Science.gov

Sample records for glutamate msg-obese rats

  1. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats.

    PubMed

    Gaspar, Renato Simões; Benevides, Renata Ohana Alves; Fontelles, João Lucas de Lima; Vale, Caroline Castro; França, Lucas Martins; Barros, Paulo de Tarso Silva; Paes, Antonio Marcus de Andrade

    2016-05-01

    Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis.

  2. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats.

    PubMed

    Gaspar, Renato Simões; Benevides, Renata Ohana Alves; Fontelles, João Lucas de Lima; Vale, Caroline Castro; França, Lucas Martins; Barros, Paulo de Tarso Silva; Paes, Antonio Marcus de Andrade

    2016-05-01

    Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis. PMID:26952035

  3. Effects of fibre-enriched diets on tissue lipid profiles of MSG obese rats.

    PubMed

    Rotimi, O A; Olayiwola, I O; Ademuyiwa, O; Balogun, E A

    2012-11-01

    In order to investigate the influence of some fibre-enriched diets on tissue lipids in an animal model of obesity induced by the administration of monosodium glutamate (MSG), obese rats were fed diets containing 30% of Acha, Cassava, Maize and Plantain for five weeks and weight gain, feed intake and lee index were recorded. The lipid profiles of plasma, erythrocytes, kidney, heart and liver as well as hepatic 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase activity were measured. The diets significantly (p<0.05) reduced weight gain and lee index in the obese rats. Obesity-induced increase in plasma and erythrocytes lipid levels was significantly (p<0.05) reduced by these diets. MSG-induced obesity also resulted in a significant increase (p<0.05) in hepatic cholesterol level which was reduced by the diets. MSG-obesity was characterised by a significant (p<0.05) increase in cholesterol, triacylglycerol and phospholipids in kidney and this was reversed by the diets except Maize which did not reverse the increased cholesterol level. Only Acha reversed the obesity-induced increase in heart cholesterol and phospholipids. The increased activity of hepatic HMG-CoA reductase associated with obesity was also significantly (p<0.05) reduced by the diets. In conclusion, dyslipidemia associated with MSG-induced obesity could be attenuated by consumption of fibre-enriched diets. PMID:22898616

  4. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats

    PubMed Central

    Lubaczeuski, C.; Balbo, S.L.; Ribeiro, R.A.; Vettorazzi, J.F.; Santos-Silva, J.C.; Carneiro, E.M.; Bonfleur, M.L.

    2015-01-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats. PMID:25714886

  5. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats.

    PubMed

    Lubaczeuski, C; Balbo, S L; Ribeiro, R A; Vettorazzi, J F; Santos-Silva, J C; Carneiro, E M; Bonfleur, M L

    2015-05-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.

  6. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats.

    PubMed

    Miranda, Rosiane A; Torrezan, Rosana; de Oliveira, Júlio C; Barella, Luiz F; da Silva Franco, Claudinéia C; Lisboa, Patrícia C; Moura, Egberto G; Mathias, Paulo C F

    2016-07-01

    Neuroendocrine dysfunctions such as the hyperactivity of the vagus nerve and hypothalamus-pituitary-adrenal (HPA) axis greatly contribute to obesity and hyperinsulinemia; however, little is known about these dysfunctions in the pancreatic β-cells of obese individuals. We used a hypothalamic-obesity model obtained by neonatal treatment with monosodium l-glutamate (MSG) to induce obesity. To assess the role of the HPA axis and vagal tonus in the genesis of hypercorticosteronemia and hyperinsulinemia in an adult MSG-obese rat model, bilateral adrenalectomy (ADX) and subdiaphragmatic vagotomy (VAG) alone or combined surgeries (ADX-VAG) were performed. To study glucose-induced insulin secretion (GIIS) and the cholinergic insulinotropic process, pancreatic islets were incubated with different glucose concentrations with or without oxotremorine-M, a selective agonist of the M3 muscarinic acetylcholine receptor (M3AChR) subtype. Protein expression of M3AChR in pancreatic islets, corticosteronemia, and vagus nerve activity was also evaluated. Surgeries reduced 80% of the body weight gain. Fasting glucose and insulin were reduced both by ADX and ADX-VAG, whereas VAG was only associated with hyperglycemia. The serum insulin post-glucose stimulation was lower in all animals that underwent an operation. Vagal activity was decreased by 50% in ADX rats. In the highest glucose concentration, both surgeries reduced GIIS by 50%, whereas ADX-VAG decreased by 70%. Additionally, M3AChR activity was recovered by the individual surgeries. M3AChR protein expression was reduced by ADX. Both the adrenal gland and vagus nerve contribute to the hyperinsulinemia in the MSG model, although adrenal is more crucial as it appears to modulate parasympathetic activity and M3AChR expression in obesity.

  7. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females. PMID:22039988

  8. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    PubMed Central

    2011-01-01

    Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms. PMID:21526994

  9. Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats.

    PubMed

    Wang, Wen-Fei; Li, Si-Ming; Ren, Gui-Ping; Zheng, Wei; Lu, Yu-Jia; Yu, Yin-Hang; Xu, Wen-Juan; Li, Tian-He; Zhou, Li-Hong; Liu, Yan; Li, De-Shan

    2015-05-01

    The aim of this study is to investigate the role of FGF21 in obesity-related inflammation in livers of monosodium glutamate (MSG)-induced obesity rats. The MSG rats were injected with recombinant murine fibroblast growth factor 21(FGF21) or equal volumes of vehicle. Metabolic parameters including body weight, Lee's index, food intake, visceral fat and liver weight, intraperitoneal glucose tolerance, glucose, and lipid levels were dynamically measured at specific time points. Liver function and routine blood test were also analyzed. Further, systemic inflammatory cytokines such as glucose transporter 1 (GLUT-1), leptin, TNF-α, and IL-6 mRNAs were determined by real-time PCR. FGF21 independently decreased body weight and whole-body fat mass without reducing food intake in the MSG rats. FGF21 reduced blood glucose level, Lee's index, visceral fat, and liver weight, and improved glucose tolerance, lipid metabolic spectrum, and hepatic steatosis in the MSG-obesity rats. Liver function parameters including AST, ALT, ALP, TP, T.Bili, and D.Bili levels significantly reduced in the FGF21-treated obesity rats compared to the controls. Further, FGF21 ameliorated the total and differential white blood cell (WBC) count, serum C-reactive protein (CRP), IL-6, and TNF-α levels in adipose tissues of the obesity rats, suggesting inflammation amelioration in the in the obesity rats by FGF21. FGF21 improves multiple metabolic disorders and ameliorates obesity-related inflammation in the MSG-induced obesity rats.

  10. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  11. Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats

    PubMed Central

    Watanabe, Chikako; Mizumori, Misa; Kaunitz, Jonathan D.

    2009-01-01

    Presence of taste receptor families in the gastrointestinal mucosa suggests a physiological basis for local and early detection of a meal. We hypothesized that luminal l-glutamate, which is the primary nutrient conferring fundamental umami or proteinaceous taste, influences mucosal defense mechanisms in rat duodenum. We perfused the duodenal mucosa of anesthetized rats with l-glutamate (0.1–10 mM). Intracellular pH (pHi) of the epithelial cells, blood flow, and mucus gel thickness (MGT) were simultaneously and continuously measured in vivo. Some rats were pretreated with indomethacin or capsaicin. Duodenal bicarbonate secretion (DBS) was measured with flow-through pH and CO2 electrodes. We tested the effects of agonists or antagonists for metabotropic glutamate receptor (mGluR) 1 or 4 or calcium-sensing receptor (CaSR) on defense factors. Luminal l-glutamate dose dependently increased pHi and MGT but had no effect on blood flow in the duodenum. l-glutamate (10 mM)-induced cellular alkalinization and mucus secretion were inhibited by pretreatment with indomethacin or capsaicin. l-glutamate effects on pHi and MGT were mimicked by mGluR4 agonists and inhibited by an mGluR4 antagonist. CaSR agonists acidified cells with increased MGT and DBS, unlike l-glutamate. Perfusion of l-glutamate with inosinate (inosine 5′-monophosphate, 0.1 mM) enhanced DBS only in combination, suggesting synergistic activation of the l-glutamate receptor, typical of taste receptor type 1. l-leucine or l-aspartate had similar effects on DBS without any effect on pHi and MGT. Preperfusion of l-glutamate prevented acid-induced cellular injury, suggesting that l-glutamate protects the mucosa by enhancing mucosal defenses. Luminal l-glutamate may activate multiple receptors and afferent nerves and locally enhance mucosal defenses to prevent subsequent injury attributable to acid exposure in the duodenum. PMID:19643955

  12. Rat odontoblasts may use glutamate to signal dentin injury.

    PubMed

    Cho, Yi Sul; Ryu, Chang Hyun; Won, Jong Hwa; Vang, Hue; Oh, Seog Bae; Ro, Jin Young; Bae, Yong Chul

    2016-10-29

    Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity.

  13. Rat odontoblasts may use glutamate to signal dentin injury.

    PubMed

    Cho, Yi Sul; Ryu, Chang Hyun; Won, Jong Hwa; Vang, Hue; Oh, Seog Bae; Ro, Jin Young; Bae, Yong Chul

    2016-10-29

    Accumulating evidence indicates that odontoblasts act as sensor cells, capable of triggering action potentials in adjacent pulpal nociceptive axons, suggesting a paracrine signaling via a currently unknown mediator. Since glutamate can mediate signaling by non-neuronal cells, and peripheral axons may express glutamate receptors (GluR), we hypothesized that the expression of high levels of glutamate, and of sensory receptors in odontoblasts, combined with an expression of GluR in adjacent pulpal axons, is the morphological basis for odontoblastic sensory signaling. To test this hypothesis, we investigated the expression of glutamate, the thermo- and mechanosensitive ion channels transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and TWIK-1-related K+channel (TREK-1), and the glutamate receptor mGluR5, in a normal rat dental pulp, and following dentin injury. We also examined the glutamate release from odontoblast in cell culture. Odontoblasts were enriched with glutamate, at the level as high as in adjacent pulpal axons, and showed immunoreactivity for TRPV1, TRPA1, and TREK-1. Pulpal sensory axons adjacent to odontoblasts expressed mGluR5. Both the levels of glutamate in odontoblasts, and the expression of mGluR5 in nearby axons, were upregulated following dentin injury. The extracellular glutamate concentration was increased significantly after treating of odontoblast cell line with calcium permeable ionophore, suggesting glutamate release from odontoblasts. These findings lend morphological support to the hypothesis that odontoblasts contain glutamate as a potential neuroactive substance that may activate adjacent pulpal axons, and thus contribute to dental pain and hypersensitivity. PMID:27555550

  14. Rapid Microelectrode Measurements and the Origin and Regulation of Extracellular Glutamate in Rat Prefrontal Cortex

    PubMed Central

    Hascup, E.R.; Hascup, K.N.; Stephens, M.; Pomerleau, F.; Huettl, P.; Gratton, A.; Gerhardt, G.A.

    2010-01-01

    Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal vs. astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays (MEAs) to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally-applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (TTX; sodium channel blocker), produced a significant (~40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally-applied ω-conotoxin (MVIIC; ~50%; calcium channel blocker), and the mGluR⅔ agonist, LY379268 (~20%), and a significant increase with the mGluR⅔ antagonist LY341495 (~40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (TBOA; glutamate transporter inhibitor) produced an ~120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (CPG; cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of TTX completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the MEA technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically-evoked event is entirely neuronally derived. PMID:20969570

  15. Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2001-03-01

    We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia. PMID:11259512

  16. Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation

    NASA Astrophysics Data System (ADS)

    Agnesi, Filippo; Blaha, Charles D.; Lin, Jessica; Lee, Kendall H.

    2010-04-01

    Thalamic deep brain stimulation (DBS) is proven therapy for essential tremor, Parkinson's disease and Tourette's syndrome. We tested the hypothesis that high-frequency electrical stimulation results in local thalamic glutamate release. Enzyme-linked glutamate amperometric biosensors were implanted in anesthetized rat thalamus adjacent to the stimulating electrode. Electrical stimulation was delivered to investigate the effect of frequency, pulse width, voltage-controlled or current-controlled stimulation, and charge balancing. Monophasic electrical stimulation-induced glutamate release was linearly dependent on stimulation frequency, intensity and pulse width. Prolonged stimulation evoked glutamate release to a plateau that subsequently decayed back to baseline after stimulation. Glutamate release was less pronounced with voltage-controlled stimulation and not present with charge balanced current-controlled stimulation. Using fixed potential amperometry in combination with a glutamate bioprobe and adjacent microstimulating electrode, the present study has shown that monophasic current-controlled stimulation of the thalamus in the anesthetized rat evoked linear increases in local extracellular glutamate concentrations that were dependent on stimulation duration, frequency, intensity and pulse width. However, the efficacy of monophasic voltage-controlled stimulation, in terms of evoking glutamate release in the thalamus, was substantially lower compared to monophasic current-controlled stimulation and entirely absent with biphasic (charge balanced) current-controlled stimulation. It remains to be determined whether similar glutamate release occurs with human DBS electrodes and similar charge balanced stimulation. As such, the present results indicate the importance of evaluating local neurotransmitter dynamics in studying the mechanism of action of DBS.

  17. Biochemical and immunological changes on oral glutamate feeding in male albino rats

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Bansal, Anju; Thomas, Pauline; Sairam, M.; Sharma, S. K.; Mongia, S. S.; Singh, R.; Selvamurthy, W.

    High altitude stress leads to lipid peroxidation and free radical formation which results in cell membrane damage in organs and tissues, and associated mountain diseases. This paper discusses the changes in biochemical parameters and antibody response on feeding glutamate to male albino Sprague Dawley rats under hypoxic stress. Exposure of rats to simulated hypoxia at 7576 m, for 6 h daily for 5 consecutive days, in an animal decompression chamber at 32+/-2° C resulted in an increase in plasma malondialdehyde level with a concomitant decrease in blood glutathione (reduced) level. Supplementation of glutamate orally at an optimal dose (27 mg/kg body weight) in male albino rats under hypoxia enhanced glutathione level and decreased malondialdehyde concentration significantly. Glutamate feeding improved total plasma protein and glucose levels under hypoxia. The activities of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and the urea level remained elevated on glutamate supplementation under hypoxia. Glutamate supplementation increased the humoral response against sheep red blood cells (antibody titre). These results indicate a possible utility of glutamate in the amelioration of hypoxia-induced oxidative stress.

  18. [The effect of cerebral glutamate enhanced level on the respiratory system of anesthetized rats].

    PubMed

    Aleksandrov, V G; Buĭ Tkhi, Kh; Aleksandrova, N P

    2012-07-01

    A cerebral level of glutamate is one of the determinants of the central mechanisms of respiratory control. It had been hypothesized that endogenous glutamate could have a modulating effect on the functioning of mechanisms for neural control of respiratory function. Acute experiments on spontaneuosly breathing, urethane-anesthetized rats had been performed to study the respiratory effects of cerebroventricular microinjection of glutamate. It has been shown that a higher level of cerebral glutamate increases breathing rate and electrical activity of the diaphragm, and strengthen the Hering-Breuer reflex. These effects had a clear character of the phase. The results confirm the hypothesis suggested and prove that the increase in cerebral levels of glutamate leads to the activation of glutamate receptors of various types.

  19. The effect of chronic ethanol on glutamate binding in human and rat brain

    SciTech Connect

    Cummins, J.T.; Sack, M.; von Hungen, K. Univ. of California School of Medicine, Los Angeles )

    1990-01-01

    Quantitative autoradiographic techniques demonstrate that chronic alcohol administration causes a decrease in ({sup 3}H)-glutamate binding to hippocampal N-methyl-D-aspartate (NMDA) receptors. A 14% decrease in ({sup 3}H)-glutamate binding in the hippocampal CA{sub 1} region is seen both in the rat after five days of ethanol administration and in postmortem hippocampal tissues from alcoholics. In the rat, 24 hr ethanol withdrawal values are intermediate between control and alcohol binding levels. There was no significant effect of ethanol on ({sup 3}H)-glutamate binding in the cortex or caudate.

  20. The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention

    PubMed Central

    2014-01-01

    Introduction Obesity becomes endemic today. Monosodium glutamate was proved as obesogenic food additive. Probiotics are discussed to impact on obesity development. Aims and objectives The aim was to study the effects of probiotics on the development of monosodium glutamate (MSG)-induced obesity in rats. Material and methods We included 45 Wistar male rats and divided into three groups (n = 15). Newborn rats of group 1 (control) received subcutaneously 8 μl/g saline. Group 2 received 3 to 4 mg/g MSG subcutaneously on the second, fourth, sixth, eighth and tenth day of life. Within 4 months after birth, rats were on a standard diet. Group 3 received an aqueous solution of probiotics mixture (2:1:1 Lactobacillus casei IMVB-7280, Bifidobacterium animalis VKL, B. animalis VKB) at the dose of 5 × 109 CFU/kg (50 mg/kg) intragastrically. Administration of probiotics was started at the age of 4 weeks just after weaning and continued for 3 months during 2-week courses. Group 2 received intragastrically 2.5 ml/kg water. Organometric and biochemical parameters in all groups of rats were analyzed over 4 months. The concentration of adiponectin was determined in serum, and leptin - in adipose tissue. Results Administration of MSG led to the development of obesity in rats; body weight had increased by 7.9% vs controls (p < 0.05); body length had increased by 5.4% (p < 0.05). Body mass index and Lee index and visceral fat mass had increased (p < 0.001). Under the neonatal injection of MSG, the concentration of total cholesterol, triglycerides, VLDL cholesterol and LDL cholesterol significantly increased (p < 0.001), in comparison with controls. Adipose-derived hormones changed in MSG obesity rats: adiponectin decreased by 58.8% (p < 0.01), and leptin concentration in adipose tissue had increased by 74.7% (p < 0.01). The probiotic therapy of rats from group 3 prevented obesity development. Parameters of rats treated with probiotic mixture did not differ from that in

  1. Resting Glutamate Levels and Rapid Glutamate Transients in the Prefrontal Cortex of the Flinders Sensitive Line Rat: A Genetic Rodent Model of Depression

    PubMed Central

    Hascup, Kevin N; Hascup, Erin R; Stephens, Michelle L; Glaser, Paul EA; Yoshitake, Takashi; Mathé, Aleksander A; Gerhardt, Greg A; Kehr, Jan

    2011-01-01

    Despite the numerous drugs targeting biogenic amines for major depressive disorder (depression), the search for novel therapeutics continues because of their poor response rates (∼30%) and slow onset of action (2–4 weeks). To better understand role of glutamate in depression, we used an enzyme-based microelectrode array (MEA) that was selective for glutamate measures with fast temporal (2 Hz) and high spatial (15 × 333 μm) resolution. These MEAs were chronically implanted into the prefrontal cortex of 3- to 6-month-old and 12- to 15-month-old Flinders Sensitive Line (FSL) and control Flinders Resistant Line (FRL) rats, a validated genetic rodent model of depression. Although no changes in glutamate dynamics were observed between 3 and 6 months FRL and FSL rats, a significant increase in resting glutamate levels was observed in the 12- to 15-month-old FSL rats compared with the 3- to 6-month-old FSL and age-matched FRL rats on days 3–5 post-implantation. Our MEA also recorded, for the first time, a unique phenomenon in all the four rat groups of fluctuations in resting glutamate, which we have termed glutamate transients. Although these events lasted only for seconds, they did occur throughout the testing paradigm. The average concentration of these glutamate-burst events was significantly increased in the 12- to 15-month-old FSL rats compared with 3- to 6-month-old FSL and age-matched FRL rats. These studies lay the foundation for future studies of both tonic and phasic glutamate signaling in rat models of depression to better understand the potential role of glutamate signaling in depression. PMID:21525860

  2. Behavioral deficits in adult rats treated neonatally with glutamate.

    PubMed

    Hlinák, Zdenek; Gandalovicová, Dana; Krejcí, Ivan

    2005-01-01

    The present study evaluated long-term behavioral consequences of neonatal monosodium-l-glutamate (MSG) treatment in rats. The pups received MSG (3 mg/g sc) daily from postnatal day (PD) 5-12. Data from an automatic activity monitor showed that locomotion of MSG-treated females and males aged 56 and 84 days was significantly reduced. Beginning PD 120, three behavioral tests were performed. As compared to the controls, in the elevated plus maze test, modified to evaluate the adaptive form of spatial memory, MSG-treated animals of both sex had significantly prolonged start and transfer latencies. In the social recognition test, assessing olfactory working memory, MSG-treated males displayed a reduced interest in the juvenile conspecific as the stimulus partner during both the initial exposure and re-exposure performed 30 min later. In the open field test, a significant decrease in the habituation rate was found in MSG-treated animals. Sex-dependent differences in behavioral performance were suggested in the open field and elevated plus maze tests. Behavioral changes are discussed in light of the deficits in perception and processing of visual and olfactory stimuli.

  3. Pyrroloquinoline quinine protects rat brain cortex against acute glutamate-induced neurotoxicity.

    PubMed

    Zhang, Qi; Ding, Mei; Cao, Zheng; Zhang, Jingjing; Ding, Fei; Ke, Kaifu

    2013-08-01

    To investigate possible protective effects of pyrroloquinoline quinone (PQQ) on the rat cortex with glutamate injection and to understand the mechanisms linking the in vivo neuroprotection of PQQ. Adult Sprague-Dawley rats received glutamate injection into the rat cortex. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay was performed to observe influences of co-treatment with PQQ (simultaneous injection with PQQ and glutamate) on neural cell apoptosis in the rat cortex. The production of reactive oxygen species (ROS) in the rat cortex was detected by flow cytometry using 2',7'-dichlorofluorescin diacetate labeling, and the activity of superoxide dismutase, glutathione and malondialdehyde was respectively determined. Real time quantitative RT-PCR and Western blot were applied to measure the mRNA and protein expressions of Nrf1, Nrf2, HO-1 and GCLC in the rat cortex. Western blot was used to detect the phosphorylation of Akt and GSK3β in the rat cortex. Co-treatment with PQQ protected neural cells in the rat cortex from glutamate-induced apoptosis. PQQ decreased the ROS production induced by glutamate injection. PQQ increased the mRNA and protein expressions of Nrf2, HO-1 and GCLC and the phosphorylation of Akt and GSK3β in the cortex of glutamate-injected rats. PQQ could produce neuroprotective effects on the rat cortex. The antioxidant properties of PQQ and PQQ-induced activation of Akt/GSK3β signal pathway might be responsible for the in vivo neuroprotection of PQQ.

  4. Development of glutamatergic synapses in the rat retina: the postnatal expression of ionotropic glutamate receptor subunits.

    PubMed

    Hack, Iris; Koulen, Peter; Peichl, Leo; Brandstätter, Johann Helmut

    2002-01-01

    We examined the distribution of the AMPA glutamate receptor subunits GluR1 to GluR4, of the kainate receptor subunits GluR6/7 and KA2, and of the glutamate receptor subunits delta1/2, during postnatal development of the rat retina by immunocytochemistry and light microscopy using receptor subunit specific antisera. The various ionotropic glutamate receptor subunits were expressed early in postnatal rat retina, and most of the subunits, with the exception of delta1/2. were found in both synaptic layers of rat retina. The glutamate receptor subunits studied showed differences in their time of appearance, their spatial distribution patterns, and in their expression levels in the developing rat retina. Interestingly, most of the AMPA receptor subunits were expressed earlier than the kainate receptor subunits in the two synaptic layers of the retina, indicating that AMPA glutamate receptors play an important role in early postnatal glutamatergic synaptic transmission. We also studied the ultrastructural localization of the AMPA glutamate receptor subunits GluR1 to GluR4 by immunocytochemistry and electron microscopy in the inner plexiform layer of the mature rat retina. Most of the subunits were found postsynaptic to the ribbon synapses of OFF-cone, ON-cone, and rod bipolar cells. The results of this study suggest an involvement of ionotropic glutamate receptors in processes of synaptic maturation and the formation of synaptic circuitries in the developing plexiform layers of the retina. Furthermore, AMPA and kainate receptors play a role in synaptic processing and in the development of both the scotopic and photopic pathways in the rat retina.

  5. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    PubMed

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect. PMID:25668513

  6. Reduction of glutamate content in rat superior colliculus after retino-tectal denervation.

    PubMed

    Sakurai, T; Miyamoto, T; Okada, Y

    1990-02-16

    The effect of afferent lesions on glutamate content was measured in the lamina of the superior colliculus (SC) in the rat. The analysis was performed 12 days after unilateral enucleation (left eye), or ablation of visual cortex (right), or both enucleation and ablation. The glutamate contained in the superficial grey layer (SGL) and deep layer was measured in the sectioned freeze-dried sample using an enzymatic cycling method of NAD-NADH. The upper layer of SGL contralateral to enucleation exhibited a significant reduction (23%) in glutamate content. Combining enucleation and ablation further decreased (35%) glutamate content. Additionally, the synaptic potential evoked in the SGL of SC slices after stimulation of optic layer was blocked by the application of kynurenic acid (3 mM) or DNQX (30 microM). These results indicate that the retino-tectal pathway in the rat can be glutamatergic in nature.

  7. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress.

    PubMed

    Piroli, Gerardo G; Reznikov, Leah R; Grillo, Claudia A; Hagar, Janel M; Fadel, Jim R; Reagan, Lawrence P

    2013-03-01

    Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems.

  8. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine

    PubMed Central

    Althobaiti, Yusuf S.; Alshehri, Fahad S.; Almalki, Atiah H.; Sari, Youssef

    2016-01-01

    Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia. PMID:27713684

  9. Alcohol consumption increases basal extracellular glutamate in the nucleus accumbens core of Sprague-Dawley rats without increasing spontaneous glutamate release.

    PubMed

    Pati, Dipanwita; Kelly, Kyle; Stennett, Bethany; Frazier, Charles J; Knackstedt, Lori A

    2016-07-01

    Glutamate neurotransmission in the nucleus accumbens core (NAc) mediates ethanol consumption. Previous studies using non-contingent and voluntary alcohol administration in inbred rodents have reported increased basal extracellular glutamate levels in the NAc. Here, we assessed basal glutamate levels in the NAc following intermittent alcohol consumption in male Sprague-Dawley rats that had access to ethanol for 7 weeks on alternating days. We found increased basal NAc glutamate at 24 h withdrawal from ethanol and thus sought to identify the source of this glutamate. To do so, we employed a combination of microdialysis, slice electrophysiology and western blotting. Reverse dialysis of the voltage-gated sodium channel blocker tetrodotoxin did not affect glutamate levels in either group. Electrophysiological recordings in slices made after 24 h withdrawal revealed a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency relative to controls, with no change in sEPSC amplitude. No change in metabotropic glutamate receptor 2/3 (mGlu2/3) function was detected as bath application of the mGlu2/3 agonist LY379268 decreased spontaneous and miniature EPSC frequency in slices from both control and ethanol-consuming rats. The increase in basal glutamate was not associated with changes in the surface expression of GLT-1, however, a decrease in slope of the no-net-flux dialysis function was observed following ethanol consumption, indicating a potential decrease in glutamate reuptake. Taken together, these findings indicate that the increase in basal extracellular glutamate occurring after chronic ethanol consumption is not mediated by an increase in action potential-dependent glutamate release or a failure of mGlu2/3 autoreceptors to regulate such release. PMID:27207718

  10. GABAergic Agonists Modulate the Glutamate Release from Frontal Cortex Synaptosomes of Rats with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Fernández Hurst, Nicolás; Chanaday, Natalí L; Roth, German A

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease that mimics many of the clinical and pathological features of multiple sclerosis. We have previously described a significant diminution in the GABAergic regulation of glutamate release from synaptosomes of EAE rats isolated during the acute stage of the disease. In order to explore the possible metabolic pathways responsible for this alteration, in this work we evaluate the direct effect of different GABAergic agonists on the glutamate release and concomitant synapsin I phosphorylation in synaptosomes from the frontal cortex of control and EAE animals. The results show that GABA as well as the GABA receptor agonists Muscimol (GABAA agonist) and Baclofen (GABAB agonist) caused a decrease in glutamate release in control rats paralleled by a similar reduction in synapsin I phosphorylation. Meanwhile synaptosomes from EAE animals are responsive only to Baclofen with respect to nontreated EAE synaptosomes, since glutamate release from the synaptosomes treated with Muscimol was similar to that observed in EAE rat synaptosomes which was already reduced as consequence of the disease. In the case of the benzodiazepines Diazepam and Clonazepam (GABAA allosteric agonists), both of them induced a reduction in glutamate release in synaptosomes from the CFA rats, effect that was only observed in synaptosomes of EAE rats treated with Clonazepam. In all cases both benzodiazepines showed a higher effect on synapsin I phosphorylation than in glutamate release. These results indicate that the extent of GABAergic modulation of presynaptic terminals depends on the type of agonist employed and this regulation is altered in the frontal cortex during the acute phase of EAE with respect to control animals. PMID:26631092

  11. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  12. Chronic postnatal stress induces voluntary alcohol intake and modifies glutamate transporters in adolescent rats.

    PubMed

    Odeon, María Mercedes; Andreu, Marcela; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2015-01-01

    Postnatal stress alters stress responses for life, with serious consequences on the central nervous system (CNS), involving glutamatergic neurotransmission and development of voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 °C) for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5-7 rats per group), then killed. CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain glutamate uptake or transporters. However, the impact of early life adverse events on glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.

  13. Novel metabotropic glutamate receptor negatively coupled to adenylyl cyclase in cultured rat cerebellar astrocytes.

    PubMed

    Kanumilli, Srinivasan; Toms, Nick J; Roberts, Peter J

    2004-04-01

    Several excitatory amino acid ligands were found potently to inhibit forskolin-stimulated cAMP accumulation in rat cultured cerebellar astrocytes: L-cysteine sulfinic acid (L-CSA) = L-aspartate > L-glutamate >/= the glutamate uptake inhibitor, L-PDC. This property did not reflect activation of conventional glutamate receptors, since the selective ionotropic glutamate receptor agonists NMDA, AMPA, and kainate, as well as several mGlu receptor agonists [(1S,3R)-ACPD, (S)-DHPG, DCG-IV, L-AP4, L-quisqualate, and L-CCG-I], were without activity. In addition, the mGlu receptor antagonists, L-AP3, (S)-4CPG, Eglu, LY341495, (RS)-CPPG, and (S)-MCPG failed to reverse 30 microM glutamate-mediated inhibitory responses. L-PDC-mediated inhibition was abolished by the addition of the enzyme glutamate-pyruvate transaminase. This finding suggests that the effect of L-PDC is indirect and that it is mediated through endogenously released L-glutamate. Interestingly, L-glutamate-mediated inhibitory responses were resistant to pertussis toxin, suggesting that G(i)/G(o) type G proteins were not involved. However, inhibition of protein kinase C (PKC, either via the selective PKC inhibitor GF109203X or chronic PMA treatment) augmented glutamate-mediated inhibitory responses. Although mGlu3 receptors (which are negatively coupled to adenylyl cyclase) are expressed in astrocyte populations, in our study Western blot analysis indicated that this receptor type was not expressed in cerebellar astrocytes. We therefore suggest that cerebellar astrocytes express a novel mGlu receptor, which is negatively coupled to adenylyl cyclase, and possesses an atypical pharmacological profile. PMID:14999808

  14. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    SciTech Connect

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  15. [Effect of cholinomimetics on L-glutamic acid release and uptake in the neostriatum of rats].

    PubMed

    Godukhin, O V; Budantsev, A Iu; Selifonova, O V; Agapova, V N

    1983-12-01

    The effects of cholinomimetics on release and uptake of exogenic glutamic acid in the rat brain neostriatum in vivo and in vitro were studied. Carbocholine and nicotin were shown to inhibit the release, carbocholine acting directly on the presynaptic receptors whereas nicotin acting indirectly through the interneurons of neostriatum. PMID:6141074

  16. Neuroprotective Activity of Pongamia pinnata in Monosodium Glutamate-induced Neurotoxicity in Rats

    PubMed Central

    Swamy, A. H. M. VISWANATHA; Patel, N. L.; Gadad, P. C.; Koti, B. C.; Patel, U. M.; Thippeswamy, A. H. M.; Manjula, D. V.

    2013-01-01

    This study was designed to evaluate the neuroprotective activity of ethanol extract of Pongamia pinnata stem bark in monosodium glutamate-induced neurotoxicity in rats. Neurotoxicity was induced by intraperitoneal injection of monosodium glutamate 2 g per kg body weight daily for 7 days. Ethanol extract of Pongamia pinnata stem bark (200 and 400 mg/kg) was administered orally after 1 h of monosodium glutamate treatment. Dextromethorphan (30 mg/kg, p.o.) was used as standard drug for the comparison. The degree of protection was determined by various behavioural, locomotor, muscle grip activity, lipid peroxidation and measurement of antioxidant status of glutathione, catalase and superoxide dismutase. Estimation of calcium, sodium and potassium ions in brain tissue and gamma aminobutyric acid level in serum was carried out. The histopathological study of brain tissue was also carried out. Treatment with Pongamia pinnata significantly improved monosodium glutamate-induced alteration in behavioural and locomotor activity and muscle strength. Significant decrease in lipid peroxidation and increase in glutathione, superoxide dismutase and catalase was observed in Pongamia pinnata treated group. Further, Pongamia pinnata also significantly reduced the monosodium glutamate-induced excitotoxicity by decreasing the level of Ca+2 and Na+ with concomitant increase in the level of K+. Serum gamma aminobutyric acid level was also increased in Pongamia pinnata treated animals. Further, the histopathological evidence supports the neuroprotective activity of Pongamia pinnata. In conclusion, the present study suggests that the ethanol extract of stem bark of Pongamia pinnata possesses significant neuroprotective activity in albino rats. PMID:24591740

  17. Neuroprotective Activity of Pongamia pinnata in Monosodium Glutamate-induced Neurotoxicity in Rats.

    PubMed

    Swamy, A H M Viswanatha; Patel, N L; Gadad, P C; Koti, B C; Patel, U M; Thippeswamy, A H M; Manjula, D V

    2013-11-01

    This study was designed to evaluate the neuroprotective activity of ethanol extract of Pongamia pinnata stem bark in monosodium glutamate-induced neurotoxicity in rats. Neurotoxicity was induced by intraperitoneal injection of monosodium glutamate 2 g per kg body weight daily for 7 days. Ethanol extract of Pongamia pinnata stem bark (200 and 400 mg/kg) was administered orally after 1 h of monosodium glutamate treatment. Dextromethorphan (30 mg/kg, p.o.) was used as standard drug for the comparison. The degree of protection was determined by various behavioural, locomotor, muscle grip activity, lipid peroxidation and measurement of antioxidant status of glutathione, catalase and superoxide dismutase. Estimation of calcium, sodium and potassium ions in brain tissue and gamma aminobutyric acid level in serum was carried out. The histopathological study of brain tissue was also carried out. Treatment with Pongamia pinnata significantly improved monosodium glutamate-induced alteration in behavioural and locomotor activity and muscle strength. Significant decrease in lipid peroxidation and increase in glutathione, superoxide dismutase and catalase was observed in Pongamia pinnata treated group. Further, Pongamia pinnata also significantly reduced the monosodium glutamate-induced excitotoxicity by decreasing the level of Ca(+2) and Na(+) with concomitant increase in the level of K(+). Serum gamma aminobutyric acid level was also increased in Pongamia pinnata treated animals. Further, the histopathological evidence supports the neuroprotective activity of Pongamia pinnata. In conclusion, the present study suggests that the ethanol extract of stem bark of Pongamia pinnata possesses significant neuroprotective activity in albino rats.

  18. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats.

    PubMed

    Soukupova, M; Binaschi, A; Falcicchia, C; Palma, E; Roncon, P; Zucchini, S; Simonato, M

    2015-08-20

    An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state. PMID:26073699

  19. Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes).

    PubMed

    Lin, Tzu-Yu; Lu, Cheng-Wei; Tien, Lu-Tai; Chuang, Shu-Han; Wang, Yu-Ru; Chang, Wen-Hsuan; Wang, Su-Jane

    2009-07-01

    Fangchinoline, an active component of radix stephaniae tetrandrinea, has been shown to possess neuroprotective properties. It has been reported that excessive glutamate release has been proposed to be involved in the pathogenesis of several neurological diseases. The primary purpose of the present study was to investigate the effect of fangchinoline on glutamate release in rat cerebral cortex nerve terminals and to explore the possible mechanism. Fangchinoline inhibited the release of glutamate evoked by 4-aminopyridine (4-AP) in a concentration-dependent manner, and this phenomenon resulted from a reduction of vesicular exocytosis but not from an inhibition of Ca(2+)-independent efflux via glutamate transporter. Fangchinoline did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization, but significantly reduced depolarization-induced increase in [Ca(2+)](C). Fangchinoline-mediated inhibition of glutamate release was significantly prevented by the N- and P/Q-type Ca(2+) channel blocker omega-conotoxin MVIIC, and by the PKC inhibitors, GF109203X and Ro318220. In addition, the glutamate release mediated by direct Ca(2+) entry with Ca(2+) ionophore (ionomycin) was unaffected by fangchinoline, which suggests that the inhibitory effect of fangchinoline is not due to directly interfering with the release process at some point subsequent to Ca(2+) influx. These results suggest that fangchinoline inhibits glutamate release from the rat cortical synaptosomes through the suppression of voltage-dependent Ca(2+) channel activity and subsequent reduces Ca(2+) entry into nerve terminals, rather than any upstream effect on nerve terminal excitability. This inhibition appears to involve the suppression of PKC signal transduction pathway. This finding may explain the neuroprotective effects of fangchinoline against neurotoxicity. PMID:19428795

  20. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress.

    PubMed

    Piroli, Gerardo G; Reznikov, Leah R; Grillo, Claudia A; Hagar, Janel M; Fadel, Jim R; Reagan, Lawrence P

    2013-03-01

    Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems. PMID:23262120

  1. Acacetin Inhibits Glutamate Release and Prevents Kainic Acid-Induced Neurotoxicity in Rats

    PubMed Central

    Lin, Tzu-Yu; Huang, Wei-Jan; Wu, Chia-Chan; Lu, Cheng-Wei; Wang, Su-Jane

    2014-01-01

    An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L.) Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes) was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca2+ concentration ([Ca2+]C) in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA) rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg) was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg) intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity. PMID:24520409

  2. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    PubMed Central

    Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling

  3. [The action of ionotropic glutamate receptor channel blockers on effects of sleep deprivation in rats].

    PubMed

    Vataev, S I; Oganesian, G A; Lukomskaia, N Ia; Magazanik, L G

    2013-05-01

    The action of non-competitive glutamate receptor antagonists on the effects of sleep deprivation has been studied on Krushinskii-Molodkina rats having an inherited predisposition to audiogenic seizures and Wistar rats deprived to this respond. Two types of glutamate receptor open channels blockers were used: the selective blockers of NMDA-receptors (memantine and IEM-1921) and blockers of mixed type, impacting both on the NMDA- and presumably Ca(2+)-permeable AMPA/kainate receptors (IEM-1754 and IEM 1925). Rats were subjected to 12 hours long sleep deprivation. Immediatly after that memantine and IEM-1921 were injected, and during the first 3 hours the total or partial reduction of fast-wave (paradoxical) sleep and a significant increase of the representation of wakefulness at the cost of reducing the total time of slow-wave sleep were observed. These effects are most likely to be a consequence of the blockade of NMDA-receptors functioning in the systems of the rat brain responsible for the launch and maintenance of fast-wave sleep. Injection of IEM-1754 and IEM-1925 on background of sleep deprivation did not affect the organization of sleep during the first 3 hours of their action. During the second three-hour period the rebound effect was observed. The obtained results indicate the involvement of NMDA glutamate receptors in the functioning of various parts of the sleep system of both rat lines.

  4. Effects of Amoxicillin and Augmentin on Cystine-Glutamate Exchanger and Glutamate Transporter 1 Isoforms as well as Ethanol Intake in Alcohol-Preferring Rats

    PubMed Central

    Hakami, Alqassem Y.; Hammad, Alaa M.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with alteration of glutamate transport and glutamate neurotransmission. Glutamate transporter 1 (GLT-1) is a major transporter that regulates the majority of extracellular glutamate concentration, which is also regulated by cystine-glutamate exchanger (xCT). Importantly, we recently reported that amoxicillin and Augmentin (amoxicillin/clavulanate) upreglulated GLT-1 expression in nucleus accumbens (NAc) and prefrontal cortex (PFC) as well as reduced ethanol consumption in male P rats. In this study, we examined the effects of amoxicillin and Augmentin on GLT-1 isoforms (GLT-1a and GLT-1b), xCT, and glutamate/aspartate transporter (GLAST) expression in NAc and PFC as well as ethanol intake in male P rats. We found that both compounds significantly reduced ethanol intake, and increased GLT-1a, GLT-1b, and xCT expression in NAc. However, only Augmentin increased GLT-1a, GLT-1b, and xCT expression in PFC. There were no effects of these compounds on GLAST expression in NAc and PFC. These findings demonstrated that Augmentin and amoxicillin have the potential to upregulate GLT-1 isoforms and xCT expression, and consequently attenuate ethanol dependence. PMID:27199635

  5. [The effect of probiotic therapy on development of experimental obesity in rats caused by monosodium glutamate].

    PubMed

    Savcheniuk, O A; Virchenko, O V; Falalieieva, T M; Beregova, T V; Babenko, L P; Lazarenko, L M; Spivak, M Ia

    2014-01-01

    The effect of a mixture of probiotic strains (2:1:1 Lactobacillus casei IMVB-7280, Bifidobacterium animalis VKL, Bifidobacterium animalis VKB) on the development of experimental obesity in rats induced by neonatal administration of monosodium glutamate has been studied. It was shown that in rats of 4 months age, the injection of monosodium glutamate (4 mg/g) at 2, 4, 6, 8, 10 days after birth elicited abdominal obesity and metabolic syndrome. An intermittent administration of a probiotic mixture to rats treated with monosodium prevented the development of obesity. In the group of rats treated with probiotics, anthropometric parameters (weight and body length, Lee index, body mass index) did not differ from the level of intact rats. Visceral fat mass was decreased by probiotics by 38.5% (P < 0.05) compared to rats treated with water. Probiotics improved lipid metabolism: reduced the level of VLDL by 32.2% (P < 0,05), the level of LDL by 30.6% (P < 0.05), increased HDL by 25.7% (P <0,05) compared to obese control rats. Probiotic strains restored the secretion of adipocytes hormones (leptin and adiponectin) to the normal level of intact animals. The results show the effectiveness of probiotics for the prevention of obesity.

  6. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage.

    PubMed

    Boyko, Matthew; Melamed, Israel; Gruenbaum, Benjamin Fredrick; Gruenbaum, Shaun Evan; Ohayon, Sharon; Leibowitz, Akiva; Brotfain, Evgeny; Shapira, Yoram; Zlotnik, Alexander

    2012-07-01

    Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH. PMID:22711471

  7. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage.

    PubMed

    Boyko, Matthew; Melamed, Israel; Gruenbaum, Benjamin Fredrick; Gruenbaum, Shaun Evan; Ohayon, Sharon; Leibowitz, Akiva; Brotfain, Evgeny; Shapira, Yoram; Zlotnik, Alexander

    2012-07-01

    Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.

  8. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life. PMID:26836141

  9. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats

    PubMed Central

    Mahler, Stephen V.; Smith, Rachel J.

    2013-01-01

    Rationale Glutamate and orexin/hypocretin systems are involved in Pavlovian cue-triggered drug seeking. Objectives Here, we asked whether orexin and glutamate interact within ventral tegmental area (VTA) to promote reinstatement of extinguished cocaine seeking in a rat self-administration paradigm. Methods/results We first found that bilateral VTA micro-injections of the orexin 1 receptor (OX1R) antagonist SB-334867 (SB) or a cocktail of the AMPA and NMDA glutamate receptor antagonists CNQX/AP-5 reduced reinstatement of cocaine seeking elicited by cues. In contrast, neither of these microinjections nor systemic SB reduced cocaine-primed reinstatement. Additionally, unilateral VTA OX1R blockade combined with contralateral VTA glutamate blockade attenuated cue-induced reinstatement, indicating that VTA orexin and glutamate are simultaneously necessary for cue-induced reinstatement. We further probed the receptor specificity of glutamate actions in VTA, finding that CNQX, but not AP-5, dose-dependently attenuated cue-induced reinstatement, indicating that AMPA but not NMDA receptor transmission is required for this type of cocaine seeking. Given the necessary roles of both OX1 and AMPA receptors in VTA for cue-induced cocaine seeking, we hypothesized that these signaling pathways interact during this behavior. We found that PEPA, a positive allosteric modulator of AMPA receptors, completely reversed the SB-induced attenuation of reinstatement behavior. Intra-VTA PEPA alone did not alter cue-induced reinstatement, indicating that potentiating AMPA activity with this drug specifically compensates for OX1R blockade, rather than simply inducing or enhancing reinstatement itself. Conclusions These findings show that cue-induced, but not cocaine-primed, reinstatement of cocaine seeking is dependent upon orexin and AMPA receptor interactions in VTA. PMID:22411428

  10. Glutamic oxaloacetic transaminase isozymes from rat liver. Purification and physicochemical characterization.

    PubMed

    Huynh, Q K; Sakakibara, R; Watanabe, T; Wada, H

    1980-07-01

    Glutamic oxaloacetic transaminase isozymes were purified simultaneously to homogeneity from rat liver with high yields. Three subforms of mitochondrial isozyme and three subforms of cytosolic isozyme were separated by chromatography on CM-Sephadex and electrophoresis on polyacrylamide gel. The general enzymatic properties of the purified isozymes such as their kinetic parameters, isoelectric points, molecular weights, amino acid compositions, NH2-terminal amino acid sequences and COOH-terminal amino acids were determined. Most of these properties of the isozymes are similar to those of the corresponding isozymes from other sources, such as rat brain and pig and human heart. In amino acid compositions, cytosolic isozyme from rat liver has more proline and glycine and less arginine, threonine and leucine than pig heart cytosolic isozyme; the mitochondrial isozyme has more glutamic acid and glycine and less serine than the corresponding pig heart isozyme. The NH2-terminal amino acid sequences of GOT isozymes from rat liver were identical with those of the GOT isozymes from pig heart up to the 10th residues except for the 5th residues. The subforms of mitochondrial isozyme from rat liver were generated on storage at 4 degrees C for 4-8 weeks.

  11. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat

    PubMed Central

    Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L

    2014-01-01

    When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats. PMID:24492841

  12. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat.

    PubMed

    Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L

    2014-04-15

    When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.

  13. Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus.

    PubMed

    Shao, Yuan; Yan, Gen; Xuan, Yinghua; Peng, Hui; Huang, Qing-Jun; Wu, Renhua; Xu, Haiyun

    2015-04-01

    Social isolation (SI) rearing of rodents is a developmental manipulation, which is commonly compared with the psychological stressors in humans as it produces several behavioral outcomes similar to those observed in humans with early life stress. To explain the SI-induced behavioral outcomes, animal studies have been performed to examine the dopaminergic and glutamatergic systems in the brain. In this study, we measured possible changes in levels of glutamate and glutamine of SI-rats using proton magnetic resonance spectroscopy. We also assessed the oxidative stress parameters in certain brain regions to see if glutamate and/or glutamine changes, if any, are associated with oxidative stress. SI rearing for 8 weeks decreased the activities of antioxidant enzymes catalase, glutathione peroxidase, superoxide dismutase, and the total antioxidant capacity, but increased levels of hydrogen peroxide, in certain brain regions, of which prefrontal cortex and hippocampus were most vulnerable. It also decreased levels of glutamate, glutamine, N-acetyl-l-aspartate (NAA), and phosphocreatine in the dorsal hippocampus, but not in the cerebral cortex. Decreased phosphocreatine and NAA indicate energy metabolism deficit in brain cells; the latter also suggests the neuronal viability was inhibited. Decreased glutamate and glutamine may suggest the neuron-glial integrity was implicated by chronic SI. These neurochemical and biochemical changes may contribute to the SI-induced behavioral abnormalities including a high level of anxiety, social interaction deficit, and impaired spatial working memory shown in this study.

  14. High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules.

    PubMed

    Boon, L; Geerts, W J; Jonker, A; Lamers, W H; Van Noorden, C J

    1999-06-01

    The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification.

  15. Differing effects of transport inhibitor on glutamate uptake by nerve terminals before and after exposure of rats to artificial gravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.; Himmelreich, N.

