueller-Preussker, Michael; Schiller, Arwed; Sternbeck, Andre

    2011-03-01

    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.

  16. Non-traditional Aharonov-Bohm effects in condensed matter

    SciTech Connect

    Krive, I.V. ); Rozhavsky, A.S. )

    1992-05-10

    In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential L{sub int} = j{sub {mu}}A{sup {mu}}. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of the interference pattern on the magnetic fluid flux {phi} in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux {phi} in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal.

  17. Open-beauty production in pPb collisions at √{sNN}=5 TeV: Effect of the gluon nuclear densities

    NASA Astrophysics Data System (ADS)

    Conesa del Valle, Z.; Ferreiro, E. G.; Fleuret, F.; Lansberg, J. P.; Rakotozafindrabe, A.

    2014-06-01

    We present our results on open-beauty production in proton-nucleus collisions for the recent LHC pPb run at √{sNN}=5 TeV. We have analyzed the effect of the modification of the gluon PDFs in a nucleus at the level of the nuclear modification factor. Because of the absence of measurements in pp collisions at the same collision energy, √{sNN}, we also propose the study of the forward-to-backward yield ratio in which the unknown proton-proton yield cancels. Our results are compared with the data obtained by the LHCb collaboration and show a good agreement.

  18. Condensed matter realization of the axial magnetic effect

    NASA Astrophysics Data System (ADS)

    Chernodub, Maxim N.; Cortijo, Alberto; Grushin, Adolfo G.; Landsteiner, Karl; Vozmediano, María A. H.

    2014-02-01

    The axial magneticeffect, i.e., the generation of an energy current parallel to an axial magnetic field coupling with opposite signs to left- and right-handed fermions, is a nondissipative transport phenomenon intimately related to the gravitational contribution to the axial anomaly. An axial magnetic field emerges naturally in condensed matter in so-called Weyl semimetals. We present a measurable implementation of the axial magnetic effect. We show that the edge states of a Weyl semimetal at finite temperature possess a temperature dependent angular momentum in the direction of the vector potential intrinsic to the system. Such a realization provides a plausible context for the experimental confirmation of the elusive gravitational anomaly.

  19. Internal Josephson effects in spinor dipolar Bose-Einstein condensates

    SciTech Connect

    Yasunaga, Masashi; Tsubota, Makoto

    2010-02-15

    We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.

  20. Decoherence effects in Bose-Einstein condensate interferometry I. General theory

    SciTech Connect

    Dalton, B.J.

    2011-03-15

    Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd

  1. Estrogenic effects of marijuana smoke condensate and cannabinoid compounds

    SciTech Connect

    Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck . E-mail: khchung@skku.edu

    2006-08-01

    Chronic exposure to marijuana produces adverse effects on the endocrine and reproductive systems in humans; however, the experimental evidence for this presented thus far has not been without controversy. In this study, the estrogenic effect of marijuana smoke condensate (MSC) was evaluated using in vitro bioassays, viz., the cell proliferation assay, the reporter gene assay, and the ER competitive binding assay. The results of these assays were compared with those of three major cannabinoids, i.e., THC, CBD, and CBN. The estrogenic effect of MSC was further confirmed by the immature female rat uterotrophic assay. MSC stimulated the estrogenicity related to the ER-mediated pathway, while neither THC, CBD, nor CBN did. Moreover, treatment with 10 and 25 mg/kg MSC induced significant uterine response, and 10 mg/kg MSC resulted in an obvious change in the uterine epithelial cell appearance. MSC also enhanced the IGFBP-1 gene expression in a dose-dependent manner. To identify the constituents of MSC responsible for its estrogenicity, the MSC fractionated samples were examined using another cell proliferation assay, and the estrogenic active fraction was analyzed using GC-MS. In the organic acid fraction that showed the strongest estrogenic activity among the seven fractions of MSC, phenols were identified. Our results suggest that marijuana abuse is considered an endocrine-disrupting factor. Furthermore, these results suggest that the phenolic compounds contained in MSC play a role in its estrogenic effect.

  2. Direct and indirect anthelmintic effects of condensed tannins in sheep.

    PubMed

    Iqbal, Zafar; Sarwar, Muhammad; Jabbar, Abdul; Ahmed, Shahbaz; Nisa, M; Sajid, Muhammad Sohail; Khan, Muhammad Nisar; Mufti, Kamran Aftab; Yaseen, Muhammad

    2007-03-15

    Anthelmintic activity of condensed tannins (CT) was evaluated both in vitro and in vivo. In vitro tests included egg hatch test and paralysis/mortality assay on adult Haemonchus contortus. In vivo anthelmintic effect was determined by faecal egg count reduction test in lambs. To this end, 18 lambs were divided into three groups (low tannin, high tannin and control). The lambs of low and high tannin groups were fed diets containing 2 and 3% CT while the control group was fed on diets without CT. In vitro trials showed a dose-dependent inhibition of nematode egg hatching; whereas, there was no effect of CT on adult H. contortus. In vivo trials indicated reduction in faecal egg counts in lambs fed diets containing CT. Feed intake and nutrient digestibility of CT-fed sheep was lower and nitrogen balance was higher as compared to control. Maximum weight gain was observed in animals fed diets containing 3% CT. The direct anthelmintic effect of CT, therefore, was evidenced by inhibited egg hatching; whereas, faecal egg counts reduction in sheep was through improved nutrient utilization.

  3. Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1991-01-01

    The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.

  4. Scale effect on dropwise condensation on superhydrophobic surfaces.

    PubMed

    Lo, Ching-Wen; Wang, Chi-Chuan; Lu, Ming-Chang

    2014-08-27

    Micro/nano (two-tier) structures are often employed to achieve superhydrophobicity. In condensation, utilizing such a surface is not necessarily advantageous because the macroscopically observed Cassie droplets are usually in fact partial Wenzel in condensation. The increase in contact angle through introducing microstructures on such two-tier roughened surfaces may result in an increase in droplet departure diameter and consequently deteriorate the performance. In the meantime, nanostructure roughened surfaces could potentially yield efficient shedding of liquid droplets, whereas microstructures roughened surfaces often lead to highly pinned Wenzel droplets. To attain efficient shedding of liquid droplets in condensation on a superhydrophobic surface, a Bond number (a dimensionless number for appraising dropwise condensation) and a solid-liquid fraction smaller than 0.1 and 0.3, respectively, are suggested.

  5. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  6. Holographic Schwinger effect and chiral condensate in SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Ishihara, Masafumi

    2016-09-01

    We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the SU( N c ) SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for {N}=2 SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four fermi coupling is evaluated in the confinement theory.

  7. Holographic Schwinger effect and chiral condensate in SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Ishihara, Masafumi

    2016-09-01

    We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the SU( N c ) SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for N=2 SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four fermi coupling is evaluated in the confinement theory.

  8. Quark Gluon Plasma

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.

  9. Quark Gluon Plasma

    SciTech Connect

    Lincoln, Don

    2015-05-07

    Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.

  10. Resummation and the gluon damping rate in hot QCD

    SciTech Connect

    Pisarski, R.D.

    1990-08-01

    At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs.

  11. Finite temperature effects in Bose-Einstein condensed dark matter halos

    SciTech Connect

    Harko, Tiberiu; Madarassy, Enikö J.M. E-mail: eniko.madarassy@physics.uu.se

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates.

  12. Impact of nonlinear effective interactions on group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar

    2016-09-01

    We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.

  13. Persistent Superfluid Flow Arising from the He-McKellar-Wilkens Effect in Molecular Dipolar Condensates.

    PubMed

    Wood, A A; McKellar, B H J; Martin, A M

    2016-06-24

    We show that the He-McKellar-Wilkens effect can induce a persistent flow in a Bose-Einstein condensate of polar molecules confined in a toroidal trap, with the dipolar interaction mediated via an electric dipole moment. For Bose-Einstein condensates of atoms with a magnetic dipole moment, we show that although it is theoretically possible to induce persistent flow via the Aharonov-Casher effect, the strength of the electric field required is prohibitive. We also outline an experimental geometry tailored specifically for observing the He-McKellar-Wilkens effect in toroidally trapped condensates. PMID:27391706

  14. Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the Bc* meson mass

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.

    2016-04-01

    We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .

  15. The effect of surface wettability on water vapor condensation in nanoscale

    PubMed Central

    Niu, D.; Tang, G. H.

    2016-01-01

    The effect of surface wettability on condensation heat transfer in a nanochannel is studied with the molecular dynamics simulations. Different from the conventional size, the results show that the filmwise mode leads to more efficient heat transfer than the dropwise mode, which is attributed to a lower interfacial thermal resistance between the hydrophilic surface and the condensed water compared with the hydrophobic case. The observed temperature jump at the solid-liquid surface confirms that the hydrophilic properties of the solid surface can suppress the interfacial thermal resistance and improve the condensation heat transfer performance effectively. PMID:26754316

  16. The effect of surface wettability on water vapor condensation in nanoscale

    NASA Astrophysics Data System (ADS)

    Niu, D.; Tang, G. H.

    2016-01-01

    The effect of surface wettability on condensation heat transfer in a nanochannel is studied with the molecular dynamics simulations. Different from the conventional size, the results show that the filmwise mode leads to more efficient heat transfer than the dropwise mode, which is attributed to a lower interfacial thermal resistance between the hydrophilic surface and the condensed water compared with the hydrophobic case. The observed temperature jump at the solid-liquid surface confirms that the hydrophilic properties of the solid surface can suppress the interfacial thermal resistance and improve the condensation heat transfer performance effectively.

  17. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  18. The effect of surface wettability on water vapor condensation in nanoscale.

    PubMed

    Niu, D; Tang, G H

    2016-01-12

    The effect of surface wettability on condensation heat transfer in a nanochannel is studied with the molecular dynamics simulations. Different from the conventional size, the results show that the filmwise mode leads to more efficient heat transfer than the dropwise mode, which is attributed to a lower interfacial thermal resistance between the hydrophilic surface and the condensed water compared with the hydrophobic case. The observed temperature jump at the solid-liquid surface confirms that the hydrophilic properties of the solid surface can suppress the interfacial thermal resistance and improve the condensation heat transfer performance effectively.

  19. Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size.

    PubMed

    Nguyen, Toan T

    2016-02-14

    The problem of DNA- DNA interaction mediated by divalent counterions is studied using a generalized grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- and tetra-valent counterions are shown to easily condense free DNA molecules in solution into toroidal bundles, the situation with divalent counterions is not as clear cut. Some divalent counterions like Mg(+2) are not able to condense free DNA molecules in solution, while some like Mn(+2) can condense them into disorder bundles. In restricted environment such as in two dimensional system or inside viral capsid, Mg(+2) can have strong effect and able to condense them, but the condensation varies qualitatively with different system, different coions. It has been suggested that divalent counterions can induce attraction between DNA molecules but the strength of the attraction is not strong enough to condense free DNA in solution. However, if the configuration entropy of DNA is restricted, these attractions are enough to cause appreciable effects. The variations among different divalent salts might be due to the hydration effect of the divalent counterions. In this paper, we try to understand this variation using a very simple parameter, the size of the divalent counterions. We investigate how divalent counterions with different sizes can lead to varying qualitative behavior of DNA condensation in restricted environments. Additionally, a grand canonical Monte-Carlo method for simulation of systems with two different salts is presented in detail.

  20. Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan T.

    2016-02-01

    The problem of DNA- DNA interaction mediated by divalent counterions is studied using a generalized grand-canonical Monte-Carlo simulation for a system of two salts. The effect of the divalent counterion size on the condensation behavior of the DNA bundle is investigated. Experimentally, it is known that multivalent counterions have strong effect on the DNA condensation phenomenon. While tri- and tetra-valent counterions are shown to easily condense free DNA molecules in solution into toroidal bundles, the situation with divalent counterions is not as clear cut. Some divalent counterions like Mg+2 are not able to condense free DNA molecules in solution, while some like Mn+2 can condense them into disorder bundles. In restricted environment such as in two dimensional system or inside viral capsid, Mg+2 can have strong effect and able to condense them, but the condensation varies qualitatively with different system, different coions. It has been suggested that divalent counterions can induce attraction between DNA molecules but the strength of the attraction is not strong enough to condense free DNA in solution. However, if the configuration entropy of DNA is restricted, these attractions are enough to cause appreciable effects. The variations among different divalent salts might be due to the hydration effect of the divalent counterions. In this paper, we try to understand this variation using a very simple parameter, the size of the divalent counterions. We investigate how divalent counterions with different sizes can lead to varying qualitative behavior of DNA condensation in restricted environments. Additionally, a grand canonical Monte-Carlo method for simulation of systems with two different salts is presented in detail.

  1. Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie

    2016-06-01

    Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.

  2. Josephson Effect in Trapped Spin-orbit Coupled Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Tang, Wai Ho

    Spin-orbit coupling (SOC) has given rise to many novel states of matter including topological insulators and superconductors. Recent experimental realization of SOC in neutral cold atom systems have opened a new avenue to study its effects in Bose-Einstein condensate. In this study, we discuss the Josephson-like mode in the spin-orbit coupled condensate, and study its decoherence due to thermal effect. We discuss experimental implications of our results.

  3. Modifying effect of tungsten on vacuum condensates of iron

    NASA Astrophysics Data System (ADS)

    Barmin, A. E.; Sobol', O. V.; Zubkov, A. I.; Mal'tseva, L. A.

    2015-07-01

    Laws of the structure formation, as well as the strength properties and thermal stability of vacuum condensates of the Fe-W system have been studied. It has been found that the alloying of iron foils with tungsten to 1 at % makes it possible to disperse the grained structure of the condensates to nanometric dimensionality and to markedly enhance their strength properties and recrystallization temperature. Thus, the foils containing ˜0.8% tungsten and grains of about 50 nm in size exhibit the hardness 5.5 GPa and recrystallization temperature 800°C. These results can be used to devise compositions of the steels designed for subsequently obtaining high-strength and thermostable nanostructural states.

  4. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  5. A theory of dropwise condensation at large subcooling including the effect of the sweeping

    NASA Astrophysics Data System (ADS)

    Yamali, C.; Merte, H., Jr.

    The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum.

  6. Bose-Einstein condensation of magnons pumped by the bulk spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Tserkovnyak, Yaroslav; Bender, Scott A.; Duine, Rembert A.; Flebus, Benedetta

    2016-03-01

    We propose inducing Bose-Einstein condensation of magnons in a magnetic insulator by a heat flow oriented toward its boundary. At a critical heat flux, the oversaturated thermal gas of magnons accumulated at the boundary precipitates the condensate, which then grows gradually as the thermal bias is dialed up further. The thermal magnons thus pumped by the magnonic bulk (spin) Seebeck effect must generally overcome both the local Gilbert damping associated with the coherent magnetic dynamics as well as the radiative spin-wave losses toward the magnetic bulk, in order to achieve the threshold of condensation. We quantitatively estimate the requisite bias in the case of the ferrimagnetic yttrium iron garnet, discuss different physical regimes of condensation, and contrast it with the competing (so-called Doppler-shift) bulk instability.

  7. Probing the Gluon Self-Interaction in Light Mesons

    SciTech Connect

    Fischer, Christian S.; Williams, Richard

    2009-09-18

    We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.

  8. Non-equilibrium effects on the chemistry of nebular condensates - Implications for the planets and asteroids

    NASA Technical Reports Server (NTRS)

    Blander, M.

    1979-01-01

    Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.

  9. Effect of interfacial phenomena on dewetting in dropwise condensation.

    PubMed

    Gokhale, Shripad J; Plawsky, Joel L; Wayner, Peter C

    2003-07-01

    Image-analyzing interferometry was used to investigate the dynamics of the dewetting meniscus of a partially wetting fluid on a modified quartz surface during dropwise condensation. The vivid difference in the behavior of the retracting meniscus with respect to its variation in apparent contact angle and curvature after the merger of the drop with the meniscus was found to depend on the wettability of the surface. On the hydroxylated quartz surface, the meniscus shed mass during retraction. The dewetting velocity decreased with time. On a slightly hydrophobic quartz surface, the meniscus showed a curvature gradient in the axial direction during drop merger and that gradient decreased as the meniscus moved towards the corner. The dewetting of the meniscus is discussed using the interfacial concepts of spreading and the Kelvin-Clapeyron phase change model.

  10. Radiative dark-bright instability and the critical Casimir effect in DQW exciton condensates

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Özgün, Ege

    2011-07-01

    It is already well known that radiative interband interaction in the excitonic normal liquid in semiconducting double quantum wells is responsible for a negligible splitting between the energies of the dark and bright excitons enabling us to consider a four fold spin degeneracy. This has also lead many workers to naively consider the same degeneracy in studying the condensate. On the other hand, the non-perturbative aspects of this interaction in the condensed phase, e.g. its consequences on the order parameter and the dark-bright mixture in the ground state have not been explored. In this work, we demonstrate that the ground state concentrations of the dark and the bright exciton condensates are dramatically different beyond a sharp interband coupling threshold where the contribution of the bright component in the ground state vanishes. This shows that the effect of the radiative interband interaction on the condensate is nonperturbative. We also observe in the free energy a discontinuous derivative with respect to the layer separation at the entrance to the condensed phase, indicating a strong critical Casimir force. An estimate of its strength shows that it is measurable. Measuring the Casimir force is challenging, but at the same time it has a conclusive power about the presence of the long sought for condensed phase.

  11. Nonperturbative study of the four gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, D.; Ibañez, D.; Papavassiliou, J.

    2014-09-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.

  12. Shining a gluon beam through quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Ho, Ying-Yu; Rajagopal, Krishna

    2012-06-01

    We compute the energy density radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of strongly coupled radiation whose angular distribution has been characterized and is very similar to that of synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of momenta ˜q≫πT is attenuated rapidly, over a distance ˜q1/3(πT)-4/3 in a plasma with temperature T. As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with momenta ≲πT. Presumably these sound waves would thermalize in the plasma if they were not hit soon after their production by the next pulse of gluons from the lighthouselike rotating quark. At larger and larger q, the trailing sound wave becomes less and less prominent. The outward-going beam of gluon radiation itself shows no tendency to spread in angle or to shift toward larger wavelengths, even as it is completely attenuated. In this regard, the behavior of the beam of gluons which we analyze is reminiscent of the behavior of jets produced in heavy ion collisions at the LHC which lose a significant fraction of their energy without appreciable change in their angular distribution or their momentum distribution as they plow through the strongly coupled quark-gluon plasma produced in these collisions.

  13. Gluon propagators and center vortices in gluon plasma

    SciTech Connect

    Chernodub, M. N.; Nakagawa, Y.; Nakamura, A.; Saito, T.; Zakharov, V. I.

    2011-06-01

    We study electric and magnetic components of the gluon propagators in quark-gluon plasma in terms of center vortices by using a quenched simulation of SU(2) lattice theory. In the Landau gauge, the magnetic components of the propagators are strongly affected in the infrared region by removal of the center vortices, while the electric components are almost unchanged by this procedure. In the Coulomb gauge, the time-time correlators, including an instantaneous interaction, also have an essential contribution from the center vortices. As a result, one finds that magnetic degrees of freedom in the infrared region couple strongly to the center vortices in the deconfinement phase.

  14. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    NASA Astrophysics Data System (ADS)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  15. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    SciTech Connect

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Théberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 μs. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  16. Effects of pH on Oxaliplatin-Induced Condensation of Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Yan; Ji, Chao; Liu, Yu-Ru; Li, Wei; Li, Hui; Dou, Shuo-Xing; Wang, Wei-Chi; Zhang, Ling-Yun; Xie, Ping; Wang, Peng-Ye

    2014-02-01

    By using magnetic tweezers, atomic force microscope and mass spectrometry, we study the effects of pH on oxaliplatin-induced DNA condensation, the DNA persistence length, the amounts of micro-loops and of oxaliplatin bound to DNA. It is found that the DNA condensation degree, the amounts of micro-loops and of oxaliplatin bound to DNA increase with the decrease in the pH value while the DNA persistence length has an opposite behavior. The observed effects may be related to the drug resistance of cancer cells.

  17. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  18. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  19. Bose-Einstein condensates in strong electric fields: Effective gauge potentials and rotating states

    SciTech Connect

    Kailasvuori, J.M.; Hansson, T.H.; Kavoulakis, G.M.

    2002-11-01

    Magnetically trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms acquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an electric field, there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.

  20. Condensates in quantum chromodynamics and the cosmological constant

    PubMed Central

    Brodsky, Stanley J.; Shrock, Robert

    2011-01-01

    Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  1. Ghost-gluon coupling, power corrections, and {Lambda}{sub MS} from twisted-mass lattice QCD at N{sub f}=2

    SciTech Connect

    Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.

    2010-08-01

    We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.

  2. Control of a Bose-Einstein condensate by dissipation: Nonlinear Zeno effect

    SciTech Connect

    Shchesnovich, V. S.; Konotop, V. V.

    2010-05-15

    We show that controlled dissipation can be used as a tool for exploring fundamental phenomena and managing mesoscopic systems of cold atoms and Bose-Einstein condensates. Even the simplest boson-Josephson junction, that is, a Bose-Einstein condensate in a double-well trap, subjected to removal of atoms from one of the two potential minima allows one to observe such phenomena as the suppression of losses and the nonlinear Zeno effect. In such a system the controlled dissipation can be used to create desired macroscopic states and implement controlled switching among different quantum regimes.

  3. A simple modelling of mass diffusion effects on condensation with noncondensable gases for the CATHARE Code

    SciTech Connect

    Coste, P.; Bestion, D.

    1995-09-01

    This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.

  4. Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects

    NASA Astrophysics Data System (ADS)

    Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.

    2016-07-01

    The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and 0.06 fm corresponding to volumes of ˜(13 fm )4 and ˜(8 fm )4 , respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns the strong coupling constant αs(p2), as defined from gluon and ghost two-point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ˜1 GeV .

  5. QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC

    NASA Astrophysics Data System (ADS)

    Caola, Fabrizio; Dowling, Matthew; Melnikov, Kirill; Röntsch, Raoul; Tancredi, Lorenzo

    2016-07-01

    We compute next-to-leading order (NLO) QCD corrections to the production of two massive electroweak bosons in gluon fusion. We consider both the prompt production process gg → V V and the production mediated by an exchange of an s-channel Higgs boson, gg → H ∗ → V V . We include final states with both on- and off-shell vector bosons with leptonic decays. The gluonic production of vector bosons is a loop-induced process, including both massless and massive quarks in the loop. For gg → ZZ production, we obtain the NLO QCD corrections to the massive loops through an expansion around the heavy top limit. This approximation is valid below the top production threshold, giving a broad range of invariant masses between the Higgs production and the top production thresholds in which our results are valid. We explore the NLO QCD effects in gg → ZZ focusing, in particular, on the interference between prompt and Higgs-mediated processes. We find that the QCD corrections to the interference are large and similar in size to the corrections to both the signal and the background processes. At the same time, we observe that corrections to the interference change rapidly with the four-lepton invariant mass in the region around the ZZ production threshold. We also study the interference effects in gg → W + W - production where, due to technical limitations, we only consider contributions of massless loops. We find that the QCD corrections to the interference in this case are somewhat larger than those for either the signal or the background.

  6. Are gluons the whole story?

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    1991-01-01

    Models which attribute the high energy growth of total cross-sections to the increasing dominance of the gluon structure function at small x are shown to contradict either the Tevatron σ overlinepp measurement of the CERN S overlineppS data on the ratio of real to imaginary parts of the overlinepp forward amplitude. The origin of the difficulty is explained.

  7. Gluon polarization in the proton

    SciTech Connect

    Bass, Steven D.; Casey, Andrew; Thomas, Anthony W.

    2011-03-15

    We combine heavy-quark renormalization group arguments with our understanding of the nucleon's wave function to deduce a bound on the gluon polarization {Delta}g in the proton. The bound is consistent with the values extracted from spin experiments at COMPASS and RHIC.

  8. Investigating the Effectiveness of a POE-Based Teaching Activity on Students' Understanding of Condensation

    ERIC Educational Resources Information Center

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2012-01-01

    This article reports on the development of a Predict-Observe-Explain, POE-based teaching strategy to facilitate conceptual change and its effectiveness on student understanding of condensation. The sample consisted of 52 first-year students in primary science education department. Students' ideas were elicited using a test consisting of five probe…

  9. Torrefaction of almond shells: effects of torrefaction conditions on properties of solid and condensate products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almond shells were torrefied in a fixed bed reactor and their solid and condensate products were collected for analysis. A central composite design and response surface methodology were used to examine effects of torrefaction temperature and time on mass and energy yields of solid products as well a...

  10. Quark gluon bags as reggeons

    SciTech Connect

    Bugaev, K. A.; Petrov, V. K.; Zinovjev, G. M.

    2009-05-15

    The influence of the medium-dependent finite width of quark gluon plasma (QGP) bags on their equation of state is analyzed within an exactly solvable model. It is argued that the large width of the QGP bags not only explains the observed deficit in the number of hadronic resonances but also clarifies the reason why the heavy QGP bags cannot be directly observed as metastable states in a hadronic phase. The model allows us to estimate the minimal value of the width of QGP bags being heavier than 2 GeV from a variety of the lattice QCD data and get that the minimal resonance width at zero temperature is about 600 MeV, whereas the minimal resonance width at the Hagedorn temperature is about 2000 MeV. As shown, these estimates are almost insensitive to the number of the elementary degrees of freedom. The recent lattice QCD data are analyzed and it is found that in addition to the {sigma}T{sup 4} term the lattice QCD pressure contains T-linear and T{sup 4}lnT terms in the range of temperatures between 240 and 420 MeV. The presence of the last term in the pressure bears almost no effect on the width estimates. Our analysis shows that at high temperatures the average mass and width of the QGP bags behave in accordance with the upper bound of the Regge trajectory asymptotics (the linear asymptotics), whereas at low temperatures they obey the lower bound of the Regge trajectory asymptotics (the square root one). Since the model explicitly contains the Hagedorn mass spectrum, it allows us to remove an existing contradiction between the finite number of hadronic Regge families and the Hagedorn idea of the exponentially growing mass spectrum of hadronic bags.

  11. Interference effects in heavy Higgs production via gluon fusion in the singlet extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Maina, Ezio

    2015-06-01

    The measurements of the properties of the Higgs boson still leave room for a non minimal scalar sector. Extensions of the Standard Model typically involve multiple neutral Higgs fields which can interfere among themselves. We show that these interference effects can be substantial taking as example the one Higgs Singlet Model, the simplest renormalizable addition to the SM.

  12. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  13. Condensation model for the ESBWR passive condensers

    SciTech Connect

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  14. SUSY-QCD Effects in Top Quark Pair Production in Association with a Gluon at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Ming; Liu, Ning

    2015-08-01

    Given the null results of searches for new physics at the LHC, we investigate the one-loop effects SUSY QCD in the process e^ + e^ - \\to t\\bar tg at the ILC in Minimal Supersymmetric Standard Model (MSSM). We find that the relative SUSY-QCD corrections to the cross section of e^ + e^ - \\to t\\bar tg can maximally reach 6.5%(3.2%) at the ILC with \\sqrt s = 1000 GeV when m\\bar t1 = 313.4 GeV and m\\bar g = 500≤ft( {1500} \\right) GeV. Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11305049, 11275057, and 11405047, by Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20134104120002 and by the Startup Foundation for Doctors of Henan Normal University under Grant No. 11112

  15. Numerical studies of the effects of jet-induced mixing on liquid-vapor interface condensation

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun

    1989-01-01

    Numerical solutions of jet-induced mixing in a partially full cryogenic tank are presented. An axisymmetric laminar jet is discharged from the central part of the tank bottom toward the liquid-vapor interface. Liquid is withdrawn at the same volume flow rate from the outer part of the tank. The jet is at a temperature lower than the interface, which is maintained at a certain saturation temperature. The interface is assumed to be flat and shear-free and the condensation-induced velocity is assumed to be negligibly small compared with radial interface velocity. Finite-difference method is used to solve the nondimensional form of steady state continuity, momentum, and energy equations. Calculations are conducted for jet Reynolds numbers ranging from 150 to 600 and Prandtl numbers ranging from 0.85 to 2.65. The effects of above stated parameters on the condensation Nusselt and Stanton numbers which characterize the steady-state interface condensation process are investigated. Detailed analysis to gain a better understanding of the fundamentals of fluid mixing and interface condensation is performed.

  16. Low-momentum ghost dressing function and the gluon mass

    SciTech Connect

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Gomez, M. E.; Rodriguez-Quintero, J.

    2010-09-01

    We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q{sup 2}). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.

  17. Dielectric effects at a magnetic Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Povarov, Kirill; Reichert, Aaron; Wulf, Erik; Zheludev, Andrey

    In the presence of magnetoelectric coupling one can expect non-trivial dielectric properties at a magnetic quantum phase transition. A ``toy model'' here is a spin spiral undergoing a field-induced transition into a quantum-disordered phase. In the incommensurate phase the in-plane spin rotational symmetry is protected, making the analogy between the magnetic long-range ordering and BEC exact, but the spin spiral may also host an electric polarization complicating the picture. We have experimentally studied this transition in the spin tube material Sul-Cu2Cl4 to understand if it can be described as a magnetic BEC. We have found that indeed it can. Dielectric spectroscopy results combined with calorimetric measurements, clearly show the absence of polarization fluctuations in the disordered phase down to the very critical point. At the same time the ordered phase shows a huge nonlinearity in dielectric permittivity even for small electric fields. The phase boundary shows beautiful consistency with the 3D BEC universality class. We conclude, that although magnetoelectric coupling does not alter the nature of the transition, it gives rise to complex magnetoelectric effects in the helimagnetically ordered phase. This work was supported by the Swiss National Science Foundation, Division 2.

  18. What is the effective molecular polarizability of water in condensed phases?

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochuan; Lu, Deyu

    Electronic polarization plays a crucial role in determining the structural and dynamical properties of water with different boundary conditions. Although it is well known that the molecular polarization in condensed phases behaves substantially differently from that in the vacuum due to the intermolecular interaction, these environmental effects have not been fully understood from first principles methods. As a result, how to rigorously define and calculate the effective molecular polarizability of a water molecule in different chemical environments remains an open question. The answer to this question not only improves our fundamental understanding of water, but also has immediate practical impact on computational modeling of water, e.g, through an accurate polarizable force field model. A main challenge to this puzzle arises from the intrinsic non-local nature of the electronic susceptibility.Recently we developed an ab initio local dielectric response theory [arxiv 1508.03563] that partitions dielectric response in real space based on a Wannier representation. In this work we apply this method to compute the effective molecular polarizability of water in the condensed phase, and discuss how the effective molecular polarizability evolves from gas phase to the condensed phase. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  19. Cooling through quantum criticality and many-body effects in condensed matter and cold gases

    NASA Astrophysics Data System (ADS)

    Wolf, Bernd; Honecker, Andreas; Hofstetter, Walter; Tutsch, Ulrich; Lang, Michael

    2014-10-01

    This article reviews some recent developments for new cooling technologies in the fields of condensed matter physics and cold gases, both from an experimental and theoretical point of view. The main idea is to make use of distinct many-body interactions of the system to be cooled which can be some cooling stage or the material of interest itself, as is the case in ultracold gases. For condensed matter systems, we discuss magnetic cooling schemes based on a large magnetocaloric effect as a result of a nearby quantum phase transition and consider effects of geometrical frustration. For ultracold gases, we review many-body cooling techniques, such as spin-gradient and Pomeranchuk cooling, which can be applied in the presence of an optical lattice. We compare the cooling performance of these new techniques with that of conventional approaches and discuss state-of-the-art applications.

  20. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  1. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.

  2. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  3. The quark-gluon vertex in Landau gauge bound-state studies

    NASA Astrophysics Data System (ADS)

    Williams, Richard

    2015-05-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.

  4. Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion.

    PubMed

    Yamagata, Y; Inomata, K

    1997-08-01

    The previously reported condensation reaction of glycylglycine with trimetaphosphate (Yamanaka et al., 1988) was reinvestigated and shown to be catalyzed by magnesium ion. Aqueous solutions containing glycylglycine (0.5 M), trimetaphosphate (0.5 M) and magnesium chloride (0.5 M) were incubated at 38 degrees C at pH 4, 5, 6, 7 and 8. After incubation for ten days at pH 5, the maximum yields of tetraglycine and hexaglycine as condensation products were found to be about 12 and 1.4%, respectively. This result indicated the presence of a considerable catalytic effect of magnesium ion compared with the maximum yield of about 2% for tetraglycine and approximately 0% for hexaglycine in the absence of magnesium ion. PMID:11536827

  5. Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant

    SciTech Connect

    Luangdilok, W.; Bennett, R.B.

