Sample records for glutamic acid solution

  1. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  2. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  3. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    PubMed

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  4. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  5. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Boehler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  6. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    NASA Astrophysics Data System (ADS)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  7. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A

    Gas-phase acidities (GA or ΔG acid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBSmore » and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH 2 groups and the CO 2 - group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pK a. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.« less

  9. Oligomerization of L-gamma-carboxyglutamic acid

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Unlike glutamic acid, L-gamma-carboxyglutamic acid does not oligomerize efficiently when treated with carbonyldiimidazole in aqueous solution. However, divalent ions such as Mg2+ catalyze the reaction, and lead to the formation of oligomers in good yield. In the presence of hydroxylapatite, L-gamma-carboxyglutamic acid oligomerizes efficiently in a reaction that proceeds in the absence of divalent ions but is further catalyzed when they are present. After 'feeding' 50 times with activated amino acid in the presence of the Mg2+ ion, oligomers longer than the 20-mer could be detected. The effect of hydroxylapatite on peptide elongation is very sensitive to the nature of the activated amino acid and the acceptor peptide. Glutamic acid oligomerizes more efficiently than L-gamma-carboxyglutamic acid on hydroxylapatite and adds more efficiently to decaglutamic acid in solution. One might, therefore, expect that glutamic acid would add more efficiently than L-gamma-carboxyglutamic acid to decaglutamic acid on hydroxylapatite. The contrary is true--the addition of L-gamma-carboxyglutamic acid is substantially more efficient. This suggests that oligomerization on the surface of hydroxylapatite depends on the detailed match between the structure of the surface of the mineral and the structure of the oligomer.

  10. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.

    L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less

  12. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.

  13. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid

    PubMed Central

    Baxi, Nandita N.

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328

  14. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    PubMed

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  15. Uptake of Amino Acids and Their Metabolic Conversion into the Compatible Solute Proline Confers Osmoprotection to Bacillus subtilis

    PubMed Central

    Zaprasis, Adrienne; Bleisteiner, Monika; Kerres, Anne; Hoffmann, Tamara

    2014-01-01

    The data presented here reveal a new facet of the physiological adjustment processes through which Bacillus subtilis can derive osmostress protection. We found that the import of proteogenic (Glu, Gln, Asp, Asn, and Arg) and of nonproteogenic (Orn and Cit) amino acids and their metabolic conversion into proline enhances growth under otherwise osmotically unfavorable conditions. Osmoprotection by amino acids depends on the functioning of the ProJ-ProA-ProH enzymes, but different entry points into this biosynthetic route are used by different amino acids to finally yield the compatible solute proline. Glu, Gln, Asp, and Asn are used to replenish the cellular pool of glutamate, the precursor for proline production, whereas Arg, Orn, and Cit are converted into γ-glutamic semialdehyde/Δ1-pyrroline-5-carboxylate, an intermediate in proline biosynthesis. The import of Glu, Gln, Asp, Asn, Arg, Orn, and Cit did not lead to a further increase in the size of the proline pool that is already present in osmotically stressed cells. Hence, our data suggest that osmoprotection of B. subtilis by this group of amino acids rests on the savings in biosynthetic building blocks and energy that would otherwise have to be devoted either to the synthesis of the proline precursor glutamate or of proline itself. Since glutamate is the direct biosynthetic precursor for proline, we studied its uptake and found that GltT, an Na+-coupled symporter, is the main uptake system for both glutamate and aspartate in B. subtilis. Collectively, our data show how effectively B. subtilis can exploit environmental resources to derive osmotic-stress protection through physiological means. PMID:25344233

  16. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    PubMed

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  17. Stability of Molecules of Biological Importance to Ionizing Radiation: Relevance in Astrobiology

    NASA Astrophysics Data System (ADS)

    Meléndez-López, A. L.; Negrón-Mendoza, A.; Ramos-Bernal, S.; Colín-García, M.; Heredia, A.

    2017-11-01

    Our aim is to study the stability of amino acids in conditions that probably existed in the primitive environments. We study aspartic acid and glutamic acid, in solid state and aqueous solution, against high doses of gamma radiation at 298 and 77 K.

  18. Thermal, Dielectric Studies on Pure and Amino Acid L-Glutamic Acid, L-Histidine L-Valine Doped Potassium Dihydrogen Phosphate Single Crystals

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Babu, S. Moorthy; Anbarasan, P. M.

    Amino acids (L-Glutamic acid, L-Histidine, L-Valine) doped potassium dihydrogen phosphate crystals were grown by the solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mole % to 10 mole %. The solubility data for all dopant concentrations were determined. The variation in pH and the corresponding habit modification of the grown crystals were characterized with UV - VIS, FT-IR and SHG trace elements, and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material, which also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  19. 2-Keto-3-fluoroglutarate: a useful mechanistic probe of 2-keto-glutarate-dependent enzyme systems.

    PubMed

    Grissom, C B; Cleland, W W

    1987-12-18

    2-Keto-3-fluoroglutaric acid prepared by acid hydrolysis of its diethyl ester is stable, as the free acid in aqueous solution at pH 2, and can be stored at -20 degrees C for several years. Both enantiomers are reduced by NADH in the presence of glutamate dehydrogenase (EC 1.4.1.2) to the two diastereomers of 3-fluoro-L-glutamate, which are stable at neutral pH and at high pH unless heated. 2-Keto-3-fluoroglutarate exists in solution almost entirely as a hydrate both at low and neutral pH. Both enantiomers of ketofluoroglutarate react with the pyridoxamine forms of aspartate, alanine and 4-aminobutyrate transaminases to give fluoride release. 2 mol of cosubstrate amino acid react for each mol of ketofluoroglutarate (KFG) when starting from the pyridoxamine form of the enzyme: 2 RCHNH2COOH + KFG + H2O----F- + NH4+ + glutamate + 2 RCOCOOH. Both diastereomers of fluoroglutamate are decarboxylated by glutamate decarboxylase (EC 4.1.1.15) with fluoride release: KFG + H2O----CO2 + F- + HCOCH2CH2COOH. By contrast, only one isomer of fluoroglutamate will react with the pyridoxal form of glutamate-oxalacetate transaminase to give fluoride release: HOOCCHNH2CHFCH2COOH + H2O----4F- + NH4+ + HOOCCOCH2CH2COOH. The enzymatic decarboxylation of 3-fluoroisocitrate produces only one enantiomer of ketofluoroglutarate, which is reduced to threo (2R,3R)-3-fluoroglutamate by NADH and glutamate dehydrogenase: [2R,3S]-HOOCCH(OH)CF(COOH)CH2COOH + NADP+----[3R]-KFG + CO2 + NADPH + H+. The proton, 13C, and 19F-NMR parameters of ketofluoroglutarate and the two fluoroglutamate diastereomers are presented. These molecules are useful probes of enzymatic mechanisms thought to involve carbanion intermediates.

  20. TOLERANCE TO AMINO ACID MIXTURES AND CASEIN DIGESTS GIVEN INTRAVENOUSLY

    PubMed Central

    Madden, S. C.; Woods, R. R.; Shull, F. W.; Remington, J. H.; Whipple, G. H.

    1945-01-01

    Several synthetic mixtures of natural and racemic crystalline amino acids suitable for the daily nitrogen requirement are tested in dogs for their tolerance upon intravenous injection. Certain mixtures of the ten essential amino acids plus non-essential amino acids exclusive of glutamic acid are accepted without any obvious sign of disturbance even at rates above 10 mg. nitrogen per kilo per minute for quantities greater than 300 mg. per kilo. One such mixture consists in parts per 100 of dl-threonine 7, dl-valine 15, l(-)-leucine 10.9, dl-isoleucine 9.9, l(+)-lysine· HCl·H2O 10.9, dl-tryptophane 3, dl-phenylalanine 9.9, dl-methionine 6, l(+)-histidine·HCl·H2O 5, l(+)-arginine-HCl 5, glycine 9.9, dl-α-alanine 4, dl-serine 2, l(-)-cystine 0.5, and l(-)-tyrosine 1. In addition other well tolerated mixtures included the prolines. When glutamic acid, natural or racemic, is included in similar mixtures vomiting reactions frequently occur at nitrogen rates above 4 mg. per kilo per minute. Vomiting almost always occurs on the first daily injection containing glutamic acid and usually on any subsequent injection containing more than 100 mg. glutamic acid per kilo unless given very slowly. Upon the addition of glycine certain mixtures of the ten essential amino acids show an improved tolerance. Two casein digests tested usually produced vomiting at injection rates above 2 mg. nitrogen per kilo per minute, probably because of their glutamic acid content. No serious reaction has ever occurrred to any mixture of amino acids or casein digest tested. Elimination of minor reactions such as vomiting appears possible and desirable for greater usefulness of these solutions in parenteral feeding. PMID:19871468

  1. l-Pyroglutamate Spontaneously Formed from l-Glutamate Inhibits Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.

    2001-01-01

    Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943

  2. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  3. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  4. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    PubMed

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  5. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    PubMed

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  6. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  8. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  9. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  10. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  11. Effect of an oral starter dose of iron on haematology and weight gain in piglets having voluntary access to glutamic acid-chelated iron solution.

    PubMed

    Egeli, A K; Framstad, T

    1998-01-01

    Six litters of Norwegian Landrace piglets were included in the study. The day after birth (day 1), half of the piglets (split litters) were given 52 mg glutamic acid-chelated Fe (4 ml of a 50% solution of Super Fe-MAX) perorally. All the piglets had free access to a 3% solution of Super Fe-MAX from this day until weaning at 5 weeks. The piglets were weighed and blood samples collected on days 1, 4, 7, 14, 21 and 35, and weighed only on days 28 and 49. The production of erythrocytes and haemoglobin was greater in the first week after birth in piglets given extra iron perorally on day 1, compared to those with voluntary access to iron. The extra peroral iron administration did not prevent some of the piglets from becoming anaemic later. Weight gain was similar in the 2 groups.

  12. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    NASA Technical Reports Server (NTRS)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  13. Food Application of Newly Developed Handy-type Glutamate Sensor.

    PubMed

    Mukai, Yuuka; Oikawa, Tsutomu

    2016-01-01

    Tests on physiological functions of umami have been actively conducted and a need recognized for a high-performance quantification device that is simple and cost-effective, and whose use is not limited to a particular location or user. To address this need, Ajinomoto Co. and Tanita Corp. have jointly been researching and developing a simple device for glutamate measurement. The device uses L-glutamate oxidase immobilized on a hydrogen peroxide electrode. L-glutamate in the sample is converted to α-ketoglutaric acid, which produces hydrogen peroxide. Subsequently, the electrical current from the electrochemical reaction of hydrogen peroxide is measured to determine the L-glutamate concentration. In order to evaluate its basic performance, we used this device to measure the concentration of L-glutamate standard solutions. In a concentration range of 0-1.0%, the difference from the theoretical value was minimal. The coefficient of variation (CV) value of 3 measurements was 4% or less. This shows that the device has a reasonable level of precision and accuracy. The device was also used in trial measurements of L-glutamate concentrations in food. There was a good correlation between the results obtained using the developed device and those obtained with an amino acid analyzer; the correlation coefficient was R=0.997 (n=24). In this review, we demonstrate the use of our device to measure the glutamate concentration in miso soup served daily at a home for elderly people, and other foods and ingredients.

  14. Thermal, dielectric studies on pure and amino acid ( L-glutamic acid, L-histidine, L-valine) doped KDP single crystals

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-05-01

    Amino acids ( L-glutamic acid, L-histidine, L-valine) doped potassium dihydrogen phospate crystals are grown by solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mol% to 10 mol%. The solubility data for all dopants concentration were determined. There is variation in pH value and hence, there is habit modification of the grown crystals were characterized with UV-VIS, FT-IR studies, SHG trace elements and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. UV-Visible spectra confirm the improvement in the transparency of these crystals on doping metal ions. FT-IR spectra reveal strong absorption band between 1400 and 1600 cm -1 for metal ion doped crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material and it also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  15. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    NASA Technical Reports Server (NTRS)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  16. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  17. Role of amino acids in salivation and the localization of their receptors in the rat salivary gland.

    PubMed

    Shida, T; Kondo, E; Ueda, Y; Takai, N; Yoshida, Y; Araki, T; Kiyama, H; Tohyama, M

    1995-11-01

    The distribution of gamma-aminobutyric acid (GABA) receptor subunits such as GABAAR-gamma 1 and GABAAR-gamma 2, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor subunits such as GluR-1, GluR-2/3 and GluR-4, and N-methyl-D-aspartic acid (NMDA) type subunits such as NR1 were investigated by immunocytochemistry. Furthermore, the roles of these amino acids, GABA and glutamate, on salivation were analyzed in the rat submandibular and sublingual glands. Some similarities were observed in the distribution patterns of GABAA type receptors and AMPA receptors. In the submandibular ganglion cells, collecting ducts and striated ducts, these subunits were expressed strongly; however, there were some differences in their expression patterns between the submandibular and sublingual gland acinar cells. Since these receptor subunits were expressed in the acinar cell bodies of the submandibular gland, they were not expressed in the acinar cells but were expressed in the myoepithelial cells in the sublingual gland. On the other hand, no NR1 expression was observed. To examine the roles of GABA and glutamate in salivation, the submandibular and sublingual glands were perfused partially with Ringer's solution via a facial artery to avoid systemic influence, and substrates were infused into the perfusion solution. No salivary secretion was evoked by GABA or glutamate infusion in the absence of electrical stimulation (2-3 V, 5 ms, 20 Hz). Salivary flow evoked by electrical stimulation of the chorda-lingual nerve caused significant inhibition by GABA (10(-6), 10(-5), 10(-4) and 10(-3) M) and the GABAAR agonist muscimol 10(-3) and 10(-6) M) (n = 6, P < 0.05). Such GABA-induced inhibition was antagonized by the GABAAR antagonists bicuculline (BCC; 10(-6) and 10(-3) M) and picrotoxin (PTX; 10(-6) and 10(-3) M). On the other hand, salivary flow evoked by electrical stimulation (8-10 V, 5 ms, 20 Hz) of the superior cervical ganglion (SCG) was not affected by GABA. While high doses of glutamate (10(-1) M) and NMDA (10(-1) M) showed no effects on salivary flow despite application of electrical stimulation, AMPA at a high concentration (10(-1) M) significantly inhibited salivary secretion (n = 6, P < 0.05). These studies revealed that inhibitory and excitatory amino acid receptors such as GABAA and AMPA type receptors are coexpressed in the rat salivary glands, and that GABA inhibits salivary secretion via GABAA receptors which may act with acetylcholine. However, the role of glutamate in salivation remains unclear despite the presence of AMPA type receptors. The present findings suggest that glutamate does not act alone but with other substances such as peptides and/or other amino acids.

  18. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  19. Physiology of Growth and Sporulation in Bacillus cereus I. Effect of Glutamic and Other Amino Acids

    PubMed Central

    Buono, F.; Testa, R.; Lundgren, D. G.

    1966-01-01

    Buono, F. (Syracuse University, Syracuse, N.Y.), R. Testa, and D. G. Lundgren. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J. Bacteriol. 91:2291–2299. 1966.—Growth and sporulation were studied in Bacillus cereus by use of an active culture technique and a synthetic medium. A high level of glutamic acid (70 mm) was required for optimal growth and glucose oxidation followed by sporulation even though relatively little glutamic acid was consumed (14 mm). Optimal growth occurred with a combination of 14 mm glutamic acid and 56 mm (NH4)2SO4, aspartic acid, or alanine. Ornithine or arginine at 70 mm could replace glutamic acid in the synthetic medium without affecting the normal growth cycle. Glutamic acid was not replaced by any other amino acid, by (NH4)2SO4, or by a combination of either α-ketoglutarate or pyruvate plus (NH4)2SO4. Enzyme assays of cell-free extracts prepared from cells harvested at different times were used to study the metabolism of glutamic acid. Glutamic-oxaloacetic and glutamic-pyruvate transaminases were completely activated (or derepressed) during early stages of sporulation (period of 6 to 8 hr). Alanine dehydrogenase responded in a similar manner, but the levels of this enzyme were much higher throughout the culture cycle. Neither glutamic dehydrogenase nor α-ketoglutarate dehydrogenase was detected. Sporulation in a replacement salts medium was studied with cells harvested at different times from the synthetic medium. Cultures 2 to 6 hr old were unable to sporulate in the replacement salts medium unless glutamic acid (7.0 mm) was present. By the 6th hr, cells were in the early stages of sporulation, showing spore septa development. Cultures 8 hr old sporulated in the replacement salts medium. Other metabolic intermediates able to replace glutamic acid in the replacement salts medium were alanine, aspartic acid, and glutamine at equimolar concentrations. Also, ammonium ions in combination with pyruvic, oxaloacetic, α-ketoglutaric, or fumaric acid replaced glutamic acid. The likely role of these metabolites is discussed. PMID:4957615

  20. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.

    2015-12-01

    We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

  2. The cyst wall of Colpoda steinii. A substance rich in glutamic acid residues

    PubMed Central

    Tibbs, J.

    1966-01-01

    1. The cyst wall of Colpoda steinii has been isolated and its chemical nature examined. It had a nitrogen content 13·9±0·2% (s.d.) and an ash 8·6±1·6% (s.d.). After lipid and hot-acid extraction there was a variable residual phosphorus of 0·19–0·64%. The protein nature, indicated by infrared and ultraviolet absorption, was confirmed when 100μg. of hydrolysed wall gave a ninhydrin colour equivalent to that given by 0·88–1·01μmoles of glycine. Hexosamine, hexose, pentose, lipid and dipicolinic acid were absent. 2. Paper chromatography of hydrolysates, besides showing the presence of the usual protein amino acids and three unidentified ninhydrin-reacting spots, indicated the presence of large amounts of glutamic acid. Estimated by chromatography, the amount present was 52·9±0·6 (s.d.) g./100g. of ash-free wall; manometric estimation of l-glutamic acid with l-glutamate 1-carboxy-lyase gave 46·5±0·9 (s.d.) g./100g. 3. Free carboxyl groups were estimated by titration as 0·159±0·011 (s.d.) mole/100g. and those present as amide as 0·154±0·004 (s.d.) mole/100g., and the total was compared with the dicarboxylic acid content 0·360±0·010 (s.d.) mole/100g. 4. After treatment with 98% formic acid 25–30% of the wall material could be extracted by 0·05m-sodium carbonate solution (extract 1); after treatment of the residue with performic acid a further 62–63% based on the original weight could be extracted by 0·05m-sodium carbonate (extract 2). 5. The average values found for the glutamic acid contents were 21·7g./100g. for extract 1 and 58·0g./100g. for extract 2. The cysteic acid content of whole oxidized wall was about 5·8g./100g. and of extract 2 also about 5·8g./100g. The glutamic acid and cysteic acid contents of the final residue were also investigated. 6. The significance of these extraction experiments in relation to the wall structure is discussed. ImagesPlate 1. PMID:4957913

  3. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  4. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  5. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  6. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  7. An efficient enzyme immunoassay for glutamate using glutaraldehyde coupling of the hapten to microtiter plates.

    PubMed

    Ordronneau, P; Abdullah, L H; Petrusz, P

    1991-09-13

    In order to coat microtiter plates for enzyme immunoassays (EIAs), amino acids and other haptens are usually coupled to larger protein molecules. The formation of such conjugates is not always reproducible. This may lead to inconsistent hapten-protein stoichiometries, unfavorable orientation of the hapten on the protein and/or well-to-well variation in the concentration of the available hapten. In the assay described here the excitatory amino acid (EAA) Glu is coupled directly to polystyrene microtiter wells with GA. Each step of the assay was tested for maximum efficiency. The resulting EIA with Glu as a competitor gave excellent reproducibility (coefficient of variation = 5.87%), an EC50 of 2.02 X 10(-5) M and a detection limit of 1.26 X 10(-6) M. This EIA method is generally useful for a variety of antisera to amino acids and small peptides and a wide range of competing substances. It can be used to characterize the conformational requirements for antigen binding, to assay for glutamate or to identify compounds with glutamate-like structure in unknown solutions.

  8. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  9. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    PubMed

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  12. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  13. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  15. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  16. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    PubMed

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  18. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in accordance...

  19. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS.

    PubMed

    Yudkoff, Marc

    2017-01-01

    Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.

  20. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    PubMed

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  2. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    PubMed

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  3. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa.

    PubMed

    Trevino, Saul R; Scholtz, J Martin; Pace, C Nick

    2007-02-16

    Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.

  4. Recognition of the folded conformation of plant hormone (auxin, IAA) conjugates with glutamic and aspartic acids and their amides

    NASA Astrophysics Data System (ADS)

    Antolić, S.; Kveder, M.; Klaić, B.; Magnus, V.; Kojić-Prodić, B.

    2001-01-01

    The molecular structure of the endogenous plant hormone (auxin) conjugate, N-(indol-3-ylacetyl)-L-glutamic acid, is deduced by comparison with N2-(indol-3-ylacetyl)glutamine (IAA-Gln), N2-(indol-3-ylacetyl)asparagine (IAA-Asn) and N-(indol-3-ylacetyl)-L-aspartic acid using X-ray structure analysis, 1H-NMR spectroscopy (NOE measurements) and molecular modelling. The significance of the overall molecular shape, and of the resulting amphiphilic properties, of the compounds studied are discussed in terms of possible implications for trafficking between cell compartments. Both in the solid state and in solution, the molecules are in the hair-pin (folded) conformation in which the side chain is folded over the indole ring. While extended conformations can be detected by molecular dynamics simulations, they are so short-lived that any major influence on the biological properties of the compounds studied is unlikely.

  5. Age related decreases in neural sensitivity to NaCl in SHR-SP.

    PubMed

    Osada, Kazumi; Komai, Michio; Bryant, Bruce P; Suzuki, Hitoshi; Tsunoda, Kenji; Furukawa, Yuji

    2003-03-01

    To determine whether neurophysiological taste responses of young and old rats are different, recordings were made from the whole chorda tympani nerve which innervates taste buds on the anterior tongue. SHR-SP (Stroke-Prone Spontaneously Hypertensive Rats) in two age groups were studied. Chemical stimuli included single concentrations of 250 mM NH(4)Cl, 100 mM NaCl, 100 mM KCl, 500 mM sucrose, 20 mM quinine-hydrochloride, 10 mM HCl, 10 mM monosodium glutamate (MSG), 10 mM L- glutamic acid (L-Glu) and an NaCl concentration series. The magnitude of the neural response (response ratio) was calculated by dividing the amplitude of the integrated response by the amplitude of the spontaneous activity that preceded it. Substantial neural responses to all chemicals were obtained at both ages. The responses to KCl, sucrose, quinine-hydrochloride, HCl, monosodium glutamate (MSG) and glutamic acid (Glu) did not change with age, but the response to NaCl did decrease significantly. The profile of the response/concentration function for NaCl differed with age. In particular, the responses to solutions more concentrated than 100 mM NaCl were significantly weaker in aged than in young SHR-SPs. We also observed that recovery from amiloride treatment on the tongue of SHR-SPs was faster in aged rats than in young ones, suggesting that there is some functional difference in the sodium-specific channels on the taste cell. These results suggest that aged SHR-SP may be less able than young SHR-SPs to discriminate among higher concentrations of NaCl solutions.

  6. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  7. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution.

    PubMed

    Tomé, Luciana I N; Jorge, Miguel; Gomes, José R B; Coutinho, João A P

    2012-02-16

    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids.

  8. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  9. Influence of clove oil and eugenol on muscle contraction of silkworm (Bombyx mori).

    PubMed

    Kheawfu, Kantaporn; Pikulkaew, Surachai; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Okonogi, Siriporn

    2017-05-30

    Clove oil is used in fish anesthesia and expected to have a mechanism via glutamic receptor. The present study explores the activities of clove oil and its major compound, eugenol, in comparison with L-glutamic acid on glutamic receptor of silkworm muscle and fish anesthesia. It was found that clove oil and eugenol had similar effects to L-glutamic acid on inhibition of silkworm muscle contraction after treated with D-glutamic acid and kainic acid. Anesthetic activity of the test samples was investigated in goldfish. The results demonstrated that L-glutamic acid at 20 and 40 mM could induce the fish to stage 3 of anesthesia that the fish exhibited total loss of equilibrium and muscle tone, whereas clove oil and eugenol at 60 ppm could induce the fish to stage 4 of anesthesia that the reflex activity of the fish was lost. These results suggest that clove oil and eugenol have similar functional activities and mechanism to L-glutamic acid on muscle contraction and fish anesthesia.

  10. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    PubMed

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  11. Oligomerization of Negatively-Charged Amino Acids by Carbonyldiimidazole

    NASA Technical Reports Server (NTRS)

    Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    The carbonyldiimidazole-induced oligomerizations of aspartic acid, glutamic acid and 0-phospho-serine are amongst the most efficient reported syntheses of biopolymers in aqueous solution. The dependence of the yields of products on the concentrations of reagents, the temperature and the enantiomeric composition of the substrate amino acids are reported. Catalysis by metal ions, particularly by Mg(2+), is described. These reactions do not generate significant amounts of material in the size-range of several tens of residues that are thought to be needed for a polymer to function as a genetic material.

  12. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    PubMed

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    USGS Publications Warehouse

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  14. [A Multi-arm Placebo-controlled Study with Glutamic Acid Conducted in Rostock in 1953/1954].

    PubMed

    Häßler, Frank; Weirich, Steffen

    2017-09-01

    A Multi-arm Placebo-controlled Study with Glutamic Acid Conducted in Rostock in 1953/1954 Glutamic acid was commonly used in the treatment of intellectually disabled children in the 50s. Koch reported first results of an observation of 140 children treated with glutamic acid in 1952. In this line is the multi-arm placebo-controlled study reported here. The original study protocols were available. 58 children with speech problems who attending a school of special needs received glutamic acid, or vitamin B, or St.-John's-wort. The effect of glutamic acid was in few cases an improvement of attention. On the other hand restlessness and stutter increased. The majority of all reported a weight loss. The treatment with vitamin B showed a positive effect concerning concentration. The treatment with St.-John's wort was stopped caused by headache and vomiting in eight of nine cases. The results of the study reported here are unpublished. The reason may be that until the 60s the effects of glutamic acid in the treatment of intellectually disabled children were in generally overestimated.

  15. Ferulic Acid Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei

    2013-01-01

    Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970

  16. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells.

    PubMed

    Klegeris, A; Walker, D G; McGeer, P L

    1997-09-01

    Glutamate, an excitatory neurotransmitter, is neurotoxic at high concentrations. Neuroglial cells, including astrocytes and microglia, play an important role in regulating its extracellular levels. Cultured human monocytic THP-1 cells increased their glutamate secretion following 18 and 68 h exposure to the inflammatory mediators zymosan, phorbol myristate acetate (PMA), lipopolysaccharide, interferon-gamma, tumor-necrosis factor-alpha and interleukin-1beta. Cultured astrocytoma U-373 MG cells increased their glutamate secretion following similar exposure to zymosan and PMA. DL-Alpha-aminopimelic acid, an inhibitor of the glutamate secretion system, reduced extracellular glutamate in both cell culture systems, while the high-affinity glutamate uptake inhibitors D-Aspartic acid, DL-threo-beta-hydroxyaspartic acid and L-trans-pyrrolidine-2,4-dicarboxylic acid increased extracellular glutamate in U-373 MG, but not THP-1 cell cultures. In co-cultures of THP-1 and U-373 MG cells, extracellular glutamate levels were increased significantly by the Alzheimer beta-amyloid peptide (1-40) and were decreased significantly by the anti-inflammatory drug dexamethasone. These data indicate that inflammatory stimuli may increase extracellular glutamate while antiinflammatory drugs decrease it.

  18. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  19. Influence of glutamic acid enantiomers on C-mineralization.

    PubMed

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  20. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    PubMed

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  1. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  3. PROLINE OXIDASES IN HANSENULA SUBPELLICULOSA

    PubMed Central

    Ling, Chung-Mei; Hedrick, L. R.

    1964-01-01

    Ling, Chung-Mei (Illinois Institute of Technology, Chicago), and L. R. Hedrick. Proline oxidases in Hansenula subpelliculosa. J. Bacteriol. 87:1462–1470. 1964—Cells of Hansenula subpelliculosa can use l-proline as a carbon and a nitrogen source after a 6- to 8-hr induction period. However, they cannot use l-glutamate as both nitrogen and carbon sources unless the induction period is of several days' duration. Two l-proline oxidases were demonstrated in the mitochondrial preparation of this yeast. One forms the product Δ′-pyrroline-2-carboxylic acid (P2C), which is in equilibrium with α-keto-δ-amino-valeric acid; the other forms the product Δ′-pyrroline-5-carboxylic acid (P5C), which is in equilibrium with glutamic-γ-semialdehyde. The first-mentioned enzyme is induced when l-proline is the carbon source; the second appears to be constitutive, and is probably associated with the use of l-proline as a nitrogen source. The P2C-forming enzyme is specific for the l isomer of proline, and is inactive against l-hydroxyproline. The enzyme activity is at its peak when the mitochondria are prepared from logarithmically grown cells, and is rapidly reduced after cells reach the stationary phase of growth. Kinetic studies with varying concentrations of substrate indicate a Michaelis-Menten constant of 2.45 × 10−2m. Paper chromatographic studies, chemical tests with H2O2, sensitivity to freezing, and spectral measurements indicate that proline oxidase from H. subpelliculosa mitochondria forms a product from l-proline which is like, if not identical to, P2C formed by the action of sheep kidney d-proline oxidase upon dl-proline. The soluble portion of the cell extract contains NAD+ enzymes which use either P2C (α-keto-δ-amino-valeric acid) or P5C (glutamic-γ-semialdehyde) as substrates. No glutamic dehydrogenase activity could be detected when l-glutamic acid and the nicotinamide adenine dinucleotide (NAD+) cofactor were added to the supernatant solution with the yeast enzymes. The presence of a dehydrogenase NAD+ enzyme for activity with P2C (α-keto-δ-amino-valeric acid) has not been previously reported. PMID:14188729

  4. Umami compounds enhance the intensity of retronasal sensation of aromas from model chicken soups.

    PubMed

    Nishimura, Toshihide; Goto, Shingo; Miura, Kyo; Takakura, Yukiko; Egusa, Ai S; Wakabayashi, Hidehiko

    2016-04-01

    We examined the influence of taste compounds on retronasal aroma sensation using a model chicken soup. The aroma intensity of a reconstituted flavour solution from which glutamic acid (Glu), inosine 5'-monophosphate (IMP), or phosphate was omitted was significantly lower (p<0.05) than that of the model soup. The aroma intensity of 0.4% NaCl solution containing the aroma chicken model (ACM) with added Glu and IMP was significantly higher (p<0.05) than that of 0.4% NaCl solution containing only ACM. The quantitative analyses showed that adding monosodium glutamate (MSG) to aqueous aroma solution containing only ACM enhanced the intensity of retronasal aroma sensation by 2.5-folds with increasing MSG concentration from 0% to 0.3%. Sensation intensity using an umami solution with added MSG and IMP was significantly higher than that with only MSG when the MSG concentration was 0.05%, 0.075%, or 0.1%. However, it plateaued when MSG concentration was beyond 0.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Pharmacology of glutamate sensitive synapses (I). Glutamate agonists (author's transl)].