    Glutamate is the major excitatory neurotransmitter in the brain. Subsequent to its release from glutamatergic neurons and activation of receptors, it is removed from extracellular space by high affinity Na^+-dependent glutamate transporters, which utilize the Na^+/K^+ electrochemical gradient as a driving force and located in nerve terminals and astrocytes. The glutamate transporters may modify the time course of synaptic events. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity (e.g. cerebral ischemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia). The present study assessed transporter inhibitor for the ability to inhibit glutamate uptake by synaptosomes at the normal and hypergravity conditions (rats were rotated in a long-arm centrifuge at ten-G during one-hour period). DL-threo-beta-benzyloxyaspartate (DL-TBOA) is a newly developed competitive inhibitor of the high-affinity, Na^+-dependent glutamate transporters. As a potent, non- transported inhibitor of glutamate transporters, DL-TBOA promises to be a valuable new compound for the study of glutamatergic mechanisms. We demonstrated that DL-TBOA inhibited glutamate uptake ( 100 μM glutamate, 30 sec incubation period) in dose-dependent manner as in control as in hypergravity. The effect of this transport inhibitor on glutamate uptake by control synaptosomes and synaptosomes prepared of animals exposed to hypergravity was different. IC50 values calculated on the basis of curves of non-linear regression kinetic analysis was 18±2 μM and 11±2 μM ((P≤0,05) before and after exposure to artificial gravity, respectively. Inhibition caused by 10 μM DL-TBOA was significantly increased from 38,0±3,8 % in control group to 51,0±4,1 % in animals, exposed to hypergravity (P≤0,05). Thus, DL-TBOA had complex effect on glutamate uptake process and perhaps, became more potent under

  16. Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats.

    PubMed

    He, Zongsheng; Chen, Yuan; Dong, Huajin; Su, Ruibin; Gong, Zehui; Yan, Lingdi

    2014-07-01

    Accumulating evidence suggests that glutamatergic system plays a crucial role in methamphetamine (METH) addiction. In the glutamatergic transmission, vesicular glutamate transporters (VGLUTs) are responsible for transporting glutamate into synaptic vesicles and affect the glutamate concentrations in the synaptic cleft. It is well documented that VGLUTs play an essential role in pathophysiology of several psychiatric and neurological diseases, however, whether VGLUTs also have a role in addiction caused by psychostimulant drugs is still unknown. The present study was underwent to investigate the effect of inhibition of VGLUTs on METH-induced induce conditioned place preference in rats. Rats were induced to conditioned place preference with METH (0.5, 1.0 and 2.0mg/kg) by intraperitoneal injection. Intracerebroventricular administration of 1.0 or 5.0μg Chicago sky blue 6B (CSB6B), a VGLUTs inhibitor, and 2.5h prior to METH was to observe its effect on METH-induced conditioned place preference in rats. The rats receiving METH showed stronger place preference at the dose of 1.0mg/kg than that of other doses. The intracerebroventricular administration of CSB6B (1.0, 5.0μg) 2.5h prior to the exposure to METH attenuated the acquisition of METH-induced conditioned place preference, while CSB6B itself had no effect on place preference. These results indicate that VGLUTs are involved in the effect of METH-induced conditioned place preference and may be a new target against METH addiction.

  17. Inhibition of vesicular glutamate transporters contributes to attenuate methamphetamine-induced conditioned place preference in rats.

    PubMed

    He, Zongsheng; Chen, Yuan; Dong, Huajin; Su, Ruibin; Gong, Zehui; Yan, Lingdi

    2014-07-01

    Accumulating evidence suggests that glutamatergic system plays a crucial role in methamphetamine (METH) addiction. In the glutamatergic transmission, vesicular glutamate transporters (VGLUTs) are responsible for transporting glutamate into synaptic vesicles and affect the glutamate concentrations in the synaptic cleft. It is well documented that VGLUTs play an essential role in pathophysiology of several psychiatric and neurological diseases, however, whether VGLUTs also have a role in addiction caused by psychostimulant drugs is still unknown. The present study was underwent to investigate the effect of inhibition of VGLUTs on METH-induced induce conditioned place preference in rats. Rats were induced to conditioned place preference with METH (0.5, 1.0 and 2.0mg/kg) by intraperitoneal injection. Intracerebroventricular administration of 1.0 or 5.0μg Chicago sky blue 6B (CSB6B), a VGLUTs inhibitor, and 2.5h prior to METH was to observe its effect on METH-induced conditioned place preference in rats. The rats receiving METH showed stronger place preference at the dose of 1.0mg/kg than that of other doses. The intracerebroventricular administration of CSB6B (1.0, 5.0μg) 2.5h prior to the exposure to METH attenuated the acquisition of METH-induced conditioned place preference, while CSB6B itself had no effect on place preference. These results indicate that VGLUTs are involved in the effect of METH-induced conditioned place preference and may be a new target against METH addiction. PMID:24613241

  18. The effects of the stress caused by experimental procedures on alanine aspartate, glutamate and glutamine in rat liver

    PubMed Central

    Heath, D. F.; George, D. R.; Rose, J. G.

    1971-01-01

    Rats were stressed by intravenous injection, tail-warming or moderate restraint for 30s, i.e. by stresses imposed by normal handling during experiment. Liver glutamate concentrations were greatly affected. The results were substantially the same in two varieties of rat (Wistar and Sprague–Dawley), in two laboratories, in experiments carried out by two sets of workers, and after all three stresses. The following detailed results refer to Wistar rats. 1. In starved rats at 20°C and 30°C and in post-absorptive rats at 20°C stress by injection raised liver glutamate concentrations from 1.54, 1.57 and 1.88μmol/g wet wt. 30s after injection to 3.4, 2.7 and 3.6μmol/g wet wt. respectively a few minutes later. In starved rats at 20°C the concentration then fell slowly to 2.3μmol/g wet wt., in starved rats at 30°C it remained steady, and in post-absorptive rats at 20°C it rose slowly to about 4.3μmol/g wet wt. The final values seemed fairly steady and corresponded to an `alert' state. 2. In starved rats at 20°C anaesthesia, with or without injection or cannulation during it, raised glutamate concentrations to the `alert' values, which were maintained for 2–3h. 3. Liver alanine concentration in post-absorptive rats initially fell from 1.5 to 0.8μmol/g, and then stayed fairly constant. 4. Aspartate and glutamine concentrations altered only in starved rats, and proportionately much less than those of glutamate. 5. The necessity for knowing the time-dependence of glutamate concentrations after experimental handling is emphasized. 6. There is no wholly satisfactory explanation of the observations. PMID:5145894

  19. Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held

    PubMed Central

    Budisantoso, Timotheus; Harada, Harumi; Kamasawa, Naomi; Fukazawa, Yugo; Shigemoto, Ryuichi; Matsui, Ko

    2013-01-01

    Establishing the spatiotemporal concentration profile of neurotransmitter following synaptic vesicular release is essential for our understanding of inter-neuronal communication. Such profile is a determinant of synaptic strength, short-term plasticity and inter-synaptic crosstalk. Synaptically released glutamate has been suggested to reach a few millimolar in concentration and last for <1 ms. The synaptic cleft is often conceived as a single concentration compartment, whereas a huge gradient likely exists. Modelling studies have attempted to describe this gradient, but two key parameters, the number of glutamate in a vesicle (NGlu) and its diffusion coefficient (DGlu) in the extracellular space, remained unresolved. To determine this profile, the rat calyx of Held synapse at postnatal day 12–16 was studied where diffusion of glutamate occurs two-dimensionally and where quantification of AMPA receptor distribution on individual postsynaptic specialization on medial nucleus of the trapezoid body principal cells is possible using SDS-digested freeze-fracture replica labelling. To assess the performance of these receptors as glutamate sensors, a kinetic model of the receptors was constructed from outside-out patch recordings. From here, we simulated synaptic responses and compared them with the EPSC recordings. Combinations of NGlu and DGlu with an optimum of 7000 and 0.3 μm2 ms−1 reproduced the data, suggesting slow diffusion. Further simulations showed that a single vesicle does not saturate the synaptic receptors, and that glutamate spillover does not affect the conductance amplitude at this synapse. Using the estimated profile, we also evaluated how the number of multiple vesicle releases at individual active zones affects the amplitude of postsynaptic signals. PMID:23070699

  20. Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina

    PubMed Central

    WINKLER, BARRY S.; KAPOUSTA-BRUNEAU, NATALIA; ARNOLD, MATTHEW J.; GREEN, DANIEL G.

    2006-01-01

    The purpose of the present experiments was to evaluate the contribution of the glutamate-glutamine cycle in retinal glial (Müller) cells to photoreceptor cell synaptic transmission. Dark-adapted isolated rat retinas were superfused with oxygenated bicarbonate-buffered media. Recordings were made of the b-wave of the electroretinogram as a measure of light-induced photoreceptor to ON-bipolar neuron transmission. L-methionine sulfoximine (1–10 mM) was added to superfusion media to inhibit glutamine synthetase, a Müller cell specific enzyme, by more than 99% within 5–10 min, thereby disrupting the conversion of glutamate to glutamine in the Müller cells. Threo-hydroxyaspartic acid and D-aspartate were used to block glutamate transporters. The amplitude of the b-wave was well maintained for 1–2 h provided 0.25 mM glutamate or 0.25 mM glutamine was included in the media. Without exogenous glutamate or glutamine the amplitude of the b-wave declined by about 70% within 1 h. Inhibition of glutamate transporters led to a rapid (2–5 min) reversible loss of the b-wave in the presence and absence of the amino acids. In contrast, inhibition of glutamine synthetase did not alter significantly either the amplitude of the b-wave in the presence of glutamate or glutamine or the rate of decline of the b-wave found in the absence of these amino acids. Excellent recovery of the b-wave was found when 0.25 mM glutamate was resupplied to L-methionine sulfoximine–treated retinas. The results suggest that in the isolated rat retina uptake of released glutamate into photoreceptors plays a more important role in transmitter recycling than does uptake of glutamate into Müller cells and its subsequent conversion to glutamine. PMID:10367968

  1. Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats.

    PubMed

    Vieira, Alexandre Antonio; Colombari, Eduardo; De Luca, Laurival A; de Almeida Colombari, Débora Simões; Menani, José V

    2004-10-29

    The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (1 day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28+/-3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/100 nl) injected into the NTS reduced MAP (-26+/-8 mm Hg) or produced no effect (2+/-7 mm Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to l-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses.

  2. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain.

    PubMed

    Bérubé-Carrière, Noémie; Riad, Mustapha; Dal Bo, Grégory; Lévesque, Daniel; Trudeau, Louis-Eric; Descarries, Laurent

    2009-12-20

    Coexpression of tyrosine hydroxylase (TH) and vesicular glutamate transporter 2 (VGLUT2) mRNAs in the ventral tegmental area (VTA) and colocalization of these proteins in axon terminals of the nucleus accumbens (nAcb) have recently been demonstrated in immature (15-day-old) rat. After neonatal 6-hydroxydopamine (6-OHDA) lesion, the proportion of VTA neurons expressing both mRNAs and of nAcb terminals displaying the two proteins was enhanced. To determine the fate of this dual phenotype in adults, double in situ hybridization and dual immunolabeling for TH and VGLUT2 were performed in 90-day-old rats subjected or not to the neonatal 6-OHDA lesion. Very few neurons expressed both mRNAs in the VTA and substantia nigra (SN) of P90 rats, even after neonatal 6-OHDA. Dually immunolabeled terminals were no longer found in the nAcb of normal P90 rats and were exceedingly rare in the nAcb of 6-OHDA-lesioned rats, although they had represented 28% and 37% of all TH terminals at P15. Similarly, 17% of all TH terminals in normal neostriatum and 46% in the dopamine neoinnervation of SN in 6-OHDA-lesioned rats were also immunoreactive for VGLUT2 at P15, but none at P90. In these three regions, all dually labeled terminals made synapse, in contradistinction to those immunolabeled for only TH or VGLUT2 at P15. These results suggest a regression of the VGLUT2 phenotype of dopamine neurons with age, following normal development, lesion, or sprouting after injury, and a role for glutamate in the establishment of synapses by these neurons.

  3. Protective effects of isoatriplicolide tiglate from Paulownia coreana against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Chung, Ill-Min; Kim, Eun-Hye; Jeon, Hyun-Seok; Moon, Hyung-In

    2010-06-01

    To examine the neuroprotective effects of Paulownia coreana, we tested its protection against the glutamate-induced neurotoxicity to primary cultured cortical neurons. An aqueous extract of the plants exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. By such fractionation, one bioactive sesquiterpene lactone, isoatriplicolide tiglate, was isolated, which exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microM to 10 microM. PMID:20614807

  4. Icilin evokes a dose- and time-dependent increase in glutamate within the dorsal striatum of rats.

    PubMed

    Werkheiser, J L; Rawls, S M; Cowan, A

    2006-05-01

    Icilin, the peripheral cold channel agonist, activates TRPM8 and TRPA1, localized on dorsal root ganglia and trigeminal neurons in rats. Icilin precipitates immediate wet-dog shakes in this species, which are antagonized by centrally acting mu and kappa opioid agonists, implicating the central nervous system in the behavioral response. We studied the effect icilin has on glutamate levels in the dorsal striatum, a brain region involved in movement. Icilin (0.25, 0.5 and 0.75 mg/kg, i.p.) elicited a dose- and time-dependent increase in glutamate within the striatum, indicative of icilin's neurochemical effect in rats.

  5. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase.

    PubMed

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R

    1984-08-01

    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  6. [Effects of ionotropic glutamate receptor channel blockers ON sleep-waking organization in rats].

    PubMed

    Vataev, S I; Oganesian, G A; Gmiro, V E; Lukomskaia, N Ia; Magazanik, L G

    2012-07-01

    The effects of non-competitive glutamate receptor antagonists on sleep-waking organization have been studied on Krushinskii-Molodkina rats having an inherited predisposition to audiogenic seizures and Wistar ones which are resistant to this action of sound. Two types of blockers of glutamate receptor open channels were used: selective blockers of NMDA receptors (memantine and IEM-1921) and blockers of mixed type, impacting both on the NMDA and Ca-permeable AMPA/ kainate receptors (IEM-1754 and IEM 1925). During the first 3 hours after administration of these glutamate antagonists the total or partial deprivation of fast-wave sleep was provoked. Additionally the selective NMDA receptor blocking drugs (memantine, IEM-1921) induced in the same period a significant increase of the representation of wakefulness at the cost of reducing of the total time of slow-wave sleep. These effects are most likely to be a consequence of the blockade of NMDA receptors responsible for the launch and maintenance of wakefulness, slow- and fast-wave sleep. In the same first 3 hours period after the administration of IEM-1754 and IEM-1925 the organization of sleep was not significantly affected. The evident reduction of wakefulness, total duration and increase of slow-wave sleep impact was observed, during the second three-hour period. It, apparently, can be caused by the blockade of AMPA/kainate receptors. The obtained results indicate the involvement of NMDA and AMPA/kainate receptors in the functioning of various parts of the sleep system of rats belonging to both lines.

  7. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade

    PubMed Central

    Pamenter, Matthew E.; Nguyen, Jetson; Carr, John A.; Powell, Frank L.

    2014-01-01

    Abstract Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839–1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7–9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a “cocktail” of the GluR antagonists MK‐801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15‐min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P <0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH‐conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats. PMID:25107985

  8. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade.

    PubMed

    Pamenter, Matthew E; Nguyen, Jetson; Carr, John A; Powell, Frank L

    2014-08-01

    Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P < 0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH-conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats.

  9. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade.

    PubMed

    Pamenter, Matthew E; Nguyen, Jetson; Carr, John A; Powell, Frank L

    2014-08-01

    Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P < 0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH-conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats. PMID:25107985

  10. Diphenyl ditelluride induces anxiogenic-like behavior in rats by reducing glutamate uptake.

    PubMed

    Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2014-06-01

    Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks-final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [(3)H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [(3)H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level.

  11. Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats

    PubMed Central

    2011-01-01

    Background The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection. Results Glu application to the tongue or whisker pad skin caused an enhancement of head-withdrawal reflex and extracellular signal-regulated kinase (ERK) phosphorylation in Vc-C2 neurons. Head-withdrawal reflex and ERK phosphorylation were also enhanced following cold stimulation of the tongue but not whisker pad skin in Glu-injected rats, and the head-withdrawal reflex and ERK phosphorylation were enhanced following heat stimulation of the tongue or whisker pad skin. The enhanced head-withdrawal reflex and ERK phosphorylation after heat stimulation of the tongue or whisker pad skin, and those following cold stimulation of the tongue but not whisker pad skin were suppressed following ionotropic glutamate receptor antagonists administration into the tongue or whisker pad skin. Furthermore, intrathecal administration of MEK1/2 inhibitor PD98059 caused significant suppression of enhanced head-withdrawal reflex in Glu-injected rats, heat head-withdrawal reflex in the rats with Glu injection into the tongue or whisker pad skin and cold head-withdrawal reflex in the rats with Glu injection into the tongue. Conclusions The present findings suggest that peripheral Glu receptor mechanisms may contribute to cold hyperalgesia in the tongue but not in the facial skin, and also contribute to heat hyperalgesia in the tongue and facial skin, and that the mitogen-activated protein kinase cascade in Vc-C2 neurons may be involved in these Glu-evoked hyperalgesic effects. PMID:21952000

  12. Ferulic Acid Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei

    2013-01-01

    Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970

  13. Effect of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon on the glutamate release from rat brain nerve terminals under altered gravity conditions.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.

    L-glutamate acts within the mammalian central nervous system as the predominant excitatory neurotransmitter and as a potent neurotoxin The balance between these physiological and pathological actions of glutamate is thought to be kept in check by the rapid removal of the neurotransmitter from the synaptic cleft The majority of uptake is mediated by the high-affinity Na -dependent glutamate transporters Depolarization leads to stimulation of glutamate efflux mediated by reversal of the high-affinity glutamate transporters The effects of the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon FCCP on the glutamate release from isolated nerve terminals rat brain synaptosomes were investigated in control and after centrifuge-induced hypergravity rats were rotated in a long-arm centrifuge at ten-G during one-hour period The treatment of synaptosomes with 1 mu M FCCP during 11 min resulted in the increase in L- 14 C glutamate release by 23 0 pm 2 3 of total accumulated synaptosomal label in control animals and 24 0 pm 2 3 animals subjected to hypergravity FCCP evoked release of L- 14 C glutamate from synaptosomes was not altered in animals exposed to hypergravity as compared to control Glutamate transport is of electrogenic nature and thus depends on the membrane potential The high-KCl stimulated L- 14 C glutamate release in Ca 2 -free media occurred due to reversal of the glutamate transporters Carrier --mediated release of L- 14 C glutamate 6 min slightly increased as a result of

  14. Age-related changes in the dynamics of potassium-evoked L-glutamate release in the striatum of Fischer 344 rats.

    PubMed

    Nickell, J; Pomerleau, F; Allen, J; Gerhardt, G A

    2005-01-01

    In the present studies we used a multisite ceramic-based microelectrode for rapid (800 ms) and low level measures of L-glutamate in vivo. We measured the amplitude and clearance rate of phasic changes in L-glutamate release produced by local application of potassium by a micropipette placed adjacent to the recording sites in the striatum of young (6 month), late middle aged (18 month) and aged (24 month) Fischer 344 rats. Our results showed that the amplitudes and clearance rates of potassium-evoked release of L-glutamate in the striatum were significantly decreased in aged rats as compared to the other age groups. In addition, the sensitivity of glutamate fibers to depolarization with potassium was significantly decreased in the aged rats as compared to young animals. Taken together, these data are consistent with age-related alterations in glutamate release dynamics, which may involve a compensatory mechanism for maintaining static glutamate concentrations within the striatum.

  15. Effect of inhibitory avoidance training on [3H]-glutamate binding in the hippocampus and parietal cortex of rats.

    PubMed

    Schröder, N; De-Paris, F; Roesler, R; Medina, J H; Souza, D O; Izquierdo, I

    2000-02-01

    Glutamate receptors have been implicated in memory formation. The aim of the present study was to determine the effect of inhibitory avoidance training on specific [3H]-glutamate binding to membranes obtained from the hippocampus or parietal cortex of rats. Adult male Wistar rats were trained (0.5-mA footshock) in a step-down inhibitory avoidance task and were sacrificed 0, 5, 15 or 60 min after training. Hippocampus and parietal cortex were dissected and membranes were prepared and incubated with 350 nM [3H]-glutamate (N = 4-6 per group). Inhibitory avoidance training induced a 29% increase in glutamate binding in hippocampal membranes obtained from rats sacrificed at 5 min (P<0.01), but not at 0, 15, or 60 min after training, and did not affect glutamate binding in membranes obtained from the parietal cortex. These results are consistent with previous evidence for the involvement of glutamatergic synaptic modification in the hippocampus in the early steps of memory formation.

  16. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain.

    PubMed

    Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    2001-08-01

    [3H]LY341495 is a highly potent and selective antagonist for group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3), which has been used to label these receptors in cells expressing recombinant receptor subtypes. In this study, we characterized the kinetics, pharmacology, and distribution of [3H]LY341495 binding to mGlu receptors in rat brain tissue. Equilibrium experiments in the rat forebrain demonstrated binding to a single site that was saturable, reversible, and of high affinity (Bmax, 3.9 +/- 0.65 pmol/mg of protein, Kd, 0.84 +/- 0.11 nM). The relative order of potencies for displacement of [3H]LY341495 by mGlu receptor ligands was LY341495 > L-glutamic acid > LY354740 > (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine > 4-(2R,4R)-aminopyrrolidine-2,4-dicarboxylate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (R,S)-alpha-methyl-4-phosphonophenylglycine > (R,S)3,5-dihydroxyphenylglycine > L-(+)-2-amino-4-phosphonobutyric acid. [3H]LY341495 was not displaced by the selective ionotropic glutamate receptor agonists N-methyl-D-aspartic acid, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate at concentrations up to 1 mM. Comparison of [3H]LY341495 binding in rat brain with recombinant mGlu receptor subtypes demonstrated a very high correlation with mGlu3 receptor binding (r2 = 0.957), a significant, but lower, correlation with mGlu2 receptor binding (r2 = 0.869), but no significant correlation to mGlu8 receptor binding (r2 = 0.284). Regional studies using autoradiography showed a similar distribution of [3H]LY341495 binding to that for group II mGlu receptors previously reported by others using immunocytochemical techniques. These studies indicate that [3H]LY341495 selectively labels group II (mGlu2/3) receptors, but under the conditions used, [3H]LY341495 may bind predominately to mGlu3 receptor populations in the rat forebrain. PMID:11454905

  17. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats.

    PubMed

    Chang, Chia Ying; Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu Kuei; Wang, Ying Chou; Chou, Shang Shing Peter; Wang, Su Jane

    2015-09-01

    The citrus flavonoid hesperidin exerts neuroprotective effects and could cross the blood-brain barrier. Given the involvement of glutamate neurotoxicity in the pathogenesis of neurodegenerative disorders, this study was conducted to evaluate the potential role of hesperidin in glutamate release and glutamate neurotoxicity in the hippocampus of rats. In rat hippocampal nerve terminals (synaptosomes), hesperidin inhibited the release of glutamate and elevation of cytosolic free Ca(2+) concentration evoked by 4-aminopyridine (4-AP), but did not alter 4-AP-mediated depolarization. The inhibitory effect of hesperidin on evoked glutamate release was prevented by chelating the extracellular Ca(2+) ions and blocking the activity of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels or protein kinase C. In hippocampal slice preparations, whole-cell patch clamp experiments showed that hesperidin reduced the frequency of spontaneous excitatory postsynaptic currents without affecting their amplitude, indicating the involvement of a presynaptic mechanism. In addition, intraperitoneal (i.p.) injection of kainic acid (KA, 15 mg/kg) elevated the extracellular glutamate levels and caused considerable neuronal loss in the hippocampal CA3 area. These KA-induced alterations were attenuated by pretreatment with hesperidin (10 or 50 mg/kg, i.p.) before administering the KA. These results demonstrate that hesperidin inhibits evoked glutamate release in vitro and attenuates in vivo KA-induced neuronal death in the hippocampus. Our findings indicate that hesperidin may be a promising candidate for preventing or treating glutamate excitotoxicity related brain disorders such as neurodegenerative diseases.

  18. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats

    PubMed Central

    Patil, Sudhir; Prakash, T.; Kotresha, D.; Rao, N. Rama; Pandy, Naitik

    2011-01-01

    Objective: To study the antihyperlipidemic effect of Cedrus deodara (C. deodara) against monosodium glutamate (MSG) induced obesity in neonatal rats. Materials and Methods: The studies were carried out on newborn neonatal rats and were injected intraperitoneally with 2 mg/g of MSG on the 2nd and 4th postnatal days and 4 mg/g on 6th, 8th and 10th postnatal days. Ethanolic extract (EE) and acetone extract (AE) of C. deodara was administered in a dose of 100 and 200 mg/kg, p.o./day at the age of 65 days. On day 60 of treatment, body weight, locomotor activity, body temperature, and various biochemical parameters like serum glucose, total cholesterol, triglyceride, and organs weights were recorded. Results: There was a significant reduction in body weight, organs and increased body temperature, locomotor activity after treatment with extracts. C. deodara decreased serum glucose, total cholesterol and triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels and increased high density lipoprotein (HDL) significantly has compared to MSG-control rats. Conclusion: C. deodara extracts exhibited antihyperlipidemic effect and it possesses anti-obesity properties in MSG induced obese rats. PMID:22144766

  19. Effects of the selective metabotropic glutamate receptor agonist, L-CCG-I, on acquisition of a Morris task by rats.

    PubMed

    Van der Staay, F J; Antonicek, H; Helpap, B; Freund, W D

    1995-12-27

    L-Glutamate, a major excitatory neurotransmitter in the central nervous system, plays an important role in a variety of neuronal events associated with learning and memory, neuronal plasticity, neurotoxicity, and neurodegeneration. We assessed the effects of L-CCG-I ((2S,3S,4S)-alpha-(carboxycyclopropyl)glycine), a conformationally restricted glutamate analogue, in a standard Morris water escape task with young adult rats. L-CCG-I is considered to be a selective agonist of the metabotropic glutamate receptor. Vehicle, 5, 50, or 500 nmol L-CCG-I was injected intra-cerebroventricularly (i.c.v.) into the right lateral ventricle 30 min before the start of each of five daily acquisition sessions. The data indicate that L-CCG-I had a centrally mediated mode of action; rats treated with 500 nmol L-CCG-I were clearly impaired in acquiring the standard Morris water escape task. The no-effect dose was 5 nmol.

  20. Glutamate protects against Ca(2+) paradox-induced injury and inhibits calpain activity in isolated rat hearts.

    PubMed

    Zhang, Jian-Ying; Kong, Ling-Heng; Lai, Dong; Jin, Zhen-Xiao; Gu, Xiao-Ming; Zhou, Jing-Jun

    2016-10-01

    This study determined the effects of glutamate on the Ca(2+) paradoxical heart, which is a model for Ca(2+) overload-induced injury during myocardial ischaemia and reperfusion, and evaluated its effect on a known mediator of injury, calpain. An isolated rat heart was retrogradely perfused in a Langendorff apparatus. Ca(2+) paradox was elicited via perfusion with a Ca(2+) -free Krebs-Henseleit (KH) solution for 3 minutes followed by Ca(2+) -containing normal KH solution for 30 minutes. The Ca(2+) paradoxical heart exhibited almost no viable tissue on triphenyltetrazolium chloride staining and markedly increased LDH release, caspase-3 activity, cytosolic cytochrome c content, and apoptotic index. These hearts also displayed significantly increased LVEDP and a disappearance of LVDP. Glutamate (5 and 20 mmol/L) significantly alleviated Ca(2+) paradox-induced injury. In contrast, 20 mmol/L mannitol had no effect on Ca(2+) paradox. Ca(2+) paradox significantly increased the extent of the translocation of μ-calpain to the sarcolemmal membrane and the proteolysis of α-fodrin, which suggests calpain activation. Glutamate also blocked these effects. A non-selective inhibitor of glutamate transporters, dl-TBOA (10 μmol/L), had no effect on control hearts, but it reversed glutamate-induced cardioprotection and reduction in calpain activity. Glutamate treatment significantly increased intracellular glutamate content in the Ca(2+) paradoxical heart, which was also blocked by dl-TBOA. We conclude that glutamate protects the heart against Ca(2+) overload-induced injury via glutamate transporters, and the inhibition of calpain activity is involved in this process.

  1. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  2. Chronic noise stress-induced alterations of glutamate and gamma-aminobutyric acid and their metabolism in the rat brain.

    PubMed

    Kazi, Amajad Iqbal; Oommen, Anna

    2014-01-01

    Chronic stress induces neurochemical changes that include neurotransmitter imbalance in the brain. Noise is an environmental factor inducing stress. Chronic noise stress affects monoamine neurotransmitter systems in the central nervous system. The effect on other excitatory and inhibitory neurotransmitter systems is not known. The aim was to study the role of chronic noise stress on the glutamatergic and gamma-aminobutyric acid (GABA)ergic systems of the brain. Female Wistar rats (155 ± 5 g) were unintentionally exposed to noise due to construction (75-95 db, 3-4 hours/day, 5 days a week for 7-8 weeks) in the vicinity of the animal care facility. Glutamate/GABA levels and their metabolic enzymes were evaluated in different rat brain regions (cortex, hippocampus, striatum, and cerebellum) and compared with age and gender matched nonexposed rats. Chronic noise stress decreased glutamate levels and glutaminase activity 27% and 33% in the cortex, 15% and 24% in the cerebellum. Glutamate levels increased 10% in the hippocampus, 28% in striatum and glutaminase activity 15% in striatum. Glutamine synthetase activity increased significantly in all brain regions studied, that is, cortex, hippocampus, striatum, and cerebellum (P < 0.05). Noise stress-increased GABA levels and glutamate alpha decarboxylase activity 20% and 45% in the cortex, 13% and 28% in the hippocampus respectively. GABA levels and glutamate alpha decarboxylase activity decreased 15% and 14%, respectively in the striatum. GABA transaminase activity was significantly reduced in the cortex (55%), hippocampus (17%), and cerebellum (33%). Chronic noise stress differentially affected glutamatergic and GABAergic neurotransmitter systems in the rat brain, which may alter glutamate and GABA neurotransmission.

  3. Flavor preferences conditioned by post-oral infusion of monosodium glutamate in rats.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2011-09-01

    Monosodium glutamate (MSG), the prototypical umami source, can enhance preference for associated flavors in humans and rodents. Although MSG flavor preference has been attributed to its taste, vagally-mediated post-oral detection has also been demonstrated. Recent studies showed that water-restricted rats acquired a preference for a flavor paired with intragastric (IG) infusion of 60 mM MSG in rats. The present study extends this work by comparing MSG-based flavor conditioning in water- and food-restricted rats and testing the persistence of flavor preferences. Rats with IG catheters drank flavored solutions paired with volume-matched infusions of 60 mM MSG or water in daily 30-min sessions. Two training/test cycles were conducted, each with eight one-bottle training sessions followed by two two-bottle preference tests without infusions. Food- and water-restricted groups displayed similar preferences for the MSG-paired flavor. When non-reinforced testing was continued after the second cycle, the food-restricted group sustained its preference across three 2-day tests, but water-restricted rats lost their preference. Other food-restricted rats learned to prefer a flavor paired with intraduodenal infusion, indicating that gastric stimulation by MSG is not required. A third experiment showed that adding 2 mM of the nucleotide inosine monophosphate to the IG infusion of MSG did not significantly enhance flavor conditioning. Because MSG-based flavor preferences can be obtained with infusions that bypass the stomach, the site for detecting MSG reinforcement may be intestinal. PMID:21605576

  4. Change of cystine/glutamate antiporter expression in ethanol-dependent rats

    PubMed Central

    Peana, Alessandra T.; Muggironi, Giulia; Bennardini, Federico

    2014-01-01

    Background: Some drugs of abuse down regulate the expression of cystine/glutamate (xCT) antiporter in the nucleus accumbens (Acb) after extinction or withdrawal. The altered level of xCT exchanger in Acb, a structure involved in ethanol reinforcement, may contribute to the pathological glutamatergic signaling, linked to addiction. We hypothesized that the expression of xCT may be changed in Acb and whole brain also in non-dependent (occasional drinkers), ethanol-dependent rats, as well as, during ethanol withdrawal. Methods: Wistar rats were made ethanol-dependent by chronic exposure to an alcoholic milk beverage (from 2.4 to 7.2% v/v ethanol). Ethanol non-dependent rats were exposed to a similar, but non-alcoholic liquid diet and self-administered ethanol (10%) twice a week. Withdrawal in ethanol-dependent rats was studied at 12 h after the last ethanol-enriched diet exposure. Immediately after the measurement of somatic signs of withdrawal, Western blot analysis with a polyclonal antibody against xCT was carried out in a naïve control group, non-dependent and ethanol-dependent rats as well as withdrawal rats, in order to study the level of xCT expression in Acb and whole brain. Results: Non-dependent rats self-administered an average dose of 1.21 ± 0.02 g/kg per session (30 min). Daily ethanol consumption during chronic exposure to the alcoholic beverage ranged from 6.30 ± 0.16 to 13.99 ± 0.66 g/kg. Ethanol dependent rats after suspension of the ethanol-enriched diet have shown significant somatic signs of withdrawal. Western blotting analysis of Acb lysates revealed that xCT was over expressed in ethanol-dependent rats whereas in whole brain preparations xCT was over expressed in both non-dependent and ethanol-dependent rats compared to control group. On the contrary, xCT expression during withdrawal was down regulated in Acb and restored to control level in whole brain preparations. Conclusions: The changes of xCT expression in both Acb and whole brain

  5. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    PubMed

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family. PMID:21476267

  6. Biophysical properties and responses to glutamate receptor agonists of identified subpopulations of rat geniculate ganglion neurons.

    PubMed

    King, M S; Bradley, R M

    2000-06-01

    The goal of the current study was to evaluate the electrophysiological properties and responses to glutamate receptor agonists of rat geniculate ganglion (GG) neurons innervating the tongue. Subpopulations of GG neurons were labeled by injecting Fluoro-Gold (FG) or True Blue chloride into the anterior tongue and soft palate (AT and SP neurons) and applying FG crystals to the posterior auricular branch of the facial nerve (PA neurons). Three to 12 days later, the GG neurons were acutely isolated and patch clamped. Although many biophysical properties of the AT, SP and PA neurons were similar, significant differences were found among these groups in properties related to cell excitability. For example, the average amount of current necessary to elicit an action potential was 61 pA in AT neurons (n=55), 90 pA in SP neurons (n=41) and 189 pA in PA neurons (n=35, P<0.001). In addition, AT neurons tended to fire significantly more action potentials during depolarization as well as following hyperpolarizing pulses than SP or PA neuron types. Most GG neurons responded to application of glutamate receptor agonists. The neurons responded with a depolarization accompanied by a reduction in input resistance. These results suggest that subpopulations of neurons in the geniculate ganglion have distinct biophysical properties and express functional glutamate receptors. The differing biophysical properties of GG neurons is possibly related to their functional heterogeneity and glutaminergic neurotransmission may function in the processing of gustatory, and other sensory information, within the geniculate ganglion and its projections. PMID:10825499

  7. Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions.

    PubMed

    Meister, B; Ceccatelli, S; Hökfelt, T; Andén, N E; Andén, M; Theodorsson, E

    1989-01-01

    Indirect immunofluorescence histochemistry and receptor autoradiography were used to study the localization of transmitter-/peptide-containing neurons and peptide binding sites in the mediobasal hypothalamus in normal rats and in rats treated neonatally with repeated doses of the neurotoxin monosodium-glutamate (MSG). In the arcuate nucleus, the results showed a virtually complete loss of cell bodies containing immunoreactivity for growth hormone-releasing factor (GRF), galanin (GAL), dynorphin (DYN), enkephalin (ENK), corticotropin-like intermediate peptide (CLIP), neuropeptide Y (NPY), and neuropeptide K (NPK). Tyrosine hydroxylase(TH)-glutamic acid decarboxylase(GAD)-, neurotensin(NT)- and somatostatin(SOM)-immunoreactive (IR) cells were, however, always detected in the ventrally dislocated, dorsomedial division of the arcuate nucleus. In the median eminence, marked decreases in numbers of GAD-, NT-, GAL-, GRF-, DYN-, and ENK-IR fibers were observed. The numbers of TH-, SOM- and NPY-IR fibers were in contrast not or only affected to a very small extent, as revealed with the immunofluorescence technique. Biochemical analysis showed a tendency for MSG to reduce dopamine levels in the median eminence of female rats, whereas no effect was observed in male rats. Autoradiographic studies showed high to moderate NT binding sites, including strong binding over presumably dorsomedial dopamine cells. In MSG-treated rats, there was a marked reduction in GAL binding in the ventromedial nucleus. The findings implicate that most neurons in the ventrolateral and ventromedial arcuate nucleus are sensitive to the toxic effects of MSG, whereas a subpopulation of cells in the dorsomedial division of the arcuate nucleus, including dopamine neurons, are not susceptible to MSG-neurotoxicity. The results indicate, moreover that the very dense TH-IR fiber network in the median eminence predominantly arises from the dorsomedial TH-IR arcuate cells, whereas the GAD-, NT-, GAL-, GRF- and

  8. Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats.

    PubMed

    Podlacha, Magdalena; Glac, Wojciech; Listowska, Magdalena; Grembecka, Beata; Majkutewicz, Irena; Myślińska, Dorota; Plucińska, Karolina; Jerzemowska, Grażyna; Grzybowska, Maria; Wrona, Danuta

    2016-03-01

    The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions. PMID:26454750

  9. Disruptions in the Regulation of Extracellular Glutamate by Neurons and Glia in the Rat Striatum Two Days after Diffuse Brain Injury

    PubMed Central

    Hinzman, Jason M.; Thomas, Theresa Currier; Quintero, Jorge E.; Gerhardt, Greg A.

    2012-01-01

    Abstract Disrupted regulation of extracellular glutamate in the central nervous system contributes to and can exacerbate the acute pathophysiology of traumatic brain injury (TBI). Previously, we reported increased extracellular glutamate in the striatum of anesthetized rats 2 days after diffuse brain injury. To determine the mechanism(s) responsible for increased extracellular glutamate, we used enzyme-based microelectrode arrays (MEAs) coupled with specific pharmacological agents targeted at in vivo neuronal and glial regulation of extracellular glutamate. After TBI, extracellular glutamate was significantly increased in the striatum by (∼90%) averaging 4.1±0.6 μM compared with sham 2.2±0.4 μM. Calcium-dependent neuronal glutamate release, investigated by local application of an N-type calcium channel blocker, was no longer a significant source of extracellular glutamate after TBI, compared with sham. In brain-injured animals, inhibition of glutamate uptake with local application of an excitatory amino acid transporter inhibitor produced significantly greater increase in glutamate spillover (∼ 65%) from the synapses compared with sham. Furthermore, glutamate clearance measured by locally applying glutamate into the extracellular space revealed significant reductions in glutamate clearance parameters in brain-injured animals compared with sham. Taken together, these data indicate that disruptions in calcium-mediated glutamate release and glial regulation of extracellular glutamate contribute to increased extracellular glutamate in the striatum 2 days after diffuse brain injury. Overall, these data suggest that therapeutic strategies used to regulate glutamate release and uptake may improve excitatory circuit function and, possibly, outcomes following TBI. PMID:22233432

  10. Age-related functional changes of the glutamate receptor channels in rat Meynert neurones.

    PubMed Central

    Akaike, N; Rhee, J S

    1997-01-01

    1. The developmental changes of glutamate receptors (GluRs) in acutely dissociated rat Meynert neurones were investigated using the conventional whole cell and nystatin perforated patch recording modes under voltage-clamp conditions. 2. The neurones became less responsive to N-methyl-D-aspartic acid (NMDA) with age, most dramatically between 1 day and 2 weeks, while the responses to kainic acid (KA) and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) gradually increased. The metabotropic GluR response appeared a few days after birth, but thereafter no further change was observed. 3. The decrease in the NMDA response during postnatal development was due to an abrupt reduction in the number of receptors without affecting the affinity, voltage-dependent Mg2+ blockade or high Ca2+ permeability (PCa/PCs approximately 7.0). 4. PCa/PCs in the presence of KA decreased from 2.8 in the 1-day-old (1D) rat neurones to 1.1 and 0.44 in the 2-week-old (2W) and 6-month-old (6M) rat neurones, respectively. The concentration-response relationship for KA shifted to the left with age. The KA response was not affected by NS-102, a KA-selective antagonist, thus indicating that the increased affinity of the receptor for the ligand resulted from the change in the AMPA receptor channel subunits. 5. The AMPA response in the presence of 10(-4) M cyclothiazide showed a change in the inward rectifying current-voltage relationship with age. The KA response was strongly cross-desensitized by the addition of AMPA and was also blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas a rapid desensitization of the AMPA response was removed in a concentration-dependent manner by cyclothiazide. These results indicate that the non-NMDA receptor channels are assembled from the subunits of the AMPA receptor family without the GluR-2 subunit, thus resulting in a high Ca2+ permeability. 6. The L-glutamate (Glu)-induced responses were more sensitive to DL-2-amino-5

  11. Glutamate AMPA receptors in the fascia dentata of human and kainate rat hippocampal epilepsy.

    PubMed

    Babb, T L; Mathern, G W; Leite, J P; Pretorius, J K; Yeoman, K M; Kuhlman, P A

    1996-12-01

    The present study examined the relationship between the patterns and densities of glutamate AMPA receptor sub-units GluR1 and GluR2/3 in the molecular layer of the fascia dentata and aberrant mossy fiber neoinnervation in human and kainate rat hippocampal epilepsy. Because AMPA sub-units modulate the fast glutamate synaptic transmission, we hypothesized that the AMPA receptor densities would be related to the glutamate-secreting mossy fibers, which could then contribute to seizure generation. In human hippocampal epilepsy, we found that the immunocytochemical labeling of GluR1 and GluR2/3 dendrites was positively related to the densities and spatial locations of the densest, aberrant neo-Timm stained supragranular mossy fibers. We used quantitative densitometry for the mossy fibers. However, the relatively faint and punctate immunocytochemical staining of the receptors did not allow true quantitative densitometry of the dendritic trees because in human epilepsy granule cell densities were decreased on average 50% of normal. Nevertheless, visual observations did confirm spatial relations between dense fascia dentata inner molecular layer mossy fibers and dense AMPA receptor staining. In the outer molecular layer, the mossy fibers were present only in the lower portion, were not densely-stained, and the AMPA receptors were only faintly-labeled. Nevertheless, outer molecular layer AMPA receptor densities were usually present more distally than were the mossy fibers. Experiments were done using intrahippocampal kainate epileptic rats to test the time courses for the changes in mossy fibers and AMPA receptors. The upregulation of inner and outer molecular layer AMPA receptors occurred maximally within 5 days post-kainate injection, prior to any mossy fiber supragranular ingrowth. One hundred and eighty days after ipsilateral kainate the AMPA receptors were increased bilaterally in the inner and outer molecular layers despite the fact that the contralateral aberrant

  12. Swimming Training Modulates Nitric Oxide-Glutamate Interaction in the Rostral Ventrolateral Medulla in Normotensive Conscious Rats.

    PubMed

    Raquel, Hiviny de A; Masson, Gustavo S; Barna, Barbara Falquetto; Zanluqui, Nágela G; Pinge-Filho, Phileno; Michelini, Lisete C; Martins-Pinge, Marli C

    2016-01-01

    We evaluated the effects of swimming training on nitric oxide (NO) modulation to glutamate microinjection within the rostral ventrolateral medulla (RVLM) in conscious freely moving rats. Male Wistar rats were submitted to exercise training (Tr) by swimming or kept sedentary (Sed) for 4 weeks. After the last training session, RVLM guide cannulas and arterial/venous catheters were chronically implanted. Arterial pressure (AP), heart rate (HR), and baroreflex control of HR (loading/unloading of baroreceptors) were recorded in conscious rats at rest. Pressor response to L-glutamate in the RVLM was compared before and after blockade of local nitric oxide (NO) production. In other Tr and Sed groups, brain was harvested for gene (qRT-PCR) and protein (immunohistochemistry) expression of NO synthase (NOS) isoforms and measurement of NO content (nitrite assay) within the RVLM. Trained rats exhibited resting bradycardia (average reduction of 9%), increased baroreflex gain (Tr: -4.41 ± 0.5 vs. Sed: -2.42 ± 0.31 b/min/mmHg), and unchanged resting MAP. The pressor response to glutamate was smaller in the Tr group (32 ± 4 vs. 53 ± 2 mmHg, p < 0.05); this difference disappeared after RVLM pretreatment with carboxy-PTIO (NO scavenger), Nw-Propyl-L-Arginine and L-NAME (NOS inhibitors). eNOS immunoreactivity observed mainly in RVLM capillaries was higher in Tr, but eNOS gene expression was reduced. nNOS gene and protein expression was slightly reduced (-29 and -9%, respectively, P > 0.05). Also, RVLM NO levels were significantly reduced in Tr (-63% vs. Sed). After microinjection of a NO-donor, the attenuated pressor response of L-glutamate in Tr group was restored. Data indicate that swimming training by decreasing RVLM NO availability and glutamatergic neurotransmission to locally administered glutamate may contribute to decreased sympathetic activity in trained subjects. PMID:27378935

  13. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity.

    PubMed

    Cattani, Daiane; de Liz Oliveira Cavalli, Vera Lúcia; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-06-01

    Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup(®) (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup(®) (0.00005-0.1%) during 30min and experiments were carried out to determine whether glyphosate affects (45)Ca(2+) influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup(®) (30min) increases (45)Ca(2+) influx by activating NMDA receptors and voltage-dependent Ca(2+) channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup(®)-induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup(®) increased (3)H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup(®) decreased (3)H-glutamate uptake and metabolism, while induced (45)Ca(2+) uptake and (14)C-MeAIB accumulation in immature rat hippocampus. Taken together, these results demonstrated that Roundup(®) might lead to excessive extracellular glutamate levels and consequently to glutamate excitotoxicity and oxidative stress in rat hippocampus.

  14. Swimming Training Modulates Nitric Oxide-Glutamate Interaction in the Rostral Ventrolateral Medulla in Normotensive Conscious Rats

    PubMed Central

    Raquel, Hiviny de A.; Masson, Gustavo S.; Barna, Barbara Falquetto; Zanluqui, Nágela G.; Pinge-Filho, Phileno; Michelini, Lisete C.; Martins-Pinge, Marli C.

    2016-01-01

    We evaluated the effects of swimming training on nitric oxide (NO) modulation to glutamate microinjection within the rostral ventrolateral medulla (RVLM) in conscious freely moving rats. Male Wistar rats were submitted to exercise training (Tr) by swimming or kept sedentary (Sed) for 4 weeks. After the last training session, RVLM guide cannulas and arterial/venous catheters were chronically implanted. Arterial pressure (AP), heart rate (HR), and baroreflex control of HR (loading/unloading of baroreceptors) were recorded in conscious rats at rest. Pressor response to L-glutamate in the RVLM was compared before and after blockade of local nitric oxide (NO) production. In other Tr and Sed groups, brain was harvested for gene (qRT-PCR) and protein (immunohistochemistry) expression of NO synthase (NOS) isoforms and measurement of NO content (nitrite assay) within the RVLM. Trained rats exhibited resting bradycardia (average reduction of 9%), increased baroreflex gain (Tr: −4.41 ± 0.5 vs. Sed: −2.42 ± 0.31 b/min/mmHg), and unchanged resting MAP. The pressor response to glutamate was smaller in the Tr group (32 ± 4 vs. 53 ± 2 mmHg, p < 0.05); this difference disappeared after RVLM pretreatment with carboxy-PTIO (NO scavenger), Nw-Propyl-L-Arginine and L-NAME (NOS inhibitors). eNOS immunoreactivity observed mainly in RVLM capillaries was higher in Tr, but eNOS gene expression was reduced. nNOS gene and protein expression was slightly reduced (−29 and −9%, respectively, P > 0.05). Also, RVLM NO levels were significantly reduced in Tr (−63% vs. Sed). After microinjection of a NO-donor, the attenuated pressor response of L-glutamate in Tr group was restored. Data indicate that swimming training by decreasing RVLM NO availability and glutamatergic neurotransmission to locally administered glutamate may contribute to decreased sympathetic activity in trained subjects. PMID:27378935

  15. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    SciTech Connect

    Tokuda, Kazuhiro; Kuramitsu, Yasuhiro; Byron, Baron; Kitagawa, Takao; Tokuda, Nobuko; Kobayashi, Daiki; Nagayama, Megumi; Araki, Norie; Sonoda, Koh-Hei; Nakamura, Kazuyuki

    2015-08-07

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.

  16. Acamprosate {monocalcium bis(3-acetamidopropane-1-sulfonate)} reduces ethanol-drinking behavior in rats and glutamate-induced toxicity in ethanol-exposed primary rat cortical neuronal cultures.