    1995-05-01

    A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.

  6. Dynamic effects of a Feshbach resonance on Bragg scattering from a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sahlberg, Catarina E.; Ballagh, R. J.; Gardiner, C. W.

    2013-04-01

    We present a theoretical model for Bragg scattering from a Bose-Einstein condensate (BEC) in the vicinity of a magnetic Feshbach resonance, using a two-c-field formalism, one c field for the atom and the other for a molecule formed of two atoms. We use this model to numerically simulate an experiment [Papp , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.135301 101, 135301 (2008)] investigating the effects of strong interactions on the Bragg spectrum from a 85Rb BEC. Results from these simulations and from our previous calculations using an atom-molecule Bogoliubov approach are in very good quantitative agreement with the experimental results, confirming the importance of the resonance bound state in the dynamics of the condensate for fast experiments like Bragg scattering.

  7. The Dynamics of Partial Cavities and Effect of Non-Condensable Gas

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo A.; Ganesh, Harish; Ceccio, Steven L.

    2015-11-01

    Partial cavitation is encountered in a variety of common applications, from fuel injectors to lifting surfaces, and in general it has detrimental effects on the system wear and performance. Partial cavities undergoing auto-oscillation can cause large pressure oscillations, unsteady hydrodynamic loading, and significant noise. In the present study, experiments were conducted focusing on the dynamics of shedding cavities forming in a canonical geometry (downstream of a wedge apex). The inlet cavitation number was fixed at 2.0 and the Reynolds number based on the hydraulic diameter was 6x105. The effects of dissolved gas content and of non-condensable gas injection into the cavity were carefully studied utilizing dynamic pressure transducers and x-ray densitometry. Gas was injected either immediately downstream of the wedge's apex or further downstream into mid-cavity. The gas injected near the wedge apex was found to end up in the separated shear layer, and relatively miniscule amounts of gas were enough to significantly reduce the vapor production rate and dampen the cavity's auto-oscillations. In addition, the results suggest that non-condensable gas injection can cause the shedding mechanism to switch from one dominated by condensation shock to one dominated by re-entrant liquid jet. Work supported by the Office of Naval Research Grant N00014-14-1-0292, program manager Dr. Ki-Han Kim.

  8. Synchrotron contribution to photon emission from quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Zakharov, B. G.

    2016-08-01

    We study the inuence of the magnetic field on the photon emission from the quark-gluon plasma created in AA collisions. We find that even for very optimistic assumption on the magnitude of the magnetic field for noncentral AA collisions the effect of magnetic field is very small.

  9. Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang

    2016-05-01

    DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College

  10. Condensing and Fluidizing Effects of Ganglioside GM1 on Phospholipid Films

    PubMed Central

    Frey, Shelli L.; Chi, Eva Y.; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C.

    2008-01-01

    Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule. PMID:18192361

  11. Relation between ac Josephson effect and double-well Bose-Einstein-condensate oscillations

    SciTech Connect

    Radzihovsky, Leo; Gurarie, Victor

    2010-06-15

    In this article we comment on the relation between the ac Josephson effect and the coherent oscillations of a Bose-Einstein condensate confined to a double-well potential. The goal is to elucidate the extent to which the latter is a realization of the former. We detail the correspondence between the two oscillation frequencies, that emerges in the high occupation limit of the double-well potential. We show that in the latter thermodynamic limit the effective one-particle interwell coupling vanishes with the system size, leading to oscillation frequency that depends only on the interwell imbalance, consistent with the ac Josephson effect frequency.

  12. Relation between ac Josephson effect and double-well Bose-Einstein-condensate oscillations

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Gurarie, Victor

    2010-06-01

    In this article we comment on the relation between the ac Josephson effect and the coherent oscillations of a Bose-Einstein condensate confined to a double-well potential. The goal is to elucidate the extent to which the latter is a realization of the former. We detail the correspondence between the two oscillation frequencies, that emerges in the high occupation limit of the double-well potential. We show that in the latter thermodynamic limit the effective one-particle interwell coupling vanishes with the system size, leading to oscillation frequency that depends only on the interwell imbalance, consistent with the ac Josephson effect frequency.

  13. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats.

    PubMed

    Beena, A; Prasad, V

    1997-08-01

    The possible hypocholesterolaemic properties of milk and fermented milk products have been investigated in groups of albino rats given a basal diet, basal diet plus cholesterol, and basal diet plus cholesterol together with whole milk or standard or bifidus yogurt. The yogurts were fortified with skim milk powder, condensed whey or lactose-hydrolysed condensed whey. After 30 d, triacylglycerols, total cholesterol, HDL-cholesterol and LDL-cholesterol were measured in serum. Whole milk and ordinary yogurt had no hypocholesterolaemic effect, but standard yogurt containing lactose-hydrolysed condensed whey and all bifidus yogurts lowered serum cholesterol. In general, yogurts changed HDL-cholesterol little, but tended to raise triacylglycerols. There was marked lowering of LDL-cholesterol in rats given either type of yogurt fortified with whey proteins. This study has demonstrated in a rat model that bifidus yogurts and yogurts fortified with whey proteins can reduce total and LDL-cholesterol, and suggests that if they have the same effect in human subjects they have potential value in cholesterol-lowering diets.

  14. Tensor meson production in proton-proton collisions from the color glass condensate

    SciTech Connect

    Fillion-Gourdeau, Francois; Jeon, Sangyong

    2008-05-15

    We compute the inclusive cross section of f{sub 2} tensor-meson production in proton-proton collisions at high energy. We use an effective theory inspired from the tensor-meson dominance hypothesis that couples gluons to f{sub 2} mesons. We compute the differential cross section in the k{sub perpendicular} factorization and in the color glass condensate formalism in the low density regime. We show that the two formalisms are equivalent for this specific observable. Finally, we study the phenomenology of f{sub 2} mesons by comparing theoretical predictions of different parametrizations of the unintegrated gluon distribution function. We find that f{sub 2}-meson production is another observable that can be used to put constraints on these distributions.

  15. Ordering Multiple Soft Gluon Emissions.

    PubMed

    Ángeles Martínez, René; Forshaw, Jeffrey R; Seymour, Michael H

    2016-05-27

    We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full color structure and both the real and imaginary contributions to the amplitude. PMID:27284651

  16. The Effect of Disinfection by Spray Atomization on Dimensional Accuracy of Condensation Silicone Impressions

    PubMed Central

    Saleh Saber, Fariba; Abolfazli, Nader; Kohsoltani, Maryam

    2010-01-01

    Background and aims The condensation silicone impression materials are available, but there is little knowledge of their accuracy after disinfection. The objective of this study was to evaluate the effect of the disinfection by spray atomization on dimensional accuracy of condensation silicone impressions. Materials and methods Impressions were made on a stainless steel master model containing a simulated two complete crown preparation with an edentulous space interposed using Spidex® and Rapid® impression materials. 44 impressions were made with each material, of which 16 were disinfected with 5.25% sodium hypochlorite, 16 were disinfected with 10% iodophor and 12 were not disinfected. Three dimensional measurements of working casts, including interpreparation distance, height, and diameter, were calculated using a measuring microscope graduated at 0.001 mm. Dimensional changes (mm) between the disinfected and non-disinfected working casts were compared. One-way analysis of variance (ANOVA) was employed to analyze the data (α=0.05). Results Disinfection of each condensation silicone material by spraying atomization with two different disinfectant material resulted in significant change in interpreparation distance (p<0.05). Changes in height and diameter were only significant in Spidex® impressions (p<0.05). Conclusion Significant changes in the mean dimensions were seen as a result of disinfection by spraying; however, the dimensional changes do not seem great enough to cause critical positional distortion of teeth when fixed partial denture restorations are made. PMID:23346339

  17. Effect of makeup water properties on the condenser fouling in power planr cooling system

    SciTech Connect

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

  18. Effects of Adding Nanoparticles on Boiling and Condensing Heat Transfer inside a horizontal round tube

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen; Sadoughi, Mohammadkazem; Shariatmadar, Hamed; Akhavan-Behabadi, Mohammad Ali

    2015-11-01

    An experimental investigation is performed on heat transfer evaluation of a nano-refrigerant flow during condensation and evaporation inside a horizontal round tube. Experiments are carried out for three working fluid types including: i) pure refrigerant (R600a); ii) refrigerant/lubricant (R600a/oil); and iii) nano-refrigerant: refrigerant/lubricant/nanoparticles (R600a/oil/CuO). Nanoparticles are added to the lubricant and their mixture is mixed with pure refrigerant. Therefore, nano-refrigerants (R600a/oil/CuO) are prepared by dispersing CuO nanoparticles with different fractions of 0.5%, 1% and 1.5% in the baseline mixture (R600a/oil). Effects of different factors including vapor quality, mass flux, and nanoparticles on the heat transfer coefficient are examined for both of condensation and evaporation flows, separately. The results shows that maximum heat transfer augmentation of 79% and 83% are achieved by using the refrigerant/lubricant/nanoparticles mixture, in comparison with the pure refrigerant case in condensation and evaporation, respectively which are occurred for nano-refrigerant with 1.5% mass fraction in both of them.

  19. Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum

    PubMed Central

    Williams, Andrew R.; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M.

    2014-01-01

    Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of

  20. The effect of spraying different disinfectants on condensational silicone impressions; an in vitro study

    PubMed Central

    Badrian, Hamid; Davoudi, Amin; Molazem, Meysam; Zare, Mohammad Hossein

    2015-01-01

    Background: Dentistry equipment are exposed to different types of pathogenic microorganisms. The aim of this study was to investigate the effect of spraying three different types of disinfectants on condensational silicones after 5 and 10 min. Materials and Methods: Totally, 66 circular samples of condensational silicone impression materials of 1 cm diameter and 2 mm thickness were contaminated by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans fungus. Except for control samples, all of them were disinfected with sodium hypochlorite (NaOCl) 0.525%, Deconex and Epimax by spraying method. Afterward, they kept in plastic bags with humid rolled cotton for 5 and 10 min. In order to isolate microbiotas, the samples were immersed in 2% trypsin for 1 h and diluted with normal saline in a portion of 1, 1/2, and 1/4. The trypsin suspensions were transferred to culture plates for incubation and colony-forming unit assay. The data were analyzed by Mann–Whitney test and SPSS software version 16 at a significant level of 0.05. Results: There was a meaningful difference between disinfection effects of Epimax-Deconex for all mentioned microorganisms after 5 min (P = 0.034), and between disinfection effects of NaOCl 0.525%-Epimax for S. aureus (P = 0.043) and P. aeruginosa (P = 0.046) after 5 min. Furthermore, there was a meaningful difference between disinfection effects of Epimax-Deconex (P = 0.034) and NaOCl 0.525%-Epimax (P = 0.034) for P. aeruginosa after 10 min. Conclusion: Condensational silicone can be effectively disinfected by spraying tested three disinfecting agents. More specifically, Deconex showed the best results compared to the other agents. PMID:26929523

  1. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum.

    PubMed

    Williams, Andrew R; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M

    2014-01-01

    Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of

  2. Polariton condensates

    SciTech Connect

    Snoke, David; Littlewood, Peter

    2010-08-15

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid {sup 3}He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  3. HUNTING THE QUARK GLUON PLASMA.

    SciTech Connect

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high

  4. General Pade Effective Potential for Coulomb Problems in Condensed and Soft Matters

    NASA Astrophysics Data System (ADS)

    Quyen, B. L.; Mai, D. N.; Hoa, N. M.; Van, T. T. T.; Hoai, N. L.; Viet, N. A.

    2014-09-01

    Effective potentials for finding the ground states and physical configurations have essential meaning in many Coulomb problems of condensed and soft matters. The ordinary n-Pade approximation potentials define as the ratio of Pi(r)/Pi+1(r), where Pi(r) are the polynomials of i-th order of charge separation r, give quite good fit and agreement of calculation results and experimental data for Coulomb problems, where screening effects are not important or exchange photons still are massless. In this work we consider a general Pade effective potential by included a factor of exponential form, which could give more accurate results also for above mentioned cases. This general Pade effective potentials with analytical expressions were useful to perform analytical calculations, estimations and to reduce the amount of computational time for future investigations in condensed and soft matter topics. For example of soft matter problems, we study the case of MS2 virus, the general Pade potential gives much more correct results comparing with ordinary Pade approximation.

  5. Chaotic Josephson effects in two-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fang, Jianshu; Hai, Wenhua; Chong, Guishu; Xie, Qiongtao

    2005-04-01

    We discuss the chaotic Josephson effects in two weakly coupled Bose-Einstein condensates (BECs). The boson Josephson junction (BJJ) dynamics in BECs is governed by the two-mode Gross-Pitaevskii equation. We obtained a perturbed chaotic solution of the BJJ equation by using the direct perturbation technique. Theoretical analysis reveals that the stable oscillating orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the Poincaré sections in the equivalent phase space (φ,φ˙) sensitively depends on the system parameter and initial conditions. Therefore, we can control the transitions between chaos and order by adjusting these parameters and conditions.

  6. Effect of scattering lengths on the dynamics of a two-component Bose-Einstein condensate

    SciTech Connect

    Csire, Gabor; Apagyi, Barnabas

    2010-12-15

    We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs, stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark, and dark-dark solitons with our analytical prediction and with that of Painleve analysis of the dynamical equation. We demonstrate that tuning the interspecies scattering length away from the predicted value (keeping the intraspecies coupling fixed) breaks the stability of the soliton pairs.

  7. The role of boronic acids in accelerating condensation reactions of α-effect amines with carbonyls.

    PubMed

    Gillingham, Dennis

    2016-08-10

    A broad palette of bioconjugation reactions are available for chemical biologists, but an area that still requires investigation is high-rate constant reactions. These are indispensable in certain applications, particularly for in vivo labelling. Appropriately positioned boronic acids accelerate normally sluggish Schiff base condensations of α-effect nucleophiles by five orders of magnitude - providing a new entry to the rare set of reactions that have a rate constant above 100 M(-1) s(-1) under physiological conditions. I summarize here a number of recent reports, including work from my own group, and outline a mechanistic picture that explains the differing behaviour of seemingly similar substrate classes.

  8. Advances in SAW gas sensors based on the condensate-adsorption effect.

    PubMed

    Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang

    2011-01-01

    A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.

  9. Effects of selected water treatments and cathodic protection on corrosion and embrittlement of condenser tubes: Final report

    SciTech Connect

    Not Available

    1988-01-01

    This report summarizes the results of a three-year laboratory study investigating: (1) the interaction and effect of sulfide, dissolved oxygen, and temperature on the corrosion of copper alloy condenser tubes; (2) the effectiveness of selected cooling water treatments in mitigating sulfide-accelerated corrosion; (3) the effects of various parameters on the hydriding susceptibility of titanium tubing under cathodic protection conditions; and (4) the hydrogen embrittlement susceptibility of ferritic stainless steels under cathodic protection conditions. The selected cooling water treatments included ferrous sulfate, benzotriazole, sodium dimethyl dithiocarbamate, high molecular weight polyacrylamide, and Calgon CL-5. Much of the work was carried out utilizing seawater test loops designed to simulate condenser tube flow. The results of the study demonstrated that: (1) sulfide contamination of a copper alloy condenser tube can trigger rapid perforation of the tube; (2) ferrous sulfate treatement may be effective in mitigating sulfide-accelerated attack if initiated prior to and during any sulfide exposure; and (3) cathodic protection at high electronegative potentials will embrittle titanium and ferritic stainless steel condenser tubes. The report recommends further research directed at: (1) the long-term effectiveness of ferrous sulfate treatement in retarding sulfide-promoted pitting; (2) corrosion-accelerating mechanisms associated with chlorination and silt build-up; (3) an appropriate method for cleaning condenser tubes contaminated with a corrosion accelerant; (4) a more effective method of on-line monitoring of condenser tube corrosion; and (5) an update of recent electric utility experience concerning corrosion of copper alloy condenser tubes. 32 refs., 39 figs., 10 tabs.

  10. Calcium chloride effects on the glass transition of condensed systems of potato starch.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Katopo, Lita; Shanks, Robert; Kasapis, Stefan

    2016-05-15

    The effect of calcium chloride on the structural properties of condensed potato starch undergoing a thermally induced glass transition has been studied using dynamic mechanical analysis and modulated differential scanning calorimetry. Extensive starch gelatinisation was obtained by hot pressing at 120°C for 7 min producing materials that covered a range of moisture contents from 3.7% w/w (11% relative humidity) to 18.8% w/w (75% relative humidity). FTIR, ESEM and WAXD were also performed in order to elucidate the manner by which salt addition affects the molecular interactions and morphology of condensed starch. Experimental protocol ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of calcium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Highly reactive calcium ions form a direct interaction with starch to alter considerably its structural properties via an anti-plasticizing effect, as compared to the polymer-water matrix. PMID:26776036

  11. Calcium chloride effects on the glass transition of condensed systems of potato starch.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Katopo, Lita; Shanks, Robert; Kasapis, Stefan

    2016-05-15

    The effect of calcium chloride on the structural properties of condensed potato starch undergoing a thermally induced glass transition has been studied using dynamic mechanical analysis and modulated differential scanning calorimetry. Extensive starch gelatinisation was obtained by hot pressing at 120°C for 7 min producing materials that covered a range of moisture contents from 3.7% w/w (11% relative humidity) to 18.8% w/w (75% relative humidity). FTIR, ESEM and WAXD were also performed in order to elucidate the manner by which salt addition affects the molecular interactions and morphology of condensed starch. Experimental protocol ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of calcium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Highly reactive calcium ions form a direct interaction with starch to alter considerably its structural properties via an anti-plasticizing effect, as compared to the polymer-water matrix.

  12. Hydrodynamics of anisotropic quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  13. On the zero crossing of the three-gluon vertex

    NASA Astrophysics Data System (ADS)

    Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2016-10-01

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  14. Effect of condensed water on scanning near-field optical microscope measurement

    NASA Astrophysics Data System (ADS)

    Douas, M.; Serena, P. A.; Marqués, M. I.

    2013-11-01

    The relevance of the scanning near-field optical microscope (SNOM), for near-field characterization, is often shaded by the appearance of artifacts, especially when geometrical characterization is intended. Artifacts are related to many features such as the feedback system or the scanning mode. For non-vacuum environmental conditions, artifact sources may be related to tip geometry and the pollutants attached, either on the tip or on the studied surfaces, altering the optical image. As an environmental element, water vapor could be treated as a source for artifacts, but could also be used as a tool for chemical characterization of hydrophilic patches. Spontaneous meniscus formation between hydrophilic surfaces, such as the tip and the sample, may guide light from the tip to the sample, enhancing the transmitted signal. This study focuses on the effects that water condensation at the nanoscale has on the signals achieved by SNOM, combining two computational methods (Monte Carlo and finite difference time domain) in order to deal with light propagation through heterogeneous media and water condensation.

  15. Effect of Condensed Tannins on Bacterial Diversity and Metabolic Activity in the Rat Gastrointestinal Tract

    PubMed Central

    Smith, Alexandra H.; Mackie, Roderick I.

    2004-01-01

    The effect of dietary condensed tannins (proanthocyanidins) on rat fecal bacterial populations was ascertained in order to determine whether the proportion on tannin-resistant bacteria increased and if there was a change in the predominant bacterial populations. After 3 weeks of tannin diets the proportion of tannin-resistant bacteria increased significantly (P < 0.05) from 0.3% ± 5.5% to 25.3% ± 8.3% with a 0.7% tannin diet and to 47.2% ± 5.1% with a 2% tannin diet. The proportion of tannin-resistant bacteria returned to preexposure levels in the absence of dietary tannins. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations by denaturing gradient gel electrophoresis (DGGE). Posttreatment samples were generally still distinguishable from controls after 3.5 weeks. Sequence analysis of DGGE bands and characterization of tannin-resistant isolates indicated that tannins selected for Enterobacteriaceae and Bacteroides species. Dot blot quantification confirmed that these gram-negative bacterial groups predominated in the presence of dietary tannins and that there was a corresponding decrease in the gram-positive Clostridium leptum group and other groups. Metabolic fingerprint patterns revealed that functional activities of culturable fecal bacteria were affected by the presence of tannins. Condensed tannins of Acacia angustissima altered fecal bacterial populations in the rat gastrointestinal tract, resulting in a shift in the predominant bacteria towards tannin-resistant gram-negative Enterobacteriaceae and Bacteroides species. PMID:14766594

  16. Effect of Non-Condensable Gas Injection on Cavitation Dynamics of Partial Cavities

    NASA Astrophysics Data System (ADS)

    Mäkiharju, Simo A.; Ganesh, Harish; Ceccio, Steven L.

    2015-12-01

    Partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. The cavity dynamics were studied with and without injection of non-condensable gas into the cavity. Gas was injected directly into the cavitation region downstream of the wedge's apex, or into the recirculating region at mid cavity so that for the same amount of injected gas less ended up in the shear layer. It was found that relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapour production and dampen the auto oscillations, and the same amount of gas injected into the mid cavity would not have the same effect. The authors also examined whether the injected gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by reentrant jet.

  17. Gluon saturation in a saturated environment

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-15

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  18. Possibility of detecting triple gluon coupling and Adler-Bell-Jackiw anomaly in polarized deep inelastic scattering

    SciTech Connect

    Lam, C.S.; Li, B.A.

    1980-05-01

    A way to detect experimentally the existence of triple gluon coupling and the Adler-Bell-Jackiw anomaly is to measure the Q/sup 2/-dependence of polarized deep inelastic scattering. These effects lead to a ln ln Q/sup 2/ term which we calculate by introducing a new gluon operator in the Wilson expansion.

  19. The gluon Sivers distribution: Status and future prospects

    DOE PAGESBeta

    Boer, Daniël; Lorcé, Cédric; Pisano, Cristian; Zhou, Jian

    2015-06-28

    In this study, we review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p → πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function.

  20. The gastroprotective effects of Eugenia dysenterica (Myrtaceae) leaf extract: the possible role of condensed tannins.

    PubMed

    Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges

    2014-01-01

    We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.

  1. Glauber gluons in pion-induced Drell-Yan processes

    NASA Astrophysics Data System (ADS)

    Chang, Chun-peng; Li, Hsiang-nan

    2013-10-01

    We point out that the existence of Glauber gluons in the kT factorization theorem can account for the violation of the Lam-Tung relation, namely, the anomalous lepton angular distribution observed in pion-induced Drell-Yan processes. The emission of a final-state parton, that balances the lepton-pair transverse momentum, causes the responsible spin-transverse-momentum correlation in the Glauber-gluon background. It is argued that the Glauber effect is significant in the pion due to its unique role of being a Nambu-Goldstone boson and a qqbar bound state simultaneously. This mechanism is compared to other resolutions in the literature by means of vacuum effects and Boer-Mulders functions. We propose to discriminate the above resolutions by measuring the ppbar Drell-Yan process at GSI and J-PARC.

  2. J/{Psi} suppression as an evidence for quark gluon matter

    SciTech Connect

    Kharzeev, D.

    1998-08-10

    The J/{psi} suppression was originally proposed as a signature of the quark-gluon plasma. Strong suppression of J/{psi} production was indeed observed recently by the NA50 Collaboration at CERN SPS. Is it the first signature of a long-awaited quark-gluon matter, or just a peculiar combination of ''conventional'' effects acting together to produce the puzzling pattern observed experimentally? In this lecture, I am trying to summarize the existing theoretical explanations.

  3. Antifungal Activity of Condensed Tannins from Stryphnodendron adstringens: Effect on Candida tropicalis Growth and Adhesion Properties.

    PubMed

    Morey, Alexandre T; de Souza, Felipe C; Santos, Jussevania P; Pereira, Caibe A; Cardoso, Juscelio D; de Almeida, Ricardo S C; Costa, Marco A; de Mello, João C P; Nakamura, Celso V; Pinge-Filho, Phileno; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F

    2016-01-01

    Candida species are some of the most common causes of fungal infection worldwide. The limited efficacy of clinically available antifungals warrants the search for new compounds for treating candidiasis. This study evaluated the effect of condensed tannin-rich fraction (F2 fraction) of Stryphnodendron adstringens on in vitro and in vivo growth of Candida tropicalis, and on yeast adhesion properties. F2 exhibited a fungistatic effect with the minimum inhibitory concentration ranging from 0.5 to 8.0 μg/mL. A significant reduction in biofilm mass was observed after either pretreatment of planktonic cells for 2 h (mean reduction of 46.31±8.17%) or incubation during biofilm formation (mean reduction of 28.44±13.38%) with 4x MIC of F2. Prior exposure of planktonic cells to this F2 concentration also significantly decreased yeast adherence on HEp-2 cells (mean reduction of 43.13±14.29%), cell surface hydrophobicity (mean reduction of 25.89±10.49%) and mRNA levels of the genes ALST1-3 (2.9-, 1.8- and 1.8-fold decrease, respectively). Tenebrio molitor larvae, which are susceptible to C. tropicalis infection, were used for in vivo testing. Treatment with 128 and 256 μg/mL F2 significantly increased the survival of infected larvae. These results indicate a combined effect of F2 on inhibition of yeast growth and interference in yeast adhesion, which may contribute to the suppression of infection caused by C. tropicalis, thus reinforcing the potential of the condensed tannins from S. adstringens for the development of novel antifungal agents.

  4. Antifungal Activity of Condensed Tannins from Stryphnodendron adstringens: Effect on Candida tropicalis Growth and Adhesion Properties.

    PubMed

    Morey, Alexandre T; de Souza, Felipe C; Santos, Jussevania P; Pereira, Caibe A; Cardoso, Juscelio D; de Almeida, Ricardo S C; Costa, Marco A; de Mello, João C P; Nakamura, Celso V; Pinge-Filho, Phileno; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F

    2016-01-01

    Candida species are some of the most common causes of fungal infection worldwide. The limited efficacy of clinically available antifungals warrants the search for new compounds for treating candidiasis. This study evaluated the effect of condensed tannin-rich fraction (F2 fraction) of Stryphnodendron adstringens on in vitro and in vivo growth of Candida tropicalis, and on yeast adhesion properties. F2 exhibited a fungistatic effect with the minimum inhibitory concentration ranging from 0.5 to 8.0 μg/mL. A significant reduction in biofilm mass was observed after either pretreatment of planktonic cells for 2 h (mean reduction of 46.31±8.17%) or incubation during biofilm formation (mean reduction of 28.44±13.38%) with 4x MIC of F2. Prior exposure of planktonic cells to this F2 concentration also significantly decreased yeast adherence on HEp-2 cells (mean reduction of 43.13±14.29%), cell surface hydrophobicity (mean reduction of 25.89±10.49%) and mRNA levels of the genes ALST1-3 (2.9-, 1.8- and 1.8-fold decrease, respectively). Tenebrio molitor larvae, which are susceptible to C. tropicalis infection, were used for in vivo testing. Treatment with 128 and 256 μg/mL F2 significantly increased the survival of infected larvae. These results indicate a combined effect of F2 on inhibition of yeast growth and interference in yeast adhesion, which may contribute to the suppression of infection caused by C. tropicalis, thus reinforcing the potential of the condensed tannins from S. adstringens for the development of novel antifungal agents. PMID:26696018

  5. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  6. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices.

    PubMed

    Morsch, O; Müller, J H; Cristiani, M; Ciampini, D; Arimondo, E

    2001-10-01

    We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.

  7. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.

    2015-05-01

    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  8. D-meson enhancement in pp collisions at the LHC due to nonlinear gluon evolution

    SciTech Connect

    Dainese, A.; Vogt, R.; Bondila, M.; Eskola, K.J.; Kolhinen, V.J.

    2004-08-22

    When nonlinear effects on the gluon evolution are included with constraints from HERA, the gluon distribution in the free proton is enhanced at low momentum fractions, x {approx}< 0.01, and low scales, Q{sup 2} {approx}< 10 GeV{sup 2}, relative to standard, DGLAP-evolved, gluon distributions. Consequently, such gluon distributions can enhance charm production in pp collisions at center of mass energy 14 TeV by up to a factor of five at midrapidity, y {approx} 0, and transverse momentum p{sub T} {yields} 0 in the most optimistic case. We show that most of this enhancement survives hadronization into D mesons. Assuming the same enhancement at leading and next-to-leading order, we show that the D enhancement may be measured by D{sup 0} reconstruction in the K{sup -}{pi}{sup +} decay channel with the ALICE detector.

  9. Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts

    NASA Astrophysics Data System (ADS)

    Sirghi, L.

    2003-05-01

    A single nanoasperity contact in ambient air is usually wetted by capillary condensation of water vapor and is surrounded by a water meniscus. This phenomenon strongly affects the contact friction, not only by the effect of meniscus loading force (superficial tension and capillary forces), but also by a friction force that accounts for the energy loss in the meniscus movement along with the sliding contact. Occurrence of the water-meniscus-generated friction is experimentally proved by atomic force microscopy measurements of the tip-sample friction force at minimum possible external load (before pull-off). A qualitative explanation for the observed dependence of the friction force on air humidity and solid surface wettability is proposed.

  10. Impurity in a Bose-Einstein Condensate and the Efimov Effect

    NASA Astrophysics Data System (ADS)

    Levinsen, Jesper; Parish, Meera M.; Bruun, Georg M.

    2015-09-01

    We investigate the zero-temperature properties of an impurity particle interacting with a Bose-Einstein condensate (BEC), using a variational wave function that includes up to two Bogoliubov excitations of the BEC. This allows one to capture three-body Efimov physics, as well as to recover the first nontrivial terms in the weak-coupling expansion. We show that the energy and quasiparticle residue of the dressed impurity (polaron) are significantly lowered by three-body correlations, even for weak interactions where there is no Efimov trimer state in a vacuum. For increasing attraction between the impurity and the BEC, we observe a smooth crossover from atom to Efimov trimer, with a superposition of states near the Efimov resonance. We furthermore demonstrate that three-body loss does not prohibit the experimental observation of these effects. Our results thus suggest a route to realizing Efimov physics in a stable quantum many-body system for the first time.

  11. Investigation of Condensation/Clustering Effects on Rayleigh Scattering Measurements in a Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Tyler, Charles

    1996-01-01

    Rayleigh scattering, a nonintrusive measurement technique for the measurement of density in a hypersonic wind tunnel, is under investigation at Wright Laboratory's Mach 6 wind tunnel. Several adverse effects, i.e., extraneous scatter off walls and windows, hinder Rayleigh scattering measurements. Condensation and clustering of flow constituents also present formidable obstacles. Overcoming some of these difficulties, measurements have been achieved while the Mach 6 test section was pumped down to a vacuum, as well as for actual tunnel operation for various stagnation pressures at fixed stagnation temperatures. Stagnation pressures ranged from 0.69 MPa to 6.9 MPa at fixed stagnation temperatures of 511, 556, and 611 K. Rayleigh scatter results show signal levels much higher than expected for molecular scattering in the wind tunnel. Even with higher than expected signals, scattering measurements have been made in the flowfield of an 8-degree half-angle blunt nose cone with a nose radius of 1.5 cm.

  12. Statefinder Parameters for the Quantum Effective Yang-Mills Condensate Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Tong, Minglei; Zhang, Yang; Xia, Tianyang

    The quantum effective Yang-Mills condensate (YMC) dark energy model has some distinctive features so that it naturally solves the coincidence problem and, at the same time, is able to give an equation of state w crossing -1. In this work we further employ the statefinder pair (r,s), introduced by Sahni et al., to diagnose the YMC model for three cases: the noncoupling, the YMC decaying into matter only, and the YMC decaying into both matter and radiation. The trajectories (r,s) and (r,q), and the evolutions r(z) and s(z), are explicitly presented. It is found that the YMC model in all three cases has r ≃ 1 for z < 10 and s ≃ 0 for z < 5 with only small deviations, ≃ 0.02, quite close to the cosmological constant model (LCDM), but is obviously differentiated from other dark energy models, such as quiessence or kinessence.