    PubMed

    Shinozaki, H

    1982-04-01

    The actions of kainic acid, quisqualic acid, and ibotenic acid on the crayfish neuromuscular junction were described, and it was particularly interesting that the discrepancy between glutamate responses and EJPs was revealed by the use of kainic acid. On the other hand, there is increasing evidence showing that glutamate is an excitatory transmitter at the crayfish neuromuscular junction. At this stage, we are unable as yet to definitively support or reject glutamate's candidacy as the excitatory transmitter at the crayfish neuromuscular junction. The discrepancy revealed by the use of kainic acid may bring up some questions. Certainly, the differential action of kainic acid on the glutamate current and the excitatory synaptic current opens to doubt the transmitter role of glutamate. In the case of the study on a transmitter role for a substance of doubt status, the value of pharmacological studies seems to be greater in disproving than in asserting such the role. However, we have to consider the matter of the extra-junctional receptor postulated on the crayfish postsynaptic membrane as one of the major problems for pharmacological identification.

  6. [Imbalance of system of glutamin - glutamic acid in the placenta and amniotic fluid at placental insufficiency].

    PubMed

    Pogorelova, T N; Gunko, V O; Linde, V A

    2014-01-01

    Metabolism of glutamine and glutamic acid has been investigated in the placenta and amniotic fluid under conditions of placental insufficiency. The development of placental insufficiency is characterized by the increased content of glutamic acid and a decrease of glutamine in both placenta and amniotic fluid. These changes changes were accompanied by changes in the activity of enzymes involved in the metabolism of these amino acids. There was a decrease in glutamate dehydrogenase activity and an increase in glutaminase activity with the simultaneous decrease of glutamine synthetase activity. The compensatory decrease in the activity of glutamine keto acid aminotransferase did not prevent a decrease in the glutamine level. The impairments in the system glutamic acid-glutamine were more pronounced during the development of premature labor.

  7. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  8. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  9. Baseline dietary glutamic acid intake and the risk of colorectal cancer: The Rotterdam study.

    PubMed

    Viana Veloso, Gilson G; Franco, Oscar H; Ruiter, Rikje; de Keyser, Catherina E; Hofman, Albert; Stricker, Bruno C; Kiefte-de Jong, Jessica C

    2016-03-15

    Animal studies have shown that glutamine supplementation may decrease colon carcinogenesis, but any relation with glutamine or its precursors has not been studied in humans. The primary aim of this study was to assess whether dietary glutamic acid intake was associated with colorectal cancer (CRC) risk in community-dwelling adults. A secondary aim was to evaluate whether the association could be modified by the body mass index (BMI). This study was embedded in the Rotterdam study, which included a prospective cohort from 1990 onward that consisted of 5362 subjects who were 55 years old or older and were free of CRC at the baseline. Glutamic acid was calculated as a percentage of the total protein intake with a validated food frequency questionnaire at the baseline. Incident cases of CRC were pathology-based. During follow-up, 242 subjects developed CRC. Baseline dietary glutamic acid intake was significantly associated with a lower risk of developing CRC (hazard ratio [HR] per percent increase in glutamic acid of protein, 0.78; 95% confidence interval [CI], 0.62-0.99). After stratification for BMI, the risk reduction for CRC by dietary glutamic acid was 42% for participants with a BMI ≤ 25 kg/m(2) (HR per percent increase in glutamic acid of protein, 0.58; 95% CI, 0.40-0.85), whereas no association was found in participants with a BMI > 25 kg/m(2) (HR per percent increase in glutamic acid of protein, 0.97; 95% CI, 0.73-1.31). Our data suggest that baseline dietary glutamic acid intake is associated with a lower risk of developing CRC, but this association may be mainly present in nonoverweight subjects. © 2015 American Cancer Society.

  10. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability

    PubMed Central

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-01-01

    Background L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. Methods The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. Results The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Conclusion Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life. PMID:25215180

  11. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.

    PubMed

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-07-01

    L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.

  12. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    PubMed

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    PubMed Central

    2011-01-01

    Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates. PMID:21995488

  14. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.

    PubMed

    Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A

    2017-01-01

    Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

  15. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa

    PubMed Central

    Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328

  16. Markers of glutamate signaling in cerebrospinal fluid and serum from patients with bipolar disorder and healthy controls.

    PubMed

    Pålsson, Erik; Jakobsson, Joel; Södersten, Kristoffer; Fujita, Yuko; Sellgren, Carl; Ekman, Carl-Johan; Ågren, Hans; Hashimoto, Kenji; Landén, Mikael

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the brain. Aberrations in glutamate signaling have been linked to the pathophysiology of mood disorders. Increased plasma levels of glutamate as well as higher glutamine+glutamate levels in the brain have been demonstrated in patients with bipolar disorder as compared to healthy controls. In this study, we explored the glutamate hypothesis of bipolar disorder by examining peripheral and central levels of amino acids related to glutamate signaling. A total of 215 patients with bipolar disorder and 112 healthy controls from the Swedish St. Göran bipolar project were included in this study. Glutamate, glutamine, glycine, L-serine and D-serine levels were determined in serum and in cerebrospinal fluid using high performance liquid chromatography with fluorescence detection. Serum levels of glutamine, glycine and D-serine were significantly higher whereas L-serine levels were lower in patients with bipolar disorder as compared to controls. No differences between the patient and control group in amino acid levels were observed in cerebrospinal fluid. The observed differences in serum amino acid levels may be interpreted as a systemic aberration in amino acid metabolism that affects several amino acids related to glutamate signaling. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  17. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.

    PubMed

    Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E

    2007-12-12

    The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).

  18. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    USDA-ARS?s Scientific Manuscript database

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  19. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  20. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo.

    PubMed

    Obata, Yosuke; Tajima, Shoji; Takeoka, Shinji

    2010-03-03

    We developed pH-responsive liposomes containing synthetic glutamic acid-based zwitterionic lipids and evaluated their properties both in vitro and in vivo with the aim of constructing an efficient liposome-based systemic drug delivery system. The glutamic acid-based lipids; 1,5-dihexadecyl N-glutamyl-L-glutamate (L1) and 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (L2) were synthesized as a pH-responsive component of liposomes that respond to endosomal pH. The zeta potential of liposomes containing L1 or L2 was positive when the solution pH was below 4.6 or 5.6, respectively, but negative at higher pH values. The pH-responsive liposomes showed improved fusogenic potential to an endosome-mimicking anionic membrane at acidic pH, where the zeta potential of the liposomes was positive. We then prepared doxorubicin (DOX)-encapsulating liposomes containing L1 or L2, and clarified by confocal microscopic studies that the contents were rapidly transferred into both the cytoplasm and nucleus. Release of DOX from the endosomes mediated by the pH-responsive liposomes dramatically inhibited cancer cell growth. The L2-liposomes were slightly more effective than L1-liposomes as a drug delivery system. Intravenously injected L2-liposomes displayed blood persistence comparable to that of conventional phospholipid (PC)-based liposomes. Indeed, the antitumor efficacy of L2-liposomes was higher than that of PC-based liposomes against a xenograft breast cancer tumor in vivo. Thus, the high performance of L2-liposomes results from both efficient intracellular drug delivery and comparable blood persistence in comparison with the conventional PC-based liposomes in vitro and in vivo. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Cisplatin-loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of non-small cell lung carcinoma.

    PubMed

    Shi, Chunshan; Yu, Haiyang; Sun, Dejun; Ma, Lili; Tang, Zhaohui; Xiao, Qiusheng; Chen, Xuesi

    2015-05-01

    Cisplatin-loaded poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) nanoparticles (CDDP-NPs) were characterized and exploited for the treatment of non-small cell lung carcinoma (NSCLC). In vitro metabolism experiments showed that a glutamic acid 5-mPEG ester [CH3O(CH2CH2O)nGlu] was generated when the poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) (PLG-g-mPEG5K) was incubated with HeLa cells. This suggests that the poly(glutamic acid) backbone of the PLG-g-mPEG5K is biodegradable. Furthermore, the size of the CDDP-NPs in an aqueous solution was affected by varying the pH (5.0-8.0) and their degradation rate was dependent on temperature. The CDDP-NPs could also bind to the model nucleotide 2'-deoxyguanosine 5'-monophosphate, indicating a biological activity similar to cisplatin. The CDDP-NPs showed a significantly lower peak renal platinum concentration after a single systemic administration when compared to free cisplatin. In vivo experiments with a Lewis lung carcinoma (LLC) model showed that the CDDP-NPs suppressed the growth of tumors. In addition, LLC tumor-bearing mice treated with the CDDP-NPs (5mg/kg cisplatin eq.) showed much longer survival rates (median survival time: 51days) as compared with mice treated with free cisplatin (median survival time: 18days), due to the acceptable antitumor efficacy and low systemic toxicity of CDDP-NPs. These results suggest that the CDDP-NPs may be successfully applied to the treatment of NSCLC. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Dietary glutamate signal evokes gastric juice excretion in dogs.

    PubMed

    Khropycheva, Raisa; Andreeva, Julia; Uneyama, Hisayuki; Torii, Kunio; Zolotarev, Vasiliy

    2011-01-01

    Dietary-free L-glutamate (Glu) in the stomach interacts with specific Glu receptors (T1R1/T1R3 and mGluR1-8) expressed on surface epithelial and gastric gland cells. Furthermore, luminal Glu activates the vagal afferents in the stomach through the paracrine cascade including nitric oxide and serotonin (5-HT). To elucidate the role of dietary Glu in neuroendocrine control of the gastrointestinal phase of gastric secretion. In Pavlov or Heidenhain gastric pouch dogs, secretion was measured in the pouch while monosodium glutamate (MSG) was intubated into the main stomach alone or in combination with liquid diets. In both experimental models, supplementation of the amino acid-rich diet with MSG (100 mmol/l) enhanced secretions of acid, pepsinogen and fluid, and elevated plasma gastrin-17. However, MSG did not affect secretion stimulated by the carbohydrate-rich diet and had no effect on basal secretion when applied in aqueous solution. Effects of MSG were abolished by denervation of the stomach and proximal small intestine with intragastrically applied lidocaine and partially suppressed with the 5-HT(3) receptor blocker granisetron. Supplementation of amino acid-rich liquid diets with MSG enhances gastrointestinal phase secretion through neuroendocrine pathways which are partially mediated by 5-HT. Possible mechanisms are discussed. Copyright © 2011 S. Karger AG, Basel.

  3. Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members*

    PubMed Central

    Scopelliti, Amanda J.; Ryan, Renae M.; Vandenberg, Robert J.

    2013-01-01

    The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family. PMID:23393130

  4. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production.

    PubMed

    Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi

    2018-05-01

    Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  6. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  7. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  8. Independent and Additive Effects of Glutamic Acid and Methionine on Yeast Longevity

    PubMed Central

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan. PMID:24244480

  9. Nitrogen isotopes provide clues to amino acid metabolism in human colorectal cancer cells.

    PubMed

    Krishnamurthy, R V; Suryawanshi, Yogesh R; Essani, Karim

    2017-05-31

    Glutamic acid and alanine make up more than 60 per cent of the total amino acids in the human body. Glutamine is a significant source of energy for cells and also a prime donor of nitrogen in the biosynthesis of many amino acids. Several studies have advocated the role of glutamic acid in cancer therapy. Identification of metabolic signatures in cancer cells will be crucial for advancement of cancer therapies based on the cell's metabolic state. Stable nitrogen isotope ratios ( 15 N/ 14 N, δ 15 N) are of particular advantage to understand the metabolic state of cancer cells, since most biochemical reactions involve transfer of nitrogen. In our study, we used the natural abundances of nitrogen isotopes (δ 15 N values) of individual amino acids from human colorectal cancer cell lines to investigate isotope discrimination among amino acids. Significant effects were noticed in the case of glutamic acid, alanine, aspartic acid and proline between cancer and healthy cells. The data suggest that glutamic acid is a nitrogen acceptor while alanine, aspartic acid and proline are nitrogen donors in cancerous cells. One plausible explanation is the transamination of the three acids to produce glutamic acid in cancerous cells.

  10. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  11. Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition. PMID:24984001

  12. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    PubMed

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  13. Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Sanchez-Gomez, María Victoria; Matute, Carlos; Fattouch, Sami; Amri, Mohamed

    2017-12-01

    The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca 2+ sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca 2+ ] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca 2+ caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.

  14. Lysine and Glutamic Acids as the End Products of Multi-response of Optimized Fermented Medium by Mucor mucedo KP736529.

    PubMed

    El-Hersh, Mohammed S; Saber, WesamEldin I A; El-Fadaly, Husain A; Mahmoud, Mohammed K

    Amino acids are important for living organisms, they acting as crucial for metabolic activities and energy generation, wherein the deficiency in these amino acids cause various physiological defects. The aim of this study is to investigate the effect of some nutritional factors on the amino acids production by Mucor mucedo KP736529 during fermentation intervals. Mucor mucedo KP736529 was selected according to proteolytic activity. Corn steep liquor and olive cake were used in the fermented medium during Placket-Burman and central composite design to maximize the production of lysine and glutamic acids. During the screening by Plackett-Burman design, olive cake and Corn Steep Liquor (CSL) had potential importance for the higher production of amino acids. The individual fractionation of total amino acids showed both lysine and glutamic as the major amino acids associated with the fermentation process. Moreover, the Central Composite Design (CCD) has been adopted to explain the interaction between olive cake and CSL on the production of lysine and glutamic acids. The model recorded significant F-value, with high values of R 2, adjusted R 2 and predicted R 2 for both lysine and glutamic, indicating the validity of the data. Solving equation for maximum production of lysine recorded theoretical levels of olive cake and CSL, being 2.58 and 1.83 g L -1, respectively, with predicting value of lysine at 1.470 μg mL -1, whereas the predicting value of glutamic acid reached 0.805 mg mL -1 at levels of 2.49 and 1.93 g L -1 from olive cake and CSL, respectively. The desirability function (D) showed the actual responses being 1.473±0.009 and 0.801±0.004 μg mL -1 for lysine and glutamic acids, respectively. The model showed adequate validity to be applied in a large-scale production of both lysine and glutamic acids.

  15. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  16. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    PubMed

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients for cellulosic fermentations.

  17. The Specificity of Peptide Chain Extension by N-Carboxyanhydrides

    NASA Technical Reports Server (NTRS)

    Wen, Ke; Orgel, Leslie E.

    2001-01-01

    We have used amino acids activated by carbonyldiimidazole to study the enantiospecificity of peptide elongation in aqueous solution. Peptide primers Glu(sub 10) and Ala3Glulo were elongated with the enantiomers of arginine, glutamic acid, asparagine, phenylalanine, serine and valine. The homochiral addition was always the more efficient reaction; the enantiospecificity was large in some cases but very small in others. In every case Ala(sub 3)Glu(sub l0) was elongated more efficiently than Glu(sub 10).

  18. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    DISTRIBUTION C OOt .APPROVED FOR PUPLIC RELEASE: DISTRIBUTION UNLIMITED Ii. A STRA T (Minls.m200oids N-Acetylated-a- 1 n (’ed acidic dip cpL,2ase (N...aspartate (NAA) and the excitatory amino acid , glutamate (CLU). Although there is evidence that NAAG might be a neurotransmitter, this dipoptide could...Genetics; Itippocampus: E-ctlsatlltmt pilepsy-, Glutamate: N-Acetylated-o-1 inked acidic dipeptidasc-: Enrniatic: IIrosz:NAAG: Aspartalc N-Acetylated-a

  19. Theoretical study on keto-enol tautomerisation of glutarimide for exploration of the isomerisation reaction pathway of glutamic acid in proteins using density functional theory

    NASA Astrophysics Data System (ADS)

    Fukuyoshi, Shuichi; Nakayoshi, Tomoki; Takahashi, Ohgi; Oda, Akifumi

    2017-03-01

    In order to elucidate the reason why glutamic acid residues have lesser racemisation reactivity than asparaginic acid, we investigated the racemisation energy barrier of piperidinedione, which is the presumed intermediate of the isomerisation reaction of L-Glu to D-Glu, by density functional theory calculations. In two-water-molecule-assisted racemisation, the activation barrier for keto-enol isomerisation was 28.1 kcal/mol. The result showed that the activation barrier for the racemisation of glutamic acid residues was not different from that for the racemisation of aspartic acid residues. Thus, glutamic acid residues can possibly cause the racemisation reaction if the cyclic intermediate stably exists.

  20. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter.

    PubMed

    Samartsev, V N; Marchik, E I; Shamagulova, L V

    2011-02-01

    In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers - ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.

  1. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    NASA Technical Reports Server (NTRS)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  2. S-Isovaline Contained in Meteorites, Induces Enantiomeric Excess in D,L-glutamic Acid During Recrystallization

    NASA Astrophysics Data System (ADS)

    Kojo, Shosuke

    2015-06-01

    S-Isovaline (S-Iva: 6.7 mmol) and D,L-glutamic acid (Glu: 2 mmol) were dissolved in 10 ml of hot water, and the resulting solution was divided in 5 vessels. After recrystallization, the crystals were collected from each vessel, and the enantiomeric excess (ee) of Glu was determined with chemical derivatization using 1-fluoro-2,4-dinitrophenyl- 5-L-leucinamide followed by high-performance liquid chromatography. Ten crystallizations provided all D-rich Glu with ee values of 2.69 % ± 0.81 % (mean ± standard deviation), and those using R-Iva provided all L-rich Glu with ee values of 6.24 % ± 2.20 %. Five recrystallizations of D,L-Glu alone provided ee values of 0.474 % ± 0.33 %. The differences among these three ee values were statistically significant, showing that S-Iva, which was present in meteorites caused a significant induction of ee in this physiological amino acid. This is the first outcome that S-Iva induced ee changes in a physiological amino acid. S-Iva did not induce any ee changes in D,L-asparagine, leucine, valine, methionine, phenylalanine, tryptophan, glutamine, tyrosine, aspartic acid, or histidine under similar recrystallizations.

  3. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. Copyright © 2012 Wiley Periodicals, Inc.

  4. Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Cooper, George W.

    2001-07-01

    The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non-racemic, but the indigenous nature of their L-enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were: N-acetyl alanine, ??imino propioacetic acid, N-acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L-enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N-acetyl glutamic acid. The ?13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis of the lactam to glutamic acid. The values of +27.7 (D-pyro), +10.0 (L-pyro), +32.2 (D-glu) and +14.6 (L-glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L-enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower ?13C values determined for pyroglutamic L-enantiomer point to a terrestrial contamination, possibly dating to the time of fall.

  5. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery

    NASA Astrophysics Data System (ADS)

    Ding, Jianxun; Xiao, Chunsheng; He, Chaoliang; Li, Mingqiang; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2011-12-01

    A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pKa of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

  6. An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON. PMID:25502722

  7. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.

  8. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  9. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  10. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    PubMed Central

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676

  11. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    PubMed

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  12. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  13. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  14. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    PubMed

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  15. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  16. Characterization of the venom from the spider, Araneus gemma: search for a glutamate antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Early, S.L.

    1985-01-01

    Venom from three spiders, Argiope aurantia, Neoscona arabesca, and Araneus gemma have been shown to inhibit the binding of L-(/sup 3/H)glutamate to both GBP and synaptic membranes. The venom from Araneus gemma was shown to be the most potent of the three venoms in inhibiting the binding of L-(/sup 3/H)glutamate to GBP. Therefore, Araneus gemma venom was selected for further characterization. Venom from Araneus gemma appeared to contain two factors which inhibit the binding of L-(/sup 3/H)glutamate to GBP and at least one factor that inhibits L-glutamate-stimulated /sup 35/SCN flux. Factor I is thought to be L-glutamic acid, based on:more » (1) its similar mobility to glutamic acid in thin-layer chromatography and amino acid analysis, (2) the presence of fingerprint molecular ion peaks for glutamate in the mass spectrum for the methanol:water (17:1) extract and for the fraction from the HPLC-purification of the crude venom, and (3) its L-glutamate-like interaction with the sodium-dependent uptake system. Factor II appears to be a polypeptide, possibly 21 amino acids in length, and does not appear to contain any free amino groups or tryptophan. While the venom does not appear to contain any indoleamines, three catecholamines (epinephrine, epinine, dopamine) and one catecholamine metabolite (DOPAC) were detected.« less

  17. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    PubMed

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  18. Accumulation of γ‐aminobutyric acid by E nterococcus avium 9184 in scallop solution in a two‐stage fermentation strategy

    PubMed Central

    Yang, Haoyue; Hu, Linfeng; Liu, Song

    2015-01-01

    Summary In this study, a new bacterial strain having a high ability to produce γ‐aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as E nterococcus avium. To the best of our knowledge, this is the first study to prove that E . avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E . avium 9184. Scallop solution was used as the culture medium to produce GABA. A two‐stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L−1. This produced a maximum dry cell mass of 2.10 g·L−1. In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L−1 at 96 h pH 6.0, 37°C and initial l‐monosodium glutamate concentration of 10 g·L−1. Thus, compared with traditional one‐stage fermentation, the two‐stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E . avium and also provide a new approach to process and utilize shellfish. PMID:26200650

  19. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2004-03-01

    Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of ( S )-glutamic acid and, to a lesser extent, ( S )-lysine and ( R,S )-methionine. These amino acids account for about 90% of the total world production of amino acids, ( S )-glutamic acid being used as a flavor-enhancing additive (MSG) for the human diet, and ( S )-lysine and ( R,S )-methionine as supplements for the feeding of domestic animals. Examples include chemical, enzymatic, and fermentation synthesis, and two clever continuous processes for the resolution of enantiomers. See Featured Molecules .

  20. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method.

    PubMed

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Glutamic Acid – the Main Dietary Amino Acid – and Blood Pressure: The INTERMAP Study

    PubMed Central

    Stamler, Jeremiah; Brown, Ian J; Daviglus, Martha L; Chan, Queenie; Kesteloot, Hugo; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul

    2009-01-01

    Background Data are available indicating an independent inverse relationship of dietary vegetable protein to the blood pressure (BP) of individuals. Here we assess whether BP is associated with glutamic acid intake (the predominant dietary amino acid, especially in vegetable protein) and with each of four other amino acids higher relatively in vegetable than animal protein (proline, phenylalanine, serine, cystine). Methods and Results Cross-sectional epidemiological study; 4,680 persons ages 40–59 -- 17 random population samples in China, Japan, U.K., U.S.A.; BP measurement 8 times at 4 visits; dietary data (83 nutrients, 18 amino acids) from 4 standardized multi-pass 24-hour dietary recalls and 2 timed 24-hour urine collections. Dietary glutamic acid (percent of total protein intake) was inversely related to BP. Across multivariate regression models (Model 1 controlled for age, gender, sample, through Model 5 controlled for 16 non-nutrient and nutrient possible confounders) estimated average BP differences associated with glutamic acid intake higher by 4.72% total dietary protein (2 s.d.) were −1.5 to −3.0 mm Hg systolic and −1.0 to −1.6 mm Hg diastolic (Z-values −2.15 to −5.11). Results were similar for the glutamic acid-BP relationship with each other amino acid also in the model, e.g., with control for 15 variables plus proline, systolic/diastolic pressure differences −2.7/−2.0 (Z −2.51, −2.82). In these 2-amino acid models, higher intake (2 s.d.) of each other amino acid was associated with small BP differences and Z-values. Conclusions Dietary glutamic acid may have independent BP lowering effects, possibly contributing to the inverse relation of vegetable protein to BP. PMID:19581495

  2. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  3. Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum.

    PubMed

    Zheng, Pu; Liu, Miao; Liu, Xiao-de; Du, Qiao-Yan; Ni, Ye; Sun, Zhi-Hao

    2012-03-01

    Genome shuffling was used to improve the thermotolerance of L: -glutamic acid-producing strain Corynebacteria glutamicum. Five strains with subtle improvements in high temperature tolerance and productivity were selected by ultraviolet irradiation and diethyl sulfate mutagenesis. An improved strain (F343) was obtained by three rounds of genome shuffling of the five strains as mentioned above. The cell density of F343 was four times higher than that of ancestor strains after 24 h of cultivation at 44°C, and importantly, the yield of L: -glutamic acid was increased by 1.8-times comparing with that of the ancestor strain at 38°C in a 5-L fermentor. With glucose supplement and two-stage pH control, the L: -glutamate acid concentration of F343 reached 119 g/L after fermentation for 30 h. The genetic diversity between F343 and its ancestors was also evaluated by amplified fragment length polymorphism analysis. Results suggest that the phenotypes for both thermotolerance and L: -glutamic acid production in F343 were evolved.

  4. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    PubMed

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  5. Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells.

    PubMed

    Hayashi, Y; Tsunenari, T; Mori, T

    1999-03-01

    Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.

  6. Effect of ethanol on the palmitate-induced uncoupling of oxidative phosphorylation in liver mitochondria.

    PubMed

    Samartsev, V N; Belosludtsev, K N; Chezganova, S A; Zeldi, I P

    2002-11-01

    The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.

  7. Humanized in vivo Model for Autoimmune Diabetes

    DTIC Science & Technology

    2010-05-07

    the tolerance mechanisms of high and low avidity T cells reactive to the diabetes autoantigen glutamic acid decarboxylase 65 (GAD65) and their...of this study, we have used humanized DR0401 (DR4) mice and demonstrated that: high avidity T cells reactive to glutamic acid decarboxylase 65...JA, Unrath KA, Falk BA, Ito K, Wen L, Daniels LT, Lernmark A, Nepom GT. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid

  8. Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10-90 degrees C.

    PubMed

    Häckel, M; Hinz, H J; Hedwig, G R

    1999-11-15

    The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.

  9. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    PubMed Central

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  10. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4.

    PubMed

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe

    2012-08-01

    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  12. Case report: Aqueous and Vitreous amino-acid concentrations in a patient with maple syrup urine disease operated on rhegmatogenous retinal detachment.

    PubMed

    Kanakis, Menelaos G; Michelakakis, Helen; Petrou, Petros; Koutsandrea, Chrysanthi; Georgalas, Ilias

    2016-10-03

    Maple syrup urine disease (MSUD) is a rare metabolic disorder, affecting the metabolism of branched chain amino-acids (Valine, Leukine, Isoleukine). We present a rare case of rhegmatogenous retinal detachment (RRD) in a MSUD patient. We performed amino acid analysis of aqueous humour, vitreous and serum samples obtained during surgery from a 24 year old female MSUD patient successfully operated on RRD. Serum values for a-amino-butyric acid, valine, isoleucine, leucine, tyrosine, phenylalanine, ornithine and histidine were low, while values for citrulline, methionine and lysine were borderline low, all attributed to the patient's special diet. Serum glutamate was above normal, probably due to the breakdown of glutamine to glutamate. In the aqueous and vitreous the amino acids implicated in MSUD (Valine, Leukine Isoleukine), were within normal range. Glutamate was absent in the vitreous and presented low levels in the aqueous. Glutamate has been reported to play an important role in retinal damage. Elevated glutamate levels have been reported in vitreous specimens from patients subjected to vitrectomy or buckling surgery for RRD. In MSUD, glutamate has been implicated in the pathogenesis of brain damage. Low levels of glutamate have been observed in the cerebellum of experimental MSUD animals, as well as postmortem brain tissue from a child that died of leucine intoxication. The reduction was attributed to the elevation of a-ketoisocaproic which reverses the net direction of nitrogen flow. It could be argued that this could impact on amino acid concentration in aqueous and vitreous fluids. Although no definite conclusions can be drawn by this extremely rare case, the low vitreous and aqueous levels of Glutamate is an interesting finding. Further studies are needed to provide a better insight in the role of amino acids as neurotransmitters in the human eye in health and disease.

  13. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium).

    PubMed

    Han, Yuchun; Xia, Lin; Zhu, Linyi; Zhang, Shusheng; Li, Zhibo; Wang, Yilin

    2012-10-30

    The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.

  14. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery.

    PubMed

    Lee, Yonghyun; Kim, Jungyun; Kim, Wooseong; Nam, Joon; Jeong, Seongkeun; Lee, Sunyoung; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2015-01-01

    Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran-glutamic acid-celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.

  15. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [H]Glutamate Binding to Rat Synaptic Membranes.

    PubMed

    Del Valle-Mojica, Lisa M; Ayala-Marín, Yoshira M; Ortiz-Sanchez, Carmen M; Torres-Hernández, Bianca A; Abdalla-Mukhaimer, Safa; Ortiz, José G

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [(3)H]Glutamate. Aqueous valerian extract increased [(3)H]Glutamate binding from 1 × 10(-7) to 1 × 10(-3) mg/mL. In the presence of (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2'R,3'R)-2-(2',3'-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [(3)H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [(3)H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [(3)H]Glutamate binding after 1.6 × 10(-2) mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant.

  16. Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain.

    PubMed

    Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2015-09-01

    Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.

  17. Effect of l-glutamic acid supplementation on performance and nitrogen balance of broilers fed low protein diets.

    PubMed

    Bezerra, R M; Costa, F G P; Givisiez, P E N; Freitas, E R; Goulart, C C; Santos, R A; Souza, J G; Brandão, P A; Lima, M R; Melo, M L; Rodrigues, V P; Nogueira, E T; Vieira, D V G

    2016-06-01

    The aim of this study was to evaluate the effect of protein reduction and supplementation of l-glutamic acid in male broiler diets. A total of 648 chicks of the Cobb 500 strain were distributed in a completely randomized design with six treatments and six replications with eighteen birds per experimental unit. The study comprised pre-starter (1-7 days), starter (8-21 days), growth (22-35 days) and final (36-45 days) phases. The first treatment consisted of a control diet formulated according to the requirements of essential amino acids for each rearing phase. The second and third treatments had crude protein (CP) reduced by 1.8 and 3.6 percentage points (pp) in relation to the control diet respectively. In the fourth treatment, l-glutamic acid was added to provide the same glutamate level as the control diet, and in the last two treatments, the broilers were supplemented with 1 and 2 pp of glutamate above that of the control diet respectively. The reduction in CP decreased the performance of broilers and the supplementation of l-glutamic acid did not influence performance when supplied in the diets with excess of glutamate. The lowest excreted nitrogen values were observed in the control diet, and treatments 2 and 3, respectively, in comparison with treatments with the use of l-glutamic acid (5 and 6). Retention efficiency of nitrogen was better in the control diet and in the treatment with a reduction of 1.8 pp of CP. It was verified that the serum uric acid level decreased with the CP reduction. A reduction in CP levels of up to 21.3%, 18.8%, 18.32% and 17.57% is recommended in phases from 1 to 7, 8 to 21, 22 to 35 and at 36 to 42 days, respectively, with a level of glutamate at 5.32%, 4.73%, 4.57%, 4.38%, also in these phases. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  18. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    PubMed

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  19. Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor.