    PubMed

    Oka, Michiko; Hirouchi, Masaaki; Tamura, Masaru; Sugahara, Seishi; Oyama, Tatsuya

    2013-10-15

    Acamprosate, the calcium salt of bis(3-acetamidopropane-1-sulfonate), contributes to the maintenance of abstinence in alcohol-dependent patients, but its mechanism of action in the central nervous system is unclear. Here, we report the effect of acamprosate on ethanol-drinking behavior in standard laboratory Wistar rats, including voluntary ethanol consumption and the ethanol-deprivation effect. After forced ethanol consumption arranged by the provision of only one drinking bottle containing 10% ethanol, the rats were given a choice between two drinking bottles, one containing water and the other containing 10% ethanol. In rats selected for high ethanol preference, repeated oral administration of acamprosate diminished voluntary ethanol drinking. After three months of continuous access to two bottles, rats were deprived of ethanol for three days and then presented with two bottles again. After ethanol deprivation, ethanol preference was increased, and the increase was largely abolished by acamprosate. After exposure of primary neuronal cultures of rat cerebral cortex to ethanol for four days, neurotoxicity, as measured by the extracellular leakage of lactate dehydrogenase (LDH), was induced by incubation with glutamate for 1h followed by incubation in the absence of ethanol for 24h. The N-methyl-D-aspartate receptor blocker 5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine, the metabotropic glutamate receptor subtype 5 antagonist 6-methyl-2-(phenylethynyl)pyridine and the voltage-gated calcium-channel blocker nifedipine all inhibited glutamate-induced LDH leakage from ethanol-exposed neurons. Acamprosate inhibited the glutamate-induced LDH leakage from ethanol-exposed neurons more strongly than that from intact neurons. In conclusion, acamprosate showed effective reduction of drinking behavior in rats and protected ethanol-exposed neurons by multiple blocking of glutamate signaling.

  17. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  18. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.

    PubMed

    Gorter, Jan A; Van Vliet, Erwin A; Proper, Evelien A; De Graan, Pierre N E; Ghijsen, Wim E J M; Lopes Da Silva, Fernando H; Aronica, Eleonora

    2002-01-21

    The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course.

  19. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    PubMed

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life.

  20. Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondrial depolarization in rat cultured forebrain neurones.

    PubMed

    Hoyt, K R; Sharma, T A; Reynolds, I J

    1997-11-01

    1. Glutamate receptor activation has been previously shown to result in mitochondrial depolarization and activation of the mitochondrial permeability transition pore in cultured neurones. In this study, we characterized the effects of two putative permeability transition inhibitors, namely trifluoperazine and dibucaine, on mitochondrial depolarization in rat intact, cultured forebrain neurones. 2. Permeability transition was monitored by following mitochondrial depolarization in neurones loaded with the mitochondrial membrane potential-sensitive fluorescent indicator, JC-1. Trifluoperazine (10 20 microM) and dibucaine (50-100 microM) inhibited or delayed the onset of glutamate-induced permeability transition. 3. We also investigated the effects of trifluoperazine and dibucaine on neuronal recovery from glutamate-induced Ca2+ loads. Trifluoperazine affected Ca2+ recovery in a manner similar to the mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157, while dibucaine had no apparent effect on Ca2+ recovery. Therefore, inhibition of permeability transition does not appear to be involved in Ca2+ recovery from glutamate-induced Ca2+ loads. 4. Trifluoperazine and dibucaine did not inhibit [3H]-dizocilpine binding at the concentrations that prevented mitochondrial depolarization. 5. These studies suggest that trifluoperazine and dibucaine inhibit permeability transition in intact neurones. Trifluoperazine also appears to inhibit mitochondrial Na+/Ca2+ exchange. These drugs should prove to be valuable tools in the further study of the role of mitochondrial permeability transition in glutamate-induced neuronal death.

  1. Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondrial depolarization in rat cultured forebrain neurones

    PubMed Central

    Hoyt, Kari R; Sharma, Terre A; Reynolds, Ian J

    1997-01-01

    Glutamate receptor activation has been previously shown to result in mitochondrial depolarization and activation of the mitochondrial permeability transition pore in cultured neurones. In this study, we characterized the effects of two putative permeability transition inhibitors, namely trifluoperazine and dibucaine, on mitochondrial depolarization in rat intact, cultured forebrain neurones. Permeability transition was monitored by following mitochondrial depolarization in neurones loaded with the mitochondrial membrane potential-sensitive fluorescent indicator, JC-1. Trifluoperazine (10–20 μM) and dibucaine (50–100 μM) inhibited or delayed the onset of glutamate-induced permeability transition. We also investigated the effects of trifluoperazine and dibucaine on neuronal recovery from glutamate-induced Ca2+ loads. Trifluoperazine affected Ca2+ recovery in a manner similar to the mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157, while dibucaine had no apparent effect on Ca2+ recovery. Therefore, inhibition of permeability transition does not appear to be involved in Ca2+ recovery from glutamate-induced Ca2+ loads. Trifluoperazine and dibucaine did not inhibit [3H]-dizocilpine binding at the concentrations that prevented mitochondrial depolarization. These studies suggest that trifluoperazine and dibucaine inhibit permeability transition in intact neurones. Trifluoperazine also appears to inhibit mitochondrial Na+/Ca2+ exchange. These drugs should prove to be valuable tools in the further study of the role of mitochondrial permeability transition in glutamate-induced neuronal death. PMID:9384493

  2. Effects of free fatty acids, ethanol and development on gamma-aminobutyric acid and glutamate fluxes in rat nerve endings.

    PubMed

    Hitzemann, R; Mark, C; Panini, A

    1982-12-15

    The effects of type A (cis-unsaturated) and type B (trans-unsaturated and saturated) fatty acids, 1% and 3% ethanol (v/v), and development (7 days) on the thermodynamics of glutamate and gamma-aminobutyric acid (GABA) transport into cortical rat brain nerve endings were examined. The effects of the various manipulations, which are known to affect membrane fluidity, may be summarized. Three percent ethanol and oleic acid increased delta S degrees and delta S+ for glutamate transport and decreased delta H degrees and delta H+. Type B fatty acids had the opposite effects. In comparison to glutamate transport, GABA transport was less affected by the various manipulations and showed less specificity in terms of the fatty acid effects. Similarly, the effects of development on the thermodynamic parameters for glutamate and GABA transport were not consistent. Glutamate transport into 7-day nerve endings showed thermodynamic behavior similar to that seen when type A fatty acids were incorporated into adult nerve endings. In contrast, GABA transport into 7-day nerve endings had the character of adult nerve endings into which type B fatty acids were incorporated.

  3. Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus.

    PubMed

    Garduño-Torres, Belén; Treviño, Mario; Gutiérrez, Rafael; Arias-Montaño, José-Antonio

    2007-02-01

    We have investigated the presence of histamine H(3) receptors (H(3)Rs) on rat thalamic isolated nerve terminals (synaptosomes) and the effect of their activation on glutamate and GABA release. N-alpha-[methyl-(3)H]histamine ([(3)H]-NMHA) bound specifically to synaptosomal membranes with dissociation constant (K(d)) 0.78+/-0.20 nM and maximum binding (B(max)) 141+/-12fmol/mg protein. Inhibition of [(3)H]-NMHA binding by histamine and the H(3)R agonist immepip fit better to a two-site model, whereas for the H(3)R antagonist clobenpropit the best fit was to the one-site model. GTPgammaS (30 microM) decreased [(3)H]-NMHA binding by 55+/-4% and made the histamine inhibition fit better to the one-site model. Immepip (30 nM) induced a modest, but significant increase (113+/-2% of basal) in [(35)S]-GTPgammaS binding to synaptosomal membranes, an effect prevented by clobenpropit (1 microM) and by pre-treatment with pertussis toxin. In thalamus synaptosomes depolarisation-induced, Ca(2+)-dependent glutamate release was inhibited by histamine (1 microM, 25+/-4% inhibition) and immepip (30 nM, 38+/-5% reduction). These effects were reversed by clobenpropit (1microM). Conversely, immepip (up to 1 microM) had no effect on depolarisation-evoked [(3)H]-GABA release. Extracellular synaptic responses were recorded in the thalamus ventrobasal complex by stimulating corticothalamic afferents. H(3)R activation reduced by 38+/-7% the glutamate receptor-mediated field potentials (FPs), but increased the FP2/FP1 ratio (from 0.86+/-0.03 to 1.38+/-0.05) in a paired-pulse paradigm. Taken together, our results confirm the presence of H(3)Rs on thalamic nerve terminals and show that their activation modulates pre-synaptically glutamatergic, but not GABAergic neurotransmission.

  4. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats

    PubMed Central

    Das, Sujan C.; Yamamoto, Bryan K.; Hristov, Alexandar M.; Sari, Youssef

    2015-01-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol abuse. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1. PMID:26002627

  5. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  6. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    SciTech Connect

    Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj; Park, Ki Sup; Hong, Sung Hwa; Suh, Myung-Whan; Kim, Myeung Ju; Ahn, Seung Cheol

    2011-02-11

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltage clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.

  7. Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: Involvement of nitric oxide.

    PubMed

    Watts, Jo; Fowler, Leslie; Whitton, Peter S; Pearce, Brian

    2005-05-30

    Using in vivo microdialysis, we have monitored the release of three amino acids (arginine, glutamate and glutamine) in the hippocampus of freely moving rats in response to various drugs. In response to N-methyl-d-aspartate (NMDA) infusion, extracellular glutamate was increased, glutamine was decreased and arginine remained unchanged. By contrast, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) elicited an increase in arginine release but had no effect on either glutamate or glutamine. When S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was infused into the hippocampus, an increase in glutamate, a decrease in glutamine and no change in arginine were recorded. The effect of SNAP on extracellular glutamine levels was reversed by prior infusion of the guanylate cyclase inhibitor oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), however its effect on glutamate release was unchanged. Interestingly, SNAP was found to promote the release of arginine in the presence of ODQ. We also assessed the effect of two nitric oxide synthase inhibitors, N-nitro-l-arginine methylester (l-NAME) and 7-nitroindazole (7-NI), on the release of these amino acids. l-NAME was found to increase arginine and glutamate levels but decrease those of glutamine. In contrast, 7-NI reduced the release of all three amino acids. The results presented here confirm some but not all of the findings previously obtained using in vitro preparations. In addition, they suggest that complex relationships exist between the release of these amino acids, and that endogenous NO plays an important role in regulating their release.

  8. Effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male, alcohol-preferring rats.

    PubMed

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef

    2015-06-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior.

  9. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  10. Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging.

    PubMed

    Simonyi, Agnes; Ngomba, Richard T; Storto, Marianna; Catania, Maria V; Miller, Laura A; Youngs, Brian; DiGiorgi-Gerevini, Valeria; Nicoletti, Ferdinando; Sun, Grace Y

    2005-05-10

    Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age. PMID:15862522

  11. Electron microscope studies of glutamic oxalacetic transaminase in rat liver cell.

    PubMed

    Lee, S H; Torack, R M

    1968-12-01

    Liver tissue of the rat, fixed in glutaraldehyde and formaldehyde, was incubated in a medium which consisted of 20 mML-aspartic acid, 2 mM alpha-ketoglutaric acid, 50 mM imidazole and 6 mM lead nitrate at pH 7.2-7.4. The electron-opaque precipitates, due to glutamic oxalacetic transaminase activity in liver cells, were found to be localized to the cristae and surface membranes of the mitochondria, the limiting membrane of the microbodies, and the nuclear membrane. Sucrose storage and trauma resulted in altered morphology and diminished final product intensity in mitochondria, but the microbody enzyme activity disappeared completely under these conditions. These distinctive responses of enzymatic activity are considered to indicate a difference in either the enzyme protein or its membrane attachment to these two sites. The use of a buffered dehydrating ethanol series to prepare tissue blocks for electron microscopy appeared to result in more precise intracellular localization of enzymatic reaction product.

  12. Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex.

    PubMed

    Chan, Christopher Y; Sun, Herless S; Shah, Sanket M; Agovic, Mervan S; Friedman, Eitan; Banerjee, Shailesh P

    2014-04-01

    Taurine is an endogenous brain substance with robust neuromodulatory and possible neuroprotective properties. Though other mechanisms of action have been reported, its interaction with the NMDA (N-methyl-D-aspartic acid) receptor is undocumented. We investigated taurine's interaction with the NMDA receptor using electrophysiological and receptor binding approaches. The effects of taurine on field potential responses in layer-5 of prelimbic cortex in rat brain slices evoked by single-pulse electrical stimulation of ventral medial cortex were determined. Picrotoxin (80 µM) was present in all control and drug solutions to block the Cl(-) channels associated with the GABA-, taurine-, and strychnine sensitive glycine- receptors. A typical response consisted of an NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]-quinoxaline-7-sulfonamide)-sensitive negative wave (N1) followed by a positive wave (P1) and a broad negativity (N2), both sensitive to dl-AP5 (dl-2-amino-5-phosphonopentanoic acid) inhibition. Taurine exerted a 41.5 ± 8.3% (n = 9) voltage reduction within the late phase of N2. This taurine action was prevented by 100 µM AP5, but not by 10 µM nifedipine, supporting a direct modulation of NMDA receptor function by taurine, without requiring the involvement of the L-type Ca(2+) channel. Taurine did not alter specific [(3)H] MK-801 binding to rat cortical membranes in the presence of glycine or glutamate; but inhibited spermine-potentiated specific [(3)H] MK-801 binding to NMDA receptors by 15-20% in the presence of glycine. In addition, taurine reduced the apparent affinity of the NMDA receptor for glycine (in the presence of spermine) by 10-fold. These results show that taurine interacts directly with the NMDA receptor by multiple mechanisms.

  13. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    SciTech Connect

    Klin, Yael; Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram; Teichberg, Vivian I.

    2010-09-03

    Research highlights: {yields} Blood glutamate has a half-life time of 2-3 min. {yields} Blood glutamate is submitted to rapid decarboxylation. {yields} Blood glutamate and its metabolites are mainly absorbed in skeletal muscle and liver. {yields} The skeletal muscle and liver are now targets for potential drugs affording brain neuroprotection. -- Abstract: Excess L-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either L-[1-{sup 14}C] Glutamic acid (L-[1-{sup 14}C] Glu), L-[G-{sup 3}H] Glutamic acid (L-[G-{sup 3}H] Glu) or D-[2,3-{sup 3}H] Aspartic acid (D-[2,3-{sup 3}H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with L-[1-{sup 14}C] Glu and L-[G-{sup 3}H] Glu was faster than that associated with glutamate non-metabolized analog, D-[2,3-{sup 3}H] Asp. L-[1-{sup 14}C] Glu was subjected in blood to a rapid decarboxylation with the loss of {sup 14}CO{sub 2}. The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total L-[U-{sup 14}C] Glu or D-[2,3-{sup 3}H] Asp radioactivity capture. L-[U-{sup 14}C] Glu and D-[2,3-{sup 3}H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues

  14. Expression of Vesicular Glutamate Transporters VGLUT1 and VGLUT2 in the Rat Dental Pulp and Trigeminal Ganglion following Inflammation

    PubMed Central

    Hong, Jae Hyun; Kim, Yun Sook; Choi, So Young; Kim, Tae Heon; Cho, Yi Sul; Bae, Yong Chul

    2014-01-01

    Background There is increasing evidence that peripheral glutamate signaling mechanism is involved in the nociceptive transmission during pathological conditions. However, little is known about the glutamate signaling mechanism and related specific type of vesicular glutamate transporter (VGLUT) in the dental pulp following inflammation. To address this issue, we investigated expression and protein levels of VGLUT1 and VGLUT2 in the dental pulp and trigeminal ganglion (TG) following complete Freund’s adjuvant (CFA) application to the rat dental pulp by light microscopic immunohistochemistry and Western blot analysis. Results The density of VGLUT2− immunopositive (+) axons in the dental pulp and the number of VGLUT2+ soma in the TG increased significantly in the CFA-treated group, compared to control group. The protein levels of VGLUT2 in the dental pulp and TG were also significantly higher in the CFA-treated group than control group by Western blot analysis. The density of VGLUT1+ axons in the dental pulp and soma in the TG remained unchanged in the CFA-treated group. Conclusions These findings suggest that glutamate signaling that is mediated by VGLUT2 in the pulpal axons may be enhanced in the inflamed dental pulp, which may contribute to pulpal axon sensitization leading to hyperalgesia following inflammation. PMID:25290694

  15. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors.

    PubMed

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-08-21

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca(2+), resulting from Ca(2+) influxes through calcium-permeable AMPA receptors, voltage-gated Ca(2+) channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca(2+) influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca(2+) and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.

  16. The influence of ionotropic and metabotropic glutamate receptor ligands on anxiety-like effect of amphetamine withdrawal in rats.

    PubMed

    Koltunowska, D; Gibula-Bruzda, E; Kotlinska, J H

    2013-08-01

    Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy. PMID:23623810

  17. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment.

    PubMed

    Krawczyk, A; Jaworska-Adamu, J; Rycerz, K

    2015-01-01

    High concentration of glutamate (Glu) is excitotoxic for nervous system structures. This may lead to glial reactivity ie. increased expression of glial fibrillary acidic protein (GFAP) and S100β protein, and also to hypertrophy and proliferation of cells which are determined by the presence of Ki-67 antigen. The aim of the study was to analyse the immunoreactivity of the GFAP, S100β and Ki-67 proteins in astrocytes of hippocampal CA1 region in young rats after administration of monosodium glutamate (MSG) at two doses: 2 g/kg b.w. (I group) and 4 g/kg b.w. (II group). In rats from I and II group morphologically altered astrocytes with the GFAP expression were observed in the SLM of the hippocampal CA1 region. The cells had eccentrically located nuclei and on the opposite site of the nuclei there were single or double, long and weakly branched processes. Moreover, in the SLM the increase of the number of GFAP and S100β immunopositive astrocytes and nuclei with Ki-67 expression, in contrary to control individuals, was observed. These results suggest the increased expression of the proteins in early reactions or hyperplasia which, together with cell hypertrophy, indicate late reactivity of astroglia in response to glutamate noxious effect. PMID:26812818

  18. A toxic extract of the marine phytoflagellate Prymnesium parvum induces calcium-dependent release of glutamate from rat brain synaptosomes.

    PubMed

    Mariussen, Espen; Nelson, George Nicholas; Fonnum, Frode

    2005-01-01

    Blooms of the marine phytoflagellate Prymnesium parvum produced mass mortality of fish in Norway and many other parts of the world. The effects of a purified algae extract of P. parvum on transmitter release from rat brain synaptosomes were studied to characterize its toxic action. Synaptosomes are detached nerve terminals and represent a simple system that has retained the machinery for uptake, synthesis, storage, and release of neurotransmitters. A crude methanol extract of P. parvum was purified by reverse-phase column for fast protein liquid chromatography (FPLC). The purified extract stimulated Ca2+-dependent spontaneous release of glutamate in a concentration-dependent manner. The release was increased by addition of extracellular Ca2+. The release of glutamate was suppressed by the Ca2+-channel blockers flunarizine (10 microM), diltiazem (10 microM), and verapamil (10 microM). The stimulation of release of glutamate from rat brain synaptosomes induced by the toxin may be due to an ionophorelike property of the algae extract such as previously reported for the potent algal toxin maitotoxin. At high concentrations the toxin primarily acts as a powerful lytic agent. PMID:15739805

  19. The Function of the Glutamate-Nitric Oxide-cGMP Pathway in Brain in Vivo and Learning Ability Decrease in Parallel in Mature Compared with Young Rats

    ERIC Educational Resources Information Center

    Piedrafita, Blanca; Cauli, Omar; Montoliu, Carmina; Felipo, Vicente

    2007-01-01

    Aging is associated with cognitive impairment, but the underlying mechanisms remain unclear. We have recently reported that the ability of rats to learn a Y-maze conditional discrimination task depends on the function of the glutamate-nitric oxide-cGMP pathway in brain. The aims of the present work were to assess whether the ability of rats to…

  20. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats

    PubMed Central

    Garrido-Sanabria, Emilio R.; Otalora, Luis F. Pacheco; Arshadmansab, Massoud F.; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris

    2008-01-01

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent “latent” and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  1. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats.

    PubMed

    Garrido-Sanabria, Emilio R; Otalora, Luis F Pacheco; Arshadmansab, Massoud F; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris S

    2008-11-13

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24 h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent "latent" and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  2. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  3. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine.

    PubMed Central

    Benveniste, M; Mayer, M L

    1995-01-01

    1. N-methyl-D-aspartate (NMDA) receptor responses were recorded from rat hippocampal neurons grown in dissociated culture, using whole-cell, outside-out and nucleated patch recording techniques. Rapid perfusion was used to study voltage-dependent block of NMDA receptors by 9-aminoacridine (9-AA) and by Mg2+. 2. Large amplitude tail currents were evoked on depolarization to +60 mV after application at -100 mV of NMDA and 9-AA but not NMDA and Mg2+. These tail currents were resistant to block by competitive antagonists to the glutamate and glycine binding sites on NMDA receptors and were not evoked when either NMDA or 9-AA were applied alone. 3. The decay kinetics of the tail current were dependent on agonist affinity; the time required for 80% charge transfer was 10-fold briefer for NMDA than for glutamate and 7-fold briefer for L-alanine than for glycine. These results are in accord with a sequential model for block of NMDA receptors by 9-AA, in which neither glutamate nor glycine can dissociate from the open-blocked state of the receptor. 4. Tail current responses had amplitudes 2- to 4-fold larger than responses to maximally effective concentrations of glutamate and glycine, indicating that NMDA receptor channels accumulate in the open-blocked state during co-application of agonist and 9-AA. The rise time and decay kinetics of tail current responses were faster than the response to brief applications of a maximally effective concentration of glutamate. Together, these results suggest that at +60 mV recovery from block by 9-AA occurs faster than the rate of opening of NMDA receptors in response to glutamate. 5. Our experiments suggest that open channel block of NMDA receptors can provide a novel approach for measurement of both open probability and the first latency distribution for ion channel opening in response to the binding of agonists, and provide additional evidence suggesting that the delayed opening of NMDA receptor channels underlies slow activation and

  4. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats.

    PubMed

    Konradsson-Geuken, Asa; Gash, Clelland R; Alexander, Kathleen; Pomerleau, Francois; Huettl, Peter; Gerhardt, Greg A; Bruno, John P

    2009-12-01

    These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the alpha 7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intracortical infusions of the nonselective nicotinic agonist nicotine (12.0 mM, 1.0 microg/0.4 microl) or the selective alpha 7 agonist choline (2.0 mM/0.4 microl). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pretreated with the alpha 7 antagonist, alpha-bungarotoxin (alpha-BGT, 10 microM), or kynurenine (10 microM) the precursor of the astrocyte-derived, negative allosteric alpha 7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 +/- 0.6 microM) that were cleared to baseline levels in 493 +/- 80 seconds. Pretreatment with alpha-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 +/- 0.9 microM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 +/- 6 seconds) and pretreatment with alpha-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both alpha 7- and non-alpha 7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on alpha 7 full and partial agonists as therapeutic agents in the treatment of cortically mediated cognitive deficits in schizophrenia.

  5. Role of glutamate receptors in the nucleus accumbens on behavioural responses to novel conflictive and non-conflictive environments in the rat.

    PubMed

    Alvarez, E O; Ruarte, M B

    2001-09-14

    The possible role of glutamic acid locally applied into the nucleus accumbens on exploratory behaviours measured in 'conflictive' and 'non-conflictive' environments was studied in adult male rats. As a model of conflictive environment, the elevated asymmetric-plus maze (APM) was used. As a model of a non-conflictive environment, a modified holeboard enriched with an object (OVM) was used. In order to characterize the possible glutamic acid receptors involved, the following antagonists were also used: AP3 (antagonist of the metabotropic glutamic acid receptor), AP7 (antagonist of NMDA glutamic acid receptor, and CNQX (antagonists of kainate/AMPA glutamic acid receptor). Results showed that injection of glutamic acid into the nucleus accumbens induced in the APM a decrease of exploration and an increase of the permanency score (non-exploratory behaviours) of the 'High and Low wall' arm. However, in the 'Two High Walls' arm, glutamic acid decreased permanency. In the OVM, no major changes in the motor activity were observed with glutamic acid. Nevertheless, the vertical activity (an index of rearing) and head-dipping were inhibited by the amino-acid treatment. In the APM, the decrease of exploration induced by glutamic acid was blocked by all three receptor antagonists. In the non-exploratory behaviours, the facilitatory effect observed in the 'High and Low walls' arm was blocked only by AP7 and CNQX. The inhibitory action of glutamic acid on the permanency score in the 'Two High Walls' arm was not blocked by the receptors antagonists. In the OVM, AP7 and CNQX were effective in blocking the inhibition of glutamic acid on the vertical activity, but in head-dipping, only AP3 and CNQX were able to block the effect of the amino acid on this behaviour. In conclusion, the present results are compatible with the concept that glutamatergic input fibres to the nucleus accumbens modulate the expression of exploratory behaviour induced by novelty in conflictive and non

  6. Thiopental sodium preserves the responsiveness to glutamate but not acetylcholine in rat primary cultured neurons exposed to hypoxia.

    PubMed

    Morita, Tomotaka; Shibuta, Satoshi; Kosaka, Jun; Fujino, Yuji

    2016-06-15

    Although many in vitro studies demonstrated that thiopental sodium (TPS) is a promising neuroprotective agent, clinical attempts to use TPS showed mainly unsatisfactory results. We investigated the neuroprotective effects of TPS against hypoxic insults (HI), and the responses of the neurons to l-glutamate and acetylcholine application. Neurons prepared from E17 Wistar rats were used after 2weeks in culture. The neurons were exposed to 12-h HI with or without TPS. HI-induced neurotoxicity was evaluated morphologically. Moreover, we investigated the dynamics of the free intracellular calcium ([Ca(2+)]i) in the surviving neurons after HI with or without TPS pretreatment following the application of neurotransmitters. TPS was neuroprotective against HI according to the morphological examinations (0.73±0.06 vs. 0.52±0.07, P=0.04). While the response to l-glutamate was maintained (0.89±0.08 vs. 1.02±0.09, P=0.60), the [Ca(2+)]i response to acetylcholine was notably impaired (0.59±0.02 vs. 0.94±0.04, P<0.01). Though TPS to cortical cultures was neuroprotective against HI morphologically, the [Ca(2+)]i response not to l-glutamate but to acetylcholine was impaired. This may partially explain the inconsistent results regarding the neuroprotective effects of TPS between experimental studies and clinical settings. PMID:27206889

  7. Vesicular Glutamate Transporter 2 Expression in the Rat Pineal Gland: Detailed Analysis of Expression Pattern and Regulatory Mechanism

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachine; Hisano, Setsuji

    Melatonin, a hormone secreted by the pineal gland, is closely related physiologically to circadian rhythm, sleep and reproduction, and also psychiatrically to mood disorders in humans. Under circadian control, melatonin secretion is modulated via nocturnal autonomic (adrenergic) stimulation to the gland, which expresses vesicular glutamate transporter (VGLUT) 1, VGLUT2 and a VGLUT1 splice variant (VGLUT1v), glutamatergic markers. Expression of VGLUT2 gene and protein in the intact gland has been reported to exhibit a rhythmic change during a day. To study VGLUT2 expression is under adrenergic control, we here performed an in vitro experiment using dispersed pineal cells of rats. Stimulation of either β-adrenergic receptor or cAMP production to the pineal cells was shown to increase mRNA level of VGLUT2, but not VGLUT1 and VGLUT1v. Because an ability of glutamate to inhibit melatonin production was previously reported in the cultured gland, it is likely that pineal VGLUT2 transports glutamate engaged in the inhibition of melatonin production.

  8. Lanthanum enhances glutamate-nitric oxide-3',5'-cyclic guanosine monophosphate pathway in the hippocampus of rats.

    PubMed

    Du, Yanqiu; Yang, Jinghua; Yan, Bo; Bai, Yan; Zhang, Lifeng; Zheng, Linlin; Cai, Yuan

    2016-10-01

    Lanthanum (La) appears to impair learning and memory and increase the toxicity of excitatory amino acids in the central nervous system. The mechanism underlying excitotoxicity induced by La is still unclear. The purpose of this study was to investigate the hippocampal impairment of La exposure and possible mechanism involving the glutamate-nitric oxide (NO)-3'-5'-cyclic guanosine monophosphate (cGMP) pathway. In this study, lactating rats were exposed to 0, 0.25, 0.50, and 1.0% lanthanum chloride (LaCl3) in drinking water, respectively. Their offsprings were exposed to LaCl3 by parental lactation and then administrated with 0, 0.25, 0.50, and 1.0% LaCl3 in drinking water for 1 month. The results showed that La exposure impaired the neuronal ultrastructure and significantly increased the glutamate level, intracellular calcium ion concentrations, and NR1 and NR2B expression in the hippocampi. La exposure significantly enhanced messenger RNA expression and activity levels of inducible NO synthase and increased NO and cGMP levels in the hippocampi in a dose-dependent manner. These results indicate that the mechanism underlying excitotoxicity induced by La is possibly due to alterations of the glutamate-NO-cGMP signaling pathway in the hippocampus. The study provides new findings that may help prevent and improve treatments for La-induced neurotoxicity.

  9. Baicalein, a Constituent of Scutellaria baicalensis, Reduces Glutamate Release and Protects Neuronal Cell Against Kainic Acid-Induced Excitotoxicity in Rats.

    PubMed

    Chang, Yi; Lu, Cheng Wei; Lin, Tzu Yu; Huang, Shu Kuei; Wang, Su Jane

    2016-01-01

    Interest in the health benefits of flavonoids, particularly their effects on neurodegenerative disease, is increasing. This study evaluated the role of baicalein, a flavonoid compound isolated from the traditional Chinese medicine Scutellaria baicalensis, in glutamate release and glutamate neurotoxicity in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), baicalein inhibits depolarization-induced glutamate release, and this phenomenon is prevented by chelating the extracellular Ca[Formula: see text] ions and blocking presynaptic Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel activity. In slice preparations, whole cell patch-clamp experiments revealed that baicalein reduced the frequency of miniature excitatory postsynaptic currents, without affecting their amplitude. In a kainic acid rat model, intraperitoneally administering baicalein to rats before the kainic acid intraperitoneal injection substantially attenuated kainic acid-induced neuronal cell death, c-Fos expression, and the activation of the mammalian target of rapamycin in the hippocampus. This study is the first to demonstrate that the natural compound baicalein inhibits glutamate release from hippocampal nerve terminals, and executes a protective action against kainic acid-induced excitotoxicity in vivo. The findings enhance the understanding of baicalein's action in the brain, and suggest that this natural compound is valuable for treating brain disorders related to glutamate excitotoxicity. PMID:27430911

  10. Amperometric Measurement of Glutamate Release Modulation by Gabapentin and Pregabalin in Rat Neocortical Slices: Role of Voltage-Sensitive Ca2+ α2δ-1 Subunit

    PubMed Central

    Dooley, David J.; Pomerleau, François; Huettl, Peter; Gerhardt, Greg A.

    2011-01-01

    Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α2δ subunit of voltage-sensitive Ca2+ channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K+-evoked glutamate release without affecting basal glutamate levels. PGB (0.1–100 μM) exhibited concentration-dependent inhibition of K+-evoked glutamate release with an IC50 value of 5.3 μM. R-(−)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K+-evoked glutamate release. The decrease of K+-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α2δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α2δ-1 (subtype) subunit of VSCC, PGB did not affect K+-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α2δ-1 subunit of VSCC appears to mediate this effect. PMID:21464332

  11. Haloperidol abolished glutamate release evoked by photic stimulation of the visual cortex in rats.

    PubMed

    Reyes, Elbert; Rossell, Sergio; Paredes, Daniel; Rada, Pedro; Tucci, Sonia; Gonzalez, Luis E; Hernández, Luis

    2002-07-26

    There is evidence that systemic administration of haloperidol, a dopamine receptor blocker, attenuates visual cortex evoked potentials. However, there is scarce information on cortical neurochemical changes associated with haloperidol effects on visual function. The present experiment was designed to investigate: (1) the effect of photic stimulation on glutamate release in the visual cortex; and (2) whether systemic administration of haloperidol would affect those neurochemical changes. Microdialysis probes were implanted in the occipital cortex. Glutamate levels were measured every 30 s using capillary zone electrophoresis. Extracellular glutamate levels increased to about 282% 30 s after photic stimulation started and remain elevated for the 3 min that the photic stimulation lasted. Haloperidol (1.5 and 5 mg/kg, i.p.) completely suppressed the increased of glutamate efflux during photic stimulation. Finally, it was also found that the highest dose of haloperidol (5 mg/kg) did not change glutamate basal levels. The results are discussed with reference to possible dopaminergic actions on the visual system function.

  12. Lysine and Arginine Reduce the Effects of Cerebral Ischemic Insults and Inhibit Glutamate-Induced Neuronal Activity in Rats

    PubMed Central

    Kondoh, Takashi; Kameishi, Makiko; Mallick, Hruda Nanda; Ono, Taketoshi; Torii, Kunio

    2010-01-01

    Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid), arginine, and their combination on ischemic insults (cerebral edema and infarction) and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed 2 days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg), arginine (0.6 g/kg), or their combined administration (0.6 g/kg each). Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg), were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal) applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction), especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects. PMID:20589237

  13. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats.

    PubMed

    Rosa, Suzan G; Quines, Caroline B; da Rocha, Juliana T; Bortolatto, Cristiani F; Duarte, Thiago; Nogueira, Cristina W

    2015-07-01

    Monosodium glutamate (MSG) is a neuroexcitatory amino acid commonly used as flavoring of foods. MSG neonatal administration to animals leads to behavioral and physiological disorders in adulthood, including increased pain sensitivity. This study aimed to investigate the effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, on nociception induced by MSG. Newborn Wistar rats received 10 subcutaneous injections of MSG at a dose of 4.0g/kg or saline (once daily). At the 60th day of life, the rats were daily treated with (PhSe)2 (1mg/kg) or vehicle (canola oil) by the intragastric route for 7 days. The behavioral tests (locomotor activity, hot plate, tail-immersion and mechanical allodynia) were carried out. Ex vivo assays were performed in samples of hippocampus to determine Na(+), K(+)-ATPase and Ca(2+)-ATPase activities, cytokine levels and [(3)H]glutamate uptake. The results demonstrated that MSG increased nociception in the hot plate test and in the mechanical allodynia stimulated by Von-Frey hair but did not alter the tail immersion test. (PhSe)2 reversed all nociceptive behaviors altered by MSG. MSG caused an increase in Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and in pro-inflammatory cytokine levels and a decrease in the anti-inflammatory cytokine and in the [(3)H]glutamate uptake. (PhSe)2 was effective in reversing all alterations caused by MSG. The results indicate that (PhSe)2 had a potential antinociceptive and anti-inflammatory action in the MSG model.

  14. Thalamic Glutamatergic Afferents into the Rat Basolateral Amygdala Exhibit Increased Presynaptic Glutamate Function Following Withdrawal from Chronic Intermittent Ethanol

    PubMed Central

    Christian, Daniel T; Alexander, Nancy J; Diaz, Marvin R; McCool, Brian A

    2012-01-01

    Amygdala glutamatergic neurotransmission regulates withdrawal induced anxiety-like behaviors following chronic ethanol exposure. The lateral/basolateral amygdala receives multiple glutamatergic projections that contribute to overall amygdala function. Our lab has previously shown that rat cortical (external capsule) afferents express postsynaptic alterations during chronic intermittent ethanol exposure and withdrawal. However, thalamic (internal capsule) afferents also provide crucial glutamatergic input during behavioral conditioning, and they have not been studied in the context of chronic drug exposure. We report here that these thalamic inputs express altered presynaptic function during withdrawal from chronic ethanol exposure. This is characterized by enhanced release probability, as exemplified by altered paired-pulse ratios and decreased failure rates of unitary events, and increased concentrations of synaptic glutamate. Quantal analysis further implicates a withdrawal-dependent enhancement of the readily-releasable pool of vesicles as a probable mechanism. These functional alterations are accompanied by increased expression of vesicle associated protein markers. These data demonstrate that chronic ethanol modulation of glutamate neurotransmission in the rat lateral/basolateral amygdala is afferent-specific. Further, presynaptic regulation of lateral/basolateral amygdala thalamic inputs by chronic ethanol may be a novel neurobiological mechanism contributing to the increased anxiety-like behaviors that characterize withdrawal. PMID:22982568

  15. Glutamate Synaptic Inputs to Ventral Tegmental Area Neurons in the Rat Derive Primarily from Subcortical Sources

    PubMed Central

    Omelchenko, Natalia; Sesack, Susan R.

    2007-01-01

    Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporters VGlut1 and VGlut2 to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over

  16. Glutamic acid and histamine-sensitive neurons in the ventral hippocampus and the basolateral amygdala of the rat: functional interaction on memory and learning processes.

    PubMed

    Alvarez, Edgardo O; Ruarte, Marcela B

    2004-07-01

    The possibility of a functional interaction between the amygdala and the ventral hippocampus during learning of a conditioned avoidance response when both brain structures are chemically stimulated with glutamic acid and/or histamine receptor antagonists (pyrilamine, H1-histamine antagonist and ranitidine, H2-histamine receptor antagonist) was studied in rats. Adult male rats were stereotaxically implanted with guide cannulae into the basolateral amygdala (A) and the ventral hippocampus (H). Seventy-two hours after the implant, rats were microinjected with 1 microl of saline solution, 10 nmol glutamic acid or 45 nmol of histamine receptor antagonists in several brain structures combinations. These combinations were: HsalAsal; HmsgAmsg; HmsgAsal; HsalAmsg; HpyrAmsg; HmsgApyr; HranAmsg and HmsgAran. Five minutes after the injection, rats were subjected to a learning task which consisted to avoid an electric shock applied to the animal's feet when an ultrasonic tone of 40 kHz is on for 30 s. Results showed that the simultaneous application of glutamic acid into hippocampus and amygdala interfered with the latency to escape and memory consolidation process. Stimulation with glutamic acid alone into the hippocampus or into the amygdala (HsalAmsg and HmsgAsal groups) interfered slightly with latency but impaired the consolidation process. Blocking the H1-histamine receptors of the amygdala affected slightly latency and efficiency of learning, meanwhile the blocking of H2-histamine receptors interfered with both parameters. Blocking H1- and H2-histamine receptors of the hippocampus significantly impaired latency and efficiency of learning of rats stimulated with glutamic acid into the amygdala. In conclusion, the experimental evidence suggests that hippocampal glutamic acid-neurons functionally interact with histamine-neurons in the basolateral amygdala to modulate memory and learning process. PMID:15196788

  17. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-12-01

    The neuroprotective effects of Paulownia tomentosa against glutamate-induced neurotoxicity were studied in primary cultured rat cortical cells. It was found that the aqueous extract of this medicinal plant significantly attenuated glutamate-induced toxicity. In order to clarify the mechanism(s) underlying this neuroprotective effect, the active fractions and components were isolated and identified. Five compounds were isolated as the methanol extracts from air-dried flowers of P. tomentosa. Isoatriplicolide tiglate exhibited significant neuroprotective activity against glutamate-induced toxicity at concentrations ranging from 1 μM to 10 μM, and exhibited cell viability of approximately 43-78%. Therefore, the neuroprotective effect of P. tomentosa might be due to the inhibition of glutamate-induced toxicity by the sesquiterpene lactone derivative it contains. PMID:20683844

  18. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats.

    PubMed

    Shivasharan, B D; Nagakannan, P; Thippeswamy, B S; Veerapur, V P

    2013-07-01

    Monosodium glutamate (MSG) is a popular flavour enhancer used in food industries; however, excess MSG is neurotoxic. Oxidative stress is well documented in MSG induced neurotoxicity. The compounds having antioxidant and anti-inflammatory properties reportedly possess beneficial effects against various neurotoxic insults. Calendula officinalis Linn. flower extract (COE) is known for its potent antioxidant and anti-inflammatory activities. Hence, this present study has been designed to evaluate the neuroprotective effect of COE on MSG-induced neurotoxicity in rats. Adult Wistar rats were administered systemically for 7 days with MSG and after one h of MSG injection, rats were treated with COE (100 and 200 mg/kg) orally. At the end the treatment period, animals were assessed for locomotor activity and were sacrificed; brains were isolated for estimation of LPO, GSH, CAT, TT, GST, Nitrite and histopathological studies. MSG caused a significant alteration in animal behavior, oxidative defense (raised levels of LPO, nitrite concentration, depletion of antioxidant levels) and hippocampal neuronal histology. Treatment with COE significantly attenuated behavioral alterations, oxidative stress, and hippocampal damage in MSG-treated animals. Hence, this study demonstrates that COE protects against MSG-induced neurotoxicity in rats. The antioxidant and anti-inflammatory properties of COE may be responsible for its observed neuroprotective action. PMID:24426226

  19. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    PubMed

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  20. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats.

    PubMed

    Shivasharan, B D; Nagakannan, P; Thippeswamy, B S; Veerapur, V P

    2013-07-01

    Monosodium glutamate (MSG) is a popular flavour enhancer used in food industries; however, excess MSG is neurotoxic. Oxidative stress is well documented in MSG induced neurotoxicity. The compounds having antioxidant and anti-inflammatory properties reportedly possess beneficial effects against various neurotoxic insults. Calendula officinalis Linn. flower extract (COE) is known for its potent antioxidant and anti-inflammatory activities. Hence, this present study has been designed to evaluate the neuroprotective effect of COE on MSG-induced neurotoxicity in rats. Adult Wistar rats were administered systemically for 7 days with MSG and after one h of MSG injection, rats were treated with COE (100 and 200 mg/kg) orally. At the end the treatment period, animals were assessed for locomotor activity and were sacrificed; brains were isolated for estimation of LPO, GSH, CAT, TT, GST, Nitrite and histopathological studies. MSG caused a significant alteration in animal behavior, oxidative defense (raised levels of LPO, nitrite concentration, depletion of antioxidant levels) and hippocampal neuronal histology. Treatment with COE significantly attenuated behavioral alterations, oxidative stress, and hippocampal damage in MSG-treated animals. Hence, this study demonstrates that COE protects against MSG-induced neurotoxicity in rats. The antioxidant and anti-inflammatory properties of COE may be responsible for its observed neuroprotective action.

  1. L-glutamate and glutamine improve haemodynamic function and restore myocardial glycogen content during postischaemic reperfusion: A radioactive tracer study in the rat isolated heart.

    PubMed

    Støttrup, Nicolaj B; Kristiansen, Steen B; Løfgren, Bo; Hansen, Bo Falck; Kimose, Hans-Henrik; Bøtker, Hans Erik; Nielsen, Torsten Toftegaard

    2006-11-01

    1. L-Glutamate and glutamine have been suggested to have cardioprotective effects. However, the issue is controversial and the metabolic mechanisms underlying a beneficial effect are not well understood. 2. In the present study we investigated the effects of L-glutamate and glutamine on haemodynamic recovery, the rate of de novo glycogen synthesis and myocardial glucose uptake during postischaemic reperfusion. 3. Hearts from male Wistar rats (250-300 g) were divided into three groups as follows: (i) control (n = 12); (ii) L-glutamate (n = 12); and (iii) glutamine (n = 12). Hearts were mounted in a Langendorff preparation and perfused with oxygenated Krebs'-Henseleit solution at 80 mmHg and 37C. Global ischaemia for 20 min was followed by 15 min reperfusion, during which L-glutamate (50 mmol/L) or glutamine (20 mmol/L) were administered. Left ventricular developed pressure (LVDP), de novo synthesis of glycogen using [14C]-glucose and myocardial glucose uptake using D-[2-3H]-glucose were measured. 4. L-Glutamate and glutamine increased postischaemic LVDP (P < 0.01 vs control hearts for both). L-Glutamate and glutamine increased de novo glycogen synthesis by 78% (P < 0.001) and 55% (P < 0.01), respectively. At the end of reperfusion, total myocardial glycogen content was increased by both L-glutamate and glutamine (5.7 +/- 0.3 and 6.2 +/- 0.7 micromol/g wet weight, respectively; P < 0.05 and 0.01, respectively) compared with that in control hearts (3.6 +/- 0.4 micromol/g wet weight). Neither L-glutamate nor glutamine affected myocardial glucose uptake during reperfusion. 5. Improved postischaemic haemodynamic recovery after L-glutamate and glutamine supplementation during reperfusion is associated with increased de novo glycogen synthesis, suggesting a favourable modulation of intracellular myocardial carbohydrate metabolism.

  2. [Effects of ionotropic glutamate receptor channel blockers on the development of audiogenic seizures in Krushinski-Molodkina rats].

    PubMed

    Lukomskaia, N Ia; Vataev, S I; Zhabko, E P; Magazanik, L G

    2012-04-01

    The action of noncompetitive blockers of glutamate receptors has been investigated on Krushinski-Molodkina rats genetically-prone to audiogenic seizures. The selective blockers of NMDA receptor channels, memantine and IEM-1921, and their dicationic homologues, IEM-1925 and IEM-1754, capable of blocking in varying degrees both NMDA and Ca-permeable AMPA receptor channels, were studied. The drugs were injected intramuscularly to rats with the different time intervals (30 min, 1, 2 or 3 hours) before sound signal. The effects of the drugs on latent period of initial locomotor activity provoked by audio stimulation (8 kHz sine-wave tone, 90 dB volume), the appearance of clonic convulsions of different intensities, and, finally, tonic convulsions with limb and tail extension were evaluated. Within 30 min after injection IEM-1921 at a dose of 5 mg/kg, 33% of rats manifested a complete absence of convulsive reactions to sound, and in 59% of rats audiogenic seizures occured only in the form of motor excitation without a generalized clonic-tonic convulsions. Memantine at a dose of 5 mg/kg did not cause a complete blockade of seizures, but after 1 h of injection in 50% of the rats and after 2 h in 70% of rats a weakening of the audiogenic seizures to the level of motor excitation only was observed. After 3 hrs after administration of blockers its anticonvulsive action weakened significantly (p < 0.01). Dicationic blockers that block both NMDA and AMPA/kainate receptors, IEM-1925 (in doses of 0.001-20.0 mg/kg) and IEM-1754 (0.025-50.0 mg/kg), did not affect audiogenic clonic-tonic convulsive reactions. The involvement of activation of NMDA and calcium permeable AMPA/kainate receptors in the pathogenesis of audiogenic seizures is discussed.

  3. [Repressional effects of the glutamate antibodies on expression of Dffb gene in the brain of rats with experimental Alzheimer's disease].

    PubMed

    Kolobov, V V; Davydova, T V; Zakharova, I A; Gorbatov, V Iu; Fomina, V G

    2012-01-01

    The intranasal administration of glutamate antibodies in the dose of 300 microg/kg one hour after damage on the level of mRNA expression of Dffb gene which codes caspase-activated DNase which participates in intranucleosome fragmentation of genome DNA in apoptosis was investigated in experimental Alzheimer's disease induced by injection of neurotoxic fragment of beta-amyloid protein Abeta25-35 in Meynert basal magnocellular nuclei on rats. On the Day 3 after Abeta25-35 injection is observed significant decrease of the level of mRNA expression of Dffb gene in prefrontal cortex in 37%, and in hippocampus in 62% in the experiment group versus the control group. These differences were not found in the hypothalamus when comparing the experimental and control animals. It was suggested that repressive effect of glutamate antibodies on the level of mRNA expression of Dffb gene reflects stabilization of processes taking place in brain cells in experimental Alzheimer's disease, and in its turn the intensiveness of nerve and glial cells apoptotic death is decreased.

  4. The kinetic mechanism of the glutamate-aspartate carrier in rat intestinal brush-border membrane vesicles: the role of potassium.

    PubMed

    Scalera, V; Mola, M G; Prezioso, G

    2002-04-01

    The sodium dependent transport system for L-glutamate and L-aspartate localized in the apical part of rat enterocytes has previously been kinetically characterized (Prezioso, G., and Scalera, V. (1996). Biochim. Biophys. Acta 1279, 144-148). In this paper the mechanism by which the potassium cation specifically activates the L-glutamate-sodium cotransport process is investigated. Potassium has been found to act as an activator when it is present inside the membrane vesicles, while its presence outside is ineffective, and the effect is saturable. The kinetic parameters with respect to sodium and glutamate have been compared in the presence and in the absence of the activator. The results indicate that the ordered sodium-sodium glutamate mechanism is not altered by potassium, and that the activation is probably exerted on both the rate determining steps of the transport process. It is proposed that (1) a specific binding site for potassium is present on the inside hydrophilic part of the membrane carrier, (2) the binding of the effector accelerates the intramembrane rearrangement steps of both the disodium glutamate-carrier complex and the free carrier, (3) the affinity of the carrier is lowered with respect to sodium whereas it is increased for glutamate, and (4) K+ antiport is not performed by this carrier.

  5. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes.