  13. Effects of condensed tannins on anthocyanins and colour of authentic pomegranate (Punica granatum L.) juices.

    PubMed

    Türkyılmaz, Meltem; Ozkan, Mehmet

    2014-12-01

    This study was conducted to determine the effects of condensed tannins (CT) on anthocyanins (ACNs) and colour of pomegranate juice (PJ) samples obtained from nine registered varieties in Turkey. CT-catechins (CTCs) reactive to vanillin and phloroglucinol adducts of CT contents were determined. CTC and ACN contents of PJs highly depended on variety (p<0.01), and ranged from 31 to 155 mg/L juice and from 47 to 405 mg/L juice, respectively. As catechin-phloroglucinol content increased, ACN content also increased (r=0.866). Strong logarithmic correlation between the ratio of ACN contents to catechin-phloroglucinol contents and polymeric colour (PC) values of the samples was found (r=-0.822). When PC value of PJs was ⩾8% or ratio of ACN contents to catechin-phloroglucinol contents of PJs was ⩽2.82, ACN contents of the samples determined by spectrophotometric method were higher than those determined by HPLC.

  14. Effect of Fodder Tree Species with Condensed Tannin Contents on In vitro Methane Production.

    PubMed

    Vázquez, Ernestina Gutiérrez; Medina, Leonardo Hernández; Benavides, Liliana Márquez; Caratachea, Aureliano Juárez; Razo, Guillermo Salas; Burgos, Armin Javier Ayala; Rodríguez, Ruy Ortiz

    2016-01-01

    The objective was to evaluate the effect of fodder tree species (FTS) with condensed tannin contents: Cordia elaeagnoides, Platymiscium lasiocarpum, Vitex mollis, and Haematoxylon brasiletto, on in vitro methane (CH4) production at 24 h post incubation. The analysis was performed using the in vitro gas production technique, with three levels of inclusion/species: 600, 800, and 1,000 mg and with 4 replicates/species/level of inclusion. The substrate was incubated at 39°C, and the gas and CH4 production were recorded at 4, 8, 12, and 24 h post incubation. The data collected was analyzed through Pearson correlation, polinomial regression and fixed effects models. There were negative correlations between FTS-total gas volume (r = -0.40; p<0.001); FTS-volume of CH4 produced (r = -0.40; p<0.001) and between the inclusion level-volume of CH4 produced (r = -0.20; p<0.001). As well as a positive correlation between hours post incubation-total gas volume (r = 0.42; p<0.001) and between hours post incubation-volume of CH4 produced (r = 0.48; p<0.001). The FTS: C. elaeagnoides, V. mollis, and H. brasiletto have potential, in the three inclusion levels analyzed, to reduce CH4 emission on in vitro trials (>32.7%), taking into account the total CH4 production at 24 h of the forage used as reference (Avena sativa). It's suggested that C. elaeagnoides-according to its crude protein, neutral detergent fiber, and condensed tannins content- is the best alternative within the FTS analyzed, for feeding ruminants and for the control of CH4 emissions during the dry season. PMID:26732330

  15. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  16. The physics of hot and dense quark-gluon matter

    SciTech Connect

    Kharzeev, Dmitri E

    2012-05-10

    This technical report describes the work done under the DOE grant DE-FG-88ER41723 (final award number DE-SC0005645), "The physics of hot and dense quark-gluon matter", during the year of 12/01/2010 through 11/30/2011. As planned in the proposal, the performed research focused along two main thrusts: 1) topological effects in hot quark-gluon matter and 2) phenomenology of relativistic heavy ion collisions. The results of research are presented in 12 papers published in reputable refereed journals (Physical Review Letters, Physical Review, Physics Letters and Nuclear Physics). All of the performed research is directly related to the experimental programs of DOE, especially at the Relativistic Heavy Ion Collider. Much of it also has broader interdisciplinary implications - for example, the work on the non-dissipative chiral magnetic current is directly relevant for quantum computing. The attached report describes the performed work in detail.

  17. Stopping Distance for High Energy Jets in Weakly-Coupled Quark-Gluon Plasmas

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    Quark-gluon plasmas (QGPs) are hot dense media created in relativistic heavy ion collisions, and jet quenching makes it possible to study the properties of QGP medium, through observing changes in the jet fragmentation functions as compared to the unquenched case. Therefore, it has long been of interest to study the jet energy loss and stopping processes in relativistic QCD media. In weakly-coupled quark-gluon plasmas, a high energy parton's energy loss is dominated by medium induced gluon bremsstrahlung and pair production. However, the calculation of gluon bremsstrahlung is complicated by the Landau-Pomeranchuk-Migdal (LPM) effect, in which the gluon formation time becomes longer than the mean free path between scatterings and successive scattering cannot be treated as independent. Arnold, Moore, and Yaffe (AMY) proposed a formalism to solve the LPM effect in uniform, infinite QCD mediums. In this thesis, gluon emission rates in the AMY formalism are reviewed, and the transport coefficient q̂, which characterizes the scattering power of the medium, is calculated to the leading order in the weak coupling limit, and then is used to generalize the previous analytic results on the gluon bremsstrahlung and pair production rates at next-to-leading logarithmic order in weakly-coupled QGP. Stopping distance is a more general idea, for unlike the bremsstrahlung rate, it can be generalized to strongly-coupled situations, in which we cannot talk about individual partons. In this thesis, stopping distances are defined, and by using the gluon emission rates studied earlier, the analytic expressions for high energy jet's stopping distance is calculated in weak coupling, we will see that the stopping distance has a E1/2/ lnE dependence on the initial parton's energy E in the high energy limit.

  18. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    PubMed

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature. PMID:19705887

  19. Abelian non-global logarithms from soft gluon clustering

    NASA Astrophysics Data System (ADS)

    Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba

    2012-09-01

    Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.

  20. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    PubMed

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method. PMID:22524015

  1. [Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China].

    PubMed

    Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui

    2013-03-01

    By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts. PMID:23755477

  2. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  3. Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando

    2014-03-01

    In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.

  4. Effect of condensed tannin extract supplementation of performance, nitrogen, balance, gas emissions, and energetic losses of beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen emissions from concentrated animal feeding operations are of increasing concern to regulatory agencies and consumers. We evaluated the effect of top-dressing a finishing diet (14.4% crude protein) for beef steers with a commercially-available condensed tannin extract (CT) at three levels (0...

  5. Effect of Vapor Flow on Jumping Droplets during Condensation on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Preston, Daniel J.; Miljkovic, Nenad; Enright, Ryan; Limia, Alexander; Wang, Evelyn N.

    2013-11-01

    Upon coalescence of droplets on a superhydrophobic surface, the net reduction in droplet surface area results in a release of surface energy that can cause the coalesced droplet to ``jump'' away from the surface. Jumping condensing surfaces have been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. While the heat transfer enhancement of jumping condensation is well documented, droplet behavior after departure from the surface has not been considered. Vapor flows to the condensing surface due to mass conservation. This flow can increase drag on departing droplets, resulting in complete droplet reversal and return to the surface. Upon return, these larger droplets impede heat transfer until they jump again or finally shed due to gravity. By characterizing individual droplet trajectories during condensation on hydrophobic nanostructured copper oxide surfaces for a variety of heat fluxes (q'' = 0.1 - 2 W/cm2), we showed that vapor flow entrainment dominates droplet motion for droplets smaller than R ~ 30 um at high heat fluxes (q'' >2 W/cm2). Furthermore, we developed an analytical model of droplet motion based on first principles and the Reynolds drag equation which agreed well with the experimental data. We considered condensation on both flat and tubular geometries with our model, and we suggest avenues to further enhance heat transfer which minimize droplet return due to entrainment.

  6. Effects of condensation products of biogenic amines on human platelet function

    SciTech Connect

    Given, M.B.

    1983-01-01

    Condensation products (CP) are formed by the reaction of biogenic amines with aldehydes and alpha-keto acids. The purpose of this investigation was to examine the effects of CP on platelet function in vitro. The effect of CP on platelet aggregation was examined. Epinephrine-induced aggregation was inhibited, suggesting CP antagonistic activity on the platelet alpha/sub 2/-adrenergic receptors. Adenosine-diphosphate (ADP), collagen and arachidonic acid induced aggregation was inhibited only at high concentrations. Inhibition of epinephrine and ADP aggregation was reversible, suggesting CP are competitive inhibitors of these agonists. Binding affinities for the platelet alpha/sub 2/-adrenergic receptor were determined using (/sup 3/H)-yohimbine, a specific alpha/sup 2/-receptor antagonist. The order of potency for CP inhibition of (/sup 3/H)-yohimbine binding paralleled that determined for inhibition of epinephrine-induced aggregation. Platelet uptake of serotonin (5-HT) was competitively inhibited by CP, with the exception of salsolinol, which appears to be stimulatory. Release of 5-HT from platelets was induced by CP, with betacarbolines being more potent than tetrahydroisoquinolines. Evidence suggests that CP cause release by displacement of 5-HT from intraplatelet storage sites since this effect can be inhibited by imipramine, thus preventing accumulation of CP by platelets.

  7. [Effects of fertilization on Casuarina equisetifolia seedlings total phenolics and extractable condensed tannin contents].

    PubMed

    Zhang, Li-Hua; Lin, Yi-Ming; Ye, Gong-Fu

    2010-08-01

    This paper studied the effects of nitrogen- and phosphorus fertilization on the total phenolics (TP) and extractable condensed tannin (ECT) contents in the branchlets of Casuarina equisetifolia seedlings, aimed to approach the nutrient effect on tannin production. Under nitrogen fertilization, the TP and ECT contents decreased significantly, which supported the hypotheses of carbon-nitrogen balance (CNB) and growth-differentiation balance (GDB), but the plant nitrogen content had less change, resulting in the decrease of TP/N and ECT/N ratios. Phosphorus fertilization had no significant effects on the TP and ECT production. With prolonged treatment time, the TP content in the branchlets of C. equisetifolia seedlings increased by 9.91% - 14.32%, but the ECT content decreased by 14.32% - 298.88%. The TP and ECT had opposite relationships with organic matters content, showing that different types of tannin had different biosynthetic pathways. However, both TP and ECT had no significant correlation with nitrogen content, and thus, the protein competition model (PCM) was not supported. Under nutrient-poor condition, the TP/N and ECT/N ratios were relatively high, which would be beneficial for the improvement of defense ability, the decrease of litter decomposition ratio and nutrient loss, and the maintenance of high productivity of C. equisetifolia plantations. PMID:21043101

  8. Effects of cigarette smoke condensate on primary urothelial cells in vitro.

    PubMed

    Plöttner, Sabine; Behm, Claudia; Bolt, Hermann M; Föllmann, Wolfram

    2012-01-01

    Cigarette smoking is a risk factor for bladder cancer. Since urothelial cells express phase I and II enzymes these cells are able to metabolize precarcinogens into DNA reactive intermediates. Cigarette smoke is a complex mixture containing at least 80 known carcinogens. In this context especially aromatic amines and polycyclic aromatic hydrocarbons are discussed as being responsible for bladder-carcinogenicity. Cell cultures of primary porcine urinary bladder epithelial cells (PUBEC) have been useful models for studies on bladder-specific effects. These cells are metabolically competent and found to be a valuable tool for examining effects of cigarette smoke constituents. In the present study PUBEC were utilized to investigate the effects of the complex mixture cigarette smoke condensate total particulate matter (CSC TPM) with emphasis on induction of cytochrome P-450 1A1 (CYP1A1) and genotoxic effects. CYP1A1 induction was investigated by Western blot and flow cytometry. The most pronounced effects were found after 24 h of incubation with 1-10 μg/ml CSC TPM. Maximal induction was observed at 5 μg/ml by flow cytometry and at 10 μg/ml by Western blot analysis. Genotoxic effects were investigated by means of alkaline single-cell gel electrophoresis ("comet assay") with and without the use of the DNA repair enzyme formamidopyrimidine-DNA glycosylase (Fpg) and the micronucleus (MN) test. A numerical concentration-dependent increase in Fpg-sensitive sites indicating oxidative DNA damage and a quantitative rise in MN formation were noted. The CSC utilized in this study contained low amounts of benzo[a]pyrene, 4-aminobiphenyl, and 2-naphthylamine. With regard to the observed CYP1A1 induction, these substances cannot explain the CYP1A1 inducing effect of CSC TPM. It is possible that other compounds within CSC TPM contribute to CYP1A1 induction in our cellular model. PMID:22994573

  9. Ion-induced quark-gluon implosion.

    PubMed

    Frankfurt, L; Strikman, M

    2003-07-11

    We investigate nuclear fragmentation in the central proton-nucleus and nucleus-nucleus collisions at the energies of CERN LHC. Within the semiclassical approximation we argue that because of the fast increase with energy of the cross sections of soft and hard interactions each nucleon is stripped in the average process off "soft" partons and fragments into a collection of leading quarks and gluons with large p(t). Valence quarks and gluons are streaming in the opposite directions when viewed in the c.m. of the produced system. The resulting pattern of the fragmentation of the colliding nuclei leads to an implosion of the quark and gluon constituents of the nuclei. The nonequilibrium state produced at the initial stage in the nucleus fragmentation region is estimated to have densities >/=50 GeV/fm(3) at the LHC energies and probably >/=10 GeV/fm(3) at BNL RHIC. PMID:12906475

  10. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  11. Temperature effects on the antimicrobial efficacy of condensed smoke and lauric arginate against Listeria and Salmonella.

    PubMed

    Lingbeck, Jody M; Cordero, Paola; O'Bryan, Corliss A; Johnson, Michael G; Ricke, Steven C; Crandall, Philip G

    2014-06-01

    Condensed smoke or liquid smoke (LS) and lauric arginate (LAE) are antimicrobials used in food preservation. They have demonstrated abilities to reduce or inhibit pathogenic and spoilage organisms. Few studies, however, have reported on the effectiveness of LS or LAE over the range of temperatures typically encountered in food marketing channels. Therefore, the effects of temperature on the antimicrobial properties of two commercial LS fractions, an LS derived from pecan shells, and LAE against two common foodborne pathogens, Listeria and Salmonella, were investigated. The MICs of the three LS samples and LAE were measured at 4, 10, and 37°C for Listeria monocytogenes strains 2045 (Scott A, serotype 4b) and 10403S (serotype 1/2a) and two strains of Listeria innocua, a well-established surrogate, and at 10, 25, and 37°C for Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Heidelberg. The MICs for LS against Listeria ranged from 3 to 48% (vol/vol), with higher MICs seen with lower temperatures. The MICs for LS on Salmonella ranged from 3 to 24%. Values for LAE ranged between 0.004 and 0.07% for both pathogens, and like LS, higher MICs were always associated with lower incubation temperatures. Understanding how storage temperature affects the efficacy of antimicrobials is an important factor that can contribute to lowering the hurdles of use levels and costs of antimicrobials and ultimately improve food safety for the consumer. PMID:24853515

  12. Spin Hall effect in a spinor dipolar Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kawaguchi, Y.

    2016-05-01

    We theoretically show that the spin Hall effect arises in a Bose-Einstein condensate (BEC) of neutral atoms interacting via the magnetic dipole-dipole interactions (MDDIs). Since the MDDI couples the total spin angular momentum and the relative orbital angular momentum of two colliding atoms, it works as a spin-orbit coupling. Thus, when we prepare a BEC in a magnetic sublevel m =0 , thermally and quantum-mechanically excited atoms in the m =1 and -1 states feel the Lorentz-like forces in the opposite directions. This is the origin for the emergence of the spin Hall effect. We define the mass-current and spin-current operators from the equations of continuity and calculate the spin Hall conductivity from the off-diagonal current-current correlation function within the Bogoliubov approximation. We find that the correction of the current operators due to the MDDI significantly contributes to the spin Hall conductivity. A possible experimental situation is also discussed.

  13. Effects of the surroundings and conformerisation of n-dodecane molecules on evaporation/condensation processes

    SciTech Connect

    Gun’ko, Vladimir M.; Nasiri, Rasoul; Sazhin, Sergei S.

    2015-01-21

    The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that β depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy of solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of β for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/T{sub c} < 0.8) or slightly larger (at T/T{sub c} > 0.8) than the values of β calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of β by the MD FF methods, except at temperatures close to the critical temperature.

  14. Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Jung, E.; Albrecht, B. A.; Jonsson, H. H.; Chen, Y.-C.; Seinfeld, J. H.; Sorooshian, A.; Metcalf, A. R.; Song, S.; Fang, M.; Russell, L. M.

    2015-05-01

    To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 μm diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h-1, and the liquid water path decreased from about 52 to 43 g m-2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10-2 to 10-4 cm-3 resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.

  15. Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Jung, E.; Albrecht, B. A.; Jonsson, H. H.; Chen, Y.-C.; Seinfeld, J. H.; Sorooshian, A.; Metcalf, A. R.; Song, S.; Fang, M.; Russell, L. M.

    2015-01-01

    To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 μm diameter salt particles (salt powder) were released from an aircraft while flying near cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h-1, and liquid water path decreased from about 52 to 43 g m-2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10-2 to 10-4 cm-3 resulted in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.

  16. Quarks and gluons at hadron colliders

    SciTech Connect

    Bodek, A.; CDF Collaboration

    1996-08-01

    Data from proton-antiproton collisions at high energy provide important information on constraining the quark and gluon distributions in the nucleon and place limits on quark substructure. The S asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan data at high invariant mass provides strong limits on quark substructure. Information on {alpha}{sub s} and the gluon distributions can be extracted from high P{sub T} jet data and direct photons.

  17. Shear Viscosity in a Gluon Gas

    SciTech Connect

    Xu Zhe; Greiner, Carsten

    2008-05-02

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio {eta}/s for a gluon gas, which involves elastic gg{yields}gg perturbative QCD (PQCD) scatterings as well as inelastic gg{r_reversible}ggg PQCD bremsstrahlung. For {alpha}{sub s}=0.3 we find {eta}/s=0.13 and for {alpha}{sub s}=0.6, {eta}/s=0.076. The small {eta}/s values, which suggest strongly coupled systems, are due to the gluon bremsstrahlung incorporated.

  18. Boost covariant gluon distributions in large nuclei

    NASA Astrophysics Data System (ADS)

    McLerran, Larry; Venugopalan, Raju

    1998-04-01

    It has been shown recently that there exist analytical solutions of the Yang-Mills equations for non-Abelian Weizsäcker-Williams fields which describe the distribution of gluons in large nuclei at small x. These solutions however depend on the color charge distribution at large rapidities. We here construct a model of the color charge distribution of partons in the fragmentation region and use it to compute the boost covariant momentum distributions of wee gluons. The phenomenological applications of our results are discussed.

  19. Shear viscosity in a gluon gas.

    PubMed

    Xu, Zhe; Greiner, Carsten

    2008-05-01

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio eta/s for a gluon gas, which involves elastic gg-->gg perturbative QCD (PQCD) scatterings as well as inelastic gg<-->ggg PQCD bremsstrahlung. For alpha_{s}=0.3 we find eta/s=0.13 and for alpha_{s}=0.6, eta/s=0.076. The small eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrahlung incorporated.

  20. The effect of imidazole, cyanamide, and polyornithine on the condensation of nucleotides in aqueous systems.

    NASA Technical Reports Server (NTRS)

    Ibanez, J.; Kimball, A. P.; Oro, J.

    1971-01-01

    Development of two models for the condensation of nucleotides under possibly prebiotic conditions. In the first of these models this type of reaction is promoted by the presence of imidazole and substituted imidazole compounds. The second model involves the condensation of mononucleotides with cyanamide in the presence and absence of a prototemplate such as polyornithine. A tentative mechanism for the role of imidazole catalysis in phosphodiester bond formation between adjacent TMP molecules is suggested.

  1. The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David

    2016-10-01

    The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST

  2. Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Byrnes, Tim; Dowling, Jonathan P.

    2015-08-01

    When vortices are displaced in Bose-Einstein condensates (BECs), the Magnus force gives the system a momentum transverse in the direction to the displacement. We show that BECs in long channels with vortices exhibit a quantization of the current response with respect to the spatial vortex distribution. The quantization originates from the well-known topological property of the phase around a vortex; it is an integer multiple of 2 π . In a way similar to that of the integer quantum Hall effect, the current along the channel is related to this topological phase and can be extracted from two experimentally measurable quantities: the total momentum of the BEC and the spatial distribution. The quantization is in units of m /2 h , where m is the mass of the atoms and h is Planck's constant. We derive an exact vortex momentum-displacement relation for BECs in long channels under general circumstances. Our results present the possibility that the configuration described here can be used as a novel way of measuring the mass of the atoms in the BEC using a topological invariant of the system. If an accurate determination of the plateaus are experimentally possible, this gives the possibility of a topological quantum mass standard and precise determination of the fine structure constant.

  3. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  4. Consideration of real gas effects and condensation in a spray-combustion rocket-thrust-chamber design tool

    NASA Astrophysics Data System (ADS)

    Frey, M.; Kniesner, B.; Knab, O.

    2011-10-01

    For the prediction of hot gas side heat transfer in rocket thrust chambers, Astrium Space Transportation (ST) uses the second generation multiphase Navier-Stokes solver Rocflam-II. To account for real-gas and condensation effects, pressure-dependent and even multiphase fluid data are included in the chemistry tables used by the code. Thus, the changing fluid properties near the two-phase region as well as transformation from gaseous to liquid and even solid state are reflected properly. Heat flux measurements for a dedicated subscale test campaign with strongly cooled walls show a clearly increasing heat load as soon as the combustion gases condense at the wall, due to the released latent heat of condensation. Corresponding coupled Rocflam-II/CFX simulations show a good quantitative agreement in heat flux for load cases with and without condensation, showing the ability of the code to correctly simulate flows in the real-gas and even inside the two-phase region.

  5. Topological spin Meissner effect in spinor exciton-polariton condensate: Constant amplitude solutions, half-vortices, and symmetry breaking

    NASA Astrophysics Data System (ADS)

    Gulevich, Dmitry R.; Skryabin, Dmitry V.; Alodjants, Alexander P.; Shelykh, Ivan A.

    2016-09-01

    We generalize the spin Meissner effect for an exciton-polariton condensate confined in annular geometries to the case of nontrivial topology of the condensate wave function. In contrast to the conventional spin Meissner state, topological spin Meissner states can in principle be observed at arbitrary high magnetic fields not limited by the critical magnetic field value for the condensate in a simply connected geometry. One special example of the topological Meissner states are half-vortices. We show that in the absence of magnetic field, half-vortices in a ring exist in a form of a superposition of elementary half-vortex states, which resolves recent experimental results where such puzzling superposition was observed. Furthermore, we show that if a pure half-vortex state is to be observed, a nonzero magnetic field of a specific magnitude needs to be applied. Studying exciton polaritons in a ring in the presence of TE-TM splitting, we observe spin Meissner states that break the rotational symmetry of the system by developing inhomogeneous density distributions. We classify various states arising in the presence of nonzero TE-TM splitting based on what states they can be continued from by increasing the TE-TM splitting parameter from zero. With further increasing TE-TM splitting, states with broken symmetry may transform into stable half-dark solitons and therefore may serve as a useful tool to generate various nontrivial states of a spinor condensate.

  6. Effect of pyrolysis temperature on the mutagenicity of tobacco smoke condensate.

    PubMed

    White, J L; Conner, B T; Perfetti, T A; Bombick, B R; Avalos, J T; Fowler, K W; Smith, C J; Doolittle, D J

    2001-05-01

    Tobacco smoke aerosols with fewer mutagens in the particulate fraction may present reduced risk to the smoker. The objective of this study was to test the hypothesis that the temperature at which tobacco is pyrolyzed or combusted can affect the mutagenicity of the particulate fraction of the smoke aerosol. Tobacco smoke aerosol was generated under precisely controlled temperature conditions from 250 to 550 degrees C by heating compressed tobacco tablets in air. The tobacco aerosols generated had a cigarette smoke-like appearance and aroma. The tobacco smoke aerosol was passed through a Cambridge filter pad to collect the particulate fraction, termed the smoke condensate. Although condensates of tobacco smoke and whole cigarette mainstream smoke share many of the same chemical components, there are physical and chemical differences between the two complex mixtures. The condensates from smoke aerosols prepared at different temperatures were assayed in the Ames Salmonella microsome test with metabolic activation by rat liver S9 using tester strains TA98 and TA100. Tobacco smoke condensates were not detectably mutagenic in strain TA98 when the tobacco smoke aerosol was generated at temperatures below 400 degrees C. Above 400 degrees C, condensates were mutagenic in strain TA98. Similarly, condensates prepared from tobacco smoke aerosols generated at temperatures below 475 degrees C were not detectably mutagenic in strain TA100. In contrast, tobacco tablets heated to temperatures of 475 degrees C or greater generated smoke aerosol that was detectably mutagenic as measured in TA100. Therefore, heating and pyrolyzing tobacco at temperatures below those found in tobacco burning cigarettes reduces the mutagenicity of the smoke condensate. Highly mutagenic heterocyclic amines derived from the pyrolysis of tobacco leaf protein may be important contributors to the high temperature production of tobacco smoke Ames Salmonella mutagens. The relevance of these findings regarding

  7. Hybrid neutron stars with the Dyson-Schwinger quark model and various quark-gluon vertices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wei, J.-B.; Baldo, M.; Burgio, G. F.; Schulze, H.-J.

    2015-05-01

    We study cold dense quark matter and hybrid neutron stars with a Dyson-Schwinger quark model and various choices of the quark-gluon vertex. We obtain the equation of state of quark matter in beta equilibrium and investigate the hadron-quark phase transition in combination with a hadronic equation of state derived within the Brueckner-Hartree-Fock many-body theory. Comparing with the results for quark matter within the rainbow approximation, the Ball-Chiu (BC) Ansatz and the 1BC Ansatz for the quark-gluon vertex lead to a reduction of the effective interaction at finite chemical potential, qualitatively similar to the effect of our gluon propagator. We find that the phase transition and the equation of state of the quark or mixed phase and consequently the resulting hybrid star mass and radius depend mainly on a global reduction of the effective interaction due to effects of both the quark-gluon vertex and gluon propagator, but are not sensitive to details of the vertex Ansatz.

  8. Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Moore, R. H.; Nenes, A.; Adams, P. J.

    2011-02-01

    This work quantifies the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of NaCl. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr-1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only 15% in a biologically active region of the Southern Ocean.

  9. Exploring Quarks, Gluons and the Higgs Boson

    ERIC Educational Resources Information Center

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  10. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  11. Sambamurti Memorial Lecture: Spotlight on the Gluon

    ScienceCinema

    Michael Begelas

    2016-07-12

    Begel uses results from the Fermilab D0 and E706 experiments to explain how the production rate and energy spectrum of photons produced during proton collisions helped to clarify how the energy inside the proton is shared between quarks and gluons.

  12. Recent COMPASS results on the gluon polarization

    SciTech Connect

    Quintans, Catarina

    2009-03-23

    The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a {sup 6}LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being {delta}g/g -0.49{+-}0.27(stat){+-}0.11(syst), at an average x{sub g} 0.11{sub -0.05}{sup +0.11} and a scale <{mu}{sup 2}> = 13(GeV/c){sup 2}. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value {delta}g/g 0.08{+-}0.10(stat){+-}0.05(syst), at x{sub g}{sup a{nu}} 0.082{sub -0.027}{sup +0.041} and <{mu}{sup 2}> = 3(GeV/c){sup 2}.

  13. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  14. Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, María; Głazek, Stanisław D.

    2015-09-01

    Asymptotic freedom of gluons in pure-gauge QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the effective front-form Hamiltonian for gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, s , that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, gλ, depending on the associated momentum scale λ =1 /s , is calculated in the series expansion in powers of g0=gλ 0 up to the terms of third order, assuming some small value for g0 at some large λ0. The result exhibits the same finite sensitivity to small-x regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler than the earlier one because of a simpler generator. This result establishes a degree of universality for pure-gauge QCD in the RGPEP.

  15. New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach

    SciTech Connect

    Dudal, D.; Vandersickel, N.; Verschelde, H.; Sorella, S. P.

    2008-04-01

    So far, the infrared behavior of the gluon and ghost propagator based on the Gribov-Zwanziger approach predicted a positivity violating gluon propagator vanishing at zero momentum, and an infrared enhanced ghost propagator. However, recent data based on huge lattices have revealed a positivity violating gluon propagator which turns out to attain a finite nonvanishing value very close to zero momentum. At the same time the ghost propagator does not seem to be infrared enhanced anymore. We point out that these new features can be accounted for by yet unexploited dynamical effects within the Gribov-Zwanziger approach, leading to an infrared behavior in qualitatively good agreement with the new data.

  16. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  17. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature.

  18. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature. PMID:14683099

  19. Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate

    SciTech Connect

    Antezza, Mauro; Stringari, Sandro; Pitaevskii, Lev P.

    2004-11-01

    We calculate the effect of the interaction between an optically active material and a Bose-Einstein condensate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of the center-of-mass oscillation in terms of the potential generated by the substrate and of the density profile of the gas. The form of the potential is discussed in detail and various regimes (van der Waals-London, Casimir-Polder, and thermal regimes) are identified as a function of the distance of atoms from the surface. Numerical results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a harmonically trapped condensate of {sup 87}Rb atoms. We find that at distances of 4-8 {mu}m, where thermal effects become visible, the relative frequency shifts produced by the substrate are of the order 10{sup -4} and hence accessible experimentally. The effects of nonlinearities due to the finite amplitude of the oscillation are explicitly discussed. Predictions are also given for the radial breathing mode.

  20. Quark-gluon plasma in an external magnetic field.

    PubMed

    Levkova, L; DeTar, C

    2014-01-10

    Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field for the first time. The coefficients of the expansion are computed to second order in the magnetic field. Our setup for the external magnetic field avoids complications arising from toroidal boundary conditions, making a Taylor series expansion straightforward. This study is exploratory and is meant to serve as a proof of principle.

  1. Quarks and gluons in the nucleon: Proceedings. Volume 6

    SciTech Connect

    1997-12-31

    The purpose of the symposium was to discuss the quark and gluon structure of the nucleon as probed experimentally by hard processes with lepton and hadron beams and studied theoretically by perturbative QCD, lattice QCD and effective models on the one hand and to stimulate research activities in the fields related to RHIC and RHIC-SPIN projects on the other hand. There were 18 talks and 2 discussion sessions. About 50, including 5 from abroad participated in the symposium. An excellent summary in the form of 5 most important transparencies and a one-page explanation is included for each of the invited talks.

  2. Threshold resummation of soft gluons in hadronic reactions - an introduction.

    SciTech Connect

    Berger, E. L.

    1998-02-17

    The authors discuss the motivation for resummation of the effects of initial-state soft gluon radiation, to all orders in the strong coupling strength, for processes in which the near-threshold region in the partonic subenergy is important. The author summarizes the method of perturbative resummation and its application to the calculation of the total cross section for top quark production at hadron colliders. Comments are included on the differences between the treatment of subleading logarithmic terms in this method and in other approaches.

  3. Non-Abelian Josephson Effect between Two F=2 Spinor Bose-Einstein Condensates in Double Optical Traps

    SciTech Connect

    Qi Ran; Liu, W. M.; Yu, Xiao-Lu; Li, Z. B.

    2009-05-08

    We investigate the non-Abelian Josephson effect in F=2 spinor Bose-Einstein condensates with double optical traps. We propose a real physical system which contains non-Abelian Josephson effect and has very different density and spin tunneling characters compared with the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps, respectively, which are the crucial feature of the non-Abelian Josephson effect. We also give an experimental protocol to observe this novel effect in future experiments.

  4. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  5. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  6. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  7. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  8. Effect of the condensation of hybrid organic-inorganic sol-gel materials on the optical properties of tripan blue

    NASA Astrophysics Data System (ADS)

    Hicks, Craig; Morshed, Muhammad; Melia, Garrett; Barton, Killian; Duffy, Brendan; Oubaha, Mohamed

    2015-09-01

    The work reported in this paper highlights the effect of sol-gel structures on the optical properties of a typical organic dye (Trypan Blue, TB). Three transition-metal-based hybrid sol-gel materials with different structures and morphologies were developed and characterised by TEM. The optical properties of TB were investigated by incorporating it in the different sol-gel materials and the UV-Visible spectra recorded in both liquid and solid state, in thin-coatings cured at temperatures in the range 100-150 °C. These studies revealed two relevant results. First, the sol-gel morphology plays a critical role in the optical properties of the dye. The effect of the sol-gel host matrix on the optical properties of the dye is attributed to the steric hindrance of the nanostructures, themselves intimately dependant on the reactivity of the transition metal. For instance, the less condensed system showed the highest reactivity with the dye, while the more condensed system exhibited limited interaction with the dye, symbolised by a significant change or quasi-unchanged UV-Visible spectra, respectively. It is also shown that the increase of the condensation degree of the sol-gel coatings by heat-curing can dramatically alter the optical properties of the dye especially for the most condensed sol-gel systems. This has been attributed to proximity effects enabled by the further increase of the materials densities. The results reported here aim to provide a better understanding of how material formulations can influence the optical properties of organic dyes and suggest that the structure of the host matrix along with the applied curing process have to be fully considered and assessed in the choice of organic dyes for a given application.