    PubMed

    Hu, Y; Mitchell, K M; Albahadily, F N; Michaelis, E K; Wilson, G S

    1994-10-03

    The in vivo measurement of the rapid changes in the extracellular concentrations of L-glutamic acid in the mammalian brain during normal neuronal activity or following excessive release due to episodes of anoxia or ischemia has not been possible to this date. Current techniques for the measurement of the release of endogenous glutamate into the extracellular space of the central nervous system are relatively slow and do not measure the actual concentration of free glutamate in the extracellular space. An enzyme-based electrode with rapid response times (about 1 s) and high degree of sensitivity (less than 2 microM) and selectivity for L-glutamic acid is described in this paper. This electrode has both L-glutamate and ascorbate oxidase immobilized on its surface. The latter enzyme removes almost completely any interferences produced by the high levels of extracellular ascorbate present in brain tissue. The response of the electrode to glutamate and other potentially interfering substances was fully characterized in vitro and its selectivity, sensitivity and rapidity in responding to a rise in extracellular glutamate concentrations was also demonstrated in vivo. Placement of the electrode in the dentate gyrus of the hippocampus led to the detection of both KCl-induced release of L-glutamic acid and the release induced by stimulation of the axons in the perforant pathway. The development of this selective, sensitive and rapidly responding glutamate sensor should make it now possible to measure the dynamic events associated with glutamate neurotransmission in the central nervous system.

  20. A Review of Use of Enantiomers in Homeopathy

    PubMed Central

    Kuzeff, R. M.

    2012-01-01

    This paper reviews publications of laboratory experiments using pairs of enantiomers in homeopathy. Many molecules in nature have geometry which enables them to exist as nonsuperimposable mirror images or enantiomers. Modulation of toxicity of such molecules provides possibility for therapeutics, since they target multiple points in biochemical pathways. It was hypothesized that toxicity of a chemical agent could be counteracted by a homeopathic preparation of the enantiomer of the chemical agent (patents applied for: PCT/AU2003/000219-PCT/AU2008/001611). A diverse body of data, including controlled laboratory studies, supports the conclusion that toxicity of optical isomers may be inhibited by homeopathic enantiomer preparations. These data were obtained with minimal or no pretesting to determine optimal test solutions. Inhibition of the excitotoxic neurotransmitter L-glutamic acid with homeopathic preparations of D-glutamic acid indicates the latter may be of use for amelioration of symptoms of disturbances of mood. Similarly, homeopathic preparation of (+)-nicotine may be of use for inhibition of effects of nicotine in tobacco. PMID:23724294

  1. Glutamate receptors as seen by light: Spectroscopic studies of structure-function relationships

    PubMed Central

    Mankiewicz, Kimberly A.; Jayaraman, Vasanthi

    2010-01-01

    Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand binding domain and subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction of the insight gained from X-ray crystallography and nuclear magnetic resonance (NMR) investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer (FRET) to study the behavior of the isolated ligand binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation. PMID:17934637

  2. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus

    PubMed Central

    Medrano, M C; Gerrikagoitia, I; Martínez-Millán, L; Mendiguren, A; Pineda, J

    2013-01-01

    Background and Purpose Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. Experimental Approach We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2–3 expression in the LC was also characterized by immunohistochemistry. Key Results The EAAT2–5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg−1 i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. Conclusions and Implications These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus. PMID:23638698

  3. Decomposition of Amino Acids in 100 K Ice by UV Photolysis: Implications for Survival on Europa

    NASA Astrophysics Data System (ADS)

    Goguen, Jay D.; Orzechowska, G.; Johnson, P.; Tsapin, A.; Kanik, I.; Smythe, W.

    2006-09-01

    We report the rate of decomposition by ultraviolet photolysis of 4 amino acids in a mm-thick crystalline water ice matrix at T=100K to constrain the survivability of these important organic molecules within ice lying near the surfaces of outer solar system bodies. We freeze our ice samples from liquid solution which results in mm-thick samples of crystalline phase hexagonal ice that appears "white” due to multiple scattering from internal microstructure. After irradiating an ice and amino acid mixture with an Argon mini-arc UV continuum light source, we used a derivatization technique based on a fluorescence reaction of amino acids to directly measure the remaining fraction of amino acid. We measured ice samples with 0.14, 0.28 and 1.6 mm thickness, prepared from 10-4 M solutions of glycine, D,L-aspartic, D,L-glutamic, and D,L-phenylalanine irradiated from 10 to 1020 minutes. We find that the half-life for decomposition of the amino acid - ice samples is linearly proportional to their thickness as is expected for a layer with strong multiple scattering. Glycine is the most resistant to destruction and phenylalanine is the most easily destroyed. For the 1.6 mm thick samples under lab conditions, the half-life of glycine was 57 hours, aspartic 21 hours, glutamic 23 hours, and phenylalanine 8 hours. These results can be expressed as a "penetration velocity", the depth to which half of the amino acids are destroyed in a year. We conclude that half of these amino acids in the upper meter of low latitude ice on Europa will be decomposed by solar UV on a 10 year timescale. Photons between 160 and 300 nm wavelength are responsible for this decomposition. Progress on identifying and quantifying the products of this decomposition, potential candidates for in-situ studies, will be discussed. This work was supported in part by JPL IR&TD funds.

  4. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS.

    PubMed

    Frerot, Eric; Chen, Ting

    2013-10-01

    Glutamic acid is an abundant amino acid that lends a characteristic umami taste to foods. In fermented foods, glutamic acid can be found as a free amino acid formed by proteolysis or as a non-proteolytic derivative formed by microorganisms. The aim of the present study was to identify different structures of glutamic acid derivatives in a typical fermented protein-based food product, soy sauce. An acidic fraction was prepared with anion-exchange solid-phase extraction (SPE) and analyzed by UPLC/MS/MS and UPLC/TOF-MS. α-Glutamyl, γ-glutamyl, and pyroglutamyl dipeptides, as well as lactoyl amino acids, were identified in the acidic fraction of soy sauce. They were chemically synthesized for confirmation of their occurrence and quantified in the selected reaction monitoring (SRM) mode. Pyroglutamyl dipeptides accounted for 770 mg/kg of soy sauce, followed by lactoyl amino acids (135 mg/kg) and γ-glutamyl dipeptides (70 mg/kg). In addition, N-succinoylglutamic acid was identified for the first time in food as a minor compound in soy sauce (5 mg/kg). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    PubMed

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  6. Influence of additive L-phenylalanine on stabilization of metastable α-form of L-glutamic acid in cooling crystallization

    NASA Astrophysics Data System (ADS)

    Quang, Khuu Chau; Nhan, Le Thi Hong; Huyen, Trinh Thi Thanh; Tuan, Nguyen Anh

    2017-09-01

    The influence of additive amino acid L-phenylalanine on stabilization of metastable α-form of L-glutamic acid was investigated in cooling crystallization. The present study found that the additive L-phenylalanine could be used to stabilize the pure metastable α-form in L-glutamic acid crystallization, where the additive concentration of 0.05-0.1 (g/L) was sufficient to stabilize the 100% wt metastable α-form in solid product at L-glutamic acid concentration of 30-45 (g/L). Additionally, the present results indicated that the adsorption of additive L-phenylalanine on the (001) surface of α-form was more favorable than that of the β-form molecular, so the nucleation sites of stable β-form was occupied by additive molecular, which resulted in inhibition of nucleation and growth of β-form, allowing stabilization of metastable α-form.

  7. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    PubMed

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  8. Immobilization of a mediator onto carbon cloth electrode and employment of the modified electrode to an electroenzymatic bioreactor.

    PubMed

    Jeong, Eun-Seon; Sathishkumar, Muthuswamy; Jayabalan, Rasu; Jeong, Su-Hyeon; Park, Song-Yie; Mun, Sung-Phil; Yun, Sei-Eok

    2012-10-01

    5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical NAD(+)-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic NAD+ regeneration was coupled to the conversion of L-glutamate into alpha-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by alpha-ketoglutarate. However, our electrochemical NAD+ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.

  9. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  10. Quantification of Microbial Osmolytes in a Drought Impacted California Grassland

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Schaeffer, S. M.; Doyle, A. P.; Schimel, J. P.

    2008-12-01

    With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to balance cell membrane water potential as the soil dries. However, when seasonal rains arrive, internal solutes are released and rapidly mineralized. We have been studying these processes in a California grassland. Beginning in summer 2007, we made monthly measurements of soil moisture, individual amino acid concentration in total soil and in microbial biomass, total dissolved organic carbon and nitrogen (DOC and DON), and microbial biomass carbon and nitrogen (MBC and MBN). We expected microbial concentrations of the known amino acid osmolytes glutamate (glu) and proline (pro) to fluctuate inversely with soil moisture. However, pro was only recovered in Mar 2008 (0.30 μg C g-1 dry soil) and the glu concentration varied proportionally with soil moisture: lowest during summer (0.06 g H2O g-1 dry soil, 2.22 μg glutamate-C g-1 dry soil) and highest in winter (0.27 g H2O g-1 dry soil, 4.43 μg glutamate-C g-1 dry soil). The trend from DOC, MBC, and DON measurements was opposite, however, with all concentrations decreasing as soil moisture shifted from dry to wet, (DOC: 64.61 to 32.49 μg C g-1 dry soil respectively). MBN was the exception to this trend, with concentrations staying nearly constant across seasons. These patterns suggest that the expected amino acids glu and pro are not being used for microbial osmoregulation in the CA grassland, and given the summer to winter decrease in MBC, the primary osmolyte source is likely to be either polyol-type compounds such as mannitol or betaines. The implications for terrestrial carbon cycle are considerable because as the frequency of drought increases, the accumulation and release of osmolytes in response to drought has potential to pump carbon out of the grassland ecosystem.

  11. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  12. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  13. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  14. Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells.

    PubMed

    Chahomchuen, Thippayarat; Hondo, Kana; Ohsaki, Mariko; Sekito, Takayuki; Kakinuma, Yoshimi

    2009-12-01

    Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.

  15. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  16. Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

    PubMed Central

    Nakajima, T.; Nomoto, K.; Ohfune, Y.; Shiratori, Y.; Takemoto, T.; Takeuchi, H.; Watanabe, K.

    1985-01-01

    The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha-Allo-kainic acid and allo-gamma-hydroxy-L-glutamic acid had no obvious effect on any of the neurones examined. As described above, the responses of the neurones examined to these substances varied widely. However, L-quisqualic acid generally had effects on the neurones similar to those of L-BHGA; the L-BHGA-excited neurones were also excited by alpha-kainic acid and domoic acid. PMID:2866005

  17. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    PubMed

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  18. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  19. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  20. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, L.E.; Carciello, N.R.

    1985-11-05

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80/sup 0/C. The polyelectrolyte or the precoat is present in about 0.5 to 5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150/sup 0/C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 x 10/sup 5/ gave improved ductility modulus effect.

  1. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [3H]Glutamate Binding to Rat Synaptic Membranes

    PubMed Central

    Del Valle-Mojica, Lisa M.; Ayala-Marín, Yoshira M.; Ortiz-Sanchez, Carmen M.; Torres-Hernández, Bianca A.; Abdalla-Mukhaimer, Safa; Ortiz, José G.

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [3H]Glutamate. Aqueous valerian extract increased [3H]Glutamate binding from 1 × 10−7 to 1 × 10−3 mg/mL. In the presence of (2S,1′S,2′S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2′R,3′R)-2-(2′,3′-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [3H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [3H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [3H]Glutamate binding after 1.6 × 10−2 mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant. PMID:21584239

  2. High extracellular concentration of excitatory amino acids glutamate and aspartate in human brain abscess.

    PubMed

    Dahlberg, Daniel; Ivanovic, Jugoslav; Hassel, Bjørnar

    2014-04-01

    Brain abscesses often cause symptoms of brain dysfunction, including seizures, suggesting interference with normal neurotransmission. We determined the concentration of extracellular neuroactive amino acids in brain abscesses from 16 human patients. Glutamate was present at 3.6 mmol/L (median value, range 0.5-10.8), aspartate at 1.0 mmol/L (range 0.09-6.8). For comparison, in cerebroventricular fluid glutamate was ∼0.6 μmol/L, and aspartate was not different from zero. The total concentration of amino acids was higher in eight patients with seizures: 66 mmol/L (median value, range 19-109) vs. 21 mmol/L (range 4-52) in eight patients without seizures (p=0.026). The concentration of aspartate and essential amino acids tryptophan, phenylalanine, tyrosine, leucine, and isoleucine was higher in pus from patients with seizures (p⩽0.040), whereas that of glutamate was not (p=0.095). The median concentration of the non-proteinogenic, inhibitory amino acid taurine was similar in the two groups, 0.7-0.8 mmol/L (range 0.1-6.1). GABA could not be detected in pus. The patient groups did not differ with respect to abscess volume, the cerebral lobe affected, age, or time from symptom onset to surgery. Seven patients with extracerebral, intracranial abscesses had significantly lower pus concentration of glutamate (352 μmol/L, range 83-1368) and aspartate (71 μmol/L, range 22-330) than intracerebral abscesses (p<0.001). We conclude that excitatory amino acids glutamate and aspartate may reach very high concentrations in brain abscesses, probably contributing to symptoms through activation of glutamate receptors in the surrounding brain tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    PubMed Central

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  4. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol

    PubMed Central

    Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362

  6. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex.

    PubMed

    Muschamp, John W; Regina, Meredith J; Hull, Elaine M; Winter, Jerrold C; Rabin, Richard A

    2004-10-08

    The ability of hallucinogens to increase extracellular glutamate in the prefrontal cortex (PFC) was assessed by in vivo microdialysis. The hallucinogen lysergic acid diethylamide (LSD; 0.1 mg/kg, i.p.) caused a time-dependent increase in PFC glutamate that was blocked by the 5-HT(2A) antagonist M100907 (0.05 mg/kg, i.p.). Similarly, the 5-HT(2A/C) agonist [-]-2,5-dimethoxy-4-methylamphetamine (DOM; 0.6 mg/kg, i.p.), which is a phenethylamine hallucinogen, increased glutamate to 206% above saline-treated controls. When LSD (10 microM) was directly applied to the PFC by reverse dialysis, a rapid increase in PFC glutamate levels was observed. Glutamate levels in the PFC remained elevated after the drug infusion was discontinued. These data provide direct evidence in vivo for the hypothesis that an enhanced release of glutamate is a common mechanism in the action of hallucinogens.

  7. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.

    PubMed

    Lin, Yu-Hsin; Lin, Jui-Hsiang; Hong, Ya-Shiuan

    2017-01-01

    The hydrophobic polyphenol curcumin has anti-inflammatory, antimicrobial, and wound-healing properties that warrant its pharmacological consideration. We report a curcumin nanoparticle with a tripolymeric composite that can be used as a delivery device for wound healing. The present composite nanoparticles were prepared with three biocompatible polymers of chitosan, poly-γ-glutamic acid, and pluronic using a simple ionic gelation technology. Pluronic was used to enhance the solubility of curcumin in chitosan/poly-γ-glutamic acid nanoparticles, leading to the incorporation of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles into chitosan membranes, and reduced inflammation and bacterial infection during wound regeneration. Nanoparticles were of 193.1 ± 8.9 nm and had a zeta potential of 20.6 ± 2.4 mV. Moreover, in vitro analyses indicated controlled curcumin release in a simulated skin tissue model. Subsequent in vivo studies show that chitosan wound dressing containing chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles promoted neocollagen regeneration and tissue reconstruction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 81-90, 2017. © 2015 Wiley Periodicals, Inc.

  8. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain

    PubMed Central

    Sancheti, J. S.; Shaikh, M. F.; Khatwani, P. F.; Kulkarni, Savita R.; Sathaye, Sadhana

    2013-01-01

    A new robust, simple and economic high performance thin layer chromatographic method was developed for simultaneous estimation of L-glutamic acid and γ-amino butyric acid in brain homogenate. The high performance thin layer chromatographic separation of these amino acid was achieved using n-butanol:glacial acetic acid:water (22:3:5 v/v/v) as mobile phase and ninhydrin as a derivatising agent. Quantitation of the method was achieved by densitometric method at 550 nm over the concentration range of 10-100 ng/spot. This method showed good separation of amino acids in the brain homogenate with Rf value of L-glutamic acid and γ-amino butyric acid as 21.67±0.58 and 33.67±0.58, respectively. The limit of detection and limit of quantification for L-glutamic acid was found to be 10 and 20 ng and for γ-amino butyric acid it was 4 and 10 ng, respectively. The method was also validated in terms of accuracy, precision and repeatability. The developed method was found to be precise and accurate with good reproducibility and shows promising applicability for studying pathological status of disease and therapeutic significance of drug treatment. PMID:24591747

  9. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain.

    PubMed

    Sancheti, J S; Shaikh, M F; Khatwani, P F; Kulkarni, Savita R; Sathaye, Sadhana

    2013-11-01

    A new robust, simple and economic high performance thin layer chromatographic method was developed for simultaneous estimation of L-glutamic acid and γ-amino butyric acid in brain homogenate. The high performance thin layer chromatographic separation of these amino acid was achieved using n-butanol:glacial acetic acid:water (22:3:5 v/v/v) as mobile phase and ninhydrin as a derivatising agent. Quantitation of the method was achieved by densitometric method at 550 nm over the concentration range of 10-100 ng/spot. This method showed good separation of amino acids in the brain homogenate with Rf value of L-glutamic acid and γ-amino butyric acid as 21.67±0.58 and 33.67±0.58, respectively. The limit of detection and limit of quantification for L-glutamic acid was found to be 10 and 20 ng and for γ-amino butyric acid it was 4 and 10 ng, respectively. The method was also validated in terms of accuracy, precision and repeatability. The developed method was found to be precise and accurate with good reproducibility and shows promising applicability for studying pathological status of disease and therapeutic significance of drug treatment.

  10. [Experiment to study some suspension media for the lyophilization of actinomycetes].

    PubMed

    Semenov, S M

    1975-09-01

    Viability and cultural properties of 59 actinomycetes and 17 bacteria lyophilized in polyvinylpyrrolidone (PVP), sodium glutamate, their combinations and horse serum were studied after storage for 2 years at a temperature of 4-10 degrees. A 5 per cent solution of sodium glutamate had a high protective effect on viability of the above organisms. The solution containing 3 per cent of sodium glutamate and 3 per cent of PVP was somewhat less effective. The cultures lyophilized in 5 per cent solution of sodium glutamate had the same viability levels as those lyophilized in horse serum, while the latter had better growth rates on their plating out on nutrient media. A 5 per cent solution of PVP had no advantages over sodium glutamate or horse serum with respect to preservation of the organism viability. No significant differences in the cultural properties: colour of the aerial and substrate mycelium and pigment production were noted in the actinomycetes lyophilized in various protective media and the analogous control cultures maintained by means of passages on fresh nutrient media.

  11. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues.

    PubMed

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2016-11-15

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine's metabolites: Potential biomarkers of amyotrophic lateral sclerosis.

    PubMed

    Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria

    2017-08-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid.

    PubMed

    Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S

    2008-03-03

    A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.

  14. Antagonism of 5-hydroxytryptamine by LSD 25 in the central nervous system

    PubMed Central

    Boakes, R. J.; Bradley, P. B.; Briggs, I.; Dray, A.

    1970-01-01

    1. 5-Hydroxytryptamine (5-HT), acetylcholine (ACh), noradrenaline (NA), glutamate, D,L-homocysteic acid (DLH), glycine and γ-aminobutyric acid (GABA) were applied to single neurones in the brain stem of decerebrate cats by microiontophoresis. The abilities of D-lysergic acid diethylamide tartrate (LSD 25), methysergide maleate (UML 491) and 2-bromo-lysergic acid diethylamide (BOL 148) to antagonize the actions of these compounds were studied. 2. LSD 25 antagonized 5-HT excitation of single neurones when applied iontophoretically or administered intravenously. LSD 25 also antagonized glutamate excitation of neurones which could be excited by 5-HT. Inhibitory effects of 5-HT, the action of glutamate on neurones which could be inhibited by 5-HT and the actions of all the other compounds tested were unaffected by LSD 25. 3. Iontophoretically applied UML 491 was also a specific antagonist to 5-HT and glutamate excitation but was less potent than LSD 25, and BOL 148 rarely exhibited antagonism. 4. It is suggested that antagonism to 5-HT and glutamate excitation of brain stem neurones may be the basis of the psychotomimetic action of LSD 25. It is also suggested that there may be similarities in the mechanisms by which 5-HT and glutamate produce excitation where they act on the same neurone. PMID:5492893

  15. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities

    PubMed Central

    2018-01-01

    ABSTRACT Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo. d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases. PMID:29615498

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique surface analysis technique because it can provide molecular recognition for organic and biological molecules. However, analyzing aqueous solution surfaces by ToF-SIMS is difficult, because ToF-SIMS is a high-vacuum technique, while the vapor pressure of water is about 2.3 kPa at room temperature (20 C). We designed and fabricated a self-contained microfluidic device, enabling in situ analysis of aqueous surfaces by scanning electron microscope (SEM) and ToF-SIMS, which has been briefly reported.1,2 In this study, we report more performance data, focusing on the performance of this device for in situ analysis ofmore » organic molecules at aqueous surfaces using ToF-SIMS. Three representative organic compounds (formic acid, glycerol, and glutamic acid) were tested, and their molecular signals were successfully observed. The device can be self-running in vacuum for 8 hours, and SIMS measurements are feasible at any time in this time range. The stability of this device under primary ion beam bombardment is also impressive. High fluence (6 × 1012 ions cm-2 s-1) measurements can be operated continuously for up to 30 minutes without any significant damage to the aperture. However, extra-high fluence measurements (>1 × 1014 ions cm-2 s-1) may lead to liquid bumping in the aperture, and the aqueous solutions may spread out quickly. Signal reproducibility is reasonably good, and relative standard deviation (RSD) for molecular ion signals can be controlled to be smaller than ±15% for consecutive measurements. Measurements at long time intervals (e.g., 60 min) show RSDs of ±40-50%. In addition, the detection limits of formic acid, glycerol, and glutamic acid are estimated to be 0.04%, 0.008%, and 0.002% (weight ratio), respectively.« less

  17. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  18. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further maintaining root growth. PMID:27512992

  19. Ribonucleic Acid Synthesis and Glutamate Excretion in Escherichia coli

    PubMed Central

    Broda, Paul

    1968-01-01

    Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RCrel strains or when it was blocked with chloramphenicol in either RCstr or RCrel strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RCstr and RCrel strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane. PMID:4973126

  20. Differential effects of arginine, glutamate and phosphoarginine on Ca(2+)-activation properties of muscle fibres from crayfish and rat.

    PubMed

    Jame, David W; West, Jan M; Dooley, Philip C; Stephenson, D George

    2004-01-01

    The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute ("test") or not ("control"). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l(-1)) significantly shifted the force-pCa curve by 0.08-0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9-10 mmol l(-1)) induced a significant shift of the force-pCa curve by 0.18-0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force-pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36-40 mmol l(-1)), like arginine affected the force-pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08-0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.

  1. Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism.

    PubMed

    Liu, Yongjing; Deng, Miaoduo; Yu, Jia; Jiang, Zhen; Guo, Xingjie

    2016-05-01

    A novel single-isomer cyclodextrin derivative, heptakis {2,6-di-O-[3-(1,3-dicarboxyl propylamino)-2-hydroxypropyl]}-β-cyclodextrin (glutamic acid-β-cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid-β-cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused-silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5-4.0) containing 0.5-4.5 mM glutamic acid-β-cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid-β-cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid-β-cyclodextrin was investigated using the semi-empirical Parametric Method 3. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells.

    PubMed

    Pizzi, M; Fallacara, C; Arrighi, V; Memo, M; Spano, P F

    1993-08-01

    Activation of glutamate ionotropic receptors represents the primary event in the neurotoxicity process triggered by excitatory amino acids. We demonstrate here that the concentration-dependent stimulation of metabotropic glutamate receptor (mGluR) by the selective agonist trans-1-aminocyclopentane-1,3-dicarboxylate or by quisqualate counteracts both glutamate- and kainate-induced neurotoxicity in primary cultures of rat cerebellar granule cells. The mGluR-evoked responses are potentiated by aniracetam, which per se also elicits neuroprotection. Aniracetam concentration-dependently counteracted glutamate-, kainate-, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced cell death and greatly facilitated neuroprotective response achieved by different concentrations of both quisqualate and trans-1-aminocyclopentane-1,3-dicarboxylate. In addition, aniracetam potentiated the mGluR-coupled stimulation of phospholipase C, as revealed by the measurement of 3H-inositol phosphate formation. Thus, mGluRs could be a suitable target for novel pharmacological strategies pointing to the treatment of neurodegenerative diseases.

  3. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  4. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    PubMed

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  5. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance?

    PubMed Central

    Yoshinaga, Naoko; Abe, Hiroaki; Morita, Sayo; Yoshida, Tetsuya; Aboshi, Takako; Fukui, Masao; Tumlinson, James H.; Mori, Naoki

    2013-01-01

    Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way. PMID:24744735

  6. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine D.; Somogyi, Árpád; Smith, Mark A.

    2010-04-01

    Titan organic haze analogues, or "tholins," produce biomolecules when hydrolyzed at low temperature over long timescales. By using a combination of high-resolution mass spectroscopy and tandem mass spectrometry fragmentation techniques, four amino acids were identified in a tholin sample that had been hydrolyzed in a 13 wt % ammonia-water solution at 253 ± 1 K and 293 ± 1 K for 1 year. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions thought to be similar to those found in impact melt pools and cryolavas on Titan, which are at a stage of chemical evolution not unlike the "primordial soup" of the early Earth. Future missions to Titan should therefore carry instrumentation capable of, but certainly not limited to, detecting amino acids and other prebiotic molecules on Titan's surface.

  7. Use of L-Glutamic Acid in a New Enrichment Broth (R-TATP Broth) for Detecting the Presence or Absence of Molds in Raw Ingredients/Personal Care Product Formulations by Using an ATP Bioluminescence Assay.

    PubMed

    Yang, Youjun; English, Donald J

    The present study reports the effects of adding L-glutamic acid to a new enrichment broth designated as R-TATP broth, to promote the growth of slow-growing mold microorganisms such as Aspergillus brasiliensis and Aspergillus oryzae , without interfering in the growth of other types of microorganisms. This L-glutamic acid containing enrichment broth would be particularly valuable in a rapid microbial detection assay such as an adenosine triphosphate (ATP) bioluminescence assay. By using this new enrichment broth, the amount of ATP (represented as relative light unit ratio after normalized with the negative test control) from mold growth was significantly increased by reducing the time of detection of microbial contamination in a raw ingredient or personal care product formulation from an incubation period of 48-18 h. By using L-glutamic acid in this enrichment broth, the lag phase of the mold growth cycle was shortened. In response to various concentrations of L-glutamic acid in R-TATP broth, there was an increased amount of ATP that had been produced by mold metabolism in an ATP bioluminescence assay. By using L-glutamic acid in R-TATP broth in an ATP bioluminescence assay, the presence of mold could be detected in 18 h as well as other types of microorganisms that may or may not be present in a test sample. By detecting the presence or absence of microbial contamination in 18 h, it is superior in comparison to a 48-96 h incubation period by using either a standard or rapid detection method.

  8. Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA.

    PubMed

    Torres, Felipe Vasconcelos; Hansen, Fernanda; Locks-Coelho, Lucas Doridio

    2013-08-01

    Glutamate concentration at the synaptic level must be kept low in order to prevent excitotoxicity. Astrocytes play a key role in brain energetics, and also astrocytic glutamate transporters are responsible for the vast majority of glutamate uptake in CNS. Experiments with primary astrocytic cultures suggest that increased influx of glutamate cotransported with sodium at astrocytes favors its flux to the tricarboxylic acid cycle instead of the glutamate-glutamine cycle. Although metabolic coupling can be considered an emergent field of research with important recent discoveries, some basic aspects of glutamate metabolism still have not been characterized in brain tissue. Therefore, the aim of this study was to investigate whether the presence of extracellular glutamate is able to modulate the use of glutamate and glucose as energetic substrates. For this purpose, isolated hippocampi of mice were incubated with radiolabeled substrates, and CO2 radioactivity and extracellular lactate were measured. Our results point to a diminished oxidation of glucose with increasing extracellular glutamate concentration, glutamate presumably being the fuel, and might suggest that oxidation of glutamate could buffer excitotoxic conditions by high glutamate concentrations. In addition, these findings were reversed when glutamate uptake by astrocytes was impaired by the presence of (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-TBOA). Taken together, our findings argue against the lactate shuttle theory, because glutamate did not cause any detectable increase in extracellular lactate content (or, presumably, in glycolysis), because the glutamate is being used as fuel instead of going to glutamine and back to neurons. Copyright © 2013 Wiley Periodicals, Inc.

  9. Taste, umami-enhance effect and amino acid sequence of peptides separated from silkworm pupa hydrolysate.

    PubMed

    Yu, Zilin; Jiang, Hongrui; Guo, Rongcan; Yang, Bo; You, Gang; Zhao, Mouming; Liu, Xiaoling

    2018-06-01

    Four umami peptides were separated and purified by ultrafiltration, gel filtration chromatography and identified by ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS), the amino acid sequences of four peptides are Val-Pro-Tyr (VPY), Thr-Ala-Tyr (TAY), Ala-Ala-Pro-Tyr (AAPY) and Gly-Phe-Pro (GFP). The result illustrates that the umami amino acids are not the content of umami peptides, but bitter amino acids are included. The threshold of VPY, TAY, AAPY and GFP were 1.65 mmol/L, 1.76 mmol/L, 2.97 mmol/L and 6.26 mmol/L, respectively. The peptide TAY, VPY and AAPY had an umami-enhancement effect on the monosodium glutamate (MSG) + sodium chloride (NaCl) solution, their concentrations were 2.5 g/L, 5 g/L and 5 g/L, respectively, while GFP has no significant umami-enhancement effect in solution. In addition, the peptides have better taste than its composing amino acids, which indicates that the taste of peptide does not depend on its composing amino acids. Copyright © 2018. Published by Elsevier Ltd.