    PubMed

    Gil, Yang Sook; Kim, Jong Hak; Kim, Chi Hyo; Han, Jong In; Zuo, Zhiyi; Baik, Hee Jung

    2015-09-01

    Gabapentin, a derivative of γ-aminobutyric acid (GABA), is used to treat epilepsy and neuropathic pain. The pharmacological mechanisms for gabapentin effects are not completely elucidated. We investigated the effect of gabapentin on the activity of excitatory amino acid transporter 3 (EAAT3) that can regulate extracellular glutamate concentrations. EAAT3 was expressed in Xenopus oocytes. Membrane currents were recorded after application of l-glutamate in the presence or absence of different concentrations of gabapentin (1-300μM) by using a two-electrode voltage clamp. To determine the effect of gabapentin on Vmax and Km of EAAT3 for l-glutamate, l-glutamate at 3-300μM was used. To study the effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) on gabapentin-induced changes in EAAT3 activity, oocytes were incubated with the PKC activator (Phorbol 12-myristate 13-acetate, PMA), the PKC inhibitors (chelerythrine or staurosporine), and the PI3K inhibitor wortmannin. Gabapentin decreased EAAT3 activity in a concentration-dependent manner and EAAT3 activity was significantly inhibited by 10-300μM gabapentin. Gabapentin significantly decreased Vmax without affecting Km. PMA increased EAAT3 activity; however, gabapentin attenuated the PMA-induced increase in EAAT3 activity. Pre-incubation of oocytes with chelerythrine, staurosporine, or wortmannin decreased basal EAAT3 activity, which was further reduced by gabapentin. We conclude that gabapentin decreases EAAT3 activity at clinically relevant and higher concentrations, in which PKC and PI3K may not be involved. The results suggest that EAAT3 might not be a target for the anticonvulsant action of gabapentin.

  6. Gabapentin loses efficacy over time after nerve injury in rats: role of glutamate transporter-1 in the locus coeruleus.

    PubMed

    Kimura, Masafumi; Eisenach, James C; Hayashida, Ken-Ichiro

    2016-09-01

    Despite being one of the first-choice analgesics for chronic neuropathic pain, gabapentin sometimes fails to provide analgesia, but the mechanisms for this lack of efficacy is unclear. Rats with nerve injury including L5-L6 spinal nerve ligation (SNL) respond uniformly and well to gabapentin, but many of these studies are performed within just a few weeks of injury, questioning their relevance to chronic neuropathic pain. In this study, intraperitoneal gabapentin showed a time-dependently reduction in antihypersensitivity after SNL, associated with downregulation of astroglial glutamate transporter-1 (GLT-1) in the locus coeruleus (LC). Consistently, SNL also time-dependently increased basal but masked gabapentin-induced noradrenergic neuronal activity in the LC. In rats 2 weeks after SNL, knock-down of GLT-1 in the LC reduced the antihypersensitivity effect of gabapentin. In rats 8 weeks after SNL, increasing GLT-1 expression by histone deacetylase inhibitor valproate restored the antihypersensitivity effect of gabapentin, associated with restored gabapentin-induced noradrenergic neuronal activity in the LC and subsequent spinal noradrenaline release. Knock-down of GLT-1 in the LC reversed the effect of valproate to restore gabapentin-induced antihypersensitivity. In addition, the antihypersensitivity effect of the intrathecal α2-adrenoceptor agonist clonidine also decreased with time after SNL injury. These results suggest that downregulation of GLT-1 in the LC and reduced spinal noradrenergic inhibition contribute to impaired analgesic efficacy from gabapentin in chronic neuropathic pain and that valproate can rescue this impaired efficacy.

  7. [Studying the neuroprotective effect of the novel glutamic acid derivative neiroglutam on focal cerebral ischemia in rats].

    PubMed

    Tiurenkov, I N; Kurkin, D V; Bakulin, D A; Volotova, E V

    2014-01-01

    We have studied the neuroprotective effect of the novel glutamic acid derivative neiroglutam on reversible focal cerebral ischemia in rats. The neuroprotective drug action was assessed by the ability to reduce the severity of neurological deficit (1, 2, 3, 5 and 7 days), forelimb fine-motor disorders (in the ladder test), hind limb motor activity (beam-walking test), and volume of the infarct zone upon 7-day pathologic exposure. It was found that the therapeutic administration of neiroglutam (26 mg/kg, i.p., for 7 days) reduces the volume of necrosis of cerebral tissues in case of focal brain ischemia in animals (on the average by 38%, (p < 0.05) and decreases the severity of motor disorders, which indicates the presence of neuroprotective effect of this compound. PMID:25365863

  8. Effects of glutamate and {alpha}2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats

    SciTech Connect

    Alam, Mesbah Danysz, Wojciech; Schmidt, Werner Juergen; Dekundy, Andrzej

    2009-10-15

    Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle instead of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.

  9. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.

  10. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate.

    PubMed

    Duszczyk-Budhathoki, Michalina; Olczak, Mieszko; Lehner, Malgorzata; Majewska, Maria Dorota

    2012-02-01

    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity. PMID:22015977

  11. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione.

    PubMed Central

    Elce, J S; Broxmeyer, B

    1976-01-01

    1. The hydrolytic and transfer reactions catalysed by rat kidney-gamma-glutamyltransferase (EC 2.3.2.2) were studied in vitro with substrates [U-14C]glutamic acid-labelled glutathione and methionine. Initial-velocity patterns, isotope-exchange and binding studies were consistent with a branched non-sequential mechanism in which a gamma-glutamyl-enzyme intermediate may react either with water (hydrolysis) or with methionine (gamma-glutamyl transfer). 2. The Michaelis constant for glutathione in hydrolysis was 13.9 +/- 1.4 mum, for glutathione in transfer it was 113 +/- 15 muM and for methionine as substrate it was 4.7 +/- 0.7 mM. At substrate concentrations in the ranges of their respective Michaelis constants, the rate of transfer was about ten times higher than that of hydrolysis, but at concentrations of methionine approximating to the physiological (64 muM in rat plasma) the transfer is negligible. 3. The enzyme is reported to lie on the luminal surface of the proximal straight kidney tubule. In this situation, if the kinetic results obtained with the detergent-solubilized enzyme are relevant to the behavior of the enzyme in vivo, it appears likely that the main function of renal gamma-glutamyltransferase is not in amino acid transport, but rather to hydrolyse glutathione in the renal filtrate. PMID:6004

  12. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    SciTech Connect

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. ); Wada, H.; Horio, Y. )

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  13. Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2009-11-01

    Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.

  14. Effect of different doses of monosodium glutamate on the thyroid follicular cells of adult male albino rats: a histological study

    PubMed Central

    Khalaf, Hanaa A; Arafat, Eetmad A

    2015-01-01

    Monosodium glutamate (MSG) is a major flavor enhancer used as a food additive. The present study investigates the effects of different doses of MSG on the morphometric and histological changes of the thyroid gland. 28 male albino rats were used. The rats were divided into four groups: group I control, group II, III and IV treated with MSG (0.25 g/kg, 3 g/kg, 6 g/kg daily for one month) respectively. The thyroid glands were dissected out and prepared for light and electron microscopic examination. Light microscopic examination of thyroid gland of group II revealed increase in follicular epithelial height. Groups III & IV showed decrease in the follicular diameter and irregularity in the shape of some follicles with discontinuity of basement membrane. Follicular hyperplasia was detected in some follicles with appearance of multiple pyknotic nuclei in follicular and interfollicular cells and multiple exfoliated cells in the colloid. In addition, areas of loss of follicular pattern were appeared in group IV. Immunohistochemical examination of BCL2 immunoexpression of the thyroid glands of groups III & IV reveals weak positive reaction in the follicular cells cytoplasm. Ultrathin sections examination of groups III & IV revealed follicular cells with irregular hyperchromatic nuclei, marked dilatation of rER and increased lysosomes with areas of short or lost apical microvilli. In addition, vacuolation of mitochondria was detected in group IV. The results displayed that MSG even at low doses is capable of producing alterations in the body weights and thyroid tissue function and histology. PMID:26884820

  15. Pegylation of poly(γ-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats

    PubMed Central

    Özcan, İpek; Segura-Sánchez, Freimar; Bouchemal, Kawthar; Sezak, Murat; Özer, Özgen; Güneri, Tamer; Ponchel, Gilles

    2010-01-01

    Poly(γ-benzyl-L-glutamate) (PBLG) derivatives are synthetic polypeptides for preparing nanoparticles with well controlled surface properties. The aim of this paper was to investigate the biodistribution of pegylated PBLG in rats. For this purpose, nanoparticles were prepared by a nanoprecipitation method using mixtures of different PBLG derivates, including a pegylated derivate to avoid mononuclear phagocyte system uptake. The morphology, size distribution, and surface charge of the nanoparticles were investigated as a function of the amount of polymer employed for the preparation. Moderately polydispersed nanoparticles (polydispersity index less than 0.2) were obtained. Their size increased with polymer concentration. The zeta potential values were negative whatever the formulations. The availability of polyethylene glycol chains on the nanoparticles’ surface was confirmed by measuring the decrease in bovine serum albumin adsorption. For in vivo distribution studies, pegylated and nonpegylated nanoparticles were prepared with polymer mixtures containing PBLG-fluorescein isothiocyanate and imaged by fluorescence microscopy to measure their accumulation in liver and spleen tissues of rats after intravenous administration. Injection of stealth formulations resulted in negligible fluorescence in liver and spleen compared with nonpegylated formulations, which suggests that these nanoparticles are promising candidates as a stealth-type long-circulating drug carrier system and could be useful for active targeting of drugs while reducing systemic side effects. PMID:21270961

  16. Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lu, Cheng Wei; Lin, Tzu Yu; Huang, Shu Kuei; Wang, Su Jane

    2016-01-01

    The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity. PMID:27347934

  17. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices.

    PubMed

    Batchelor, A M; Madge, D J; Garthwaite, J

    1994-12-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, acts through two broad classes of receptors: ion channel-linked (ionotropic) receptors, which include N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and metabotropic receptors which couple via G-proteins to intracellular messenger cascades. Seven subtypes of mGluR are known to exist but their roles in synaptic physiology are poorly understood. In cerebellar Purkinje cells, application of the mGluR agonist, trans-1-aminocyclopentane-1,3-dicarboxylic acid, or the active enantiomer, 1S,3R-ACPD, results in a depolarization associated with an inward current and an elevation of intracellular Ca2+ (for review see Ref. 29). Moreover, using an extracellular (grease-gap) technique that monitors population responses, we have previously discovered that, in Purkinje cells of adult rat cerebellum, brief tetanic stimulation of the glutamatergic parallel fibre input gives rise to a slow depolarising synaptic potential that is resistant to ionotropic glutamate receptor blockers and to antagonists acting at GABA receptors. It was suggested that this novel potential is mediated by metabotropic receptors. The advent of antagonists for metabotropic receptors has allowed us to test this hypothesis. We find that the S-enantiomer of alpha-methyl-4-carboxyphenylglycine stereoselectively antagonizes the slow synaptic potential recorded using the grease-gap method. The results were confirmed by intracellular recording from Purkinje cells. To our knowledge this is the first direct evidence of an mGluR-mediated EPSP in intact brain tissue. PMID:7535396

  18. Identification by mutagenesis of a conserved glutamate (Glu487) residue important for catalytic activity in rat liver carnitine palmitoyltransferase II.

    PubMed

    Zheng, Guolu; Dai, Jia; Woldegiorgis, Gebre

    2002-11-01

    Mammalian mitochondrial membranes express two active but distinct carnitine palmitoyltransferases: carnitine palmitoyltransferase I (CPTI), which is malonyl coA-sensitive and detergent-labile; and carnitine palmitoyltransferase II (CPTII), which is malonyl coA-insensitive and detergent-stable. To determine the role of the highly conserved C-terminal acidic residues glutamate 487 (Glu(487)) and glutamate 500 (Glu(500)) on catalytic activity in rat liver CPTII, we separately mutated these residues to alanine, aspartate, or lysine, and the effect of the mutations on CPTII activity was determined in the Escherichia coli-expressed mutants. Substitution of Glu(487) with alanine, aspartate, or lysine resulted in almost complete loss in CPTII activity. Because a conservative substitution mutation of this residue, Glu(487) with aspartate (E487D), resulted in a 97% loss in activity, we predicted that Glu(487) would be at the active-site pocket of CPTII. The substantial loss in CPTII activity observed with the E487K mutant, along with the previously reported loss in activity observed in a child with a CPTII deficiency disease, establishes that Glu(487) is crucial for maintaining the configuration of the liver isoform of the CPTII active site. Substitution of the conserved Glu(500) in CPTII with alanine or aspartate reduced the V(max) for both substrates, suggesting that Glu(500) may be important in stabilization of the enzyme-substrate complex. A conservative substitution of Glu(500) to aspartate resulted in a significant decrease in the V(max) for the substrates. Thus, Glu(500) may play a role in substrate binding and catalysis. Our site-directed mutagenesis studies demonstrate that Glu(487) in the liver isoform of CPTII is essential for catalysis. PMID:12200419

  19. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus

    PubMed Central

    Cirone, Jennifer; Salt, Thomas E

    2001-01-01

    Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. We found that application of the Group III metabotropic glutamate receptor agonist l-2-amino-4-phosphonobutyric acid (l-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABAB receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli. PMID:11433000

  20. Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

    PubMed Central

    Yang, Jing; Wang, Wei; Yong, Zheng; Mi, Weidong; Zhang, Hong

    2015-01-01

    Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. Materials and Methods: The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. Results: Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15–20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. Conclusion: Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol. PMID:26557972

  1. Fear extinction in 17 day old rats is dependent on metabotropic glutamate receptor 5 signaling.

    PubMed

    Ganella, Despina E; Thangaraju, Pushbalela; Lawrence, Andrew J; Kim, Jee Hyun

    2016-02-01

    We used pharmacological modulation of the mGlu5 receptor to investigate its role in the extinction of conditioned fear throughout development. In postnatal day (P) 17 rats, the positive allosteric modulator CDPPB facilitated, while the negative allosteric modulator MTEP impaired extinction. These drugs had no such effects on P24 or adult rats. These results establish a changing importance of mGlu5 in extinction of conditioned fear at distinct stages of development.

  2. Effects of aluminum on activity of krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate.

    PubMed

    Zatta, P; Lain, E; Cagnolini, C

    2000-05-01

    Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes. Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways. In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: alpha-ketoglutarate dehydrogenase and succinate dehydrogenase. In contrast, aconitase, shows decreased activity in the presence of the metal ion. Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle. A possible correlation between aluminum, the Krebs cycle and aging processes is discussed.

  3. [Simultaneous demonstration of glutamate decarboxylase and synaptophysin in paraffin sections of rat cerebellum].

    PubMed

    Korzhevskiy, D E; Gilerovich, Ye G; Kirik, O V; Alekseyeva, O S; Grigoriyev, I P

    2015-01-01

    The article presents highly reproducible and inexpensive protocol for simultaneous demonstration of glutamate decarboxylase (GAD67), the key enzyme of gamma-aminobutyric acid (GABA) synthesis and synaptophysin (SYP), a marker protein of synaptic vesicles using confocal laser microscopy. In the cerebellar cortex, GAD labels Purkinje cells and pinceaux in their basal parts and is unevenly distributed in the neuropil of molecular and granular layers. SYP clearly marks the contours of large dendrites of Purkinje cells in molecular layer, while in the granular layers it labels parts of cerebellar glomeruli--the terminals of the mossy fibers. GAD-immunopositive structures (GABA-ergic axons of stellate cells--Golgi cells) are often located at periphery of the glomeruli. In the peripheral zone of the glomeruli, colocalization of GAD- and SYP-immunopositive structures was observed, suggesting the presence of GABA-ergic synapses in this zone.

  4. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related.

    PubMed Central

    Berk, P D; Wada, H; Horio, Y; Potter, B J; Sorrentino, D; Zhou, S L; Isola, L M; Stump, D; Kiang, C L; Thung, S

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABPPM) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate with a Ka approximately 1.2-1.4 x 10(7) M-1. Sinusoidally enriched liver plasma membranes and purified h-FABPPM have GOT enzymatic activity; the relative specific activities (units/mg) of the membranes and purified protein suggest that h-FABPPM constitutes 1-2% of plasma membrane protein in the rat hepatocyte. Monospecific rabbit antiserum against h-FABPPM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [3H]oleate but not that of [35S]sulfobromophthalein or [14C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABPPM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABPPM and mGOT are closely related. Images PMID:2185471

  5. Brain neuroprotection by scavenging blood glutamate.

    PubMed

    Zlotnik, Alexander; Gurevich, Boris; Tkachov, Sergei; Maoz, Ilana; Shapira, Yoram; Teichberg, Vivian I

    2007-01-01

    Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.

  6. Neurotoxic Potential of Lunar and Martian Dust: Influence on Em, Proton Gradient, Active Transport, and Binding of Glutamate in Rat Brain Nerve Terminals

    PubMed Central

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-01-01

    Abstract The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[14C]glutamate, it was shown that there is an increase in l-[14C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na+] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation

  7. Genetic predisposition and early life experience interact to determine glutamate transporter (GLT1) and solute carrier family 12 member 5 (KCC2) levels in rat hippocampus.

    PubMed

    Sterley, Toni-Lee; Howells, Fleur M; Dimatelis, Jacqueline J; Russell, Vivienne A

    2016-02-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders. While it is typically treated with medications that target dopamine and norepinephrine transmission, there is increasing evidence that other neurotransmitter systems, such as glutamate and GABA, may be involved. The aetiology of ADHD is unknown; however, there is evidence that early life stress may contribute to the development of the disorder. In the present study we used proteomic analysis (iTRAQ) followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis to investigate hippocampal protein profiles of three rat strains: an animal model of ADHD, spontaneously hypertensive rats (SHR), their control Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD). We additionally investigated how these protein profiles are affected by maternal separation, a model of early life stress. Our findings show that solute carrier family 12 member 5 (KCC2) is increased in SHR hippocampus. The glutamate transporter GLT1 splice variant, GLT1b, was increased (proteomic analysis) while total GLT1 (comprised mostly of GLT1a splice variant) was reduced (Western blot analysis) in SHR hippocampus, compared to WKY and SD--a pattern that is consistent with elevated extracellular glutamate levels. Maternal separation increased total GLT1 in hippocampi of SHR, WKY, and SD, and reduced GLT1b in SHR hippocampus. Together these findings provide evidence for disturbed glutamatergic and GABAergic transmission in SHR hippocampus, maternal separation effects on glutamate uptake in hippocampi of all three strains, as well a unique effect of maternal separation on GLT1b levels in SHR hippocampus. These data suggest significant involvement of glutamatergic and GABAergic transmission in the neuropathophysiology of ADHD, and implicates changes in glutamatergic transmission as a result of early life stress. PMID:26464063

  8. The cannabinoid receptor agonist WIN 55,212-2 regulates glutamate transmission in rat cerebral cortex: an in vivo and in vitro study.

    PubMed

    Ferraro, L; Tomasini, M C; Gessa, G L; Bebe, B W; Tanganelli, S; Antonelli, T

    2001-08-01

    The effects of the cannabinoid receptor agonist WIN 55,212-2 on endogenous extracellular glutamate levels in the prefrontal cortex of the awake rat and in primary cultures of rat cerebral cortex neurons were investigated. In the prefrontal cortex WIN 55,212-2 (0.1 and 1 mg/kg i.p.) increased dialysate glutamate levels from of the awake rat, while the lower (0.01 mg/kg) and the higher (2 mg/kg) doses were ineffective. Furthermore, the WIN 55,212-2 (0.1 mg/kg)- induced increase of dialysate glutamate levels was counteracted by pretreatment with the selective CB(1) receptor antagonist SR141716A (0.1 mg/kg i.p.) and by the local perfusion with a low-calcium Ringer solution (Ca(2+) 0.2 mM). In primary cultures of rat cerebral cortex neurons, WIN 55,212-2 (0.01--100 nM) increased extracellular glutamate levels, displaying a bell-shaped concentration-response curve. The facilitatory effect of WIN 55,212-2 (1 nM) was fully counteracted by SR141716A (10 nM), by the replacement of the normal Krebs Ringer-bicarbonate buffer with a low Ca(2+) medium (0.2 mM) and by the IP(3) receptor antagonist xestospongin C (1 microM). These in vivo and in vitro findings suggest an increase in cortical glutamatergic transmission by CB(1) receptors, an effect that may underlie some of the psychoactive and behavioural actions of acute exposure to marijuana.

  9. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    SciTech Connect

    Guilarte, T.R. )

    1990-02-26

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of {sup 3}H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of {sup 3}H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and {sup 3}H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of {sup 3}H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of {sup 3}H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain.

  10. Metabotropic glutamate receptor mGlu5 is a mediator of appetite and energy balance in rats and mice.

    PubMed

    Bradbury, Margaret J; Campbell, Una; Giracello, Darlene; Chapman, Deborah; King, Chris; Tehrani, Lida; Cosford, Nicholas D P; Anderson, Jeff; Varney, Mark A; Strack, Alison M

    2005-04-01

    The metabotropic glutamate receptor subtype mGlu5 modulates central reward pathways. Many transmitter systems within reward pathways affect feeding. We examined the potential role of mGlu5 in body weight regulation using genetic and pharmacological approaches. Adult mice lacking mGlu5, mGluR5-/-, weighed significantly less than littermate controls (mGluR5+/+, despite no difference in ad libitum food intake. After overnight food deprivation, mGluR5-/- mice ate significantly less than their mGluR5+/+ controls when refeeding. When on a high fat diet, mGluR5-/- mice weighed less and had decreased plasma insulin and leptin concentrations. The selective mGlu5 antagonist MTEP [3-[(2-methyl-1,3-thiazol-4-yl)-ethynyl]-pyridine; 15 mg/kg s.c.] reduced refeeding after overnight food deprivation in mGluR5+/+, but not mGluR5-/- mice, demonstrating that feeding suppression is mediated via a mGlu5 mechanism. MTEP (1-10 mg/kg) decreased night-time food intake in rats in a dose-related manner. At 10 mg/kg, MTEP injected at 8.5, 4.5, or 0.5 h before refeeding reduced overnight food intake by approximately approximately 30%. Diet-induced obese (DIO) and age-matched lean rats were treated for 12 days with MTEP (3 or 10 mg/kg/day s.c.), dexfenfluramine (3 mg/kg/day s.c.), or vehicle. Daily and cumulative food intakes were reduced in DIO rats by MTEP and dexfenfluramine. Weight gain was prevented with MTEP (3 mg/kg), and weight and adiposity loss was seen with MTEP (10 mg/kg) and dexfenfluramine. Caloric efficiency was decreased, suggesting increased energy expenditure. In lean rats, similar, although smaller, effects were observed. In conclusion, using genetic and pharmacological approaches, we have shown that mGlu5 modulates food intake and energy balance in rodents.

  11. The effects of combined application of inorganic Martian dust simulant and carbon dots on glutamate transport rat brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Nazarova, Anastasiya; Borysov, Arseniy; Pastukhov, Artem; Pozdnyakova, Natalia; Dudarenko, Marina

    2016-07-01

    During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the central nervous system (Oberdorster et al., 2004). Recently, the research team of this study found the minor fractions of nanoparticles with the size ~ 50 -60 nm in Lunar and Martian dust stimulants (JSC-1a and JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin), whereas the average size of the simulants was 1 mm and 4mm, respectively (Krisanova et al., 2013). Also, the research team of this study discovered new phenomenon - the neuromodulating and neurotoxic effect of carbon nano-sized particles - Carbon dots (C-dots), originated from ash of burned carbon-containing product (Borisova et al, 2015). The aims of this study was to analyse acute effects of upgraded stimulant of inorganic Martian dust derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, carbon dots, on the key characteristic of synaptic neurotransmission. Acute administration of carbon-containing Martian dust analogue resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) by isolated rat brain nerve terminals. The ambient level of the neurotransmitter in the preparation of nerve terminals increased in the presence of carbon dot-contained Martian dust analogue. These effects were associated with action of carbon component of the upgraded Martian dust stimulant but not with its inorganic constituent.

  12. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats.

    PubMed

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane M; Traub, Richard J

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  13. Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats

    PubMed Central

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stress-induced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  14. Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: Implication in emotional responses and central disinhibition.

    PubMed

    Gu, Guibao; Lorrain, Daniel S; Wei, Hongbing; Cole, Rebecca L; Zhang, Xin; Daggett, Lorrie P; Schaffhauser, Herve J; Bristow, Linda J; Lechner, Sandra M

    2008-03-01

    The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and intralaminar structures of the thalamus, the association cortices, the dentate gyrus of the hippocampus, the medial mammillary nucleus, and the lateral and basolateral nuclei of the amygdala. Moreover, presynaptic mGlu2 terminals were found in most of the forebrain structures, especially in the lateral part of the central nucleus of the amygdala, and the CA1 region of the hippocampus. Although some overlaps exist, such as in the hippocampus and the amygdala, the expression of mGlu3 mRNA, however, appeared to be more disperse, compared with that of mGlu2 mRNA. These distribution results support previous behavioral studies that the mGlu2 and 3 receptors may play important roles in emotional responses. In addition to its expression in glia, mGlu3 was distinctively expressed in cells in the GABAergic reticular nucleus of the thalamus. Local infusion of a non-selective mGlu2/3 agonist, LY379268, in the reticular nucleus of the thalamus, significantly reduced GABA release, suggesting that mGlu3 may also play a role in central disinhibition. PMID:18242587

  15. Apoptosis-inducing factor and calpain upregulation in glutamate-induced injury of rat spiral ganglion neurons.

    PubMed

    Ding, Zhong-Jia; Chen, Xin; Tang, Xiao-Xu; Wang, Xi; Song, Yong-Li; Chen, Xiao-Dong; Wang, Jian; Wang, Ren-Feng; Mi, Wen-Juan; Chen, Fu-Quan; Qiu, Jian-Hua

    2015-08-01

    Spiral ganglion neuron (SGN) damage and apoptosis can lead to noise-induced hearing loss, age-associated hearing loss and, in certain cases, auditory neuropathy. The apoptosis-inducing factor (AIF)-associated pathway may be important in this process. The present study aimed to investigate the expression levels of AIF and calpain in damaged SGNs. Glutamate (Glu) perfusion and cell culture in different concentrations of Glu were performed to damage the SGNs of Sprague-Dawley (SD) rats, with saline water used as a control Different concentrations (5, 10, 20 and 40 mM) of Glu were injected into the cochlear tympanic canal of 18 SD rats, and 10, 20 and 40 mM Glu were added to SGN cultures. Auditory brainstem responses (ABR) were measured prior to and 2 days following the injection of Glu. Immunofluorescent staining was used to detect the SGN damage and the expression levels of AIF and calpain in vivo and in in vitro. Transmission electron microscopy (TEM) was used to measure cell apoptosis and reverse transcription-quantitative polymerase chain reaction was used to analyse the gene expression levels of AIF and calpain in the damaged SGNs. The TEM identified mitochondrial vacuolisation, swelling of the SGN and heterochromatin formation. Injection of Glu reduced the number of SGNs and induced apoptosis. AIF was observed to translocate into the nuclei of the SGNs in the 20 and 40 mM Glu groups, and the expression levels of AIF and calpain were markedly upregulated in the modiolus of the Glu-damaged SGNs. The upregulation of AIF and calpain may be important in the process of SGN damage and apoptosis. PMID:25891494

  16. Forebrain Projections of Arcuate Neurokinin B Neurons Demonstrated by Anterograde Tract-Tracing and Monosodium Glutamate Lesions in the Rat

    PubMed Central

    Krajewski, Sally J.; Burke, Michelle C.; Anderson, Miranda J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2010-01-01

    Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor α. Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: 1) Local projections within the arcuate nucleus bilaterally, 2) Projections to the median eminence including the lateral palisade zone, 3) Projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and 4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERα and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH. PMID:20038444

  17. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Hannibal, Jens

    2010-05-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression of locomotor activity (masking), and pupillary light reflex. Two neurotransmitters have been identified in ipRGCs, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). To date, little is known about their release and interplay. Here, we describe the presence and co-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably released from the same nerve terminals. Furthermore, we conclude that VGLUT2 is the preferred subtype of vesicular transporter used by these cells.

  18. Delta(9)-tetrahydrocannabinol increases endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons: involvement of CB(1) receptors.

    PubMed

    Tomasini, Maria Cristina; Ferraro, Luca; Bebe, Berta Wonjie; Tanganelli, Sergio; Cassano, Tommaso; Cuomo, Vincenzo; Antonelli, Tiziana

    2002-05-15

    The effects of the principal psychoactive component of marijuana, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), on endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons were investigated. Locally applied Delta(9)-THC (0.03, 3, 300, and 1,000 nM) concentration-dependently increased basal extracellular glutamate levels (+18% +/- 11%, +54% +/- 10%, +90% +/- 14%, +149% +/- 33% vs. basal). The facilitatory effects of Delta(9)-THC (3 and 300 nM) on cortical glutamate were fully counteracted in the presence of the selective CB(1) receptor antagonist SR141716A (10 nM) and by replacement of the normal Krebs-Ringer bicarbonate buffer with a low-Ca(2+) (0.2 mM) medium. Delta(9)-THC application also induced an enhancement in K(+)-evoked glutamate levels. These findings suggest that an increase in cortical glutamatergic transmission mediated by local CB(1) receptor activation may underlie some of the psychoactive and behavioral effects of acute marijuana consumption.

  19. Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus.

    PubMed

    González-Flores, Oscar; Gómora-Arrati, Porfirio; García-Juárez, Marcos; Miranda-Martínez, Alfredo; Armengual-Villegas, Alejandra; Camacho-Arroyo, Ignacio; Guerra-Araiza, Christian

    2011-10-01

    Progesterone exerts a variety of actions in the brain through the interaction with its receptors (PR) which have two isoforms with different function and regulation: PR-A and PR-B. Progesterone may modulate neurotransmission by regulating the expression of neurotransmitters synthesizing enzymes or their receptors in several brain regions. The role of PR isoforms in this modulation is unknown. We explored the role of PR isoforms in the regulation of tryptophan (TPH) and tyrosine (TH) hydroxylase, and glutamic acid decarboxylase (GAD) expression in the hypothalamus of ovariectomized rats. Two weeks after ovariectomy, animals were subcutaneously injected with 5 μg of estradiol benzoate (EB), and 40 h later, progesterone (P) was intracerebroventricularly (ICV) injected. Each animal received two ICV injections of 1 μg/μl (4 nmol) of PR-B and total PR (PR-A+PR-B) sense or antisense (As) oligonucleotides (ODNs). First injection was made immediately before sc EB injection, and 24h later animals received the second one. Twenty-four hours after P administration, rats were euthanized and brains removed to measure the expression of PR-A and PR-B, TPH, TH and GAD by Western blot. We observed that sense ODNs modified neither PR isoforms nor enzymes expression in the hypothalamus, whereas PR A+B antisense (PR A+B As) clearly decreased the expression of both PR isoforms in this region. ICV administration of PR-B As only decreased PR-B isoform expression with no significant effects on PR-A expression. A differential protein expression of TPH, TH and GAD was observed after PR isoforms antisense administration. PR-B As administration decreased the expression of TPH (65% with respect to control). In contrast, PR A+B As and PR-B As administration increased (51.6% and 34.4%, respectively) TH expression. The administration of PR A+B As and PR-B As diminished GAD expression (33.4% and 41.6%, respectively). Our findings indicate that PR isoforms play a differential role in the

  20. Chlordecone impairs Na(+)-stimulated L-( sup 3 H)glutamate transport and mobility of 16-doxyl stearate in rat liver plasma membrane vesicles

    SciTech Connect

    Rochelle, L.G.; Miller, T.L.; Curtis, L.R. )

    1990-09-01

    Chlordecone (CD) treatment of rat liver plasma membranes (LPM) provided in vitro evidence for mechanisms of in vivo liver dysfunction caused by CD. LPM preparations enriched 14- to 19-fold in the bile canalicular markers gamma-glutamyl transpeptidase, alkaline phosphatase, and leucine aminopeptidase were isolated from male Sprague-Dawley rats. CD inhibited the bile canalicular-specific active transport of Na(+)-stimulated L-({sup 3}H)glutamate in LPM vesicles. CD (0.08 and 0.5 mumol/mg protein) reduced both the initial velocity and the maximum level of Na(+)-stimulated L-(3H)glutamate uptake without significantly reducing Na(+)-independent uptake. In vitro treatment of LPM with CD (0.2-1.0 mumols/mg protein) also reduced the mobility of a 16-doxyl stearate spin label probe in a concentration-dependent manner. No change in mobility was apparent at CD concentrations below 0.2 mumol/mg protein. These results demonstrated that CD impaired a bile canalicular-specific transport system and induced liver plasma membrane perturbation. Na(+)-stimulated L-({sup 3}H)glutamate uptake was more sensitive to CD than was detectable immobilization of the spin label probe.

  1. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    PubMed Central

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  2. Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat.

    PubMed

    Palazzo, Enza; Marabese, Ida; Luongo, Livio; Boccella, Serena; Bellini, Giulia; Giordano, Maria Elvira; Rossi, Francesca; Scafuro, Mariantonietta; Novellis, Vito de; Maione, Sabatino

    2013-09-03

    The metabotropic glutamate receptor 7 (mGluR7) negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), was locally microinjected into the ventrolateral periaqueductal gray (VL PAG) and the effect on pain responses in formalin and spare nerve injury (SNI) -induced neuropathic pain models was monitored in the rat. The activity of rostral ventromedial medulla (RVM) "pronociceptive" ON and "antinociceptive" OFF cells was also evaluated. Intra-VL PAG MMPIP blocked the first and second phase of nocifensive behaviour in the formalin pain model. MMPIP increased the tail flick latency and simultaneously increased the activity of the OFF cells while inhibiting that of ON cells in rats with SNI of the sciatic nerve. MMPIP failed to modify nociceptive responses and associated RVM ON and OFF cell activity in sham rats. An increase in mGluR7 gene, protein and staining, the latter being associated with vesicular glutamate transporter-positive profiles, has been found in the VL PAG in SNI rats. Blockade of mGluR7 within the VL PAG has an antinociceptive effect in formalin and neuropathic pain models. VL PAG mGluR7 blockade offers a target for dis-inhibiting the VL PAG-RVM pathway and silencing pain in inflammatory and neuropathic pain models.

  3. COMPARISON OF THE ONTOGENY OF THE VESICULAR GLUTAMATE TRANSPORTER 3 (VGLUT3) WITH VGLUT1 AND VGLUT2 IN THE RAT RETINA

    PubMed Central

    Stella, Salvatore L.; Li, Stefanie; Sabatini, Andrea; Vila, Alejandro; Brecha, Nicholas C.

    2008-01-01

    Glutamate is the major excitatory neurotransmitter in the retina, and most glutamatergic neurons express one of the three known vesicular glutamate transporters (VGLUT1, 2, or 3). However, the expression profiles of these transporters vary greatly in the retina. VGLUT1 is expressed by photoreceptor and bipolar cell terminals, and VGLUT2 appears to be predominately expressed by ganglion cells, and perhaps Müller cells, cone photoreceptor terminals, and horizontal cells in some species. The discovery of a third vesicular glutamate transporter, VGLUT3, has brought about speculation concerning its role and function based on its expression in amacrine cells. To address this we studied the postnatal development of VGLUT3 from day 0 through adult in the rat retina, and compared this with the expression patterns of VGLUT1 and VGLUT2. VGLUT3 expression was restricted to a population of amacrine cells. Expression of VGLUT3 was first observed at postnatal day 10 (P10) in the soma and some processes, which extensively arborized in both the ON and OFF sublamina of the IPL by P15. In contrast, VGLUT1 and VGLUT2 expression appeared earlier than VGLUT3; with VGLUT1 initially detected at P5 in photoreceptor terminals and P6 in bipolar terminals, and VGLUT2 immunoreactivity initially detected at P0 in ganglion cell bodies, and remained prominent throughout all stages of development. Interestingly, VGLUT3 has extensive somatic expression throughout development, which could be involved in non-synaptic modulation by glutamate in developing retina, and could influence trophic and extra-synaptic neuronal signaling by glutamate in the inner retina. PMID:18482716

  4. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain.

    PubMed

    Ferraro, L; Tomasini, M C; Fernandez, M; Bebe, B W; O'Connor, W T; Fuxe, K; Glennon, J C; Tanganelli, S; Antonelli, T

    2001-01-01

    Dual-probe microdialysis in the awake rat was employed to investigate the effects of intranigral perfusion with the tridecapeptide neurotensin on local dialysate glutamate and GABA levels in the substantia nigra pars reticulata and on dialysate GABA levels in the ventral thalamus. Intranigral neurotensin (10-300nM, 60min) dose-dependently increased (+29+/-3% and +46+/-3% vs basal for the 100 and 300nM concentrations, respectively) local dialysate glutamate levels, while the highest 300nM concentration of the peptide exerted a long-lasting and prolonged reduction in both local and ventral thalamic (-20+/-4% and -22+/-2%, respectively) GABA levels. Intranigral perfusion with the inactive neurotensin fragment neurotensin(1-7) (10-300nM, 60min) was without effect. Furthermore, the non-peptide neurotensin receptor antagonist SR 48692 (0.2mg/kg) and tetrodotoxin (1microM) fully counteracted the intranigral neurotensin (300nM)-induced increase in local glutamate. SR 48692 (0.2mg/kg) also counteracted the decreases in nigral and ventral thalamic GABA release induced by the peptide. In addition, intranigral perfusion with the dopamine D(2) receptor antagonist raclopride (1microM) fully antagonized the neurotensin (300nM)-induced decreases in nigral and ventral thalamic GABA levels. The ability of nigral neurotensin receptor activation to differently influence glutamate and GABA levels, whereby it increases nigral glutamate and decreases both nigral and ventral thalamic GABA levels, suggests the involvement of neurotensin receptor in the regulation of basal ganglia output at the level of the nigra.

  5. Marked reduction in gonadal steroid hormone levels in rats treated neonatally with monosodium L-glutamate: further evidence for disruption of hypothalamic-pituitary-gonadal axis regulation.

    PubMed

    Nemeroff, C B; Lamartiniere, C A; Mason, G A; Squibb, R E; Hong, J S; Bondy, S C

    1981-11-01

    Serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin, estradiol-17 beta and testosterone were determined in adult rats that were treated in the neonatal period with monosodium L-glutamate (MSG) which has previously been shown to reliably produce destruction of arcuate nucleus perikarya. MSG-treated males had significantly smaller accessory sexual organs (seminal vesicles and ventral prostate) and tests and had significantly lower serum concentrations of FSH and testosterone than sex-matched controls. MSG-treated females had significantly lower serum concentrations of LH, FSH and estradiol-17 beta. Prolactin levels of MSG-treated rats were no different than sex-matched controls. This marked reduction in gonadal steroid levels (decreases 68%) and inappropriately low gonadotropin levels further characterizes the deficit of feedback regulation in the hypothalamic-pituitary-gonadal axis in MSG-treated rats.

  6. Glutamate receptors in the dorsal hippocampus mediate the acquisition, but not the expression, of conditioned place aversion induced by acute morphine withdrawal in rats

    PubMed Central

    Hou, Yuan-yuan; Liu, Yao; Kang, Shuo; Yu, Chuan; Chi, Zhi-qiang; Liu, Jing-gen

    2009-01-01

    Aim: To evaluate the role of glutamate receptors in the dorsal hippocampus (DH) in the motivational component of morphine withdrawal. Methods: NMDA receptor antagonist D-AP5 (5 μg/0.5 μL per side) or AMPA receptor antagonist NBQX (2 μg/0.5 μL per side) was microinjected into DH of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal were assessed. Results: Preconditioning microinjection of D-AP5 or NBQX into the DH impaired the acquisition of CPA in acute morphine-dependent rats. However, intra-DH microinjection of D-AP5 or NBQX after conditioning but before the testing session had no effect on the expression of CPA. Conclusion: Our results suggest that NMDA and AMPA receptors in the dorsal hippocampus are involved in the acquisition, but not in the expression, of the negative motivational components of acute morphine withdrawal in rats. PMID:19767765

  7. Developmental changes in choline acetyltransferase and glutamate decarboxylase activity in various regions of the brain of the male, female, and neonatally androgenized female rat.

    PubMed

    Brown, R; Brooksbank, B W

    1979-04-01

    In attempt to discern effects of sex hormones on the development of neurotransmitter systems in the rat brain, choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) have been measured at postnatal days 8, 12, 25, and 60 in five regions (amygdala, anterior hypothalamus, hippocampus, olfactory bulbs, and cerebral cortex) of the brains of normal male, normal female, and neonatally androgen-treated female rats. Essentially no association between sex or of neonatal "androgenization" on either enzymol were found. The data, however, provide new information on the relative rates of development of ChAT and GAD in five regions of the rat brain which supplement the limited information already available in the literature. ChAT activity was highest in amygdala and hypothalamus, but developed most rapidly in hippocampus and cerebral cortex. The relative activities and patterns of development of GAD activity were similar to those of ChAT.

  8. Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures.

    PubMed

    Seib, Todd Michael; Patel, Sarjubhai Amratbhai; Bridges, Richard James

    2011-10-01

    The system x(C)- (Sx(C)-) transporter functions to mediate the exchange of extracellular cystine (L-Cys(2)) and intracellular glutamate (L-Glu). Internalized L-Cys(2) serves as a rate-limiting precursor for the biosynthesis of glutathione (GSH), while the externalized L-Glu can contribute to either excitatory signaling or excitotoxicity. In the present study the influence of culture conditions (with and without dibutyryl-cAMP) and GSH levels on the expression of Sx(C)- were investigated in primary rat astrocyte cultures. Sx(C)- activity in dbcAMP-treated cells was nearly sevenfold greater than in untreated astrocytes and increased further (∼threefold) following the depletion of intracellular GSH with buthionine sulfoximine. This increase in Sx(C)- triggered by GSH depletion was only observed in the dbcAMP-treated phenotype and was distinct from the Nrf2-mediated response initiated by exposure to electrophiles. Changes in Sx(C)- activity correlated with increases in both protein and mRNA levels of the xCT subunit of the Sx(C)- heterodimer, an increase in the V(max) for L-Glu uptake and was linked temporally to GSH levels. This induction of Sx(C)- was not mimicked by hydrogen peroxide nor attenuated by nonspecific antioxidants but was partially prevented by the co-administration of the cell-permeant thiols GSH-ethyl ester and N-acetylcysteine. These findings demonstrate that the expression of Sx(C)- on astrocytes is dynamically regulated by intracellular GSH levels in a cell- and phenotype-dependent manner. The presence of this pathway likely reflects the inherent vulnerability of the CNS to oxidative damage and raises interesting questions as to the functional consequences of changes in Sx(C)- activity in CNS injury and disease.

  9. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  10. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    PubMed

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period.

  11. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals.

    PubMed

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-08-01

    The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due

  12. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals.

    PubMed

    Krisanova, Natalia; Kasatkina, Ludmila; Sivko, Roman; Borysov, Arseniy; Nazarova, Anastasiya; Slenzka, Klaus; Borisova, Tatiana

    2013-08-01

    The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due

  13. GABA(B) receptors modulate depolarization-stimulated [³H]glutamate release in slices of the pars reticulata of the rat substantia nigra.

    PubMed

    Cortés, Hernán; Paz, Francisco; Erlij, David; Aceves, Jorge; Florán, Benjamín

    2010-12-15

    GABA(B) receptors decrease the release of GABA from the striatal terminals within the pars reticulata of the substantia nigra by opposing the increase in the release caused by dopamine D₁ receptors. The dopamine D₁ receptors also increase the release of glutamate from subthalamic terminals in the pars reticulata. Because GABA(B) receptors decrease the glutamate release from these terminals, we have explored if the effect of GABA(B) receptors also opposed the effect of the dopamine D₁ receptors. The effect of baclofen, a selective GABA(B)-receptor agonist, was tested on the release of [³H]glutamate caused by highly (40 mM) concentrated K(+) solutions in slices of the pars reticulata. Baclofen decreased (the concentration causing 50% inhibition, IC₅₀, was 8.15 μM) the increase in the release of the [³H]glutamate caused by the dopamine D₁ receptors and it also decreased (IC₅₀ was 0.51 μM) this release in the absence of the activation of the dopamine D₁ receptors. The GABA(B) receptors appear then to inhibit glutamate release in two ways; one dependent on the activation of the dopamine D₁ receptors and the other independent of such activation. The protein kinase A-inhibitor H89 blocked the increase in the release of the [³H]glutamate caused by the dopamine D₁ receptors, though it did not block the dopamine D₁ receptor-independent baclofen inhibition of the release. This finding indicates that this inhibition was not via the protein kinase A signal-transduction pathway. N-ethylmaleimide, an alkylating agent that inactivates pertussis toxin-sensitive Gi proteins, eliminated both the dopamine D₁ receptor-dependent and -independent baclofen inhibition, showing that both were mediated by these proteins. The injection of baclofen into the pars reticulata of unanesthetized rats caused contralateral rotation, suggesting a reduced glutamate release from the subthalamic terminals, thereby stopping the inhibition of the premotor thalamic nuclei

  14. Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism.

    PubMed

    Li, Xia; Li, Jie; Peng, Xiao-Qing; Spiller, Krista; Gardner, Eliot L; Xi, Zheng-Xiong

    2009-06-01

    The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1-5 microg/microl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 microg/microl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082's action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine's acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082's actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction.

  15. Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain.

    PubMed

    Danik, Marc; Cassoly, Estelle; Manseau, Frédéric; Sotty, Florence; Mouginot, Didier; Williams, Sylvain

    2005-08-15

    It is widely believed that expression of the vesicular glutamate transporter genes VGLUT1 and VGLUT2 is restricted to glutamatergic neurons and that the two transporters segregate in different sets of neurons. Using single-cell multiplex RT-PCR (sc-RT-mPCR), we show that VGLUT1 and VGLUT2 mRNAs were coexpressed in most of the sampled neurons from the rat hippocampus, cortex, and cerebellum at postnatal Day (P)14 but not P60. In accordance, changes in VGLUT1 and VGLUT2 mRNA concentrations were found to occur in these and other brain areas between P14 and P60, as revealed by semiquantitative RT-PCR and quantitated by ribonuclease protection assay. VGLUT1 and -2 coexpression in the hippocampal formation is supported further by in situ hybridization data showing that virtually all cells in the CA1-CA3 pyramidal and granule cell layers were highly positive for both transcripts until P14. It was revealed using sc-RT-mPCR that transcripts for VGLUT1 and VGLUT2 were also present in neurons of the cerebellum, striatum, and septum that expressed markers for gamma-aminobutyric acid (GABA)ergic or cholinergic phenotypes, as well as in hippocampal cells containing transcripts for the glial fibrillary acidic protein. Our study suggests that VGLUT1 and VGLUT2 proteins may often transport glutamate into vesicles within the same neuron, especially during early postnatal development, and that they are expressed widely in presumed glutamatergic, GABAergic, and cholinergic neurons, as well as in astrocytes. Furthermore, our study shows that such coexpressing neurons remain in the adult brain and identifies several areas that contain them in both young and adult rats. PMID:15983996

  16. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects.

  17. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex.

    PubMed

    Muschamp, John W; Regina, Meredith J; Hull, Elaine M; Winter, Jerrold C; Rabin, Richard A

    2004-10-01

    The ability of hallucinogens to increase extracellular glutamate in the prefrontal cortex (PFC) was assessed by in vivo microdialysis. The hallucinogen lysergic acid diethylamide (LSD; 0.1 mg/kg, i.p.) caused a time-dependent increase in PFC glutamate that was blocked by the 5-HT(2A) antagonist M100907 (0.05 mg/kg, i.p.). Similarly, the 5-HT(2A/C) agonist [-]-2,5-dimethoxy-4-methylamphetamine (DOM; 0.6 mg/kg, i.p.), which is a phenethylamine hallucinogen, increased glutamate to 206% above saline-treated controls. When LSD (10 microM) was directly applied to the PFC by reverse dialysis, a rapid increase in PFC glutamate levels was observed. Glutamate levels in the PFC remained elevated after the drug infusion was discontinued. These data provide direct evidence in vivo for the hypothesis that an enhanced release of glutamate is a common mechanism in the action of hallucinogens.

  18. The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety.

    PubMed

    Grivas, Vasilios; Markou, Athina; Pitsikas, Nikolaos

    2013-09-01

    The activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with neurodegenerative and psychiatric disorders. LY379268 is a highly potent mGlu2/3 receptor agonist that has shown efficacy in several animal models of stroke, epilepsy, drug abuse, schizophrenia, and pain. The present study investigated the effects of LY379268 on anxiety-like behavior in rats assessed in the light/dark and open field tests. The effects of LY379268 on motility in a locomotor activity chamber were also investigated in rats. Administration of the two lower doses of LY379268 used (0.3 and 1mg/kg) did not influence rats' performance either in the light/dark or in the open field test. Importantly, the administration of a higher LY379268 dose (3mg/kg) induced decrease in the number of transitions between the light and dark chambers and time spent in the light chamber compared to the vehicle-treated animals in the light/dark test. In the open field test, rats that received 3mg/kg LY379268 made fewer entries and spent less time in the central zone of the apparatus, exhibited a decrease of rearing episodes, but displayed higher grooming activity compared to controls. Nevertheless, the 3mg/kg dose did not alter locomotor activity compared with vehicle-treated rats in a motility test. The present results indicate that the highest LY379268 dose used in this study induced an anxiety-like effect in the light/dark and open field tests that cannot be attributed to changes in locomotor activity, while lower doses had no effect.