  9. The effect of the exit condition on the performance of intube condensers

    SciTech Connect

    Rabas, T.J.; Arman, B.

    1995-07-01

    Data collected from the open literature plus some new, unpublished data will be used to show that the exit condition can change the flow regimes, introduce certain types of instabilities, and alter flooding velocities with intube condensation. The major orientations will be considered: horizontal, vertical with vapor downflow, and vertical with vapor upflow (refluxing).

  10. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    NASA Technical Reports Server (NTRS)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  11. Path-integral calculations of heavy atom kinetic isotope effects in condensed phase reactions using higher-order Trotter factorizations.

    PubMed

    Vardi-Kilshtain, Alexandra; Azuri, Asaf; Major, Dan Thomas

    2012-02-01

    A convenient approach to compute kinetic isotope effects (KIEs) in condensed phase chemical reactions is via path integrals (PIs). Usually, the primitive approximation is used in PI simulations, although such quantum simulations are computationally demanding. The efficiency of PI simulations may be greatly improved, if higher-order Trotter factorizations of the density matrix operator are used. In this study, we use a higher-order PI method, in conjunction with mass-perturbation, to compute heavy-atom KIE in the decarboxylation of orotic acid in explicit sulfolane solvent. The results are in good agreement with experiment and show that the mass-perturbation higher-order Trotter factorization provides a practical approach for computing condensed phase heavy-atom KIE.

  12. The effect of pH on charge inversion and condensation of DNA.

    PubMed

    Guo, Zilong; Wang, Yanwei; Yang, Anthony; Yang, Guangcan

    2016-08-21

    Charge inversion and condensation of DNA in solutions of trivalent and quadrivalent counterions are significantly influenced by the pH value of the solution. We systematically investigated the condensation and charge compensation of DNA by spermidine, hexammine cobalt(iii) (cohex, [Co(NH3)6](3+)) and spermine in solutions of a wide range of pH values from 3 to 9.3 by dynamic light scattering, magnetic tweezers, and atomic force microscopy. In trivalent counterion solution, we found that there is a critical concentration (0.75 mM for cohex and 0.5 mM for spermidine), under which the electrophoresis mobility of DNA initially increases, reaches a maximum, and finally decreases when the pH value is decreased. In contrast, above the critical concentration, the electrophoretic mobility of DNA increases monotonously with decreasing pH value of the solution. The corresponding condensing force has the same dependence on the pH value. However, for the case of quadrivalent counterions, the electrophoretic mobility of DNA is monotonously promoted by lowering the pH value of the solution at any concentration of counterions in which charge inversion of DNA may occur. In atomic force microscopy images and force spectroscopy of magnetic tweezers, we found that maximal charge neutralization and condensation force correspond to the most compact DNA condensation. We propose a mechanism of promoting DNA charge neutralization: small and highly mobile hydrogen ions tend to attach to the DNA-counterion complex to further neutralize its remaining charge, which is related to the surface area of the complex. Therefore, this further neutralization is prominent when the complex is toroidal which corresponds to the case of mild ion concentration while it is less prominent for more compact globules or rod complexes at high counterion concentration.

  13. Effect of secondary organic aerosol amount and condensational behavior on global aerosol size distributions

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Häkkinen, S. A. K.; Westervelt, D. M.; Kuang, C.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2013-05-01

    Recent research has shown that secondary organic aerosols (SOA) are major contributors to ultrafine particle growth to climatically relevant sizes, increasing global cloud condensation nuclei (CCN) concentrations within the continental boundary layer. Many models treat SOA solely as semivolatile, which leads to condensation of SOA proportional to the aerosol mass distribution; however, recent closure studies with field measurements show that a significant fraction of SOA condenses proportional to the aerosol surface area, which suggests a very low volatility. Additionally, while many global models contain only biogenic sources of SOA (with emissions generally 10-30 Tg yr-1), recent studies have shown a need for an additional source of SOA around 100 Tg yr-1 correlated with anthropogenic carbon monoxide (CO) emissions is required to match measurements. Here, we explore the significance of these two findings using the GEOS-Chem-TOMAS global aerosol microphysics model. The percent change in the number of particles of size Dp > 40 nm (N40) within the continental boundary layer between the surface-area-and massdistribution condensation schemes, both with the base biogenic SOA only, yielded a global increase of 8% but exceeds 100% in biogenically active regions. The percent change in N40 within the continental boundary layer between the base simulation (19 Tg yr-1) and the additional SOA (100 Tg yr-1) both using the surface area condensation scheme (very low volatility) yielded a global increase of 14%, and a global decrease in the number of particles of size Dp > 10 nm (N10) of 32%. These model simulations were compared to measured data from Hyytiälä, Finland and other global locations and confirmed a decrease in the model-measurement bias. Thus, treating SOA as very low volatile as well as including additional SOA correlated with anthropogenic CO emissions causes a significant global increase in the number of climatically relevant sized particles, and therefore we

  14. Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Moore, R. H.; Nenes, A.; Adams, P. J.

    2012-01-01

    This work estimates the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of sea salt. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr-1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe, assuming direct replacement of sea salt aerosol with organic aerosol. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only ~15% in a biologically active region of the Southern Ocean. To test the sensitivity to uncertainty in the sea spray emissions process, we relax the assumption that sea spray aerosol number and mass remain fixed and instead can add to sea spray emissions rather than replace existing sea salt. In these simulations, we find that marine organic aerosol can increase CCN by up to 50% in the Southern

  15. Onset of condensation effects as detected by total pressure probes in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1979-01-01

    Total pressure probes mounted in the test section of a 0.3 meter transonic cryogenic tunnel were used to detect the onset of condensation effects for free stream Mach numbers of 0.50, 0.75, 0.85, and 0.95 and for total pressure between one and five atmospheres. The amount of supercooling was found to be about 3 K and suggests that condensation was occurring on pre-existing liquid nitrogen droplets resulting from incomplete evaporation of the liquid nitrogen injected to cool the tunnel. The liquid nitrogen injection process presently being used for the 0.3 m tunnel was found to result in a wide spectrum of droplet sizes being injected into the flow. Since the relatively larger droplets took much more time to evaporate than the more numerous smaller droplets, the larger ones reached the test section first as the tunnel operating temperature was reduced. However, condensation effects in the test section were not immediately measurable because there was not a sufficient number of the larger droplets to have an influence on the thermodynamics of the flow.

  16. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  17. Vapor condensation on liquid surface due to laminar jet-induced mixing - The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1990-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  18. The effect of the condensation of ice materials in the atmosphere on the thermal evolution of ice giants

    NASA Astrophysics Data System (ADS)

    Kurosaki, Kenji; Ikoma, Masahiro

    2015-12-01

    Though Uranus and Neptune are similar in mass and radius, the former is significantly fainter than the latter. As previous theoretical studies of thermal evolution of the ice giants demonstrated, the faintness of Uranus is not explained by simple three-layer models that are composed of a H/He-dominated envelope, an ice mantle and a rocky core. Namely, the observed effective temperature of Uranus is lower than theoretically predicted (e.g., Fortney et al., 2011; Nettelmann et al., 2013). Since the speed of the thermal evolution is determined by how efficiently the planetary atmosphere radiates energy, the atmospheric structure is important. If the atmosphere contains ice materials such as water, ammonia and methane, those materials have been condensed and removed from the atmosphere during the cooling. In this study, we quantify the impact of the condensation of ice components in the atmosphere on the thermal evolution, which previous studies ignore, to explain the current luminosity of Uranus. To do so, we simulate the thermal cooling of ice giants, based on three layer models with a relatively ice-component-rich, H/He-dominated atmosphere on top of a water mantle that surrounds a rocky core. We demonstrate that the effect of the condensation makes the timescale of the thermal cooling of the planet shorter by an order of magnitude than in the case without condensation. Such accelerated cooling is shown to be fast enough to explain the current faintness of Uranus. We also discuss what caused the difference in current luminosity between Uranus and Neptune.

  19. How perfect can a gluon plasma be in perturbative QCD?

    SciTech Connect

    Chen, Jiunn-Wei; Deng Jian; Dong Hui; Wang Qun

    2011-02-01

    The shear viscosity to entropy density ratio, {eta}/s, characterizes how perfect a fluid is. We calculate the leading order {eta}/s of a gluon plasma in perturbation using the kinetic theory. The leading order contribution only involves the elastic gg{r_reversible}gg (22) process and the inelastic gg{r_reversible}ggg (23) process. The hard-thermal-loop (HTL) treatment is used for the 22 matrix element, while the exact matrix element in vacuum is supplemented by the gluon Debye mass insertion for the 23 process. Also, the asymptotic mass is used for the external gluons in the kinetic theory. The errors from not implementing HTL and the Landau-Pomeranchuk-Migdal effect in the 23 process, and from the uncalculated higher order corrections, are estimated. Our result smoothly connects the two different approximations used by Arnold, Moore, and Yaffe (AMY) and Xu and Greiner (XG). At small {alpha}{sub s} ({alpha}{sub s}<<1), our result is closer to AMY's collinear result while at larger {alpha}{sub s} the finite angle noncollinear configurations become more important and our result is closer to XG's soft bremsstrahlung result. In the region where perturbation is reliable ({alpha}{sub s} < or approx. 0.1), we find no indication that the proposed perfect fluid limit {eta}/s{approx_equal}1/(4{pi}) can be achieved by perturbative QCD alone. Whether this can be achieve for {alpha}{sub s} > or approx. 0.1 is still an open question.

  20. LHC potential for study of the small x gluon physics in ultraperipheral collisions of 3.5 TeV protons

    SciTech Connect

    Rebyakova, V.; Strikman, M.; Zhalov, M.

    2010-02-01

    We argue that already the first year LHC run at {radical}(s)=7 TeV will provide a quick and effective way to test the dynamics of the color dipole-gluon interactions and the small x behavior of the gluon density in the proton by studying vector meson photoproduction in ultraperipheral proton-proton collisions.

  1. Gluon-glueball duality and glueball searches

    SciTech Connect

    Nussinov, Shmuel; Shrock, Robert

    2009-09-01

    We discuss a notion of gluon-glueball duality analogous to quark-hadron duality. We apply this idea to the radiative decay of heavy orthoquarkonium, QQ{yields}{gamma}gg, which has been used to search for glueballs. The duality is first introduced in two simplified contexts: (i) a hypothetical version of QCD without any light quarks and (ii) QCD in the large-N{sub c} limit. We then discuss how an approximate form of this duality could hold in real QCD, based on a hierarchy of time scales in the temporal evolution of the gg subsystem in radiative orthoquarkonium decay. We apply this notion of gluon-glueball duality to suggest a method that could be useful in experimental searches for glueballs.

  2. Quark and Gluon Tagging at the LHC

    NASA Astrophysics Data System (ADS)

    Gallicchio, Jason; Schwartz, Matthew D.

    2011-10-01

    Being able to distinguish light-quark jets from gluon jets on an event-by-event basis could significantly enhance the reach for many new physics searches at the Large Hadron Collider. Through an exhaustive search of existing and novel jet substructure observables, we find that a multivariate approach can filter out over 95% of the gluon jets while keeping more than half of the light-quark jets. Moreover, a combination of two simple variables, the charge track multiplicity and the pT-weighted linear radial moment (girth), can achieve similar results. Our study is only Monte Carlo based, so other observables constructed using different jet sizes and parameters are used to highlight areas that deserve further theoretical and experimental scrutiny. Additional information, including distributions of around 10 000 variables, can be found at http://jets.physics.harvard.edu/qvg/.

  3. Searching for $Z'$ bosons decaying to gluons

    SciTech Connect

    Alwall, Johan; Khader, Mazin; Rajaraman, Arvind; Whiteson, Daniel; Yen, Michael; /UC, Irvine

    2012-02-01

    The production and decay of a new heavy vector boson, a chromophilic Z{prime} vector boson, is described. The chromophilic Z{prime} couples only to two gluons, but its two-body decays are absent, leading to a dominant decay mode of Z{prime} {yields} q{bar q}g. The unusual nature of the interaction predicts a cross-section which grows with m{sub Z{prime}} for a fixed coupling and an accompanying gluon with a coupling that rises with its energy. We study the t{bar t}g decay mode, proposing distinct reconstruction techniques for the observation of an excess and for the measurement of m{sub Z{prime}}. We estimate the sensitivity of current experimental datasets.

  4. Colliding solitary waves in quark gluon plasmas

    NASA Astrophysics Data System (ADS)

    Rafiei, Azam; Javidan, Kurosh

    2016-09-01

    We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.

  5. Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate

    SciTech Connect

    Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito

    2011-10-15

    We investigate the effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate (BEC) under the quadratic Zeeman effect. Due to the large ratio of spin-independent to spin-dependent interactions of {sup 87}Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the broken-axisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero and find that the ground-state phase diagram is significantly altered by quantum depletion.

  6. The structure of gluon radiation in QCD

    SciTech Connect

    Parke, S.; Mangano, M.

    1989-08-01

    For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processes. Also, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD. 16 refs., 3 figs., 1 tab.

  7. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    NASA Astrophysics Data System (ADS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.

    1999-01-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3He-B and the internal Josephson effect in 3He-A are also discussed.

  8. Dual QCD thermodynamics and quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Punetha, Garima; Dehnen, H.

    2016-01-01

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP-hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  9. Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Bouras, Ioannis; Greiner, Carsten; Xu, Zhe

    2014-11-01

    Electric conductivity is sensitive to effective cross sections among the particles of the partonic medium. We investigate the electric conductivity of a hot plasma of quarks and gluons, solving the relativistic Boltzmann equation. In order to extract this transport coefficient, we employ the Green-Kubo formalism and, independently, a method motivated by the classical definition of electric conductivity. To this end we evaluate the static electric diffusion current upon the influence of an electric field. Both methods give identical results. For the first time, we obtain numerically the Drude electric conductivity formula for an ultrarelativistic gas of quarks and gluons employing constant isotropic binary cross sections. Furthermore, we extract the electric conductivity for a system of massless quarks and gluons including screened binary and inelastic, radiative 2 ↔3 perturbative QCD scattering. Comparing with recent lattice results, we find an agreement in the temperature dependence of the conductivity.

  10. Running coupling from the four-gluon vertex in Landau gauge Yang-Mills theory

    SciTech Connect

    Kellermann, Christian; Fischer, Christian S.

    2008-07-15

    We consider the running coupling from the four-gluon vertex in Landau gauge, SU(N{sub c}) Yang-Mills theory as given by a combination of dressing functions of the vertex and the gluon propagator. We determine these functions numerically from a coupled set of Dyson-Schwinger equations. We reproduce asymptotic freedom in the ultraviolet momentum region and find a coupling of order one at mid-momenta. In the infrared we find a nontrivial (i.e. nonzero) fixed point which is 3 orders of magnitude smaller than the corresponding fixed point in the coupling of the ghost-gluon vertex. This result explains why the Dyson-Schwinger and the functional renormalization group equations for the two point functions can agree in the infrared, although their structure is quite different. Our findings also support Zwanziger's notion of an infrared effective theory driven by the Faddeev-Popov determinant.

  11. Viscosity and dilepton production of a chemically equilibrating quark-gluon plasma at finite baryon density

    SciTech Connect

    Guan Nana; Li Jianwei; He Zejun; Long Jiali; Cai Xiangzhou; Ma Yugang; Shen Wenqing

    2009-07-15

    By considering the effect of shear viscosity we have investigated the evolution of a chemically equilibrating quark-gluon plasma at finite baryon density. Based on the evolution of the system we have performed a complete calculation for the dilepton production from the following processes: qq{yields}ll, qq{yields}gll, Compton-like scattering (qg{yields}qll,qg{yields}qll), gluon fusion (gg{yields}cc), annihilation (qq{yields}cc), as well as the multiple scattering of quarks. We have found that quark-antiquark annihilation, Compton-like scatterring, gluon fusion, and multiple scattering of quarks give important contributions. Moreover, we have also found that the dilepton yield is an increasing function of the initial quark chemical potential, and the increase of the quark phase lifetime because of the viscosity also obviously raises the dilepton yield.

  12. Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions

    SciTech Connect

    Albino, S.; Kniehl, B.A.; Kramer, G.; Ochs, W.

    2006-03-01

    We define a general scheme for the evolution of fragmentation functions which resums both soft gluon logarithms and mass singularities in a consistent manner and to any order, and requires no additional theoretical assumptions. Using the double logarithmic approximation and the known perturbative results for the splitting functions, we present our scheme with the complete contribution from the double logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more complete than the modified leading logarithm approximation even with the fixed order contribution calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to experimental data, that this approximation in our scheme gives a good description of the data from the largest x{sub p} values to the peak region in {xi}=ln(1/x{sub p}), in contrast to other approximations. In addition, we develop a treatment of hadron mass effects which gives additional improvements at large {xi}.

  13. Dark field X-ray microscopy: the effects of condenser/detector aperture.

    PubMed

    Vogt, S; Chapman, H N; Jacobsen, C; Medenwaldt, R

    2001-03-01

    In order to visualize the functionality of a biological cell, it is often desirable to label specific proteins. In this work we concentrate on the optical theory of visualizing colloidal gold labels with soft X-ray microscopes, where scattering from small gold spheres used as labels dominates the image. Using numerical simulations of bright and dark field imaging, we compare different configurations of condenser and objective lenses in transmission X-ray microscopes, and configurations of detector and objective lens in scanning transmission X-ray microscopes. It is verified that the contrast of small, closely spaced features is strongly affected by changes in these configurations; the optimum situation is to have the condenser aperture (in TXM) or detector aperture (in STXM) equal to 3/2 that of the objective numerical aperture. PMID:11310539

  14. The effects of water on beta-D-xylose condensation reactions.

    PubMed

    Dong, Haitao; Nimlos, Mark R; Himmel, Michael E; Johnson, David K; Qian, Xianghong

    2009-07-30

    Car-Parrinello-based ab initio molecular dynamics simulations (CPMD) combined with metadynamics (MTD) simulations were used to determine the reaction energetics for the beta-D-xylose condensation reaction to form beta-1,4-linked xylobiose in a dilute acid solution. Protonation of the hydroxyl group on the xylose molecule and the subsequent breaking of the C-O bond were found to be the rate-limiting step during the xylose condensation reaction. Water and water structure was found to play a critical role in these reactions due to the proton's high affinity for water molecules. The reaction free energy and reaction barrier were determined using CPMD-MTD. We found that solvent reorganization due to proton partial desolvation must be taken into account in order to obtain the correct reaction activation energy. Our calculated reaction free energy and reaction activation energy compare well with available experimental results. PMID:19572686

  15. Effect of vacuum-condensed or ultrafiltered milk on pasteurized process cheese.

    PubMed

    Acharya, M R; Mistry, V V

    2005-09-01

    Milk was concentrated by ultrafiltration (UF) or vacuum condensing (CM) and milks with 2 levels of protein: 4.5% (UF1 and CM1) and 6.0% (UF2 and CM2) for concentrates and a control with 3.2% protein were used for manufacturing 6 replicates of Cheddar cheese. For manufacturing pasteurized process cheese, a 1:1 blend of shredded 18- and 30-wk Cheddar cheese, butter oil, and disodium phosphate (3%) was heated and pasteurized at 74 degrees C for 2 min with direct steam injection. The moisture content of the resulting process cheeses was 39.4 (control), 39.3 (UF1), 39.4 (UF2), 39.4 (CM1), and 40.2% (CM2). Fat and protein contents were influenced by level and method of concentration of cheese milk. Fat content was the highest in control (35.0%) and the lowest in UF2 (31.6%), whereas protein content was the lowest in control (19.6%) and the highest in UF2 (22.46%). Ash content increased with increase in level of concentration of cheese milk with no effect of method of concentration. Meltability of process cheeses decreased with increase in level of concentration and was higher in control than in the cheeses made with concentrated milk. Hardness was highest in UF cheeses (8.45 and 9.90 kg for UF1 and UF2) followed by CM cheeses (6.27 and 9.13 kg, for CM1 and CM2) and controls (3.94 kg). Apparent viscosity of molten cheese at 80 degrees C was higher in the 6.0% protein treatments (1043 and 1208 cp, UF2 and CM2) than in 4.5% protein treatments (855 and 867 cp, UF1 and CM1) and in control (557 cp). Free oil in process cheeses was influenced by both level and method of concentration with control (14.3%) being the lowest and CM2 (18.9%) the highest. Overall flavor, body and texture, and acceptability were higher for process cheeses made with the concentrates compared with control. This study demonstrated that the application of concentrated milks (UF or CM) for Cheddar cheese making has an impact on pasteurized process cheese characteristics.

  16. Quantitative assessment of DNA condensation.

    PubMed

    Trubetskoy, V S; Slattum, P M; Hagstrom, J E; Wolff, J A; Budker, V G

    1999-02-15

    A fluorescent method is proposed for assessing DNA condensation in aqueous solutions with variety of condensing agents. The technique is based on the effect of concentration-dependent self-quenching of covalently bound fluorophores upon DNA collapse. The method allows a more precise determination of charge equivalency in titration experiments with various polycations. The technique's ability to determine the number of DNA molecules that are condensed together in close proximity is under further investigation.

  17. Mitotic chromosome structure and condensation.

    PubMed

    Belmont, Andrew S

    2006-12-01

    Mitotic chromosome structure has been the cell biology equivalent of a 'riddle, wrapped in a mystery, inside an enigma'. Observations that genetic knockout or knockdown of condensin subunits or topoisomerase II cause only minimal perturbation in overall chromosome condensation, together with analysis of early stages of chromosome condensation and effects produced by histone H1 depletion, suggest a need to reconsider textbook models of mitotic chromosome condensation and organization. PMID:17046228

  18. Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Drese, John H.; Sager, John C.

    1991-01-01

    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.

  19. Gluon saturation and Feynman scaling in leading neutron production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.

    2016-01-01

    In this paper we extend the color dipole formalism for the study of leading neutron production in e + p → e + n + X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron-proton (ep) colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

  20. The η (η‧) gamma transition form factor and the gluon-gluon distribution amplitude

    NASA Astrophysics Data System (ADS)

    Kroll, P.; Passek-Kumerički, K.

    2013-07-01

    The ηγ and η‧γ transition form factors are analyzed to leading-twist accuracy and next-to-leading order of perturbative QCD. Using an η-η‧ mixing scheme and all currently available experimental data the lowest Gegenbauer coefficients of the distribution amplitudes for the valence octet and singlet q\\bar{q} and the gluon-gluon Fock components are extracted. Predictions for the g*g*η‧ vertex function are presented. We also comment on the new BELLE results for the πγ transition form factor.

  1. Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2.

    PubMed

    Chen, Chin-Cheng; Cheng, Hsiu-Chin

    2007-01-21

    The effects of size and charge on the condensation of a supersaturated water vapor on monodisperse nanoparticles of SiO(2) were investigated in a flow cloud chamber. The dependences of the critical supersaturation S(cr) on particle size at diameters of 10, 12, and 15 nm as well as on charge and charge polarity are determined experimentally. A novel electrospray aerosol generator was developed to generate a high concentration of SiO(2) nanoparticles of less than 10 nm by electrospraying silicon tetraethoxide (STE) ethanol solution followed by the thermal decomposition of STE. The effects of liquid flow rate, liquid concentration, flow rate of carrier gas, and liquid conductivity on the particle size distribution and concentration were examined. For charged particles, the nucleation occurs at a critical supersaturation S(cr) lower than that on neutral particles, and the charge effect fades away as particle size increases. The charge effect is stronger than the theoretical predictions. In addition, a sign preference is detected, i.e., water vapor condenses more readily on negatively charged particle, a trend consistent with those observed on ions. However, both effects of charge and charge polarity on S(cr) are stronger than that predicted by Volmer's theory for ion-induced nucleation. PMID:17249890

  2. Classical gluon production amplitude in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chirilli, Giovanni Antonio

    2016-03-01

    The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  3. Nonperturbative gluon and ghost propagators in d = 3

    SciTech Connect

    Papavassiliou, Joannis

    2011-05-23

    We study the nonperturbative gluon and ghost propagators in d = 3 Yang-Mills, using the Schwinger-Dyson equations of the pinch technique. The use of the Schwinger mechanism leads to the dynamical generation of a gluon mass, which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained are in very good agreement with the results of SU(2) lattice simulations.

  4. Quark mean field model with pion and gluon corrections

    NASA Astrophysics Data System (ADS)

    Xing, Xueyong; Hu, Jinniu; Shen, Hong

    2016-10-01

    The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.

  5. Semirelativistic potential model for three-gluon glueballs

    SciTech Connect

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2008-05-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Our results are in good agreement with other approaches and lattice calculation for the odderon trajectory but differ strongly from lattice in the J{sup +-} sector. We propose a possible explanation for this problem.

  6. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  7. Effective field theory of Bose-Einstein condensation of α clusters and Nambu-Goldstone-Higgs states in 12C

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Takahashi, J.; Yamanaka, Y.; Ohkubo, S.

    2016-07-01

    An effective field theory of α -cluster condensation is formulated as a spontaneously broken symmetry in quantum field theory to understand the raison d'être and the nature of the Hoyle and α -cluster states in 12C. The Nambu-Goldstone and Higgs mode operators in infinite systems are replaced with a pair of canonical operators whose Hamiltonian gives rise to discrete energy states in addition to the Bogoliubov-de Gennes excited states. The calculations reproduce well the experimental spectrum of the α -cluster states. The existence of the Nambu-Goldstone-Higgs states is demonstrated and crucial. The γ -decay transitions are also obtained.

  8. Statistical mechanics of the ``Chinese restaurant process'': Lack of self-averaging, anomalous finite-size effects, and condensation

    NASA Astrophysics Data System (ADS)

    Bassetti, Bruno; Zarei, Mina; Cosentino Lagomarsino, Marco; Bianconi, Ginestra

    2009-12-01

    The Pitman-Yor, or Chinese restaurant process, is a stochastic process that generates distributions following a power law with exponents lower than 2, as found in numerous physical, biological, technological, and social systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this process invariably gives rise to a condensation, i.e., a distribution dominated by a finite number of classes. We also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other statistical mechanical models.

  9. Statistical mechanics of the "Chinese restaurant process": lack of self-averaging, anomalous finite-size effects, and condensation.

    PubMed

    Bassetti, Bruno; Zarei, Mina; Cosentino Lagomarsino, Marco; Bianconi, Ginestra

    2009-12-01

    The Pitman-Yor, or Chinese restaurant process, is a stochastic process that generates distributions following a power law with exponents lower than 2, as found in numerous physical, biological, technological, and social systems. We discuss its rich behavior with the tools and viewpoint of statistical mechanics. We show that this process invariably gives rise to a condensation, i.e., a distribution dominated by a finite number of classes. We also evaluate thoroughly the finite-size effects, finding that the lack of stationary state and self-averaging of the process creates realization-dependent cutoffs and behavior of the distributions with no equivalent in other statistical mechanical models.

  10. Effect of alkali treatment on physiological activity of cotton condensed tannin.

    PubMed Central

    Rousselle, M A; Elissalde, M H; Domelsmith, L N

    1990-01-01

    Cotton dusts contain condensed tannins and endotoxins, which are suspected of contributing to the development of acute and chronic biological responses in some cotton textile mill workers. Condensed tannin extracted from cotton dust was coated on to cellulose powder, and the tannin coated powder was treated with an alkali solvent system previously developed to reduce the endotoxin content and pulmonary toxicity of cotton dust. Physiological activities of the dusts and powders were compared by assaying the production of the arachidonic acid metabolites prostaglandin F2 alpha (PGF2 alpha), thromboxane A2 (TxA2) (the precursor to thromboxane B2 (TxB2], leukotriene C4 (LTC4), and prostaglandin E2 (PGE2) by guinea pig pulmonary cells obtained by lung lavage. Cotton dust stimulated the pulmonary cells to produce a total of 29 pg metabolites per 10(6) cells. Production of metabolites by cells stimulated with tannin coated cellulose powder was reduced to 8.3 pg/10(6) cells. Alkali treatment of the tannin coated cellulose powder resulted in a further decrease in its ability to stimulate the cells, producing 3.5 pg metabolites per 10(6) cells. The ability of the dusts and powders to stimulate production of metabolites of arachidonic acid by pulmonary cells from guinea pigs was highly correlated with tannin content of the materials, but not with endotoxin content as measured by the Limulus amoebocyte lysate (LAL) assay. PMID:2223662

  11. Thermal and quantum fluctuation effects in rotational hysteresis of ring Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Clark, C. W.; Wang, Y.-H.; Heller, C.; Edwards, M.

    2015-03-01

    In a recent experment a ring Bose-Einstein condensate (BEC) with zero circulation (with winding number m = 0) and stirred by a barrier jumped to an m = 1 state when stirred faster than a certain critical speed, Ωc+. Conversely an m = 1 condensate dropped to m = 0 when stirred below a critical speed, Ωc-, which was lower than Ωc+. The hysteresis loop areas, Ωc+ -Ωc- , disagreed significantly with the predictions of the zero-temperature Gross-Pitaevskii equation. We report the results of simulating this experiment with both the Zaremba-Nikuni-Griffin (ZNG) theory and the Truncated Wigner Approximation (TWA). The ZNG theory can account for thermal fluctuations while the TWA can also account for quantum fluctations of the gas. We compare the results of these simulations with the experimental data and describe how the dynamics of vortex/antivortex pairs formed in the barrier region during the stirring is modified by the presence of a thermal cloud and by quantum fluctuations beyond the mean field. Supported by NSF Grants PHY-1068761 and ARO Atomtronics MURI.

  12. Thermal and quantum fluctuation effects in rotational hysteresis of ring Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Edwards, M.; Heller, C.; Wang, Y.-H.; Clark, C. W.

    2015-05-01

    In a recent experiment a ring Bose-Einstein condensate (BEC) with zero circulation (with winding number m = 0) and stirred by a barrier jumped to an m = 1 state when stirred faster than a certain critical speed, Ω+ c. Conversely an m = 1 condensate dropped to m = 0 when stirred below a critical speed, Ω? c, which was lower than Ω+ c. The hysteresis loop areas, Ω+ c -Ω- c , disagreed significantly with the predictions of the zero-temperature Gross-Pitaevskii equation. We report the results of simulating this experiment with both the Zaremba-Nikuni-Griffin (ZNG) theory and the Truncated Wigner Approximation (TWA). The ZNG theory can account for thermal fluctuations while the TWA can also account for quantum fluctations of the gas. We compare the results of these simulations with the experimental data and describe how the dynamics of vortex/antivortex pairs formed in the barrier region during the stirring is modified by the presence of a thermal cloud and by quantum fluctuations beyond the mean field. Supported by NSF grants PHY-1068761 and ARO Atomtronics MURI.

  13. Finite-temperature effects in stirred ring Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Murray, N.; Lanier, C.; Edwards, M.; Wang, Y.-H.; Clark, C. W.

    2014-05-01

    A ring Bose-Einstein condensate (BEC) with zero circulation (m = 0) stirred by a barrier will eventually jump to an m = 1 state when stirred faster than a certain critical speed, Ωc+. A ring BEC with m = 1 will drop to m = 0 when stirred at a critical speed, Ωc-, which is lower than Ωc+. The loop areas, Ωc+ -Ωc- , of this hysteretic response of the BEC to stirring predicted by zero-temperature Gross-Pitaevskii equation (GPE) disagreed significantly with the results of a recent experiment. In the work reported here, we simulated this experiment with the phenomenologically damped GPE, [S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1999)], and with the Zaremba-Nikuni-Griffin (ZNG) theory. The ZNG theory can account for finite-T, non-equilibrium dynamics. We compare the results of these simulations with the experimental data. The simulations show that a vortex/antivortex pair forms in the barrier region during the stirring and that this drives the hysteresis. We also show how the presence of an interacting, thermal cloud affects the dynamics of these pairs. We also simulate a ring condensate stirred by two barriers and find that the GPE matches the data much more closely. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI.