  10. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, δ-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts 1

    PubMed Central

    Fufsler, Thomas P.; Castelfranco, Paul A.; Wong, Yum-Shing

    1984-01-01

    Intact developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons were found to contain all the enzymes necessary for the synthesis of chlorophyllide. Glutamate was converted to Mg-protoporphyrin IX (monomethyl ester) and protoclorophyllide. δ-Aminolevulinic acid and protoporphyrin IX were converted to Mg-protoporphyrin IX, Mg-protoporphyrin IX monomethyl ester, protochlorophyllide and chlorophyllide a. The conversion of δ-aminolevulinic acid or protoporphyrin IX to Mg-protoporphyrin IX (monomethyl ester) was inhibited by AMP and p-chloromercuribenzene sulfonate. Light stimulated the formation of Mg-protoporphyrin IX from all three substrates. In the case of δ-aminolevulinic acid and protoporphyrin IX, light could be replaced by exogenous ATP. In the case of glutamate, both ATP and reducing power were necessary to replace light. With all three substrates, glutamate, δ-aminolevulinic acid, and protoporphyrin IX, the stimulation of Mg-protoporphyrin IX accumulation in the light was abolished by DCMU, and this DCMU block was overcome by added ATP and reducing power. PMID:16663535

  11. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    PubMed

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    PubMed

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  13. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    PubMed

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  14. Methanol extract of Nigella sativa seed induces changes in the levels of neurotransmitter amino acids in male rat brain regions.

    PubMed

    El-Naggar, Tarek; Carretero, María Emilia; Arce, Carmen; Gómez-Serranillos, María Pilar

    2017-12-01

    Nigella sativa L. (Ranunculaceae) (NS) has been used for medicinal and culinary purposes. Different parts of the plant are used to treat many disorders. This study investigates the effects of NS methanol extract on brain neurotransmitter amino acid levels. We measured the changes in aspartate, glutamate, glycine and γ-aminobutyric acid in five brain regions of male Wistar rats after methanol extract treatment. Animals were injected intraperitoneally with saline solution (controls) or NS methanol extract (equivalent of 2.5 g/kg body weight) and sacrificed 1 h later or after administering 1 daily dose for 8 days. The neurotransmitters were measured in the hypothalamus, cortex, striatum, hippocampus and thalamus by HPLC. Results showed significant changes in amino acids compared to basal values. Glutamate increased significantly (16-36%) in the regions analyzed except the striatum. Aspartate in the hypothalamus (50 and 76%) and glycine in hippocampus (32 and 25%), thalamus (66 and 29%) and striatum (75 and 48%) also increased with the two treatment intervals. γ-Aminobutyric acid significantly increased in the hippocampus (38 and 32%) and thalamus (22 and 40%) but decreased in the cortex and hypothalamus although in striatum only after eight days of treatment (24%). Our results suggest that injected methanol extract modifies amino acid levels in the rat brain regions. These results could be of interest since some neurodegenerative diseases are related to amino acid level imbalances in the central nervous system, suggesting the prospect for therapeutic use of NS against these disorders.

  15. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids

    Treesearch

    Sridev Mohapatra; Rakesh Minocha; Stephanie Long; Subhash C. Minocha

    2010-01-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis...

  16. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  17. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  18. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells

    PubMed Central

    Li, Xian; Li, Hao; Yi, Wei; Chen, Jianyu; Liang, Biling

    2013-01-01

    Purpose To research the acid-triggered core cross-linked folate-poly(ethylene glycol)-b-poly[N-(N′,N′-diisopropylaminoethyl) glutamine] (folated-PEG-P[GA-DIP]) amphiphilic block copolymer for targeted drug delivery and magnetic resonance imaging (MRI) in liver cancer cells. Methods As an appropriate receptor of protons, the N,N-diisopropyl tertiary amine group (DIP) was chosen to conjugate with the side carboxyl groups of poly(ethylene glycol)-b-poly (L-glutamic acid) to obtain PEG-P(GA-DIP) amphiphilic block copolymers. By ultrasonic emulsification, PEG-P(GA-DIP) could be self-assembled to form nanosized micelles loading doxorubicin (DOX) and superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous solution. When PEG-P(GA-DIP) nanomicelles were combined with folic acid, the targeted effect of folated-PEG-P(GA-DIP) nanomicelles was evident in the fluorescence and MRI results. Results To further increase the loading efficiency and the cell-uptake of encapsulated drugs (DOX and SPIONs), DIP (pKa≈6.3) groups were linked with ~50% of the side carboxyl groups of poly(L-glutamic acid) (PGA), to generate the core cross-linking under neutral or weakly acidic conditions. Under the acidic condition (eg, endosome/lysosome), the carboxyl groups were neutralized to facilitate disassembly of the P(GA-DIP) blocks’ cross-linking, for duly accelerating the encapsulated drug release. Combined with the tumor-targeting effect of folic acid, specific drug delivery to the liver cancer cells and MRI diagnosis of these cells were greatly enhanced. Conclusion Acid-triggered and folate-decorated nanomicelles encapsulating SPIONs and DOX, facilitate the targeted MRI diagnosis and therapeutic effects in tumors. PMID:23976852

  19. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  20. [Effects of glutamic acid and glutathione on the secretory function of the stomach].

    PubMed

    Shlygin, G K; Vasilevskaia, L S; Ignatenko, L G

    1988-10-01

    Experiments on dogs with Pavlov isolated pouches and gastric fistulas have shown that the ingested solution of MSG produces a potentiating effect on maximal gastric secretion caused by pentagastrin. This effect is apparently connected with the formation of glutathione in intestine. The glutathione concentration in blood after the intake of MSG is significantly elevated. It has been established that reduced glutathione administered in blood produced the similar potentiating effect on gastric secretion caused by pentagastrin.

  1. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  2. Crystallization of dicalcium phosphate dihydrate with presence of glutamic acid and arginine at 37 °C.

    PubMed

    Li, Chengfeng; Ge, Xiaolu; Li, Guochang; Bai, Jiahai; Ding, Rui

    2014-08-01

    The formations of non-metabolic stones, bones and teeth were seriously related to the morphology, size and surface reactivity of dicalcium phosphate dihydrate (DCPD). Herein, a facile biomimetic mineralization method with presence of glutamic acid and arginine was employed to fabricate DCPD with well-defined morphology and adjustable crystallite size. In reaction solution containing more arginine, crystallization of DCPD occurred with faster rate of nucleation and higher density of stacked layers due to the generation of more OH(-) ions after hydrolysis of arginine at 37 °C. With addition of fluorescein or acetone, the consumption of OH(-) ions or desolvation reaction of Ca(2+) ions was modulated, which resulted in the fabrication of DCPD with adjustable crystallite sizes and densities of stacked layers. In comparison with fluorescein-loading DCPD, dicalcium phosphate anhydrate was prepared with enhanced photoluminescence properties due to the reduction of self-quenching effect and regular arrangement of encapsulated fluorescein molecules. With addition of more acetone, DCPD was prepared with smaller crystallite size via antisolvent crystallization. The simulated process with addition of amino acids under 37 °C would shed light on the dynamic process of biomineralization for calcium phosphate compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors

    NASA Astrophysics Data System (ADS)

    Qi, Na; Tang, Bo; Liu, Guang; Liang, Xingsi

    2017-05-01

    The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change. The release rate of γ-PGA-coated Dox lipoplexes slightly increased at acidic pH, the accelerated Dox release might be attributed to greater drug delivery to tumor cells, resulting in a higher antitumor activity. Especially, γ-PGA-coated Dox lipoplexes exhibited higher cellular uptake, significant in vitro cytotoxicity in HepG2 cells, and improved in vivo antitumor efficacy toward HepG2 hepatoma-xenografted nude models in comparison with Dox liposomes and free Dox solution. In addition, the analysis results via flow cytometry showed that γ-PGA-coated Dox lipoplexes induce S phase cell cycle arrest and significantly increased apoptosis rate of HepG2 cells. In conclusion, the presence of γ-PGA on the surface of Dox lipoplexes enhanced antitumor effects of liver tumors.

  4. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property.

    PubMed

    Chen, Yu; Yan, Xiaoting; Zhao, Jian; Feng, Huaiyu; Li, Puwang; Tong, Zongrui; Yang, Ziming; Li, Sidong; Yang, Jueying; Jin, Shaohua

    2018-07-01

    In the current study, a novel semi-dissolution/acidification/sol-gel transition (SD-A-SGT) method was explored for the preparation of polyelectrolyte complexing (PEC) composite hydrogels with natural polymers only. A chitosan (CS) powder was uniformly dispersed in a solution of poly(glutamic acid) (PGA) and alginate (SA) to form a semi-dissolved slurry mixture that was then exposed to an gaseous acidic atmosphere. CS was gradually dissolved and interacted with PGA and SA to form a CS/PGA/SA PEC composite hydrogel with a homogeneous structure. The SD-A-SGT procedure was able to overcome the shortcomings of direct mixing method via the PEC interaction. The effects of the hydrogel composition on its structure and properties were investigated by FTIR, XRD, rheology study, XPS, SEM, and swelling kinetics. The drug delivery performance of the CS/PGA/SA hydrogel was explored using piroxicam (PXC) as a model drug. PXC was in situ embedded in the hydrogel by the SD-A-SGT method. The hydrogel exhibited pH responsive drug release behaviors that were affected by the hydrogel composition. In all, the SD-A-SGT method for preparing PEC composite hydrogels has a great application potential in constructing the CS based hydrogels as medical materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A survey of free glutamic acid in foods using a robust LC-MS/MS method.

    PubMed

    Cebi, Nur; Dogan, Canan Ekinci; Olgun, Elmas Oktem; Sagdic, Osman

    2018-05-15

    An effective and simultaneous liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used with the aim of quantifying monosodium glutamate (MSG) in foodstuffs, such as chips, taste cubes, sauces and soups. The results were linear (R 2  = 1), with very low LOD and LOQ values, 1.0 µg/kg, 5.0 µg/kg, respectively. Excellent repeatability and reproducibility were also achieved. This highly sensitive and robust LC-MS/MS technique was applied successfully for the detection and quantification of MSG in a wide variety of foodstuffs. MSG contents ranged from 0.01 g/100 g to 15.39 g/100 g in food samples. Importantly, determination of free glutamic acid in the daily diet could also prevent various side effects associated with consumption of excess free glutamic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.

    PubMed

    Qiu, Yibin; Sha, Yuanyuan; Zhang, Yatao; Xu, Zongqi; Li, Sha; Lei, Peng; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2017-09-01

    This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products. Copyright © 2017. Published by Elsevier Ltd.

  7. Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study.

    PubMed

    Bianchi, L; De Micheli, E; Bricolo, A; Ballini, C; Fattori, M; Venturi, C; Pedata, F; Tipton, K F; Della Corte, L

    2004-01-01

    The concentrations of endogenous amino acids and choline in the extracellular fluid of human cerebral gliomas have been measured, for the first time, by in vivo microdialysis. Glioblastoma growth was associated with increased concentrations of choline, GABA, isoleucine, leucine, lysine, phenylalanine, taurine, tyrosine, and valine. There was no difference between grade III and grade IV tumors in the concentrations of phenylalanine, isoleucine, tyrosine, valine, and lysine, whereas the concentrations of choline, aspartate, taurine, GABA, leucine, and glutamate were significantly different in the two tumor-grade subgroups. In contrast to the other compounds, the concentration of glutamate was decreased in glioma. The parenchyma adjacent to the tumor showed significant changes only in the extracellular concentration of glutamate, isoleucine, and valine. The concentrations of choline and the amino acids, glutamate, leucine, taurine, and tyrosine showed significant positive correlations with the degree of cell proliferation. Epilepsy, which is relatively common in subjects with gliomas, was shown to be a significant confounding variable when the extracellular concentrations of aspartate, glutamate and GABA were considered.

  8. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Polymerization on the rocks: beta-amino acids and arginine

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.

  10. Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition.

    PubMed

    Hermanussen, M; Gonder, U; Jakobs, C; Stegemann, D; Hoffmann, G

    2010-01-01

    Free amino acids affect food palatability. As information on amino acids in frequently purchased pre-packaged food is virtually absent, we analyzed free amino acid patterns of 17 frequently purchased ready-to-serve convenience food products, and compared them with the information obtained from the respective food labels. Quantitative amino acid analysis was performed using ion-exchange chromatography. gamma-Aminobutyric acid (GABA) concentrations were verified using a stable isotope dilution gas chromatography/mass spectrometry (GC-MS) method. The patterns of free amino acids were compared with information obtained from food labels. An obvious mismatch between free amino acid patterns and food label information was detected. Even on considering that tomatoes and cereal proteins are naturally rich in glutamate, the concentrations of free glutamate outranged the natural concentration of this amino acid in several products, and strongly suggested artificial enrichment. Free glutamate was found to be elevated even in dishes that explicitly state 'no glutamate added'. Arginine was markedly elevated in lentils. Free cysteine was generally low, possibly reflecting thermal destruction of this amino acid during food processing. The meat and brain-specific dipeptide carnosine (CARN) was present in most meat-containing products. Some products did not contain detectable amounts of CARN in spite of meat content being claimed on the food labels. We detected GABA at concentrations that contribute significantly to the taste sensation. This investigation highlights a marked mismatch between food label information and food composition.

  11. In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1

    PubMed Central

    Mazelis, Mendel; Pratt, Helen M.

    1976-01-01

    l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine. PMID:16659431

  12. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    PubMed

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Identification of candidate amino acids involved in the formation of blue pigments in crushed garlic cloves (Allium sativum L.).

    PubMed

    Cho, Jungeun; Lee, Eun Jin; Yoo, Kil Sun; Lee, Seung Koo; Patil, Bhimanagouda S

    2009-01-01

    The color-forming ability of amino acids with thiosulfinate in crushed garlic was investigated. We developed reaction systems for generating pure blue pigments using extracted thiosulfinate from crushed garlic and onion and all 22 amino acids. Each amino acid was reacted with thiosulfinate solution and was then incubated at 60 degrees C for 3 h to generate pigments. Unknown blue pigments, responsible for discoloration in crushed garlic cloves (Allium sativum L.), were separated and tentatively characterized using high-performance liquid chromatography (HPLC) and a diode array detector ranging between 200 and 700 nm. Blue pigment solutions exhibited 2 maximal absorbance peaks at 440 nm and 580 nm, corresponding to yellow and blue, respectively, with different retention times. Our findings indicated that green discoloration is created by the combination of yellow and blue pigments. Eight naturally occurring blue pigments were separated from discolored garlic extracts using HPLC at 580 nm. This suggests that garlic discoloration is not caused by only 1 blue pigment, as reported earlier, but by as many as 8 pigments. Overall, free amino acids that formed blue pigment when reacted with thiosulfinate were glycine, arginine, lysine, serine, alanine, aspartic acid, asparagine, glutamic acid, and tyrosine. Arginine, asparagine, and glutamine had spectra that were more similar to naturally greened garlic extract.

  14. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to deliver neuroprotective drugs to the CNS following injury and/or potential neuroprotectants in their own right.

  15. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  16. Rapid analysis of glutamate, glutamine and GABA in mice frontal cortex microdialysis samples using HPLC coupled to electrospray tandem mass spectrometry.

    PubMed

    Defaix, Celine; Solgadi, Audrey; Pham, Thu Ha; Gardier, Alain M; Chaminade, Pierre; Tritschler, Laurent

    2018-04-15

    In vivo measurement of multiple neurotransmitters is highly interesting but remains challenging in the field of neuroscience. GABA and l-glutamic acid are the major inhibitory and excitatory neurotransmitters, respectively, in the central nervous system, and their changes are related to a variety of diseases such as anxiety and major depressive disorder. This study described a simple method allowing the simultaneous LC-MS/MS quantification of l-glutamic acid, glutamine and GABA. Analytes were acquired from samples of the prefrontal cortex by microdialysis technique in freely moving mice. The chromatographic separation was performed by hydrophilic interaction liquid chromatography (HILIC) with a core-shell ammonium-sulfonic acid modified silica column using a gradient elution with mobile phases consisting of a 25 mM pH 3.5 ammonium formate buffer and acetonitrile. The detection of l-glutamic acid, glutamine and GABA, as well as the internal standards [d6]-GABA and [d5]-glutamate was performed on a triple quadrupole mass spectrometer in positive electrospray ionization and multiple reaction monitoring mode. The limit of quantification was 0.63 ng/ml for GABA, 1.25 ng/ml for l-glutamic acid and 3.15 ng/ml for glutamine, and the intra-day and inter-day accuracy and precision have been assessed for the three analytes. Therefore, the physiological relevance of the method was successfully applied for the determination of basal extracellular levels and potassium-evoked release of these neuroactive substances in the prefrontal cortex in adult awake C57BL/6 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain

    PubMed Central

    Cooper, Arthur J. L.; Jeitner, Thomas M.

    2016-01-01

    Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels. PMID:27023624

  18. Clofibrate inhibits the umami-savory taste of glutamate.

    PubMed

    Kochem, Matthew; Breslin, Paul A S

    2017-01-01

    In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects. Ten participants rated the umami taste intensity elicited by 20 mM monosodium glutamate (MSG) mixed with varying concentrations of clofibric acid (0 to 16 mM). In addition, fourteen participants rated the effect of 1.4 mM clofibric acid on umami enhancement by 5' ribonucleotides. Participants were instructed to rate perceived intensity using a general Labeled Magnitude Scale (gLMS). Each participant was tested in triplicate. Clofibric acid inhibited umami taste intensity from 20 mM MSG in a dose dependent manner. Whereas MSG neat elicited "moderate" umami taste intensity, the addition of 16 mM clofibric acid elicited only "weak" umami intensity on average, and in some subjects no umami taste was elicited. We further show that 1.4 mM clofibric acid suppressed umami enhancement from GMP, but not from IMP. This study provides in vivo evidence that clofibric acid inhibits glutamate taste perception, presumably via T1R1-T1R3 inhibition, and lends further evidence that the T1R1-T1R3 receptor is the principal umami receptor in humans. T1R receptors are expressed extra-orally throughout the alimentary tract and in regulatory organs and are known to influence glucose and lipid metabolism. Whether clofibric acid as a lipid-lowering drug affects human metabolism, in part, through T1R inhibition warrants further examination.

  19. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    DTIC Science & Technology

    2008-02-01

    glutamate receptor , ionotropic , AMPA3 (alpha 3) 0.082 1425595_at Gabbr1 gamma-aminobutyric acid (GABA-B) receptor , 1 -0.047 1436297_a_at Grina glutamate... receptor , ionotropic , N-methyl D-asparate-associated protein 1 1.096 Synaptic receptor 1436772_at Gria4 Glutamate receptor , ionotropic , AMPA4 (alpha 4...1.276 1450202_at Grin1 glutamate receptor , ionotropic , NMDA1 (zeta 1) 0.010 1450310_at Grid2ip glutamate receptor , ionotropic , delta 2 (Grid2

  20. Analysis of Umami Taste Compounds in a Fermented Corn Sauce by Means of Sensory-Guided Fractionation.

    PubMed

    Charve, Joséphine; Manganiello, Sonia; Glabasnia, Arne

    2018-02-28

    Corn sauce, an ingredient obtained from the fermentation of enzymatically hydrolyzed corn starch and used in culinary applications to provide savory taste, was investigated in this study. The links between its sensory properties and taste compounds were assessed using a combination of analytical and sensory approaches. The analyses revealed that glutamic acid, sodium chloride, and acetic acid were the most abundant compounds, but they could not explain entirely the savory taste. The addition of other compounds, found at subthreshold concentrations (alanine, glutamyl peptides, and one Amadori compound), contributed partly to close the sensory gap between the re-engineered sample and the original product. Further chemical breakdown, by a sensory-guided fractionation approach, led to the isolation of two fractions with taste-modulating effects. Analyses by mass spectrometry and nuclear magnetic resonance showed that the fractions contained glutamyl peptides, pyroglutamic acid, glutamic acid, valine, N-formyl-glutamic acid, and N-acetyl-glutamine.

  1. Complexes of oxovanadium(IV), dioxovanadium(V) and dioxouranium(VI) with aminoacids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lagrange, P.; Schneider, M.; Lagrange, J.

    1998-11-01

    The equilibria between three oxocations (VO2+, VO2+ and UO22+) and several ?- aminoacids (glycine, serine, asparagine, lysine, aspartic acid and glutamic acid) are studied in aqueous solution. Stoichiometry and stability of the complexes formed are determined from a combination of potentiometric and spectroscopic measurements. Solution structures of the different complexes are proposed based on the thermodynamic results. The oxovanadium(IV) complexes appear less stable than the corresponding dioxouranium(VI) and dioxovanadium(V) complexes. VO2+ can be bound to only one ligand to form monodentate or chelate complexes. UO22+ and VO2+ cations may be chelated by one or two ligands. Les équilibres entre trois oxocations, VO2+, VO2+ et UO22+ et plusieurs α-aminoacides, glycine, sérine, asparagine, lysine et acides aspartique et glutamique, sont étudiés en solution aqueuse par potentiométrie couplée à la spectrophotométrie. Les complexes de VO2+ sont moins stables que les complexes de VO2+ et UO22+ de même stoechiométrie. VO2+ ne peut se lier qu'à un seul ligand pour former soit des complexes monodentés, soit des chélates. UO22+ et VO2+ peuvent être chélatés par un ou deux ligands. Des structures hypothétiques en solution sont proposées.

  2. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells.

    PubMed

    Campana, Wendy M; Mantuano, Elisabetta; Azmoon, Pardis; Henry, Kenneth; Banki, Michael A; Kim, John H; Pizzo, Donald P; Gonias, Steven L

    2017-04-01

    In the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing trans -differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT-PCR to profile ionotropic glutamate receptor expression in cultured SCs. We identified subunits required for assembly of N -methyl-d-aspartic acid (NMDA) receptors (NMDA-Rs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and kainate receptors. Treatment of SCs with 40-100 µM glutamate or with 0.5-1.0 µM NMDA robustly activated Akt and ERK1/2. The response was transient and bimodal; glutamate concentrations that exceeded 250 µM failed to activate cell signaling. Phosphoprotein profiling identified diverse phosphorylated proteins in glutamate-treated SCs in addition to ERK1/2 and Akt, including p70 S6-kinase, glycogen synthase kinase-3, ribosomal S6 kinase, c-Jun, and cAMP response element binding protein. Activation of SC signaling by glutamate was blocked by EGTA and dizocilpine and by silencing expression of the NMDA-R NR1 subunit. Phosphoinositide 3-kinase/PI3K functioned as an essential upstream activator of Akt and ERK1/2 in glutamate-treated SCs. When glutamate or NMDA was injected directly into crush-injured rat sciatic nerves, ERK1/2 phosphorylation was observed in myelinated and nonmyelinating SCs. Glutamate promoted SC migration by a pathway that required PI3K and ERK1/2. These results identified ionotropic glutamate receptors and NMDA-Rs, specifically, as potentially important cell signaling receptors in SCs.-Campana, W. M., Mantuano, E., Azmoon, P., Henry, K., Banki, M. A., Kim, J. H., Pizzo, D. P., Gonias, S. L. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. © FASEB.

  3. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    PubMed

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  4. [Effect of a glutamate and glutamine excess on the nucleic acid content of the spleen cell nuclei in rats].

    PubMed

    Vorontsova, E N; Okunev, V N

    1976-01-01

    In tests conducted with albino rats subject to investigation was the effect of sodium glutamate, or glutamine, daily introduced into the stomach in doses of 300 and 150 mg/kg, on the nucleic acids content in the splenic cell nuclei. All the animals taken in the experiment demonstrated a clearcut quantity of nucleonic RNA. By using a maximum dose of sodium glutamate and minimal one of glutamine a rise in the amount of DNA occurs in the nuclei of the splenic cells.

  5. 1-Aminocyclopentane-1,2,4-tricarboxylic acids screening on glutamatergic and serotonergic systems.

    PubMed

    Gelmi, Maria Luisa; Caputo, Francesco; Clerici, Francesca; Pellegrino, Sara; Giannaccini, Gino; Betti, Laura; Fabbrini, Laura; Schmid, Lara; Palego, Lionella; Lucacchini, Antonio

    2007-12-15

    Enantiopure constrained 1-aminocyclopentane-1,2,4-tricarboxylic acids containing the glutamic acid skeleton were prepared as two diastereomers characterized by having the carboxylic groups in position two and four cis-oriented to each other and trans with respect to 1-carboxylic group and all cis-oriented carboxylic groups, respectively. A biochemical screening of activity of the above amino acids was investigated on glutamate and 5-HT receptors to find a possible metabotropic agonist, acting on the serotoninergic system.

  6. L-Aspartic and l-glutamic acid ester-based ProTides of anticancer nucleosides: Synthesis and antitumoral evaluation.

    PubMed

    Gao, Ling-Jie; De Jonghe, Steven; Daelemans, Dirk; Herdewijn, Piet

    2016-05-01

    A series of novel aryloxyphosphoramidate nucleoside prodrugs based on l-aspartic acid and l-glutamic acid as amino acid motif has been synthesized and evaluated for antitumoral activity. Depending on the cancer cell line studied and on the nature of the parent nucleoside compound (gemcitabine, 5-iodo-2'-deoxy-uridine, floxuridine or brivudin), the corresponding ProTides are endowed with an improved or decreased cytotoxic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    PubMed Central

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with leaf Cu level. The leaf Glu level negatively correlated with leaf GABA level in Elsholtzia splendens. The depletion of leaf Glu may be related to the enhanced synthesis of leaf GABA under Cu stress. PMID:15633244

  8. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's Solution...

  9. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  10. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  11. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  12. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  13. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  14. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder.

    PubMed

    Al-Otaish, Hanoof; Al-Ayadhi, Laila; Bjørklund, Geir; Chirumbolo, Salvatore; Urbina, Mauricio A; El-Ansary, Afaf

    2018-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental pathology characterized by an impairment in social interaction, communication difficulties, and repetitive behaviors. Glutamate signaling abnormalities are thought to be considered as major etiological mechanisms leading to ASD. The search for amino-acidic catabolytes related to glutamate in patients with different levels of ASD might help current research to clarify the mechanisms underlying glutamate signaling and its disorders, particularly in relation to ASD. In the present study, plasma levels of the amino acids and their derivatives glutamate, glutamine, and γ-aminobutyric acid (GABA), associated with their relative ratios, were evaluated using an enzyme-linked immunosorbent assay (ELISA) technique in 40 male children with ASD and in 38 age- and gender-matched neurotypical health controls. The Social Responsiveness Scale (SRS) was used to evaluate social cognition, and the Childhood Autism Rating Scale (CARS) was used to assess subjects' behaviors. Children with ASD exhibited a significant elevation of plasma GABA and glutamate/glutamine ratio, as well as significantly lower levels of plasma glutamine and glutamate/GABA ratios compared to controls. No significant correlation was found between glutamate levels and the severity of autism, measured by CARS and SRS. In receiver operating characteristic (ROC) curve analysis, the area under the curve for GABA compared to other parameters was close to one, indicating its potential use as a biomarker. Glutamine appeared as the best predictive prognostic markers in the present study. The results of the present study indicate a disturbed balance between GABAergic and glutamatergic neurotransmission in ASD. The study also indicates that an increased plasma level of GABA can be potentially used as an early diagnostic biomarker for ASD.

  15. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  16. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1.

    PubMed

    Garcia-Garcia, Alvaro L; Elizalde, Natalia; Matrov, Denis; Harro, Jaanus; Wojcik, Sonja M; Venzala, Elisabet; Ramírez, Maria J; Del Rio, Joaquin; Tordera, Rosa M

    2009-08-01

    Many studies link depression to an increase in the excitatory-inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/gamma-aminobutyric acid (GABA) cycle may account for this imbalance. Evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affect the glutamate/GABA cycle and induce helpless behavior. We studied decreased VGLUT1 as a potential factor enhancing a depressive-like phenotype in an animal model. Glutamate and GABA synthesis as well as oxidative metabolism were studied in heterozygous mice for the VGLUT1+/- and wildtype. The regulation of neurotransmitter levels, proteins involved in the glutamate/GABA cycle, and behavior by both genotype and chronic mild stress (CMS) were studied. Finally, the effect of chronic imipramine on VGLUT1 control and CMS mice was studied. VGLUT1+/- mice showed increased neuronal synthesis of glutamate; decreased cortical and hippocampal GABA, VGLUT1, and excitatory amino acid transporter 1 (EAAT1) as well as helplessness and anhedonia. CMS induced an increase of glutamate and a decrease of GABA, the vesicular GABA transporter (VGAT), and glutamic acid decarboxylase 65 (GAD65) in both areas and led to upregulation of EAAT1 in the hippocampus. Moreover, CMS induced anhedonia, helplessness, anxiety, and impaired recognition memory. VGLUT1+/- CMS mice showed a combined phenotype (genotype plus stress) and specific alterations, such as an upregulation of VGLUT2 and hyperlocomotion. Moreover, an increased vulnerability to anhedonia and helplessness reversible by chronic imipramine was shown. These studies highlight a crucial role for decreased VGLUT1 in the forebrain as a biological mediator of increased vulnerability to chronic mild stress.

  17. Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles

    PubMed Central

    Stevanović, Magdalena; Kovačević, Branimir; Petković, Jana; Filipič, Metka; Uskoković, Dragan

    2011-01-01

    Highly stable dispersions of nanosized silver particles were synthesized using a straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a reducing agent and poly-α, γ, L-glutamic acid (PGA), a naturally occurring anionic polymer, was used as a capping agent to protect the silver nanoparticles from agglomeration and render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly demonstrates how the concentration of the capping agent plays a major role in determining the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of reactive oxygen species. PMID:22131829

  18. Twisted intramolecular charge transfer investigation of semi organic L-Glutamic acid hydrochloride single crystal for organic light-emitting and optical limiting applications

    NASA Astrophysics Data System (ADS)

    Joy, Lija K.; George, Merin; Alex, Javeesh; Aravind, Arun; Sajan, D.; Vinitha, G.