  19. Evidence for the participation of glutamate in reflexes involving afferent, substance P-containing nerve fibres in the rat.

    PubMed

    Juránek, I; Lembeck, F

    1996-01-01

    1. Responses mediated, either peripherally or centrally, by substance P-containing primary afferent C-fibres were investigated in the rat following impairment of axonal transport by colchicine (120 micrograms kg-1, i.p., daily for 3 days), and after treatment with the tachykinin antagonist SR-140333 (10-100 micrograms kg-1, i.v.) or the N-methyl-D-aspartate (NMDA) antagonist MK-801 (100 micrograms kg-1). 2. Peripheral effects mediated by afferent C-fibres were measured by plasma protein extravasation (Evans blue method), following antidromic stimulation of the sciatic nerve, topical application of mustard oil and, as control, i.v. injection of substance P. SR-140333 (100 micrograms kg-1) reduced the effects by 86%, 75% and 74%, respectively. Colchicine reduced the effects of the first two stimuli by 31% and 33% and, as expected not the effect of substance P. The increase of paw skin temperature following capsaicin i.v. was inhibited by SR-140333, but not by colchicine. MK-801 had no effect on the plasma protein extravasation following antidromic sciatic nerve stimulation or on the rise of paw skin temperature induced by capsaicin i.v., thus excluding an effect of MK-801 on peripheral terminals of afferent neurones. 3. Depressor reflexes, which are known to be mediated by capsaicin-sensitive afferent neuones, such as those elicited (A) by a stimulating dose of 30 ng capsaicin i.a., (B) by distension of the ascending colon or (C) by afferent sciatic nerve stimulation were studied. Colchicine significantly reduced depressor reflexes A and B, but had no effect on reflex C. None of the reflexes was affected by SR-140333. MK-801 significantly inhibited all three reflexes. 4. Capsaicin, injected either i.v. (200 micrograms kg-1) or into the nucleus caudatus/putamen (i.c., 30 micrograms), induced an increase in paw skin temperature and a decrease in colon temperature. The rise in fore paw skin temperature (delta t = 2.3 +/- 0.4 degrees C) evoked by capsaicin i.v. was

  20. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenylyl cyclase

    PubMed Central

    Maneuf, Yannick P; McKnight, Alexander T

    2001-01-01

    The effect of activation of protein kinase C (PKC) or adenylyl cyclase on release of glutamate has been investigated in a perfused slice preparation from the rat caudal trigeminal nucleus. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) produced a concentration-dependent increase in K+-evoked release of [2H]-glutamate (maximum increase 45%, EC50 11.8 nM), but in the presence of gabapentin (30 μM) the facilitation of release was blocked. The adenylyl cyclase activator forskolin (FSK) also induced a concentration-dependent increase in K+-evoked release of [3H]-glutamate (maximum increase 36%, EC50 2.4 μM), and again this facilitatory effect was blocked by gabapentin (30 μM). We suggest that these results may be of relevance to the antihyperalgesic properties of gabapentin, in conditions where concomitant release of substance P and CGRP produces activation of PKC and adenylyl cyclase respectively. PMID:11564640

  1. Effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine by their transporters heterologously expressed in COS cells and in rat brain synaptosomes.

    PubMed

    Sugimura, M; Kitayama, S; Morita, K; Irifune, M; Takarada, T; Kawahara, M; Dohi, T

    2001-08-01

    Although the neurotransmitter uptake system is considered a possible target for the presynaptic action of anesthetic agents, observations are inconsistent concerning effects on the transporter and their clinical relevance. The present study examined the effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine in COS cells heterologously expressing the transporters for these neurotransmitters and in the rat brain synaptosomes. Halothane and isoflurane, but not thiamylal or thiopental, significantly inhibited uptake by COS cell systems of GABA, dopamine and glutamic acid in a concentration-dependent manner within clinically relevant ranges for anesthesia induced by these agents. Similarly, in synaptosomes halothane and isoflurane but not thiopental significantly suppressed the uptake of GABA and glutamic acid, respectively. These results do not support the hypothesis that volatile and intravenous anesthetics exert their action via specific inhibition of GABA uptake to enhance inhibitory GABAergic neuronal activity. Rather, they suggest that presynaptic uptake systems for various neurotransmitters including GABA may be the molecular targets for volatile anesthetic agents.

  2. [The role of non-NMDA glutamate receptors in the EEG effects of chronic administration of noopept GVS-111 in awake rats].

    PubMed

    Kovalev, G I; Vorob'ev, V V

    2002-01-01

    Participation of the non-NMDA glutamate receptor subtype in the formation of the EEG frequency spectrum was studied in wakeful rats upon a long-term (10 x 0.2 mg/kg, s.c.) administration of the nootropic dipeptide GVS-111 (noopept or N-phenylacetyl-L-prolyglycine ethylate). The EEGs were measured with electrodes implanted into somatosensor cortex regions, hippocampus, and a cannula in the lateral ventricle. The acute reactions (characteristic of nootropes) in the alpha and beta ranges of EEG exhibited inversion after the 6th injection of noopept and almost completely vanished after the 9th injection. Preliminary introduction of the non-NMDA antagonist GDEE (glutamic acid diethyl ester) in a dose of 1 mumole into the lateral ventricle restored the EEG pattern observed upon the 6th dose of GVS-111. The role of glutamate receptors in the course of a prolonged administration of nootropes, as well as the possible mechanisms accounting for a difference in the action of GVS-111 and piracetam are discussed. PMID:12596524

  3. [MOLECULAR MECHANISMS OF ERK1/2 KINASES REGULATION IN THE GLUTAMATE- AND GABA-ERGIC NEURONS DURING SEIZURE EXPRESSION IN KRUSHINSKY-MOLODKINA RATS].

    PubMed

    Korotkov, A A; Glazova, M V; Nikitina, L S; Dorofeeva, N A; Kirillova, O D; Chernigovskaya, E V

    2015-10-01

    The aim of the present study was to analyze a role of the ERK1/2 signaling pathway in the regulation of excitation and inhibitory neurons in the hippocampus and the temporal cortex of Krushinsky-Molodkina rats during seizure development finalizing with ataxia. Analysis was done by Western bloting as well as by immunohistochemistry. The results demonstrated significant up-regulation of ERK1/2 activity in the hippocampus in several seconds after sound stimulation. At the same time increased ERK1/2 activity was correlated with enhanced level of SNARE protein SNAP-25 and activation of synapsin I, the proteins which regulate exocytosis machinery. Decreased level of VGLUT2 associated with activation of ERK1/2 and exocytosis proteins supposed activation of glutamate release in the hippocampus, while in the temporal cortex diminished activity of ERK1/2 and synapsin I associated with VGLUT2 up-regulation assumed inhibition of glutamatergic transmission. Our data let us supposed that decreasing of glutamate release in th& temporal cortex could be a trigger for the inhibition of hippocampal glutamatergic system and the beginning of further ataxia stage. Our data demonstrated correlation between expression and activity of exocytosis proteins and ERK1/2 mainly in the glutamategic neurons of the hippocampus and the temporal cortex that let us proposed significant role of ERK1/2 kinases as a positive regulator of glutamate release and as a result initiation of seizure expression. PMID:26827493

  4. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles.

    PubMed

    Zhang, Fen-Fen; Wan, Qiao; Li, Chen-Xin; Wang, Xiao-Li; Zhu, Zi-Qiang; Xian, Yue-Zhong; Jin, Li-Tong; Yamamoto, Katsunobu

    2004-10-01

    An electrochemical method suitable for the simultaneous measurement of cerebral glucose, lactate, L-glutamate and hypoxanthine concentrations from in vivo microdialysis sampling has been successfully performed for the first time using a neutral red-doped silica (NRDS) nanoparticle-derived enzyme sensor system. These uniform NRDS nanoparticles (about 50 +/- 3 nm) were prepared by a water-in-oil (W/O) microemulsion method, and characterized by a TEM technique. The neutral red-doped interior maintained its high electron-activity, while the exterior nano-silica surface prevented the mediator from leaching out into the aqueous solution, and showed high biocompability. These nanoparticles were then mixing with the glucose oxidase (GOD), lactate oxidase (LOD), L-glutamate oxidase (L-GLOD) or xanthine oxidase (XOD), and immobilized on four glassy carbon electrodes, respectively. A thin Nafion film was coated on the enzyme layer to prevent interference from molecules such as ascorbic acid and uric acid in the dialysate. The high sensitivity of the NRDS modified enzyme electrode system enables the simultaneous monitoring of trace levels of glucose, L-glutamate, lactate and hypoxanthine in diluted dialysate samples from a rat striatum. PMID:15517210

  5. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats.

    PubMed

    Sanches, Jonas R; França, Lucas M; Chagas, Vinicyus T; Gaspar, Renato S; Dos Santos, Kayque A; Gonçalves, Luciana M; Sloboda, Deborah M; Holloway, Alison C; Dutra, Richard P; Carneiro, Everardo M; Cappelli, Ana Paula G; Paes, Antonio Marcus de A

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10-1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  6. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    PubMed Central

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  7. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist.

    PubMed Central

    Dijk, S. N.; Francis, P. T.; Stratmann, G. C.; Bowen, D. M.

    1995-01-01

    1. We have investigated an aspect of the regulation of cortical pyramidal neurone activity. Microdialysis was used to assess whether topical application of drugs (in 10 microliter) to fill a burr hole over the frontal cortex, where part of the corticostriatal pathway originates, would change concentrations of the excitatory amino acids glutamate and aspartate in the striatum of the anaesthetized rat. 2. Topical application of N-methyl-D-aspartate (NMDA, 2 and 20 mM) dose-dependently increased glutamate and aspartate concentrations in the striatum. Coapplication of tetrodotoxin (10 microM) blocked the NMDA-evoked rise in these amino acids. A calcium-free medium, perfused through the probe also blocked the rise, indicating that it was due to an exocytotic mechanism in the striatum. 3. It was hypothesized that the rise observed was due to an increase in the activity of the corticostriatal pathway. As 5-hydroxytryptamine1A (5-HT1A) receptors are enriched on cell bodies of corticostriatal neurones, a selective 5-HT1A-antagonist (WAY 100135) was coapplied with the lower dose of NMDA. Compared to NMDA alone, coapplication of 50 microM WAY 100135 significantly increased glutamate release. This effect was sensitive to tetrodotoxin and calcium-dependent. Application of 50 microM WAY 100135 alone significantly enhanced glutamate release above baseline; this was also tested at 100 microM (not significant). 4. Compared to NMDA alone, coapplication of WAY 100135 (20 microM) significantly enhanced aspartate release; the mean value was also increased (not significantly) with 50 microM. This rise was calcium-dependent, but not tetrodotoxin-sensitive. WAY 100135 (100 microM) reduced NMDA-induced aspartate release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582540

  8. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  9. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    PubMed

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999.

  10. Blockage of acquisition and expression of morphine-induced conditioned place preference in rats due to activation of glutamate receptors type II/III in nucleus accumbens.

    PubMed

    Baharlouei, Negar; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas

    2015-08-01

    Numerous studies have shown that glutamate in the nucleus accumbens (NAc) is an essential neurotransmitter for the extension of morphine-induced place preference. mGlu2/3 glutamate receptors in the NAc have important roles in the reward pathway. However, less is known about the role of this glutamate receptor subtype in morphine-induced conditioned place preference (CPP). In this study, we examined the effects of bilateral intra-accumbal administration of LY379268, an mGlu2/3 receptor agonist on the acquisition and expression of morphine-induced CPP in rats. Adult male Wistar rats (n=136; 220-250g) were evaluated in a CPP paradigm. Doses of LY379268 (0.3, 1 and 3μg/0.5μL saline per side) were administered into the NAc on both sides during the 3days of the conditioning (acquisition) or post-conditioning (expression) phase. The results show that bilateral intra-accumbal administration of LY379268 (0.3, 1 and 3μg) markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. In a second series of experiments, we determined that injection of LY379268 into the NAc considerably attenuated the expression of morphine CPP only at the highest dose (3μg). Our findings suggest that activation of mGlu2/3 receptors in the NAc dose-dependently blocked both the establishment and the maintenance of morphine-induced CPP and confirmed the role of this system as a potential therapeutic target for addiction.

  11. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    PubMed

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. PMID:10571918

  12. Three diterpenes from Leonurus japonicus Houtt protect primary cultured rat cortical cells from glutamate-induced toxicity.

    PubMed

    Moon, Hyung-In

    2010-08-01

    To examine the cytoprotective effects of Leonurus japonicus Houtt, its protection against the glutamate-induced toxicity in primary cortical cultured neurons was tested. In order to clarify the cytoprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. By such fractionation, three known diterpenes--prehispanolone (1), leojaponin (2) and iso-preleoheterin (3)--were isolated from the methanol extracts from the air-dried L. japonicus. Among these three compounds, leojaponin (2) exhibited significant cytoprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microm to 10 microm. Therefore, the cytoprotective effect of L. japonicus might be due to the inhibition of glutamate-induced toxicity by the diterpenes it contains.

  13. The negative effects of alcohol hangover on high-anxiety phenotype rats are influenced by the glutamate receptors of the dorsal midbrain.

    PubMed

    Ezequiel Leite, L; Nobre, M J

    2012-06-28

    Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 μl) and l-glutamic acid diethyl ester - GDEE (160 nmol/0.2 μl), respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood

  14. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  15. The Neuroprotective Effect of Dark Chocolate in Monosodium Glutamate-Induced Nontransgenic Alzheimer Disease Model Rats: Biochemical, Behavioral, and Histological Studies.

    PubMed

    Madhavadas, Sowmya; Kapgal, Vijaya Kumar; Kutty, Bindu M; Subramanian, Sarada

    2016-01-01

    The vulnerability to oxidative stress and cognitive decline continue to increase during both normal and pathological aging. Dietary changes and sedentary life style resulting in mid-life obesity and type 2 diabetes, if left uncorrected, further add to the risk of cognitive decline and Alzheimer disease (AD) in the later stages of life. Certain antioxidant agents such as dietary polyphenols, taken in adequate quantities, have been suggested to improve the cognitive processes. In this study, we examined the effect of oral administration of dark chocolate (DC) containing 70% cocoa solids and 4% total polyphenol content for three months at a dose of 500 mg/Kg body weight per day to 17-month-old monosodium glutamate treated obese Sprague-Dawley rats, earlier characterized as a nontransgenic AD (NTAD) rat model after reversal of obesity, diabetes, and consequent cognitive impairments. The results demonstrated that DC reduced the hyperglycemia, inhibited the cholinesterase activity in the hippocampal tissue homogenates, and improved the cognitive performance in spatial memory related Barnes maze task. Histological studies revealed an increase in cell volume in the DC treated rats in the CA3 region of the hippocampus. These findings demonstrated the benefits of DC in enhancing cognitive function and cholinergic activity in the hippocampus of the aged NTAD rats while correcting their metabolic disturbances. PMID:26673833

  16. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats.

    PubMed

    Yao, Gaoyi; Yue, Huifeng; Yun, Yang; Sang, Nan

    2015-02-01

    Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances.

  17. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse.

    PubMed

    Shen, Hao-wei; Scofield, Michael D; Boger, Heather; Hensley, Megan; Kalivas, Peter W

    2014-04-16

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration.

  18. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  19. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats.

    PubMed

    Viswaprakash, Nilmini; Vaithianathan, Thirumalini; Viswaprakash, Ajitan; Judd, Robert; Parameshwaran, Kodeeswaran; Suppiramaniam, Vishnu

    2015-09-01

    Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment. PMID:25807926

  20. Spontaneous L-glutamate release enhancement in rat substantia gelatinosa neurons by (-)-carvone and (+)-carvone which activate different types of TRP channel.

    PubMed

    Kang, Qin; Jiang, Chang-Yu; Fujita, Tsugumi; Kumamoto, Eiichi

    2015-04-10

    Transient receptor potential (TRP) channels in the spinal dorsal horn lamina II (substantia gelatinosa; SG), which are involved in the modulation of nociceptive transmission, have not yet been fully examined in property. Activation of the TRP channels by various plant-derived chemicals results in an increase in the spontaneous release of L-glutamate onto the SG neurons. We examined the effects of a monoterpene ketone (-)-carvone (contained in spearmint) and its stereoisomer (+)-carvone (in caraway) on glutamatergic spontaneous excitatory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. (-)-Carvone and (+)-carvone increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) in a reversible and concentration-dependent manner with a small increase in its amplitude. Half-maximal effective concentrations of (-)-carvone and (+)-carvone in increasing sEPSC frequency were 0.70 mM and 0.72 mM, respectively. The (-)-carvone but not (+)-carvone activity was inhibited by a TRPV1 antagonist capsazepine. On the other hand, the (+)-carvone but not (-)-carvone activity was inhibited by a TRPA1 antagonist HC-030031. These results indicate that (-)-carvone and (+)-carvone activate TRPV1 and TRPA1 channels, respectively, resulting in an increase in spontaneous L-glutamate release onto SG neurons, with almost the same efficacy. Such a difference in TRP activation between the stereoisomers may serve to know the properties of TRP channels in the SG. PMID:25747716

  1. Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells.

    PubMed

    Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.

  2. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy

    PubMed Central

    Robinson, Caleb R.; Dougherty, Patrick M.

    2014-01-01

    There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. The current study investigated whether these changes were also generalizable to the bortezomib CIPN. Changes in mechanical sensitivity were verified in bortezomib-treated animals, and these changes were prevented by co-treatment with a glial activation inhibitor (minocycline), a gap junction decoupler (carbenoxolone), and by a glutamate transporter upregulator (ceftriaxone). Immunohistochemistry data at day 30 in bortezomib-treated animals showed increases in expression of GFAP and connexin 43 but decrease in GLAST expression. These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes. PMID:25446343

  3. STEREOLOGICAL ESTIMATES OF THE BASAL FOREBRAIN CELL POPULATION IN THE RAT, INCLUDING NEURONS CONTAINING CHOLINE ACETYLTRANSFERASE (ChAT), GLUTAMIC ACID DECARBOXYLASE (GAD) OR PHOSPHATE-ACTIVATED GLUTAMINASE (PAG) AND COLOCALIZING VESICULAR GLUTAMATE TRANSPORTERS (VGluTs)

    PubMed Central

    GRITTI, I.; HENNY, P.; GALLONI, F.; MAINVILLE, L.; MARIOTTI, M.; JONES, B. E.

    2006-01-01

    The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and are comprised by GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as ~355,000 and the numbers of ChAT-immuno-positive (+) as ~22,000, GAD+ ~119,000 and PAG+ ~316,000, corresponding to ~5%, ~35% and ~90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also have the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, VGluT3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or

  4. Acute pancreatitis decreases the sensitivity of pancreas-projecting dorsal motor nucleus of the vagus neurones to group II metabotropic glutamate receptor agonists in rats

    PubMed Central

    Babic, Tanja; Travagli, R Alberto

    2014-01-01

    Recent studies have shown that pancreatic exocrine secretions (PES) are modulated by dorsal motor nucleus of the vagus (DMV) neurones, whose activity is finely tuned by GABAergic and glutamatergic synaptic inputs. Group II metabotropic glutamate receptors (mGluR) decrease synaptic transmission to pancreas-projecting DMV neurones and increase PES. In the present study, we used a combination of in vivo and in vitro approaches aimed at characterising the effects of caerulein-induced acute pancreatitis (AP) on the vagal neurocircuitry modulating pancreatic functions. In control rats, microinjection of bicuculline into the DMV increased PES, whereas microinjections of kynurenic acid had no effect. Conversely, in AP rats, microinjection of bicuculline had no effect, whereas kynurenic acid decreased PES. DMV microinjections of the group II mGluR agonist APDC and whole cell recordings of excitatory currents in identified pancreas-projecting DMV neurones showed a reduced functional response in AP rats compared to controls. Moreover, these changes persisted up to 3 weeks following the induction of AP. These data demonstrate that AP increases the excitatory input to pancreas-projecting DMV neurones by decreasing the response of excitatory synaptic terminals to group II mGluR agonist. PMID:24445314

  5. Effects of monosodium-L-glutamate administration on serum levels of reproductive hormones and cholesterol, epididymal sperm reserves and testicular histomorphology of male albino rats.

    PubMed

    Ochiogu, Izuchukwu S; Ogwu, David; Uchendu, Chukwuka N; Okoye, Chidozie N; Ihedioha, John I; Mbegbu, Edmund C

    2015-03-01

    This study investigated the effects of administration of monosodium L-glutamate (MSG) on serum gonadotrophin-releasing hormone (GnRH), luteinising hormone (LH), testosterone and total cholesterol (TC), cauda epididymal sperm reserves (CESR) and testicular histomorphology of adult male albino rats. Eighty-four rats, randomly assigned to 7 groups of 12 rats each, were used for the study. Varying low doses (0.25, 0.50 or 1.00 g/kg body weight) of MSG were administered orally or subcutaneously at 48-h intervals for six weeks. Serum GnRH, LH, testosterone and TC, and CESR were evaluated on days 14, 28 and 42 of MSG administration. Testicular histomorphology was evaluated on day 42. The results showed that the mean serum GnRH, LH and testosterone levels, and the CESR of all the treated groups were significantly (P < 0.05) lower than those of the untreated control on days 14, 28 and 42 of MSG administration. The mean serum TC levels of all the treated groups were also significantly (P < 0.05) lower than those of the control group on days 14 and 28. No lesions were observed on sections of the testes. It was concluded that MSG administration for 14, 28 and 42 days led to significantly lower serum levels of GnRH, LH, testosterone and TC, and significantly lower CESR. PMID:25655420

  6. Distribution of the group II metabotropic glutamate receptors (mGluR2/3) in the enteric nervous system of the rat.

    PubMed

    Larzabal, A; Losada, J; Mateos, J M; Benítez, R; Garmilla, I J; Kuhn, R; Grandes, P; Sarría, R

    1999-12-01

    We used affinity purified antisera specific for group II metabotropic glutamate receptors in combination with a pre-embedding immunocytochemical method for light microscopy to investigate the localization of mGluR2/3 receptors in the enteric nervous system of the rat small intestine. In the submucosal plexuses of the jejunum and ileum, strongly mGluR2/3 immunoreactive cells were distributed between the circular muscular layer and the muscularis mucosa. In addition, oval or rounded immunostained ganglion cells appeared located in the myenteric plexuses of both intestinal regions. Nerve fibers intensely stained were observed extending between adjacent myenteric ganglia. The localization of mGluR2/3 receptors in enteric neurons might have functional implications in the physiology and pathology of the gut. PMID:10624799

  7. Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats.

    PubMed

    Majumdar, S; Mallick, B N

    2003-03-01

    Norepinephrine, acetylcholine and GABA levels alter during rapid eye movement (REM) sleep and its deprivation. Increased synthesis of those neurotransmitters is necessary for their sustained release. Hence, in this study, the concentrations of tyrosine hydroxylase (TH), choline acetyl transferase (ChAT) and glutamic acid decarboxylase (GAD), the enzymes responsible for their synthesis, were immunohistochemically estimated within the neurons in locus coeruleus, laterodorsal tegmentum and pedunculopontine tegmentum and medial preoptic area in REM sleep deprived and control rats. It was observed that as compared to controls, deprivation increased TH and GAD significantly in the locus coeruleus only, while in other areas, they remained unchanged. The findings help explaining the mechanism of increase in neurotransmitter levels in the brain after REM sleep deprivation and their significance has been discussed.

  8. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.

  9. Radiochemical assay for a NADP+-specific gamma-glutamate semialdehyde dehydrogenase extracted from mitochondrial membrane of rat intestinal epithelial cells

    SciTech Connect

    Kramer, J.J.; Gooding, R.C.; Jones, M.E.

    1988-02-01

    A radiochemical assay has been developed for a NADP+-specific gamma-glutamate semialdehyde dehydrogenase from rat intestinal epithelial cells. The spectrophotometric assay utilized to measure the enzyme in bacterial cell homogenates is not sensitive enough for homogenates from rat mitochondria, which require an assay that can measure as little as 0.5 nmol NADPH formed/min/ml extract. The assay described here is sensitive to 0.1 nmol product formed/min/ml of extract and employs the use of (/sup 3/H)pyrroline 5-carboxylate which is phosphorylated and oxidized by the enzyme to gamma-(/sup 3/H)glutamyl phosphate, a product that decomposes to (/sup 3/H)pyrrolidone 5-carboxylate. The latter product is separated from the substrate by ion-exchange chromatography. In order to correct for any product loss during separation by ion-exchange (/sup 14/C)pyrrolidone 5-carboxylate is added as an internal standard to the deproteinized assay mixture. Under the assay conditions described mammalian gamma-glutamate semialdehyde dehydrogenase activity is linear with respect to time and protein concentration. Comparison between the kinetic parameters reported for the bacterial enzyme and those reported here for the mammalian enzyme indicate similarities in the pH optima as well as a requirement for phosphate. Kinetic studies on mammalian enzyme yield apparent Km values of 1.8 mM for pyrroline 5-carboxylate, 0.2 mM for NADP+, and 11.3 mM for phosphate.

  10. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    PubMed

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.

  11. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction.

    PubMed

    Monastyrskaia, K; Lundstrom, K; Plahl, D; Acuna, G; Schweitzer, C; Malherbe, P; Mutel, V

    1999-11-01

    1. The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5'[gamma-35S]-thiotriphosphate [gamma-35S]-GTP binding assay. 2. Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters K(D) and Bmax values of 150 nM and 9.3 pmoles mg-1 protein, respectively. The specific binding was inhibited concentration-dependently by several mGlu receptor ligands, and their rank order of affinity was established. 3. Several peptides inhibited the [3H]-L-AP4 binding with the following rank order of potency: glutamate-glutamate>glutamate-glutamate-leucine=aspartate - glutamate>glutamate - glutamate-aspartate>lactoyl-glutamate>aspartate-aspartate. Aspartate-phenylalanine-methyl ester (aspartame) was inactive up to 1 mM and guanosine-5'-monophosphate and inosine-5'-monophosphate were inactive up to 100 micronM. 4. The [gamma-35S]-GTP binding functional assay was used to determine the agonist activities of the different compounds. For the rat mGlu4 agonists, L-AP4 and L-glutamate, the correlation between their occupancy and activation of the receptor was close to one. The peptides, Glu-Glu, Asp-Glu and Glu-Glu-Asp failed to stimulate the [gamma-35S]-GTP binding at receptor occupancy greater than 80% and Glu-Glu-Leu appeared to be a weak partial agonist. These peptides did not elicit a clear dose-dependent umami perception. However, Glu-lac showed a good correlation between its potency to stimulate the [gamma-35S]-GTP binding and its affinity for displacement of [3H]-L-AP4 binding. These data are in agreement with the peptide taste assessment in human subjects, which showed that the acid derivatives of glutamate had characteristics similar to umami.

  12. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn.

    PubMed

    Gerber, G; Zhong, J; Youn, D; Randic, M

    2000-01-01

    The effects of group II and group III metabotropic glutamate receptor agonists on synaptic responses evoked by primary afferent stimulation in the dorsal horn, but mostly substantia gelatinosa, neurons were studied in the spinal cord slice preparation using conventional intracellular recording technique. Bath application of a potent metabotropic glutamate receptor 2- and 3-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine reversibly suppressed monosynaptic and polysynaptic excitatory postsynaptic potentials evoked by A primary afferent fibers stimulation, the effect likely mediated by mGlu3 receptor subtype. This suppressing effect of (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine on primary afferent neurotransmission was dose dependent and reduced by (S)-alpha-ethylglutamate, a group II metabotropic glutamate receptor antagonist. (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine suppressed excitatory postsynaptic potentials without inducing detectable changes of postsynaptic membrane potential and neuronal input resistance in dorsal horn neurons. The paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons was reduced by (2S,1'R,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl) glycine application, suggesting a presynaptic site of action. The selective group III metabotropic glutamate receptor agonist (S)-2-amino-4-phosphonobutanoate also depressed A afferent fibers-evoked monosynaptic and polysynaptic excitatory postsynaptic potentials in a dose-dependent and reversible manner. The concentration-dependence of (S)-2-amino-4-phosphonobutanoate-mediated depression was most consistent with activation of mGlu receptor subtypes 4 and 7. However, on the basis of anatomical distribution of mGlu 4 and 7 subtypes, it is also possible that the (S)-2-amino-4-phosphonobatanoate effect is due to interaction with mGlu 7 receptor alone. (RS)-alpha-cyclopropyl-4-phosphonophenylglycine a preferential

  13. Sub-chronic concomitant ingestion of L-arginine and monosodium glutamate improves feed efficiency, lipid metabolism and antioxidant capacity in male Wistar rats.

    PubMed

    Egbuonu, Anthony C Cemaluk

    2012-03-15

    The use of L-arginine (ARG) is common in supplements, whereas, Monosodium Glutamate (MSG) is widely used as flavor enhancing food additive. Thus, ARG and MSG may be present together in human diets, warranting this study aimed at investigating the effect of concomitant ingestion of ARG and MSG on some biochemical indices in male rats. Twelve male albino rats were grouped into three (n = 4) and concomitantly exposed to 0:0, 20:5 and 60:15 mg kg(-1) of ARG:MSG. Exposure was peroral and every twenty four h for 28 days. ARG plus MSG treatment caused a significant (p < or = 0.05) increase in Feed Efficiency (FE) (Low dose: 5.23 +/- 22%; High dose: 5.60 +/- 11%), whereas, it decreased (p < or = 0.05) the serum Total Cholesterol (T-Chol) (low dose: 80.83 +/- 0.11 mg/100 mL, high dose: 92.55 +/- 0.14 mg/100 mL), triacylglycerol (TAG) (low dose: 179.91 +/- 0.09 mg/100 mL, high dose: 119.77 +/- 0.32 mg/100 mL) and malondialdehyde (MDA) (low dose: 5.00 +/- 0.07 mg/100 mL, high dose: 24.36 +/- 0.10 mg/100 mL) concentrations of the rats in a dose dependent manner. However, (at the high dose) the increase in Body Weight (BW) (0.08 +/- 0.07 kg), Feed Intake (FI) (0.40 +/- 0.03 kg) and Water Intake (WI) (0.65 +/- 0.18 L) induced by ARG plus MSG exposure was not significant (p < or = 0.05), suggesting non treatment related effect on these routine parameters. However, exposure to ARG plus MSG may significantly improve feed efficiency, lipid metabolism and antioxidant capacity in the male rats. PMID:24175428

  14. Elevated intracranial dopamine impairs the glutamate-nitric oxide-cyclic guanosine monophosphate pathway in cortical astrocytes in rats with minimal hepatic encephalopathy

    PubMed Central

    DING, SAIDAN; HUANG, WEILONG; YE, YIRU; YANG, JIANJING; HU, JIANGNAN; WANG, XIAOBIN; LIU, LEPING; LU, QIN; LIN, YUANSHAO

    2014-01-01

    In a previous study by our group memory impairment in rats with minimal hepatic encephalopathy (MHE) was associated with the inhibition of the glutamate-nitric oxide-cyclic guanosine monophosphate (Glu-NO-cGMP) pathway due to elevated dopamine (DA). However, the effects of DA on the Glu-NO-cGMP pathway localized in primary cortical astrocytes (PCAs) had not been elucidated in rats with MHE. In the present study, it was identified that when the levels of DA in the cerebral cortex of rats with MHE and high-dose DA (3 mg/kg)-treated rats were increased, the co-localization of N-methyl-d-aspartate receptors subunit 1 (NMDAR1), calmodulin (CaM), nitric oxide synthase (nNOS), soluble guanylyl cyclase (sGC) and cyclic guanine monophosphate (cGMP) with the glial fibrillary acidic protein (GFAP), a marker protein of astrocytes, all significantly decreased, in both the MHE and high-dose DA-treated rats (P<0.01). Furthermore, NMDA-induced augmentation of the expression of NMDAR1, CaM, nNOS, sGC and cGMP localized in PCAs was decreased in MHE and DA-treated rats, as compared with the controls. Chronic exposure of cultured cerebral cortex PCAs to DA treatment induced a dose-dependent decrease in the concentration of intracellular calcium, nitrites and nitrates, the formation of cGMP and the expression of NMDAR1, CaM, nNOS and sGC/cGMP. High doses of DA (50 μM) significantly reduced NMDA-induced augmentation of the formation of cGMP and the contents of NMDAR1, CaM, nNOS, sGC and cGMP (P<0.01). These results suggest that the suppression of DA on the Glu-NO-cGMP pathway localized in PCAs contributes to memory impairment in rats with MHE. PMID:25059564

  15. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  16. Glutamate and aspartate do not exhibit the same changes in their extracellular concentrations in the rat striatum after N-methyl-D-aspartate local administration.

    PubMed

    Parrot, Sandrine; Bert, Lionel; Renaud, Bernard; Denoroy, Luc

    2003-02-01

    To determine whether glutamate (Glu) and aspartate (Asp) undergo a similar regulation of their extracellular levels, Glu and Asp were simultaneously monitored in the striatum of anesthetized rats after local N-methyl-D-aspartate (NMDA) receptor stimulation, using 1-min in vivo microdialysis coupled to capillary electrophoresis with laser-induced fluorescence detection. Application of NMDA (10 min, 10(-3) M) through the dialysis probe induced 1) an increase (+50%) in Asp during the NMDA administration and 2) a surprising biphasic effect on Glu, with a rapid increase (+30%) and a return to baseline before the end of NMDA application, followed by a second increase (+40%) occurring after and linked to the end of NMDA administration. When studied in the presence of 10 microM tetrodotoxin (TTX) or 0.1 mM Ca(2+), the increase in Asp was partially TTX-dependent, and the early increase in Glu appeared to be partially TTX and Ca(2+) dependent, whereas the second increase in Glu was not. The second increase in Glu level was still present when NMDA antagonists (AP5 or MK-801) were administered at the end of NMDA application. Finally, only extracellular Asp was increased through application of lower NMDA concentrations (10(-4) M, 10(-5) M), whereas extracellular Glu was not affected. In conclusion, these results suggest a differential control of Glu and Asp extracellular levels in rat striatum by distinct mechanisms linked to NMDA receptors and involving neuronal or nonneuronal release.

  17. No improvement of functional and histological outcome after application of the metabotropic glutamate receptor 5 agonist CHPG in a model of endothelin-1-induced focal ischemia in rats.

    PubMed

    Riek-Burchardt, M; Henrich-Noack, P; Reymann, K G

    2007-04-01

    The role of group I metabotropic glutamate receptors (mGluRs) in neurodegeneration is as yet unclear as mGluR1/5 antagonists and agonists yielded contradictory effects in different disease models. In the present study, we examined the neuroprotective potency of the selective mGluR5 agonist, (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), in endothelin-1(ET-1)-induced focal ischemia in rats. In addition to the effect of CHPG on the histologically defined infarct size, we studied its influence on sensorimotor impairments in the ladder rung walking test at late time points up to 4 weeks after the ischemic insult. Rats were treated i.c.v. with an injection of 1mM CHPG beginning 10min after the application of ET-1. Histological analyses 4 weeks after ET-1-induced ischemia demonstrated only a small, insignificant reduction in infarct size after CHPG application. In accordance with this result, there were no significant effects of the used CHPG concentration on sensorimotor impairments in the ladder rung walking test. In conclusion, our data point to the restricted value of CHPG as a neuroprotectant after transient focal ischemia and to the importance of evaluating neuroprotective effects at late post-ischemic time points. PMID:17239461

  18. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    PubMed

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  19. Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats

    PubMed Central

    Siniscalco, Dario; Giordano, Catia; Fuccio, Carlo; Luongo, Livio; Ferraraccio, Franca; Rossi, Francesca; de Novellis, Vito; Roth, Kevin A.; Maione, Sabatino

    2008-01-01

    The effect of the non-selective, 1-aminoindan-1,5-dicarboxylic acid (AIDA), and selective (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4- methoxycyclohexyl) methanone (JNJ16259685), metabotropic glutamate subtype 1 (mGlu1) receptor antagonists, on rat sciatic nerve chronic constrictive injury (CCI)- induced hyperalgesia, allodynia, spinal dorsal horn apoptosis, and gliosis was examined at 3 and 7 days post-injury. RT-PCR analysis showed increased expression of bax, apoptotic protease-activating factor-1 (apaf-1), nestin, GFAP, and caspase-7 mRNA in the dorsal horn spinal cord by 3 days post-CCI. At 7 days post-CCI, only over-expression of bcl-2, nestin and GFAP mRNA was observed. Administration of AIDA reduced thermal hyperalgesia and mechanical allodynia at 3 and 7 days post-CCI; administration of JNJ16259685 reduced thermal hyperalgesia at 3 and 7 days post-CCI, but not mechanical allodynia. AIDA decreased the mRNA levels of bax, apaf-1, GFAP and caspase-7 genes. JNJ16259685 increased the mRNA levels of bcl- 2 and GFAP gene, and decreased APAF-1 and caspases-7 genes. Inhibiting mGlu1 receptors also reduced TUNEL-positive profiles and immunohistochemical reactivity for caspase-7. We report here that despite inhibiting CCI-induced over-expression of pro-apoptotic genes in the spinal cord dorsal horn, the selective mGlu1 receptor antagonist JNJ16259685 exerted only a slight and transient allodynic effect. Moreover, JNJ16259685, but not the non-selective AIDA, increased astrogliosis which may account for its decreased analgesic efficacy. This study provides evidence that the contemporary and partial blockade of group I and likely ionotropic glutamate receptors may be a more suitable therapy than selective blockade of mGlu1 subtype receptors condition to decrease neuropathic pain symptoms. PMID:18325779

  20. Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex.

    PubMed

    Barbara, Jean-Gaël; Auclair, Nathalie; Roisin, Marie-Paule; Otani, Satoru; Valjent, Emmanuel; Caboche, Jocelyne; Soubrie, Philippe; Crepel, Francis

    2003-03-01

    At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations.

  1. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions.

  2. Glycogen synthase kinase 3 beta regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain

    PubMed Central

    Weng, Han-Rong; Gao, Mei; Maixner, Dylan W.

    2014-01-01

    Dysfunctional glial glutamate transporters and over production of pro-inflammatory cytokines (including interleukin-1β, IL-1β) are two prominent mechanisms by which glial cells enhance neuronal activities in the spinal dorsal horn in neuropathic pain conditions. Endogenous molecules regulating production of IL-1β and glial glutamate functions remain poorly understood. In this study, we revealed a dynamic alteration of GSK3β activities and its role in regulating glial glutamate transporter 1 (GLT-1) protein expression in the spinal dorsal horn and nociceptive behaviors following the nerve injury. Specifically, GSK3β was expressed in both neurons and astrocytes in the spinal dorsal horn. GSK3β activities were suppressed on day 3 but increased on day 10 following the nerve injury. In parallel, protein expression of GLT-1 in the spinal dorsal horn was enhanced on day 3 but reduced on day 10. In contrast to these time-dependent changes, the activation of astrocytes and over-production of IL-1β were found on both day 3 and day 10. Meanwhile, thermal hyperalgesia was observed from day 2 through day 10 and mechanical allodynia from day 4 through day 10. Pre-emptive pharmacological inhibition of GSK3β activities significantly ameliorated thermal hyperalgesia and mechanical allodynia at the late stage but did not have effects at the early stage. These were accompanied with the suppression of GSK3β activities, prevention of decreased GLT-1 protein expression, inhibition of astrocytic activation, and reduction of IL-1β in the spinal dorsal horn on day 10. These data indicate that the increased GSK3β activity in the spinal dorsal horn is attributable to the downregulation of GLT-1 protein expression in neuropathic rats at the late stage. Further, we also demonstrated that the nerve-injury-induced thermal hyperalgesia on day 10 was transiently suppressed by pharmacological inhibition of GSK3β. Our study suggests that GSK3β may be a potential target for the

  3. [Y-27632 induces calcium-independent glutamate release in rat brain synaptosomes by the mechanism which is distinct from exocytosis].

    PubMed

    Lemeshchenko, V V; Pekun, T G; Vasim, T V; Fedorovich, S V

    2012-01-01

    The inhibitor of Rho-kinase Y-27632 induces non-secretory exocytosis in PC12 cells. The influence of this compound on central synapses remains uninvestigated. We showed that Y-27632 at the concentration 100 jtM led to spontaneous [14C]glutamate release in synaptosomes, which was not accompanied by plasma membrane depolarization. Membrane potential was registered by fluorescent dye DiSC3(5). Y27632 induced an increase of acridine orange fluorescence, exercising no influence over fluorescence of FM2-10 dye. These results suggest that Rho-kinase inhibition decreases pH gradient of synaptic vesicles not inducing exocytosis. Dissipation of the gradient leads to leakage of neurotransmitters to cytosol pumping them out by plasma membrane transporters. Our results show the involvement of Rho-dependent branch of intracellular signaling in regulation of pH gradient in synaptic vesicles. PMID:22873069

  4. Glutamate Transporter-Mediated Glutamate Secretion in the Mammalian Pineal Gland

    PubMed Central

    Kim, Mean-Hwan; Uehara, Shunsuke; Muroyama, Akiko; Hille, Bertil; Moriyama, Yoshinori; Koh, Duk-Su

    2008-01-01

    Glutamate transporters are expressed throughout the central nervous system where their major role is to clear released glutamate from presynaptic terminals. Here we report a novel function of the transporter in rat pinealocytes. This electrogenic transporter conducted inward current in response to L-glutamate and L- or D-aspartate and depolarized the membrane in patch clamp experiments. Ca2+ imaging demonstrated that the transporter-mediated depolarization induced a significant Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ rise finally evoked glutamate exocytosis as detected by carbon-fiber amperometry and by high-performance liquid chromatography. In pineal slices with densely packed pinealocytes, glutamate released from the cells effectively activated glutamate transporters in neighboring cells. The Ca2+ signal generated by KCl depolarization or acetylcholine propagated through several cell layers by virtue of the regenerative ‘glutamate-induced glutamate release’. Therefore we suggest that glutamate transporters mediate synchronized elevation of L-glutamate and thereby efficiently down-regulate melatonin secretion via previously identified inhibitory metabotropic glutamate receptors in the pineal gland. PMID:18945893

  5. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior.

    PubMed

    Bredewold, R; Schiavo, J K; van der Hart, M; Verreij, M; Veenema, A H

    2015-10-29

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline conditions and during social play. This resulted in a higher glutamate/GABA concentration ratio in males vs. females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 μl, 250 ng/0.5 μl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5+CNQX (2mM+0.4mM/0.5 μl, 30 mM+3mM/0.5 μl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social

  6. Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence

    PubMed Central

    Sidique, Shyama; Dhanya, Raveendra-Panickar; Sheffler, Douglas J.; Nickols, Hilary Highfield; Yang, Li; Dahl, Russell; Mangravita-Novo, Arianna; Smith, Layton H.; D’Souza, Manoranjan S.; Semenova, Svetlana; Conn, P. Jeffrey; Markou, Athina; Cosford, Nicholas D. P.

    2012-01-01

    Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans. PMID:23009245

  7. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo.

    PubMed

    Mao, Li-Min; Wang, John Q

    2016-04-01

    Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn.

  8. Effects of the metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on rats tested with the paired associates learning task in touchscreen-equipped operant conditioning chambers.

    PubMed

    Lins, Brittney R; Howland, John G

    2016-03-15

    Effective treatments for the cognitive symptoms of schizophrenia are critically needed. Positive allosteric modulation (PAM) of metabotropic glutamate receptor subtype 5 (mGluR5) is one strategy currently under investigation to improve these symptoms. Examining cognition using touchscreen-equipped operant chambers may increase translation between preclinical and clinical research through analogous behavioral testing paradigms in rodents and humans. We used acute CDPPB (1-30mg/kg) treatment to examine the effects of mGluR5 PAM in the touchscreen paired associates learning (PAL) task using well-trained rats with and without co-administration of acute MK-801 (0.15mg/kg). CDPPB had no consistent effects on task performance when administered alone and failed to reverse the MK-801 induced impairments at any of the examined doses. Overall, the disruptive effects of MK-801 on PAL were consistent with previous research but increasing mGluR5 signaling is not beneficial in the PAL task. Future research should test whether administration of CDPPB during PAL acquisition increases performance.

  9. Exogenous glutamate and taurine exert differential actions on light-induced release of two endogenous amino acids in isolated rat retina.

    PubMed

    Barabás, Péter; Kovács, Ilona; Kardos, Julianna; Schousboe, Arne

    2003-09-01

    A dark-adapted isolated rat retina, preloaded with [(14)C]glutamate ([(14)C]Glu) and [(3)H]taurine ([(3)H]Tau), was superfused with artificial cerebrospinal fluid (ACSF) in the absence and presence of Glu (1 mM) or Tau (1 mM), as well as the Glu uptake inhibitors dihydrokainic acid (DHK, 0.04 mM) and trans-L-pyrrolidine-2,4-dicarboxylate (t-PDC, 0.004 mM). After 10 min of light stimulation, the extracellular level of [(14)C]Glu and [(3)H]Tau was reduced to 82 +/- 2% and 65 +/- 4% of the control, respectively. Basal release was enhanced when Tau and t-PDC were applied together, although none of the compounds had any effect when applied individually. Glu and DHK had no effect. The decrease of [(14)C]Glu efflux evoked by light stimuli was enhanced by t-PDC and Tau, either added separately or together, whereas Glu and DHK were without effect. In contrast, [(3)H]Tau efflux variations induced by light stimuli were reduced markedly by both Tau and Glu. These findings suggest distinctly different roles of Tau and Glu in light-induced responses in mammalian retina, including a possible role for Tau in light adaptation processes.

  10. Effects of 3,4-dihydroxyphenylpyruvic acid and L-glutamic acid on some pharmacokinetic parameters of L-dopa in the rat.

    PubMed

    Lindén, I B

    1980-05-01

    In the rat, various oral doses of 3,4-dihydroxyphenylpyruvic acid (DHPPA) administered simultaneously with L-dopa were shown to elevate the serum L-dopa and cerebral dopamine concentrations dose-dependently. With increasing DHPPA: L-dopa ratio the L-dopa-sparing effect became greater. Although oral and intravenous doses of DHPPA showed that it was readily converted to L-dopa in the serum, only small amounts of dopamine (DA) were detected in the brain. The high 3-O-methyldopa concentrations, measured in the serum after DHPPA administration, might be responsible for the failure of the L-dopa formed to pass the blood-brain barrier. Concomitant administration of L-dopa and glutamic acid gave significantly higher L-dopa values in the serum and DA and homovanillic acid values in the brain than did the same dose of L-dopa alone. This indicates that the transamination of L-dopa can also be effected by coadministration of L-dopa and an amino group donor in vivo.

  11. Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals.

    PubMed

    Chin, Chih-Liang; Upadhyay, Jaymin; Marek, Gerard J; Baker, Scott J; Zhang, Min; Mezler, Mario; Fox, Gerard B; Day, Mark

    2011-03-01

    Neuroimaging techniques have been exploited to characterize the effect of N-methyl-d-aspartate (NMDA) receptor antagonists on brain activation in humans and animals. However, most preclinical imaging studies were conducted in anesthetized animals and could be confounded by potential drug-anesthetic interactions as well as anesthetic agents' effect on brain activation, which may affect the translation of these basic research findings to the clinical setting. The main aim of the current study was to examine the brain activation elicited by the infusion of a subanesthetic dose of ketamine using blood oxygenation level dependence (BOLD) pharmacological magnetic resonance imaging (phMRI) in awake rats. However, a secondary aim was to determine whether a behaviorally active metabotropic glutamate 2/3 receptor agonist, (1S,2R,5R,6R)-2-amino-4-oxabicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), could modulate the effects of ketamine-induced brain activation. Our data indicate that ketamine produces positive BOLD signals in several cortical and hippocampal regions, whereas negative BOLD signals were observed in regions, such as periaqueductal gray (PAG) (p < 0.05). Furthermore, pretreatment of LY379268 significantly attenuated ketamine-induced brain activation in a region-specific manner (posterior cingulate, entorhinal, and retrosplenial cortices, hippocampus CA1, and PAG). The [corrected] region-specific brain activations observed in this ketamine phMRI study may afford a method of confirming central activity and dose selection in early clinical trials for novel experimental therapeutics. [corrected

  12. Effects of prenatal exposure to 2,4-D/2,4,5-T mixture on postnatal changes in rat brain glutamate, GABA protein, and nucleic acid levels

    SciTech Connect

    Mohammad, F.K.; Omer, V.E.V.