  14. Strongly and weakly unstable anisotropic quark-gluon plasma

    SciTech Connect

    Manuel, Cristina; Mrowczynski, Stanislaw

    2005-08-01

    Using explicit solutions of the QCD transport equations, we derive an effective potential for an anisotropic quark-gluon plasma which under plausible assumptions holds beyond the Hard Loop approximation. The configurations, which are unstable in the linear response approach, are characterized by a negative quadratic term of the effective potential. The signs of higher-order terms can be either negative or positive, depending on the parton momentum distribution. In the case of a Gaussian momentum distribution, the potential is negative and unbound from below. Therefore, the modes, which are unstable for gauge fields of small amplitude, remain unstable for arbitrary large amplitudes. We also present an example of a momentum distribution which gives a negative quadratic term of the effective potential but the whole potential has a minimum and it grows for sufficiently large gauge fields. Then, the system is weakly unstable. The character of the instability is important for the dynamical evolution of the plasma system.

  15. Chromodynamic fluctuations in quark-gluon plasma

    SciTech Connect

    Mrowczynski, Stanislaw

    2008-05-15

    Fluctuations of chromodynamic fields in the collisionless quark-gluon plasma are found as a solution of the initial value linearized problem. The plasma initial state is on average colorless, stationary, and homogeneous. When the state is stable, the initial fluctuations decay exponentially and in the long-time limit a stationary spectrum of fluctuations is established. For the equilibrium plasma it reproduces the spectrum which is provided by the fluctuation-dissipation relation. Fluctuations in the unstable plasma, where the memory of initial fluctuations is not lost, are also discussed.

  16. Reduced Condensing and Ordering Effects by 7-Ketocholesterol and 5β,6β-Epoxycholesterol on DPPC Monolayers.

    PubMed

    Telesford, Dana-Marie; Verreault, Dominique; Reick-Mitrisin, Victoria; Allen, Heather C

    2015-09-15

    The exposure of organic-coated marine aerosols containing cholesterol (Chol) to radiation and/or an oxidizing atmosphere results in the formation of oxidized derivatives or oxysterols and will likely change aerosol surface properties. However, the intermolecular interactions between oxysterols and other lipid components and their influence on the surface properties of marine aerosols are not well-known. To address this question, the interfacial behavior and domain morphology of model Langmuir monolayers of two ring-substituted oxysterols, 7-ketocholesterol (7-KChol) and 5β,6β-epoxycholesterol (5,6β-EChol), mixed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were investigated by means of compression isotherms and Brewster angle microscopy (BAM) over a broad range of surface pressures and sterol molar ratios. Mixed DPPC/cholesterol (Chol) monolayers were also measured for comparison. The results of compression experiments showed that the condensing effect induced on mixed DPPC/sterol monolayers at low surface pressures and for intermediate molar ratios (0.3 ≤ X(sterol) ≤ 0.7) was weaker for oxysterols than for Chol. Additionally, mixed DPPC/oxysterol monolayers exhibited markedly smaller (∼2-3-fold) interfacial rigidity. Examination of the excess free energy of mixing further revealed that DPPC monolayers containing 7-KChol and Chol were thermodynamically more stable at high surface pressures than those with 5,6β-EChol, indicating that the strength of interactions between DPPC and 5,6β-EChol was the smallest. Finally, BAM images in the LE-LC phase of DPPC revealed that in comparison to Chol the addition of small amounts of oxysterols results in larger and less numerous domains, showing that oxysterols are not as effective in fluidizing the condensed phase of DPPC. Taken together, these results suggest that the strength of van der Waals interactions of DPPC alkyl chains with sterols follows the sterol hydrophobicity, with Chol being the most

  17. Tunable dipolar resonances and Einstein-de Haas effect in a {sup 87}Rb-atom condensate

    SciTech Connect

    Swislocki, Tomasz; Sowinski, Tomasz; Pietraszewicz, Joanna; Gajda, Mariusz; Lewenstein, Maciej; Zakrzewski, Jakub

    2011-06-15

    We theoretically study a spinor condensate of {sup 87}Rb atoms in a F=1 hyperfine state confined in an optical dipole trap. Putting initially all atoms in an m{sub F}=1, component we observe a significant transfer of atoms to other, initially empty Zeeman states exclusively due to dipolar forces. Because of conservation of a total angular momentum the atoms going to other Zeeman components acquire an orbital angular momentum and circulate around the center of the trap. This is a realization of the Einstein-de Haas effect in a system of cold gases. We show that the transfer of atoms via dipolar interactions is possible only when the energies of the initial and the final sates are equal. This condition can be fulfilled utilizing a resonant external magnetic field, which tunes energies of involved states via the linear Zeeman effect. We found that there are many final states of different spatial density, which can be tuned selectively to the initial state. We show a simple model explaining high selectivity and controllability of weak dipolar interactions in the condensate of {sup 87}Rb atoms.

  18. Gluon-fusion contributions to {Phi}+2 jet production

    SciTech Connect

    Campanario, F.; Zeppenfeld, D.; Kubocz, M.

    2011-11-01

    In high energy hadronic collisions, a scalar or pseudoscalar Higgs boson, {Phi}=H, A, can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. In this paper, we consider double real emission corrections to {Phi}=A production, which lead to a Higgs plus two-jet final state, at order {alpha}{sub s}{sup 4}. Full quark mass effects are considered in the calculation of scattering amplitudes for the CP-odd Higgs boson A, as induced by quark triangle-, box-, and pentagon-diagrams. They complement the analogous results for a CP-even Higgs boson H in Ref. [1]. Interference effects between loops with top and bottom quarks as well as between CP-even and CP-odd couplings of the heavy quarks are fully taken into account.

  19. The Effects of Cigarette Smoke Condensate and Nicotine on Periodontal Tissue in a Periodontitis Model Mouse.

    PubMed

    Kubota, Mikiko; Yanagita, Manabu; Mori, Kenta; Hasegawa, Shiori; Yamashita, Motozo; Yamada, Satoru; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    Cigarette smoking is a major lifestyle-related risk factor for periodontal diseases. However, the pathophysiological role of cigarette smoking in periodontal disease has yet to be fully elucidated. Here we report that the systemic administration of cigarette smoke condensate or nicotine, which is the major ingredient of cigarette smoke, augmented alveolar bone loss. Concomitantly, the number of osteoclasts in periodontal tissues increased and the expression of receptor activator of nuclear factor κB ligand was upregulated at the ligated side in mice with periodontitis. Nicotine also attenuated alveolar bone repair after ligature removal. These observations highlight the destruction of periodontal tissue by smoking and the unfavorable clinical course of periodontal disease in patients with a cigarette smoking habit. The present study demonstrates that periodontal disease models are useful for elucidating the pathogenesis of cigarette smoking-related periodontal diseases. PMID:27203240

  20. Effect of sodium chloride on the glass transition of condensed starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan

    2015-10-01

    The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix.

  1. Effect of sodium chloride on the glass transition of condensed starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan

    2015-10-01

    The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix. PMID:25872427

  2. The Effects of Cigarette Smoke Condensate and Nicotine on Periodontal Tissue in a Periodontitis Model Mouse

    PubMed Central

    Mori, Kenta; Hasegawa, Shiori; Yamashita, Motozo; Yamada, Satoru; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    Cigarette smoking is a major lifestyle-related risk factor for periodontal diseases. However, the pathophysiological role of cigarette smoking in periodontal disease has yet to be fully elucidated. Here we report that the systemic administration of cigarette smoke condensate or nicotine, which is the major ingredient of cigarette smoke, augmented alveolar bone loss. Concomitantly, the number of osteoclasts in periodontal tissues increased and the expression of receptor activator of nuclear factor κB ligand was upregulated at the ligated side in mice with periodontitis. Nicotine also attenuated alveolar bone repair after ligature removal. These observations highlight the destruction of periodontal tissue by smoking and the unfavorable clinical course of periodontal disease in patients with a cigarette smoking habit. The present study demonstrates that periodontal disease models are useful for elucidating the pathogenesis of cigarette smoking-related periodontal diseases. PMID:27203240

  3. An approach to fast fits of the unintegrated gluon density

    SciTech Connect

    Knutsson, Albert; Bacchetta, Alessandro; Kutak, Krzyzstof; Jung, Hannes

    2009-01-01

    An approach to fast fits of the unintegrated gluon density has been developed and used to determine the unintegrated gluon density by fits to deep inelastic scatting di-jet data from HERA. The fitting method is based on the determination of the parameter dependence by help of interpolating between grid points in the parameter-observable space before the actual fit is performed.

  4. EXPLORING THE POLARIZATION OF GLUONS IN THE NUCLEON.

    SciTech Connect

    STRATMANN,M.; VOGELSANG,W.

    2007-10-22

    We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.

  5. Inflation from gravitino condensates

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2015-07-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry(supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is “eaten” by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks supergravity dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-type inflation, in the massive gravitino phase. This inflationary phase is associated with scalar modes hidden in the higher order curvature corrections of the effective action arising from integrating out massive gravitino degrees of freedom. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the supersymmetry breaking energy scale and dynamically-induced gravitino mass. A hill-top inflation, on the other hand, which could also occur in the model, whereby the role of the inflaton field is played by the gravitino condensate itself, would require significant fine tuning in the inflaton's wave function renormalisation and thus may be discarded on naturalness grounds.

  6. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  7. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state.

    PubMed

    Liu, Tianqing; Sun, Wei; Sun, Xiangyu; Ai, Hongru

    2010-09-21

    Condensed drops usually display a Wenzel state on a superhydrophobic surface (SHS) only with microrough architecture, while Cassie drops easily appear on a surface with micro-nano hierarchical roughness. The mechanism of this is not very clear. It is important to understand how the hierarchical structure affects the states of condensation drops so that a good SHS can be designed to achieve the highly efficient dropwise condensation. In this study, the interface free energy (IFE) of a local condensate, which comes from the growth and combination of numerous initial condensation nuclei, was calculated during its shape changes from the early flat shape to a Wenzel or Cassie state. The final state of a condensed drop was determined by whether the IFE continuously decreased or a minimum value existed. The calculation results indicate that the condensation drops on the surface only with microroughness display a Wenzel state because the IFE curve of a condensed drop first decreases and then increases, existing at a minimum value corresponding to a Wenzel drop. On a surface with proper hierarchical roughness, however, the interface energy curve of a condensed drop will continuously decline until reaching a Cassie state. Therefore, a condensed drop on a hierarchical roughness surface can spontaneously change into a Cassie state. Besides, the states and apparent contact angles of condensed drops on a SHS with different structural parameters published in the literature were calculated and compared with experimental observations. The results show that the calculated condensed drop states are well-coordinated with experimental clarifications. We can conclude that micro-nano hierarchical roughness is the key structural factor for sustaining condensed drops in a Cassie state on a SHS.

  8. Probing Sea Quarks and Gluons: The Electron-Ion Collider Project

    NASA Astrophysics Data System (ADS)

    Horn, Tanja

    2014-03-01

    The 21st century holds great promise for reaching a new era for unlocking the mysteries of the structure of the atomic nucleus and the nucleons inside it governed by the theory of strong interactions (QCD). In particular, much remains to be learned about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons. One of the main goals of existing and nearly completed facilities is to map out the spin flavor structure of the nucleons in the valence region. A future Electron-Ion Collider (EIC) would be the world's first polarized electron-proton collider, and the world's first e-A collider, and would seek the QCD foundation of nucleons and nuclei in terms of the sea quarks and gluons, matching to these valence quark studies. The EIC will provide a versatile range of kinematics and beam polarization, as well as beam species, to allow for mapping the spin and spatial structure of the quark sea and gluons, to discover the collective effects of gluons in atomic nuclei, and to understand the emergence of hadronic matter from color charge.

  9. Shock-like hadronization of a quark gluon plasma

    SciTech Connect

    Suhonen, E.; Stalnacke, J.

    1995-07-20

    The effect of a sharp front separating the quark-gluon plasma phase from the hadronic phase is studied. Energy-momentum conservation and baryon number conservation constrain the possible temperature jump across the front. Assuming the temperature in the hadronic phase to be fixed from experiments one can determine the corresponding temperature in the plasma. In addition to the standard space-like discontinuities sudden transitions across a time-like front are also considered. The calculations reveal that the quark phase had to be expanded to a substantially supercooled state for a shock transition to happen. The supercooling is weaker if the hadronization occurs simultaneously across a time-like front than in the case of a space-like shock hadronization. If the initial phase is not pure but contains an admixture of hadronic matter slightly less supercooling is needed. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    NASA Astrophysics Data System (ADS)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping

    2007-11-01

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

  11. Condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  12. [Distortion and vertical fracture of the root: effect produced by condenser design].

    PubMed

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger.

  13. Effects of hydraulic fluid CVCM on silver-Teflon. [Collected Volatile Condensable Material spacecraft contamination tests

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1979-01-01

    Changes in the solar absorptance of silver-Teflon (Ag/FEP) surfaces were measured after contamination by the outgassing products of hydraulic fluid and irradiation by solar simulators. Although radiator surfaces are selected for stability to the solar ultraviolet and particulate environment, contaminant deposition and their interaction with solar exposure can degrade their performance. The test procedure to deposit the hydraulic fluid collected volatile condensible material (CVCM), irradiate, and determine solar absorptance changes by reflectance measurements using a spectrophotometer and a solar simulator is described. The tests showed that for the estimated deposition rates on the Ag/FEP, the hydraulic fluid CVCM fraction remaining under normal conditions (above -40 C) would not degrade its performance. The residual CVCM can be easily removed from Ag/FEP by wiping with a solvent saturated flannel. The changes in solar absorptance with the CVCM film thickness and the radiation exposure duration are reported, concluding that vacuum ultraviolet radiation did not prevent easy removal of CVCM.

  14. On the effect of dust particles on global cloud condensation nuclei and cloud droplet number

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-12-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  15. Finite-temperature effects in rotational hysteresis of ring Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Murray, N.; Lanier, C.; Edwards, M.; Wang, Y.-H.; Clark, C. W.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.

    2014-03-01

    A ring Bose-Einstein condensate (BEC) with zero circulation (m = 0) stirred by a barrier will eventually jump to an m = 1 state when stirred faster than a certain critical speed, Ωc+. A ring BEC with m = 1 will drop to m = 0 when stirred at a critical speed, Ωc-, which is lower than Ωc+. The loop areas, Ωc+ -Ωc- , of this hysteretic response of the BEC to stirring predicted by zero-temperature Gross-Pitaevskii equation (GPE) disagreed significantly with the results of a recent experiment. In the work reported here, we simulated this experiment with the phenomenologically damped GPE, [S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1999)], and with the Zaremba-Nikuni-Griffin (ZNG) theory. The ZNG theory can account for finite-T, non-equilibrium dynamics. We compare the results of these simulations with the experimental data. The simulations show that a vortex/antivortex pair forms in the barrier region during the stirring and that this drives the hysteresis. We also show how the presence of an interacting, thermal cloud affects the dynamics of these pairs. Supported in part by NSF grant #1068761 and ARO Atomtronics MURI

  16. [Distortion and vertical fracture of the root: effect produced by condenser design].

    PubMed

    Dang, D A; Walton, R E

    1990-01-01

    The incidence of vertical root fractures and the amount of root distortion created during lateral condensation of gutta-percha with either D11 spreaders or B-finger pluggers were evaluated in vitro. Fifty-five extracted human, single-rooted teeth were instrumented using the step-back flare technique. Ten teeth served as positive controls (obturation to the point of fracture) and five teeth as negative controls (prepared but not obtured). Strain gauges were attached to the root surfaces. In the experimental group, 20 teeth were obturated using a D11 spreader and 20 with a B-finger plugger. Recordings were made of root distortion (expansion) created during obturation. Then, after sectioning the teeth, root surfaces of obturated samples were examined for fractures under the scanning electron microscope. Only the more tapered spreader, the D11, produces vertical root fractures, although very few in number. Also, the D11 spreader caused greater root distortion than did the B-finger plugger. PMID:1964071

  17. Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Ganesh, Harish; Ceccio, Steven

    2014-11-01

    Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.

  18. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    NASA Technical Reports Server (NTRS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  19. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda; Petters, Markus Dirk

    2016-02-01

    This work presents experimental data on the cloud condensation nuclei (CCN) activity of two-component mixtures containing surfactants. Nine binary systems were tested combining strong ionic (sodium dodecyl sulfate) and nonionic surfactants (Zonyl FS-300 and Triton X-100) with nonsurfactant compounds (glucose, ammonium sulfate, or sodium chloride). Control tests were performed for systems combining organic (glucose) and inorganic compounds (ammonium sulfate or sodium chloride). Results show that CCN activity deviates strongly relative to predictions made from measurements of bulk surface tension. Köhler theory accounting for surface tension reduction and surface partitioning underpredicts the CCN activity of particles containing Zonyl FS-300 and Triton X-100. Partitioning theory better describes data for Zonyl FS-300 and Triton X-100 when limiting surface adsorption to 1.5 monolayers of the growing drop. Deviations from predictions were observed. Likely explanations include solute-solute interactions and nonspherical particle shape. The findings presented here examine in detail the perturbation of CCN activity by surfactants and may offer insight into both the success and limitations of physical models describing CCN activity of surface active molecules.

  20. Effects of the resin and smoke condensate of Cannabis sativa on the oestrous cycle of the rat.

    PubMed

    Lares, A; Ochoa, Y; Bolaños, A; Aponte, N; Montenegro, M

    1981-01-01

    This study is concerned with variations in the oestrous cycle of the Sprague-Dawley rat following the intraperitoneal administration of maize oil solutions of Cannabis sativa resin and smoke condensate in doses of 10 and 20 mg/kg. Oestrus was shortened with doses of both the resin and the smoke condensate, whereas dioestrus was lengthened with the 20 mg/kg smoke condensate. ALso observed was a lengthening of postoestrus following the administration of 20 mg/kg of either the resin or the smoke condensate.

  1. The gluon contribution to nucleon spin

    SciTech Connect

    Antje Bruell

    2006-04-06

    EIC is the ideal machine to finally determine the contribution of the gluons to the nucleon spin. Measurements of G{sub 1} will allow: (1) a determination of {Delta}G/G from its scaling violation and (2) a statistically very precise determination of the Bjorken Sum (systematics due to uncertainty in proton beam polarization). Measurements of charm cross section asymmetries will provide a precise determination of {Delta}G/G for 0.003 < x < 0.5 at a fixed value of Q{sup 2} of {approx} GeV{sup 2} provided they can measure the scattered electron at extremely small angles; separate the primary and secondary vertex with sufficient precision; and control the contribution of resolved photons. More work is needed to define the necessary detector requirements.

  2. Gluon Green functions free of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Athenodorou, A.; Boucaud, Ph.; De Soto, F.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2016-09-01

    This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

  3. Check of the gluon-reggeization condition in the next-to-leading order: Gluon part

    SciTech Connect

    Kozlov, M. G. Reznichenko, A. V. Fadin, V. S.

    2012-04-15

    The last bootstrap condition whose validity has not been verified to date is considered. This condition is an indispensable element in the unitarity-relation-based proof of themulti-Regge form of highenergy gluon-exchange QCD amplitudes in the next-to-leading-logarithm approximation. The approach used here relies on the s-channel unitarity and makes it possible to reproduce successively, in all orders of perturbation theory, themulti-Regge form of the amplitude, provided that specific nonlinear relations, called bootstrap conditions, hold. All of them were derived, and all, with the exception of one, were tested. An explicit verification of fulfillment of the last condition (the bootstrap condition for the inelastic amplitude of the production of one gluon inmulti-Regge kinematics) is performed. In our preceding study, we performed such a verification for purely fermion contributions, while, in the present study, we complete it for one-loop gluon corrections to the components of the condition being considered.

  4. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  5. Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols.

    PubMed

    Chen, Liang-Yu; Cheng, Chien-Wei; Liang, Ji-Yuan

    2015-03-01

    The Folin-Ciocalteu method is widely applied for the determination of the total phenolic contents in natural products. This method is significantly affected by the addition of sodium carbonate. The currently applied Folin-Ciocalteu methods may have been modified without any validation in the quantitative standards and the order of processes. In this study, serial experiments were performed to investigate the effect of phenolic calibrations based on the classic Folin-Ciocalteu method. Esterification condensations were observed in the assays with prior basification for gallic acid and catechin used as quantitative standards. The phenolic contents obtained in the samples differed depending on when basification occurred compared with the gallic acid calibration. The bias of the classic Folin-Ciocalteu method derived from cross-linkage of molecules was first defined in this study. The performance of the Folin-Ciocalteu method is optimised and validated again.

  6. The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer

    SciTech Connect

    Fan, Jiwen; Comstock, Jennifer M.; Ovchinnikov, Mikhail

    2010-11-10

    Cloud anvils from deep convective clouds are of great importance to the radiative energy budget and the aerosol impact on them is the least understood. Few studies examined the effects of both cloud condensation nuclei (CCN) and ice nuclei (IN) on anvil properties and water vapor content (WVC) in the Tropical Tropopause Layer (TTL). Using a 3-dimensional cloud-resolving model with size-resolved cloud microphysics, we focus on the CCN and IN effects on cloud anvil properties and WVC in the TTL. We find that cloud microphysical changes induced by CCN/IN play a very important role in determining cloud anvil area and WVC in the TTL, whether convection is enhanced or suppressed. Also, CCN effects on anvil microphysical properties, anvil size and lifetime are much more evident relative to IN. IN has little effect on convection, but can increase ice number and mass concentrations significantly under humid conditions. CCN in the PBL is found to have greater effects on convective strength and mid-tropospheric CCN has negligible effects on convection and cloud properties. Convective transport may only moisten the main convective outflow region but the cloud anvil size determines the WVC in the TTL domain. This study shows an important role of CCN in the lower-troposphere in modifying convection, the upper-level cloud properties. It also shows the effects of IN and the PBL CCN on the upper-level clouds depends on the humidity, resolving some contradictory results in past studies. 2

  7. Gluon fragmentation functions in the Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Jing; Li, Hsiang-nan

    2016-09-01

    We derive gluon fragmentation functions in the Nambu-Jona-Lasinio (NJL) model by treating a gluon as a pair of color lines formed by a fictitious quark and antiquark (q q ¯). Gluon elementary fragmentation functions are obtained from the quark and antiquark elementary fragmentation functions for emitting specific mesons in the NJL model under the requirement that the q q ¯ pair maintains in the flavor-singlet state after meson emissions. An integral equation, which iterates the gluon elementary fragmentation functions to all orders, is then solved to yield the gluon fragmentation functions at a model scale. It is observed that these solutions are stable with respect to variation of relevant model parameters, especially after QCD evolution to a higher scale is implemented. We show that the inclusion of the gluon fragmentation functions into the theoretical predictions from only the quark fragmentation functions greatly improves the agreement with the SLD data for the pion and kaon productions in e+e- annihilation. Our proposal provides a plausible construct for the gluon fragmentation functions, which are supposed to be null in the NJL model.

  8. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  9. The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers.

    PubMed

    Caglieri, Andrea; Goldoni, Matteo; Acampa, Olga; Andreoli, Roberta; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-04-01

    Chromium is corrosive, cytotoxic, and carcinogenic for humans and can induce acute and chronic lung tissue toxicity. The aim of this study was to investigate Cr levels in exhaled breath condensate (EBC) of workers exposed to Cr(VI) and to assess their relationship with biochemical changes in the airways by analyzing EBC biomarkers of oxidative stress, namely, hydrogen peroxide (H2O2) and malondialdehyde (MDA). EBC samples were collected from 24 chrome-plating workers employed in a chrome-plating plant both before and after the Friday work shift and before the work shift on the following Monday. Cr-EBC levels increased from the beginning (5.3 microg/L) to the end of Friday (6.4 microg/L) but were considerably lower on Monday morning (2.8 microg/L). A similar trend was observed for H2O2-EBC levels (which increased from 0.36 microM to 0.59 microM on Friday and were 0.19 microM on Monday morning) and MDA-EBC levels (which increased from 8.2 nM to 9.7 nM on Friday and were 6.6 nM on Monday). Cr-EBC levels correlated with those of H2O2-EBC (r = 0.54, p < 0.01) and MDA-EBC (r = 0.59, p < 0.01), as well as with urinary Cr levels (r = 0.25, p < 0.05). The results of this study demonstrate that EBC is a suitable matrix that can be used to investigate both Cr levels and biomarkers of free radical production sampling the epithelial-lining fluid of workers exposed to Cr(VI).

  10. Effect of cigarette smoke condensate on gene promoter methylation in human lung cells

    PubMed Central

    2014-01-01

    Background In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. Methods Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. Results Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. Conclusions Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings. PMID:25214829

  11. Performance Analysis of a Cost-Effective Electret Condenser Microphone Directional Array

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Gerhold, Carl H.; Zuckerwar, Allan J.; Herring, Gregory C.; Bartram, Scott M.

    2003-01-01

    Microphone directional array technology continues to be a critical part of the overall instrumentation suite for experimental aeroacoustics. Unfortunately, high sensor cost remains one of the limiting factors in the construction of very high-density arrays (i.e., arrays containing several hundred channels or more) which could be used to implement advanced beamforming algorithms. In an effort to reduce the implementation cost of such arrays, the authors have undertaken a systematic performance analysis of a prototype 35-microphone array populated with commercial electret condenser microphones. An ensemble of microphones coupling commercially available electret cartridges with passive signal conditioning circuitry was fabricated for use with the Langley Large Aperture Directional Array (LADA). A performance analysis consisting of three phases was then performed: (1) characterize the acoustic response of the microphones via laboratory testing and calibration, (2) evaluate the beamforming capability of the electret-based LADA using a series of independently controlled point sources in an anechoic environment, and (3) demonstrate the utility of an electret-based directional array in a real-world application, in this case a cold flow jet operating at high subsonic velocities. The results of the investigation revealed a microphone frequency response suitable for directional array use over a range of 250 Hz - 40 kHz, a successful beamforming evaluation using the electret-populated LADA to measure simple point sources at frequencies up to 20 kHz, and a successful demonstration using the array to measure noise generated by the cold flow jet. This paper presents an overview of the tests conducted along with sample data obtained from those tests.

  12. Chromohydrodynamic approach to the unstable quark-gluon plasma

    SciTech Connect

    Manuel, Cristina; Mrowczynski, Stanislaw

    2006-11-15

    We derive hydrodynamic-like equations that are applicable to short-time-scale color phenomena in the quark-gluon plasma. The equations are solved in the linear response approximation, and the gluon polarization tensor is derived. As an application, we study the collective modes in a two-stream system and find plasma instabilities when the fluid velocity is larger than the speed of sound in the plasma. The chromohydrodynamic approach, discussed here in detail, should be considered as simpler over other approaches and well-designed for numerical studies of the dynamics of an unstable quark-gluon plasma.

  13. Gluon multiplication in high energy heavy ion collisions

    SciTech Connect

    Xiong, L.; Shuryak, E.V. )

    1994-04-01

    Hot gluons are the dominant components of the QCD plasma to be formed in future high energy heavy ion experiments. In this paper we study the elementary processes in the plasma medium for gluon multiplication based on all orders of the tree diagrams in perturbative QCD. When applying to the chemical equilibration in the expanding system, we found that the gluon reaches chemical equilibrium well within its plasma phase. The inclusion of all the next-to-leading-order processes makes the equilibration considerably faster than the simple [ital gg][leftrightarrow][ital ggg] one considered previously.

  14. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus.

    PubMed

    Naumann, H D; Armstrong, S A; Lambert, B D; Muir, J P; Tedeschi, L O; Kothmann, M M

    2014-01-17

    The effect of molecular weight of condensed tannins (CT) from a variety of warm-season perennial legumes commonly consumed by sheep and goats on anthelmintic activity has not been previously explored. The objectives of this study were to determine if molecular weight of CT from warm-season perennial legumes could predict the biological activity of CT relative to anthelmintic activity against ivermectin resistant L3 stage Haemonchus contortus (HC) using a larval migration inhibition (LMI) assay. A second objective was to determine if CT from warm-season perennial legumes possess anthelmintic properties against L3 stage (HC). Lespedeza stuevei had the greatest concentration of total condensed tannin (TCT; 11.7%), whereas, with the exception of Arachis glabrata, a CT-free negative control, Leucaena retusa had the least TCT (3.3%). Weight-average molecular weight of CT ranged from 552 Da for L. stuevei to 1483 Da for Lespedeza cuneata. The treatments demonstrating the greatest percent LMI were L. retusa, L. stuevei and Acacia angustissima var. hirta (65.4%, 63.1% and 42.2%, respectively). The ivermectin treatment had the smallest percent LMI (12.5%) against ivermectin resistant L3 HC. There was a weak correlation (R(2)=0.34; P=0.05) between CT MW and percent LMI, suggesting that molecular weight of CT is a weak contributing factor to CT biological activity as it relates to LMI of L3 stage HC. L. stuevei, L. retusa and A. angustissima var. hirta STP5 warrant further evaluation of anthelmintic properties in vivo.

  15. Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations

    SciTech Connect

    Li Qiang; Spira, Michael; Gao, Jun; Li Chongsheng

    2011-05-01

    Higgs bosons can be produced copiously at the LHC via gluon fusion induced by top and bottom quark loops, and can be enhanced strongly if extra heavy quarks exist. We present results for Higgs+zero-, one- and two-jet production at the LHC operating at 7 and 14 TeV collision energy, in both the standard model and the 4th generation model, by evaluating the corresponding heavy quark triangle, box, and pentagon Feynman diagrams. We compare the results by using the effective Higgs-gluon interactions in the limit of heavy quarks with the cross sections including the full mass dependences. NLO effects on Higgs+zero-jet production rate with full mass dependence are presented for the first time consistently in the 4th generation model. Our results improve the theoretical basis for fourth generation effects on the Higgs boson search at the LHC.

  16. Water condensation: a multiscale phenomenon.

    PubMed

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.

  17. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  18. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  19. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization. PMID:27115446

  20. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  1. Design of a high temperature chemical vapor deposition reactor in which the effect of the condensation of exhaust gas in the outlet is minimized using computational modeling

    NASA Astrophysics Data System (ADS)

    Yoon, Ji-Young; Geun Kim, Byeong; Nam, Deok-Hui; Yoo, Chang-Hyoung; Lee, Myung-Hyun; Seo, Won-Seon; Shul, Yong-Gun; Lee, Won-Jae; Jeong, Seong-Min

    2016-02-01

    Tetramethylsilane (TMS) was recently proposed as a safe precursor for SiC single crystal growth through high temperature chemical vapor deposition (HTCVD). Because the C content of TMS is much higher than Si, the exhaust gas from the TMS-based HTCVD contains large amounts of C which is condensed in the outlet. Because the condensed C close to the crystal growth front will influence on the thermodynamic equilibrium in the crystal growth, an optimal reactor design was highly required to exclude the effect of the condensed carbon. In this study, we report on a mass/heat transfer analysis using the finite element method (FEM) in an attempt to design an effective reactor that will minimize the effect of carbon condensation in the outlet. By applying the proposed reactor design to actual growth experiments, single 6H-SiC crystals with diameters of 50 mm were successfully grown from a 6H-SiC seed. This result confirms that the proposed reactor design can be used to effectively grow 6H-SiC crystals using TMS-based HTCVD.

  2. What does low energy physics tell us about the zero momentum gluon propagator?

    SciTech Connect

    Costa, P.; Oliveira, O.; Silva, P. J.

    2011-05-23

    The connection between QCD, a nonlocal Nambu-Jona-Lasinio type model and the Landau gauge gluon propagator is explored. This two point function is parameterized by a functional form which is compatible with Dyson-Schwinger and lattice QCD results. Demanding the nonlocal model to reproduce the experimental values for the pion mass, the pion decay constant, {Gamma}{sub {pi}{yields}{gamma}{gamma}} and the light quark condensate we conclude that low energy physics does not distinguish between the so-called decoupling and scaling solutions of the Dyson-Schwinger equations. This result means that, provided that the model parameters are chosen appropriately, one is free to choose any of the above scenarios. Furthermore, the nonlocal Nambu-Jona-Lasinio quark model considered here is chiral invariant and satisfies the GMOR relation at the 1% level of precision.

  3. Rapidity evolution of gluon TMD from low to moderate x

    SciTech Connect

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x \\ll 1$ to linear evolution at moderate $x \\sim 1$.