    2018-03-01

    Single crystals of L-Glutamic acid hydrochloride (LGHCl) were grown by slow evaporation solution technique and good crystalline perfection was confirmed by Powder X-ray diffraction studies. The complete vibrational studies of the compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with Normal Coordinate Analysis (NCA) following the scaled quantum mechanical force field methodology and density functional theory (DFT). Twisted Intramolecular Charge Transfer (ICT) occurs due to the presence of strong ionic intra-molecular Nsbnd H⋯O hydrogen bonding was confirmed by Hirshfeld Surface analysis. The existence of intermolecular Nsbnd H⋯Cl hydrogen bonds due to the interaction between the lone pair of oxygen with the antibonding orbital was established by NBO analysis. The Z-scan result indicated that the title molecule exhibits saturable absorption behavior. The attractive third-order nonlinear properties suggest that LGHCl can be a promising candidate for the design and development devices for optical limiting applications. LGHCL exhibits distinct emission in the blue region of the fluorescence lifetime which proves to be a potential candidate for blue- Organic light-emitting diodes (OLEDs) fabrication.

  19. Glutamic acid is an active site residue of angiotensin I-converting enzyme. Use of the Lossen rearrangement for identification of dicarboxylic acid residues.

    PubMed

    Harris, R B; Wilson, I B

    1983-01-25

    A set of chemical reactions was used to show that one glutamic acid residue at the active site of bovine lung angiotensin I-converting enzyme is esterified with the alkylating agent p-[N,N-bis(chloroethyl)amino] phenylbutyryl-L-Pro (chlorambucyl-L-Pro), an affinity label for this enzyme (Harris, R. B., and Wilson, I. B. (1982) J. Biol. Chem. 257, 811-815). The same procedure was used to confirm that a glutamic acid residue of carboxypeptidase A alpha is esterified by reaction with bromoacetyl-N-methyl-L-phenylalanine (Haas, G. M., and Neurath, H. (1971) Biochemistry 10, 3535-3546). In the procedure described in this paper, the esterified residue at the active site is converted to the hydroxamic acid by reaction with hydroxylamine and the hydroxamic acid is subject to the Lossen rearrangement. If a glutamic acid residue was esterified, 1 eq of 2,4-diaminobutyric acid will be formed. Aspartyl esters will give 2,3-diaminopropionic acid. The diamino acids can be quantitatively measured using the short column of an amino acid analyzer if the amount of lysine and histidine is largely decreased by modification with suitable side chain protecting groups. With carboxypeptidase A, the reactions were done on the whole undigested enzyme. With the converting enzyme, we first cleaved the esterified enzyme with cyanogen bromide. Twenty-nine cleavage peptides were separated on high performance liquid chromatography and one of these contained all of the bound radioactive inhibitor. This active site peptide was then subjected to the derivatization and Lossen procedures, and 1 eq of 2,4-diaminobutyric acid was obtained.

  20. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  1. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which accumulates in tissues from patients with propionic and methylmalonic acidemias because of a competitive inhibition of glutamate dehydrogenase (GDH) activity. 2MCA also induced mitochondrial permeability transition (PT) and decreased ATP generation in brain mitochondria. We believe that these pathomechanisms may be involved in the neurological dysfunction of these diseases. © 2016 International Society for Neurochemistry.

  2. Chemosensory responses by the heterotrophic marine dinoflagellateCrypthecodinium cohnii.

    PubMed

    Hauser, D C; Levandowsky, M; Hutner, S H; Chunosoff, L; Hollwitz, J S

    1974-12-01

    Chemosensory responses by the colorles inshore marine dinoflagellateCrypthecodinium cohnii were observed in quadrant-divided Petri plates containing an agar layer + liquid overlay. A suspension of organisms in salt solution was poured onto this and allowed to stand 3 hr. A differential tendency of the cells to become firmly attached or embedded in the substratum was observed when various substances were incorporated in the gel. A positive response (tendency to attach) occurred with: α-L-fucose, dimethyl-β-propiothetin, betaine, sucrose, glycine, L-alanine, hemin, and fructose; negative response: formalin, glutathione, acid hydrolyzed agar, protamine SO4, L-glutamic acid, lactose, glutamine, taurine, L-aspartic acid, putrescine 2 HCl, choline citrate, choline bitartrate, K citrate, and choline HCl. γ-Aminobutyric acid was negative or positive dependeng on concentration. Dead or immotile cells did not become attached. The following compounds elicited no response: α-D-fucose, dimethyl acetothetin chloride, cyclic AMP, and glucose.

  3. Differential ammonia metabolism in Aedes aegypti fat body and midgut tissues

    PubMed Central

    Scaraffia, Patricia Y.; Zhang, Quigfen; Thorson, Kelsey; Wysocki, Vicki H.; Miesfeld, Roger L.

    2010-01-01

    In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of 15N from 15NH4Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and 15NH4Cl for 10–40 minutes. The media was then mixed with deuterium-labeled amino acids, dried and derivatized. The 15N-labeled and unlabeled amino acids in each sample were quantified by mass spectrometry techniques. The results demonstrate that both tissues efficiently incorporate ammonia into amino acids, however, the specific metabolic pathways are distinct. In the fat body, the 15N from 15NH4Cl is first incorporated into the amide side chain of Gln and then into the amino group of Gln, Glu, Ala and Pro. This process mainly occurs via the glutamine synthetase (GS) and glutamate synthase (GltS) pathway. In contrast, 15N in midgut is first incorporated into the amino group of Glu and Ala, and then into the amide side chain of Gln. Interestingly, our data show that the GS/GltS pathway is not functional in the midgut. Instead, midgut cells detoxify ammonia by glutamate dehydrogenase, alanine aminotransferase and GS. These data provide new insights into ammonia metabolism in A. aegypti mosquitoes. PMID:20206632

  4. Excitatory amino acid transmitters in epilepsy.

    PubMed

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  5. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells.

    PubMed

    Peng, L A; Schousboe, A; Hertz, L

    1991-01-01

    Alpha-ketoglutarate together with an amino group donor (alanine) was shown to be able to serve as a precursor for the glutamate pool which is released by potassium-induced depolarization (i.e., transmitter glutamate) in cerebellar granule cells. However, these compounds could not be utilized as precursors for intracellular glutamate or for release of transmitter aspartate. The formation of transmitter glutamate was inhibited by the transamination inhibitor aminooxyacetic acid but not by phenylsuccinate, an inhibitor of the dicarboxylate carrier in the mitochondrial membrane. Both of these inhibitors have previously been found to inhibit synthesis of transmitter glutamate from glutamine. The results support the hypothesis that alpha-ketoglutarate and alanine undergo transmination in the cytosol to form pyruvate and glutamate, and that this glutamate pool is available for transmitter release of glutamate but does not constitute the major intracellular pool of glutamate.

  6. Effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid from rats prefrontal cortical synaptosomes.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2004-01-01

    To investigate the effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid (GABA) from synaptosomes in the prefrontal cortex, synaptosomes were made, the spontaneous release and the evoked release by 30 mmol/L KCl or 20 micromol/L veratridine of glutamate and GABA were performed under various concentrations of thiopental sodium (10-300 micromol/L), glutamate and GABA concentrations were determined by reversed-phase high-performance liquid chromatography. Our results showed that spontaneous release and evoked release of glutamate were significantly inhibited by 30 micromol/L, 100 micromol/L and 300 micromol/L thiopental sodium, IC50 of thiopental sodium was 25.8 +/- 2.3 micromol/L for the spontaneous release, 23.4 +/- 2.4 micromol/L for KCl-evoked release, and 24.3 +/- 1.8 micromol/L for veratridine-evoked release. But GABA spontaneous release and evoked release were unaffected. The study showed that thiopental sodium with clinically related concentrations could inhibit the release of glutamate, but had no effect on the release of GABA from rats prefrontal cortical synaptosomes.

  7. [Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation].

    PubMed

    Samartsev, V N; Rybakova, S R; Dubinin, M V

    2013-01-01

    The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.

  8. [NO donors transform neuronal response to glutamate].

    PubMed

    D'iakonova, T L

    1998-10-01

    Electrophysiological experiments on three identified neurones were performed. Two NO donors, sodium nitroprusside (SNP) and sodium nitrite, as well as NO synthase inhibitor, were used. In each neurone, bath application of glutamate caused hyperpolarization and suppression of firing. Combined application of glutamate and SNP resulted in that the same cells responded to identical glutamate solutions with depolarization and excitation. Application of N-monomethyl-L-arginin (NMMA) arrested the glutamate-induced firing and depolarization. The findings suggest involvement of NO in the mechanism of transformation of glutamate-induced inhibition into excitation and a mediation of the latter by the N-methyl-D-aspartate-like receptors in the Helix brain.

  9. Analysis of Glutamate, GABA, Noradrenaline, Dopamine, Serotonin, and Metabolites Using Microbore UHPLC with Electrochemical Detection

    PubMed Central

    2013-01-01

    The applicability of microbore ultrahigh performance liquid chromatography (UHPLC) with electrochemical detection for offline analysis of a number of well-known neurotransmitters in less than 10 μL microdialysis fractions is described. Two methods are presented for the analysis of monoamine or amino acid neurotransmitters, using the same UHPLC instrument. Speed of analysis of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and the metabolites homovanillic acid (HVA), 5-hydroxyindole aceticacid (5-HIAA), and 3,4-dihydroxyphenylacetic acid (DOPAC) was predominated by the retention behavior of NA, the nonideal behavior of matrix components, and the loss in signal of 5-HT. This method was optimized to meet the requirements for detection sensitivity and minimizing the size of collected fractions, which determines temporal resolution in microdialysis. The amino acid neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA) were analyzed after an automated derivatization procedure. Under optimized conditions, Glu was resolved from a number of early eluting system peaks, while the total runtime was decreased to 15 min by a 4-fold increase of the flow rate under UHPLC conditions. The detection limit for Glu and GABA was 10 nmol/L (15 fmol in 1.5 μL); the monoamine neurotransmitters had a detection limit between 32 and 83 pmol/L (0.16–0.42 fmol in 5 μL) in standard solutions. Using UHPLC, the analysis times varied from 15 min to less than 2 min depending on the complexity of the samples and the substances to be analyzed. PMID:23642417

  10. [Catalytic properties of enzymes from Erwinia carotovora involved in transamination of phenylpyruvate].

    PubMed

    Paloian, A M; Stepanian, L A; Dadaian, S A; Ambartsumian, A A; Alebian, G P; Sagian, A S

    2013-01-01

    Km for L-phenylalanine, L-glutamic acid, L-aspartic acid, and the corresponding keto acids were calculated, as well as Vmax, was measured for the following pairs of substrates: L-phenylalanine-2-ketoglutarate, L-phenylalanine-oxaloacetate, L-glutamic acid-phenylpyruvate, and L-aspartic acid-phenylpyruvate for aminotransferases PATI, PAT2, and PAT3 from Erwinia carotovora catalyzing transamination of phenylpyruvate. The ping-pong bi-bi mechanism was shown for the studied aminotransferases. The substrate inhibition (Ks) of PAT3 with 2-ketoglutarate and oxaloacetate was 10.23 +/- 3.20 and 3.73 +/- 1.99 mM, respectively.

  11. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dietary intakes of glutamic acid and glycine are associated with stroke mortality in Japanese adults.

    PubMed

    Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Kawachi, Toshiaki; Konishi, Kie; Tsuji, Michiko; Nakamura, Kozue

    2015-04-01

    Dietary intakes of glutamic acid and glycine have been reported to be associated with blood pressure. However, the link between intakes of these amino acids and stroke has not been studied. We aimed to examine the association between glutamic acid and glycine intakes and the risk of mortality from stroke in a population-based cohort study in Japan. The analyses included 29,079 residents (13,355 men and 15,724 women) of Takayama City, Japan, who were aged 35-101 y and enrolled in 1992. Their body mass index ranged from 9.9 to 57.4 kg/m(2). Their diets were assessed by a validated food frequency questionnaire. Deaths from stroke were ascertained over 16 y. During follow-up, 677 deaths from stroke (328 men and 349 women) were identified. A high intake of glutamic acid in terms of a percentage of total protein was significantly associated with a decreased risk of mortality from total stroke in women after controlling for covariates; the HR (95% CI) for the highest vs. lowest quartile was 0.72 (0.53, 0.98; P-trend: 0.03). Glycine intake was significantly associated with an increased risk of mortality from total and ischemic stroke in men without history of hypertension at baseline; the HRs (95% CIs) for the highest vs. lowest tertile were 1.60 (0.97, 2.51; P-trend: 0.03) and 1.88 (1.01, 3.52; P-trend: 0.02), respectively. There was no association between animal or vegetable protein intake and mortality from total and any subtype of stroke. The data suggest that glutamic acid and glycine intakes may be associated with risk of stroke mortality. Given that this is an initial observation, our results need to be confirmed. © 2015 American Society for Nutrition.

  13. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid.

    PubMed

    Ringel, Michael T; Dräger, Gerald; Brüser, Thomas

    2017-11-10

    The periplasmic conversion of ferribactin to pyoverdine is essential for siderophore biogenesis in fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudomonas fluorescens The non-ribosomal peptide ferribactin undergoes cyclizations and oxidations that result in the fluorophore, and a strictly conserved fluorophore-bound glutamic acid residue is converted to a range of variants, including succinamide, succinic acid, and α-ketoglutaric acid residues. We recently discovered that the pyridoxal phosphate-containing enzyme PvdN is responsible for the generation of the succinamide, which can be hydrolyzed to succinic acid. Based on this, a distinct unknown enzyme was postulated to be responsible for the conversion of the glutamic acid to α-ketoglutaric acid. Here we report the identification and characterization of this enzyme in P. fluorescens strain A506. In silico analyses indicated a periplasmic transaminase in fluorescent pseudomonads and other proteobacteria that we termed PtaA for " p eriplasmic t ransaminase A " An in-frame-deleted ptaA mutant selectively lacked the α-ketoglutaric acid form of pyoverdine, and recombinant PtaA complemented this phenotype. The ptaA / pvdN double mutant produced exclusively the glutamic acid form of pyoverdine. PtaA is homodimeric and contains a pyridoxal phosphate cofactor. Mutation of the active-site lysine abolished PtaA activity and affected folding as well as Tat-dependent transport of the enzyme. In pseudomonads, the occurrence of ptaA correlates with the occurrence of α-ketoglutaric acid forms of pyoverdines. As this enzyme is not restricted to pyoverdine-producing bacteria, its catalysis of periplasmic transaminations is most likely a general tool for specific biosynthetic pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  15. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

    PubMed Central

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-01-01

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane. PMID:27120610

  16. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    PubMed

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  17. Passive Avoidance Training and Recall are Associated With Increased Glutamate Levels in the Intermediate Medial Hyperstriatum Ventrale of the Day-Old Chick

    PubMed Central

    Daisley, Jonathan N.; Gruss, Michael; Rose, Steven P. R.; Braun, Katharina

    1998-01-01

    In the young chick, the intermediate medial hyperstriatum ventrale is involved in learning paradigms, including imprinting and passive avoidance learning. Biochemical changes in the intermediate medial hyperstriatum ventrale following learning include an up-regulation of amino-acid transmitter levels and receptor activity. To follow the changes of extracellular amino acid levels during passive avoidance training, we used an in vivo microdialysis technique. Probes were implanted in chicks before training the animals, either on a methyl- anthranylate-or water-coated bead. One hour later, recall was tested in both groups by presenting a similar bead. An increase of extra-cellular glutamate levels accompanied training and testing in both groups; during training, glutamate release was higher in methylanthranylate- trained than in water-trained chicks. When compared with the methylanthranylate-trained chicks during testing, the water-trained chicks showed enhanced extra-cellular glutamate levels. No other amino acid examined showed significant changes. After testing, the chicks were anesthetized and release- stimulated with an infusion of 50 mM potassium. Extra-cellular glutamate and taurine levels were significantly increased in both methylanthranylate-and water-trained chicks. The presentation of methylanthranylate as an. olfactory stimulus significantly enhanced glutamate levels, especially in methylanthranylate-trained chicks. The results suggest that such changes in extra-cellular glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds. PMID:9920682

  18. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations.

    PubMed

    Lewis, David A; Moghaddam, Bita

    2006-10-01

    Impairments in certain cognitive functions mediated by the dorsolateral prefrontal cortex, such as working memory, are core features of schizophrenia. Convergent findings suggest that these disturbances are associated with alterations in markers of inhibitory gamma-aminobutyric acid and excitatory glutamate neurotransmission in the dorsolateral prefrontal cortex. Specifically, reduced gamma-aminobutyric acid synthesis is present in the subpopulation of gamma-aminobutyric acid neurons that express the calcium-binding protein parvalbumin. Despite presynaptic and postsynaptic compensatory responses, the resulting impaired inhibitory regulation of pyramidal neurons contributes to a reduction in the synchronized neuronal activity that is required for working memory function. Several lines of evidence suggest that these changes may be either secondary to or exacerbated by impaired signaling via the N-methyl-d-aspartate class of glutamate receptors. These findings suggest specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.

  19. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle 1

    PubMed Central

    Vanlerberghe, Greg C.; Horsey, Anne K.; Weger, Harold G.; Turpin, David H.

    1989-01-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH4+ in the dark under anaerobic conditions. Addition of NH4+ to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO2 efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H14CO3− to anaerobic cells assimilating NH4+ results in the incorporation of radiolabel into the α-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH4+ addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply α-ketoglutarate for glutamate production. During dark aerobic NH4+ assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH4+ assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH4+ assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity. PMID:16667215

  20. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  1. Effects of beta-lactam Compounds on GLT1 and xCT Expression levels as well as Ethanol Intake in Alcohol-Preferring Rats

    NASA Astrophysics Data System (ADS)

    Hakami, Alqassem

    Drug abuse is associated with deficits in glutamate uptake and impairment of glutamate homeostasis. Glutamate transporters are the key players in regulating extracellular glutamate concentrations. Considering the importance of glutamate transporters, pharmacological management of the transporter functions can be used as very promising therapeutic targets. Ceftriaxone (beta-lactam antibiotic) has been shown to attenuate ethanol consumption and cocaine-seeking behavior in part by restoring glutamate homeostasis in mesocorticolimbic regions. Furthermore, recent studies from our lab have demonstrated the effects of amoxicillin and Augmentin on upregulating GLT-1 expression level as well as reducing ethanol consumption in male P rats. Therefore, in this project, we examined the effects of amoxicillin and Augmentin on other glutamate transporters (xCT and GLAST) expression levels in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Furthermore, we also investigated the effects of clavulanic acid administration on alcohol consumption as well as GLT-1 and xCT expression levels in NAc. Additionally, we also determined whether oral Augmentin have any effect in reducing alcohol intake in male P rats. Rats were exposed to free choice of ethanol (15% and 30%), water, and food for a period of five weeks. During week six, rats were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg amoxicillin injections or 100 mg/kg Augmentin injections. Both compounds significantly increased xCT expression level in NAc. Augmentin also increased xCT expression level in PFC. In the clavulanic acid study, rats were given five consecutive i.p. injections of 5 mg/kg clavulanic acid for the treatment group and the saline injections for the saline group. Clavulanic acid significantly reduced ethanol consumption and significantly upregulated GLT-1 and xCT expression levels in NAc. In oral Augmentin study, oral gavage of Augmentin (100 mg/kg) significantly attenuated alcohol consumption in male P rats as compared to the water gavage group. These findings revealed that amoxicillin, Augmentin and clavulanic acid may have a potential therapeutic action for the treatment of alcohol dependence that are mediated through upregulation of GLT-1 and xCT expression levels in the mesocorticolimbic structures.

  2. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.

    PubMed

    Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J

    2001-11-13

    Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.

  3. A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function.

    PubMed

    Ohguro, Hiroshi; Katsushima, Harumi; Maruyama, Ikuyo; Maeda, Tadao; Yanagihashi, Satsuki; Metoki, Tomomi; Nakazawa, Mitsuru

    2002-09-01

    The purpose of this study was to investigate the effects of glutamate accumulation in vitreous on retinal structure and function, due to a diet high in sodium glutamate. Three different diet groups were created, consisting of rats fed on a regular diet (diet A), a moderate excess of sodium glutamate diet (diet B) and a large excess of sodium glutamate diet (diet C). After 1, 3 and 6 months of the administration of these diets, amino acids concentrations in vitreous were analyzed. In addition, retinal morphology and function by electroretinogram (ERG) of three different diet groups were studied. Significant accumulation of glutamate in vitreous was observed in rats following addition of sodium glutamate to the diet as compared to levels with a regular diet. In the retinal morphology, thickness of retinal neuronal layers was remarkably thinner in rats fed on sodium glutamate diets than in those on a regular diet. TdT-dUTP terminal nick-end labelling (TUNEL) staining revealed significant accumulation of the positive staining cells within the retinal ganglion cell layers in retinas from diets B and C as compared with that from diet A. Similar to this, immunohistochemistry demonstrated increased expression of glial fibrillary acidic protein (GFAP) within the retinal inner layers from diets B and C as compared with diet A. Functionally, ERG responses were reduced in rats fed on a sodium glutamate diets as compared with those on a regular diet. The present study suggests that a diet with excess sodium glutamate over a period of several years may increase glutamate concentrations in vitreous and may cause retinal cell destruction.

  4. Physical and Functional Interaction of NCX1 and EAAC1 Transporters Leading to Glutamate-Enhanced ATP Production in Brain Mitochondria

    PubMed Central

    Arcangeli, Sara; Nasti, Annamaria Assunta; Giordano, Antonio; Amoroso, Salvatore

    2012-01-01

    Glutamate is emerging as a major factor stimulating energy production in CNS. Brain mitochondria can utilize this neurotransmitter as respiratory substrate and specific transporters are required to mediate the glutamate entry into the mitochondrial matrix. Glutamate transporters of the Excitatory Amino Acid Transporters (EAATs) family have been previously well characterized on the cell surface of neuronal and glial cells, representing the primary players for glutamate uptake in mammalian brain. Here, by using western blot, confocal microscopy and immunoelectron microscopy, we report for the first time that the Excitatory Amino Acid Carrier 1 (EAAC1), an EAATs member, is expressed in neuronal and glial mitochondria where it participates in glutamate-stimulated ATP production, evaluated by a luciferase-luciferin system. Mitochondrial metabolic response is counteracted when different EAATs pharmacological blockers or selective EAAC1 antisense oligonucleotides were used. Since EAATs are Na+-dependent proteins, this raised the possibility that other transporters regulating ion gradients across mitochondrial membrane were required for glutamate response. We describe colocalization, mutual activity dependency, physical interaction between EAAC1 and the sodium/calcium exchanger 1 (NCX1) both in neuronal and glial mitochondria, and that NCX1 is an essential modulator of this glutamate transporter. Only NCX1 activity is crucial for such glutamate-stimulated ATP synthesis, as demonstrated by pharmacological blockade and selective knock-down with antisense oligonucleotides. The EAAC1/NCX1-dependent mitochondrial response to glutamate may be a general and alternative mechanism whereby this neurotransmitter sustains ATP production, since we have documented such metabolic response also in mitochondria isolated from heart. The data reported here disclose a new physiological role for mitochondrial NCX1 as the key player in glutamate-induced energy production. PMID:22479505

  5. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    PubMed

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  6. Straightforward synthesis of non-natural L-chalcogen and L-diselenide N-Boc-protected-γ-amino acid derivatives.

    PubMed

    Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L

    2013-08-21

    The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.

  7. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-γ-d-Glutamic Acid Anthrax Capsule.

    PubMed

    Stabler, Richard A; Negus, David; Pain, Arnab; Taylor, Peter W

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  8. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein in an amount not to exceed 5 percent of the total ration. (2) In cattle feed as a source of protein in... following: (1) The name of the additive. (2) A statement of the concentration of the additive contained in...

  9. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein in an amount not to exceed 5 percent of the total ration. (2) In cattle feed as a source of protein in... following: (1) The name of the additive. (2) A statement of the concentration of the additive contained in...

  10. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein in an amount not to exceed 5 percent of the total ration. (2) In cattle feed as a source of protein in... following: (1) The name of the additive. (2) A statement of the concentration of the additive contained in...

  11. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein in an amount not to exceed 5 percent of the total ration. (2) In cattle feed as a source of protein in... following: (1) The name of the additive. (2) A statement of the concentration of the additive contained in...

  12. A bicarbonate- and weak acid-permeable chloride conductance controlled by cytosolic Ca2+ and ATP in rat submandibular acinar cells.

    PubMed

    Ishikawa, T

    1996-09-01

    A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.

  13. GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling.

    PubMed

    Martínez-Lozada, Zila; Guillem, Alain M; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Vela, Carmelita; Meza, Enrique; Zepeda, Rossana C; Caba, Mario; Rodríguez, Angelina; Ortega, Arturo

    2013-05-01

    Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium-dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium-dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so-called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time-dependent Na⁺-dependent glutamate/aspartate transporter/EAAT1-induced System N-mediated glutamine release could be demonstrated. Furthermore, D-aspartate, a specific glutamate transporter ligand, was capable of enhancing the co-immunoprecipitation of Na⁺-dependent glutamate/aspartate transporter and Na⁺-dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron-derived glutamate through their contribution to the neurotransmitter turnover. © 2013 International Society for Neurochemistry.

  14. The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels.

    PubMed

    Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia

    2017-01-01

    The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.

  15. Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus▿†

    PubMed Central

    Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.

    2011-01-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin. PMID:21665968

  16. Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus.

    PubMed

    Gómez, Cristina; Horna, Dina H; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J; Braña, Alfredo F; Méndez, Carmen; Salas, José A

    2011-08-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin.

  17. Stereospecific Synthesis of threo- and erythro-β-Hydroxyglutamic Acid During Kutzneride Biosynthesis

    PubMed Central

    Strieker, Matthias; Nolan, Elizabeth M.; Walsh, Christopher T.; Marahiel, Mohamed A.

    2009-01-01

    The antifungal and antimicrobial kutznerides, hexadepsipeptides comprised of one α-hydroxy acid and five non-proteinogenic amino acids, are remarkable examples of the structural diversity found in nonribosomally-produced natural products. They contain D-3-hydroxyglutamic acid, which is found in the threo and erythro isomers in mature kutznerides. In this study, two putative non-heme iron oxygenase enzymes, KtzO and KtzP, were recombinantly expressed, characterized biochemically in vitro, and found to stereospecifically hydroxylate the β-position of glutamic acid. KtzO generates threo-L-hydroxyglutamic acid and KtzP catalyzes the formation of the erythro-isomer bound to the peptidyl carrier protein of the third module of the nonribosomal peptide synthetase KtzH. This module has a truncated adenylation domain and is unable to activate and incorporate glutamic acid. The lack of a functional adenylation domain in the third KtzH module is compensated in trans by the stand-alone adenylation domain KtzN, which activates and transfers glutamic acid onto the carrier of KtzH in the presence of the truncated adenylation domain and either KtzO or KtzP. A method that employs non-hydrolyzable coenzyme A analogs was developed and used to determine the kinetic parameters for KtzO- and KtzP-catalyzed hydroxylation of glutamic acid bound to the carrier protein. A detailed mechanism for the in trans compensation of the truncated adenylation domain and the stereospecific hydroxyglutamic acid generation and incorporation is presented. These insights may guide the use of KtzO/KtzP and KtzN or other in trans modification/restoration tools in biocombinatorial engineering approaches. PMID:19722489

  18. Influence of the glass packing on the contamination of pharmaceutical products by aluminium. Part III: Interaction container-chemicals during the heating for sterilisation.

    PubMed

    Bohrer, Denise; do Nascimento, Paulo Cícero; Binotto, Regina; Becker, Emilene

    2003-01-01

    The interaction of chemicals with the container materials during heating for sterilisation was investigated, storing the components of parenteral nutrition solutions individually in sealed glass ampoules and in contact with a rubber stopper, and heating the system at 121 degrees C for 30 min. Subsequently, the aluminium content of the solutions was measured by atomic absorption spectrometry (AAS). The assay was also carried out with acids, alkalis and some complexing agents for Al. The containers were decomposed and also assayed for aluminium. 30 different commercial solutions for parenteral nutrition, stored either in glass or in plastic containers, were assayed measuring the aluminium present in the solutions and in the container materials. The results of all investigated container materials revealed an aluminium content of 1.57% Al in glass, 0.05% in plastic and 4.54% in rubber. The sterilisation procedure showed that even pure water was able to extract Al from glass and rubber, 22.5 +/- 13.3 microg/L and 79.4 +/- 22.7 microg/L respectively, while from plastic the aluminium leached was insignificant. The Al released from glass ampoules laid between 20 microg/L for leucine, ornithine and lysine solutions and 1500 microg/L for solutions of basic phosphates and bicarbonate; from rubber stoppers it reached levels over 500 microg/L for cysteine, aspartic acid, glutamic acid and cystine solutions. Ion-exchange properties and influence of pH can explain the interaction of glass with some chemicals (salts, acids and alkalis), but only an affinity for aluminium could explain the action of some amino acids and other chemicals, as albumin and heparin, on glass and rubber, considering the aluminium release. Experiments with complexing agents for Al allowed to conclude that the higher the stability constant of the complex, the higher the Al release from the container material.

  19. Clofibrate inhibits the umami-savory taste of glutamate

    PubMed Central

    Kochem, Matthew

    2017-01-01

    In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5’-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects. Ten participants rated the umami taste intensity elicited by 20 mM monosodium glutamate (MSG) mixed with varying concentrations of clofibric acid (0 to 16 mM). In addition, fourteen participants rated the effect of 1.4 mM clofibric acid on umami enhancement by 5’ ribonucleotides. Participants were instructed to rate perceived intensity using a general Labeled Magnitude Scale (gLMS). Each participant was tested in triplicate. Clofibric acid inhibited umami taste intensity from 20 mM MSG in a dose dependent manner. Whereas MSG neat elicited “moderate” umami taste intensity, the addition of 16 mM clofibric acid elicited only “weak” umami intensity on average, and in some subjects no umami taste was elicited. We further show that 1.4 mM clofibric acid suppressed umami enhancement from GMP, but not from IMP. This study provides in vivo evidence that clofibric acid inhibits glutamate taste perception, presumably via T1R1-T1R3 inhibition, and lends further evidence that the T1R1-T1R3 receptor is the principal umami receptor in humans. T1R receptors are expressed extra-orally throughout the alimentary tract and in regulatory organs and are known to influence glucose and lipid metabolism. Whether clofibric acid as a lipid-lowering drug affects human metabolism, in part, through T1R inhibition warrants further examination. PMID:28248971

  20. Effect of the non-NMDA receptor antagonist GYKI 52466 on the microdialysate and tissue concentrations of amino acids following transient forebrain ischaemia.