    1988-02-01

    The opportunity of maternal exposure to various chemicals in the work place and the general environments have increased, and the fetus and neonate may be at greater risk than the adult. However, the embryotoxic and teratogenic effects of the chlorinated phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), the main chemicals in Agent Orange, are well documented only in laboratory animals. The brain of the developing fetus is vulnerable to the toxic effects of the phenoxy herbicides which readily cross the placental barrier and distribute into fetal tissues, including brain. Although the neurochemical basis for the behavioral teratogenicity of the phenoxy herbicides is not know, it was recently reported that non-teratogenic doses of a 1:1 mixture of 2,4-D and 2,4,5-T delayed the ontogeny of dopamine and serotonin in the brain of the developing rate. This communication provides further descriptive information about the ontogeny of rat brain nucleic acid, protein, glutamate and ..gamma..-aminobutyrate (GABA) following in utero exposure to non-teratogenic levels of a 1:1 mixture of 2,4-D/2,4,5-T.

  13. Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus.

    PubMed

    Otani, S; Connor, J A

    1998-09-15

    1. During block of gamma-aminobutyric acid-A-mediated inhibition, low-frequency stimulation (2 Hz, 900 pulses) to Schaffer collateral-CA1 neuron synapses of adult rat hippocampus induced an N-methyl-D-aspartate receptor-independent, postsynaptic Ca2+-dependent depression of synaptic strength (long-term depression; LTD). 2. Ratio imaging with fura-2 revealed moderate dendritic [Ca2+] increases (approximately 500 nM) during only the initial approximately 30 s of the 7.5 min stimulation period. Conditioning for 30 s was, however, insufficient to induce LTD. 3. The [Ca2+] changes were insensitive to the metabotropic glutamate receptor (mGluR) antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG). MCPG, however, completely blocked LTD when present during conditioning. 4. The [Ca2+] changes were abolished by postsynaptic hyperpolarization (-110 mV at the soma). Hyperpolarizing neurons to -110 mV during conditioning significantly attenuated LTD induction. 5. LTD induction was also blocked by the postsynaptic presence of the protein kinase C inhibitor peptide PKC(19-36). 6. These results suggest that LTD induction in adult hippocampus by prolonged low-frequency stimulation depends on both a rapid Ca2+ influx through voltage-sensitive channels and synaptic stimulation of mGluRs which may be coupled to phospholipase C.

  14. An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo

    PubMed Central

    Wallis, James L; Irvine, Mark W; Jane, David E; Lodge, David; Collingridge, Graham L; Bortolotto, Zuner A

    2015-01-01

    The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25821051

  15. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice

    PubMed Central

    Hernández-Bautista, René J.; Alarcón-Aguilar, Francisco J.; Escobar-Villanueva, María Del C.; Almanza-Pérez, Julio C.; Merino-Aguilar, Héctor; Konigsberg Fainstein, Mina; López-Diazguerrero, Norma E.

    2014-01-01

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline. PMID:24979131

  16. Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes

    PubMed Central

    Reyes, Reno C; Verkhratsky, Alexei; Parpura, Vladimir

    2012-01-01

    Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum). PMID:22268447

  17. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.

    PubMed

    Patel, Anant B; de Graaf, Robin A; Rothman, Douglas L; Behar, Kevin L

    2015-07-01

    γ-Aminobutyric acid (GABA) clearance from the extracellular space after release from neurons involves reuptake into terminals and astrocytes through GABA transporters (GATs). The relative flows through these two pathways for GABA released from neurons remains unclear. This study determines the effect of tiagabine, a selective inhibitor of neuronal GAT-1, on the rates of glutamate (Glu) and GABA metabolism and GABA resynthesis via the GABA-glutamine (Gln) cycle. Halothane-anesthetized rats were administered tiagabine (30 mg/kg, i.p.) and 45 min later received an intravenous infusion of either [1,6-(13)C2]glucose (in vivo) or [2-(13)C]acetate (ex vivo). Nontreated rats served as controls. Metabolites and (13)C enrichments were measured with (1)H-[(13)C]-nuclear magnetic resonance spectroscopy and referenced to their corresponding endpoint values measured in extracts from in situ frozen brain. Metabolic flux estimates of GABAergic and glutamatergic neurons were determined by fitting a metabolic model to the (13)C turnover data measured in vivo during [1,6-(13)C2]glucose infusion. Tiagabine-treated rats were indistinguishable (P > 0.05) from controls in tissue amino acid levels and in (13)C enrichments from [2-(13)C]acetate. Tiagabine reduced average rates of glucose oxidation and neurotransmitter cycling in both glutamatergic neurons (↓18%, CMR(glc(ox)Glu): control, 0.27 ± 0.05 vs. tiagabine, 0.22 ± 0.04 µmol/g/min; ↓11%, V(cyc(Glu-Gln)): control 0.23 ± 0.05 vs. tiagabine 0.21 ± 0.04 µmol/g/min and GABAergic neurons (↓18-25%, CMR(glc(ox)GABA): control 0.09 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min; V(cyc(GABA-Gln)): control 0.08 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min), but the changes in glutamatergic and GABAergic fluxes were not significant (P > 0.10). The results suggest that any reduction in GABA metabolism by tiagabine might be an indirect response to reduced glutamatergic drive rather than direct compensatory effects.

  18. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome

    PubMed Central

    Zhang, Wen; Wei, Li; Yu, Wenjing; Cui, Xia; Liu, Xiaofang; Wang, Qian; Wang, Sumei

    2016-01-01

    Background Jian-Pi-Zhi-Dong Decoction (JPZDD) is a dedicated treatment of Tourette syndrome (TS). The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu) and γ-aminobutyric acid (GABA) and their receptors in a TS rat model. Materials and methods Rats were divided into four groups (n=12 each). TS was induced in three of the groups by injecting them with 3,3′-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia) or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR) were observed using Western blot and real-time polymerase chain reaction. Results Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the mRNA expression, only Tia reduced the expression of N-methyl-D-aspartate receptor 1, compared with the model group. Conclusion JPZDD could alleviate impairments in behavior and dysfunctional signaling by downregulating GABAAR in the striatum. We suggest that this acts to maintain the balance of Glu and GABA. PMID:27279743

  19. Antagonism of glutamate receptors in the intermediate and caudal NTS of awake rats produced no changes in the hypertensive response to chemoreflex activation.

    PubMed

    Machado, Benedito H; Bonagamba, Leni G H

    2005-01-15

    The role of excitatory amino acid (EAA) receptors in the neurotransmission of the sympathoexcitatory component of the chemoreflex (pressor response) in the intermediate and caudal aspects of the commissural nucleus tractus solitarii (NTS) of awake rats was evaluated. Microinjection of kynurenic acid, a non-selective antagonist of EAA receptors, into the intermediate and caudal commissural NTS produced a large increase in the baseline mean arterial pressure (MAP), which may reduce the magnitude of the pressor response to chemoreflex activation. To avoid this problem sodium nitroprusside (SNP) was infused (i.v.) after microinjections of kynurenic acid (2 nmol/50 nl) into the NTS, in order to normalize the MAP and then the chemoreflex was activated and the magnitude of the pressor response evaluated. Microinjection of kynurenic acid into the intermediate (bilaterally) and caudal (midline) commissural NTS (n=6) produced a significant increase in baseline MAP (103+/-5 vs. 137+/-6 mm Hg) normalized by SNP infusion (107+/-4 mm Hg) and under this experimental condition the pressor response to chemoreflex activation was not statistically different in relation to the control (37+/-7 vs. 44+/-6 mm Hg). Bilateral microinjections of kynurenic acid into the caudal NTS (n=8) also produced a significant increase in baseline MAP (109+/-4 vs. 145+/-6 mm Hg) normalized by SNP infusion (109+/-6 mm Hg). After normalization of MAP, the pressor response to chemoreflex activation at 3 (34+/-6 mm Hg) and 10 min (37+/-6 mm Hg) was also not different in relation to the control (46+/-5 mm Hg). These data indicate that the antagonism of EAA receptors simultaneously in the intermediate (bilateral) and caudal (midline) commissural NTS or only in the caudal commissural NTS (bilateral) of awake rats had no effect on the hypertensive response to chemoreflex activation. We suggest that neurotransmitter other than l-glutamate may take part in the neurotransmission of the sympathoexcitatory component

  20. Overlapping Intracellular and Differential Synaptic Distributions of Dopamine D1 and Glutamate NMDA Receptors in Rat Nucleus Accumbens

    PubMed Central

    Hara, Yuko; Pickel, Virginia M.

    2008-01-01

    The dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell is highly implicated in psychostimulant-evoked locomotor activity and reward, whereas the D1R in the Acb core is more crucial for appetitive instrumental learning. These behavioral effects depend in part on interactions involving glutamatergic NMDA receptors, whose essential NR1 subunit has physical associations with the D1R. To determine the relevant sites for D1R activation and interactions involving NMDA receptors, we examined the electron microscopic immunolabeling of D1R and NR1 C-terminal peptides in rat Acb shell and core. In each Acb subdivision, the D1Rs were located principally on extrasynaptic plasma membranes of dendritic shafts and spines and more rarely associated with cytoplasmic endomembranes. Many D1R-labeled somata and dendrites also contained NR1 immunoreactivity. In comparison with D1R, NR1 immunoreactivity was more often seen in the cytoplasm and near asymmetric synapses on somatodendritic profiles. In these profiles, notable overlapping distributions of D1R and NR1 occurred near endomembranes. The exclusively D1R or D1R and NR1 containing dendrites were most prevalent in the Acb shell, but also present in the Acb core. In each region, NR1 was also detected in axon terminals without D1R, which formed excitatory-type synapses with D1R-labeled dendrites. These results provide ultrastructural evidence that D1Rs in the Acb have subcellular distributions supporting, 1) intracellular co-trafficking with NR1, and 2) modulation of the postsynaptic excitability in spiny neurons affected by presynaptic NMDA receptor activation. The region-specific differences in receptor distributions suggest a major, but not exclusive, involvement of Acb D1R in reward-related processing. PMID:16228995

  1. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist

    PubMed Central

    Iderberg, Hanna; Maslava, Natallia; Thompson, Analisa D.; Bubser, Michael; Niswender, Colleen M.; Hopkins, Corey R.; Lindsley, Craig W.; Conn, P. Jeffrey; Jones, Carrie K.; Cenci, M. Angela

    2015-01-01

    Metabotropic glutamate receptor 4 (mGlu4) negatively modulates GABA and glutamate release in the ‘indirect pathway’ of the basal ganglia, and has thus been proposed as a potential target to treat motor symptoms in Parkinson's disease. Here, we present an extensive comparison of the behavioural effects produced by the mGlu4 positive allosteric modulator (PAM), VU0364770, and the mGlu4 orthosteric agonist, LSP1-2111, in rats with unilateral 6-OHDA lesions. The compounds' activity was initially assessed in a test of haloperidol-induced catalepsy in intact rats, and effective doses were then evaluated in the hemiparkinsonian animal model. Neither of the two compounds modified the development of dyskinetic behaviours elicited by chronic treatment with full doses of l-DOPA. When given together with l-DOPA to rats with already established dyskinesias, neither VU0364770 nor LSP1-2111 modified the abnormal involuntary movement scores. VU0364770 potentiated, however, the motor stimulant effect of a sub-threshold l-DOPA dose in certain behavioural tests, whereas LSP1-2111 lacked this ability. Taken together, these results indicate that a pharmacological stimulation of mGlu4 lacks intrinsic antidyskinetic activity, but may have DOPA-sparing activity in Parkinson's disease. For the latter indication, mGlu4 PAMs appear to provide a better option than orthosteric agonists. PMID:25749357

  2. Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via mechanisms mediated by p75NTR.

    PubMed

    Huh, Carey Y L; Danik, Marc; Manseau, Frédéric; Trudeau, Louis-Eric; Williams, Sylvain

    2008-02-01

    Basal forebrain neurons play an important role in memory and attention. In addition to cholinergic and GABAergic neurons, glutamatergic neurons and neurons that can corelease acetylcholine and glutamate have recently been described in the basal forebrain. Although it is well known that nerve growth factor (NGF) promotes synaptic function of cholinergic basal forebrain neurons, how NGF affects the newly identified basal forebrain neurons remains undetermined. Here, we examined the effects of NGF on synaptic transmission of medial septum and diagonal band of Broca (MS-DBB) neurons expressing different neurotransmitter phenotypes. We used MS-DBB neurons from 10- to 13-d-old rats, cultured on astrocytic microislands to promote the development of autaptic connections. Evoked and spontaneous postsynaptic currents were recorded, and neurotransmitters released were characterized pharmacologically. We found that chronic exposure to NGF significantly increased acetylcholine and glutamate release from cholinergic MS-DBB neurons, whereas glutamate and GABA transmission from noncholinergic MS-DBB neurons were not affected by NGF. Interestingly, the NGF-induced increase in neurotransmission was mediated by p75(NTR). These results demonstrate a previously unidentified role of NGF and its receptor p75(NTR); their interactions are crucial for cholinergic and glutamatergic transmission in the septohippocampal pathway. PMID:18256260

  3. Stimulatory effects of the putative metabotropic glutamate receptor antagonist L-AP3 on phosphoinositide turnover in neonatal rat cerebral cortex.

    PubMed Central

    Mistry, R.; Prabhu, G.; Godwin, M.; Challiss, R. A.

    1996-01-01

    1. The effects of the metabotropic glutamate receptor (mGluR) antagonist, L-2-amino-3-phosphonopropionate (L-AP3) on phosphoinositide turnover in neonatal rat cerebral cortex slices has been investigated. 2. At concentrations of < or = 300 microM, L-AP3 inhibited total [3H]-inositol phosphate ([3H]-InsPx) and Ins(1,4,5)P3 mass responses stimulated by the selective mGluR agonist, 1-amino-cyclopentane-1S, 3R-dicarboxylic acid (1S, 3R-ACPD). Comparison with the competitive mGluR antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine ((+/-)-MCPG) clearly demonstrated that L-AP3 caused inhibition by a mechanism that was not competitive, as L-AP3 decreased the maximal response to 1S, 3R-ACPD (by approximately 40% at 300 microM L-AP3) without significantly affecting the concentration of 1S, 3R-ACPD required to cause half-maximal stimulation of the [3H]-InsPx response. 3. In contrast, at a higher concentration L-AP3 (1 mM) caused a large increase in [3H]-InsPx accumulation which was similar in magnitude in both the absence and presence of 1S, 3R-ACPD (300 microM). D-AP3 (1 mM) had no stimulatory effect alone and did not affect the response evoked by 1S, 3R-ACPD. L-AP3 (1 mM) also caused a large increase in Ins(1,4,5)P3 accumulation. The magnitude of the response (4-5 fold increase over basal) approached that evoked by a maximally effective concentration of 1S, 3R-ACPD, but differed substantially in the time-course of the response. The stimulatory effects of 1S, 3R-ACPD and L-AP3 on Ins(1,4,5)P3 accumulation were also similarly affected by decreases in extracellular calcium concentration. 4. Detailed analysis of the inositol phospholipid labelling pattern and the inositol (poly)phosphate isomeric species generated following addition of L-AP3 was also performed. In the continued presence of myo-[3H]-inositol, L-AP3 (1 mM) stimulated a significant increase in phosphatidylinositol labelling, but not that of the polyphosphoinositides, and the inositol (poly)phosphate profile

  4. Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity.

    PubMed

    Gerardo-Nava, Jose; Mayorenko, Ivanna I; Grehl, Torsten; Steinbusch, Harry W M; Weis, Joachim; Brook, Gary A

    2013-11-01

    Glutamate-induced excitotoxicity is a major contributor to motor neuron (MN) degeneration in disorders such as amyotrophic lateral sclerosis (ALS), stroke and spinal cord injury. Numerous in vitro and in vivo models have been developed to evaluate the efficacy and mode of action of neuroprotective agents. However, the dominance of glutamate receptor-subtype in the different regions of the spinal cord in these models has generally been overlooked. This study first compared the neuroprotective effect of administering glutamate receptor antagonists, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), into a serum-free excitotoxic organotypic in vitro system, on the survival of MNs located in the lumbar area of spinal cord. The poor neuroprotection provided by MK-801 (NMDA (N-methyl-D-aspartate) antagonist) in comparison to CNQX (AMPA/KA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate) antagonist), raised the hypothesis that the extent of engagement by glutamate receptor sub-types in the mechanism of excitotoxicity may differ within different populations of MNs. The consequent examination of MN susceptibility to glutamate-induced excitotoxicity in relation to the rostro-caudal level from which MN originated revealed a differential glutamate receptor sub-type dominance at different spinal cord regions (i.e. cervical, thoracic and lumbar). In the cervical and lumbar regions, the AMPA receptor was the main contributor to MN excitotoxicity, whereas in thoracic regions, the NMDA receptor was the main contributor. This study provides a new way of looking at mechanisms leading to glutamate-induced excitotoxicity in MN and may therefore be important for the development of treatment strategies in protection of spinal MNs in neurodegenerative disease and traumatic injury.

  5. Large conductance calcium-activated potassium channels: their expression and modulation of glutamate release from nerve terminals isolated from rat trigeminal caudal nucleus and cerebral cortex.

    PubMed

    Samengo, Irene; Currò, Diego; Barrese, Vincenzo; Taglialatela, Maurizio; Martire, Maria

    2014-05-01

    Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and

  6. Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex.

    PubMed

    Otani, S; Daniel, H; Takita, M; Crépel, F

    2002-05-01

    We have previously shown (Otani et al., 1999b) that bath application of (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV), the agonist of group II metabotropic glutamate receptors (mGluRs), induces postsynaptic Ca2+-dependent long-term depression (LTD) of layer I-II to layer V pyramidal neuron glutamatergic synapses of rat medial prefrontal cortex. In the present study, we examined detailed mechanisms of this DCG IV-induced LTD. First, the group II mGluR antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester blocked DCG IV-induced LTD, and another group II agonist (2S,3S,4S)-CCG/(2S,1'S,2'S)-2-(carboxycyclopropyl)glycine-induced LTD, suggesting that LTD is indeed mediated by the activation of group II mGluRs. Second, DCG IV-induced LTD was blocked by the NMDA receptor antagonist AP-5, whereas DCG IV did not potentiate NMDA receptor-mediated synaptic responses. Interruption of single test stimuli during DCG IV application blocked DCG IV-induced LTD. These results suggest that small NMDA receptor-mediated responses evoked by single synaptic stimuli contribute to DCG IV-induced LTD. Third, DCG IV-induced LTD was blocked or reduced by the following drugs: phospholipase C inhibitor U-73122 (bath-applied or postsynaptically injected), postsynaptically injected IP3 receptor blocker heparin, phospholipase D-linked mGluR blocker PCCG-13, PKC inhibitor RO318220, postsynaptically injected PKC inhibitor PKC(19-36), and PKA inhibitor KT-5720. Fourth, fluorescent Ca2+ analysis techniques revealed that DCG IV increases Ca2+ concentration in prefrontal layer V pyramidal neurons. These Ca2+ rises and the LTD were both blocked by postsynaptic heparin in the same cells. Taken together, these results suggest that postsynaptic group II mGluRs, linked to phospholipase C and probably also phospholipase D, induce LTD through postsynaptic PKC activation and IP3 receptor-mediated postsynaptic increases of Ca2+ concentration.

  7. The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate.

    PubMed

    Aminuddin, M; Partadiredja, G; Sari, D C R

    2015-03-01

    A number of studies have indicated that monosodium glutamate (MSG) might cause negative effects on the nervous system, including in the cerebellum. Garlic (Allium sativum) has long been known as a flavouring agent and a traditional remedy for various illnesses. The present study aimed at investigating the effects of garlic on the motor coordination and the number of Purkinje cells present in rats treated with MSG. A total of 25 male Wistar rats aged 4 to 5 weeks old were used in this study and were divided into five groups, namely a negative control (C-) group, which received 0.9 % NaCl solution, a positive control (C+) group, which received MSG, and three treated groups, which received 2 mg/g bw of MSG and 2.5 mg (T2.5), 5 mg (T5), or 10 mg (T10) of black garlic solution per oral administration (per 200 g bw), respectively. All treatments were carried out for 10 days. Upon the end of the treatment, the motor performance of all rats were tested using the rotarod apparatus. The rats were subsequently sacrificed, and the cerebella of the rats were processed for stereological analyses. It has been found that the number of Purkinje cells of the cerebella of all treated groups were significantly higher than that of the group treated with MSG only. No changes in motor coordination function were observed as a result of MSG treatment. PMID:24737450

  8. Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes.

    PubMed

    Pan-Hou, H; Suda, Y; Ohe, Y; Sumi, M; Yoshioka, M

    1990-06-18

    Aspartame (L-aspartyl-L-phenylalanine methyl ester), an artificial low-calorie sweetener, was shown to dose-dependently inhibit L-[3H]glutamate binding to its N-methyl-D-aspartate-specific receptors. L-Aspartic acid, a major endogenous metabolite of aspartame, inhibited the binding more stronger than aspartame, while the other metabolites, L-phenylalanine and methanol, had no effect at the same concentration. Aspartame caused a significant change in the affinities of L-[3H]glutamate binding without altering the Vmax values of the binding, suggesting the inhibition is competitive. These in vitro findings suggested that aspartame may act directly on the N-methyl-D-aspartate-sensitive glutamate recognition sites in the brain synaptic membranes.

  9. A further experimental study of the antisilicotic effect of glutamate.

    PubMed Central

    Morosova, K I; Katsnelson, B A; Rotenberg YuS; Belobragina, G V

    1984-01-01

    Two groups of rats were exposed to quartz dust for six months and in addition one group was given drinking water containing 1.5% sodium glutamate while the second received only water. In the rats receiving glutamate we observed (a) evidence for a considerably reduced cytotoxic effect of the quartz on cells obtained by bronchopulmonary lavage, (b) a reduction in dust retention in the lungs, especially in the tracheobronchial lymph nodes, (c) a considerable reduction in the weight gain in the lungs and in their hydroxyproline and lipid contents, and (d) the inhibition of the formation of silicotic nodules. Polarographic studies of the oxygen consumption of peritoneal macrophages from rats receiving glutamate showed that glutamate prevents the adverse effects of quartz on mitochondrial oxidative processes. PMID:6093851

  10. THE METABOTROPIC GLUTAMATE 2/3 RECEPTOR AGONIST LY379268 COUNTERACTED KETAMINE-AND APOMORPHINE-INDUCED PERFORMANCE DEFICITS IN THE OBJECT RECOGNITION TASK, BUT NOT OBJECT LOCATION TASK, IN RATS

    PubMed Central

    Pitsikas, Nikolaos; Markou, Athina

    2014-01-01

    Experimental evidence indicates that the non competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including cognitive deficits. Activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with psychiatric disorders. Thus, mGlu2/3 receptor agonists may reverse deficits induced by excessive glutamate or DA release induced by administration of NMDA receptor antagonists and DA receptor agonists, respectively, and potentially those seen in schizophrenia. LY379268 is a selective mGlu2/3 receptor agonist that has shown to be effective in several animal models of stroke, epilepsy, and drug abuse. The present study investigated whether LY379268 antagonizes non-spatial and spatial recognition memory deficits induced by ketamine and apomorphine administration in rats. To assess the effects of the compounds on non-spatial and spatial recognition memory, the object recognition task and object location task were used. Post-training administration of LY379268 (1-3 mg/kg, i.p.) counteracted ketamine (3 mg/kg, i.p.) and apomorphine (1 mg/kg, i.p.)-induced performance deficits in the object recognition task. In contrast, LY379268 (1-3 mg/kg, i.p.) did not attenuate spatial recognition memory deficits produced by ketamine (3 mg/kg, i.p.) or apomorphine (1 mg/kg, i.p.) in the object location task. The present data show that the mGlu2/3 receptor agonist LY379268 reversed non-spatial, but not spatial, recognition memory deficits induced by NMDA receptor blockade or DA receptor agonism in rodents. Thus, such mGlu2/3 receptor agonists may be efficacious in reversing some memory deficits seen in schizophrenia patients. PMID:24859609

  11. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  12. Neurotensinergic Augmentation of Glutamate Release at the Perforant Path-Granule Cell Synapse in Rat Dentate Gyrus: Roles of L-Type Ca2+ Channels, Calmodulin and Myosin Light-Chain Kinase

    PubMed Central

    Zhang, Haopeng; Dong, Hailong; Lei, Saobo

    2015-01-01

    Neurotensin (NT) serves as a neuromodulator in the brain where it is involved in modulating a variety of physiological functions including nociception, temperature, blood pressure and cognition, and many neurological diseases such as Alzheimer’s disease, schizophrenia and Parkinson’s disease. Whereas there is compelling evidence demonstrating that NT facilitates cognitive processes, the underlying cellular and molecular mechanisms have not been fully determined. Because the dentate gyrus expresses high densities of NT and NT receptors, we examined the effects of NT on the synaptic transmission at the synapse formed between the perforant path (PP) and granule cells (GC) in the rats. Our results demonstrate that NT persistently increased the amplitude of the AMPA receptor-mediated EPSCs at the PP-GC synapse. NT-induced increases in AMPA EPSCs were mediated by presynaptic NTS1 receptors. NT reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that NT facilitates presynaptic glutamate release. NT increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. NT-mediated augmentation of glutamate release required the influx of Ca2+ via L-type Ca2+ channels and the functions of calmodulin and myosin light chain kinase. Our results provide a cellular and molecular mechanism to explain the roles of NT in the hippocampus. PMID:25842242

  13. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure

    PubMed Central

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A.; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E.

    2013-01-01

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine’s effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3 h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. PMID:24262606

  14. Glutamate signalling in roots.

    PubMed

    Forde, Brian G

    2014-03-01

    As a signalling molecule, glutamate is best known for its role as a fast excitatory neurotransmitter in the mammalian nervous system, a role that requires the activity of a family of ionotropic glutamate receptors (iGluRs). The unexpected discovery in 1998 that Arabidopsis thaliana L. possesses a family of iGluR-related (GLR) genes laid the foundations for an assessment of glutamate's potential role as a signalling molecule in plants that is still in progress. Recent advances in elucidating the function of Arabidopsis GLR receptors has revealed similarities with iGluRs in their channel properties, but marked differences in their ligand specificities. The ability of plant GLR receptors to act as amino-acid-gated Ca(2+) channels with a broad agonist profile, combined with their expression throughout the plant, makes them strong candidates for a multiplicity of amino acid signalling roles. Although root growth is inhibited in the presence of a number of amino acids, only glutamate elicits a specific sequence of changes in growth, root tip morphology, and root branching. The recent finding that the MEKK1 gene is a positive regulator of glutamate sensitivity at the root tip has provided genetic evidence for the existence in plants of a glutamate signalling pathway analogous to those found in animals. This short review will discuss the most recent advances in understanding glutamate signalling in roots, considering them in the context of previous work in plants and animals.

  15. Co-Administration of Ethanol and Nicotine: The Enduring Alterations in the Rewarding Properties of Nicotine and Glutamate Activity within the Mesocorticolimbic System of Female Alcohol-Preferring (P) Rats

    PubMed Central

    Deehan, Gerald A.; Hauser, Sheketha R.; Waeiss, R. Aaron; Knight, Christopher P.; Toalston, Jamie E.; Truitt, William A.; McBride, William J.; Rodd, Zachary A.

    2016-01-01

    Rationale The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug-use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. Objectives The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. Methods Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1–3.0 uM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2–3 week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. Results Binge intake of EtOH (96–100 mg%) and NIC (21–27 mg/ml) were attained. All groups of P rats self-infused 3.0 uM NIC directly into the AcbSh; whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 uM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. Conclusions Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC. PMID:26306917

  16. Flavor Preferences Conditioned by Dietary Glutamate.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2016-07-01

    Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study. PMID:27422522

  17. II. Glutamine and glutamate.

    PubMed

    Tapiero, H; Mathé, G; Couvreur, P; Tew, K D

    2002-11-01

    Glutamine and glutamate with proline, histidine, arginine and ornithine, comprise 25% of the dietary amino acid intake and constitute the "glutamate family" of amino acids, which are disposed of through conversion to glutamate. Although glutamine has been classified as a nonessential amino acid, in major trauma, major surgery, sepsis, bone marrow transplantation, intense chemotherapy and radiotherapy, when its consumption exceeds its synthesis, it becomes a conditionally essential amino acid. In mammals the physiological levels of glutamine is 650 micromol/l and it is one of the most important substrate for ammoniagenesis in the gut and in the kidney due to its important role in the regulation of acid-base homeostasis. In cells, glutamine is a key link between carbon metabolism of carbohydrates and proteins and plays an important role in the growth of fibroblasts, lymphocytes and enterocytes. It improves nitrogen balance and preserves the concentration of glutamine in skeletal muscle. Deamidation of glutamine via glutaminase produces glutamate a precursor of gamma-amino butyric acid, a neurotransmission inhibitor. L-Glutamic acid is a ubiquitous amino acid present in many foods either in free form or in peptides and proteins. Animal protein may contain from 11 to 22% and plants protein as much as 40% glutamate by weight. The sodium salt of glutamic acid is added to several foods to enhance flavor. L-Glutamate is the most abundant free amino acid in brain and it is the major excitatory neurotransmitter of the vertebrate central nervous system. Most free L-glutamic acid in brain is derived from local synthesis from L-glutamine and Kreb's cycle intermediates. It clearly plays an important role in neuronal differentiation, migration and survival in the developing brain via facilitated Ca++ transport. Glutamate also plays a critical role in synaptic maintenance and plasticity. It contributes to learning and memory through use-dependent changes in synaptic efficacy and

  18. On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust.

    PubMed Central

    Morosova, K I; Aronova, G V; Katsnelson, B A; Velichkovski, B T; Genkin, A M; Elnichnykh, L N; Privalova, L I

    1982-01-01

    The cytotoxic action of quartz (DQ12) particles on cultures of rat peritoneal macrophages, as estimated by the inhibition of the TTC-reductase activity, is considerably reduced by preincubation with glutamic acid and by adding sodium glutamate (15 mg/ml) to the drinking water of the rats donating the macrophages. This increase in macrophage resistance under the influence of glutamate is the most probable cause of the delay in the development of silicotic fibrosis shown in several experiments on rats intratracheally injected with quartz and then treated by prolonged administration of glutamate. This effect is probably connected with the influence of glutamate on the stability of the macrophage membranes, which can in its turn be explained by different mechanisms, including the influence on the synthesis and phosphorylation of adenosine nucleotides. Such an influence was shown in rats receiving glutamate by the change of the ATP/ADP ratio in macrophages, but not in erythrocytes. The resistance of rat erythrocytes to the haemolytic action of quartz is also not influenced by the action of glutamate neither in vitro nor in vivo. Such differences in the influences of glutamate on two types of cells, equally susceptible to quartz cytotoxicity but considerably differing in the character of energy metabolism, is an indirect proof of the role of the latter in the realisation of the anticytotoxic, and thereby antifibrogenic, effect of glutamate. PMID:6124270

  19. Modulation of intestinal L-glutamate transport by luminal leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; Lostao, María Pilar; Ducroc, Robert

    2015-06-01

    Leptin is secreted into the digestive tract and contributes to the absorption of dietary molecules by regulating transporters activity. Here, we studied the effect of luminal leptin on the intestinal transport of L-glutamate, an important component of human diet. We examined the effect of leptin on L-glutamate uptake in rat intestine in vitro measuring glutamate-induced short-circuit current (Isc) in Ussing chambers and L-[(3)H (U)]-glutamate uptake in jejunal everted rings. Glutamate-induced Isc was only observed in Na(+)-free conditions. This Isc was concentration (1-60 mmol L(-1)) and pH dependent. Luminal leptin increased glutamate Isc (∼100 %). Dose-response curve showed a biphasic pattern, with maximal stimulations observed at 10(-13) and 10(-10) mmol L(-1), that were sensitive to leptin receptor antagonist. In everted rings, two glutamate transport mechanisms were distinguished: a Na(+)-dependent, H(+)-independent, that was inhibited by leptin (∼20 %), and a Na(+)-independent but H(+)-dependent, that was enhanced by leptin (∼20 %), in line with data obtained in Ussing chambers. Altogether, these data reveal original non-monotonic effect of luminal leptin in the intestine and demonstrate a new role for this hormone in the modulation of L-glutamate transport, showing that luminal active gut peptides can influence absorption of amino acids.

  20. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration. PMID:25701025

  1. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain.

    PubMed

    Shah, Shahid Ali; Yoon, Gwang Ho; Kim, Hyun-Ok; Kim, Myeong Ok

    2015-05-01

    Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration.

  2. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats.

    PubMed

    Hermawati, Ery; Sari, Dwi Cahyani Ratna; Partadiredja, Ginus

    2015-09-01

    Monosodium glutamate (MSG) is believed to exert deleterious effects on various organs, including the hippocampus, likely via the oxidative stress pathway. Garlic (Alium sativum L.), which is considered to possess potent antioxidant activity, has been used as traditional remedy for various ailments since ancient times. We have investigated the effects of black garlic, a fermented form of garlic, on spatial memory and estimated the total number of pyramidal cells of the hippocampus in adolescent male Wistar rats treated with MSG. Twenty-five rats were divided into five groups: C- group, which received normal saline; C+ group, which was exposed to 2 mg/g body weight (bw) of MSG; three treatment groups (T2.5, T5, T10), which were treated with black garlic extract (2.5, 5, 10 mg/200 g bw, respectively) and MSG. The spatial memory test was carried out using the Morris water maze (MWM) procedure, and the total number of pyramidal cells of the hippocampus was estimated using the physical disector design. The groups treated with black garlic extract were found to have a shorter path length than the C- and C+ groups in the escape acquisition phase of the MWM test. The estimated total number of pyramidal cells in the CA1 region of the hippocampus was higher in all treated groups than that of the C+ group. Based on these results, we conclude that combined administration of black garlic and MSG may alter the spatial memory functioning and total number of pyramidal neurons of the CA1 region of the hippocampus of rats.

  3. Production of D-Glutamate from L-Glutamate with Glutamate Racemase and L-Glutamate Oxidase.

    PubMed

    Oikawa, T; Watanabe, M; Makiura, H; Kusakabe, H; Yamade, K; Soda, K

    1999-01-01

    We studied production of D-glutamate from L-glutamate using a bioreactor consisting of two columns of sequentially connected immobilized glutamate racemase (EC 5.1.1.3, from Bacillus subtilis IFO 3336) and L-glutamate oxidase (EC 1.4.3.11, from Streptomyces sp. X119-6): L-glutamate was racemized by the glutamate racemase column, and then L-glutamate was oxidized by the L-glutamate oxidase column. Consequently only D-glutamate remained, and was easily separated from the α-ketoglutarate formed by anion-exchange chromatography. Both enzymes were highly stabilized by immobilization. The pH and temperature optima of immobilized glutamate racemase (pH 8, 40°C) were similar to those of immobilized L-glutamate oxidase (pH 7, 50°C). Accordingly, we connected the two columns tandemly to do both enzyme reactions under the same conditions. Actually 4.5 μmol of D-glutamate was produced and isolated from 10 μmol of L-glutamate, about 90% of the theoretical yield. PMID:27373918

  4. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    PubMed Central

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  5. Effect of insulin on the compartmentation of glutamate for protein synthesis

    SciTech Connect

    Brown, A.B.; Mohan, C.; Bessman, S.P.

    1986-03-05

    The effect of insulin on the formation of CO/sub 2/ and incorporation of 1-/sup 14/C glutamine and U-/sup 14/C acetate into protein was studied in isolated rat hepatocytes. Insulin caused an 18% increase in /sup 14/CO/sub 2/ production from U-/sup 14/C acetate in comparison to a 10% increase from 1-/sup 14/C glutamate. Insulin caused a greater increase in the incorporation of tracer acetate carbons into hepatocyte protein. Hydrolysis of labeled protein and subsequent determination of glutamate specific activity revealed that incorporation of acetate carbons into protein as glutamate was about 52% greater in the presence of insulin. These results demonstrate the existence of two compartments of glutamate for protein synthesis: (i) glutamate generated in the Krebs cycle through transamination of a-ketoglutarate; (ii) cytosolic glutamate. Insulin had a greater stimulatory effect on the incorporation of glutamate generated in the Krebs cycle.

  6. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons.

    PubMed

    Grigorev, V V; Dranyi, O A; Bachurin, S O

    2003-11-01

    Dimebon in low concentrations potentiated activity of AMPA-receptors in rat cerebellar Purkinje neurons, while memantine produced only an insignificant potentiation in a small group of these cells. In cortical neurons of rat brain memantine efficiently blocked NMDA-induced currents in dimebon-insensitive neurons. By contrast, its effect was far weaker in neurons, where the blocking action of dimebon on NMDA-receptors was most pronounced. It was hypothesized that the differences in the effects of memantine and dimebon are determined by their interaction with different sites of NMDA-receptors.

  7. Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor.

    PubMed

    Jang, Young P; Kim, So R; Choi, Young H; Kim, Jinwoong; Kim, Sang G; Markelonis, George J; Oh, Tae H; Kim, Young C

    2002-04-15

    We previously reported that arctigenin, a lignan isolated from the bark of Torreya nucifera, showed significant neuroprotective activity against glutamate-induced toxicity in primary cultured rat cortical cells. In this study, the mode of action of arctigenin was investigated using primary cultures of rat cortical cells as an in vitro system. Arctigenin significantly attenuated glutamate-induced neurotoxicity when added prior to or after an excitotoxic glutamate challenge. The lignan protected cultured neuronal cells more selectively from neurotoxicity induced by kainic acid than by N-methyl-D-aspartate. The binding of [(3)H]-kainate to its receptors was significantly inhibited by arctigenin in a competitive manner. Furthermore, arctigenin directly scavenged free radicals generated by excess glutamate and successfully reduced the level of cellular peroxide in cultured neurons. These results suggest that arctigenin exerted significant neuroprotective effects on glutamate-injured primary cultures of rat cortical cells by directly binding to kainic acid receptors and partly scavenging of free radicals.

  8. Repeated exposure to moderate doses of ethanol augments hippocampal glutamate neurotransmission by increasing release

    PubMed Central

    Chefer, Vladimir; Meis, Jennifer; Wang, Grace; Kuzmin, Alexander; Bakalkin, Georgy; Shippenberg, Toni

    2013-01-01

    The present study used conventional and quantitative microdialysis to assess glutamatergic and GABAergic neurotransmission in the hippocampal CA3 area of the rat following a moderate-dose ethanol treatment regimen. Male Wistar rats received 3.4 g/kg of ethanol or water for 6 days via gastric gavage. Microdialysis experiments commenced 2 days later. Basal and depolarization-induced glutamate overflow were significantly elevated in ethanol-treated animals. Basal and depolarization-induced gamma-aminobutyric acid (GABA) overflow were unaltered. Quantitative no-net-flux microdialysis was used to determine if changes in dialysate glutamate levels following ethanol administration are due to an increase in release or a decrease in uptake.To confirm the validity of this method for quantifying basal glutamate dynamics, extracellular concentrations of glutamate and the extraction fraction, which reflects changes in analyte clearance, were quantified in response to retro-dialysis of the glutamate uptake blocker trans-pyrrolidine-2,4-dicarboxylic acid (tPDC). tPDC significantly decreased the extraction fraction for glutamate, resulting in augmented extracellular glutamate concentrations. Repeated ethanol administration did not alter the glutamate extraction fraction. However, extracellular glutamate concentrations were significantly elevated, indicating that glutamate release is increased as a consequence of repeated ethanol administration. These data demonstrate that repeated bouts of moderate ethanol consumption alter basal glutamate dynamics in the CA3 region of the dorsal hippocampus. Basal glutamate release is augmented, whereas glutamate uptake is unchanged. Furthermore, they suggest that dysregulation of glutamate transmission in this region may contribute to the previously documented deficits in cognitive function associated with moderate dose ethanol use. PMID:21182572

  9. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  10. Potent, stereoselective, and brain region selective modulation of second messengers in the rat brain by (+)LY354740, a novel group II metabotropic glutamate receptor agonist.

    PubMed

    Schoepp, D D; Johnson, B G; Wright, R A; Salhoff, C R; Monn, J A

    1998-08-01

    LY354740 is a highly potent and selective agonist for recombinant Group II mGlu receptors (mGlu2 and mGlu3), which has anxiolytic and drug withdrawal alleviating properties when administered systemically in rats and mice. The modulation of second messengers by LY354740 in rat brain tissues was investigated to understand the cellular basis for the pharmacological and potential therapeutic actions of LY354740. LY354740 potently decreased forskolin-stimulated cAMP formation in slices of the adult rat hippocampus (EC50=22+/-3 nM) in a stereoselective manner. LY354740 (at 1 microM) greatly (>90%) suppressed forskolin-stimulated cAMP in the cerebral cortex, hippocampus, and striatum, while producing only partial suppression (about 50%) in midbrain regions and olfactory bulb, and no significant cAMP alterations in the cerebellum and brainstem regions. Inhibition of forskolin-stimulated cAMP formation was antagonized by (+)-alpha(-methyl-4-carboxyphenylglycine [(+)MCPG], a competitive mGlu receptor antagonist. LY354740 did not alter phosphoinositide hydrolysis in the rat hippocampus per se, but potentiated stimulation of phophoinositide hydrolysis by the Group I mGlu receptor selective agonist 3,5-dihydroxyphenylglycine (DHPG) or stimulation of cAMP formation by the adenosine receptor agonist 5'-N-ethylcarboxamideoadenosine (NECA). These data indicate that LY354740 is a highly potent, efficacious, and selective Group II mGlu receptor (mGlu 2/3) agonist in the rat brain. The potent, stereoselective, and brain region selective actions of LY354740 on mGlu receptor linked second messenger systems likely underlie the in vivo potency and stereoselectivity of this compound in animal models. PMID:9750002

  11. Redistribution of Ionotropic Glutamate Receptors Detected by Laser Microdissection of the Rat Dentate Gyrus 48 h following LTP Induction In Vivo

    PubMed Central

    Kennard, Jeremy T. T.; Guévremont, Diane; Mason-Parker, Sara E.; Abraham, Wickliffe C.; Williams, Joanna M.

    2014-01-01

    The persistence and input specificity of long-term potentiation (LTP) make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD) techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h. PMID:24667777

  12. [Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma].

    PubMed

    Wang, Zhong-Feng; Yang, Xiong-Li

    2016-08-25

    Glaucoma, the second leading cause of blindness, is a neurodegenerative disease characterized by optic nerve degeneration related to apoptotic death of retinal ganglion cells (RGCs). In the pathogenesis of RGC death following the onset of glaucoma, functional changes of glutamate receptors are commonly regarded as important risk factors. During the past several years, we have explored the mechanisms underlying RGC apoptosis and retinal Müller cell reactivation (gliosis) in a rat chronic ocular hypertension (COH) model. We demonstrated that elevated intraocular pressure in COH rats may induce changes of various signaling pathways, which are involved in RGC apoptosis by modulating glutamate NMDA and AMPA receptors. Moreover, we also demonstrated that over-activation of group I metabotropic glutamate receptors (mGluR I) by excessive extracellular glutamate in COH rats could contribute to Müller cell gliosis by suppressing Kir4.1 channels. In this review, incorporating our results, we discuss glutamate receptor- mediated RGC apoptosis and Müller cell gliosis in experimental glaucoma. PMID:27546508

  13. Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu2/3) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence

    PubMed Central

    2015-01-01

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure–activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4–8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology. PMID:24735492

  14. Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence.

    PubMed

    Dhanya, Raveendra-Panickar; Sheffler, Douglas J; Dahl, Russell; Davis, Melinda; Lee, Pooi San; Yang, Li; Nickols, Hilary Highfield; Cho, Hyekyung P; Smith, Layton H; D'Souza, Manoranjan S; Conn, P Jeffrey; Der-Avakian, Andre; Markou, Athina; Cosford, Nicholas D P

    2014-05-22

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology. PMID:24735492

  15. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    PubMed

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  16. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  17. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

    PubMed

    Stannek, Lorena; Thiele, Martin J; Ischebeck, Till; Gunka, Katrin; Hammer, Elke; Völker, Uwe; Commichau, Fabian M

    2015-09-01

    In the Gram-positive bacterium, Bacillus subtilis glutamate is synthesized by the glutamine synthetase and the glutamate synthase (GOGAT). During growth with carbon sources that exert carbon catabolite repression, the rocG glutamate dehydrogenase (GDH) gene is repressed and the transcription factor GltC activates the expression of the GOGAT encoding gltAB genes. In the presence of amino acids of the glutamate family, the GDH RocG is synthesized and the enzyme prevents GltC from binding to DNA. The dual control of glutamate biosynthesis allows the efficient utilization of the available nutrients. Here we provide genetic and biochemical evidence that, like RocG, also the paralogous GDH GudB can inhibit the transcription factor GltC, thereby controlling glutamate biosynthesis. Contradictory previous observations show that high level of GDH activity does not result in permanent inhibition of GltC. By controlling the intracellular levels of glutamate through feeding with exogenous arginine, we observed that the GDH-dependent control of GltC and thus expression of the gltAB genes inversely correlates with the glutamate pool. These results suggest that the B. subtilis GDHs RocG and GudB in fact act as glutamate sensors. In conclusion, the GDH-mediated control of glutamate biosynthesis seems to depend on the intracellular glutamate concentration. PMID:25711804

  18. Impaired Energy Metabolism and Disturbed Dopamine and Glutamate Signalling in the Striatum and Prefrontal Cortex of the Spontaneously Hypertensive Rat Model of Attention-Deficit Hyperactivity Disorder.

    PubMed

    Dimatelis, Jacqueline J; Hsieh, Jennifer H; Sterley, Toni-Lee; Marais, Lelanie; Womersley, Jacqueline S; Vlok, Maré; Russell, Vivienne A

    2015-07-01

    Attention deficit hyperactivity disorder (ADHD) is a heterogeneous behavioural disorder that affects 3-15 % of children worldwide. Spontaneously hypertensive rats (SHR) display the major symptoms of ADHD (hyperactivity, impulsivity and poor performance in tasks that require sustained attention) and are widely used to model the disorder. The present study aimed to test the hypothesis that SHR have a diminished capacity to generate ATP required for rapid synchronized neuronal firing, failure of which might lead to disturbances in neurotransmission that could contribute to their ADHD-like behaviour. Duplicate pooled (n = 5) samples of prefrontal cortex and striatum of prepubertal (35-day-old) SHR and Wistar Kyoto (WKY) rats were subjected to iTRAQ labeling and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). The MS/MS spectra were analyzed with ProteinPilot using the Ratus ratus database. Proteins detected with >95 % confidence were tested. SHR had decreased levels of several proteins involved in energy metabolism, cytoskeletal structure, myelination and neurotransmitter function when compared to WKY. Differences in protein levels between SHR and WKY were similar in prefrontal cortex and striatum, suggesting global changes in cortico-striato-thalamo-cortical circuits.

  19. 4-Hydroxyhexenal (HHE) impairs glutamate transport in astrocyte cultures.

    PubMed

    Lovell, Mark A; Bradley, Melissa A; Fister, Shuling X

    2012-01-01

    Multiple studies show elevations of α,β-unsaturated aldehydic by-products of lipid peroxidation including 4-hydroxynonenal and acrolein in vulnerable brain regions of subjects throughout the progression of Alzheimer's disease (AD). More recently 4-hydroxyhexenal (HHE), a diffusible α,β-unsaturated aldehyde resulting from peroxidation of ω-3 polyunsaturated fatty acids, was shown to be elevated in the hippocampus/parahippocampal gyrus (HPG) of subjects with preclinical AD (PCAD) and in late stage AD (LAD). HHE treatment of primary rat cortical neuron cultures led to a time- and concentration-dependent decrease in survival and glucose uptake. To determine if HHE also impairs glutamate uptake, primary rat astrocyte cultures were exposed to HHE for 4 hours and glutamate transport measured. Results show subtoxic (2.5 μM) HHE concentrations significantly (p < 0.05) impair glutamate uptake in primary astrocytes. Immunoprecipitation of excitatory amino acid transporter-2 (EAAT-2), the primary glutamate transporter in brain, from normal control, mild cognitive impairment (MCI), PCAD, and LAD HPG followed by quantification of HHE immunolabeling showed a significant increase in HHE positive EAAT-2 in MCI and LAD HPG. Together these data suggest HHE can significantly impair glutamate uptake and may play a role in the pathogenesis of AD. PMID:22766736

  20. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory.

    PubMed

    Xie, Meilan; Li, Chao; He, Chao; Yang, Li; Tan, Gang; Yan, Jie; Wang, Jiali; Hu, Zhian

    2016-03-01

    Numerous studies reported that sleep deprivation (SD) causes impairment in spatial cognitive performance. However, the molecular mechanisms affected by SD underlying this behavioral phenomenon remain elusive. Here, we focused on the entorhinal cortex (EC), the gateway of the hippocampus, and investigated how SD affected the subunit expression of AMPARs and NMDARs, the main ionotropic glutamategic receptors serving a pivotal role in spatial cognition. In EC, we found 4h SD remarkably reduced surface expression of GluA1, while there was an increase in the surface expression of GluA2 and GluA3. As for NMDARs, SD with short duration significantly reduced the surface expression levels of GluN1 and GluN2B without effect on the GluN2A. In parallel with the alterations in AMPARs and NMDARs, we found the 4h SD impaired rat spatial reference memory as assessed by Morris water maze task. Overall, these data indicate that brief SD differently affects the AMPAR and NMDAR subunit expressions in EC and might consequently disrupt the composition and functional properties of these receptors. PMID:26455878

  1. Caffeine promotes glutamate and histamine release in the posterior hypothalamus

    PubMed Central

    Kodama, Tohru; Siegel, Jerome M.