  4. Rapidity evolution of gluon TMD from low to moderate x

    DOE PAGESBeta

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at smallmore » $$x \\ll 1$$ to linear evolution at moderate $$x \\sim 1$$.« less

  5. Gluon TMD in particle production from low to moderate x

    DOE PAGESBeta

    Balitsky, I.; Tarasov, A.

    2016-06-28

    Here, we study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.

  6. Veneziano ghost, modified gluon propagator, and gauge copies in QCD

    NASA Astrophysics Data System (ADS)

    Dudal, D.; Guimaraes, M. S.

    2016-04-01

    In this short note, we come back to the recent proposal put forward by Kharzeev and Levin [Phys. Rev. Lett. 114, 242001 (2015)], in which they phenomenologically couple the nonperturbative Veneziano ghost to the perturbative gluon, leading to a modified gluon propagator (the "glost") of the Gribov type, with complex poles. As such, a possible link was made between the QCD topological θ -vacuum (Veneziano ghost) and color confinement (no physically observable gluons). We discuss some subtleties concerning gauge (Becchi-Rouet-Stora-Tuytin) invariance of this proposal, related to the choice of Feynman gauge. We draw particular attention to the incompatibility in the longitudinal sector with available nonperturbative results for the linear covariant gauge. We furthermore provide an example in the Landau gauge of a similar phenomenological vertex that also describes the necessary Veneziano ghost but does not affect the Landau gauge gluon propagator.

  7. Gluon TMD in particle production from low to moderate x

    NASA Astrophysics Data System (ADS)

    Balitsky, I.; Tarasov, A.

    2016-06-01

    We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.

  8. Effect of condensed corn distillers solubles concentration on lactation performance of Holstein cows.

    PubMed

    McCormick, M E; Forbes, S; Moreira, V R; Blouin, D C; Han, K J

    2015-03-01

    Forty-eight Holstein cows (32 multiparous and 16 primiparous) in mid to late lactation averaging 219±71 days in milk and 30.5±6.6 kg/d of 3.5% fat-corrected milk were used in a 56-d completely randomized design experiment to evaluate condensed corn distillers solubles (CCDS) inclusion in high-fiber total mixed rations (TMR). Inclusion rates evaluated were 0, 6.6, 13.2, and 19.8% CCDS as a percentage of dry matter (DM). Distiller solubles substituted for soybean meal, corn grain, and whole cottonseed such that diets were similar in protein (16.6%) and fat (4.50%). Water was added to 0, 6.6, and 13.2% CCDS treatments so that final TMR DM concentrations (47.8%) were similar across diets. The forage portion of the diet was kept constant at 19.6% annual ryegrass hay and 26.0% sorghum baleage. Diet in vitro true digestibility tended to increase as CCDS addition increased, but neutral detergent fiber digestibility trended lower in CCDS diets. Percent P (0.39, 0.55, 0.69, and 0.73%) and S (0.32, 0.35, 0.39, and 0.42%) in TMR increased as CCDS concentration increased. Milk yield (23.5, 24.7, 25.5, and 24.8 kg/d of 3.5% fat-corrected milk) was similar for control and CCDS diets. Milk fat (3.88, 3.73, 3.78, and 3.68%), protein (3.28, 3.27, 3.31, and 3.31%), and lactose (4.61, 4.66, 4.69, and 4.77) percentages were similar across diets. Milk urea nitrogen (16.60, 15.58, 15.43, and 14.75 mg/dL) declined with increasing CCDS addition. Animal activity, body weight, body condition scores, and locomotion scores were not influenced by CCDS. Day 28 poststudy locomotion scores were similar across diets. Ruminal acetate concentrations did not differ among diets, but propionate and butyrate concentrations were elevated in rumen fluid of cows receiving 19.6% CCDS. Although rumen fluid pH values were similar (6.5, 6.4, 6.3, and 6.2), the two highest CCDS diets exhibited depressed acetate:propionate ratios relative to controls. The results from this study indicate that CCDS may be

  9. Ultraforward particle production from color glass condensate and Lund fragmentation

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Guerrero Rodríguez, Pablo; Nara, Yasushi

    2016-09-01

    We present an analysis of data on single inclusive pion production measured by the LHCf Collaboration in high-energy proton-proton and proton-nucleus at ultraforward rapidities, 8.8 ≤y ≤10.8 . We also analyze forward RHIC data for calibration purposes. Our analysis relies on the use of a Monte Carlo event generator that combines a perturbative description of the elementary scattering process at partonic level based on the hybrid formalism of the color glass condensate with an implementation of hadronization in the framework of the Lund string fragmentation model. This procedure allows us to reach values of the momenta of the produced particles as low as detected experimentally, pt˜0.1 GeV . We achieve a good description of single inclusive spectra of charged particles and neutral pions at the RHIC and the LHC, respectively, and nuclear modification factors for proton-lead collisions at the LHC. Our results add evidence to the idea that particle production in the domain of a very small Bjorken x is dominated by the saturation effects encoded in the unintegrated gluon distribution of the target. With forward particle production being of key importance in the development of air showers, we stress that this approach allows for a theoretically controlled extrapolation of our results to the scale of ultra-high-energy cosmic rays, thus serving as the starting point for future works on this topic.

  10. Schwinger-Dyson Equations and Dynamical gluon mass generation

    SciTech Connect

    Aguilar, A.C.; Natale, A.A.

    2004-12-02

    We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

  11. Physics of the gluon-helicity contribution to proton spin.

    PubMed

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2013-09-13

    The total gluon helicity in a polarized proton, measurable in high-energy scattering, is shown to be the large momentum limit of a gauge-invariant but nonlocal, frame-dependent gluon spin E × A⊥ in QCD. This opens a door for a nonperturbative calculation of this quantity in lattice QCD and also justifies using free-field expressions in the light-cone gauge as physical observables.

  12. Accessing the Distribution of Linearly Polarized Gluons in Unpolarized Hadrons

    SciTech Connect

    Boer, Daniel; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian; /Cagliari U. /INFN, Cagliari

    2011-08-19

    Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos2{phi} asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future Electron-Ion Collider (EIC) or Large Hadron electron Collider (LHeC) experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

  13. Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons

    SciTech Connect

    Boer, Daniel; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian; /Cagliari U. /INFN, Cagliari

    2011-02-07

    We show that the unmeasured distribution of linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production both in electron-hadron and hadron-hadron collisions. We present expressions for the simplest cos 2{phi} asymmetries and estimate their maximal value in the particular case of electron-hadron collisions. Measurements of the linearly polarized gluon distribution in the proton should be feasible in future EIC or LHeC experiments.

  14. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Chen, Qijin

    2016-05-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.

  15. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    PubMed Central

    Chen, Qijin

    2016-01-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  16. Effect of the particle-hole channel on BCS-Bose-Einstein condensation crossover in atomic Fermi gases.

    PubMed

    Chen, Qijin

    2016-01-01

    BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.

  17. CP-even scalar boson production via gluon fusion at the LHC

    NASA Astrophysics Data System (ADS)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Lazopoulos, Achilleas; Mistlberger, Bernhard

    2016-09-01

    In view of the searches at the LHC for scalar particle resonances in addition to the 125 GeV Higgs boson, we present the cross-section for a CP-even scalar produced via gluon fusion at N3LO in perturbative QCD assuming that it couples directly to gluons in an effective theory approach. We refine our prediction by taking into account the possibility that the scalar couples to the top-quark and computing the corresponding contributions through NLO in perturbative QCD. We assess the theoretical uncertainties of the crosssection due to missing higher-order QCD effects and we provide the necessary information for obtaining the cross-section value and uncertainty from our results in specific scenarios beyond the Standard Model. We also give detailed results for the case of a 750 GeV scalar, which will be the subject of intense experimental studies.

  18. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff.

  19. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  20. Effects of quark-gluon plasma and hadron gas on charmonium production at energies available at the CERN Super Proton Synchrotron and the Facility for Antiproton and Ion Research

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi

    2016-04-01

    The production of charmonium in heavy ion collisions is investigated based on the Boltzmann-type transport model for charmonium evolution and the Langevin equation for charm quark evolution. Charmonium suppression and regeneration in both quark-gluon plasma (QGP) and hadron phase are considered. Charm quarks are far from thermalization, and regeneration of charmonium in QGP and hadron gas is negligible at the Super Proton Synchrotron (SPS) and the Facility for Antiproton and Ion Research (FAIR). At peripheral collisions, charmonium suppression with hadron gas explains the experimental data well. But at central collisions, additional suppression from deconfined matter (QGP) is necessary for the data. This means there should be QGP produced at central collisions, and no QGP produced at peripheral collisions at SPS energy. Predictions are also made at FAIR √{sN N}=7.7 GeV Au+Au collisions.

  1. Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation

    NASA Astrophysics Data System (ADS)

    Breu, A. P.; Ensner, H.-M.; Kruelle, C. A.; Rehberg, I.

    2003-01-01

    We report on experiments on vertically shaken binary granular mixtures, which separate into their components due to the external excitation. This well-known phenomenon, where large particles rise to the top of the mixture, is called the Brazil-nut effect. Recent theoretical findings predict also a reverse Brazil-nut effect, where large particles sink to the bottom of the container. We choose spherical beads of various diameters and materials in order to observe the transition from Brazil-nut effect to its reverse form. The direction of demixing depends sensitively on the external excitation, so that it is possible to switch between both effects for a given mass density ratio.

  2. Asymptotic freedom and IR freezing in QCD: the role of gluon paramagnetism

    SciTech Connect

    Simonov, Yu. A.

    2011-08-15

    Paramagnetism of gluons is shown to play the basic role in establishing main properties of QCD: IR freezing and asymptotic freedom (AF). Starting with Polyakov background field approach the first terms of background perturbation theory are calculated and shown to ensure not only the classical result of AF but also IR freezing. For the latter only the confining property of the background is needed, and the effective mass entering the IR freezing logarithms is calculated in good agreement with phenomenology and lattice data.

  3. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans and their antioxidant capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional bene...

  4. Effects of Gravity on Start-up of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Nagano, Hosei

    2007-01-01

    This paper describes an experimental study on the effect of gravity on the start-up of a miniature loop heat pipe (MLHP) with two evaporators and two condensers. Each evaporator has an outer diameter of 9 mm and has its own integral compensation chamber (CC). The MLHP was placed under five configurations where the relative elevation and tilt among the loop components were varied. The four well-known initial conditions between the evaporator and CC prior to the LHP start-up were created in this experimental study through combinations of: 1) the test configuration; 2) the method of preconditioning the loop prior to start-up, and 3) the heat load distribution among the evaporators. A total of 165 start-ups were conducted under the five test configurations. All of these start-ups were successful. However, the effect of gravity on start-up transients was clearly seen under otherwise the same heat load distribution and sink temperatures. An analytical model was used to simulate the MLHP transient behaviors, and the model predictions agreed very well with the experimental results.

  5. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    PubMed

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes. PMID:22686312

  6. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    PubMed

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  7. Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering.

    PubMed

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2016-05-20

    We investigate the close connection between the quantum phase space Wigner distribution of small-x gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard diffractive dijet production at the planned electron-ion collider. The angular correlation between the nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the phase space Wigner distribution. This experimental study not only provides us with three-dimensional tomographic pictures of gluons inside high energy protons-it gives a unique and interesting signal for the small-x dynamics with QCD evolution effects. PMID:27258865

  8. Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2016-05-01

    We investigate the close connection between the quantum phase space Wigner distribution of small-x gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard diffractive dijet production at the planned electron-ion collider. The angular correlation between the nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the phase space Wigner distribution. This experimental study not only provides us with three-dimensional tomographic pictures of gluons inside high energy protons—it gives a unique and interesting signal for the small-x dynamics with QCD evolution effects.

  9. The improvement of the effectiveness of using natural gas in hot-water boilers by means of condensing economizers

    NASA Astrophysics Data System (ADS)

    Vnukov, A. K.; Rozanova, F. A.

    2013-07-01

    The paper describes the results of the study of the mathematical model of a condensing economizer (CE) interacting with the technological parameter of the particular district heating station. This model has been developed by the authors. It is shown that the CE, due to condensation of water vapor and augmentation of convective heat exchange between products of natural gas combustion, makes it possible to save up to 8% of fuel.

  10. Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light

    SciTech Connect

    Laussy, Fabrice P.; Shelykh, Ivan A.; Malpuech, Guillaume; Kavokin, Alexey

    2006-01-15

    It is shown theoretically that Bose condensation of spin-degenerated exciton polaritons results in spontaneous buildup of the linear polarization in emission spectra of semiconductor microcavities and therefore that linear polarization is a good order parameter for the polariton Bose condensation under unpolarized pumping. If spin degeneracy is lifted, an elliptically polarized light is emitted by the polariton condensate. The main axis of the ellipse rotates in time due to self-induced Larmor precession of the polariton condensate pseudospin. The polarization decay time is governed by the dephasing induced by the polariton-polariton interaction and is strongly dependent on the statistics of the condensed state. If the elliptical polarization preexists in the system as a result of pumping, the lifetime of the linear part of the polarization is also extremely sensitive to the degree of circular polarization induced in the system by pumping. This decay time can be used to measure the coherence degree of the condensate as a function of the polarization of the emitted light, as opposed to more conventional but harder particle counting experiments of the Hanbury Brown-Twiss type.

  11. Anti pp searches for quark-gluon plasma at TeV I

    SciTech Connect

    Turkot, F.

    1986-06-01

    Three experiments that have been approved to run at TeV I are discussed from the viewpoint of their capability to search for evidence of the QCD phase transition in proton-antiproton collisions at 1.6 TeV. One of these experiments, E-735, was proposed as a dedicated search for quark-gluon plasma effects with a detector designed to study large total E/sub T/, low P/sub T/ individual particles. The other two, E-741 (CDF) and E-740 (DO), embody general purpose four-pi detectors designed primarily to study the physics of W and Z bosons and other large P/sub T/ phenomena. The detectors and their quark-gluon plasma signals are compared. 8 refs., 6 figs., 4 tabs. (LEW)

  12. Gluon Schwinger-Dyson equation in the PT-BFM scheme

    NASA Astrophysics Data System (ADS)

    Narciso Ferreira, A. M. S.; Aguilar, A. C.

    2016-04-01

    Schwinger-Dyson equations provide an appropriate framework for tackling non-perturbative QCD phenomena requiring a continuum treatment. However, an inadequate truncation of this tower of integral equations can compromise the symmetries underlying the theory in question. The synthesis of the Pinch Technique and the Background Field method provides a framework where it is possible to devise a self-consistent truncation scheme, exploiting the Ward identities satisfied by the effective Green’s functions that emerge. In this work we review how this truncation scheme is implemented, and show that the new series of dressed diagrams for the background gluon propagator organizes itself in characteristic subsets that are individually transverse. In addition, we discuss how the Background Quantum identity connects the background gluon propagator with the conventional one, computed in the lattice simulations.

  13. Can antibaryons signal the formation of a quark-gluon plasma

    SciTech Connect

    Heinz, U.; Subramanian, P.R.; Greiner, W.

    1985-01-01

    We report on recent work which indicates that an enhancement of antibaryons produced in the hadronization phase transition can signal the existence of a transient quark-gluon plasma phase formed in a heavy-ion collision. The basis of the enhancement mechanism is the realization that antiquark densities are typically a factor 3 higher in the quark-gluon plasma phase than in hadronic matter at the same temperature and baryon density. The signal is improved by studying larger clusters of antimatter, i.e., light antinuclei like anti ..cap alpha.., in the central rapidity region. The effects of the transition dynamics and of the first order nature of the phase transition on the hadronization process are discussed.

  14. Energy change of a heavy quark in a viscous quark-gluon plasma with fluctuations

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong

    2016-09-01

    When a heavy quark travels through the quark-gluon plasma, the polarization and fluctuating chromoelectric fields will be produced simultaneously in the plasma. The drag force due to those fields exerting in return on the moving heavy quark will cause energy change to it. Based on the dielectric functions derived from the viscous chromohydrodynamics, we have studied the collisional energy change of a heavy quark traversing the viscous quark-gluon plasma including fluctuations of chromoelectric field. Numerical results indicate that the chromoelectric field fluctuations lead to an energy gain of the moving heavy quark. Shear viscosity suppresses the fluctuation-induced energy gain and the viscous suppression effect for the charm quark is much more remarkable than that for the bottom quark. While, the fluctuation energy gain is much smaller than the polarization energy loss in magnitude and the net energy change for the heavy quark is at loss.

  15. Phenomenological analysis of Higgs boson production through gluon fusion in association with jets

    DOE PAGESBeta

    Greiner, Nicolas; Hoeche, Stefan; Luisoni, Gionata; Schonherr, Marek; Winter, Jan -Christopher; Yundin, Valery

    2016-01-27

    We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSAM and SHERPA. We present numerical resultsmore » for a large variety of observables for both standard cuts and VBF selection cuts.« less

  16. Deconfining Phase Transition to a Quark-Gluon Plasma in Different SU(3) Color Representations

    NASA Astrophysics Data System (ADS)

    Mezouar, K.; Ait El Djoudi, A.; Ghenam, L.

    2016-10-01

    For a statistical description of the quark gluon plasma (QGP) considering its internal symmetry, we calculate its partition function using the group theoretical projection method. We project out the partition function of a QGP consisting of gluons, massless up and down quarks, and massive strange quarks onto the singlet representation of the SU(3) color group, as well as onto the color octet and the color 27-plet representations. A comparison of these color representations is done, by studying their effects on the behavior of some thermodynamical quantities characterizing the mixed hadronic gas-QGP system undergoing a thermal deconfining phase transition on one side, and on the free energy during the formation of a QGP droplet from the hot hadronic gas on another side.

  17. Testing the case for the creation of a strongly interacting quark gluon plasma at RHIC

    NASA Astrophysics Data System (ADS)

    Adil, Azfar

    Recent data from the Relativistic Heavy Ion Collider (RHIC) has provided information regarding the creation of dense QCD matter in Heavy Ion Collisions (HIC). Two of the most puzzling issues raised are; (1) models using ideal hydrodynamics to describe bulk evolution have met with great success in reproducing data in HIC at RHIC, and (2) the recent data detailing the production of non-photonic electrons from heavy meson decays has shown a large quenching of heavy quark jets that is not explained by radiative energy loss calculations. These two surprising results lend credence to the claim that a Strongly Coupled Quark Gluon Plasma (sQGP) has been created at RHIC; with the strong coupling characteristics providing both the low viscosity needed by (1) and the large momentum transfers needed by (2). In order to properly quantify this, one needs to get a better understanding of the detailes of jet tomography so that one can truly adjudicate the need for sQGP creation. We consider the theoretical uncertainties stemming from the Poisson convolution assumption in energy loss calculations. We examine two different ways to account for the leakage of probabilities into unphysical regions and show that the evolution of the nuclear modification factor, RAA, with center of mass energy is sensitive to these differences. The success of ideal hydrodynamics in describing the evolution of bulk matter in the QGP phase is dependent on the choice of initial state that is fed into the evolution equations. The Participant Brodsk-Gunion-Kuhn initial conditions lead to a good agreement with the data while initial states inspired by Color Glass Condensate (CGC) models overestimate the data and seem to imply the need for viscous dissipative corrections to the dynamics. We propose 3D jet tomography as a probe to experimentally differentiate between the BGK and CGC initial state models. We find and induced non zero directed flow vl in the high p⊥ spectra in both BGK and CGC models that can be

  18. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    PubMed

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions. PMID:27373802

  19. Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips.

    PubMed

    Xu, Li-Ping; Chen, Yanxia; Yang, Gao; Shi, Wanxin; Dai, Bing; Li, Guannan; Cao, Yanhua; Wen, Yongqiang; Zhang, Xueji; Wang, Shutao

    2015-11-18

    A sensitive nucleic acid detection platform based on superhydrophilic microwells spotted on a superhydrophobic substrate is fabricated. Due to the wettability differences, ultratrace DNA molecules are enriched and the fluorescent signals are amplified to allow more sensitive detection. The biosensing interface based on superwettable materials provides a simple and cost-effective way for ultratrace DNA sensing. PMID:26426114

  20. Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips.

    PubMed

    Xu, Li-Ping; Chen, Yanxia; Yang, Gao; Shi, Wanxin; Dai, Bing; Li, Guannan; Cao, Yanhua; Wen, Yongqiang; Zhang, Xueji; Wang, Shutao

    2015-11-18

    A sensitive nucleic acid detection platform based on superhydrophilic microwells spotted on a superhydrophobic substrate is fabricated. Due to the wettability differences, ultratrace DNA molecules are enriched and the fluorescent signals are amplified to allow more sensitive detection. The biosensing interface based on superwettable materials provides a simple and cost-effective way for ultratrace DNA sensing.

  1. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    SciTech Connect

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-10-06

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  2. Effects of brewers` condensed solubles (BCS) on the production of ethanol from low-grade starch materials

    SciTech Connect

    Choi, C.H.; Chung, D.S.; Seib, P.A.

    1995-02-01

    Yeast fermentation was performed on grain and bakery byproducts with and without adding the same volume of brewers` condensed solubles (BCS). Starch material in the grain and bakery byproducts effectively was converted to fermentable sugars with conversion ratios of 93-97% by successive treatments of samples with bacterial {alpha}-amylase and fungal glucoamylase. The yeast fermentation of these enzyme-digested byproducts alone showed that ethanol concentrations of 16.4-42.7 mL/100 g dry solid in the broth were achieved with fermentation efficiencies of 87-96%. Addition of BCS to the grain byproducts increased ethanol concentration by 10-86% by increasing the potential glucose content of the broth. The rates of fermentation measured by CO{sub 2} gas production demonstrated that BCS addition to bakery byproducts reduced the fermentation time from 62-72 h to 34-35 h. In bakery byproducts that were low in amino nitrogen, exhaustion of nitrogenous compounds in substrates was found to be a limiting factor for yeast growth. Because BCS is a rich source of nitrogen, adding BCS to these substrates markedly increased the fermentation rate. 15 refs., 4 figs., 3 tabs.

  3. Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors.

    PubMed

    Yue, Pan; Zhang, Ying; Guo, Zhi-Fo; Cao, Ao-Cheng; Lu, Zhong-Lin; Zhai, Yong-Gong

    2015-04-21

    A series of bifunctional molecules with different combinations of macrocyclic polyamine [12]aneN3 and coumarin moieties, 4a/b and 5a/b, were synthesized by a two-step copper(I)-mediated alkyne–azide click reactions between 1,3,5-tris(azidomethyl)benzene and Boc-protected N-propynyl-[12]aneN3/7-propynyloxycoumarins. Agarose gel electrophoresis experiments indicated that bifunctional molecules 4b and 5b effectively induced complete plasmid DNA condensation at concentrations up to 40 μM. It was found that the structural variation had a major impact on the condensation behavior of these compounds. The electrostatic interaction involving the [12]aneN3 moiety can be compensated by the binding contribution of the coumarin units during the DNA condensation process. These two types of interaction showed different effects on the reversibility of DNA condensation. Results from studies using dynamic laser scattering, atomic force microscopy, and EB replacement assay further supported the above conclusion. Cytotoxicity assays on bifunctional compounds 4a/b and 5a/b indicated their low cytotoxicity. Results from cellular uptake and cell transfection experiments proved that bifunctional compounds 4b and 5b successfully served as non-viral gene vectors. Furthermore, methyl substituents attached to the coumarin unit (4b and 5b) greatly enhanced their DNA condensation capability and gene transfection. These bifunctional molecules, with the advantages of lower cytotoxicity, good water solubility, and potential structural modification, will have great potential for the development of new non-viral gene delivery agents.

  4. Collective Flow signals the Quark Gluon Plasma

    SciTech Connect

    Bratkovskaya, E.L.; Bleicher, M.; Greiner, C.; Muronga, A.; Paech, K.; Reiter, M.; Scherer, S.; Soff, S.; Xu, Z.; Zeeb, G.; Zschiesche, D.; Tavares, B.; Portugal, L.; Aguiar, C.; Kodama, T.; Grassi, F.; Hama, Y.; Osada, T.; Sokolowski, O.; Werner, K.

    2004-12-02

    A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A{center_dot}GeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at {approx} 10 A{center_dot}GeV; at 40 A{center_dot}GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density {rho}B. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. We, finally, propose upgrades and second generation experiments at RHIC which inspect the first order phase transition in the fragmentation region, i.e. at {mu}B {approx_equal} 400 MeV (y {approx_equal} 4 - 5), where the collapse of the proton flow should be seen in analogy to the 40 A{center_dot}GeV data. The study of Jet-Wake-riding potentials and Bow shocks - caused by jets in the QGP formed at RHIC - can give further information on the equation of state (EoS) and transport coefficients of the Quark Gluon Plasma (QGP)

  5. Resolving gluon fusion loops at current and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Azatov, Aleksandr; Grojean, Christophe; Paul, Ayan; Salvioni, Ennio

    2016-09-01

    Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including toverline{t}h and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top- Z couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as toverline{t}Z production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.

  6. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  7. Gross anatomy videos: student satisfaction, usage, and effect on student performance in a condensed curriculum.

    PubMed

    Topping, Daniel B

    2014-01-01

    Anatomy educators are being tasked with delivering the same quantity and quality of material in the face of fewer classroom and laboratory hours. As a result they have turned to computer-aided instruction (CAI) to supplement and augment curriculum delivery. Research on the satisfaction and use of anatomy videos, a form of CAI, on examination performance continues to grow. The purpose of this study was to describe the usage and effect on examination scores of a series of locally produced anatomy videos after an 11% curriculum reduction. First-year medical students (n = 40) were given access to the videos and the prior year's students (n = 40) were used as historical controls. There was no significant difference in demographics between the two groups. The survey response rate was 85% (n = 34) in the experimental group. The students found the videos to be highly satisfying (median = 5 on a five-point Likert scale, interquartile range = 1) and used them on average 1.55 times/week (SD ± 0.77). Availability of the videos did have a statistically significant effect (4% improvement) on the final laboratory examination (p = 0.039). This suggests that the videos were a well-received form of CAI that may be useful in bridging the gap created by a reduction in gross anatomy course contact hours. PMID:24106107

  8. Gross anatomy videos: student satisfaction, usage, and effect on student performance in a condensed curriculum.

    PubMed

    Topping, Daniel B

    2014-01-01

    Anatomy educators are being tasked with delivering the same quantity and quality of material in the face of fewer classroom and laboratory hours. As a result they have turned to computer-aided instruction (CAI) to supplement and augment curriculum delivery. Research on the satisfaction and use of anatomy videos, a form of CAI, on examination performance continues to grow. The purpose of this study was to describe the usage and effect on examination scores of a series of locally produced anatomy videos after an 11% curriculum reduction. First-year medical students (n = 40) were given access to the videos and the prior year's students (n = 40) were used as historical controls. There was no significant difference in demographics between the two groups. The survey response rate was 85% (n = 34) in the experimental group. The students found the videos to be highly satisfying (median = 5 on a five-point Likert scale, interquartile range = 1) and used them on average 1.55 times/week (SD ± 0.77). Availability of the videos did have a statistically significant effect (4% improvement) on the final laboratory examination (p = 0.039). This suggests that the videos were a well-received form of CAI that may be useful in bridging the gap created by a reduction in gross anatomy course contact hours.

  9. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  10. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    SciTech Connect

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.

    2007-04-15

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.

  11. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    SciTech Connect

    Hrayr Matevosyan; Anthony Thomas; Peter Tandy

    2007-04-01

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.

  12. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.

    PubMed

    Winter, Roland

    2015-01-01

    Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.

  13. Absolute and relative emissions analysis in practical combustion systems—effect of water vapor condensation

    NASA Astrophysics Data System (ADS)

    Richter, J. P.; Mollendorf, J. C.; DesJardin, P. E.

    2016-11-01

    Accurate knowledge of the absolute combustion gas composition is necessary in the automotive, aircraft, processing, heating and air conditioning industries where emissions reduction is a major concern. Those industries use a variety of sensor technologies. Many of these sensors are used to analyze the gas by pumping a sample through a system of tubes to reach a remote sensor location. An inherent characteristic with this type of sampling strategy is that the mixture state changes as the sample is drawn towards the sensor. Specifically, temperature and humidity changes can be significant, resulting in a very different gas mixture at the sensor interface compared with the in situ location (water vapor dilution effect). Consequently, the gas concentrations obtained from remotely sampled gas analyzers can be significantly different than in situ values. In this study, inherent errors associated with sampled combustion gas concentration measurements are explored, and a correction methodology is presented to determine the absolute gas composition from remotely measured gas species concentrations. For in situ (wet) measurements a heated zirconium dioxide (ZrO2) oxygen sensor (Bosch LSU 4.9) is used to measure the absolute oxygen concentration. This is used to correct the remotely sampled (dry) measurements taken with an electrochemical sensor within the remote analyzer (Testo 330-2LL). In this study, such a correction is experimentally validated for a specified concentration of carbon monoxide (5020 ppmv).

  14. The Effects of Cigarette Smoke Condensate on Vocal Fold Transepithelial Resistance and Inflammatory Signaling in Vocal Fold Fibroblasts

    PubMed Central

    Branski, Ryan C.; Zhou, Hang; Kraus, Dennis H.; Sivasankar, Mahalakshmi

    2011-01-01

    Objectives/Hypothesis In response to chronic cigarette smoke exposure, a subset of patients present with edematous vocal folds, characteristically referred to as Reinke's edema. This phenotype differs from the tissue changes associated with prolonged smoke exposure in the lower airway, and the mechanism underlying Reinke's edema remains poorly described. We hypothesize that the effects of smoke are diffuse and involve both the epithelium and mucosa. Study Design In vitro, ex vivo experiment. Methods Transepithelial resistance (RT) was quantified in an ex vivo, viable, porcine vocal fold model. Excised tissue was exposed to cigarette smoke condensate (CSC) and RT was computed at baseline and 1 and 4 hours after exposure. In vitro, human vocal fold fibroblasts were exposed to CSC. Cyclooxygenase 2 (COX-2), microsomal prostaglandin E synthase-1, and 15-hydroxyprostaglandin dehydrogenase mRNA expression were assessed at 4 hours. Prostaglandin E2 (PGE2) synthesis was quantified via immunoassay following 24 hours of CSC exposure. Results CSC had no effect on RT. CSC did, however, induce COX-2 mRNA expression as well as its downstream lipid mediator PGE2. PGE2 metabolism appears to be regulated via both synthetic and degradative enzymes in response to cigarette smoke. Conclusions In vitro, CSC initiates an inflammatory response in vocal fold fibroblasts. However, in isolation, the epithelial resistance is not altered by CSC, at least acutely. These data may suggest a role for the interaction between the inflammatory response in the mucosa and compromised epithelial barrier function, as has been shown in other tissues. Key Words Vocal folds, voice, Reinke's edema, cyclooxygenase-2, prostaglandin, transepithelial resistance, cigarette smoke. PMID:21298639

  15. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  17. All one-loop NMHV gluon amplitudes in = 1 SYM

    NASA Astrophysics Data System (ADS)

    Ochirov, Alexander

    2013-12-01

    We compute the next-to-maximally-helicity-violating one-loop n-gluon amplitudes in = 1 super-Yang-Mills theory. These amplitudes contain three negative-helicity gluons and an arbitrary number of positive-helicity gluons, and constitute the first infinite series of amplitudes beyond the simplest, MHV, amplitudes. We assemble ingredients from the = 4 NMHV tree super-amplitude into previously unwritten double cuts and use the spinor integration technique to calculate all bubble coefficients. We also derive the missing box coefficients from quadruple cuts. Together with the known formula for three-mass triangles, this completes the set of NMHV one-loop master integral coefficients in = 1 SYM. To facilitate further use of our results, we provide their Mathematica implementation.

  18. Antiangular Ordering of Gluon Radiation in QCD Media

    SciTech Connect

    Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2011-03-25

    We investigate angular and energy distributions of medium-induced gluon emission off a quark-antiquark antenna in the framework of perturbative QCD as an attempt toward understanding, from first principles, jet evolution inside the quark-gluon plasma. In-medium color coherence between emitters, neglected in all previous calculations, leads to a novel mechanism of soft-gluon radiation. The structure of the corresponding spectrum, in contrast with known medium-induced radiation, i.e., off a single emitter, retains some properties of the vacuum case; in particular, it exhibits a soft divergence. However, as opposed to the vacuum, the collinear singularity is regulated by the pair opening angle, leading to a strict angular separation between vacuum and medium-induced radiation, denoted as antiangular ordering. We comment on the possible consequences of this new contribution for jet observables in heavy-ion collisions.