    PubMed

    Arvin, B; Lekieffre, D; Graham, J L; Moncada, C; Chapman, A G; Meldrum, B S

    1994-04-01

    The effect of the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) on ischaemia-induced changes in the microdialysate and tissue concentrations of glutamate, aspartate, and gamma-aminobutyric acid (GABA) was studied in rats. Twenty minutes of four-vessel occlusion resulted in a transient increase in microdialysate levels of glutamate, aspartate, and GABA in striatum, cortex, and hippocampus. Administration of GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min intravenously starting 20 min before onset of ischaemia) inhibited ischaemia-induced increases in microdialysate glutamate and GABA in striatum without affecting the increases in hippocampus or cortex. Twenty minutes of four-vessel occlusion resulted in immediate small decreases and larger delayed (72 h) decreases in tissue levels of glutamate and aspartate. Transient increases in tissue levels of GABA were shown in all three structures at the end of the ischaemic period. At 72 h, after the ischaemic period, significantly reduced GABA levels were observed in striatum and hippocampus. GYKI 52466, given under identical conditions as above, augmented the ischaemia-induced decrease in striatal tissue levels of glutamate and aspartate, without significantly affecting the decreases in hippocampus and cortex. Twenty minutes of ischaemia resulted in a large increase in microdialysate dopamine in striatum. GYKI 52466 failed to inhibit this increase. Kainic acid (500 microM infused through the probe for 20 min) caused increases in microdialysate glutamate and aspartate in the striatum. GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min) completely inhibited the kainic acid-induced glutamate release. In conclusion, the action of the non-NMDA antagonist, GYKI 52466, in the striatum is different from that in the cortex and hippocampus. The inhibition by GYKI 52466 of ischaemia-induced and kainate-induced increases in microdialysate glutamate concentration in the striatum may be related to the neuroprotection provided by GYKI 52466 in this region.

  1. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    PubMed Central

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  2. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  3. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study.

    PubMed

    Calderón, Naima; Betancourt, Luis; Hernández, Luis; Rada, Pedro

    2017-03-06

    The ketogenic diet (KD) is acknowledged as an unconventional option in the treatment of epilepsy. Several lines of investigation point to a possible role of glutamate and gamma-aminobutyric acid (GABA) as main contributors in this protective effect. Other biomolecules could also be involved in the beneficial consequence of the KD, for example, the diamine agmatine has been suggested to block imidazole and glutamate NMDA receptor and serves as an endogenous anticonvulsant in different animal models of epilepsy. In the present report, we have used microdialysis coupled to capillary electrophoresis to monitor microdialysate levels of GABA, glutamate and agmatine in the hippocampus of rats submitted to a KD for 15days compared to rats on a normal rat chow diet. A significant increase in GABA and agmatine levels while no change in glutamate levels was observed. These results support the notion that the KD modifies different transmitters favoring inhibitory over excitatory neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The development of benzo- and naphtho-fused quinoline-2,4-dicarboxylic acids as vesicular glutamate transporter (VGLUT) inhibitors reveals a possible role for neuroactive steroids

    PubMed Central

    Carrigan, Christina N.; Patel, Sarjubhai A.; Cox, Holly D.; Bolstad, Erin S.; Gerdes, John M.; Smith, Wesley E.; Bridges, Richard J.

    2014-01-01

    Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50 ~ 70 µM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈ 20 µM. PMID:24424130

  5. Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signaling.

    PubMed

    Drew, Geoffrey M; Mitchell, Vanessa A; Vaughan, Christopher W

    2008-01-23

    Glutamate spillover regulates GABAergic synaptic transmission at several CNS synapses via presynaptic ionotropic and metabotropic glutamate receptors (mGluRs). We have previously demonstrated that activation of group I-III mGluRs inhibits GABAergic transmission in the midbrain periaqueductal gray (PAG), a region involved in organizing behavioral responses to threat, stress, and pain. Here, we examined the role of glutamate spillover in the modulation of GABAergic transmission in the PAG. Using whole-cell recordings from rat PAG slices, we found that evoked IPSCs were reduced by the nonspecific glutamate transport blockers DL-threo-beta-benzyloxyaspartic acid (TBOA) and L-trans-pyrrolidine-2,4-dicarboxylic acid, but not by the glial GLT1-specific blocker dihydrokainate. In contrast, TBOA had no effect on evoked IPSCs when glutamate uptake into the postsynaptic neuron was selectively impaired. TBOA increased the paired-pulse ratio of evoked IPSCs and reduced the rate but not the amplitude of spontaneous miniature IPSCs. The effect of TBOA on evoked IPSCs was abolished by the broad-spectrum mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (100 microM), reduced by the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and mimicked by the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the effects of both TBOA and DHPG were reduced by the cannabinoid CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251). Finally, although MPEP and AM251 had no effect on single evoked IPSCs, they increased evoked IPSCs during repetitive stimulation. These results indicate that neuronal glutamate transporters limit mGluR5 activation and endocannabinoid signaling, but may be overwhelmed during conditions of elevated glutamate release. Thus, neuronal glutamate transporters play a key role in regulating endocannabinoid-mediated cross talk between glutamatergic and GABAergic synapses within the PAG.

  6. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna; Kot, Anna M

    2018-04-19

    This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.

  7. Celastrus paniculatus seed water soluble extracts protect against glutamate toxicity in neuronal cultures from rat forebrain.

    PubMed

    Godkar, Praful B; Gordon, Richard K; Ravindran, Arippa; Doctor, Bhupendra P

    2004-08-01

    Aqueous extracts of Celastrus paniculatus (CP) seed have been reported to improve learning and memory in rats. In addition, these extracts were shown to have antioxidant properties, augmented endogenous antioxidant enzymes, and decreased lipid peroxidation in rat brain. However, water soluble extracts of CP seed (CP-WSE) have not been evaluated for their neuroprotective effects. In the study reported here, we used enriched forebrain primary neuronal cell (FBNC) cultures to study the neuroprotective effects of three CP-WSE extracts (a room temperature, WF; a hot water, HF; and an acid, AF) on glutamate-induced toxicity. FBNC were pre-treated with the CP-WSE and then with glutamate to evaluate the protection afforded against excitatory amino acid-induced toxicity. The criteria for neuroprotection were based on the effects of CP-WSE on a mitochondrial function test following glutamate-induced neurotoxicity. Pre-treatment of neuronal cells with CP-WSE significantly attenuated glutamate-induced neuronal death. To understand the molecular mechanism of action of CP-WSE, we conducted electrophysiological studies using patch-clamp techniques on N-methyl-D-aspartate (NMDA)-activated whole-cell currents in FBNC. WSE significantly and reversibly inhibited whole-cell currents activated by NMDA. The results suggest that CP-WSE protected neuronal cells against glutamate-induced toxicity by modulating glutamate receptor function.

  8. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation.

    PubMed

    Barger, Steven W; Goodwin, Mary E; Porter, Mandy M; Beggs, Marjorie L

    2007-06-01

    When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.

  9. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  10. Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission?

    PubMed

    Wallén-Mackenzie, Asa; Wootz, Hanna; Englund, Hillevi

    2010-02-01

    During the past decade, three proteins that possess the capability of packaging glutamate into presynaptic vesicles have been identified and characterized. These three vesicular glutamate transporters, VGLUT1-3, are encoded by solute carrier genes Slc17a6-8. VGLUT1 (Slc17a7) and VGLUT2 (Slc17a6) are expressed in glutamatergic neurons, while VGLUT3 (Slc17a8) is expressed in neurons classically defined by their use of another transmitter, such as acetylcholine and serotonin. As glutamate is both a ubiquitous amino acid and the most abundant neurotransmitter in the adult central nervous system, the discovery of the VGLUTs made it possible for the first time to identify and specifically target glutamatergic neurons. By molecular cloning techniques, different VGLUT isoforms have been genetically targeted in mice, creating models with alterations in their glutamatergic signalling. Glutamate signalling is essential for life, and its excitatory function is involved in almost every neuronal circuit. The importance of glutamatergic signalling was very obvious when studying full knockout models of both VGLUT1 and VGLUT2, none of which were compatible with normal life. While VGLUT1 full knockout mice die after weaning, VGLUT2 full knockout mice die immediately after birth. Many neurological diseases have been associated with altered glutamatergic signalling in different brain regions, which is why conditional knockout mice with abolished VGLUT-mediated signalling only in specific circuits may prove helpful in understanding molecular mechanisms behind such pathologies. We review the recent studies in which mouse genetics have been used to characterize the functional role of VGLUT2 in the central nervous system.

  11. Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.

    PubMed

    Koh, Phil-Ok

    2013-07-01

    Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. Copyright © 2013 Wiley Periodicals, Inc.

  12. Floral Induction in a Photoperiodically Insensitive Duckweed, Lemna paucicostata LP6 1

    PubMed Central

    Khurana, J. P.; Tamot, B. K.; Maheshwari, S. C.

    1988-01-01

    The effects of 20 amino acids and two amides were studied on the flowering of a photoperiodically insensitive duckweed, Lemna paucicostata LP6. Alanine, asparagine, aspartate, cystine, glutamate, glutamine, glycine, lysine, methionine, proline, serine, and threonine induced flowering under a photoperiodic regime of 16 hours light and 8 hours darkness. Among these, glutamate and aspartate were found to be the most effective for flower induction. These acids could initiate flowering even at 5 × 10−7 molar level, though maximal flowering (about 80%) was obtained at 10−5 molar. Change in the photoperiodic schedule or the pH of the nutrient medium did not influence glutamate- or aspartate-induced flowering. The low concentrations at which glutamate and aspartate are effective suggests that they may have a regulatory role rather than simply acting as metabolites. PMID:16666006

  13. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    DTIC Science & Technology

    2008-08-01

    receptor 1420563_at Gria3 Glutamate receptor , ionotropic , AMPA3 (alpha 3) 0.082 0.025 1425595_at Gabbr1 Gamma-aminobutyric acid (GABA-B) receptor , 1...20.047085 0.002 1436297_a_at Grina Glutamate receptor , ionotropic , N-methyl D-asparate-associated protein 1 1.096 0.041 1436772_at Gria4 Glutamate... receptor , ionotropic , AMPA4 (alpha 4) 1.276 0.027 1450202_at Grin1 Glutamate receptor , ionotropic , NMDA1 (zeta 1) 0.010 0.044 1450310_at Grid2ip

  14. Glutamate is the major anaplerotic substrate in the tricarboxylic acid cycle of isolated rumen epithelial and duodenal mucosal cells from beef cattle

    USDA-ARS?s Scientific Manuscript database

    This study aimed to determine the contribution of substrates to tricarboxylic acid (TCA) cycle fluxes in rumen epithelial (REC) and duodenal mucosal (DMC) cells isolated from bulls (n = 6) fed either a 75% forage (HF) or 75% concentrate (HC) diet. In separate incubations, [13C6]glucose, [13C5]glutam...

  15. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination

    NASA Astrophysics Data System (ADS)

    Macko, Stephen A.; Estep, Marilyn L. Fogel; Engel, Michael H.; Hare, P. E.

    1986-10-01

    This study evaluates a kinetic isotope effect involving 15N, during the transamination reactions catalyzed by glutamic oxalacetic transaminase. During the transfer of amino nitrogen from glutamic acid to oxaloacetate to form aspartic acid, 14NH 2 reacted 1.0083 times faster than 14NH 2. In the reverse reaction transferring NH 2 from aspartic acid to α-ketoglutarate, 14NH 2 was incorporated 1.0017 times faster than 15NH 2. Knowledge of the magnitude and sign of these isotope effects will be useful in the interpretation of the distribution of 15N in biological and geochemical systems.

  16. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.

    Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCAmore » with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.« less

  17. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    PubMed

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  18. Glutamate and aspartate are decreased in the skin in amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    We measured the levels of amino acids in biopsied skin from eight patients with amyotrophic lateral sclerosis (ALS) and seven controls. The most conspicuous changes in ALS patients were as follows. First, the contents of the acidic amino acids glutamate and aspartate were significantly decreased in ALS, and were negatively and significantly associated with the duration of illness. Second, the levels of the collagen-associated amino acids hydroxyproline, proline, glycine, alanine, and hydroxylysine were significantly decreased in ALS, and correlated inversely with the duration of illness. These results suggest that there are abnormalities of acidic amino acids and collagen-associated amino acids in the skin of patients with ALS. These changes may underlie the pathogenesis of ALS.

  19. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  20. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  1. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia.

    PubMed

    Gong, Kerui; Bhargava, Aditi; Jasmin, Luc

    2016-01-01

    The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.

  2. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  3. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  4. Anaerobic carbon metabolism by the tricarboxylic acid cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanlerberghe, G.C.; Horsey, A.K.; Weger, H.G.

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH{sub 4}{sup +} in the dark under anaerobic conditions. Addition of NH{sub 4}{sup +} to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO{sub 2} efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenspyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H{sup 14}CO{sub 3}{sup {minus}} to anaerobic cells assimilating NH{sub 4}{sup +} results in the incorporation of radiolabel into the {alpha}-carboxyl carbon of glutamic acid. Incorporationmore » of radiolabel into glutamic acid is not simply a short-term phenomenon following NH{sub 4}{sup +} addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply {alpha}ketoglutarate for glutamate production. During dark aerobic NH{sub 4}{sup +} assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH{sub 4}{sup +} assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH{sub 4}{sup +} assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.« less

  5. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Horsey, A K; Weger, H G; Turpin, D H

    1989-12-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH(4) (+) in the dark under anaerobic conditions. Addition of NH(4) (+) to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO(2) efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H(14)CO(3) (-) to anaerobic cells assimilating NH(4) (+) results in the incorporation of radiolabel into the alpha-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH(4) (+) addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply alpha-ketoglutarate for glutamate production. During dark aerobic NH(4) (+) assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH(4) (+) assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH(4) (+) assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.

  6. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.

    PubMed

    Guo, Xuan; Wang, Jing; Xie, Xixian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning

    2013-06-01

    During L-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for L-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower L-alanine excretion and no improved L-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower L-alanine excretion and identical L-glutamate production, however, 8.5 % higher L-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in L-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for L-glutamate synthesis and decreased byproduct excretion at the pyruvate node.

  7. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation

    PubMed Central

    Nakagawa, Masashi; Iwasa, Tatsuo; Kikkawa, Satoshi; Tsuda, Motoyuki; Ebrey, Thomas G.

    1999-01-01

    In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state. PMID:10339563

  8. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  9. Present Global Situation of Amino Acids in Industry.

    PubMed

    Tonouchi, Naoto; Ito, Hisao

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  10. [Perissodactyla: the primary structure of hemoglobins from the lowland tapir (Tapirus terrestris): glutamic acid in position 2 of the beta chains].

    PubMed

    Mazur, G; Braunitzer, G

    1984-09-01

    The hemoglobins from a lowland tapir (Tapirus terrestris) were analysed and the complete primary structure is described. The globin chains were separated on CM cellulose column in 8M urea and the amino-acid sequences were determined in the liquid phase sequenator. The results show that globin consists of two alpha chains (alpha I and alpha II) and beta major and beta minor components. The alpha chains differ only at one position: alpha I contains aspartic acid and alpha II glycine. The beta chains are heterogeneous: aspartic and glutamic acid were found at position beta 21 and beta 73 of the beta major components and asparagine and serine at position beta 139. In the beta minor components four positions were found with more than one amino acid, namely beta 2, beta 4, beta 6 and beta 56. The sequences are compared with those of man, horse and rhinoceros. Four residues of horse methemoglobin, which are involved in the alpha 1 beta 1 contacts are substituted in tapir hemoglobins. In the alpha chains: alpha 107(G14)Ser----Val, alpha 111-(G18) Val----Leu, alpha 115(GH3) Asn----Asp or Gly; in the beta chains: beta 116(G18) Arg----Gln. The amino acid at beta 2 of the major components is glutamic acid while glutamine and histidine are found in the minor components. Although glutamic acid, a binding site for ATP, does not interact with 2,3-bisphosphoglycerate, glutamine and histidine in the minor components are responsible for the slight effect of 2,3-bisphosphoglycerate on tapir hemoglobin.

  11. Neuroprotective and anti-inflammatory effects of lidocaine in kainic acid-injected rats.

    PubMed

    Chiu, Kuan Ming; Lu, Cheng Wei; Lee, Ming Yi; Wang, Ming Jiuh; Lin, Tzu Yu; Wang, Su Jane

    2016-05-04

    Lidocaine, the most commonly used local anesthetic, inhibits glutamate release from nerve terminals. Given the involvement of glutamate neurotoxicity in the pathogenesis of various neurological disorders, this study investigated the role of lidocaine in hippocampal neuronal death and inflammatory events induced by an i.p. injection of kainic acid (KA) (15 mg/kg), a glutamate analog. The results showed that KA significantly led to neuronal death in the CA3 pyramidal layers of the hippocampus and this effect was attenuated by the systemic administration of lidocaine (0.8 or 4 mg/kg, i.p.) 30 min before KA injection. Moreover, KA-induced microglia activation and gene expression of proinflammatory cytokines, namely, interleukin-1β, interleukin-6, and tumor necrosis factor-α, in the hippocampus were reduced by the lidocaine pretreatment. Altogether, the results suggest that lidocaine can effectively treat glutamate excitotoxicity-related brain disorders.

  12. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli.

    PubMed

    Pham, Van Dung; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2015-08-10

    Escherichia coli were engineered for the direct production of gamma-aminobutyric acid from glucose by introduction of synthetic protein scaffold. In this study, three enzymes consisting GABA pathway (isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase) were connected via synthetic protein scaffold. By introduction of scaffold, 0.92g/L of GABA was produced from 10g/L of glucose while no GABA was produced in wild type E. coli. The optimum pH and temperature for GABA production were 4.5 and 30°C, respectively. When competing metabolic network was inactivated by knockout mutation, maximum GABA concentration of 1.3g/L was obtained from 10g/L glucose. The recombinant E. coli strain which produces GABA directly from glucose was successfully constructed by introduction of protein scaffold. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    PubMed

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  15. Effect of dietary intake of avocado oil and olive oil on biochemical markers of liver function in sucrose-fed rats.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipolito, Cirilo; Aguilar-Uscanga, Ma Guadalupe; Melo Santiesteban, Guadalupe; Hayward-Jones, Patricia M; Barradas-Dermitz, Dulce Ma

    2014-01-01

    Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α -amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α -amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.

  16. Effect of Dietary Intake of Avocado Oil and Olive Oil on Biochemical Markers of Liver Function in Sucrose-Fed Rats

    PubMed Central

    Carvajal-Zarrabal, Octavio; Nolasco-Hipolito, Cirilo; Aguilar-Uscanga, Ma. Guadalupe; Melo Santiesteban, Guadalupe; Hayward-Jones, Patricia M.; Barradas-Dermitz, Dulce Ma.

    2014-01-01

    Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α-amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α-amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil. PMID:24860825

  17. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  18. Food Science of Dashi and Umami Taste.

    PubMed

    Ninomiya, Kumiko

    2016-01-01

    Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  19. A molecular view of the role of chirality in charge-driven polypeptide complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K. Q.; Perry, S. L.; Leon, L.

    Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less

  20. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  1. Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages.

    PubMed

    Wasinger, Christine; Hofer, Alexandra; Spadiut, Oliver; Hohenegger, Martin

    2018-04-19

    Cancer cells rewire metabolism to sustain high proliferation rates. Beside glycolysis and glutaminolysis, amino acids substitute as energy source, feed fatty acid biosynthesis and represent part of the secretome of transformed cells, including melanoma. We have therefore investigated acetate, pyruvate and the amino acid composition of the secretome of human melanoma cells representing the early slow (WM35, WM278, WM793b and VM21) and metastatic fast (A375, 518a2, 6F and WM8) growth phase in order to identify possible signalling components within these profiles. Proliferation assays and a principle component analysis revealed a stringent difference between the fast and slow growing melanoma cells. Moreover, upon inhibition of the mevalonate pathway, glutamic acid and alanine were identified as the central difference in the conditional media. A supplementation of the media with glutamic acid and the combination with alanine significantly accelerated the proliferation, migration and invasion of early stage melanoma cells, but not metastatic cells. Finally, the inhibition of the mevalonate pathway abolished the growth advantage of the melanoma cells in a time dependent manner. Taken together, these data corroborate a stage specific response in growth and aggressiveness to extracellular glutamic acid and alanine, indicative for microenvironmental signalling of individual amino acids.

  2. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. PMID:27076746

  3. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    PubMed

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

  4. Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS).

    PubMed

    Niebroj-Dobosz, I; Janik, P

    1999-07-01

    In amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown origin, excitotoxic mechanisms are supposed to be involved. Divergent results are, however, presented either because of the heterogeneity of this disease, and/or different methodologies used to evaluate the excitotoxic amino acids content. The results of the most sensitive high performance liquid chromatography (HPLC) techniques with precolumn derivatization of fasting serum and CSF glutamate, aspartate, glycine and gamma-aminobutyric acid (GABA) in mild and severely progressing ALS cases are presented here. We studied 25 ALS patients with different course of the disease and controls, which consisted of 10 cases with other motor neuron diseases and 20 healthy, age-matched subjects. In the ALS patients with a mild course of the disease serum glutamate and aspartate content was either normal or slightly decreased, in all of these cases a rise in GABA and glycine was present. In the severely progressing ALS cases serum glutamate and aspartate was increased. The GABA content was either normal or increased, the glycine level appeared to be either normal or decreased. In CSF the amino acids changes in ALS were less pronounced as compared to serum. The most frequent finding was the increase in GABA concentration both in the mild and the severely progressing group. CSF glutamate in ALS patients with mild course of the disease was decreased, in the severely progressing cases the glutamate level appeared in a broad range from decreased to increased values. CSF aspartate was either normal or elevated, glycine values were present in a broad range from decreased to increased values. In the other tested motor neuron diseases no consistent changes in serum and CSF amino acids concentration was observed. The data from serum and CSF indicate that in ALS an imbalance between excitatory and inhibitory amino acids might be present in the brain, which may be induced in different ways in particular ALS patients. It may be an important factor for the mediation of neurons death.

  5. Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex.

    PubMed

    Somasundaram, Sivachandiran; Maruthamuthu, Murali Kannan; Ganesh, Irisappan; Eom, Gyeong Tae; Hong, Soon Ho

    2017-09-28

    Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To construct the complex, the SH3 domain was attached to the N. crassa GadB, and the SH3 ligand was attached to the N-terminus, middle, and C-terminus of E. coli GadC. In the C-terminus model, 5.8 g/l of GABA concentration was obtained from 10 g/l glutamate. When a competing pathway engineered strain was used, the final GABA concentration was further increased to 5.94 g/l, which corresponds to 97.5% of GABA yield. With the introduction of the scaffold complex, the GABA productivity increased by 2.9 folds during the initial culture period.

  6. Non-sterilized fermentative co-production of poly(γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28.

    PubMed

    Zeng, Wei; Li, Wei; Shu, Lin; Yi, Juyang; Chen, Guiguang; Liang, Zhiqun

    2013-08-01

    Poly(γ-glutamic acid), as a naturally occurring homopolymer, is widely used in industry, agriculture, food and medicine. Fibrinolytic enzyme has a great potential for the prevention and/or treatment of vascular diseases caused by fibrin clots. Co-production of γ-PGA and fibrinolytic enzyme by Bacillus subtilis GXA-28 (CCTCC M 2012347) from soybean residue using cane molasses and monosodium glutamate waste liquor under sterilized and non-sterilized condition were investigated. It was observed that total sugar from cane molasses of 3% (w/w) and glutamate from monosodium glutamate waste liquor of 2% (w/w) were favorable for γ-PGA and fibrinolytic enzyme co-production at pH 7.0 and 45°C. Based on the optimal medium, the γ-PGA and fibrinolytic activity reached 103.5 g/kg-substrates at 22 h and 986 U/g-substrates at 24h under non-sterilized condition, respectively. To our knowledge, the yield of γ-PGA was highest in all reported literatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    PubMed

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  8. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae

    PubMed Central

    Yoshinaga, Naoko; Aboshi, Takako; Abe, Hiroaki; Nishida, Ritsuo; Alborn, Hans T.; Tumlinson, James H.; Mori, Naoki

    2008-01-01

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)-l-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses and the physiological role of FACs in the insect have been minimal. By using 14C-labeled glutamine, glutamic acid, and linolenic acid in feeding studies of Spodoptera litura larvae, combined with tissue analyses, we found glutamine in the midgut cells to be a major source for biosynthesis of FACs. Furthermore, 20% of the glutamine moiety of FACs was derived from glutamic acid and ammonia through enzymatic reaction of glutamine synthetase (GS). To determine whether FACs improve GS productivity, we studied nitrogen assimilation efficiency of S. litura larvae fed on artificial diets containing 15NH4Cl and glutamic acid. When the diet was enriched with linolenic acid, the nitrogen assimilation efficiency improved from 40% to >60%. In the lumen, the biosynthesized FACs are hydrolyzed to fatty acids and glutamine, which are reabsorbed into tissues and hemolymph. These results strongly suggested that FACs play an active role in nitrogen assimilation in Lepidoptera larva and that glutamine containing FACs in the gut lumen may function as a form of storage of glutamine, a key compound of nitrogen metabolism. PMID:18997016

  9. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  10. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    PubMed

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories.

  11. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ziqiang

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based onmore » monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10 -8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.« less

  12. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    PubMed

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  13. A Novel Corynebacterium glutamicum l-Glutamate Exporter.

    PubMed

    Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2018-03-15

    Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to product excretion as well as product reuptake, making transporter engineering a useful strategy for strain improvement. The significance of our research is in identifying and characterizing a novel l-glutamate exporter from the industrial workhorse Corynebacterium glutamicum , which will enrich the understanding of l-glutamate excretion and provide a new target for studying bacterial amino acid transport and engineering transport reactions. Copyright © 2018 American Society for Microbiology.

  14. Direct stimulation of pituitary prolactin release by glutamate.

    PubMed

    Login, I S

    1990-01-01

    The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.

  15. NEUTRALIZATION OF THE ASPARTIC ACID RESIDUE D367, BUT NOT D454, INHIBITS BINDING OF NA+ TO THE GLUTAMATE-FREE FORM AND CYCLING OF THE GLUTAMATE TRANSPORTER EAAC1

    PubMed Central

    Tao, Zhen; Zhang, Zhou; Grewer, Christof

    2008-01-01

    Substrate transport by the plasma membrane glutamate transporter EAAC1 is coupled to cotransport of three sodium ions. One of these Na+ ions binds to the transporter already in the absence of glutamate. Here, we have investigated the possible involvement of two conserved aspartic acid residues in transmembrane segments 7 and 8 of EAAC1, D367 and D454, in Na+ cotransport. In order to test the effect of charge neutralization mutations in these positions on Na+ binding to the glutamate-free transporter, we recorded the Na+-induced anion leak current to determine the Km of EAAC1 for Na+. For EAAC1WT, this Km was determined as 120 mM. When the negative charge of D367 was neutralized by mutagenesis to asparagine, Na+ activated the anion leak current with a Km of about 2 M, indicating dramatically impaired Na+ binding to the mutant transporter. In contrast, the Na+ affinity of EAAC1D454N was virtually unchanged compared to the wild type transporter (Km = 90 mM). The reduced occupancy of the Na+ binding site of EAAC1D367N resulted in a dramatic reduction in glutamate affinity (Km = 3.6 mM, 140 mM [Na+]), which could be partially overcome by increasing extracellular [Na+]. In addition to impairing Na+ binding, the D367N mutation slowed glutamate transport, as shown by pre-steady-state kinetic analysis of transport currents, by strongly decreasing the rate of a reaction step associated with glutamate translocation. Our data are consistent with a model in which D367, but not D454 is involved in coordinating the bound Na+ in the glutamate-free transporter form. PMID:16478724

  16. Altered spinal arachidonic acid turnover after peripheral nerve injury regulates regional glutamate concentration and neuropathic pain behaviors in rats.

    PubMed

    Sung, Backil; Wang, Shuxing; Zhou, Bei; Lim, Grewo; Yang, Liling; Zeng, Qing; Lim, Jeong-Ae; Wang, Jing Dong; Kang, Jing X; Mao, Jianren

    2007-09-01

    Spinal glutamate transporters (GT) have been implicated in the mechanisms of neuropathic pain; however, how spinal GT uptake activity is regulated remains unclear. Here we show that alteration of spinal arachidonic acid (AA) turnover after peripheral nerve injury regulated regional GT uptake activity and glutamate homeostasis. Chronic constriction nerve injury (CCI) in rats significantly reduced spinal GT uptake activity ((3)H-glutamate uptake) with an associated increase in extracellular AA and glutamate concentration from spinal microdialysates on postoperative day 8. AACOCF3 (a cytosolic phospholipase A2 inhibitor, 30mug) given intrathecally twice a day for postoperative day 1-7 reversed this CCI-induced spinal AA production, prevented the reduced spinal GT uptake activity and increased extracellular glutamate concentration. Conversely, alteration of spinal AA metabolism by diclofenac (a cyclooxygenase 1/2 inhibitor, 200mug) further reduced spinal GT uptake activity and increased extracellular glutamate concentration in CCI rats. GT uptake activity was also attenuated when AA (10 or 100nM) was directly added into spinal samples of naïve rats in an in vitro(3)H-glutamate uptake assay, indicating a direct inhibitory effect of AA on GT uptake activity. Consistent with these findings, AACOCF3 reduced the development of both thermal hyperalgesia and mechanical allodynia, whereas diclofenac exacerbated thermal hyperalgesia, in CCI rats. Thus, spinal AA turnover may serve as a regulator in CCI-induced changes in regional GT uptake activity, glutamate homeostasis, and neuropathic pain behaviors. These data suggest that regulating spinal AA turnover may be a useful approach to improving the clinical management of neuropathic pain.

  17. Physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed supplement

    PubMed Central

    Omede, A. A.; Bhuiyan, M. M.; lslam, A. F.; Iji, P. A.

    2017-01-01

    Objective This study explored the physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed (IOF) supplement. Methods Amniotic fluid was collected from broiler breeders (Ross 308, 51 weeks and Cobb 500, 35 weeks) on day 17 after incubation. A mixture of high-quality soy protein supplement – Hamlet Protein AviStart (HPA) was serially diluted in MilliQ water to obtain solutions ranging from 150 to 9.375 mg/mL. The mixtures were heat-treated (0, 30, 60 minutes) in a waterbath (80°C) and then centrifuged to obtain supernatants. The amniotic fluid and HPA supernatants were analysed for their physico-chemical properties. Results Only viscosity and K+ were significantly (p<0.05) different in both strains. Of all essential amino acids, leucine and lysine were in the highest concentration in both strains. The osmolality, viscosity and pCO2 of the supernatants decreased (p<0.05) with decreasing HPA concentration. Heat treatment significantly (p<0.05) affected osmolality, pH, and pCO2, of the supernatants. The interactions between HPA concentration and heat treatment were significant with regards to osmolality (p<0.01), pH (p<0.01), pCO2 (p<0.05), glucose (p<0.05), lactate (p<0.01) and acid-base status (p<0.01) of HPA solutions. The Ca2+, K+, glucose, and lactate increased with increasing concentration of HPA solution. The protein content of HPA solutions decreased (p<0.05) with reduced HPA solution concentrations. The supernatant from 150 mg/mL HPA solution was richest in glutamic acid, aspartic acid, arginine and lysine. Amino acids concentrations were reduced (p<0.05) with each serial dilution but increased with longer heating. Conclusion The values obtained in the primary solution (highest concentration) are close to the profiles of high-protein ingredients. This supplement, as a solution, hence, may be suitable for use as an IOF supplement and should be tested for this potential. PMID:28183170

  18. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study.