    2014-01-01

    Histamine neurons are active during waking and largely inactive during sleep, with minimal activity during rapid-eye movement (REM) sleep. Caffeine, the most widely used stimulant, causes a significant increase of sleep onset latency in rats and humans. We hypothesized that caffeine increases glutamate release in the posterior hypothalamus (PH) and produces increased activity of wake-active histamine neurons. Using in vivo microdialysis, we collected samples from the PH after caffeine administration in freely behaving rats. HPLC analysis and biosensor measurements showed a significant increase in glutamate levels beginning 30 min after caffeine administration. Glutamate levels remained elevated for at least 140 min. GABA levels did not significantly change over the same time period. Histamine level significantly increased beginning 30 min after caffeine administration and remained elevated for at least 140 min. Immunostaining showed a significantly elevated number of c-Fos-labeled histamine neurons in caffeine-treated rats compared with saline-treated animals. We conclude that increased glutamate levels in the PH activate histamine neurons and contribute to caffeine-induced waking and alertness. PMID:25031227

  2. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function.

    PubMed

    Voulgari-Kokota, A; Fairless, R; Karamita, M; Kyrargyri, V; Tseveleki, V; Evangelidou, M; Delorme, B; Charbord, P; Diem, R; Probert, L

    2012-07-01

    Mesenchymal stem cells (MSC) promote functional recovery in experimental models of central nervous system (CNS) pathology and are currently being tested in clinical trials for stroke, multiple sclerosis and CNS injury. Their beneficial effects are attributed to the activation of endogenous CNS protection and repair processes as well as immune regulation but their mechanisms of action are poorly understood. Here we investigated the neuroprotective effects of mouse MSC in rodent MSC-neuron co-cultures and mice using models of glutamate excitotoxicity. A 24h pre-culture of mouse primary cortical neurons with MSC protected them against glutamate (NMDA) receptor-induced death and conditioned medium from MSC (MSC CM) was sufficient for this effect. Protection by MSC CM was associated with reduced mRNA levels of genes encoding NMDA receptor subunits, and increased levels for genes associated with non-neuronal and stem cell types, as shown by RT-PCR and cDNA microarray analyses. Changes in gene expression were not associated with alterations in cell lineage representation within the cultures. Further, MSC CM-mediated neuroprotection in rat retinal ganglion cells was associated with reduced glutamate-induced calcium influx. The adoptive transfer of EGFP(+)MSC in a mouse kainic acid epilepsy model also provided neuroprotection against glutamate excitotoxicity in vivo, as shown by reduced neuron damage and glial cell activation in the hippocampus. These results show that MSC mediate direct neuroprotection by reducing neuronal sensitivity to glutamate receptor ligands and altering gene expression, and suggest a link between the therapeutic effects of MSC and the activation of cell plasticity in the damaged CNS. PMID:22561409

  3. Genetic differences in the modulation of accumbal glutamate and γ-amino butyric acid levels after cocaine-induced reinstatement.

    PubMed

    Miguéns, Miguel; Botreau, Fanny; Olías, Oscar; Del Olmo, Nuria; Coria, Santiago M; Higuera-Matas, Alejandro; Ambrosio, Emilio

    2013-07-01

    The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

  4. Glutamate neurons within the midbrain dopamine regions.

    PubMed

    Morales, M; Root, D H

    2014-12-12

    Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular

  5. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    PubMed

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives.

  6. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid.

    PubMed

    Pisarenko, O I; Solomatina, E S; Ivanov, V E; Studneva, I M; Kapelko, V I; Smirnov, V N

    1985-01-01

    The effect of glutamic acid on the cardiac contractile function and sources of anaerobic ATP formation in hypoxic myocardium was studied in isovolumic rat hearts. The presence of glutamic acid (5 mM) in the perfusate significantly diminished an increment in diastolic pressure caused by 60 min hypoxia, and facilitated its complete recovery during 30 min reoxygenation. This effect was combined with the maintenance of a higher ATP level during hypoxia and reoxygenation. The total content of lactate in the heart-perfusate system rose exactly as during hypoxia without glutamic acid, while pyruvate content decreased due to increased alanine formation. Restoration of tissue content of glutamate and aspartate in the presence of exogenous glutamic acid was accompanied by a more than 2-fold increase in succinate formation, the end-product of the Krebs' cycle under anaerobic conditions. The products of glutamic acid transamination with oxaloacetic acid, aspartic and alpha-ketoglutaric acids (5mM each), induced the same functional and metabolic alterations as glutamic acid. Amino-oxyacetic acid, a tramsaminase inhibitor, eliminated the effects caused by glutamic acid. Moreover, the inhibition of transamination was accompanied by a decreased succinate and alanine synthesis as well as insignificantly increased lactate formation compared to hypoxia without additives. The results suggest that the beneficial effect of glutamic acid is due to the activation of anaerobic ATP formation in the mitochondria rather than stimulation of glycolysis.

  7. Diffuse Brain Injury Elevates Tonic Glutamate Levels and Potassium-Evoked Glutamate Release in Discrete Brain Regions at Two Days Post-Injury: An Enzyme-Based Microelectrode Array Study

    PubMed Central

    Hinzman, Jason M.; Currier Thomas, Theresa; Burmeister, Jason J.; Quintero, Jorge E.; Huettl, Peter; Pomerleau, Francois; Gerhardt, Greg A.

    2010-01-01

    Abstract Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI. PMID:20233041

  8. Magnesium Sulfate Protects Against the Bioenergetic Consequences of Chronic Glutamate Receptor Stimulation

    PubMed Central

    Clerc, Pascaline; Young, Christina A.; Bordt, Evan A.; Grigore, Alina M.; Fiskum, Gary; Polster, Brian M.

    2013-01-01

    Extracellular glutamate is elevated following brain ischemia or trauma and contributes to neuronal injury. We tested the hypothesis that magnesium sulfate (MgSO4, 3 mM) protects against metabolic failure caused by excitotoxic glutamate exposure. Rat cortical neuron preparations treated in medium already containing a physiological concentration of Mg2+ (1 mM) could be segregated based on their response to glutamate (100 µM). Type I preparations responded with a decrease or small transient increase in oxygen consumption rate (OCR). Type II neurons responded with >50% stimulation in OCR, indicating a robust response to increased energy demand without immediate toxicity. Pre-treatment with MgSO4 improved the initial bioenergetic response to glutamate and ameliorated subsequent loss of spare respiratory capacity, measured following addition of the uncoupler FCCP, in Type I but not Type II neurons. Spare respiratory capacity in Type I neurons was also improved by incubation with MgSO4 or NMDA receptor antagonist MK801 in the absence of glutamate treatment. This finding indicates that the major difference between Type I and Type II preparations is the amount of endogenous glutamate receptor activity. Incubation of Type II neurons with 5 µM glutamate prior to excitotoxic (100 µM) glutamate exposure recapitulated a Type I phenotype. MgSO4 protected against an excitotoxic glutamate-induced drop in neuronal ATP both with and without prior 5 µM glutamate exposure. Results indicate that MgSO4 protects against chronic moderate glutamate receptor stimulation and preserves cellular ATP following treatment with excitotoxic glutamate. PMID:24236167

  9. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors

    NASA Astrophysics Data System (ADS)

    Okumoto, Sakiko; Looger, Loren L.; Micheva, Kristina D.; Reimer, Richard J.; Smith, Stephen J.; Frommer, Wolf B.

    2005-06-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian brain. Once released, its rapid removal from the synaptic cleft is critical for preventing excitotoxicity and spillover to neighboring synapses. Despite consensus on the role of glutamate in normal and disease physiology, technical issues limit our understanding of its metabolism in intact cells. To monitor glutamate levels inside and at the surface of living cells, genetically encoded nanosensors were developed. The fluorescent indicator protein for glutamate (FLIPE) consists of the glutamate/aspartate binding protein ybeJ from Escherichia coli fused to two variants of the green fluorescent protein. Three sensors with lower affinities for glutamate were created by mutation of residues peristeric to the ybeJ binding pocket. In the presence of ligands, FLIPEs show a concentration-dependent decrease in FRET efficiency. When expressed on the surface of rat hippocampal neurons or PC12 cells, the sensors respond to extracellular glutamate with a reversible concentration-dependent decrease in FRET efficiency. Depolarization of neurons leads to a reduction in FRET efficiency corresponding to 300 nM glutamate at the cell surface. No change in FRET was observed when cells expressing sensors in the cytosol were superfused with up to 20 mM glutamate, consistent with a minimal contribution of glutamate uptake to cytosolic glutamate levels. The results demonstrate that FLIPE sensors can be used for real-time monitoring of glutamate metabolism in living cells, in tissues, or in intact organisms, providing tools for studying metabolism or for drug discovery. aspartate | hippocampal neuron | neurotransmitter | secretion | transport

  10. Single rodent mesohabenular axons release glutamate and GABA

    PubMed Central

    Root, David H.; Mejias-Aponte, Carlos; Zhang, Shiliang; Wang, Huiling; Hoffman, Alexander F.; Lupica, Carl R.; Morales, Marisela

    2016-01-01

    The lateral habenula (LHb) is involved in reward, aversion, addiction, and depression, through descending interactions with several brain structures, including the ventral tegmental area (VTA). VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb co-express markers for both glutamate-signaling (vesicular glutamate transporter 2, VGluT2) and GABA-signaling (glutamate decarboxylase, GAD; and vesicular GABA transporter, VGaT). A single axon from these mesohabenular neurons co-expresses VGluT2-protein and VGaT-protein, and surprisingly establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin-2 (ChR2) driven by VGluT2 or VGaT promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light-activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that co-transmits glutamate and GABA, and provides the majority of mesohabenular inputs. PMID:25242304

  11. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  12. Computational Studies of Glutamate Transporters

    PubMed Central

    Setiadi, Jeffry; Heinzelmann, Germano; Kuyucak, Serdar

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review. PMID:26569328

  13. Bicyclic glutamic acid derivatives.

    PubMed

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide. PMID:16596563

  14. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?

    PubMed

    Boutry, Claire; Matsumoto, Hideki; Bos, Cécile; Moinard, Christophe; Cynober, Luc; Yin, Yulong; Tomé, Daniel; Blachier, François

    2012-10-01

    Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.

  15. Hypersensitive Glutamate Signaling Correlates with the Development of Late-Onset Behavioral Morbidity in Diffuse Brain-Injured Circuitry

    PubMed Central

    Thomas, Theresa Currier; Hinzman, Jason M.; Gerhardt, Greg A.

    2012-01-01

    Abstract In diffuse brain-injured rats, robust sensory sensitivity to manual whisker stimulation develops over 1 month post-injury, comparable to agitation expressed by brain-injured individuals with overstimulation. In the rat, whisker somatosensation relies on thalamocortical glutamatergic relays between the ventral posterior medial (VPM) thalamus and barrel fields of somatosensory cortex (S1BF). Using novel glutamate-selective microelectrode arrays coupled to amperometry, we test the hypothesis that disrupted glutamatergic neurotransmission underlies the whisker sensory sensitivity associated with diffuse brain injury. We report hypersensitive glutamate neurotransmission that parallels and correlates with the development of post-traumatic sensory sensitivity. Hypersensitivity is demonstrated by significant 110% increases in VPM extracellular glutamate levels, and 100% increase in potassium-evoked glutamate release in the VPM and S1BF, with no change in glutamate clearance. Further, evoked glutamate release showed 50% greater sensitivity to a calcium channel antagonist in brain-injured over uninjured VPM. In conjunction with no changes in glutamate transporter gene expression and exogenous glutamate clearance efficiency, these data support a presynaptic origin for enduring post-traumatic circuit alterations. In the anatomically-distinct whisker circuit, the injury-induced functional alterations correlate with the development of late-onset behavioral morbidity. Effective therapies to modulate presynaptic glutamate function in diffuse-injured circuits may translate into improvements in essential brain function and behavioral performance in other brain-injured circuits in rodents and in humans. PMID:21939393

  16. Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

    PubMed Central

    Kritis, Aristeidis A.; Stamoula, Eleni G.; Paniskaki, Krystallenia A.; Vavilis, Theofanis D.

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  17. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings.

    PubMed

    Bell, Richard L; Hauser, Sheketha R; McClintick, Jeanette; Rahman, Shafiqur; Edenberg, Howard J; Szumlinski, Karen K; McBride, William J

    2016-01-01

    Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence. PMID:26809998

  18. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes.

    PubMed

    Matos, Marco; Augusto, Elisabete; Santos-Rodrigues, Alexandre Dos; Schwarzschild, Michael A; Chen, Jiang-Fan; Cunha, Rodrigo A; Agostinho, Paula

    2012-05-01

    Glutamate is the primary excitatory neurotransmitter in the central nervous system, where its toxic build-up leads to synaptic dysfunction and excitotoxic cell death that underlies many neurodegenerative diseases. Therefore, efforts have been made to understand the regulation of glutamate transporters, which are responsible for the clearance of extracellular glutamate. We now report that adenosine A(2A) receptors (A(2A) R) control the uptake of D-aspartate in primary cultured astrocytes as well as in an ex vivo preparation enriched in glial plasmalemmal vesicles (gliosomes) from adult rats, whereas A(1) R and A(3) R were devoid of effects. Thus, the acute exposure to the A(2A) R agonist, CGS 21680, inhibited glutamate uptake, an effect prevented by the A(2A) R antagonist, SCH 58261, and abbrogated in cultured astrocytes from A(2A) R knockout mice. Furthermore, the prolonged activation of A(2A) R lead to a cAMP/protein kinase A-dependent reduction of GLT-I and GLAST mRNA and protein levels, which leads to a sustained decrease of glutamate uptake. This dual mechanism of inhibition of glutamate transporters by astrocytic A(2A) R provides a novel candidate mechanism to understand the ability of A(2) (A) R to control synaptic plasticity and neurodegeneration, two conditions tightly associated with the control of extracellular glutamate levels by glutamate transporters.

  19. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings.

    PubMed

    Bell, Richard L; Hauser, Sheketha R; McClintick, Jeanette; Rahman, Shafiqur; Edenberg, Howard J; Szumlinski, Karen K; McBride, William J

    2016-01-01

    Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.

  20. Glutamate-dopamine-GABA interactions in the aging basal ganglia.

    PubMed

    Mora, Francisco; Segovia, Gregorio; Del Arco, Alberto

    2008-08-01

    The study of neurotransmitter interactions gives a better understanding of the physiology of specific circuits in the brain. In this review we focus mostly on our own results on the interaction of the neurotransmitters glutamate, dopamine and GABA in the basal ganglia during the normal process of aging. We review first the studies on the action of endogenous glutamate on the extracellular concentrations of dopamine and GABA in the neostriatum and nucleus accumbens during aging. It was found that there exists an age-related change in the interaction of glutamate, dopamine and GABA and that these effects of aging exhibit a dorsal-to-ventral pattern of effects with no changes in the dorsal parts (dorsal striatum) and changes in the most ventral parts (nucleus accumbens). Second we reviewed the data on the effects of different ionotropic and metabotropic glutamate receptor agonists on the extracellular concentrations of dopamine and GABA in the nucleus accumbens. The results obtained clearly show the different contribution of each glutamate receptor subtype in the age-related changes produced on the interaction of glutamate, dopamine and GABA in this area of the brain. Third the effects of an enriched environment on the action of AMPA and NMDA-receptor agonists in the nucleus accumbens of rats during aging are also evaluated. Finally, and since the nucleus accumbens has been suggested to play a role in emotion and motivation and also motor behaviour, we speculated on the possibility of a specific contribution for the different glutamatergic pathways terminating in the nucleus accumbens and their interaction with a decreased dopamine playing a relevant role in motor behaviour during aging.

  1. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    SciTech Connect

    Ly, A.M.; Michaelis, E.K. )

    1991-04-30

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. ({sup 14}C)Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of ({sup 14}C)methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA{sup +} led to a transient increase in the influx of the lipid-permeable anion probe S{sup 14}CN{sup {minus}}. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the {approximately}69-kDa protein in the function of these ion channels.

  2. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking

    PubMed Central

    Scofield Michael, D.; Boger Heather, A.; Smith Rachel, J.; Li, Hao; Haydon Philip, G.; Kalivas Peter, W.

    2015-01-01

    Background Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability. Methods We transduced NAcore astrocytes with an AAV viral vector expressing hM3Dq (Gq) DREADD under control of the glial fibrillary acidic protein (GFAP) promoter in 62 male Sprague Dawley rats, 4 dnSNARE mice and 4 wild type littermates. Using glutamate biosensors we measured NAcore glutamate levels following intracranial or systemic administration of clozapine-N-oxide (CNO), and tested the ability of systemic CNO to inhibit reinstated cocaine or sucrose seeking following self-administration (SA) and extinction training. Results Administration of CNO in GFAP-Gq-DREADD transfected animals increased NAcore extracellular glutamate levels in vivo. The glial origin of released glutamate was validated by an absence of CNO-mediated release in mice expressing a dominant-negative SNARE variant in glia. Also, CNO-mediated release was relatively insensitive to N-type calcium channel blockade. Systemic administration of CNO inhibited cue-induced reinstatement of cocaine seeking in rats extinguished from cocaine, but not sucrose SA. The capacity to inhibit reinstated cocaine-seeking was prevented by systemic administration of the group II metabotropic glutamate receptor (mGluR2/3) antagonist LY341495. Conclusions DREADD-mediated glutamate gliotransmission inhibited cue-induced reinstatement of cocaine seeking by stimulating release-regulating mGluR2/3 autoreceptors to inhibit cue-induced synaptic glutamate spillover. PMID:25861696

  3. Effects of Cymbopogon citratus and Ferula assa-foetida extracts on glutamate-induced neurotoxicity.

    PubMed

    Tayeboon, Ghazaleh S; Tavakoli, Fatemeh; Hassani, Shokoufeh; Khanavi, Mahnaz; Sabzevari, Omid; Ostad, S Nasser

    2013-10-01

    Many of CNS diseases can lead to a great quantity of release of glutamate and the extreme glutamate induces neuronal cell damage and death. Here, we wanted to investigate the effects of Cymbopogon citratus essential oil and Ferula assa-foetida extracts treatment on glutamate-induced cell damage in a primary culture of rat cerebellar granule neurons. Cerebellums were collected from 7-d rat brains and cerebellar granule neurons were obtained after 8-d culture. CGN cells were treated with C. citratus essential oil and F. assa-foetida extracts at concentration of 100 μg/ml before, after, and during exposure to 30 μM glutamate. The cellular viability was evaluated by 3-(4, 5-dimethytthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) staining. The flow cytometry assay was used to examine cell cycle and apoptosis. MTT assay showed a glutamate-induced reduction in cellular viability while treatment with C. citratus essential oil and F. assa-foetida extracts before, during, and after exposure to glutamate was increased. Flow cytometric analysis indicated that F. assa-foetida extracts treatment significantly (p < 0.001) attenuated glutamate-induced apoptotic/necrotic cell death and the necrotic rate was decreased by C. citratus essential oil treatment compared to glutamate group, significantly (p < 0.001). The results show that C. citratus essential oil and F. assa-foetida extracts display neuroprotective effects in glutamate-induced neurotoxicity. These extracts exert antiapoptotic activity in cerebellar granule neurons due to cell cycle arrest in G0G1 phase, which explain the beneficial effects of C. citratus essential oil and F. assa-foetida extracts as therapies for neurologic disorders.

  4. Gabapentin increases extracellular glutamatergic level in the locus coeruleus via astroglial glutamate transporter-dependent mechanisms.

    PubMed

    Suto, Takashi; Severino, Amie L; Eisenach, James C; Hayashida, Ken-ichiro

    2014-06-01

    Gabapentin has shown to be effective in animals and humans with acute postoperative and chronic pain. Yet the mechanisms by which gabapentin reduces pain have not been fully addressed. The current study performed in vivo microdialysis in the locus coeruleus (LC) in normal and spinal nerve ligated (SNL) rats to examine the effect of gabapentin on extracellular glutamate concentration and its mechanisms of action with focus on presynaptic GABA-B receptors, astroglial glutamate transporter-1 (GLT-1), and interactions with α2δ subunits of voltage-gated Ca(2+) channels and endogenous noradrenaline. Basal extracellular concentration and tissue content of glutamate in the LC were greater in SNL rats than normal ones. Intravenously administered and LC-perfused gabapentin increased extracellular glutamate concentration in the LC. The net amount of glutamate increased by gabapentin is larger in SNL rats compared with normal ones, although the percentage increases from the baseline did not differ. The gabapentin-related α2δ ligand pregabalin increased extracellular glutamate concentration in the LC, whereas another α2δ ligand, 3-exo-aminobicyclo [2.2.1] heptane-2-exo-carboxylic acid (ABHCA), did not. Selective blockade by the dihydrokainic acid or knock-down of GLT-1 by the small interfering RNA abolished the gabapentin-induced glutamate increase in the LC, whereas blockade of GABA-B receptors by the CGP-35348 and depletion of noradrenalin by the dopamine-β-hydroxylase antibody conjugated to saporin did not. These results suggest that gabapentin induces glutamate release from astrocytes in the LC via GLT-1-dependent mechanisms to stimulate descending inhibition. The present study also demonstrates that this target of gabapentin in astrocytes does not require interaction with α2δ subunits in neurons.

  5. Functional role for redox in the epileptogenesis: molecular regulation of glutamate in the hippocampus of FeCl3-induced limbic epilepsy model.

    PubMed

    Ueda, Yuto; Doi, Taku; Nagatomo, Keiko; Willmore, L James; Nakajima, Akira

    2007-08-01

    We used western blotting to measure the quantity of glutamate and gamma-aminobutyric acid (GABA) transporters proteins within hippocampal tissue obtained from rats who had undergone epileptogenesis. Chronic seizures were induced by amygdalar injection of FeCl(3). We found that the glial glutamate transporters GLAST and GLT-1 were down-regulated at 60 days after initiation of chronic and recurrent seizures. However, the neuronal glutamate transporter EAAC-1 and the GABA transporter GAT-3 were increased. We performed in vivo microdialysis in freely moving animals to estimate in vivo redox state. We found that the hippocampal tissues were oxidized, resulting in even further impairment of glutamate transport. Our data show that epileptogenesis in rats resulting in chronic and recurrent seizures is associated with collapse of glutamate regulation caused by both the molecular down-regulation of glial glutamate transporters combined with the functional failure due to oxidation.

  6. Paraventricular Stimulation with Glutamate Elicits Bradycardia and Pituitary Responses

    NASA Technical Reports Server (NTRS)

    Darlington, Daniel N.; Miyamoto, Michael; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    The excitatory neurotransmitter, L-glutamate (0.5 M, pH 7.4), or the organic acid, acetate (0.5 M, pH 7.4), was microinjected (50 nl over 2 min) directly into the paraventricular nuclei (PVN) of pentobarbital sodium-anesthetized rats while arterial blood pressure and heart rate and plasma adrenocorticotropic hormone (ACTH), vasopressin, and oxytocin were measured. Activation of PVN neurons with L-glutamate led to increases in plasma ACTH, vasopressin, and oxytocin and a profound bradycardia (-80 beats/min) with little change in arterial blood pressure. Microinjection of acetate had no effect on the above variables. The decrease in heart rate was shown to be dependent on the concentration of glutamate injected and the volume of injectate. The bradycardia was mediated through the autonomic nervous system because ganglionic blockade (pentolinium tartrate) eliminated the response; atropine and propranolol severely attenuated the bradycardia. The bradycardia was greatest when L-glutamate was microinjected into the caudal PVN. Injections into the rostral PVN or into nuclei surrounding the PVN led to small or nonsignificant decreases in heart rate. Focal electric stimulation (2-50 pA) of the PVN also led to decreases in heart rate and arterial blood pressure. These data suggest that activation of PVN neurons leads to the release of ACTH, vasopressin, and oxytocin from the pituitary and a bradycardia that is mediated by the autonomic nervous system.

  7. Glutamate receptors at atomic resolution

    SciTech Connect

    Mayer, Mark L.

    2010-12-03

    At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.

  8. Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum.

    PubMed

    Nickell, Justin; Salvatore, Michael F; Pomerleau, Francois; Apparsundaram, Subbu; Gerhardt, Greg A

    2007-11-01

    Extracellular L-glutamate poses a severe excitotoxic threat to neurons and glia when unregulated, therefore low synaptic levels of this neurotransmitter must be maintained via a rapid and robust transport system. A recent study from our laboratory showed a reduced glutamate uptake rate in the striatum of the aged Fischer 344 (F344) rat, yet the mechanism underlying this phenomenon is unknown. The current study utilized in vivo electrochemical recordings, immunoblotting and biotinylation in young (6 months), late-middle aged (18 months) and aged (24 months) F344 rats to elucidate the potential role that glutamate transporters (GLT-1, GLAST, and EAAC1) may play in this mechanism. Here we show that the time necessary to clear glutamate from the late-middle aged and aged striatum is significantly prolonged in comparison to the young striatum. In addition, an analysis of various sub-regions of the striatum revealed a marked dorsoventral gradient in terms of glutamate clearance times in the aged striatum, a phenomenon which was not present in the striatum of the animals of the remaining age groups. We also found that the decreased glutamate clearance time observed in the late-middle aged and aged rats is not due to a decrease in the production of total transporter protein among these three transporters. Rather, a significant reduction in the amount of GLAST expressed on the plasma membrane surface in the aged animals (approximately 55% when compared to young rats) may contribute to this phenomenon. These age-related alterations in extracellular l-glutamate regulation may be key contributors to the increased susceptibility of the aged brain to excitotoxic insults such as stroke and hypoxia.

  9. Glutamate metabolism of astrocytes during hyperbaric oxygen exposure and its effects on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-Liang; Li, Dan; Wang, Zhong-Zhuang; Xu, Wei-Gang; Li, Run-Ping; Zhang, Jun-Dong

    2016-01-20

    Hyperbaric oxygen (HBO) has been used widely in many underwater missions and clinical work. However, exposure to extremely high oxygen pressure may cause central nervous system oxygen toxicity (CNS-OT). The regulation of astrocyte glutamate metabolism is closely related to epilepsy. This study aimed to observe the effects of HBO exposure on glutamate metabolism in astrocytes and confirm the role of glutamate metabolism in CNS-OT. Anesthetized rats were exposed to 5 atmosphere absolute HBO for 80 min and microdialysis samples of brain interstitial fluid were continuously collected. Extracellular glutamate and glutamine concentrations were also detected. Freely moving rats were exposed to HBO of the same pressure for 20 min and glutamine synthetase (GS) activity in brain tissues was measured. Finally, we observed the effects of different doses of drugs related to glutamate metabolism on the latency of CNS-OT. Results showed that HBO exposure significantly increased glutamate content, whereas glutamine content was significantly reduced. Moreover, HBO exposure significantly reduced GS activity. Glutamate transporter-1 (GLT-1) selective antagonist ceftriaxone prolonged CNS-OT latency, whereas GLT-1 selective inhibitor dihydrokainate shortened CNS-OT latency. In summary, HBO exposure improved glutamate concentration and reduced glutamine concentration by inhibition of GS activity. GLT-1 activation also participated in the prevention of HBO-induced CNS-OT. Our research will provide a potential new target to terminate or attenuate CNS-OT. PMID:26619231

  10. Glutamate metabolism of astrocytes during hyperbaric oxygen exposure and its effects on central nervous system oxygen toxicity.

    PubMed

    Chen, Yu-Liang; Li, Dan; Wang, Zhong-Zhuang; Xu, Wei-Gang; Li, Run-Ping; Zhang, Jun-Dong

    2016-01-20

    Hyperbaric oxygen (HBO) has been used widely in many underwater missions and clinical work. However, exposure to extremely high oxygen pressure may cause central nervous system oxygen toxicity (CNS-OT). The regulation of astrocyte glutamate metabolism is closely related to epilepsy. This study aimed to observe the effects of HBO exposure on glutamate metabolism in astrocytes and confirm the role of glutamate metabolism in CNS-OT. Anesthetized rats were exposed to 5 atmosphere absolute HBO for 80 min and microdialysis samples of brain interstitial fluid were continuously collected. Extracellular glutamate and glutamine concentrations were also detected. Freely moving rats were exposed to HBO of the same pressure for 20 min and glutamine synthetase (GS) activity in brain tissues was measured. Finally, we observed the effects of different doses of drugs related to glutamate metabolism on the latency of CNS-OT. Results showed that HBO exposure significantly increased glutamate content, whereas glutamine content was significantly reduced. Moreover, HBO exposure significantly reduced GS activity. Glutamate transporter-1 (GLT-1) selective antagonist ceftriaxone prolonged CNS-OT latency, whereas GLT-1 selective inhibitor dihydrokainate shortened CNS-OT latency. In summary, HBO exposure improved glutamate concentration and reduced glutamine concentration by inhibition of GS activity. GLT-1 activation also participated in the prevention of HBO-induced CNS-OT. Our research will provide a potential new target to terminate or attenuate CNS-OT.

  11. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    PubMed Central

    Campbell, Susan L.; Hablitz, John J.; Olsen, Michelle L.

    2014-01-01

    Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model

  12. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  13. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  14. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation. This substance is generally recognized...

  15. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  16. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  17. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  18. 21 CFR 182.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  19. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  20. 21 CFR 182.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  1. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  2. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  3. 21 CFR 182.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  4. 21 CFR 182.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  5. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  6. 21 CFR 182.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  7. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  8. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  9. 21 CFR 182.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  10. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  11. 21 CFR 182.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of use. This substance is...

  12. 21 CFR 182.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  13. 21 CFR 582.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  14. 21 CFR 182.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of use. This substance is...

  15. 21 CFR 182.1516 - Monopotassium glutamate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  16. 21 CFR 582.1500 - Monoammonium glutamate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  17. Modes of glutamate receptor gating

    PubMed Central

    Popescu, Gabriela K

    2012-01-01

    Abstract The time course of excitatory synaptic currents, the major means of fast communication between neurons of the central nervous system, is encoded in the dynamic behaviour of post-synaptic glutamate-activated channels. First-pass attempts to explain the glutamate-elicited currents with mathematical models produced reaction mechanisms that included only the most basic functionally defined states: resting vs. liganded, closed vs. open, responsive vs. desensitized. In contrast, single-molecule observations afforded by the patch-clamp technique revealed an unanticipated kinetic multiplicity of transitions: from microseconds-lasting flickers to minutes-long modes. How these kinetically defined events impact the shape of the synaptic response, how they relate to rearrangements in receptor structure, and whether and how they are physiologically controlled represent currently active research directions. Modal gating, which refers to the slowest, least frequently observed ion-channel transitions, has been demonstrated for representatives of all ion channel families. However, reaction schemes have been largely confined to the short- and medium-range time scales. For glutamate receptors as well, modal gating has only recently come under rigorous scrutiny. This article reviews the evidence for modal gating of glutamate receptors and the still developing hypotheses about the mechanism(s) by which modal shifts occur and the ways in which they may impact the time course of synaptic transmission. PMID:22106181

  18. Heroin self-administration experience establishes control of ventral tegmental glutamate release by stress and environmental stimuli.

    PubMed

    Wang, Bin; You, Zhi-Bing; Wise, Roy A

    2012-12-01

    Heroin and cocaine have very different unconditioned receptor-mediated actions; however, in the brain circuitry of drug-reward and motivation, the two drugs establish common conditioned consequences. A single experience with either drug can change the sensitivity of ventral tegmental area (VTA) dopamine neurons to glutamatergic input. In the case of cocaine, repeated intravenous self-administration establishes de novo VTA glutamate release and dopaminergic activation in response to conditioned stimuli and mild footshock stress. Here we determined whether repeated self-administration of heroin would establish similar glutamate release and dopaminergic activation. Although self-administration of heroin itself did not cause VTA glutamate release, conditioned glutamate release was seen when rats expecting rewarding heroin were given nonrewarding saline in its place. Mild footshock stress also caused glutamate release in heroin-trained animals. In each case, the VTA glutamate release was accompanied by elevations in VTA dopamine levels, indicative of dopaminergic activation. In each case, infusion of the ionotropic glutamate antagonist kynurenic acid blocked the VTA dopamine release associated with VTA glutamate elevation. Although glutamate levels in the extinction and reinstatement tests were similar to those reported in cocaine studies, the effects of heroin self-administration itself were quite different from what has been seen during cocaine self-administration.

  19. Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex.

    PubMed

    Darna, Mahesh; Beckmann, Joshua S; Gipson, Cassandra D; Bardo, Michael T; Dwoskin, Linda P

    2015-03-01

    Recent studies have reported that rats raised in an enriched condition (EC) have decreased dopamine transporter (DAT) function and expression in medial prefrontal cortex (mPFC), as well as increased d-amphetamine-induced glutamate release in nucleus accumbens compared to rats raised in an isolated condition (IC). In these previous studies, DAT function and expression were evaluated using mPFC pooled from four rats for each condition to obtain kinetic parameters due to sparse DAT expression in mPFC. In contrast, accumbal glutamate release was determined using individual rats. The current study extends the previous work and reports on the optimization of DAT and serotonin transporter (SERT) functional assays, as well as cell surface expression assays using both mPFC and orbitofrontal cortex (OFC) from individual EC or IC rats. In addition, the effect of d-amphetamine on glutamate release in mPFC and OFC of EC and IC rats was determined using in vivo microdialysis. Results show that environmental enrichment decreased maximal transport velocity (Vmax) for [(3)H]dopamine uptake in mPFC, but increased Vmax for [(3)H]dopamine uptake in OFC. Corresponding changes in DAT cell surface expression were not found. In contrast, Vmax for [(3)H]serotonin uptake and cellular localization of SERT in mPFC and OFC were not different between EC and IC rats. Further, acute d-amphetamine (2mg/kg, s.c.) increased extracellular glutamate concentrations in mPFC of EC rats only and in OFC of IC rats only. Overall, these results suggest that enrichment produces long-lasting alterations in mPFC and OFC DAT function via a trafficking-independent mechanism, as well as differential glutamate release in mPFC and OFC. Rearing-induced modulation of DAT function and glutamate release in prefrontal cortical subregions may contribute to the known protective effects of enrichment on drug abuse vulnerability.

  20. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    PubMed

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut.

  1. Hippocampal glutamate receptors in fear memory consolidation.

    PubMed

    Cammarota, Martín; Bevilaqua, Lia R M; Bonini, Juliana S; Rossatto, Janine I; Medina, Jorge H; Izquierdo, N

    2004-01-01

    It is thought that activity-dependent changes in synaptic efficacy driven by biochemical pathways responsive to the action of the excitatory neurotransmitter glutamate are critical components of the mechanisms responsible for memory formation. In particular, the early activation of the NMDA (rNMDA) and AMPA (rAMPA) subtypes of ionotropic glutamate receptors has been demonstrated to be a necessary event for the acquisition of several types of memory. In the rat, consolidation of the long-term memory for a one-trial, step-down inhibitory avoidance task is blocked by antagonists of the rNMDA and rAMPA infused into the CA1 region of the dorsal hippocampus early after training and is associated with a rapid and reversible increase in the total number of [3H]AMPA binding sites. The learning-induced increase in [[3H]AMPA is accompanied by translocation of the GluR1 subunit of the rAMPA to the post-synaptic terminal together with its phosphorylation at Ser831. In addition, learning of the mentioned fear-motivated task induces the activation and rNMDA-dependent translocation of CaMKII to the post-synaptic density. Inhibition of this protein kinase as well as blockade of the rNMDA abolishes both the learning-induced translocation of GluR1 and its phosphorylation. Our data suggest that learning of an avoidance task enhances hippocampal rAMPA signaling through rNMDA and CaMKII-dependent mechanisms.

  2. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons

    PubMed Central

    Holstein, Gay R.; Friedrich, Victor L. Jr.; Martinelli, Giorgio P.

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  3. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    PubMed

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  4. Fluorescence imaging of glutamate release in neurons

    SciTech Connect

    Wang, Ziqiang; Yeung, Edward S.

    1999-12-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to {mu}M levels of glutamate with reasonable response time ({approx}30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from {mu}M to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy.

  5. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism.

    PubMed

    Melo, Daniela R; Mirandola, Sandra R; Assunção, Nilson A; Castilho, Roger F

    2012-06-01

    The neurodegeneration that occurs in methylmalonic acidemia is proposed to be associated with impairment of mitochondrial oxidative metabolism resulting from methylmalonate (MMA) accumulation. The present study evaluated the effects of MMA on oxygen consumption by isolated rat brain mitochondria in the presence of NADH-linked substrates (α-ketoglutarate, citrate, isocitrate, glutamate, malate, and pyruvate). Respiration supported either by glutamate or glutamate plus malate was significantly inhibited by MMA (1-10 mM), whereas no inhibition was observed when a cocktail of NADH-linked substrates was used. Measurements of glutamate transport revealed that the inhibitory effect of MMA on respiration maintained by this substrate is not due to inhibition of its mitochondrial uptake. In light of this result, the effect of MMA on the activity of relevant enzymes involved in mitochondrial glutamate metabolism was investigated. MMA had minor inhibitory effects on glutamate dehydrogenase and aspartate aminotransferase, whereas α-ketoglutarate dehydrogenase was significantly inhibited by this metabolite (K(i) = 3.65 mM). Moreover, measurements of α-ketoglutarate transport and mitochondrial MMA accumulation indicated that MMA/α-ketoglutarate exchange depletes mitochondria from this substrate, which may further contribute to the inhibition of glutamate-sustained respiration. To study the effect of chronic in vivo MMA treatment on mitochondrial function, young rats were intraperitoneally injected with MMA. No significant difference was observed in respiration between isolated brain mitochondria from control and MMA-treated rats, indicating that in vivo MMA treatment did not lead to permanent mitochondrial respiratory defects. Taken together, these findings indicate that the inhibitory effect of MMA on mitochondrial oxidative metabolism can be ascribed to concurrent inhibition of specific enzymes and lower availability of respiratory substrates. PMID:22488725

  6. 13N as a tracer for studying glutamate metabolism

    PubMed Central

    Cooper, Arthur J. L.

    2010-01-01

    This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive 13N (t½ 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that a) the t½ for conversion of portal vein ammonia to urea in the rat liver is ~10–11 sec, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, b) the residence time for ammonia in the blood of anesthetized rats is ≤7–8 sec, c) the t½ for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3 sec, and d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia. PMID:21108979

  7. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  8. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  9. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  10. Role of glutamate receptors in the dorsal reticular nucleus in formalin-induced secondary allodynia.

    PubMed

    Ambriz-Tututi, Mónica; Palomero-Rivero, Marcela; Ramirez-López, Fernanda; Millán-Aldaco, Diana; Drucker-Colín, And René

    2013-10-01

    The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia. PMID:23869620

  11. Glutamate racemization and catabolism in Fusobacterium varium.

    PubMed

    Ramezani, Mohammad; Resmer, Kelly L; White, Robert L

    2011-07-01

    The pathways of glutamate catabolism in the anaerobic bacterium Fusobacterium varium, grown on complex, undefined medium and chemically defined, minimal medium, were investigated using specifically labelled (13)C-glutamate. The metabolic end-products acetate and butyrate were isolated from culture fluids and derivatized for analysis by nuclear magnetic resonance and mass spectrometry. On complex medium, labels from L-[1-(13)C]glutamate and L-[4-(13)C]glutamate were incorporated into C1 of acetate and equally into C1/C3 of butyrate, while label derived from L-[5-(13)C]glutamate was not incorporated. The isotopic incorporation results and the detection of glutamate mutase and 3-methylaspartate ammonia lyase in cell extracts are most consistent with the methylaspartate pathway, the best known route of glutamate catabolism in Clostridium species. When F. varium was grown on defined medium, label from L-[4-(13)C]glutamate was incorporated mainly into C4 of butyrate, demonstrating a major role for the hydroxyglutarate pathway. Upon addition of coenzyme B(12) or cobalt ion to the defined medium in replicate experiments, isotope was located equally at C1/C3 of butyrate in accord with the methylaspartate pathway. Racemization of D-glutamate and subsequent degradation of L-glutamate via the methylaspartate pathway are supported by incorporation of label into C2 of acetate and equally into C2/C4 of butyrate from D-[3-(13)C]glutamate and the detection of a cofactor-independent glutamate racemase in cell extracts. Together the results demonstrate a major role for the methylaspartate pathway of glutamate catabolism in F. varium and substantial participation of the hydroxyglutarate pathway when coenzyme B(12) is not available.

  12. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    PubMed

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives. PMID:27455572

  13. Huntington disease and Tourette syndrome. II. Uptake of glutamic acid and other amino acids by fibroblasts.

    PubMed

    Comings, D E; Goetz, I E; Holden, J; Holtz, J

    1981-03-01

    Injection of kainic acid, a rigid analog of the excitatory neurotransmitter glutamic acid (glu), into the neostriatum of rats produces a condition that mimics Huntington disease (HD) in at least 12 different morphological and biochemical parameters. These results suggested that one of the possible basic mechanisms in HD is a defect in the presynaptic of glial uptake of glu, resulting in chronic hyperstimulation and death of a specific set of neurons. To test this hypothesis, the uptake of glu was studied in 12 carefully matched sets of control-HD pairs and two lines of Tourette syndrome fibroblasts. Although the first six sets suggested a glutamate transport defect in HD cells, examination of 12 sets indicated that there were no significant differences between control and HD cells. The fibroblasts showed both a high and low affinity uptake of glutamic acid. Sodium dependent uptake of L-glutamate (L-glu) minus D-glutamate (D-glu) at 100, 1,000, and 10,000 Micrometers glutamate was normal in HD and Tourette syndrome cells.

  14. The glutamate homeostasis hypothesis of addiction.

    PubMed

    Kalivas, Peter W

    2009-08-01

    Addiction is associated with neuroplasticity in the corticostriatal brain circuitry that is important for guiding adaptive behaviour. The hierarchy of corticostriatal information processing that normally permits the prefrontal cortex to regulate reinforcement-seeking behaviours is impaired by chronic drug use. A failure of the prefrontal cortex to control drug-seeking behaviours can be linked to an enduring imbalance between synaptic and non-synaptic glutamate, termed glutamate homeostasis. The imbalance in glutamate homeostasis engenders changes in neuroplasticity that impair communication between the prefrontal cortex and the nucleus accumbens. Some of these pathological changes are amenable to new glutamate- and neuroplasticity-based pharmacotherapies for treating addiction. PMID:19571793

  15. Scavenging of blood glutamate for enhancing brain-to-blood glutamate efflux.

    PubMed

    Li, Yunhong; Hou, Xiaolin; Qi, Qi; Wang, Le; Luo, Lan; Yang, Shaoqi; Zhang, Yumei; Miao, Zhenhua; Zhang, Yanli; Wang, Fei; Wang, Hongyan; Huang, Weidong; Wang, Zhenhai; Shen, Ying; Wang, Yin

    2014-01-01

    The presence of excess glutamate in the brain interstitial fluid characterizes several acute pathological conditions of the brain, including traumatic brain injury and stroke. It has been demonstrated that it is possible to eliminate excess glutamate in the brain by decreasing blood glutamate levels and, accordingly, accelerating the brain-to-blood glutamate efflux. It is feasible to accomplish this process by activating blood resident enzymes in the presence of the respective glutamate cosubstrates. In the present study, several glutamate cosubstrates and cofactors were studied in an attempt to identify the optimal conditions to reduce blood glutamate levels. The administration of a mixture of 1 mM pyruvate and oxaloacetate (Pyr/Oxa) for 1 h decreased blood glutamate levels by ≤50%. The addition of lipoamide to this mixture resulted in a further reduction in blood glutamate levels of >80%. In addition, in vivo experiments showed that lipoamide together with Pyr/Oxa is able to decrease blood glutamate levels to a greater extent than Pyr/Oxa alone, and accordingly, this enhances the glutamate efflux from the brain to the blood. These results may outline a novel neuroprotective strategy with increased effectiveness for the removal of excess brain glutamate in various neurodegenerative conditions.

  16. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    PubMed

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  17. Interaction of Peptide Transporter 1 With D-Glucose and L-Glutamic Acid; Possible Involvement of Taste Receptors.

    PubMed

    Arakawa, Hiroshi; Ohmachi, Taichi; Ichiba, Kiko; Kamioka, Hiroki; Tomono, Takumi; Kanagawa, Masahiko; Idota, Yoko; Hatano, Yasuko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    We investigated the influence of sweet and umami (savory) tastants on the intestinal absorption of cephalexin (CEX), a substrate of peptide transporter 1 (PEPT1, SLC15A1) in rats. After oral administration of glucose or mannitol to rats, CEX was administered together with a second dose of glucose or mannitol. Western blot analysis indicated that expression of PEPT1 in rat jejunum membrane was decreased by glucose, compared to mannitol. Furthermore, the maximum plasma concentration (Cmax) of orally administered CEX was reduced by glucose compared to mannitol. The effect of glucose was diminished by nifedipine, a L-type Ca(2+) channel blocker. We also found that Cmax of orally administered CEX was reduced by treatment with L-glutamic acid, compared to D-glutamic acid. Thus, excessive intake of glucose and L-glutamic acid may impair oral absorption of PEPT1 substrates. PMID:26852864

  18. Effect of insulin on muscle glutamate uptake

    PubMed Central

    Aoki, T. T.; Brennan, M. F.; Müller, W. A.; Moore, F. D.; Cahill, G. F.

    1972-01-01

    For decades, investigators concerned with protein metabolism in man have performed detailed amino acid analyses of human plasma obtained under a wide range of experimental situations. A large body of information has been used to calculated rates of protein synthesis and proteolysis. During the course of an investigation of the effect of intrabrachial artery infusion of insulin (70 μU/min per kg body weight) on glutamate uptake by human forearm muscle, it was discovered that plasma arterio-deep venous glutamate difference analysis failed to document any increase in the uptake of this amino acid, suggesting that insulin had little influence on glutamate uptake by muscle. However, whole blood glutamate analyses, performed on the same blood samples, revealed that (a) the resting muscle uptake of glutamate is smaller than previously reported and (b) insulin is capable of markedly increasing glutamate uptake by muscle from whole blood. Since the hematocrit was obtained on all samples, detailed analyses of the various compartments in which glutamate could be found were performed. It was determined that circulating blood cells have a dynamic role in glutamate transport. These data underscore the need for both whole blood and plasma amino acid analysis in investigations concerned with protein synthesis and/or amino acid flux, for analysis of plasma samples alone could be misleading as illustrated in the present study. Images PMID:5080414

  19. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. PMID:27422519

  20. Glutamate-based antidepressants: preclinical psychopharmacology.

    PubMed

    Pilc, Andrzej; Wierońska, Joanna M; Skolnick, Phil

    2013-06-15

    Over the past 20 years, converging lines of evidence have both linked glutamatergic dysfunction to the pathophysiology of depression and demonstrated that the glutamatergic synapse presents multiple targets for developing novel antidepressants. The robust antidepressant effects of the N-methyl-D-aspartate receptor antagonists ketamine and traxoprodil provide target validation for this family of ionotropic glutamate receptors. This article reviews the preclinical evidence that it may be possible to develop glutamate-based antidepressants by not only modulating ionotropic (N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) and metabotropic glutamate (mGlu) receptors, including mGlu2/3, mGLu5 and mGlu7 receptors, but also by altering synaptic concentrations of glutamate via specialized transporters such as glial glutamate transporter 1 (excitatory amino-acid transporter 2).

  1. The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices

    PubMed Central

    Kamm, Donald E.; Strope, Gerald L.

    1972-01-01

    Studies of the metabolism of glutamine and glutamate by renal cortex slices from acidotic, alkalotic, and control rats were performed. 88-95% of the glutamine and 104-115% of the glutamate taken up from the medium could be accounted for by the products found. Acidosis increased glutamine uptake and conversion to ammonia, CO2, glucose, lactate, pyruvate, lipid, and protein. The increase in glutamine conversion to ammonia after acidosis could be completely accounted for by the associated increase in its conversion to glucose, glutamate, lactate, and pyruvate. When glutamate metabolism was examined, acidosis did not affect substrate uptake but did increase its conversion to ammonia, glucose, lactate, CO2, and lipid. The increase in 14CO2 from U-14C-glutamine and U-14C-glutamate found with cortex slices from acidotic animals could be explained by the CO2 production calculated to be associated with the enhanced conversion of these substrates to other products during acidosis. 14CO2 production from 1.2-14C-acetate was found to be significantly increased in alkalosis rather than acidosis. These studies suggest that in the rat, the rate at which glutamine is completely oxidized in the Krebs cycle is not a factor regulating renal ammonia production. A comparison of the effects of acidbase status on glutamine and glutamate metabolism suggests that either glutamine transport or glutamine transaminase activity are significantly increased by acidosis. Images PMID:5057130

  2. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  3. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed. PMID:27677557

  4. Genetic labeling of both the axons of transduced, glutamatergic neurons in rat postrhinal cortex and their postsynaptic neurons in other neocortical areas by herpes simplex virus vectors that coexpress an axon-targeted β-galactosidase and wheat germ agglutinin from a vesicular glutamate transporter-1 promoter.