  19. To What Extent is Gluon Confinement an Empirical Fact?

    NASA Astrophysics Data System (ADS)

    Delgado, R. L.; Hidalgo-Duque, Carlos; Llanes-Estrada, Felipe J.

    2013-11-01

    Experimental verifications of confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about gluon confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.

  20. Fermionic collective modes of an anisotropic quark-gluon plasma

    SciTech Connect

    Schenke, Bjoern; Strickland, Michael

    2006-09-15

    We determine the fermionic collective modes of a quark-gluon plasma which is anisotropic in momentum space. We calculate the fermion self-energy in both the imaginary- and real-time formalisms and find that numerically and analytically (for two special cases) there are no unstable fermionic modes. In addition we demonstrate that in the hard-loop limit the Kubo-Martin-Schwinger condition, which relates the off-diagonal components of the real-time fermion self-energy, holds even for the anisotropic, and therefore nonequilibrium, quark-gluon plasma considered here. The results obtained here set the stage for the calculation of the nonequilibrium photon production rate from an anisotropic quark-gluon plasma.

  1. Condensation modes in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    An, Chang-Hyuk

    1986-01-01

    Condensation modes in magnetized cylindrical plasmas, with concentration on how magnetic field affects the stability were studied. It is found that the effects of magnetic field (shear, twist, and strength) on the condensation modes are different depending on the wave vector. For modes whose wave vector is not perpendicular to magnetic field lines the plasma motion is mainly along the field lines; the effects of magnetic field on the modes are negligible except on the heat flow parallel to the field line. For a mode which is localized near a surface where the wave vector is perpendicular to the field line, the plasma moves perpendicular to the line carrying the field line into the condensed region; magnetic field affects the mode by building up magnetic pressure in the condensed region. The stability of condensation modes strongly depends on how density and temperature vary with field twist. The stable nature of global quiescent prominence magnetic configurations implies that prominences form for low field twist for which ideal MHD modes are stable; plasma temperature should increase with field twist for stable prominence formation.

  2. Effects of carbon coating and pore corrugation on capillary condensation of nitrogen in SBA-15 mesoporous silica.

    PubMed

    Morishige, Kunimitsu

    2013-09-24

    To examine the origin of an ink-bottle-like structure in SBA-15 formed by carbon coating and the effects of pore corrugation on capillary condensation and evaporation of a vapor in the cylindrical pores, we measured the adsorption isotherms of nitrogen at 77 K on 10 kinds of SBA-15 samples before and after a carbon coating process by the exposure to acetylene at 1073 K, as well as desorption scanning curves and subloops on the untreated samples. These SBA-15 samples were synthesized under the different conditions of initial SiO2/P123 ratio and hydrothermal treatment. SBA-15 with relatively large microporosity tends to form easily constrictions inside the main channels by the carbon coating. This strongly suggests that the rough pore walls of SBA-15 may induce the incomplete wetting of carbon layers on the pore walls to form the constrictions inside the cylindrical pores. A comparison of two subloops implies that the pores of SBA-15 synthesized with a SiO2/P123 ratio of 75 consist of an assembly of connecting domains of different diameters; that is, the pores are highly corrugated. For SBA-15 synthesized with a SiO2/P123 ratio of 60, the amplitude of the pore corrugation is significantly decreased by the prolonged hydrothermal treatment at 373 K. On the other hand, for SBA-15 synthesized with a SiO2/P123 ratio of 45, the amplitude of the corrugation is negligibly small, although the cylindrical pores are interconnected through narrow necks with each other. It is found that the smaller the amplitude of the pore corrugation, the smaller the width of the hysteresis loop. PMID:23977846

  3. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows.

    PubMed

    Hawkins, A; Yuan, K; Armendariz, C K; Highland, G; Bello, N M; Winowiski, T; Drouillard, J S; Titgemeyer, E C; Bradford, B J

    2013-06-01

    Flaxseed is a potent source of the n-3 fatty acid α-linolenic acid (ALA), yet most ALA is lost during ruminal biohydrogenation when ground flaxseed is fed to ruminants. Heat processing and urea formaldehyde condensation polymer (UFCP) treatment of flaxseed were investigated as possible means of protecting ALA from ruminal degradation. Ground flaxseed (GF), heated ground flaxseed (HGF), or UFCP-treated ground flaxseed (UFCPGF) were incubated for 0, 4, 8, and 12h in 4 ruminally cannulated multiparous lactating Holstein cows. Compared with GF, HGF and UFCPGF decreased ruminal disappearance of dry matter, crude protein, and ALA. Pepsin-digestible protein remaining after 12h of ruminal incubation was greater for UFCPGF and HGF than for GF. Twenty-four lactating Holstein cows (207 ± 37 d in milk, 668 ± 66 kg of body weight, and 1.33 ± 0.56 lactations) were then used in a randomized complete block design experiment with a basal feeding period to assess effects of flaxseed treatment on ALA enrichment of plasma and milk as well as lactational performance. No evidence existed that supplementation of HGF and UFCPGF affected dry matter intake, milk fat content, milk protein content, or energy-corrected milk yield, but UFCPGF marginally decreased milk yield compared with HGF. Plasma concentration of ALA was not affected by treatment. Concentrations of n-3 fatty acids and conjugated linoleic acids in milk fat were increased by UFCPGF relative to HGF, but ALA yield was not affected. Taken together, in situ results suggest that heat-treated flaxseed, with or without UFCP treatment, slowed ruminal disappearance of ALA. Feeding UFCP-treated flaxseed failed to alter ALA content of plasma or milk ALA yield relative to heating alone.

  4. Exhaled Breath Condensate as a Suitable Matrix to Assess Lung Dose and Effects in Workers Exposed to Cobalt and Tungsten

    PubMed Central

    Goldoni, Matteo; Catalani, Simona; De Palma, Giuseppe; Manini, Paola; Acampa, Olga; Corradi, Massimo; Bergonzi, Roberto; Apostoli, Pietro; Mutti, Antonio

    2004-01-01

    The aim of the present study was to investigate whether exhaled breath condensate (EBC), a fluid formed by cooling exhaled air, can be used as a suitable matrix to assess target tissue dose and effects of inhaled cobalt and tungsten, using EBC malondialdehyde (MDA) as a biomarker of pulmonary oxidative stress. Thirty-three workers exposed to Co and W in workshops producing either diamond tools or hard-metal mechanical parts participated in this study. Two EBC and urinary samples were collected: one before and one at the end of the work shift. Controls were selected among nonexposed workers. Co, W, and MDA in EBC were analyzed with analytical methods based on mass spectrometric reference techniques. In the EBC from controls, Co was detectable at ultratrace levels, whereas W was undetectable. In exposed workers, EBC Co ranged from a few to several hundred nanomoles per liter. Corresponding W levels ranged from undetectable to several tens of nanomoles per liter. A parallel trend was observed for much higher urinary levels. Both Co and W in biological media were higher at the end of the work shift in comparison with preexposure values. In EBC, MDA levels were increased depending on Co concentration and were enhanced by coexposure to W. Such a correlation between EBC MDA and both Co and W levels was not observed with urinary concentration of either element. These results suggest the potential usefulness of EBC to complete and integrate biomonitoring and health surveillance procedures among workers exposed to mixtures of transition elements and hard metals. PMID:15345342

  5. Effect of Inhaled Budesonide on Interleukin-4 and Interleukin-6 in Exhaled Breath Condensate of Asthmatic Patients

    PubMed Central

    Chi, Chun-Hua; Liao, Ji-Ping; Zhao, Yan-Ni; Li, Xue-Ying; Wang, Guang-Fa

    2016-01-01

    Background: Studies of interleukin (IL)-4 and IL-6 in the exhaled breath condensate (EBC) of asthmatic patients are limited. This study was to determine the effect of inhaled corticosteroid (ICS) treatment on IL-4 and IL-6 in the EBC of asthmatic patients. Methods: In a prospective, open-label study, budesonide 200 μg twice daily by dry powder inhaler was administered to 23 adult patients with uncontrolled asthma (mean age 42.7 years) for 12 weeks. Changes in asthma scores, lung function parameters (forced expiratory volume in 1 s [FEV1], peak expiratory flow [PEF], forced expiratory flow at 50% of forced vital capacity [FEF50], forced expiratory flow at 75% of forced vital capacity, maximum mid-expiratory flow rate) and the concentrations of IL-4 and IL-6 in EBC were measured. Results: Both asthma scores and lung function parameters were significantly improved by ICS treatment. The mean IL-4 concentration in the EBC was decreased gradually, from 1.92 ± 0.56 pmol/L before treatment to 1.60 ± 0.36 pmol/L after 8 weeks of treatment (P < 0.05) and 1.54 ± 0.81 pmol/L after 12 weeks of treatment (P < 0.01). However, the IL-6 concentration was not significantly decreased. The change in the IL-4 concentration was correlated with improvements in mean FEV1, PEF and FEF50 values (correlation coefficients −0.468, −0.478, and −0.426, respectively). Conclusions: The concentration of IL-4 in the EBC of asthmatic patients decreased gradually with ICS treatment. Measurement of IL-4 in EBC could be useful to monitor airway inflammation in asthmatics. PMID:26996478

  6. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells.

    PubMed

    Rao, Pss; Ande, Anusha; Sinha, Namita; Kumar, Anil; Kumar, Santosh

    2016-01-01

    While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC

  7. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells

    PubMed Central

    Sinha, Namita; Kumar, Anil; Kumar, Santosh

    2016-01-01

    While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC

  8. Water Condensation Kinetics on a Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Linderoth, Trolle R.; Zhdanov, Vladimir P.; Kasemo, Bengt

    2003-04-01

    Employing thermal desorption spectroscopy, we show that the effective probability of water condensation at low water vapor pressure on an octane film is much below unity at 100 120K. This unusual finding is related to a small binding energy of H2O monomers on octane (≃0.08 eV), requiring the formation of critical water clusters for condensation to occur. This results in strong temperature and impingement-rate dependencies of the water condensation rate and a nonlinear uptake as a function of dose time. All these features are rationalized quantitatively by a kinetic model of water condensation.

  9. The hard gluon component of the QCD Pomeron

    SciTech Connect

    White, A.R.

    1996-10-20

    The authors argue that deep-inelastic diffractive scaling provides fundamental insight into the QCD Pomeron. The logarithmic scaling violations seen experimentally are in conflict with the scale-invariance of the BFKL Pomeron and with phenomenological two-gluon models. Instead the Pomeron appears as a single gluon at short-distances, indicating the appearance of a Super-Critical phase of Reggeon Field Theory. That the color compensation takes place at a longer distance is consistent with the Pomeron carrying odd color charge parity.

  10. Direct probes of linearly polarized gluons inside unpolarized hadrons.

    PubMed

    Boer, Daniël; Brodsky, Stanley J; Mulders, Piet J; Pisano, Cristian

    2011-04-01

    We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2ϕ asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized gluon distribution in the proton should be feasible in future Electron-Ion Collider or Large Hadron electron Collider experiments. Analogous asymmetries in hadron-hadron collisions suffer from factorization breaking contributions and would allow us to quantify the importance of initial- and final-state interactions.

  11. Viscous quark-gluon plasma model through fluid QCD approach

    SciTech Connect

    Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id

    2014-09-25

    A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

  12. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  13. Further evidence for zero crossing on the three gluon vertex

    NASA Astrophysics Data System (ADS)

    Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.

    2016-10-01

    The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four-dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range 220-260 MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalization group improved perturbation theory.

  14. The evolution of the small x gluon TMD

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    2016-06-01

    We study the evolution of the small x gluon transverse momentum dependent (TMD) distribution in the dilute limit. The calculation has been carried out in the Ji-Ma-Yuan scheme using a simple quark target model. As expected, we find that the resulting small x gluon TMD simultaneously satisfies both the Collins-Soper (CS) evolution equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. We thus confirmed the earlier finding that the high energy factorization (HEF) and the TMD factorization should be jointly employed to resum the different type large logarithms in a process where three relevant scales are well separated.

  15. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    EPA Science Inventory

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  16. Reflux condensation in a closed tube

    SciTech Connect

    Tien, C.L.

    1984-10-01

    Reflux condensation which may have an appreciable effect on the reflood process in the reactor core during the loss-of-coolant accident is investigated experimentally and analytically in the present work using the vertical two-phase closed thermosyphon. The condensation heat transfer coefficients of the countercurrent vapor-liquid flows are locally measured along the condenser wall. The results indicate that Nusselt's solution for film condensation cannot interpret satisfactorily the observed trend. Further improvements are made to consider the effects of interfacial shear, waviness and non-condensable gas on condensation. The vapor shear retards the condensate flow and thus increases the film thickness, which results in lower heat transfer coefficients than those calculated from Nusselt theory. Modified Fanning friction factors which account for the augmentation of interfacial shear through phase change are used to evaluate the reduction of heat transfer by vapor shear. On the other hand, the waves appearing on the interface can enhance heat transfer rates. Such enhancement is determined by solving numerically the nonlinear equation for the wavy interface. When non-condensable gases are present in the system, they will accumulate at the condenser end forming a gas barrier to the vapor and shut off that portion. A two-dimensional model is developed to include both axial and radial diffusion of gas mass. This two-dimensional analysis indicates the inadequacy of the common one-dimensional diffuse-front model in considering only axial diffusion of gas in most physical systems.

  17. Wilson-line and color charge density correlators and the production of {eta}{sup '} in the color glass condensate for pp and pA collisions

    SciTech Connect

    Fillion-Gourdeau, Francois; Jeon, Sangyong

    2009-02-15

    We compute the inclusive differential cross section production of the pseudoscalar meson {eta}{sup '} in high-energy proton-proton (pp) and proton-nucleus (pA) collisions. We use an effective coupling between gluons and {eta}{sup '} meson to derive a reduction formula that relates the {eta}{sup '} production to a field-strength tensor correlator. For pA collisions, we take into account saturation effects on the nucleus side by using the color glass condensate formalism to evaluate this correlator. We derive new results for Wilson-line color charge correlators in the McLerran-Venugopalan model needed in the computation of {eta}{sup '} production. The unintegrated parton distribution functions are used to characterize the gluon distribution inside protons. We show that in pp collisions, the cross section depends on the parametrization of unintegrated parton distribution functions, and thus it can be used to put constraints on these distributions. We also demonstrate that in pA collisions, the cross section is sensitive to saturation effects, so it can be utilized to estimate the value of the saturation scale.

  18. Condensed-phase kinetic deuterium isotope effects in high-energy phenomena: Mechanistic investigations and relationships. Technical report, January 1975-December 1989

    SciTech Connect

    Shackelford, S.A.

    1989-12-01

    The rate-controlling mechanistic step of an energetic material's condensed phase thermochemical decomposition process is determined directly using the kinetic deuterium isotope effect (KDIE) approach. The KDIE is used with isothermal DSC and isothermal TGA analyses of TNT, HNBB, TATB, RDX, HMX, and their deuterium labeled analogs. The decomposition processes' rate-controlling step possibly can change as the energetic material physical state varies. The condensed phase KDIE approach that determines the rate-controlling mechanistic step in a slow thermochemical decomposition process, can be extended into the progressively more drastic high energy regimes encountered with the rapid pyrolytic decomposition/deflagration process, plus the higher temperature/pressure combustion, thermal explosion, and detonation events. The KDIE determined mechanistic relationships between the slow thermochemical decomposition process and more hostile high energy events are individually described for HMX, RDX, TATB, and TNT.

  19. Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter

    SciTech Connect

    Matevosyan, Hrayr

    2007-08-01

    Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme

  20. Conformal symmetry and differential regularization of the three-gluon vertex

    NASA Astrophysics Data System (ADS)

    Freedman, Daniel Z.; Grignani, Gianluca; Johnson, Kenneth; Rius, Nuria

    1992-08-01

    The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by renormalization effects and the gauge fixing procedure. Renormalized primitive divergent amplitudes have the property that their form away from the overall coincident point singularity is fully determined by the bare Lagrangian, and scale dependence is restricted to δ-functions at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex function Г μvp(x, y, z) is conformal invariant in this sense, if calculated in the background field formalism using the Feynman gauge for internal gluons. It is not vet clear why the expected breaking due to gauge fixing is absent. The conformal property implies that the gluon, ghost, and quark loop contributions to Г μvp are each purely numerical combinations of two universal conformal tensors Dμvp( x, y, z) and Cμvp( x, y, z) whose explicit form is given in the text. Only Dμvp has an ultraviolet divergence, although Cμvp requires a careful definition to resolve the expected ambiguity of a formally linearly divergent quantity. Regularization is straightforward and leads to a renormalized vertex function which satisfies the required Ward identity, and from which the beta function is easily obtained. Exact conformal invariance is broken in higher-loop orders, but we outline a speculative scenario in which the perturbative structure of the vertex function is determined from a conformal invariant primitive core by interplay of the renormalization group equation and Ward identities. Other results which are relevant to the conformal property include the following: (1) An analytic calculation shows that the linear deviation from the Feynman gauge is not conformal invariant, and a separate computation using symbolic manipulation confirms that among Dμbμ background gauges, only the Feynman gauge is conformal invariant. (2

  1. Testing the running coupling kT-factorization formula for the inclusive gluon production

    NASA Astrophysics Data System (ADS)

    Durães, F. O.; Giannini, A. V.; Gonçalves, V. P.; Navarra, F. S.

    2016-09-01

    The inclusive gluon production at midrapidities is described in the color glass condensate formalism using the kT-factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in p p /p A /A A collisions. However, these studies are based on the fixed coupling kT-factorization formula. This formula does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected kT-factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons' multiplicity are calculated considering p p , d A u /p P b , and A u A u /P b P b collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original kT-factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev-Levin-Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in p p /p A /A A collisions and for the charged hadrons' multiplicity in p p /p A collisions. On the other hand, the running coupling corrected kT-factorization formula predicts a smoother energy dependence for d N /d η in A A collisions.

  2. 5th International conference on Physics and Astrophysics of Quark Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash; Alam, Jan-E.; Nayak, Tapan K.

    2006-11-01

    The 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005) was held on 8 - 12 February 2005 at the Variable Energy Cyclotron Centre and Saha Institute of Nuclear Physics campus, Kolkata, India. The conference was enriched by the august presence of about 300 participants representing 18 countries across the globe. It had plenary talks and oral presentations, which form a part of these proceedings. Besides invited and contributed talks there were also a large number of poster presentations. The conference was energized by discussions of fresh experimental data from RHIC on strong elliptic flow, jet quenching, single photon spectra etc. Moreover, new theoretical results were brought to the discussion forum during this conference. Colour glass condensates, hydrodynamical flow, jet quenching and sQGP were intensely debated by the participants. The highlight of ICPAQGP 2005 was the presentation of fresh experimental results from the RHIC-IV run. The ICPAQGP series, since its inception in 1988, has placed emphasis on the role of quark matter in the fields of astrophysics and cosmology. The subsequent conferences held in 1993, 1997, 2001 and 2005 had also retained this focus. The conference was preceded by a Fest Colloquium in honour of Professor Bikash Sinha. Professor Sinha, regarded as the pioneer in establishing quark gluon plasma research in India, has successfully encouraged a group of young Indian researchers to devote themselves wholeheartedly to QGP research - both theoretical and experimental. Members of the International Advisory Committee played a pivotal role mainly in the selection of speakers. The contributions of the Organizing Committee in all aspects, from selecting the contributory talks posters down to arranging local hospitality, were much appreciated. We thank the members of both committees for making ICPAQGP 2005 an interesting platform for scientific deliberation. The ICPAQGP 2005 was supported financially by

  3. Biochemical and morphological effects of cigarette smoke condensate and its fractions on normal human bronchial epithelial cells in vitro.

    PubMed

    Willey, J C; Grafstrom, R C; Moser, C E; Ozanne, C; Sundquvist, K; Harris, C C

    1987-04-15

    We investigated the effect of cigarette smoke condensate (CSC), two basic fractions (BIa and BIb) of CSC, the ethanol-extracted weakly acidic fraction (WAe), and the methanol-extracted neutral fraction (Nmeoh) on the clonal growth rate, plasminogen activator (PA) activity, cross-linked envelope (CLE) formation, and ornithine decarboxylase activity, epidermal growth factor (EGF) binding, thiol levels, and DNA single strand breaks in cultured human bronchial cells. Neither CSC nor any of the fractions were mitogenic over the range 0.01-100 micrograms/ml. All were growth inhibitory at higher concentrations. The 40% growth inhibitory concentrations for CSC, BIa, BIb, WAe, and Nmeoh were 10, 10, 10, 3, and 1 micrograms/ml, respectively. Effects on CLE formation, morphology, PA, and ornithine decarboxylase activities, EGF binding, and thiol levels were evaluated using 40% growth inhibitory concentrations. We found that CSC and all fractions caused an increased formation of CLEs, from a baseline of 0.5% in the untreated cells to a maximum increase of 25% induced by Nmeoh. A squamous morphological change was observed within 1 h after exposure to Nmeoh, WAe, and CSC. The BIa and BIb fractions had little effect. Only Nmeoh increased PA significantly, from 2.5 +/- 0.4 to 5.1 +/- 0.3 units/mg cellular protein. CSC and the WAe and Nmeoh (Nmeoh greater than WAe greater than CSC) fractions caused a decrease in EGF binding, in each case reaching a maximum effect after a 10-12-h incubation. This effect on EGF binding was further characterized in the case of Nmeoh. In untreated normal human bronchial epithelial cells, by Scatchard analysis the kd was 2.0 nM and there were 1.2 X 10(5) receptors/cell. In cells incubated in medium containing Nmeoh (3 micrograms/ml) the kd was 3.2 nM and there were 1.1 X 10(5) receptors/cell. Thus, inhibition of EGF binding by Nmeoh was due primarily to a decrease in the affinity. At the 40% growth inhibitory concentrations neither CSC nor any of the

  4. Adiabatic preparation of Floquet condensates

    NASA Astrophysics Data System (ADS)

    Heinisch, Christoph; Holthaus, Martin

    2016-10-01

    We argue that a Bose-Einstein condensate can be transformed into a Floquet condensate, that is, into a periodically time-dependent many-particle state possessing the coherence properties of a mesoscopically occupied single-particle Floquet state. Our reasoning is based on the observation that the denseness of the many-body system's quasienergy spectrum does not necessarily obstruct effectively adiabatic transport. Employing the idealized model of a driven bosonic Josephson junction, we demonstrate that only a small amount of Floquet entropy is generated when a driving force with judiciously chosen frequency and maximum amplitude is turned on smoothly.

  5. Proceedings: Condenser technology conference

    SciTech Connect

    Tsou, J.L. ); Mussalli, Y.G. )

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues.

  6. Enhanced condensation heat transfer with wettability patterning

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  7. Effect of different thawing temperatures on the viability, in vitro fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws.

    PubMed

    Córdova-Izquierdo, A; Oliva, J H; Lleó, B; García-Artiga, C; Corcuera, B D; Pérez-Gutiérrez, J F

    2006-03-01

    The effect of two different thawing temperatures on frozen boar semen viability, in vitro fertilizing capacity and chromatin condensation and stability was studied. Freeze-thaw motility, normal apical ridge (NAR), in vitro fertilizing (IVF) capacity and chromatin condensation and stability were evaluated after thawing at 42 degrees C, 40s and 50 degrees C, 40s. Chromatin condensation degree was determined by flow cytometry, using propidium iodide as fluorochrome intercalating agent, and chromatin stability was evaluated by the same procedure after inducing sperm chromatin decondensation with ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS). The results showed that thawing straws at 42 degrees C, 40s significantly reduced motility compared to straws thawed at 50 degrees C, 40s. NAR, penetration, monospermy and polyspermy were not different between the two groups of samples thawed at different temperatures. Chromatin was significantly more compact when thawing was performed at 50 degrees C, but its stability did not show any difference relative to thawing at 42 degrees C. It is suggested that the interactions involved in chromatin overcondensation had a non-covalent nature. PMID:15975744

  8. Note on permutation sum of color-ordered gluon amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Feng, Bo; Fu, Chih-Hao

    2012-01-01

    In this Letter we show that under BCFW-deformation the large-z behavior of permutation sum of color-ordered gluon amplitudes found by Boels and Isermann in arxiv:arxiv:1109.5888 can be simply understood from the well known Kleiss-Kuijf relation and Bern-Carrasco-Johansson relation.

  9. The gluon mass generation mechanism: A concise primer

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2016-04-01

    We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.

  10. Controversy concerning the definition of quark and gluon angular momentum

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2011-05-01

    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge-invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge-invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion, i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on field theory.

  11. Quark and Gluon Orbital Angular Momentum: Where Are We?

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric; Liu, Keh-Fei

    2016-06-01

    The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.

  12. The effect of the number of condensed phases modeled on aerosol behavior during an induced steam generator tube rupture sequence

    SciTech Connect

    Bixler, N.E.; Schaperow, J.H.

    1998-06-01

    VICTORIA is a mechanistic computer code designed to analyze fission product behavior within a nuclear reactor coolant system (RCS) during a severe accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS. A recently completed independent peer review of VICTORIA, while confirming the overall adequacy of the code, recommended a number of modeling improvements. One of these recommendations, to model three rather than a single condensed phase, is the focus of the work reported here. The recommendation has been implemented as an option so that either a single or three condensed phases can be treated. Both options have been employed in the study of fission product behavior during an induced steam generator tube rupture sequence. Differences in deposition patterns and mechanisms predicted using these two options are discussed.

  13. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. PMID:24631668

  14. Temperature dependence of the effective bag constant and the radius of a nucleon in the global color symmetry model of QCD

    SciTech Connect

    Mo Yuan; Qin Sixue; Liu Yuxin

    2010-08-15

    We study the temperature dependence of the effective bag constant, the mass, and the radius of a nucleon in the formalism of the simple global color symmetry model in the Dyson-Schwinger equation approach of QCD with a Gaussian-type effective gluon propagator. We obtain that, as the temperature is lower than a critical value, the effective bag constant and the mass decrease and the radius increases with the temperature increasing. As the critical temperature is reached, the effective bag constant and the mass vanish and the radius tends to infinity. At the same time, the chiral quark condensate disappears. These phenomena indicate that the deconfinement and the chiral symmetry restoration phase transitions can take place at high temperature. The dependence of the critical temperature on the interaction strength parameter in the effective gluon propagator of the approach is given.

  15. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  16. An Integral Effects Test to investigate the effects of condensate levels of water and preexisting hydrogen on direct containment heating in the Surtsey Test Facility

    SciTech Connect

    Allen, M.D.; Blanchat, T.K.; Pilch, M. ); Nichols, R.T. )

    1993-01-01

    This report discusses the seventh experiment of the Integral Effects Test (IET-7) series. The experiment was conducted to investigate the effects of preexisting hydrogen in the Surtsey vessel on direct containment heating. Scale models of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 4-cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by ejection of an instrument guide tube in a severe nuclear power plant accident. The cavity contained 3.48 kg of water, and the containment basement floor inside the cranewall contained 71 kg of water, which corresponds to scaled condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected by steam at an initial pressure of 5.9 MPa into the reactor cavity.

  17. Thermodynamics and jet-quenching in the quark-gluon plasma from an AdS/QCD model

    NASA Astrophysics Data System (ADS)

    Lilleskov, Elias; Bartz, Sean

    2015-10-01

    The Anti-de Sitter Space/Conformal Field Theory Correspondence (AdS/CFT) has been used to study both hadronic dynamics and the thermodynamics and jet quenching behavior of the quark-gluon plasma created in heavy ion collisions. We attempt to connect the two regimes by adapting an AdS/QCD model previously used to study meson spectra to apply to the quark-gluon plasma. The model includes three fields: a dilaton to introduce confinement, and chiral and glueball condensates to reflect the zero-temperature dynamics. We dynamically solve the Einstein field equations to numerically determine the metric, which asymptotically describes an anti-de Sitter-Schwarzschild black hole solution. We then numerically calculate the temperature as a function of the black hole horizon location. Next, we determine the behavior of the entropy density, the speed of sound, and the jet quenching parameter as functions of the temperature. These quantities approach the behavior of a conformal plasma in the high temperature limit. The minimum of the temperature-horizon plot is interpreted as the plasma's deconfinement temperature, found to be 104 MeV.

  18. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments

    NASA Astrophysics Data System (ADS)

    Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.

  19. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments.

    PubMed

    Williams, Gustavious Paul; Keenan, Thomas L; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration. PMID:21280868

  20. On the Josephson effect in a Bose-Einstein condensate subject to a density-dependent gauge potential

    NASA Astrophysics Data System (ADS)

    Edmonds, M. J.; Valiente, M.; Öhberg, P.

    2013-07-01

    We investigate the coherent dynamics of a Bose-Einstein condensate in a double well, subject to a density-dependent gauge potential. Further, we derive the nonlinear Josephson equations that allow us to understand the many-body system in terms of a classical Hamiltonian that describes the motion of a nonrigid pendulum with an initial angular offset. Finally we analyse the phase-space trajectories of the system, and describe how the self-trapping is affected by the presence of an interacting gauge potential.

  1. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity.

    PubMed

    Katiki, Luciana M; Ferreira, Jorge F S; Gonzalez, Javier M; Zajac, Anne M; Lindsay, David S; Chagas, Ana Carolina S; Amarante, Alessandro F T

    2013-02-18

    Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional benefits, and antioxidant capacity of alternative forages containing hydrolyzable tannins (HT). We evaluated the anthelmintic activity and the antioxidant capacity of plant extracts containing either mostly CT, mostly HT, or both CT and HT. Extracts were prepared with 70% acetone, lyophilized, redissolved to doses ranging from 1.0mg/mL to 25mg/mL, and tested against adult Caenorhabditis elegans as a test model. The extract concentrations that killed 50% (LC(50)) or 90% (LC(90)) of the nematodes in 24h were determined and compared to the veterinary anthelmintic levamisole (8 mg/mL). Extracts were quantified for CT by the acid butanol assay, for HT (based on gallic acid and ellagic acid) by high-performance liquid chromatography (HPLC) and total phenolics, and for their antioxidant activity by the oxygen radical absorbance capacity (ORAC) assay. Extracts with mostly CT were Lespedeza cuneata, Salix X sepulcralis, and Robinia pseudoacacia. Extracts rich in HT were Acer rubrum, Rosa multiflora, and Quercus alba, while Rhus typhina had both HT and CT. The extracts with the lowest LC(50) and LC(90) concentrations, respectively, in the C. elegans assay were Q. alba (0.75 and 1.06 mg/mL), R. typhina collected in 2007 (0.65 and 2.74 mg/mL), A. rubrum (1.03 and 5.54 mg/mL), and R. multiflora (2.14 and 8.70 mg/mL). At the doses of 20 and 25mg/mL, HT-rich, or both CT- and HT-rich, extracts were significantly more lethal to adult C. elegans than extracts containing only CT. All extracts were high in antioxidant capacity, with ORAC values ranging from 1800 μmoles to 4651 μmoles of trolox equivalents/g, but ORAC did not correlate with anthelmintic activity. The total phenolics test had a

  2. Mixing sainfoin and lucerne to improve the feed value of legumes fed to sheep by the effect of condensed tannins.

    PubMed

    Aufrère, J; Dudilieu, M; Andueza, D; Poncet, C; Baumont, R

    2013-01-01

    The aim of this study was to investigate whether the use of sainfoin-based condensed tannins (CT) enhances feed value when given with tannin-free legumes (lucerne) to sheep. The experiments were conducted with fresh sainfoin and lucerne harvested at two stages (vegetative stage as compared with early flowering) in the first growth cycle. Fresh sainfoin and lucerne forages were combined in ratios of 100 : 0, 75 : 25, 25 : 75 and 0 : 100 (denoted S100, S75, S25 and S0, respectively). Voluntary intake, organic matter digestibility (OMD) and nitrogen (N) retention were measured in sheep fed the different sainfoin and lucerne mixtures. Loss of dry matter (DM) and N from polyester bags suspended in the rumen, abomasum and small intestine (SI) was also measured using rumen-fistulated sheep and intestinally fistulated sheep. The CT content in sainfoin (S100) decreased with increasing percentage of lucerne in the mixture (mean value from 58 g/kg DM for S100 to 18 g/kg DM for S25) and with growth stage (S100: 64 to 52 g/kg DM). OMD did not differ between different sainfoin/lucerne mixture ratios. Sainfoin and lucerne had an associative effect (significant quadratic contrast) on voluntary intake, N intake, total-tract N digestibility, N in faeces and urine (g/g N intake) and N retained (g/g N intake). Compared with lucerne mixtures (S0 and S25), high-sainfoin-content mixtures (S100 and S75) increased the in situ estimates of forage N escaping from the rumen (from 0.162, 0.188 for S0 and S25 to 0.257, 0.287 for S75 and S100) but decreased forage N intestinal digestibility (from 0.496, 0.446 for S0 and S25 to 0.469, 0.335 for S75 and S100). The amount of forage N disappearing from the bags in the SI (per g forage N) was the highest for high-sainfoin mixtures (from 0.082, 0.108 for S100 and S75 to 0.056, 0.058 for S25 and S0, P < 0.001). Rumen juice total N (tN) and ammonia N (NH3-N) values were the lowest in the high-sainfoin diet (mean tN 0.166 mg/g in S100 as compared with 0

  3. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  4. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  5. In vitro studies of biological effects of cigarette smoke condensate. II. Induction of sister-chromatid exchanges in human lymphocytes by weakly acidic, semivolatile constituents.