    PubMed

    Qureshi, Adnan I; Ali, Zulfiqar; Suri, M Fareed K; Shuaib, Asfhaq; Baker, Glen; Todd, Kathryn; Guterman, Lee R; Hopkins, L Nelson

    2003-05-01

    To determine whether extracellular concentrations of glutamate and other amino acids are significantly elevated after intracerebral hemorrhage and, if so, the temporal characteristics of these changes. Although the role of excitotoxic amino acids, particularly that of glutamate, has been described in ischemic stroke and head trauma, no information exists regarding their possible contribution to the pathogenesis of neuronal injury in intracerebral hemorrhage. Prospective, controlled, laboratory trial. Animal research laboratory. Sixteen anesthetized New Zealand rabbits. We introduced intracerebral hemorrhage in each of eight anesthetized New Zealand rabbits by injecting 0.4 mL of autologous blood under arterial pressure into the deep gray matter of the cerebrum. Extracellular fluid samples were collected from the perihematoma region and contralateral (right) hemisphere by in vivo microdialysis at 30-min intervals for 6 hrs. Corresponding samples were similarly collected from both hemispheres in each of eight control animals that underwent needle placement without introduction of a hematoma. Concentrations of amino acids (glutamate, aspartate, asparagine, glycine, taurine, and gamma-aminobutyric acid) in the samples were measured by use of high-pressure liquid chromatography with fluorescence detection. Glutamate concentrations (mean +/- sem) were significantly higher in the hemisphere ipsilateral to the hematoma than in the contralateral hemisphere (92 +/- 22 pg/microL vs. 22 +/- 6 pg/microL) at 30 mins after hematoma creation. A significant increase was observed at 30 mins posthematoma creation in the hemisphere ipsilateral to the hematoma compared with the baseline value. A nonsignificant increase in glutamate concentration persisted in the hemisphere ipsilateral to the hematoma, ranging from 134% to 187% of baseline value between 1 and 5 hrs after hematoma creation. In the hemisphere ipsilateral to the hematoma, a three-fold increase in the concentration of glycine was observed at 30 mins after hematoma creation compared with the baseline level (890 +/- 251 pg/microL vs. 291 +/- 73 pg/microL). There was a significant difference between the hemisphere ipsilateral to the hematoma compared with the ipsilateral (corresponding) hemisphere of the control group at 30 mins posthematoma (890 +/- 251 pg/microL vs. 248 +/- 66 pg/microL). A similar transient increase was observed in taurine and asparagine concentrations at 30 mins after hematoma creation, compared with baseline measurements. Taurine concentrations in the hemisphere ipsilateral to the hematoma were significantly higher than the ipsilateral hemisphere of the control group (622 +/- 180 pg/microL vs. 202 +/- 64 pg/microL) at 30 mins after hematoma creation. The present study suggests that glutamate and other amino acids accumulate transiently in extracellular fluids in the perihematoma region during the early period of intracerebral hemorrhage. The exact role of these amino acids in the pathogenesis of neuronal injury observed in intracerebral hemorrhage needs to be defined.

  19. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    PubMed

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  1. Neurochemistry of major depression: a study using magnetic resonance spectroscopy.

    PubMed

    Godlewska, Beata R; Near, Jamie; Cowen, Philip J

    2015-02-01

    Magnetic resonance spectroscopy (MRS) is an acceptable non-invasive means of studying brain neurochemistry in depression. Previous studies in depressed patients have focused on measurement of the amino acid neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. The aim of this study is to use MRS in conjunction with the ultrashort echo time 'SPECIAL' technique to measure cortical levels of GABA, glutamate and glutathione (GSH) levels in unmedicated patients with major depression. We also examined the effect of 6-week treatment with the selective serotonin re-uptake inhibitor, escitalopram. We studied patients with DSM-IV major depression and healthy age-matched controls using proton MRS. GABA, glutamate and GSH were measured relative to creatine in a voxel placed in occipital cortex. There was no difference in GABA or glutamate levels between depressed participants and controls; however, depressed patients had lower GSH levels. Six-week escitalopram treatment, which resulted in significant clinical responses in some patients, did not alter concentrations of GABA, glutamate or GSH. The sources of variability of GABA and glutamate measures in different studies of depressed patients require further study. Our results suggest that concomitant treatment with selective serotonin re-uptake inhibitors (SSRIs) is unlikely to be an important confounding factor. If lowered GSH levels can be confirmed, they may represent the presence of oxidative stress in some depressed patients.

  2. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain

    PubMed Central

    Rink, Cameron; Gnyawali, Surya; Stewart, Richard; Teplitsky, Seth; Harris, Hallie; Roy, Sashwati; Sen, Chandan K.; Khanna, Savita

    2017-01-01

    Ischemic stroke results in excessive release of glutamate, which contributes to neuronal cell death. Here, we test the hypothesis that otherwise neurotoxic glutamate can be productively metabolized by glutamate oxaloacetate transaminase (GOT) to maintain cellular energetics and protect the brain from ischemic stroke injury. The GOT-dependent metabolism of glutamate was studied in primary neural cells and in stroke-affected C57-BL6 mice using magnetic resonance spectroscopy and GC-MS. Extracellular Glu sustained cell viability under hypoglycemic conditions and increased GOT-mediated metabolism in vitro. Correction of stroke-induced hypoxia using supplemental oxygen in vivo lowered Glu levels as measured by 1H magnetic resonance spectroscopy. GOT knockdown abrogated this effect and caused ATP loss in the stroke-affected brain. GOT overexpression increased anaplerotic refilling of tricarboxylic acid cycle intermediates in mouse brain during ischemic stroke. Furthermore, GOT overexpression not only reduced ischemic stroke lesion volume but also attenuated neurodegeneration and improved poststroke sensorimotor function. Taken together, our results show that GOT enables metabolism of otherwise neurotoxic extracellular Glu through a truncated tricarboxylic acid cycle under hypoglycemic conditions.—Rink, C., Gnyawali, S., Stewart, R., Teplitsky, S., Harris, H., Roy, S., Sen, C. K., Khanna, S. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. PMID:28096234

  3. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    PubMed

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  4. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    PubMed

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  5. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  6. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    PubMed

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mass Spectrometric Distinction of In-Source and In-Solution Pyroglutamate and Succinimide in Proteins: A Case Study on rhG-CSF

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi

    2013-02-01

    Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.

  8. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  9. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production

    PubMed Central

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  10. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  11. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Furuie, Sumie; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Yamamura, Ken-Ichi; Kobayashi, Keiko

    2012-11-01

    The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a suitable model of human citrin deficiency. In the present study, we show that when mature Ctrn/mGPD-KO mice are switched from a standard chow diet (CE-2) to a purified maintenance diet (AIN-93M), this resulted in a significant loss of body weight as a result of reduced food intake compared to littermate mGPD-KO mice. However, supplementation of the purified maintenance diet with additional protein (from 14% to 22%; and concomitant reduction or corn starch), or with specific supplementation with alanine, sodium glutamate, sodium pyruvate or medium-chain triglycerides (MCT), led to increased food intake and body weight gain near or back to that on chow diet. No such effect was observed when supplementing the diet with other sources of fat that contain long-chain fatty acids. Furthermore, when these supplements were added to a sucrose solution administered enterally to the mice, which has been shown previously to lead to elevated blood ammonia as well as altered hepatic metabolite levels in Ctrn/mGPP-KO mice, this led to metabolic correction. The elevated hepatic glycerol 3-phosphate and citrulline levels after sucrose administration were suppressed by the administration of sodium pyruvate, alanine, sodium glutamate and MCT, although the effect of MCT was relatively small. Low hepatic citrate and increased lysine levels were only found to be corrected by sodium pyruvate, while alanine and sodium glutamate both corrected hepatic glutamate and aspartate levels. Overall, these results suggest that dietary factors including increased protein content, supplementation of specific amino acids like alanine and sodium glutamate, as well as sodium pyruvate and MCT all show beneficial effects on citrin deficiency by increasing the carbohydrate tolerance of Ctrn/mGPD-KO mice, as observed through increased food intake and maintenance of body weight. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism.

    PubMed

    Eriksen, Jacob; Chang, Roger; McGregor, Matt; Silm, Katlin; Suzuki, Toshiharu; Edwards, Robert H

    2016-05-18

    The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Alterations in nitrogen metabolites after putrescine treatment in alfalfa under drought stress.

    PubMed

    Zeid, I M; Shedeed, Z A

    2007-05-01

    Alfalfa (Medicago sativa, Siwa 1) seeds were subjected to drought stress during germination by using polyethylene glycol (PEG 4000) for studying the changes in some enzyme activities involved in nitrogen metabolism and the content of nitrogenous compounds during the first four days of growth after putrescine (Put) treatment. Decreasing the external water potential reduced activities of glutamate-pyruvate transferase (GPT), glutamate-oxaloacetate transferase (GOT) and RNase. Some free amino acids such as proline and glycine increased, while alanine and aspartic acid decreased. Nucleic acids content also decreased. Polyamines e.g., spermidine (Spd) and spermine (Spm) increased at the water potential -0.4 MPa. Put treatment increased activities of GOT, GPT and RNase. Furthermore, Put treatment increased nucleic acids content and the endogenous polyamines under drought stress. Drought stress was imposed during seedling stage by decreasing soil moisture content. GOT, GPT and RNase activities increased in leaves of alfalfa seedlings under drought stress. Soluble nitrogenous compounds accumulated under drought stress, while nucleic acids content decreased. Except glutamic acid, all free amino acids detected increased under drought stress. Put treatment decreased activities of GOT, GPT and RNase, as well as reduced the accumulation of the total soluble nitrogenous compounds, but increased DNA, RNA and protein contents.

  14. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  15. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that interactions of different classes of organic molecules with solid soil phases cannot be understood in isolation, but must be interpreted in the context of the presence of other classes of molecules. It seems that the presence of methoxy groups decreases the adsorption of aromatic acids to minerals. We did not find evidence for protein conditioning of any mineral surface, i.e. increased adsorption of aromatic acids after adsorption of amino acids.

  16. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    PubMed

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    PubMed

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  18. The effects of inferior olive lesion on strychnine seizure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested asmore » anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.« less

  19. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems

    NASA Astrophysics Data System (ADS)

    Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.

  20. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.

    PubMed

    Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina.

    PubMed

    Guimarães-Souza, E M; Calaza, K C

    2012-12-01

    Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways. Copyright © 2012 Wiley Periodicals, Inc.

  2. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    DTIC Science & Technology

    2007-02-01

    Supplemental Table 1). In addition, the expression of several synaptic receptor genes, including NMDA receptor 1, AMPA receptor 4 and metabotropic ...glutamate receptor , ionotropic , AMPA3 (alpha 3) DOWN 1425595_at Gabbr1 gamma-aminobutyric acid (GABA-B) receptor , 1 DOWN 1436297_a_at Grina glutamate... receptor , ionotropic , N-methyl D-asparate-associated protein 1 DOWN Synaptic receptor 1436772_at Gria4 Glutamate receptor , ionotropic , AMPA4 (alpha 4) UP

  3. Low dose of L-glutamic acid attenuated the neurological dysfunctions and excitotoxicity in bilateral common carotid artery occluded mice.

    PubMed

    Ramanathan, Muthiah; Abdul, Khadar K; Justin, Antony

    2016-10-01

    Glutamate, an excitatory neurotransmitter in the brain, produces excitotoxicity through its agonistic action on postsynaptic N-methyl-D-aspartate receptor, resulting in neurodegeneration. We hypothesized that the administration of low doses of glutamate in cerebral ischemia could attenuate the excitotoxicity in neurons through its autoreceptor regulatory mechanism, and thereby control neurodegeneration. To test the hypothesis, the effect of L-glutamic acid (L-GA) 400 μmol/l/kg was evaluated in a bilateral common carotid artery occlusion-induced global ischemic mouse model. Memantine was used as a positive control. Global ischemia in mice was induced by occlusion of both the common carotid artery (bilateral common carotid artery occlusion) for 20 min, followed by reperfusion injury. L-GA was infused slowly through the tail vein 30 min before the surgery and every 24 h thereafter until the end of the experiment. The time-dependent change in cerebral blood flow was monitored using a laser Doppler image analyzer. The neurotransmitters glutamate and γ-aminobutyric acid (GABA) and the neurobiochemicals ATP, glutathione, and nitric oxide were measured in the different regions of brain at 0, 24, 48, and 72 h after reperfusion injury. L-GA increased locomotor activity, muscle coordination, and cerebral blood flow in ischemic mice at 72 h after ischemic insult. L-GA reduced glutamate levels in the cortex, striatum, and hippocampus at 72 h, whereas GABA levels were elevated in all three brain regions studied. Further, L-GA elevated glutathione levels and attenuated nitric oxide levels, but failed to restore ATP levels 72 h after ischemia-reperfusion. We conclude that the gradual reduction of glutamate along with elevation of GABA in different brain regions could have contributed toward the neuroprotective effect of L-GA. Hence, a slow infusion of a low dose of L-GA could be beneficial in controlling excitotoxicity-induced neurodegeneration following ischemia.

  4. The essential oil of bergamot enhances the levels of amino acid neurotransmitters in the hippocampus of rat: implication of monoterpene hydrocarbons.

    PubMed

    Morrone, Luigi A; Rombolà, Laura; Pelle, Cinzia; Corasaniti, Maria T; Zappettini, Simona; Paudice, Paolo; Bonanno, Giambattista; Bagetta, Giacinto

    2007-04-01

    The effects of bergamot essential oil (BEO) on the release of amino acid neurotransmitters in rat hippocampus have been studied by in vivo microdialysis and by in vitro superfusion of isolated nerve terminals. Intraperitoneal administration of BEO (100microl/kg) significantly elevated the extracellular concentration of aspartate, glycine and taurine in a Ca(2+)-dependent manner. A dose-relation study generated a bell-shaped curve. When perfused into the hippocampus via the dialysis probe (20microl/20min), BEO produced a significant increase of extracellular aspartate, glycine, taurine as well as of GABA and glutamate. The augmentation of all amino acids was Ca(2+)-independent. Focally injected 1:1 diluted BEO preferentially caused extracellular increase of glutamate. Interestingly, this release appeared to be strictly Ca(2+)-dependent. BEO concentration-dependently enhanced the release of [(3)H]D-aspartate from superfused hippocampal synaptosomes. Similar results were obtained by monitoring the BEO-evoked release of endogenous glutamate. At relatively high concentrations, the BEO-induced [(3)H]d-aspartate release was almost entirely prevented by the glutamate transporter blocker dl-threo-beta-benzyloxyaspartic acid (DL-TBOA) and was Ca(2+)-independent. At relatively low concentrations the release of [(3)H]D-aspartate was only in part ( approximately 50%) DL-TBOA-sensitive and Ca(2+)-independent; the remaining portion of release was dependent on extracellular Ca(2+). Interestingly, the monoterpene hydrocarbon-free fraction of the essential oil appeared to be inactive while the bergapten-free fraction superimposed the releasing effect of BEO supporting the deduction that psoralens may not be implicated. To conclude, BEO contains into its volatile fraction still unidentified monoterpene hydrocarbons able to stimulate glutamate release by transporter reversal and/or by exocytosis, depending on the dose administered.

  5. Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study.

    PubMed

    Hashimoto, K; Bruno, D; Nierenberg, J; Marmar, C R; Zetterberg, H; Blennow, K; Pomara, N

    2016-03-01

    Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-D-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, L-serine and D-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine-glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression.

  6. Dual inhibitory action of enadoline (CI977) on release of amino acids in the rat hippocampus.

    PubMed

    Millan, M H; Chapman, A G; Meldrum, B S

    1995-06-06

    The effect of the kappa-opioid receptor agonist enadoline (CI977, (5R)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrilidinyl)-1-oxaspiro [4,5]dec-8-yl-4-benzofuranacetamide monohydrochloride), on the release of amino acids was studied in the hippocampus of freely moving rats. K+, 100 mM, or veratrine, 100 microM, were applied for 10 min via the dialysis probe, either alone (control groups) or together with CI977 (after a 10 min pretreatment with CI977 in the perfusion medium). To test the specificity of the response to CI977, nor-binaltorphimine, a selective kappa-opioid receptor antagonist, was delivered together with CI977 in two groups of animals. To test the effect of systemic injection, CI977 was given subcutaneously 30 min prior to either stimulus. K(+)-induced release of glutamate and aspartate was significantly reduced by CI977, 2.5 mM; release of gamma-aminobutyric acid (GABA) was reduced by 250 microM CI977 in the probe. The effect of CI977 on release of glutamate and aspartate, but not of GABA, was reversed by nor-binaltorphimine (45 microM). Systemic treatment with CI977, 1 or 10 mg/kg, did not reduce K(+)-induced release of glutamate. Veratrine-induced release of aspartate and glutamate was significantly inhibited by 25 microM and release of GABA by 250 microM CI977 in the probe, and this effect was not modified by nor-binaltorphimine (58 microM). Systemic injection of CI977 1 mg/kg significantly reduced veratrine-induced release of glutamate. These results indicate that CI977 regulates release of amino acids by two independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  8. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  9. Time-Resolved Transcriptome Analysis of Bacillus subtilis Responding to Valine, Glutamate, and Glutamine

    PubMed Central

    Ye, Bang-Ce; Zhang, Yan; Yu, Hui; Yu, Wen-Bang; Liu, Bao-Hong; Yin, Bin-Cheng; Yin, Chun-Yun; Li, Yuan-Yuan; Chu, Ju; Zhang, Si-Liang

    2009-01-01

    Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector. PMID:19763274

  10. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells

    PubMed Central

    Bringmann, Andreas; Grosche, Antje; Pannicke, Thomas; Reichenbach, Andreas

    2013-01-01

    Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism. PMID:23616782

  11. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Path of carbon flow during NO/sub 3//sup -/-induced photosynthetic suppression in N-limited Selenastrum minutum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrifi, I.R.; Turpin, D.H.

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In /sup 14/CO/sub 2/ pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4more » position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 ..mu..moles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 ..mu..moles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation.« less

  13. The Path of Carbon Flow during NO3−-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1

    PubMed Central

    Elrifi, Ivor R.; Turpin, David H.

    1987-01-01

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In 14CO2 pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 μmoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 μmoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279). PMID:16665223

  14. The Path of Carbon Flow during NO(3)-Induced Photosynthetic Suppression in N-Limited Selenastrum minutum.

    PubMed

    Elrifi, I R; Turpin, D H

    1987-01-01

    Nitrate addition to nitrate-limited cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) resulted in a 70% suppression of photosynthetic carbon fixation. In (14)CO(2) pulse/chase experiments nitrate resupply increased radiolabel incorporation into amino and organic acids and decreased radiolabel incorporation into insoluble material. Nitrate resupply increased the concentration of phosphoenolpyruvate and increased the radiolabeling of phosphoenolpyruvate, pyruvate and tricarboxylic acid cycle intermediates, notably citrate, fumarate, and malate. Furthermore, nitrate also increased the pool sizes and radiolabeling of most amino acids, with alanine, aspartate, glutamate, and glutamine showing the largest changes. Nitrate resupply increased the proportion of radiolabel in the C-4 position of malate and increased the ratios of radiolabel in aspartate to phosphoenolpyruvate and in pyruvate to phosphoenolpyruvate, indicative of increased phosphoenolpyruvate carboxylase and pyruvate kinase activities. Analysis of these data showed that the rate of carbon flow through glutamate (10.6 mumoles glutamate per milligram chlorophyll per hour) and the rate of net glutamate production (7.9 mumoles glutamate per milligram chlorophyll per hour) were both greater than the maximum rate of carbon export from the Calvin cycle which could be maintained during steady state photosynthesis. These results are consistent with the hypothesis that nitrogen resupply to nitrogen-limited microalgae results in a transient suppression of photosynthetic carbon fixation due, in part, to the severity of competition for carbon skeletons between the Calvin cycle and nitrogen assimilation (IR Elrifi, DH Turpin 1986 Plant Physiol 81: 273-279).

  15. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica.

    PubMed

    Kita, Tomo; Ozoe, Fumiyo; Azuma, Masaaki; Ozoe, Yoshihisa

    2013-09-01

    l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  17. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*

    PubMed Central

    Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.

    2016-01-01

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367

  18. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.

    PubMed

    Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R

    2016-12-30

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    PubMed

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  20. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

    PubMed

    Lubitz, Dorit; Wendisch, Volker F

    2016-10-07

    Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.

  1. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    PubMed

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.

    PubMed

    Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G

    2002-01-01

    Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.

  3. [L-glutamate-activated conductivity in the membrane of isolated pyramidal neurons of the rat hippocampus].

    PubMed

    Kiksin, N I; Tsyndrenko, A Ia

    1985-01-01

    Isolated pyramidal neurons from rat hippocampus were investigated under conditions of intracellular perfusion and voltage clamp using the method of rapid application of extracellular solution. It was found that the L-glutamate-activated current was carried by sodium and potassium ions with PK+/PNa+ ratio about 0.6. The dose-response relationship demonstrated one to one interaction between L-glutamate and membrane receptor with Kd value about 1.1 mmol/l.

  4. Supplementing Monosodium Glutamate to Partial Enteral Nutrition Slows Gastric Emptying in Preterm Pigs123

    PubMed Central

    Bauchart-Thevret, Caroline; Stoll, Barbara; Benight, Nancy M.; Olutoye, Oluyinka; Lazar, David; Burrin, Douglas G.

    2013-01-01

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs received partial enteral nutrition (25%) as milk-based formula supplemented with MSG at 0, 1.7, 3.0, and 4.3 times the basal protein-bound glutamate intake (468 mg·kg−1·d−1) from d 4 to 8 of life (n = 5–8). Whole-body respiratory calorimetry and 13C-octanoic acid breath tests were performed on d 4, 6, and 8. Body weight gain, stomach and intestinal weights, and arterial plasma glutamate and glutamine concentrations were not different among the MSG groups. Arterial plasma glutamate concentrations were significantly higher at birth than after 8 d of partial enteral nutrition. Also at d 8, the significant portal-arterial concentration difference in plasma glutamate was substantial (∼500 μmol/L) among all treatment groups, suggesting that there was substantial net intestinal glutamate absorption in preterm pigs. MSG supplementation dose-dependently increased gastric emptying time and decreased breath 13CO2 enrichments, 13CO2 production, percentage of 13CO2 recovery/h, and cumulative percentage recovery of 13C-octanoic acid. Circulating glucagon-like peptide-2 (GLP-2) concentration was significantly increased by MSG but was not associated with an increase in intestinal mucosal growth. In contrast to our hypothesis, our results suggest that adding MSG to partial enteral nutrition slows the gastric emptying rate, which may be associated with an inhibitory effect of increased circulating GLP-2. PMID:23446960

  5. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs(1-3).

    PubMed

    Bauchart-Thevret, Caroline; Stoll, Barbara; Benight, Nancy M; Olutoye, Oluyinka; Lazar, David; Burrin, Douglas G

    2013-05-01

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs received partial enteral nutrition (25%) as milk-based formula supplemented with MSG at 0, 1.7, 3.0, and 4.3 times the basal protein-bound glutamate intake (468 mg·kg(-1)·d(-1)) from d 4 to 8 of life (n = 5-8). Whole-body respiratory calorimetry and (13)C-octanoic acid breath tests were performed on d 4, 6, and 8. Body weight gain, stomach and intestinal weights, and arterial plasma glutamate and glutamine concentrations were not different among the MSG groups. Arterial plasma glutamate concentrations were significantly higher at birth than after 8 d of partial enteral nutrition. Also at d 8, the significant portal-arterial concentration difference in plasma glutamate was substantial (∼500 μmol/L) among all treatment groups, suggesting that there was substantial net intestinal glutamate absorption in preterm pigs. MSG supplementation dose-dependently increased gastric emptying time and decreased breath (13)CO2 enrichments, (13)CO2 production, percentage of (13)CO2 recovery/h, and cumulative percentage recovery of (13)C-octanoic acid. Circulating glucagon-like peptide-2 (GLP-2) concentration was significantly increased by MSG but was not associated with an increase in intestinal mucosal growth. In contrast to our hypothesis, our results suggest that adding MSG to partial enteral nutrition slows the gastric emptying rate, which may be associated with an inhibitory effect of increased circulating GLP-2.

  6. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    PubMed

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  7. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    PubMed

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder.

  8. In Silico Model-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology

    PubMed Central

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-01-01

    Objective Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Methods Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)-Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Results Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. Conclusion The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder. PMID:28449558

  9. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-06

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    PubMed

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  11. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2018-06-01

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  12. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy.

    PubMed

    Rhee, Sang Youl; Jung, Eun Sung; Park, Hye Min; Jeong, Su Jin; Kim, Kiyoung; Chon, Suk; Yu, Seung-Young; Woo, Jeong-Taek; Lee, Choong Hwan

    2018-01-01

    Diabetic patients with a long disease duration usually accompanied complication such as diabetic retinopathy, but in some patients had no complication. We analyzed differences in plasma metabolites according to the presence or absence of diabetic retinopathy (DR) in type 2 diabetic (T2D) patients with disease duration ≥ 15 years. A cohort of 183 T2D patients was established. Their biospecimens and clinical information were collected in accordance with the guidelines of the National Biobank of Korea, and the Korean Diabetes Association. DR phenotypes of the subjects were verified by ophthalmologic specialists. Plasma metabolites were analyzed using gas chromatography time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. And these results were analyzed using multivariate statistics. For metabolomic study, propensity score matched case and control subjects were chosen. Mean age of the subjects was 66.4 years and mean T2D duration was 22.2 years. Metabolomic identification revealed various carbohydrates, amino acids, and organic compounds that distinguished between age- and sex-matched non-diabetic controls and T2D subjects. Among these, glutamine and glutamic acid were suggested as the most distinctive metabolites for the presence of DR. Receiver operating characteristics curves showed an excellent diagnostic value of combined (AUC = 0.739) and the ratio (AUC = 0.742) of glutamine and glutamic acid for DR. And these results were consistent in validation analyses. Our results imply that plasma glutamine, glutamic acid, and their ratio may be valuable as novel biomarkers for anticipating DR in T2D subjects.

  13. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production.

    PubMed

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-07-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

    PubMed Central

    OBATA, Kunihiko

    2013-01-01

    Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805

  15. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    PubMed Central

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate and aspartate showed a tendency to be lower in AWR than controls over the whole timecourse. The inhibitory amino acid arginine increased in AWR compared to controls, whereas GABA levels decreased. However, there were no significant differences in amino acid concentrations under or after sevoflurane anesthesia. Under isoflurane, aspartate release increased in AWR following induction, and from 40 min to 140 min arginine release in controls was elevated. The precise mechanisms through which each of the volatile anesthetics affected amino acid concentrations are still unclear and further experimental research is required to draw reliable conclusions. PMID:28045949

  16. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study.

    PubMed

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate and aspartate showed a tendency to be lower in AWR than controls over the whole timecourse. The inhibitory amino acid arginine increased in AWR compared to controls, whereas GABA levels decreased. However, there were no significant differences in amino acid concentrations under or after sevoflurane anesthesia. Under isoflurane, aspartate release increased in AWR following induction, and from 40 min to 140 min arginine release in controls was elevated. The precise mechanisms through which each of the volatile anesthetics affected amino acid concentrations are still unclear and further experimental research is required to draw reliable conclusions.

  17. Heterogeneous binary interactions of taste primaries: perceptual outcomes, physiology, and future directions.

    PubMed

    Wilkie, Lynn M; Capaldi Phillips, Elizabeth D

    2014-11-01

    Complex taste experiences arise from the combinations of five taste primaries. Here we review the literature on binary interactions of heterogeneous taste primaries, focusing on perceptual results of administering mixtures of aqueous solutions to human participants. Some interactions proved relatively consistent across tastants and experimental methods: sour acids enhanced saltiness, salts and sweeteners suppressed bitterness, sweeteners suppressed sourness, and sour acids enhanced bitterness. However, for the majority of interactions there were differential effects based on the tastants and their concentrations. Drawing conclusions about interactions with umami is currently not possible due to the low number of primary source studies investigating it and the confounding sodium ions in monosodium glutamate (MSG). Speculative physiological explanations are provided that fit the current data and suggestions for future research studies are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Protective effect of poly (α- L-glutamate) against UV and γ-irradiation

    NASA Astrophysics Data System (ADS)

    Furuta, Masakazu; Huy, Nguyen Quang; Tsuchiya, Akihito; Nakatsuka, Hiroshige; Hayashi, Toshio

    2004-09-01

    We occasionally found that poly (α- L-glutamate) showed a superior protective effect on enzymes against UV and 60Co-γ irradiation. We selected papain and α-amylase as a model enzyme and irradiated the aqueous solution (10 mg/ml) of each enzyme with UV and 60Co-γ rays in the presence of poly (α- L-glutamate) (α-PGA), poly (glucosyl oxyethyl methacrylate (GEMA)), and glucose (1.25% w/v each). The mixture of the three compounds has a significant protective effect on the activity of papain solution showing 40% of remaining activity twice as much as the control containing no additive at the dose of 15 kGy. Among them, α-PGA showed the highest protecting effect on the both papain and α-amylase even after 10-kGy irradiation at which 50% of the activity was retained. α-PGA also showed significant protective activity on α-amylase against UV both in solution and under dried state.

  19. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    PubMed

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  20. Cellular Protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity

    PubMed Central

    Kang, Yunyi; Tiziani, Stefano; Park, Goonho; Kaul, Marcus; Paternostro, Giovanni

    2014-01-01

    Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here we identify small molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization, and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis, and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons. PMID:24739485

  1. Metabolism of propionate by sheep liver. Interrelations of propionate and glutamate in aged mitochondria

    PubMed Central

    Smith, R. M.; Osborne-White, W. S.; Russell, G. R.