    PubMed

    Zhang, Guo-rong; Cao, Haiyan; Li, Xu; Zhao, Hua; Geller, Alfred I

    2010-11-18

    Neuronal circuits comprise the foundation for neuronal physiology and synaptic plasticity, and thus for consequent behaviors and learning, but our knowledge of neocortical circuits is incomplete. Mapping neocortical circuits is a challenging problem because these circuits contain large numbers of neurons, a high density of synapses, and numerous classes and subclasses of neurons that form many different types of synapses. Expression of specific genetic tracers in small numbers of specific subclasses of neocortical neurons has the potential to map neocortical circuits. Suitable genetic tracers have been established in neurons in subcortical areas, but application to neocortical circuits has been limited. Enabling this approach, Herpes Simplex Virus (HSV-1) plasmid (amplicon) vectors can transduce small numbers of neurons in a specific neocortical area. Further, expression of a particular genetic tracer can be restricted to specific subclasses of neurons; in particular, the vesicular glutamate transporter-1 (VGLUT1) promoter supports expression in VGLUT1-containing glutamatergic neurons in rat postrhinal (POR) cortex. Here, we show that expression of an axon-targeted β-galactosidase (β-gal) from such vectors supports mapping specific commissural and associative projections of the transduced neurons in POR cortex. Further, coexpression of wheat germ agglutinin (WGA) and an axon-targeted β-gal supports mapping both specific projections of the transduced neurons and identifying specific postsynaptic neurons for the transduced neurons. The neocortical circuit mapping capabilities developed here may support mapping specific neocortical circuits that have critical roles in cognitive learning.

  5. Modulation of pineal melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through NF-κB activation.

    PubMed

    Villela, Darine; Atherino, Victoria Fairbanks; Lima, Larissa de Sá; Moutinho, Anderson Augusto; do Amaral, Fernanda Gaspar; Peres, Rafael; Martins de Lima, Thais; Torrão, Andréa da Silva; Cipolla-Neto, José; Scavone, Cristóforo; Afeche, Solange Castro

    2013-01-01

    The glutamatergic modulation of melatonin synthesis is well known, along with the importance of astrocytes in mediating glutamatergic signaling in the central nervous system. Pinealocytes and astrocytes are the main cell types in the pineal gland. The objective of this work was to investigate the interactions between astrocytes and pinealocytes as a part of the glutamate inhibitory effect on melatonin synthesis. Rat pinealocytes isolated or in coculture with astrocytes were incubated with glutamate in the presence of norepinephrine, and the melatonin content, was quantified. The expression of glutamate receptors, the intracellular calcium content and the NF- κ B activation were analyzed in astrocytes and pinealocytes. TNF- α 's possible mediation of the effect of glutamate was also investigated. The results showed that glutamate's inhibitory effect on melatonin synthesis involves interactions between astrocytes and pinealocytes, possibly through the release of TNF- α . Moreover, the activation of the astrocytic NF- κ B seems to be a necessary step. In astrocytes and pinealocytes, AMPA, NMDA, and group I metabotropic glutamate receptors were observed, as well as the intracellular calcium elevation. In conclusion, there is evidence that the modulation of melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through the activation of the astrocytic NF- κ B transcription factor and possibly by subsequent TNF- α release.

  6. [The influence of L-glutamate and carbachol on burst firing of dopaminergic neurons in ventral tegmental area].

    PubMed

    Wang, Shan-shan; Wei, Chun-ling; Liu, Zhi-qiang; Ren, Wei

    2011-02-25

    Burst firing of dopaminergic neurons in ventral tegmental area (VTA) induces a large transient increase in synaptic dopamine (DA) release and thus is considered the reward-related signal. But the mechanisms of burst generation of dopaminergic neuron still remain unclear. This experiment investigated the burst firing of VTA dopaminergic neurons in rat midbrain slices perfused with carbachol and L-glutamate individually or simultaneously to understand the neurotransmitter mechanism underlying burst generation. The results showed that bath application of carbachol (10 μmol/L) and pulse application of L-glutamate (3 mmol/L) both induced burst firing in dopaminergic neuron. Co-application of carbachol and L-glutamate induced burst firing in VTA dopaminergic cells which couldn't be induced to burst by the two chemicals separately. The result indicates that carbachol and L-glutamate co-regulate burst firing of dopaminergic neuron.

  7. The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors.

    PubMed

    Schoepp, D D; Salhoff, C R; Wright, R A; Johnson, B G; Burnett, J P; Mayne, N G; Belagaje, R; Wu, S; Monn, J A

    1996-01-01

    The mGlu receptor subtypes and second messenger pathways that mediate 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) responses in brain tissues are not fully understood. 1S,3R-ACPD differs from 3,5-dihydroxyphenylglycine (DHPG) or quisqualate in that 1S,3R-ACPD also activates group 2 mGlu receptors (mGlu2 and mGlu3) that are negatively linked to cAMP formation. To investigate the contribution of group 2 mGlu receptor activity of 1S,3R-ACPD to the phosphoinositide response in the rat hippocampus, we examined the effects of the novel group 2 mGlu receptor agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC). 2R,4R-APDC did not activate or inhibit group 1 mGlu receptors (human mGlu1 alpha and mGlu5a) or group 3 mGlu receptors (human mGlu4 and mGlu7), but potently decreased forskolin-stimulated cAMP formation in human mGlu2- and mGlu3-expressing cells. In slices of the adult rat hippocampus 2R,4R-APDC had no effect on basal phosphoinositide hydrolysis; however, it was found to greatly enhance phosphoinositide hydrolysis to DHPG or quisqualate. In the neonatal rat hippocampus, 2R,4R-APDC enhanced the potency of DHPG, while not affecting the maximal response to group 1 mGlu receptor agonists. Thus, the phosphoinositide response in the rat hippocampus to 1S,3R-ACPD is mediated by a synergistic interaction between group 1 and group 2 mGlu receptors. PMID:9076745

  8. Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex.

    PubMed

    Shin, Christina B; Serchia, Michela M; Shahin, John R; Ruppert-Majer, Micaela A; Kippin, Tod E; Szumlinski, Karen K

    2016-03-01

    Craving elicited by drug-associated cues intensifies across protracted drug abstinence - a phenomenon termed "incubation of craving" - and drug-craving in human addicts correlates with frontal cortical hyperactivity. Herein, we employed a rat model of cue-elicited cocaine-craving to test the hypothesis that the time-dependent incubation of cue-elicited cocaine-craving is associated with adaptations in dopamine and glutamate neurotransmission within the ventromedial prefrontal cortex (vmPFC). Rats were trained to self-administer intravenous cocaine (6 h/day × 10 days) and underwent in vivo microdialysis procedures during 2 h-tests for cue-elicited cocaine-craving at either 3 or 30 days withdrawal. Controls rats were trained to either self-administer sucrose pellets or received no primary reinforcer. Cocaine-seeking rats exhibited a withdrawal-dependent increase and decrease, respectively, in cue-elicited glutamate and dopamine release. These patterns of neurochemical change were not observed in either control condition. Thus, cue-hypersensitivity of vmPFC glutamate terminals is a biochemical correlate of incubated cocaine-craving that may stem from dopamine dysregulation in this region.

  9. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation

    PubMed Central

    Raju, Karthik; Doulias, Paschalis-Thomas; Evans, Perry; Krizman, Elizabeth N.; Jackson, Joshua G.; Horyn, Oksana; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Nissim, Itzhak; Sharp, Kim A.; Robinson, Michael B.; Ischiropoulos, Harry

    2016-01-01

    Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS−/−) or neuronal nitric oxide synthase (nNOS−/−). In particular, nNOS−/− animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. 15N-glutamine–based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS−/− mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys373 and Cys561 in wild-type and eNOS−/− mice, but not in nNOS−/− mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism. PMID:26152695

  10. Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord

    PubMed Central

    Inquimbert, Perrine; Bartels, Karsten; Babaniyi, Olusegun B.; Barrett, Lee B.; Tegeder, Irmgard; Scholz, Joachim

    2012-01-01

    Peripheral nerve injury provokes heightened excitability of primary sensory afferents including nociceptors, and elicits ectopic activity in lesioned and neighboring intact nerve fibers. The major transmitter released by sensory afferents in the superficial dorsal horn of the spinal cord is glutamate. Glutamate is critically involved in nociceptive signaling and the development of neuropathic pain. We recorded miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II of the rat dorsal horn to assess spontaneous synaptic activity after spared nerve injury (SNI), a model of chronic neuropathic pain. Following SNI, the frequency of mEPSCs doubled, indicating heightened glutamate release from primary afferents or spinal interneurons. Consistent with this finding, glutamate concentrations in the cerebrospinal fluid were elevated at one and four weeks after SNI. Transmitter uptake was insufficient to prevent the rise in extracellular glutamate as the expression of glutamate transporters remained unchanged or decreased. 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), an antagonist of metabotropic glutamate receptor 5 (mGluR5), reduced the frequency of mEPSCs to its preinjury level, suggesting a positive feedback mechanism that involves facilitation of transmitter release by mGluR5 activation in the presence of high extracellular glutamate. Treatment with the β-lactam antibiotic ceftriaxone increased the expression of glutamate transporter 1 (Glt1) in the dorsal horn after SNI, raised transmitter uptake and lowered extracellular glutamate. Improving glutamate clearance prevented the facilitation of transmitter release by mGluR5 and attenuated neuropathic pain-like behavior. Balancing glutamate release and uptake after nerve injury should be an important target in the management of chronic neuropathic pain. PMID:23021150

  11. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    PubMed

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling.

  12. Behavioral History of Withdrawal Influences Regulation of Cocaine Seeking by Glutamate Re-Uptake

    PubMed Central

    Zhou, Luyi; Andersen, Haley; Arreola, Adrian C.; Turner, Jill R.; Ortinski, Pavel I.

    2016-01-01

    Withdrawal from cocaine regulates expression of distinct glutamate re-uptake transporters in the nucleus accumbens (NAc). In this study, we examined the cumulative effect of glutamate re-uptake by multiple excitatory amino acid transporters (EAATs) on drug-seeking at two different stages of withdrawal from self-administered cocaine. Rats were trained on fixed ratio 1 (FR1), progressing to FR5 schedule of reinforcement. After one day of withdrawal, microinfusion of a broad non-transportable EAAT antagonist, DL-threo-beta-benzyloxyaspartate (DL-TBOA), into the NAc shell dose-dependently attenuated self-administration of cocaine. Sucrose self-administration was not affected by DL-TBOA, indicating an effect specific to reinforcing properties of cocaine. The attenuating effect on cocaine seeking was not due to suppression of locomotor response, as DL-TBOA was found to transiently increase spontaneous locomotor activity. Previous studies have established a role for EAAT2-mediated re-uptake on reinstatement of cocaine seeking following extended withdrawal and extinction training. We found that blockade of NAc shell EAATs did not affect cocaine-primed reinstatement of cocaine seeking. These results indicate that behavioral history of withdrawal influences the effect of re-uptake mediated glutamate clearance on cocaine seeking. Dynamic regulation of glutamate availability by re-uptake mechanisms may impact other glutamate signaling pathways to account for such differences. PMID:27685834

  13. Proline-induced inhibition of glutamate release in hippocampal area CA1.

    PubMed

    Cohen, S M; Nadler, J V

    1997-09-26

    Concentrations of proline typical of human CSF have been shown to potentiate transmission at Schaffer collateral-commissural synapses on CA1 pyramidal cells of the rat hippocampus. This study tested the hypothesis that proline enhances excitatory synaptic transmission by increasing glutamate release. Two concentrations of proline were used: a concentration typical of normal human CSF (3 microM) and a concentration typical of CSF in persons with the genetic disorder hyperprolinemia type II (30 microM). Continuous exposure of hippocampal slices to either concentration of proline potentiated Schaffer collateral-commissural synaptic transmission. Proline shifted the plot of field EPSP slope against fiber volley amplitude upward. Contrary to the original hypothesis, neither concentration of proline reduced paired-pulse facilitation; 30 microM proline enhanced paired-pulse facilitation, whereas 3 microM proline had no effect. In line with its enhancement of paired-pulse facilitation, 30 microM proline reduced both the K+-evoked release of glutamate and aspartate from CA1 slices and the release of glutamate and aspartate from CA1 synaptosomes evoked by 4-aminopyridine. These results suggest that the proline-induced potentiation of Schaffer collateral-commissural synaptic transmission probably involves a postsynaptic, rather than a presynaptic, mechanism. Concentrations of proline normally found in human CSF little affect glutamate release. However, proline-induced inhibition of glutamate release may contribute to the neuropsychiatric disorders associated with hyperprolinemia type II.

  14. Bidirectional modulation of cocaine-expectancy by phasic glutamate fluctuations in the nucleus accumbens

    PubMed Central

    Suto, Nobuyoshi; Elmer, Greg I.; Wang, Bin; You, Zhi-Bing; Wise, Roy A.

    2013-01-01

    While glutamate in the nucleus accumbens (NAS) contributes to the promotion of drug-seeking by drug-predictive cues, it also appears to play a role in the inhibition of drug-seeking following extinction procedures. Thus we measured extracellular fluctuations of NAS glutamate in response to discriminative stimuli that signaled either cocaine availability or cocaine omission. We trained rats to self-administer intravenous cocaine and then to recognize discriminative odor cues that predicted either sessions where cocaine was available or alternating sessions where it was not (saline substituted for cocaine). Whereas responding in cocaine availability sessions remained stable, responding in cocaine omission sessions progressively declined to chance levels. We then determined the effects of each odor cue on extracellular glutamate in the core and shell subregions of NAS preceding and accompanying lever-pressing under an extinction condition. Glutamate levels were elevated in both core and shell by the availability odor and depressed in the core but not the shell by the omission odor. Infusion of kynurenic acid (an antagonist for ionotropic glutamate receptors) into core but not shell suppressed responding associated with the availability odor, but had no effect on the suppression associated with the omission odor. Thus cocaine-predictive cues appear to promote cocaine-seeking in part by elevating glutamatergic neurotransmission in the core of NAS, whereas cocaine-omission cues appear to suppress cocaine-seeking in part by depressing glutamatergic receptor activation in the same region. PMID:23699516

  15. Glutamate receptors and transporters in genetic and acquired models of epilepsy.

    PubMed

    Meldrum, B S; Akbar, M T; Chapman, A G

    1999-09-01

    Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis. PMID:10515165

  16. A Novel Class of Succinimide-Derived Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Provides Insight into a Disconnect in Activity between the Rat and Human Receptors

    PubMed Central

    2014-01-01

    Recent progress in the discovery of mGlu1 allosteric modulators has suggested the modulation of mGlu1 could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu1 modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu1 negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu1 chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu1 but was, surprisingly, inactive at human mGlu1. VU0410425 and a set of chemically diverse mGlu1 negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu1 activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu1 negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu1 activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu1. PMID:24798819

  17. Emerging aspects of dietary glutamate metabolism in the developing gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  18. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells.

    PubMed

    López-Colomé, Ana María; López, Edith; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-07-01

    Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na(+)-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [(3)H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function. PMID:27017513

  19. Radiodefluorination of 3-Fluoro-5-(2-(2-[18F](fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a Radioligand for Imaging Brain Metabotropic Glutamate Subtype-5 Receptors with Positron Emission Tomography, Occurs by Glutathionylation in Rat Brain

    PubMed Central

    Zoghbi, Sami S.; Siméon, Fabrice G.; Liow, Jeih-San; Brown, Amira K.; Kannan, Pavitra; Innis, Robert B.; Pike, Victor W.

    2008-01-01

    Metabotropic glutamate subtype-5-receptors (mGluR5) are implicated in several neuropsychiatric disorders. Positron emission tomography (PET) with a suitable radioligand may enable monitoring of regional brain mGluR5 density before and during treatments. We have developed a new radioligand, 3-fluoro-5-(2-(2-[18F](fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), for imaging brain mGluR5 in monkey and human. In monkey, radioactivity was observed in bone, showing release of [18F]fluoride ion from [18F]SP203. This defluorination was not inhibited by disulfiram, a potent inhibitor of CYP2E1. PET confirmed bone uptake of radioactivity and therefore defluorination of [18F]SP203 in rats. To understand the biochemical basis for defluorination, we administered [18F]SP203 plus SP203 in rats for ex vivo analysis of metabolites. Radio-HPLC detected [18F]fluoride ion as a major radiometabolite in both brain extract and urine. Incubation of [18F]SP203 with brain homogenate also generated this radiometabolite, whereas no metabolism was detected in whole blood in vitro. LC-MS analysis of the brain extract detected m/z 548 and m/z 404 ions, assignable to the [M+H]+ of S-glutathione (SP203Glu) and N-acetyl-S-L-cysteine (SP203Nac) conjugates of SP203, respectively. In urine, only the [M+H]+ of SP203Nac was detected. MS-MS and MS3 analyses of each metabolite yielded product ions consistent with its proposed structure, including the former fluoromethyl group as the site of conjugation. Metabolite structures were confirmed by similar analyses of SP203Glu and SP203Nac, prepared by glutathione S-transferase reaction and chemical synthesis, respectively. Thus, glutathionylation at the 2-fluoromethyl group is responsible for the radiodefluorination of [18F]SP203 in rat. This study provides the first demonstration of glutathione-promoted radiodefluorination of a PET radioligand. PMID:18806125

  20. Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic ActivityS⃞

    PubMed Central

    Rodriguez, Alice L.; Grier, Mark D.; Jones, Carrie K.; Herman, Elizabeth J.; Kane, Alexander S.; Smith, Randy L.; Williams, Richard; Zhou, Ya; Marlo, Joy E.; Days, Emily L.; Blatt, Tasha N.; Jadhav, Satyawan; Menon, Usha N.; Vinson, Paige N.; Rook, Jerri M.; Stauffer, Shaun R.; Niswender, Colleen M.; Lindsley, Craig W.; Weaver, C. David

    2010-01-01

    Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have

  1. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    PubMed Central

    FEATHERSTONE, DAVID E.; SHIPPY, SCOTT A.

    2008-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied. PMID:17947494

  2. Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples.

    PubMed

    Y Lmaz, Demet; Karaku, Emine

    2011-12-01

    The potentiometric glutamate biosensor based on ammonium-selective poly(vinylchloride) (PVC) membrane electrode was constructed by chemically immobilizing glutamate oxidase. Ammonium ions produced after an enzymatic reaction were determined potentiometrically. We determined the optimum working conditions of the biosensor such as buffer concentration, buffer pH, lifetime, response time, linear working range, kinetic constants (K(m) and V(max)) of glutamate oxidase enzyme used for biosensor construction values, and other response characteristics. Additionally, glutamate assay in some real samples such as chicken bullion, healthy human serum, and commercial multipower amino acid mixture were also successfully carried out. The results showed good agreement with previously reported values.

  3. Brain glutamate decarboxylase and pyrroloquinoline quinone.

    PubMed

    Choi, S Y; Khemlani, L S; Churchich, J E

    1992-01-01

    Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.

  4. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  5. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  6. [Glutamate transporter dysfunction and major mental illnesses].

    PubMed

    Tanaka, Kohichi

    2016-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system and plays an important role in most aspects of normal brain function. In spite of its importance as a neurotransmitter, excess glutamate is toxic to neurons. Clearance of extracellular glutamate is critical for maintenance of low extracellular glutamate concentration, and occurs in large part through the activity of GLT1 (EAAT2) and GLAST (EAAT1), which are primarily expressed by astrocytes. Rare variants and down-regulation of GLT1 and GLAST, in psychiatric disorders have been reported. In this review, we demonstrate that various kinds of GLT1 and/or GLAST knockout mice replicate many aspects of the behavioral abnormalities seen in major mental illnesses including schizophrenia, depression, obsessive -compulsive disorders, autism, epilepsy and addiction. PMID:26793898

  7. Glutamic Acid Decarboxylation in Chlorella12

    PubMed Central

    Lane, T. R.; Stiller, Mary

    1970-01-01

    The decarboxylation of endogenous free glutamic acid by Chlorella pyrenoidosa, Marburg strain, was induced by a variety of metabolic poisons, by anaerobic conditions, and by freezing and thawing the cells. The rate of decarboxylation was proportional to the concentration of inhibitor present. Possible mechanisms which relate the effects of the various conditions on glutamate decarboxylation and oxygen consumption by Chlorella are discussed. Images PMID:5429350

  8. [Glutamate neurotransmission, stress and hormone secretion].

    PubMed

    Jezová, D; Juránková, E; Vigas, M

    1995-11-01

    Glutamate neurotransmission has been investigated in relation to several physiological processes (learning, memory) as well as to neurodegenerative and other disorders. Little attention has been paid to its involvement in neuroendocrine response during stress. Penetration of excitatory amino acids from blood to the brain is limited by the blood-brain barrier. As a consequence, several toxic effects but also bioavailability for therapeutic purposes are reduced. A free access to circulating glutamate is possible only in brain structures lacking the blood-brain barrier or under conditions of its increased permeability. Excitatory amino acids were shown to stimulate the pituitary hormone release, though the mechanism of their action is still not fully understood. Stress exposure in experimental animals induced specific changes in mRNA levels coding the glutamate receptor subunits in the hippocampus and hypothalamus. The results obtained with the use of glutamate receptor antagonists indicate that a number of specific receptor subtypes contribute to the stimulation of ACTH release during stress. The authors provided also data on the role of NMDA receptors in the control of catecholamine release, particularly in stress-induced secretion of epinephrine. These results were the first piece of evidence on the involvement of endogenous excitatory amino acids in neuroendocrine activation during stress. Neurotoxic effects of glutamate in animals are well described, especially after its administration in the neonatal period. In men, glutamate toxicity and its use as a food additive are a continuous subject of discussions. The authors found an increase in plasma cortisol and norepinephrine, but not epinephrine and prolactin, in response to the administration of a high dose of glutamate. It cannot be excluded that these effects might be induced even by lower doses in situations with increased vulnerability to glutamate action (age, individual variability). (Tab. 1, Fig. 6, Ref. 44

  9. GABA and glutamate receptors in the horizontal limb of diagonal band of Broca (hDB): effects on cardiovascular regulation.

    PubMed

    Nasimi, Ali; Hatam, Masoumeh

    2005-11-01

    The horizontal limb of diagonal band of Broca (hDB) is a part of the limbic system. It has been shown that microinjection of L-glutamate into the hDB elicited cardiovascular depressive responses in anesthetized rats and pressor effect in unanesthetized rats. But the role of glutamate receptor subtypes has not yet been investigated. In addition the role of the GABAergic system of the hDB in cardiovascular responses is not known. Therefore, we examined the cardiovascular responses elicited by glutamate and GABA receptors in the hDB by using their agonists and antagonists. Drugs (50 nl) were microinjected into the hDB of anaesthetized rats. Blood pressure and heart rate were recorded before and throughout each experiment. The average changes in the mean arterial pressure and heart rate at different intervals were compared both within each case group and between the case and control groups using repeated measures of ANOVA. Microinjection of GABA(A) receptor antagonist, bicuculline methiodide (BMI, 1 mM) increased both the mean arterial pressure and heart rate, and muscimole, a GABA(A) agonist (500 pmol) caused a significant decrease in the mean arterial pressure and heart rate. Microinjection of L-glutamate (0.25 M) into the hDB resulted in a maximum decrease of the mean arterial pressure of 24.4 +/- 3.7 mmHg and heart rate of 25.2 +/- 3.08 beats/min. Injection of AP5, an antagonist of glutamate NMDA receptor (1 and 2.5 mM), and CNQX, an antagonist of glutamate AMPA receptor (0.5 and 1 mM) caused small, nonsignificant changes of the heart rate and the blood pressure. Either AP5 or CNQX when coinjected with glutamate abolished the depressor effect of glutamate, suggesting that simultaneous activation of both glutamate receptors is necessary for the effect of glutamate to emerge. The depressor effect of the glutaminergic system of the hDB on the cardiovascular system was similar to the previous studies. For the first time, the effects of CNQX, AP5, BMI, and muscimole

  10. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  11. Medroxyprogesterone acetate exacerbates glutamate excitotoxicity.

    PubMed

    Nilsen, Jon; Morales, Alison; Brinton, Roberta Diaz

    2006-07-01

    We previously demonstrated that progesterone functions as a neuroprotective agent whereas medroxyprogesterone acetate (MPA; Provera) does not. Moreover, MPA antagonized the neuroprotective and neurotrophic outcomes induced by 17beta-estradiol (E2). Towards developing effective hormone therapies for protection against neurodegeneration, we sought to determine whether formulation, chemical features or prevention versus treatment mode of exposure affected the outcome of MPA treatment in survival of primary hippocampal neurons. Results of these analyses indicated that both crystalline MPA and a pharmaceutical formulation (Depo-Provera) lacked neuroprotective efficacy, indicating that the effects were not dependent upon MPA formulation. Likewise, MPA in the prevention and treatment paradigms were equally ineffective at promoting neuronal survival, indicating that timing of MPA administration was not a factor. Further, the detrimental effects of MPA were not due to the presence of the acetate group, as medroxyprogesterone was as ineffective as MPA in promoting neuronal survival. Moreover, MPA pretreatment exacerbated neuron death induced by glutamate excitotoxicity as indicated by a 40% increase in neuron death determined by direct live/dead cell count and a commensurate increase in the number of positive cells by terminal deoxynucleotidyl transferase-mediated nick end-labeling. Collectively these results predict that the progestin formulation of hormone therapy will affect the vulnerability of the central nervous system to degenerative insults.

  12. Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression.

    PubMed

    Gross, N B; Marshall, J F

    2009-07-21

    Methamphetamine (mAMPH) is a psychostimulant drug that increases extracellular levels of monoamines throughout the brain. It has previously been observed that a single injection of mAMPH increases immediate early gene (IEG) expression in both the striatum and cerebral cortex. Moreover, this effect is modulated by dopamine and glutamate receptors since systemic administration of dopamine or glutamate antagonists has been found to alter mAMPH-induced striatal and cortical IEG expression. However, because dopamine and glutamate receptors are found in extra-striatal as well as striatal brain regions, studies employing systemic injection of dopamine or glutamate antagonists fail to localize the effects of mAMPH-induced activation. In the present experiments, the roles of striatal dopamine and glutamate receptors in mAMPH-induced gene expression in the striatum and cerebral cortex were examined. The nuclear expression of Fos, the protein product of the IEG c-fos, was quantified in both the striatum and the cortex of animals receiving intrastriatal dopamine or glutamate antagonist administration. Intrastriatal infusion of dopamine (D1 or D2) or glutamate [N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] antagonists affected not only mAMPH-induced striatal, but also cortical, Fos expression. Overall, the effects of the antagonists occurred dose-dependently, in both the infused and non-infused hemispheres, with greater influences occurring in the infused hemisphere. Finally, unilateral intrastriatal infusion of dopamine or glutamate antagonists changed the behavior of the rats from characteristic mAMPH-induced stereotypy to rotation ipsilateral to the infusion. These results demonstrate that mAMPH's actions on striatal dopamine and glutamate receptors modulate the widespread cortical activation induced by mAMPH. It is hypothesized that dopamine release from nigrostriatal terminals modulates activity within striatal efferent

  13. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  14. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics.

    PubMed Central

    Rothman, D L; Sibson, N R; Hyder, F; Shen, J; Behar, K L; Shulman, R G

    1999-01-01

    In this article we review recent studies, primarily from our laboratory, using 13C NMR (nuclear magnetic resonance) to non-invasively measure the rate of the glutamate-glutamine neurotransmitter cycle in the cortex of rats and humans. In the glutamate-glutamine cycle, glutamate released from nerve terminals is taken up by surrounding glial cells and returned to the nerve terminals as glutamine. 13C NMR studies have shown that the rate of the glutamate-glutamine cycle is extremely high in both the rat and human cortex, and that it increases with brain activity in an approximately 1:1 molar ratio with oxidative glucose metabolism. The measured ratio, in combination with proposals based on isolated cell studies by P. J. Magistretti and co-workers, has led to the development of a model in which the majority of brain glucose oxidation is mechanistically coupled to the glutamate-glutamine cycle. This model provides the first testable mechanistic relationship between cortical glucose metabolism and a specific neuronal activity. We review here the experimental evidence for this model as well as implications for blood oxygenation level dependent magnetic resonance imaging and positron emission tomography functional imaging studies of brain function. PMID:10466144

  15. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.

    PubMed

    Moreadith, R W; Lehninger, A L

    1984-05-25

    Little evidence has been available on the oxidative pathways of glutamine and glutamate, the major respiratory substrates of cancer cells. Glutamate formed from glutamine by phosphate-dependent glutaminase undergoes quantitative transamination by aerobic tumor mitochondria to yield aspartate. However, when malate is also added there is a pronounced decrease in aspartate production and a large formation of citrate and alanine, in both state 3 and 4 conditions. In contrast, addition of malate to normal rat heart, liver, or kidney mitochondria oxidizing glutamate causes a marked increase in aspartate production. Further analysis showed that extramitochondrial malate is oxidized almost quantitatively to pyruvate + CO2 by NAD(P)+-linked malic enzyme, present in the mitochondria of all tumors tested, but absent in heart, liver, and kidney mitochondria. On the other hand intramitochondrial malate generated from glutamate is oxidized quantitatively to oxalacetate by mitochondrial malate dehydrogenase of tumors. Acetyl-CoA derived from extramitochondrial malate via pyruvate and oxalacetate derived from glutamate via intramitochondrial malate are quantitatively converted into citrate, which is extruded. No evidence was found that malic enzyme of tumor mitochondria converts glutamate-derived malate into pyruvate as postulated in other reports. Possible mechanisms for the integration of mitochondrial malic enzyme and malate dehydrogenase activities in tumors are discussed.

  16. Loss of Astrocytic Glutamate Transporters in Wernicke Encephalopathy

    PubMed Central

    Hazell, Alan S.; Sheedy, Donna; Oanea, Raluca; Aghourian, Meghmik; Sun, Simon; Jung, Jee Yong; Wang, Dongmei; Wang, Chunlei

    2012-01-01

    Wernicke encephalopathy (WE), a neurological disorder caused by thiamine deficiency (TD), is characterized by structural damage in brain regions that include the thalamus and cerebral cortex. The basis for these lesions is unclear, but may involve a disturbance of glutamatergic neurotransmission. We have therefore investigated levels of the astrocytic glutamate transporters EAAT1 and EAAT2 in order to evaluate their role in the pathophysiology of this disorder. Histological assessment of the frontal cortex revealed a significant loss of neurons in neuropathologically confirmed cases of WE compared with age-matched controls, concomitant with decreases in α-internexin and synaptophysin protein content of 67 and 52% by immunoblotting. EAAT2 levels were diminished by 71% in WE, with levels of EAAT1 also reduced by 62%. Loss of both transporter sites was confirmed by immunohistochemical methods. Development of TD in rats caused a profound loss of EAAT1 and EAAT2 in the thalamus accompanied by decreases in other astrocyte-specific proteins. Treatment of TD rats with N-acetylcysteine prevented the downregulation of EAAT2 in the medial thalamus, and ameliorated the loss of several other astrocyte proteins, concomitant with increased neuronal survival. Our results suggest that (1) loss of EAAT1 and EAAT2 glutamate transporters is associated with structural damage to the frontal cortex in patients with WE, (2) oxidative stress plays an important role in this process, and (3) TD has a profound effect on the functional integrity of astrocytes. Based on these findings, we recommend that early treatment using a combination of thiamine AND antioxidant approaches should be an important consideration in cases of WE. PMID:19565658

  17. The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-γ1 pathway.

    PubMed

    Zhang, Zitao; Fan, Jin; Ren, Yongxin; Zhou, Wei; Yin, Guoyong

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) participates in the regulation of cortical neurons by influencing the release of glutamate. However, the specific mechanisms are unclear. Hence, we isolated and cultured the cortical neurons of Sprague Dawley rats. Specific inhibitors of TrkB, Src, PLC-γ1, Akt, and MEK1/2 (i.e., K252a, PP2, U73122, LY294002, and PD98059, respectively) were used to treat cortical neurons and to detect the glutamate release from cortical neurons stimulated with BDNF. BDNF significantly increased glutamate release, and simultaneously enhanced phosphorylation levels of TrkB, Src, PLC-γ, Akt, and Erk1/2. For BDNF-stimulated cortical neurons, K252a inhibited glutamate release and inhibited the phosphorylation levels of TrkB, Src, PLC-γ, Erk1/2, and Akt (P < 0.05). PP2 reduced the glutamate release from BDNF-stimulated cortical neurons (P < 0.05) and inhibited the phosphorylation levels of TrkB and PLC-γ1 (P < 0.05). However, PP2 had no effect on the phosphorylation levels of Erk1/2 or Akt (P > 0.05). U73122 inhibited the glutamate release from BDNF-stimulated cortical neurons, but had no influence on the phosphorylation levels of TrkB, Src, Erk1/2, or Akt (P > 0.05). LY294002 and PD98059 did not affect the BDNF-stimulated glutamate release and did not inhibit the phosphorylation levels of TrkB, Src, or PLC-γ1. In summary, BDNF stimulated the glutamate release from cortical neurons via the TrkB/Src/PLC-γ1 signaling pathway.

  18. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes.

    PubMed

    Keller, J N; Mark, R J; Bruce, A J; Blanc, E; Rothstein, J D; Uchida, K; Waeg, G; Mattson, M P

    1997-10-01

    Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4

  19. Glutamate Metabolism in Major Depressive Disorder

    PubMed Central

    Abdallah, Chadi G.; Jiang, Lihong; De Feyter, Henk M.; Fasula, Madonna; Krystal, John H.; Rothman, Douglas L.; Mason, Graeme F.; Sanacora, Gerard

    2015-01-01

    Objective Emerging evidence suggests abnormalities in amino acid neurotransmitter function and impaired energy metabolism contribute to the underlying pathophysiology of Major Depressive Disorder (MDD). To test whether impairments in energetics and glutamate neurotransmitter cycling are present in MDD we used in vivo 13C magnetic resonance spectroscopy (13C MRS) to measure these fluxes in individuals diagnosed with MDD relative to non-depressed subjects. Method 1H MRS and 13C MRS data were collected on 23 medication-free MDD and 17 healthy subjects. 1H MRS provided total glutamate and GABA concentrations, and 13C MRS, coupled with intravenous infusion of [1-13C]-glucose, provided measures of the neuronal tricarboxylic acid cycle (VTCAN) for mitochondrial energy production, GABA synthesis, and glutamate/glutamine cycling, from voxels placed in the occipital cortex. Results Our main finding was that mitochondrial energy production of glutamatergic neurons was reduced by 26% in MDD subjects (t = 2.57, p = 0.01). Paradoxically we found no difference in the rate of glutamate/glutamine cycle (Vcycle). We also found a significant correlation between glutamate concentrations and Vcycle considering the total sample. Conclusions We interpret the reduction in mitochondrial energy production as being due to either mitochondrial dysfunction or a reduction in proper neuronal input or synaptic strength. Future MRS studies could help distinguish these possibilities. PMID:25073688

  20. GLT-1: The elusive presynaptic glutamate transporter.

    PubMed

    Rimmele, Theresa S; Rosenberg, Paul A

    2016-09-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  1. GLT-1: The elusive presynaptic glutamate transporter.

    PubMed

    Rimmele, Theresa S; Rosenberg, Paul A

    2016-09-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  2. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  3. Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS.

    PubMed

    Coleman, Elaine; Judd, Robert; Hoe, Lori; Dennis, John; Posner, Philip

    2004-11-01

    Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. The cellular mechanisms responsible for the increased risk of these disorders are incompletely understood. Astrocytes are proving critical for normal CNS function, and alterations in their activity could contribute to diabetes-related disturbances in the brain. We examined the effects of streptozotocin (STZ)-induced diabetes in rats on the level of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), number of astrocytes, and levels of the astrocyte glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST), in the cerebral cortex, hippocampus, and cerebellum by Western blotting (WB) and immunohistochemistry (IH). Studies were carried out at 4 and 8 weeks of diabetes duration. Diabetes resulted in a significant decrease in GFAP protein levels (WB) in the hippocampus and cerebellum at 4 weeks and in the cerebral cortex, hippocampus and cerebellum by 8 weeks. Attenuated GFAP immunoreactivity (IH) was evident in the hippocampus, cerebellum and white matter regions such as the corpus callosum and external capsule at both 4 and 8 weeks of diabetes. Astrocyte cell counts of adjacent sections immunoreactive for S-100B were not different between control and diabetic animals. No significant differences were noted in astrocyte glutamate transporter levels in the cerebral cortex, hippocampus, or cerebellum at either time period (WB, IH). With the expanding list of astrocyte functions in the CNS, the role of astrocytes in diabetes-induced CNS disorders clearly warrants further investigation.

  4. Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes.

    PubMed Central

    Mamounas, L A; Thompson, R F; Lynch, G; Baudry, M

    1984-01-01

    Hippocampal pyramidal neurons exhibit a rapid within-trial increase in firing frequency during classical conditioning of the rabbit eyelid response. It has been proposed that the cellular mechanisms responsible for hippocampal long-term potentiation (LTP) may also mediate this learning-dependent increase in neuronal activity. The induction of LTP in rat hippocampal slices results in an increase in the number of [3H]glutamate-binding sites in the potentiated region. The present study investigates the kinetics of [3H]glutamate binding to hippocampal synaptic membranes after eyelid conditioning in the rabbit. We report that the regional distribution of [3H]glutamate binding across the layers of rabbit hippocampus is compatible with a dendritic localization. The pharmacological and ionic properties of the binding suggest that it is associated with an excitatory amino acid receptor. After eyelid conditioning, the maximal number of hippocampal [3H]glutamate-binding sites is increased in animals receiving paired presentations of the tone conditioned stimulus and corneal air-puff unconditioned stimulus relative to that found in naive or unpaired control animals. These results strengthen the hypothesis that an LTP-like mechanism underlies the increase in hippocampal firing frequency during rabbit eyelid conditioning. PMID:6144101

  5. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus.

    PubMed

    Bristot Silvestrin, Roberta; Bambini-Junior, Victorio; Galland, Fabiana; Daniele Bobermim, Larissa; Quincozes-Santos, André; Torres Abib, Renata; Zanotto, Caroline; Batassini, Cristiane; Brolese, Giovana; Gonçalves, Carlos-Alberto; Riesgo, Rudimar; Gottfried, Carmem

    2013-02-01

    Autism spectrum disorders (ASD) are characterized by deficits in social interaction, language and communication impairments and repetitive and stereotyped behaviors, with involvement of several areas of the central nervous system (CNS), including hippocampus. Although neurons have been the target of most studies reported in the literature, recently, considerable attention has been centered upon the functionality and plasticity of glial cells, particularly astrocytes. These cells participate in normal brain development and also in neuropathological processes. The present work investigated hippocampi from 15 (P15) and 120 (P120) days old male rats prenatally exposed to valproic acid (VPA) as an animal model of autism. Herein, we analyzed astrocytic parameters such as glutamate transporters and glutamate uptake, glutamine synthetase (GS) activity and glutathione (GSH) content. In the VPA group glutamate uptake was unchanged at P15 and increased 160% at P120; the protein expression of GLAST did not change neither in P15 nor in P120, while GLT1 decreased 40% at P15 and increased 92% at P120; GS activity increased 43% at P15 and decreased 28% at P120; GSH content was unaltered at P15 and had a 27% increase at P120. These data highlight that the astrocytic clearance and destination of glutamate in the synaptic cleft might be altered in autism, pointing out important aspects to be considered from both pathophysiologic and pharmacological approaches in ASD.

  6. Metabolism of glutamine and glutamate in monkey lenses

    SciTech Connect

    Jernigan, H.M. Jr.; Zigler, J.S. Jr.

    1986-05-01

    In rat lenses, glutamine (GLN), not glutamate (GLU), from the surrounding fluids is the primary source of GLU utilized by several metabolic pathways. To study lenticular amino acid metabolism in a primate, fresh lenses from young (2-3 yr) rhesus monkeys (Macaca mulatta) were incubated at 37/sup 0/C for 3, 6, or 24 hr in balanced salt medium containing 5 mM of amino-labeled /sup 15/N-GLN or /sup 15/N-GLU. The % enrichment of /sup 15/N in several free amino acids was determined by GCMS. GLN entered the monkey lenses more rapidly than GLU, but, in contrast to rat lenses, /sup 15/N-GLN did not more rapidly label other amino acids. The % of /sup 15/N in the (GLN + GLU) pool of the monkey lenses in /sup 15/N-GLN reached 20, 35, and 60% at 3, 6, and 24 hr respectively, compared with 10, 20, and 40% in the lenses in /sup 15/N-GLU. However, in monkey lenses incubated 24 hr with /sup 15/N-GLN, the /sup 15/N in alanine, serine, proline, and (aspartate + asparagine) was only 35, 6, 7, and 30% respectively, compared with 50, 10, 7, and 50% in monkey lenses with /sup 15/N-GLU. Compared with rat lenses, monkey lenses showed slower transport, deamidation, and metabolism of GLN, and less serine, proline, and glycine synthesis. Also, part of the GLU in monkey lenses appeared to be in a slowly transaminating pool. Species differences should be considered when rats are used as a model to study changes in human lenses during aging and cataractogenesis.

  7. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy.

    PubMed

    Löscher, W

    1998-04-01

    It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of

  8. Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality.

    PubMed

    Zhumadilov, Agzam; Boyko, Matthew; Gruenbaum, Shaun E; Brotfain, Evgeny; Bilotta, Federico; Zlotnik, Alexander

    2015-05-01

    Pathologically elevated glutamate concentrations in the brain's extracellular fluid are associated with several acute and chronic brain insults. Studies have demonstrated that by decreasing the concentration of glutamate in the blood, thereby increasing the concentration gradient between the brain and the blood, the rate of brain-to-blood glutamate efflux can be increased. Blood glutamate scavengers, pyruvate and oxaloacetate have shown great promise in providing neuroprotection in many animal models of acute brain insults. However, glutamate scavengers' potential systemic toxicity, side effects and pharmacokinetic properties may limit their use in clinical practice. In contrast, extracorporeal methods of blood glutamate reduction, in which glutamate is filtered from the blood and eliminated, may be an advantageous adjunct in treating acute brain insults. Here, we review the current evidence for the glutamate-lowering effects of hemodialysis, peritoneal dialysis and hemofiltration. The evidence reviewed here highlights the need for clinical trials.

  9. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b) (c) Limitations, restrictions, or explanation....

  10. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  11. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  12. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  13. Localization of L-glutamate and glutamate-like receptors at the squid giant synapse.

    PubMed

    Di Cosmo, A; Nardi, G; Di Cristo, C; De Santis, A; Messenger, J B

    1999-08-28

    HPLC analysis of the amino acid contents of the second- and third-order giant fibres at the giant synapse in the stellate ganglion of the squid Loligo vulgaris shows that there are significantly higher amounts of L-glutamate and L-aspartate in the second-order (presynaptic) fibre than in the third-order (postsynaptic) fibre. Immunocytochemical staining of sections of the ganglion with an antibody raised against L-glutamate produces specific positive staining in the synaptic region of the second-order fibre. In contrast, staining with antibodies raised against glutamate-receptors (mammalian GluR1 with GluR2/3) produces positive staining in the third-order fibre at the postsynaptic region. These data provide further evidence for the hypothesis that L-glutamate is an excitatory transmitter at the giant synapse.

  14. Circuit mapping by ultraviolet uncaging of glutamate.

    PubMed

    Shepherd, Gordon M G

    2012-09-01

    In laser photostimulation, small clusters of neurons in brain slices are induced to fire action potentials by focal glutamate uncaging, and synaptic connectivity between photoexcited presynaptic neurons and individual postsynaptic neurons is assessed by intracellular recording of synaptic events. With a scanner, this process can be repeated sequentially across a patterned array of stimulus locations, generating maps of neurons' local sources of synaptic inputs. Laser scanning photostimulation (LSPS) based on patterned glutamate uncaging offers an efficient, quantitative, optical-electrophysiological way to map synaptic circuits in brain slices. The efficacy of glutamate-based photostimulation for circuit mapping (in contrast to electrical stimulation) derives from the ability to stimulate neurons with high precision and speed, and without stimulating axons of passage. This protocol describes the components, assembly, and operation of a laser scanning microscope for ultraviolet (UV) uncaging, along with experimental methods for circuit mapping in brain slices. It presents a general approach and a set of guidelines for quantitative circuit mapping using "standard" LSPS methods based on single-photon glutamate uncaging using a UV laser, a pair of scanning mirror galvanometers, a patch-clamp setup, and open-source data acquisition software. PMID:22949715

  15. L-glutamate Receptor In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  16. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  17. Structural Features of the Glutamate Transporter Family

    PubMed Central

    Slotboom, Dirk Jan; Konings, Wil N.; Lolkema, Juke S.

    1999-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary

  18. Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    PubMed Central

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C.; Kaur, Gurcharan

    2012-01-01

    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty. PMID:22606332

  19. Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality.

    PubMed

    da Silva-Candal, Andrés; Vieites-Prado, Alba; Gutiérrez-Fernández, María; Rey, Ramón I; Argibay, Bárbara; Mirelman, David; Sobrino, Tomás; Rodríguez-Frutos, Berta; Castillo, José; Campos, Francisco

    2015-07-01

    Recent studies have shown that blood glutamate grabbing is an effective strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. The purpose of the study was to investigate the effect of two of the most efficient blood glutamate grabbers (oxaloacetate and recombinant glutamate oxaloacetate transaminase 1: rGOT1) in a rat model of intracerebral hemorrhage (ICH). Intracerebral hemorrhage was produced by injecting collagenase into the basal ganglia. Three treatment groups were developed: a control group treated with saline, a group treated with oxaloacetate, and a final group treated with human rGOT1. Treatments were given 1 hour after hemorrhage. Hematoma volume (analyzed by magnetic resonance imaging (MRI)), neurologic deficit, and blood glutamate and GOT levels were quantified over a period of 14 days after surgery. The results observed showed that the treatments used induced a significant reduction of blood glutamate levels; however, they did not reduce the hematoma, nor did they improve the neurologic deficit. In the present experimental study, we have shown that this novel therapeutic strategy is not effective in case of ICH pathology. More importantly, these findings suggest that blood glutamate grabbers are a safe treatment modality that can be given in cases of suspected ischemic stroke without previous neuroimaging.

  20. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

    PubMed

    Xie, Wenjie; Dolder, Silvia; Siegrist, Mark; Wetterwald, Antoinette; Hofstetter, Willy

    2016-08-01

    Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response

  1. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  2. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. PMID:26073813

  3. Fluctuations in nucleus accumbens extracellular glutamate and glucose during motivated glucose-drinking behavior: dissecting the neurochemistry of reward.

    PubMed

    Wakabayashi, Ken T; Myal, Stephanie E; Kiyatkin, Eugene A

    2015-02-01

    While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain.

  4. Modification of Glutamate Receptor Channels: Molecular Mechanisms and Functional Consequences

    NASA Astrophysics Data System (ADS)

    Hatt, Hanns

    Of the many possible mechanisms for modulating the efficiency of ion channels, the phosphorylation of receptor channel proteins may be the primary one. Changes in the set of molecular subunits of which the channels are composed are also important, especially for long-term regulation. In the central nervous system synaptic plasticity may be altered by modulating the ligand-activated neuronal ion channels involved in synaptic transmission; among them are channels gated directly by glutamate, the regulation of which we are only beginning to understand. This paper focuses on modulation of these channels [α-amino-3-hydroxy-5-methyl-4-isoxazoleprionic acid (AMPA), kainate, and N-methyl-d-aspartate (NMDA) types] by phosphorylation and changes in subunit composition. AMPA- and kainate-activated receptors are modulated by adenosine 3, 5-monophosphate (cAMP) dependent protein kinase A (PKA) coupled via D1 dopamine receptors. An increase in the intracellular concentration of cAMP and protein kinase A potentiates kainate-activated currents in α-motoneurons of the spinal cord by increasing the affinity of the ligand (glutamate) for the phosphorylated receptor protein (GluR6 and 7). The rapid desensitization of AMPA-evoked currents normally observed in horizontal cells of the retina is completely blocked by increasing the intracellular concentration of cAMP. The effects of changes in subunit composition were examined in rat hippocampal neurons. The subunit composition of the NMDA receptor determines the kinetic properties of synaptic currents and can be regulated by the type of innervating neuron. Similar changes also occur during development. An important determinant here is the activity of the system. Dynamic regulation of excitatory receptors by both mechanisms may well be associated with some forms of learning and memory in the mammalian brain.

  5. Augmentation of normal and glutamate-impaired neuronal respiratory capacity by exogenous alternative biofuels.