    PubMed

    Jansson, T; Curvall, M; Hedin, A; Enzell, C R

    1986-03-01

    Cigarette smoke condensate is known to enhance the frequency of sister-chromatid exchanges (SCE) in human lymphocytes in vitro and some of the activity has been found in the most volatile part of the particulate phase, the semivolatile fraction. In this study we have investigated the chemical composition and the SCE-inducing activity of the weakly acidic, semivolatile fraction of a cigarette smoke condensate. A number of individual weakly acidic compounds were also tested for their SCE-inducing effects. The weakly acidic fraction was separated by preparative gel chromatography into 11 subfractions (F1-F11). The chemical composition was determined by gas chromatography and gas chromatography-mass spectrometry. Measurements of the effects on SCE in human lymphocytes were used to evaluate the genotoxic effects. All fractions except F11 induced SCE in a dose-dependent way. The most active fraction was F4 which contained mainly alkyl-2-hydroxy-2-cyclopenten-1-ones. The individual compounds to be tested for induction of SCE were selected on the basis of their abundance in the weakly acidic subfractions and on the basis of their occurrence in the environment. Of 23 tested compounds, most of which were alkylphenols, 7 induced SCE, i.e., catechol, 2-(1-propenyl)phenol, cyclotene, maltol, isoeugenol, 2-methoxyphenol (guaiacol) and vanillin. Many of these are important flavor components that occur not only in tobacco and tobacco smoke but also in food, candies, beverages and perfumes.

  6. Measured effects of retrofits -- a refrigerant oil additive and a condenser spray device -- on the cooling performance of a heat pump

    SciTech Connect

    Levins, W.P.; Sand, J.R.; Baxter, V.D.; Linkous, R.L.

    1996-05-01

    A 15-year old, 3-ton single package air-to-air heat pump was tested in laboratory environmental chambers simulating indoor and outdoor conditions. After documenting initial performance, the unit was retrofitted with a prototype condenser water-spray device and retested. Results at standard ARI cooling rating conditions (95 F outdoor dry bulb and 80/67 F indoor dry bulb/wet bulb temperatures) showed the capacity increased by about 7%, and the electric power demand dropped by about 8%, resulting in a steady-state EER increase of 17%. Suction and discharge pressures were reduced by 7 and 37 psi, respectively. A refrigerant oil additive formulated to enhance refrigerant-side heat transfer was added at a dose of one ounce per ton of rated capacity, and the unit was tested for several days at the same 95 F outdoor conditions and showed essentially no increase in capacity, and a slight 3% increase in steady-state EER. Adding more additive lowered the EER slightly. Suction and discharge pressures were essentially unchanged. The short-term testing showed that the condenser-spray device was effective in increasing the cooling capacity and lowering the electrical demand on an old and relatively inefficient heat pump, but the refrigerant additive had little effect on the cooling performance of the unit. Sprayer issues to be resolved include the effect of a sprayer on a new, high-efficiency air conditioner/heat pump, reliable long-term operation, and economics.

  7. Sealing ability of MTA used as a root end filling material: effect of the sonic and ultrasonic condensation.

    PubMed

    Bernabé, Pedro Felício Estrada; Gomes-Filho, João Eduardo; Bernabé, Daniel Galera; Nery, Mauro Juvenal; Otoboni-Filho, José Arlindo; Dezan-Jr, Eloi; Cintra, Luciano Tavares Angelo

    2013-01-01

    Despite the excellent properties of mineral trioxide aggregate (MTA), the condensation technique may have some influence in its sealing ability. The purpose of this study was to compare the sealing ability of sonic and ultrasonic setting of MTA. Thirty-four extracted human teeth had their canals prepared and filled with Sealapex sealer and gutta-percha using the active lateral condensation technique. The teeth were rendered waterproof and apicoectomy performed at 3 mm from the apex. Root-end cavities (3.0 mm deep and 1.4 mm diameter) were prepared with diamond ultrasonic tips. The root-end cavities were filled with Pro-Root MTA® with ultrasonic vibration, sonic vibration or no vibration. The positive control group did not receive any material while the negative control group was totally rendered waterproof. After material set, the specimens were immersed in Rodhamine B for 24 h, under vacuum in the first 15 min, then washed, dried and split longitudinally for evaluating the infiltration at the dentin/material interface. Data were analyzed using ANOVA and Tukey's tests at 5% significance level. Sonic vibration promoted the lowest infiltration values (p<0.05). It was concluded that sonic vibration could be considered an efficient aid to improve the sealing ability of MTA when used as root-end filling material. PMID:23780366

  8. Transient direct-contact condensation on liquid droplets

    SciTech Connect

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature.

  9. Transient direct-contact condensation on liquid droplets

    NASA Astrophysics Data System (ADS)

    Pasamehmetoglu, K. O.; Nelson, R. A.

    1987-06-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature.

  10. Quark-Gluon Soup -- The Perfectly Liquid Phase of QCD

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich

    2015-03-01

    At temperatures above about 150 MeV and energy densities exceeding 500 MeV/fm3, quarks and gluons exist in the form of a plasma of free color charges that is about 1000 times hotter and a billion times denser than any other plasma ever created in the laboratory. This quark-gluon plasma (QGP) turns out to be strongly coupled, flowing like a liquid. About 35 years ago, the nuclear physics community started a program of relativistic heavy-ion collisions with the goal of producing and studying QGP under controlled laboratory conditions. This article recounts the story of its successful creation in collider experiments at Brookhaven National Laboratory and CERN and the subsequent discovery of its almost perfectly liquid nature, and reports on the recent quantitatively precise determination of its thermodynamic and transport properties.

  11. Tests of QCD at HERA: determination of the gluon density

    SciTech Connect

    Repond, J.

    1996-12-31

    An overview is given of the various methods available to the colliding beam experiments at HERA to determine the gluon density of the proton. The article includes a description of fits to the structure function F{sub 2}, of studies of dijet and open charm production in deep inelastic scattering, of elastic and inelastic {psi} photoproduction, and of inclusive diffractive scattering. 13 refs., 8 figs.

  12. RHIC AND THE PURSUIT OF THE QUARK-GLUON PLASMA.

    SciTech Connect

    MITCHELL,J.T.

    2001-07-25

    There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far.

  13. Collision Rate and Symmetry Factor in Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Wang, Qun

    2013-03-01

    The elastic and inelastic collision rates in a gluon gas are calculated. The symmetry factor and the phase space integral are discussed in detail. With a symmetry factor and well constrained phase space, the same result can be obtained as that of the full phase space without the factor. Such an equivalence is illustrated by analytic and numerical calculations for gg → gg and gg → ggg processes.

  14. Polarized Parton Distributions and the Polarized Gluon Asymmetry

    NASA Astrophysics Data System (ADS)

    Ramsey, Gordon P.

    The flavor-dependent valence, sea quark and antiquark spin distributions can be determined separately from theoretical assumptions and experimental data. We have determined the valence distributions using the Bjorken sum rule and have extracted polarized sea distributions, assuming that the quarks and anti-quarks for each flavor are symmetric. Other experiments have been proposed which will allow us to completely break the SU(3) symmetry of the sea flavors. To create a physical model for the polarized gluons, we investigate the gluon spin asymmetry in a proton, AG(x, Q2) = (Δ G(x, Q2))/(G(x, Q2)). By assuming that htis is is approximately Q2 invariant, we can completely determine the x-dependence of this asymmetry, which satisfies constituent counting rules and reproduces the basic results of the Bremsstrahlung model originated by Close and Sivers. This asymmetry can be combined with the measured unpolarized gluon density, G(x,Q2) to provide a prediction for Δ G(x,Q2). Existing and proposed experiments can test both the prediction of scale-invariance for AG(x,Q2) and the nature of Δ G itself. These models will be discussed along with suggestions for specific experiments which can be performed at energies typical of HERA, RHIC and LHC to determine the nature of these polarized distributions.

  15. Measuring gluon shadowing with prompt photons at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Arleo, François; Gousset, Thierry

    2008-02-01

    The possibility to observe the nuclear modification of the gluon distribution at small-x (gluon shadowing) using high-p⊥ prompt photon production at RHIC and at LHC is discussed. The per-nucleon ratio, σ (p + A → γ + X) / (A × σ (p + p → γ + X)), is computed for both inclusive and isolated prompt photons in perturbative QCD at NLO using different parameterizations of nuclear parton densities, in order to assess the visibility of the shadowing signal. The production of isolated photons turns out to be a promising channel which allows for a reliable extraction of the gluon density, RGA, and the structure function, RF2A, in a nucleus over that in a proton. Moreover, the production ratio of prompt photons at forward-over-backward rapidity in p-A collisions provides an estimate of RGA (at small x) over RF2A (at large x), without the need of p- p reference data at the same energy.

  16. Bulk Properties and Collective Flow of Quark Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph

    2007-10-01

    Quantum Chromodynamics predicts a transition from a hadronic phase at temperatures less than 150-200 MeV to a quark gluon plasma phase at higher temperatures. Lattice calculations show a big increase in the entropy density in this vicinity. Whether the transition is first or second order or a smooth rapid crossover depends upon the values of the up, down and strange quark masses. The goal of the heavy ion experimental program at RHIC is to observe this transition and to study the nature of the quark gluon plasma quantitatively. Two big surprises arose from these experiments: Substantial collective flow has been observed, as evidenced by single-particle transverse momentum distributions and by azimuthal correlations among the produced particles, and the degree to which high energy jets are attenuated in the produced matter. A variety of theoretical models of these collisions require initial energy densities more than a factor of 10 greater than in neutron star cores and more than a factor of 100 greater than within atomic nuclei. Taken together this body of work implies a strongly interacting phase of quarks and gluons beyond the capabilities of perturbation theory. This has motivated approaches based on gauge theories with gravity duals where physical observables may be calculated in a strong coupling limit. This in turn has stimulated interest from members of the string theory community who are currently bringing their expertise to bear on the problem.

  17. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  18. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  19. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  20. Theoretical analysis of condensation in the presence of noncondensable gases as applied to open cycle OTEC condensers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.; Bell, K. J.

    The open cycle ocean thermal energy conversion condenser was analyzed from a theoretical standpoint. Interfacial temperature profiles and gas concentrations in the axial direction were determined, and their effects on the rate of condensation studied. For the analysis, the vapor phase was modeled using diffusion equations for simultaneous heat and mass transfer processes, while the liquid phase was modeled using a falling film analysis. This analysis was then applied to a plate fin condenser, and the effect of varying the fin density along the condenser lengths was investigated. General engineering aspects of heat exchanger design are discussed for condensation of vapor mixtures in the presence of noncondensable gases.

  1. The Effect of Sink Temperature on a Capillary Pumped Loop Employing a Flat Evaporator and Shell and Tube Condenser

    SciTech Connect

    M. Cerza; R.C. Herron; J.J. Harper

    2002-06-24

    An experimental facility for conducting research on capillary pumped loop (CPL) systems was developed. In order to simulate shipboard cooling water encountered at various locations of the ocean, the heat sink temperature of the facility could be varied. A flat plate, CPL evaporator was designed and tested under various heat sink temperatures. The sink temperature ranged from 274.3 to 305.2 K and the heat input varied from 250 to 800 W which corresponds to heat fluxes up to 1.8 W/cm{sup 2}. The CPL flat plate evaporator performed very well under this range of heat input and sink temperatures. The main result obtained showed that a large degree of subcooling developed between the evaporator vapor outlet line and liquid return line. This condensate depression increased with increasing heat input.

  2. Spin, masses and other baryonic observables in a chiral model of quark and gluon confinement

    NASA Astrophysics Data System (ADS)

    Stern, Jacqueline; Clément, Gérard

    1989-11-01

    The structure of non-strange baryons is investigated in a field-theoretical model which minimally incorporates soft confinement of quarks and gluons and approximate chiral symmetry. Baryonic states are recovered from the mean-field hedgehog solutions by the coherent cranking procedure, which generates mean chromomagnetic fields, modelling gluon exchange between quarks. The cranking method allows for a non-perturbative, self-consistent computation of gluonic effects on the nucleon and delta masses, corrected for spurious translational and rotational fluctuations, on the contribution Δu + Δd of the non-strange quark helicities to the proton spin, and on various other baryonic observables. For the physical values of the pion parameters mπ = 139.6 MeV, Fπ = 93 MeV, and the effective strong fine structure constant α s ⋍ 0.5 , the results which we obtain for these observables, including Δu + Δd ⋍ 0.26, are in good agreement with experiment.

  3. Ghost condensate busting

    SciTech Connect

    Bilic, Neven; Tupper, Gary B; Viollier, Raoul D E-mail: gary.tupper@uct.ac.za

    2008-09-15

    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.

  4. THE COLOR GLASS CONDENSATE.

    SciTech Connect

    MCLERRAN,L.

    2001-08-26

    The Color Glass Condensate is a state of high density gluonic matter which controls the high energy limit of hadronic interactions. Its properties are important for the initial conditions for matter produced at RHIC.

  5. Quark propagation in the presence of a condensate

    SciTech Connect

    Li Xiangdong; Shakin, C.M.

    2004-12-01

    There is a good deal of current interest in the condensate which has recently be shown to be the Landau gauge version of a more general gauge-invariant expression. In the present work we consider quark propagation in the presence of such a condensate which we assume to be present in the vacuum. We describe the vacuum as a random medium of gluon fields. We discuss quark propagation in that medium and show that the quark propagator has no on-mass-shell pole indicating that a quark cannot propagate over extended distances. That is, the quark is a nonpropagating mode in the gluon condensate.

  6. Effects of proton irradiation on a gas phase in which condensation takes place. I Negative Mg-26 anomalies and Al-26. [applied to solar and meteoritic composition

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.

    1978-01-01

    In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.

  7. Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, A.; Benavente, D.; Cuezva, S.; Cañaveras, J. C.; Alvarez-Gallego, M.; Garcia-Anton, E.; Soler, V.; Sanchez-Moral, S.

    2013-08-01

    Fluctuations of trace gas activity as a response to variations in weather and microclimate conditions were monitored over a year in a shallow volcanic cave (Painted Cave, Galdar, Canary Islands, Spain). 222Rn concentration was used due to its greater sensitivity to hygrothermal variations than CO2 concentration. Radon concentration in the cave increases as effective vapour condensation within the porous system of the rock surfaces inside the cave increases due to humidity levels of more than 70%. Condensed water content in pores was assessed and linked to a reduction in the direct passage of trace gases. Fluctuations in radon activity as a response to variations in weather and microclimate conditions were statistically identified by clustering entropy changes on the radon signal and parameterised to predict radon concentration anomalies. This raises important implications for other research fields, including the surveillance of shallow volcanic and seismic activity, preventive conservation of cultural heritage in indoor spaces, indoor air quality control and studies to improve understanding of the role of subterranean terrestrial ecosystems as reservoirs and/or temporary sources of trace gases.

  8. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity

  9. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  10. Droplet condensation on chemically homogeneous and heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ashrafi, Amir; Moosavi, Ali

    2016-09-01

    Nucleation and growth of condensing droplets on horizontal surfaces are investigated via a 2-D double distribution function thermal lattice Boltzmann method. First, condensation on completely uniform surface is investigated and different mechanisms which cause dropwise and filmwise condensation are studied. The results reveal the presence of cooled vapor layer instability in the condensation on completely smooth surfaces. In the second step, condensation on chemically heterogeneous surfaces is investigated. Moreover, the effect of non-uniformity in the surface temperature is also studied. The results indicate that the vapor layer instability and the nucleation start from the heterogeneities. The effects of different numbers of heterogeneities, their distance, and hydrophobicity on the condensation are also inspected. It is shown that by increasing the hydrophobicity of the heterogeneities and considering an optimum space between the heterogeneities, maximum condensation performance can be achieved. Finally, condensation on wettability gradient surfaces is studied and the effects of the gradient form and contact angle of the core region on the condensation are studied. It is shown that hydrophobicity of the core region plays a key role in increasing the condensation performance. A heat transfer analysis and flow dynamics of dropwise condensation as a function of time is also presented and it is shown that the results are in good agreements with the previous theoretical and experimental results.

  11. Black holes in the ghost condensate

    SciTech Connect

    Mukohyama, Shinji

    2005-05-15

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u{sup {mu}}=-g{sup {mu}}{sup {nu}}{partial_derivative}{sub {nu}}{phi}. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter.

  12. Impurity Crystal in a Bose-Einstein Condensate

    SciTech Connect

    Roberts, David C.; Rica, Sergio

    2009-01-16

    We investigate the behavior of impurity fields immersed in a larger condensate field in various dimensions. We discuss the localization of a single impurity field within a condensate and note the effects of surface energy. We derive the functional form of the attractive condensate-mediated interaction between two impurities. Generalizing the analysis to N impurity fields, we show that within various parameter regimes a crystal of impurity fields can form spontaneously in the condensate. Finally, the system of condensate and crystallized impurity structure is shown to have nonclassical rotational inertia, which is characteristic of superfluidity; i.e., the system can be seen to exhibit supersolid behavior.

  13. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  14. Reggeon-gluon vertices with Ward identities

    NASA Astrophysics Data System (ADS)

    Braun, M. A.; Vyazovsky, M. I.

    2016-03-01

    Ward identities for Reggeons are studied in the framework of an effective action approach to the QCD in Regge kinematics. It is shown that they require the introduction of new contributions not present in the Reggeon diagrams initially. Application to vertices RR →RP and RR →RRP are considered and diagrams which have to be added to the QCD ones are found.

  15. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect

    SciTech Connect

    Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito

    2010-06-15

    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relations but do not belong to the NG modes.

  16. Direct Photon Production and Gluon Polarization Measurements in Proton-Proton Collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Feege, Nils; Phenix Collaboration

    2015-10-01

    Direct photons probe the hard scattering process in proton-proton collisions. The channel that dominates their production in these collisions is ``the inverse QCD Compton effect,'' g + q --> γ + q . Calculating this process requires no photon fragmentation function, which facilitates comparisons between theories and experiments. In polarized p+p collisions, direct photons help determine the proton spin structure. At leading order, the longitudinal double-spin asymmetry ALL is directly proportional to the product of quark and gluon polarizations. The polarized quark distributions are known from polarized lepton-proton scattering experiments. Using them together with ALL measurements allows to access both the magnitude and sign of the polarized gluon distribution. The PHENIX experiment has collected data from polarized p+p collisions at RHIC at center of mass energies of 200 GeV and 500 GeV. This talk presents the status of direct photon cross section measurements and ALL measurements at midrapidity (| η | < 0 . 35) using these data.

  17. Kaluza-Klein gluon + jets associated production at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.

    2016-08-01

    The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.

  18. Energy dependence of jet transport parameter and parton saturationin quark-gluon plasma

    SciTech Connect

    Casalderrey-Solana, Jorge; Wang, Xin-Nian

    2007-06-24

    We study the evolution and saturation of the gluondistribution function in the quark-gluon plasma as probed by apropagating parton and its effect on the computation of jet quenching ortransport parameter $\\hat q $. For thermal partons, the saturation scale$Q2_s$ is found to be proportional to the Debye screening mass $\\mu_D2$.For hard probes, evolution at small $x=Q2_s/6ET$ leads to jet energydependence of hat q. We study this dependence for both a conformal gaugetheory in weak and strong coupling limit and for (pure gluon) QCD. Theenergy dependence can be used to extract the shear viscosity $\\eta$ ofthe medium since $\\eta$ can be related to the transport parameter forthermal partons in a transport description. We also derive upper boundson the transport parameter for both energetic and thermal partons. Thelater leads to a lower bound on shear viscosity-to-entropy density ratiowhich is consistent with the conjectured lower bound $\\eta/s\\geq 1/4\\pi$.Implications on the study of jet quenching at RHIC and LHC and the bulkproperties of the dense matter are discussed.

  19. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wang, Hua Sheng

    2016-10-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  20. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    PubMed Central

    Sun, Jie; Wang, Hua Sheng

    2016-01-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397

  1. Condensate polishers add operating reliability and flexibility

    SciTech Connect

    Layman, C.M.; Bennett, L.L.

    2008-08-15

    Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.

  2. Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon

    SciTech Connect

    Brodsky, S.J.; Gardner, S.

    2006-08-23

    The Sivers mechanism for the single-spin asymmetry in unpolarized lepton scattering from a transversely polarized nucleon is driven by the orbital angular momentum carried by its quark and gluon constituents, combined with QCD final-state interactions. Both quark and gluon mechanisms can generate such a single-spin asymmetry, though only the quark mechanism can explain the small single-spin asymmetry measured by the COMPASS collaboration on the deuteron, suggesting the gluon mechanism is small relative to the quark mechanism. We detail empirical studies through which the gluon and quark orbital angular momentum contributions, quark-flavor by quark-flavor, can be elucidated.

  3. Infrared behavior of the ghost-gluon vertex in Landau gauge Yang-Mills theory

    SciTech Connect

    Schleifenbaum, W.; Maas, A.; Wambach, J.; Alkofer, R.

    2005-07-01

    A semiperturbative calculation of the ghost-gluon vertex in Landau-gauge Yang-Mills theory in four and three Euclidean space-time dimensions is presented. Nonperturbative gluon and ghost propagators are employed, which have previously been calculated from a truncated set of Dyson-Schwinger equations and which are in qualitative and quantitative agreement with corresponding lattice results. Our results for the ghost-gluon vertex show only relatively small deviations from the tree-level one in agreement with recent lattice data. In particular, we do not see any sign for a singular behavior of the ghost-gluon vertex in the infrared.

  4. Neonatal hygroscopic condenser humidifier.

    PubMed

    Gedeon, A; Mebius, C; Palmer, K

    1987-01-01

    A hygroscopic condenser humidifier was developed for neonates on mechanical ventilation and was evaluated by laboratory tests and clinically. Humidification provided by the unit was measured in the 10- to 50-ml tidal-volume range at ambient temperatures of 24 degrees C and 38 degrees C. The effect of a leaking patient connection on device performance was investigated. Leakage rates were measured routinely in a neonatal ICU and surgery to determine the clinical significance. In the entire tidal volume and temperature range, the unit provided an inspiratory water content in excess of 30 g/m3 when the leak fraction (volume leaked/volume delivered at Y-piece) was less than 15%. This was found in three out of four cases. In about one out of ten cases, the leak exceeded 30%, which invariably led to corrective action, such as repositioning or changing the endotracheal tube. However, even at a 30% leak, a water content of about 26 g/m3 was still available for humidifying the inspired gas, which corresponds to normal physiologic conditions found in the trachea for nasal breathing of room air.

  5. Thermocapillary flow with evaporation and condensation and its effect on liquid retention in low-G fluid acquisition devices

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1994-01-01

    The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.

  6. Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans.

    PubMed

    Tuesta, M; Alvear, M; Carbonell, T; García, C; Guzmán-Venegas, R; Araneda, O F

    2016-06-01

    Exercise promotes pulmonary oxidative imbalance. In this regard, some evidence has been obtained from the study of exhaled breath condensate (EBC) during urban races, in which the factors involved in the occurrence of this process are still not characterized. In this paper, under laboratory conditions, both the role of time of exercise on the generation of pro-oxidants (H2O2, NO2 (-)) and pH have been assessed in EBC of 16 under-trained subjects who completed three tests of cycloergometric exercise at low intensity (30 % of VO2 max) with a duration of 10, 30, and 90 min. Samples were obtained as follows: immediately before and at 80 min post exertion in each test. In the 90-min test, an increase in H2O2, NO2 (-) concentration in EBC at 80 min post exertion with no changes in the pH was observed. Total O2 consumption and total ventilation weakly correlated with the changes in H2O2 and NO2 (-). In conclusion, the concentration of pro-oxidants in the EBC depends on the duration of the exercise when it is performed at low intensity under laboratory conditions.

  7. Modeling Condensation, Hydro- and Pepto-affinity of Surfaces in Medical Implant Devices and Surgical Lenses: Effect of Blood Proteins

    NASA Astrophysics Data System (ADS)

    Bennett-Kennett, Ross; Herbots, Nicole; Murphy, Ashlee; Sell, David; Kutz, Tyler; Benitez, Sophia; Acharya, Ajjya; Hughes, Brett; Watson, Clarizza; Culbertson, Eric; Sell, Clive; Kwong, H.

    2012-10-01

    Surgical lenses in laparoscopes and arthroscopes ``fog'' during surgery. Fogging increases by up to 40% surgery duration, infection rates, and scarring due to exposure from repeated scopes withdrawal for cleaning. Modeling nucleation on surfaces shows that 2-D layer-by-layer condensation maintains transparency while 3-D droplets refract at gas/fluid interfaces leading to opacity or ``fogging.'' This ProteinKnoxmodel for lenses made from bio-compatible polymers, and silica led us to a nano-scale molecular mesh applied as a bio-identical emulsion. ProteinKnox[1-5] meets a 100% success rate in eliminating fogging for up to 240 minutes over 300 experiments. Twenty surgical trials in the OR yield a success rate of 90%, with loss of vision due to the presence of blood or blood proteins, not fogging. We studied the common blood protein, heparin, which prevents coagulation, with the ProteinKnoxmodel. Heparin behaves like H2O on hydrophobic surfaces. It does not prevent fogging nor interferes with 2-D condensatio. Next, we investigated fibrinogen as agonist agent because it causes coagulation. Fibrinogen applied to various surfaces in emulsions prepared in accordance with the ProteinKnoxmodel can prevent not only

  8. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  9. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  10. Eikonal gluon bremsstrahlung at finite Nc beyond two loops

    NASA Astrophysics Data System (ADS)

    Delenda, Yazid; Khelifa-Kerfa, Kamel

    2016-03-01

    We present a general formalism for computing the matrix-element squared for the emission of soft energy-ordered gluons beyond two loops in QCD perturbation theory at finite Nc. Our formalism is valid in the eikonal approximation. A Mathematica program has been developed for the automated calculation of all real/virtual eikonal squared amplitudes needed at a given loop order. For the purpose of illustration, we show the explicit forms of the eikonal squared amplitudes up to the fifth-loop order. In the large-Nc limit, our results coincide with those previously reported in literature.

  11. Quasilinear transport approach to equilibration of quark-gluon plasmas

    SciTech Connect

    Mrowczynski, Stanislaw; Mueller, Berndt

    2010-03-15

    We derive the transport equations of quark-gluon plasma in the quasilinear approximation. The equations are either of the Balescu-Lenard or Fokker-Planck form. The plasma's dynamics is assumed to be governed by longitudinal chromoelectric fields. The isotropic plasma, which is stable, and the two-stream system, which is unstable, are considered in detail. A process of equilibration is briefly discussed in both cases. The peaks of the two-stream distribution are shown to rapidly dissolve in time.

  12. Scaling, decoupling and transversality of the gluon propagator

    SciTech Connect

    Fischer, Christian S.; Smekal, Lorenz von

    2011-05-23

    In this note we discuss a couple of technical issues relevant to solving the Dyson-Schwinger equation for the gluon propagator in Landau gauge Yang-Mills theory. In the deep infrared functional methods extract a one-parameter family of solutions generically showing a massive behavior referred to as 'decoupling' but also including the so-called 'scaling' solution with a conformal infrared behavior as a limiting case. We emphasize that the latter cannot be ruled out by technical arguments related to the removal of quadratic divergencies and transversality.

  13. Anisotropic hydrodynamics for a mixture of quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Tinti, Leonardo

    2015-11-01

    A system of equations for anisotropic hydrodynamics is derived that describes a mixture of anisotropic quark and gluon fluids. The consistent treatment of the zeroth, first, and second moments of the kinetic equations allows us to construct a new framework with more general forms of the anisotropic phase-space distribution functions than used before. In this way, the main deficiencies of the previous formulations of anisotropic hydrodynamics for mixtures are overcome and a good agreement with the exact kinetic-theory results is obtained.

  14. Heavy quarks, gluons and the confinement potential in Coulomb gauge

    SciTech Connect

    Popovici, Carina; Watson, Peter; Reinhardt, Hugo

    2011-05-23

    We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.

  15. Interactions of quarks and gluons with nuclei at intermediate energies

    SciTech Connect

    Mueller, A.H.

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  16. Heavy quarks, gluons and the confinement potential in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Popovici, Carina; Watson, Peter; Reinhardt, Hugo

    2011-05-01

    We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.

  17. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    SciTech Connect

    Mannioui, Abdelkrim . E-mail: karim.mannioui@chu-stlouis.fr; Schiffer, Cecile . E-mail: cecile.schiffer@voila.fr; Felix, Nathalie . E-mail: nathalie.felix@chu-stlouis.fr

    2004-11-10

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression.

  18. Homostructured ZnO-based metal-oxide-semiconductor field-effect transistors deposited at low temperature by vapor cooling condensation system

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Shun; Lee, Ching-Ting

    2015-11-01

    The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors (MOSFETs) on sapphire substrates. Owing to the high quality of the deposited, various ZnO films and interfaces, the resulting MOSFETs manifested attractive characteristics, such as the low gate leakage current of 24 nA, the low average interface state density of 2.92 × 1011 cm-2 eV-1, and the complete pinch-off performance. The saturation drain-source current, the maximum transconductance, and the gate voltage swing of the resulting homostructured ZnO-based MOSFETs were 5.64 mA/mm, 1.31 mS/mm, and 3.2 V, respectively.

  19. Atomistic modeling of dropwise condensation

    NASA Astrophysics Data System (ADS)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  20. Effects of overproduction of condensed tannins and elevated temperature on chemical and ecological traits of genetically modified hybrid aspens (Populus tremula × P. tremuloides).

    PubMed

    Kosonen, Minna; Keski-Saari, Sarita; Ruuhola, Teija; Constabel, C Peter; Julkunen-Tiitto, Riitta

    2012-10-01

    Gene transfer techniques offer new possibilities to study regulation of phenolic pathways and the defensive role of phenolics. Hybrid aspen lines (Populus tremula × tremuloides) that overexpress the PtMYB134 transcription factor were used to study the effects of condensed tannin production on plant physiology and plant defenses. The MYB134 protein activates all the known genes of the biosynthetic pathway for condensed tannins (CTs), so overexpression of MYB134 was expected to increase CT concentration in all tissues of the plants. Two out of three MYB134 overexpression lines (46 and 54) accumulated high levels of CTs and (+)-catechin, with a concomitant decrease in the levels of salicylates, but one transgenic line, MYB 61, failed to overproduce CTs. The concentrations of phenolic compounds generally were lower in the aspen leaves grown under elevated temperature than in those grown under ambient temperature. A specialist leaf beetle, Phratora vitellinae (Coleoptera: Chrysomelidae), was chosen to examine how over-expression of MYB134 and elevated temperature affect the food choice of a beetle adapted to feed on leaves rich in salicylates but containing little CT. Specialist beetles preferred the leaves grown at ambient temperatures possibly because these leaves had higher concentrations of salicylates, which are feeding stimulants. Beetles also preferred MYB line 61, which contained a normal level of CT but a slightly elevated level of salicylates. Our results show that transgenic plants are powerful tools, but that enhancing one secondary pathway may lead to unexpected effects on other pathways, and thus impact characteristics such as plant resistance against herbivores, especially under changing climatic conditions.