    1965-01-01

    1. Low concentrations of l-glutamate were slowly and quantitatively converted into aspartate by aged sheep-liver mitochondria with the loss of C-1 of the glutamate. 2. When propionate was present in addition the rate of conversion of glutamate into aspartate was increased slightly, and the presence of glutamate caused a marked stimulation in the rate at which propionate was metabolized. 3. The stimulatory effect of `sparker' amounts of l-glutamate on propionate metabolism was matched by the effects of α-oxoglutarate, pyruvate, citrate and isocitrate, but not by succinate, fumarate, malate or oxaloacetate. Succinate was stimulatory at higher concentrations, whereas oxaloacetate was inhibitory. 4. When propionate was incubated with l-[1-14C]glutamate in the presence of a large excess of unlabelled carbon dioxide, some labelling of dicarboxylic acids and aspartate occurred, but this was much less than would have been expected from an obligatory transcarboxylation from C-1 of α-oxoglutarate to propionyl-CoA. 5. Possible mechanisms of these effects are discussed. PMID:14340093

  2. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  4. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    PubMed

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  5. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    PubMed

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Immunological markers as predictors of developing steroid-induced diabetes mellitus in pemphigus vulgaris patients: An observational study.

    PubMed

    Dănescu, Ana Sorina; Bâldea, Ioana; Leucuţa, Daniel Corneliu; Lupan, Iulia; Samaşca, Gabriel; Sitaru, Cassian; Chiorean, Roxana; Baican, Adrian

    2018-04-01

    The aim of this study was to evaluate the clinical importance of autoantibodies in pemphigus vulgaris patients who developed steroid-induced diabetes mellitus (SID) because of the glucocorticoid therapy of pemphigus.A total of 137 patients with pemphigus vulgaris were studied. Patients with SID and pemphigus were compared with those that had only pemphigus. The variables recorded were: age at diagnosis, sex, body mass index, presence of diabetes mellitus (DM), cumulative cortisone dose, treatment duration, value of anti-desmoglein 1 and 3, and anti-glutamic acid decarboxylase autoantibodies.A total of 31 patients (22.62%) that developed steroid-induced DM were identified. Anti-glutamic acid decarboxylase autoantibodies were positive in 20.75% of patients with pemphigus vulgaris and in 25.75% of patients with pemphigus vulgaris and SID.The overall anti-glutamic acid decarboxylase autoantibodies prevalence in pemphigus patients was high, and the risk of developing DM in patients with pemphigus remains a serious problem, being associated with increased risk of mortality.

  7. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine.

    PubMed

    Perdih, Peter; Cebašek, Sašo; Možir, Alenka; Zagar, Ema

    2014-11-27

    Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.

  8. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  9. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    PubMed

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  10. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    PubMed Central

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  11. Role of aminotransferases in glutamate metabolism of human erythrocytes.

    PubMed

    Ellinger, James J; Lewis, Ian A; Markley, John L

    2011-04-01

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional (1)H-(13)C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  12. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.

    PubMed

    Jo, Sung-Jin; Leong, Chean Ring; Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2009-04-01

    We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 microg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 microg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB).

  13. Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina*

    PubMed Central

    Du, Jianhai; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken; Rountree, Austin M.; Chertov, Andrei O.; Turner, Sally J.; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R.; Paquet-Durand, François; Hurley, James B.

    2013-01-01

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia. PMID:24187136

  14. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function

    PubMed Central

    2015-01-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. PMID:26719090

  15. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    PubMed

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  16. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex.

    PubMed

    Hascup, Erin R; Hascup, Kevin N; Stephens, Michelle; Pomerleau, Francois; Huettl, Peter; Gratton, Alain; Gerhardt, Greg A

    2010-12-01

    Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼ 40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω-conotoxin (MVIIC; ∼ 50%; calcium channel blocker), and the mGluR(2/3) agonist, LY379268 (∼ 20%), and a significant increase with the mGluR(2/3) antagonist LY341495 (∼ 40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼ 120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically -evoked event is entirely neuronally derived. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  17. Effect of starch ingestion on plasma glutamate concentrations in humans ingesting monosodium L-glutamate in soup.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1985-02-01

    Plasma glutamate concentrations in human subjects are markedly lower when monosodium L-glutamate is ingested in a water solution containing partially hydrolyzed starch than when ingested in water alone. This study was carried out to investigate whether starch ingested as crackers had a similar effect. Eight normal adult subjects (four male, four female) ingested three servings of a beef consommé providing 50 mg/kg body weight monosodium L-glutamate. One serving was consommé alone, the other two were accompanied by sufficient crackers to provide 0.25 or 0.5 g starch per kilogram body weight, respectively. Ingestion of consommé containing glutamate significantly increased the mean plasma glutamate concentration above baseline to a mean peak value 30 min later. The peak after consumption of 0.5 g starch per kilogram body weight, but not 0.25 g/kg body weight, was significantly lower than when consommé alone was ingested. These data indicate that simultaneous ingestion of metabolizable carbohydrate with glutamate has a marked effect on the plasma glutamate response and indicate that the threshold value for carbohydrate is greater than 0.25 g/kg body weight.

  18. GLUTAMATE NEUROTOXICITY IN THE DEVELOPING RAT COCHLEA IS ANTAGONIZED BY KUNURENIC ACID AND MK-801

    EPA Science Inventory

    Glutamate (GLU) is neurotoxic in the neonatal rat cochlea, producing hearing impairment which is largely due to the death of spiral ganglion cells, whereas the receptor hair cells are spared. endritic fibers of the spiral ganglion are post-synaptic to the primary afferent synapse...

  19. DPD epitope-specific glutamic acid decarboxylase GAD)65 autoantibodies in children with Type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    To study whether DPD epitope-specific glutamate decarboxylase autoantibodies are found more frequently in children with milder forms of Type 1 diabetes. We prospectively evaluated 75 children with new-onset autoimmune Type 1 diabetes, in whom we collected demographic, anthropometric and clinical dat...

  20. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells.

    PubMed

    Portugal, Camila Cabral; Miya, Vivian Sayuri; Calaza, Karin da Costa; Santos, Rochelle Alberto Martins; Paes-de-Carvalho, Roberto

    2009-01-01

    Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [(14)C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Accordingly, SVCT-2 was expressed in cultured retinal neurons, but not in glial cells. [(14)C] ascorbate uptake was saturable and inhibited by sulfinpyrazone or sodium-free medium, but not by treatments that inhibit dehydroascorbate transport. Glutamate-stimulated vitamin C release was not inhibited by the glutamate transport inhibitor l-beta-threo-benzylaspartate, indicating that vitamin C release was not mediated by glutamate uptake. Also, ascorbate had no effect on [(3)H] D-aspartate release, ruling out a glutamate/ascorbate exchange mechanism. 2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate) or NMDA stimulated the release, effects blocked by their respective antagonists 6,7-initroquinoxaline-2,3-dione (DNQX) or (5R,2S)-(1)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). However, DNQX, but not MK-801 or 2-amino-5-phosphonopentanoic acid (APV), blocked the stimulation by glutamate. Interestingly, DNQX prevented the stimulation by NMDA, suggesting that the effect of NMDA was mediated by glutamate release and stimulation of non-NMDA receptors. The effect of glutamate was neither dependent on external calcium nor inhibited by 1,2-bis (2-aminophenoxy) ethane-N',N',N',N',-tetraacetic acid tetrakis (acetoxy-methyl ester) (BAPTA-AM), an internal calcium chelator, but was inhibited by sulfinpyrazone or by the absence of sodium. In conclusion, retinal cells take up and release vitamin C, probably through SVCT-2, and the release can be stimulated by NMDA or non-NMDA glutamate receptors.

  1. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    PubMed

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  2. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    NASA Astrophysics Data System (ADS)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P<0.05). In addition, the percentage of soil aggregates with diameter > 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  3. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. © 2014 International Society for Neurochemistry.

  4. [Potentiating effect of sodium glutamate on gastric secretion and its possible use as a clinical test].

    PubMed

    Shlygin, G K; Vasilevskaia, L S; Loranskaia, T I; Shakhovskaia, A K; Lebedeva, R P

    1991-08-01

    The authors report a potentiating effect of sodium glutamate on gastric secretion in subjects free of gastrointestinal diseases. Similar effect has been discovered in dogs. In subjects with gastric hyposecretion (chronic gastritis, functional regulatory disturbances) sodium glutamate combined with pentagastrin is a helpful tool in overall evaluation of gastric secretion. In achlorhydria is can be used for determination of a residual capacity of the stomach to secrete the hydrochloric acid in failure of humoral stimulators.

  5. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. Inmore » the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.« less

  6. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  7. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia.

    PubMed

    Rowland, Laura M; Summerfelt, Ann; Wijtenburg, S Andrea; Du, Xiaoming; Chiappelli, Joshua J; Krishna, Nithin; West, Jeffrey; Muellerklein, Florian; Kochunov, Peter; Hong, L Elliot

    2016-02-01

    Auditory mismatch negativity (MMN) is a biomarker for schizophrenia thought to reflect glutamatergic N-methyl-d-aspartate receptor function and excitatory-inhibitory neurotransmission balance. However, the association of glutamate level with MMN has not been directly examined in patients with schizophrenia, to our knowledge. To investigate the contributions of glutamate and γ-aminobutyric acid (GABA) to MMN and digit sequencing task (DST) performance, an assessment of verbal working memory, in schizophrenia. Fifty-three control participants from the community and 45 persons with schizophrenia from outpatient clinics completed an electroencephalographic session for MMN, magnetic resonance spectroscopy for glutamate and GABA, and a DST. The study dates were July 2011 to May 2014, and the dates of our analysis were May 2014 to August 2015. Glutamate, GABA, the ratio of glutamine to glutamate, MMN amplitude, and DST. Structural equation modeling was used to test the effects of neurochemistry and MMN amplitude on DST performance. The 45 persons with schizophrenia were a mean (SD) of 37.7 (12.8) years and the control participants were 37.1 (13.1) years. The schizophrenia group had a mean (SD) of 14.7 (12.1) years of illness. Mismatch negativity amplitude (F = 4.39, P = .04) and glutamate (F = 9.69, P = .002) were reduced in the schizophrenia group. Smaller MMN amplitude was significantly associated with lower GABA level (P = .008), lower glutamate level (P = .05), and higher ratio of glutamine to glutamate (P = .003). Reduced MMN amplitude was linked to poor verbal working memory in schizophrenia (P = .002). Modeling revealed that a proxy of glutamatergic function, indexed by the ratio of glutamine to glutamate, influenced a path from the ratio of glutamine to glutamate to MMN to verbal working memory (P = .38 [root-mean-square error of approximation, P < .001] by χ2 test), supporting the contention that MMN serves as an intermediate biomarker linking glutamatergic function to DST performance in schizophrenia. The role of glutamate and GABA in MMN and verbal working memory deficits in schizophrenia has been frequently debated. These data provide in vivo evidence that support glutamatergic and GABAergic regulation of MMN and verbal working memory function in schizophrenia.

  8. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia

    PubMed Central

    Rowland, Laura M.; Summerfelt, Ann; Wijtenburg, S. Andrea; Du, Xiaoming; Chiappelli, Joshua J.; Krishna, Nithin; West, Jeffrey; Muellerklein, Florian; Kochunov, Peter; Hong, L. Elliot

    2016-01-01

    IMPORTANCE Auditory mismatch negativity (MMN) is a biomarker for schizophrenia thought to reflect glutamatergic N-methyl-d-aspartate receptor function and excitatory-inhibitory neurotransmission balance. However, the association of glutamate level with MMN has not been directly examined in patients with schizophrenia, to our knowledge. OBJECTIVE To investigate the contributions of glutamate and γ-aminobutyric acid (GABA) to MMN and digit sequencing task (DST) performance, an assessment of verbal working memory, in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Fifty-three control participants from the community and 45 persons with schizophrenia from outpatient clinics completed an electroencephalographic session for MMN, magnetic resonance spectroscopy for glutamate and GABA, and a DST. The study dates were July 2011 to May 2014, and the dates of our analysis were May 2014 to August 2015. MAIN OUTCOMES AND MEASURES Glutamate, GABA, the ratio of glutamine to glutamate, MMN amplitude, and DST. Structural equation modeling was used to test the effects of neurochemistry and MMN amplitude on DST performance. RESULTS The 45 persons with schizophrenia were a mean (SD) of 37.7 (12.8) years and the control participants were 37.1 (13.1) years. The schizophrenia group had a mean (SD) of 14.7 (12.1) years of illness. Mismatch negativity amplitude (F = 4.39, P = .04) and glutamate (F = 9.69, P = .002) were reduced in the schizophrenia group. Smaller MMN amplitude was significantly associated with lower GABA level (P = .008), lower glutamate level (P = .05), and higher ratio of glutamine to glutamate (P = .003). Reduced MMN amplitude was linked to poor verbal working memory in schizophrenia (P = .002). Modeling revealed that a proxy of glutamatergic function, indexed by the ratio of glutamine to glutamate, influenced a path from the ratio of glutamine to glutamate to MMN to verbal working memory (P = .38 [root-mean-square error of approximation, P < .001] by χ2 test), supporting the contention that MMN serves as an intermediate biomarker linking glutamatergic function to DST performance in schizophrenia. CONCLUSIONS AND RELEVANCE The role of glutamate and GABA in MMN and verbal working memory deficits in schizophrenia has been frequently debated. These data provide in vivo evidence that support glutamatergic and GABAergic regulation of MMN and verbal working memory function in schizophrenia. PMID:26720179

  9. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  10. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.

    PubMed

    Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan

    2012-05-01

    Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.

  11. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.

    PubMed

    Shank, R P; Campbell, G L

    1984-04-01

    The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not appear to affect the Vmax of malate uptake, but it did increase markedly the uptake velocity at low concentrations of malate. L-Glutamate and L-aspartate were comparatively strong inhibitors of alpha-ketoglutarate and malate uptake. N-Acetylaspartate was a weak inhibitor of alpha-ketoglutarate uptake, a finding that contrasts with our previous observation that this compound potently inhibited alpha-ketoglutarate uptake by synaptosomes obtained from the cerebellum of 8- to 14-day-old mice. Ca2+ exhibited a variable effect but usually enhanced the uptake of alpha-ketoglutarate. The addition of small amounts of postmicrosomal supernatant to the incubation medium enhanced the uptake of alpha-ketoglutarate by low-density synaptosomes. By comparison, the uptake of glutamate, glutamine, gamma-aminobutyric acid, and several other amino acids was not affected. The enhancement of alpha-ketoglutarate uptake by the supernatant was due to a heat labile substance that was retained by dialysis tubing (MW cutoff = 8,000) and Amicon filter cones (CF 25), and was precipitated by ammonium sulfate at 60% saturation. In experiments in which the metabolic conversion of [U-14C] alpha-ketoglutarate to glutamate, aspartate, glutamine, and gamma-aminobutyric acid was determined, the presence of glutamine and glutamate in the incubation medium did not affect the pattern of labelling appreciably.

  12. Polymerization on the rocks: theoretical introduction

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is difficult if not impossible to synthesize long polymers of amino acids, nucleotides, etc., in homogeneous aqueous solution. We suggest that long polymers were synthesized on the surface of minerals in a prebiotic process analogous to solid-phase synthesis. Provided that the affinity of a mineral for an oligomer increases with the length of the oligomer, adsorption must become essentially irreversible for sufficiently long oligomers. Irreversibly adsorbed oligomers may be elongated indefinitely by repeated cycles in which the mineral with its adsorbed oligomers is first incubated with activated monomers and then washed free of deactivated monomer and side-products. We discuss in some detail the formation of oligomers of negatively-charged amino acids such as glutamic acid on anion-exchange minerals such as hydroxylapatite or illite. We show that the average length of adsorbed oligomers at steady state, n, depends on the balance between the rate of chain elongation and the rate of hydrolysis, and we derive a very approximate formula for n.

  13. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy.

    PubMed

    Zhang, Mei; Zhang, Yong; Ren, Siqi; Zhang, Zunjian; Wang, Yongren; Song, Rui

    2018-06-06

    A method for monitoring l-asparagine (ASN) depletion in patients' serum using reversed-phase high-performance liquid chromatography with precolumn o-phthalaldehyde and ethanethiol (ET) derivatization is described. In order to improve the signal and stability of analytes, several important factors including precipitant reagent, derivatization conditions and detection wavelengths were optimized. The recovery of the analytes in biological matrix was the highest when 4% sulfosalicylic acid (1:1, v/v) was used as a precipitant reagent. Optimal fluorescence detection parameters were determined as λex = 340 nm and λem = 444 nm for maximal signal. The signal of analytes was the highest when the reagent ET and borate buffer of pH 9.9 were used in the derivatization solution. And the corresponding derivative products were stable up to 19 h. The validated method had been successfully applied to monitor ASN depletion and l-aspartic acid, l-glutamine, l-glutamic acid levels in pediatric patients during l-asparaginase therapy.

  14. Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine

    PubMed Central

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052

  15. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  16. EFFECT OF CHELATING AGENTS ON UPTAKE OF Ca$sup 45$ AND Sr$sup 85$ BY DEFATTED BONE IN VITRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samachson, J.; Lederer, H.

    The presence of chelating agents in buffered solutions affected the relative uptake of Ca/sup 45/ and Sr/sup 85/ by defatted bone powder. Strong chelating agents, like ethylenediaminetetraacetic acid and cyclohexanediaminetetraacetic acid, decreased the ratio of Ca/sup 45//Sr/sup 85/ uptake considerably in presence of Ca, Ca plus Sr, or Sr carrier. Citrate and adenosinetriphosphate had similar but weaker effects. No effect was shown by glucose, lactate, gluconate, bicarbonate, bicarbonate plus phosphate, glutamate, aspartate, borate, glycerophosphate, lysine or glutathione. Those compeunds which showed no effect had stability constants for Ca of less than 3. Strong chelating agents also decreased the relative amountmore » of Sr/sup 85/ removed from defatted bone powder by exchange. Results indicate that natural chelating agents may be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptake ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptske ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing Sr/sup 35/ from bone with chelating agents now available. (auth)« less

  17. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.

    PubMed

    Wiedermann, Magdalena M; Gunnarsson, Urban; Ericson, Lars; Nordin, Annika

    2009-01-01

    Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.

  18. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought.

    PubMed

    De Diego, N; Sampedro, M C; Barrio, R J; Saiz-Fernández, I; Moncaleán, P; Lacuesta, M

    2013-01-01

    Drought is one of the main abiotic factors that determine forest species growth, survival and productivity. For this reason, knowledge of plant drought response and the identification of physiological traits involved in stress tolerance will be of interest to breeding programs. In this work, several Pinus radiata D. Don breeds from different geographical origins were evaluated along a water stress period (4 weeks) and subsequent rewatering (1 week), showing different responses among them. Leaf water potential (Ψ(leaf)) and osmotic potential decreases were accompanied by a variation in the total relative water content (RWC, %). The most tolerant breeds presented the lowest leaf water potential and RWC at turgor loss point, and showed the lowest elastic modulus (ε) values. A high ε value was a characteristic of a less-drought-tolerant plant and was related to membrane alterations (high electrolyte leakage percentages) that could favor cell water loss. Of the group of solutes that contributed to osmotic adjustment, soluble carbohydrates were the most abundant, although stressed plants also increased their content of free amino acids [mainly proline (Pro) and glutamic acid (Glu), and γ-aminobutyric acid (GABA)] and free polyamines. In addition, the most sensitive breeds had a higher GABA/Glu ratio. After rewatering, Pro and GABA were higher in rehydrated plants than in controls.

  19. Optical characterization of glutamate dehydrogenase monolayers chemisorbed on SiO2

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Blasi, L.; Longo, L.; Cingolani, R.; Ciccarella, G.; Vasapollo, G.; Rinaldi, R.; Rizzello, A.; Storelli, C.; Maffia, M.

    2003-04-01

    This paper describes the formation of glutamate dehydrogenase monolayers on silicon dioxide, and their characterization by means of physical techniques, i.e., fluorescence spectroscopy and Fourier-transform infrared spectroscopy. Detailed investigations of the intrinsic stability of native proteins in solution were carried out to elucidate the occurrence of conformational changes induced by the immobilization procedure. The enzyme monolayers were deposited on SiO2 after preexposing silicon surfaces to 3-aminopropyltriethoxysilane and reacting the silylated surfaces with glutaric dialdehyde. The optical characterization demonstrates that the immobilization does not interfere with the fold pattern of the native enzyme. In addition, fluorescence spectroscopy, thermal denaturation, and quenching studies performed on the enzyme in solution well describe the folding and unfolding properties of glutamate dehydrogenase. The photophysical studies reported here are relevant for nanobioelectronics applications requiring protein immobilization on a chip.

  20. Polythiophene-block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod-rod block copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zong-Quan; Ono, Robert J.; Chen, Zheng

    2011-01-01

    Coupling of ethynyl terminated poly(3-hexylthiophene) with azide terminated poly(γ-benzyl L-glutamate) afforded the respective block copolymer in good yield and high purity; this material was found to self assemble into hierarchal structures in solution and in the solid state.

  1. Stereospecific enzymatic transformation of alpha-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis.

    PubMed

    Mahlert, Christoph; Kopp, Florian; Thirlway, Jenny; Micklefield, Jason; Marahiel, Mohamed A

    2007-10-03

    The acidic lipopeptides, including the calcium-dependent antibiotics (CDA), daptomycin, and A54145, are important macrocyclic peptide natural products produced by Streptomyces species. All three compounds contain a 3-methyl glutamate (3-MeGlu) as the penultimate C-terminal residue, which is important for bioactivity. Here, biochemical in vitro reconstitution of the 3-MeGlu biosynthetic pathway is presented, using exclusively enzymes from the CDA producer Streptomyces coelicolor. It is shown that the predicted 3-MeGlu methyltransferase GlmT and its homologues DptI from the daptomycin producer Streptomyces roseosporus and LptI from the A54145 producer Streptomyces fradiae do not methylate free glutamic acid, PCP-bound glutamate, or Glu-containing CDA in vitro. Instead, GlmT, DptI, and LptI are S-adenosyl methionine (SAM)-dependent alpha-ketoglutarate methyltransferases that catalyze the stereospecific methylation of alpha-ketoglutarate (alphaKG) leading to (3R)-3-methyl-2-oxoglutarate. Subsequent enzyme screening identified the branched chain amino acid transaminase IlvE (SCO5523) as an efficient catalyst for the transformation of (3R)-3-methyl-2-oxoglutarate into (2S,3R)-3-MeGlu. Comparison of reversed-phase HPLC retention time of dabsylated 3-MeGlu generated by the coupled enzymatic reaction with dabsylated synthetic standards confirmed complete stereocontrol during enzymatic catalysis. This stereospecific two-step conversion of alphaKG to (2S,3R)-3-MeGlu completes our understanding of the biosynthesis and incorporation of beta-methylated amino acids into the nonribosomal lipopeptides. Finally, understanding this pathway may provide new possibilities for the production of modified peptides in engineered microbes.

  2. Effects of phenolic constituents of daylily flowers on corticosterone- and glutamate-treated PC12 cells.

    PubMed

    Tian, Huan; Yang, Fei-Fei; Liu, Chun-Yu; Liu, Xin-Min; Pan, Rui-Le; Chang, Qi; Zhang, Ze-Sheng; Liao, Yong-Hong

    2017-01-21

    Daylily flowers, the flower and bud parts of Hemerocallis citrina or H. fulva, are well known as Wang-You-Cao in Chinese, meaning forget-one's sadness plant. However, the major types of active constituents responsible for the neurological effects remain unclear. This study was to examine the protective effects of hydroalcoholic extract and fractions and to identify the active fractions. The extract of daylily flowers was separated with AB-8 resin into different fractions containing non-phenolic compounds, phenolic acid derivatives and flavonoids as determined using UPLC-DAD chromatograms. The neuroprotective activity was measured by evaluating the cell viability and lactate dehydrogenase release using PC12 cell damage models induced by corticosterone and glutamate. The neurological mechanisms were explored by determining their effect on the levels of dopamine (DA), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), noradrenaline (NE) and acetylcholine (ACh) in the cell culture medium measured using an LC-MS/MS method. Pretreatment of PC12 cells with the extract and phenolic fractions of daylily flowers at concentrations ranging from 0.63 to 5 mg raw material/mL significantly reversed corticosterone- and glutamate-induced neurotoxicity in a dose-dependent manner. The fractions containing phenolic acid derivatives (0.59% w/w in the flowers) and/or flavonoids (0.60% w/w) exerted similar dose-dependent neuroprotective effect whereas the fractions with non-phenolic compounds exhibited no activity. The presence of phenolic acid derivatives in the corticosterone- and glutamate-treated PC12 cells elevated the DA level in the cell culture medium whereas flavonoids resulted in increased ACH and 5-HT levels. Phenolic acid derivatives and flavonoids were likely the active constituents of daylily flowers and they conferred a similar extent of neuroprotection, but affected the release of neurotransmitters in a different manner.

  3. Effect of three different intensities of infrared laser energy on the levels of amino acid neurotransmitters in the cortex and hippocampus of rat brain.

    PubMed

    Ahmed, Nawal Abd El Hay; Radwan, Nasr Mahmoud; Ibrahim, Khayria Mansour; Khedr, Mona Emam; El Aziz, Mona A; Khadrawy, Yasser Ashry

    2008-10-01

    The aim of this study is to investigate the effects of three different intensities of infrared diode laser radiation on amino acid neurotransmitters in the cortex and hippocampus of rat brain. Lasers are known to induce different neurological effects such as pain relief, anesthesia, and neurosuppressive effects; however, the precise mechanisms of these effects are not clearly elucidated. Amino acid neurotransmitters (glutamate, aspartate, glutamine, gamma-aminobutyric acid [GABA], glycine, and taurine) play vital roles in the central nervous system (CNS). The shaved scalp of each rat was exposed to different intensities of infrared laser energy (500, 190, and 90 mW) and then the rats were sacrificed after 1 h, 7 d, and 14 d of daily laser irradiation. The control groups were exposed to the same conditions but without exposure to laser. The concentrations of amino acid neurotransmitters were measured by high-performance liquid chromatography (HPLC). The rats subjected to 500 mW of laser irradiation had a significant decrease in glutamate, aspartate, and taurine in the cortex, and a significant decrease in hippocampal GABA. In the cortices of rats exposed to 190 mW of laser irradiation, an increase in aspartate accompanied by a decrease in glutamine were observed. In the hippocampus, other changes were seen. The rats irradiated with 90 mW showed a decrease in cortical glutamate, aspartate, and glutamine, and an increase in glycine, while in the hippocampus an increase in glutamate, aspartate, and GABA were recorded. We conclude that daily laser irradiation at 90 mW produced the most pronounced inhibitory effect in the cortex after 7 d. This finding may explain the reported neurosuppressive effect of infrared laser energy on axonal conduction of hippocampal and cortical tissues of rat brain.

  4. Partitioning of glutamine synthesised by the isolated perfused human placenta between the maternal and fetal circulations☆

    PubMed Central

    Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.

    2013-01-01

    Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194

  5. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  6. Identification of critical amino acids in the IgE epitopes of Ric c 1 and Ric c 3 and the application of glutamic acid as an IgE blocker.

    PubMed

    Deus-de-Oliveira, Natalia; Felix, Shayany P; Carrielo-Gama, Camila; Fernandes, Keysson V; DaMatta, Renato Augusto; Machado, Olga L T

    2011-01-01

    The allergenicity of Ricinus communis L. (castor bean, Euphorbiaceae) is associated with components of its seeds and pollen. Castor bean allergy has been described not only in laboratory workers, but also in personnel working in oil processing mills, fertilizer retail, the upholstery industry and other industrial fields. In the present study, we describe the critical amino acids in the IgE-binding epitopes in Ric c 1 and Ric c 3, two major allergens of R. communis. In addition, we also investigate the cross-reactivity between castor bean and some air and food allergen extracts commonly used in allergy diagnosis. The IgE reactivity of human sera from atopic patients was screened by immune-dot blot against castor bean allergens. Allergenic activity was evaluated in vitro using a rat mast cell activation assay and by ELISA. Cross-reactivity was observed between castor bean allergens and extracts from shrimp, fish, gluten, wheat, soybean, peanut, corn, house dust, tobacco and airborne fungal allergens. We observed that treatment of rat and human sera (from atopic patients) with glutamic acid reduced the IgE-epitope interaction. The identification of glutamic acid residues with critical roles in IgE-binding to Ric c 3 and Ric c 1 support the potential use of free amino acids in allergy treatment.

  7. Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush).

    PubMed

    Chamberlin, M E; Glemet, H C; Ballantyne, J S

    1991-01-01

    Amino acid metabolism was examined in mitochondria from the lateral red muscle of a teleost (lake char, Salvelinus namaycush) and a nonteleost fish (bowfin, Amia calva). Isolated mitochondria oxidize a wide variety of substrates and have high respiratory control ratios. In both species, glutamine is oxidized more rapidly than any other amino acid. The rate of glutamine oxidation by bowfin mitochondria exceeds that of lake char mitochondria, and the bowfin displays correspondingly higher levels of mitochondrial phosphate-dependent glutaminase. It is suggested that amino acids in general, and glutamine in particular, are important oxidative substrates for nonteleost red muscle. The teleost red muscle, however, may rely on both glutamine and fatty acids as oxidative substrates. It appears that glutamate derived from glutamine is oxidized primarily via glutamate dehydrogenase, whereas exogenous glutamate is oxidized primarily via aspartate aminotransferase. Complete oxidation of glutamine may be accomplished in the absence of other substrates by conversion of glutamine-derived malate to pyruvate via malic enzyme. To assess the relative abilities of various tissues to synthesize and oxidize glutamine, the activities of glutamine synthetase and glutaminase were measured. The results of these studies indicate that the organization of glutamine metabolism of fish differs markedly from that in mammals.

  8. Selection of an Effective Indicator for Rapid Detection of Microorganisms Producing γ-Polyglutamic Acid and Its Biosynthesis Under Submerged Fermentation Conditions Using Bacillus methylotrophicus.

    PubMed

    Chatterjee, Poonam Mishra; Datta, Silpi; Tiwari, Deepika Pandey; Raval, Ritu; Dubey, Ashok Kumar

    2018-05-01

    γ-Polyglutamic acid (γ-PGA) is a biosynthetic outcome of glutamic acid polymerization by microbes. In the current study, we have isolated Bacillus methylotrophicus on solid differential media containing methylene blue. This is the first report mentioning the use of methylene blue to distinguish the monomeric and polymeric form of glutamic acid in the liquid medium using UV-Vis spectrophotometer. Our method can simplify the analytical process of γ-PGA confirmation using the aforementioned studies. This screening protocol is sensitive to the detection of γ-PGA quantities as low as 3 μg/mL; thus, the potent producers can be effectively screened. Furthermore, we have carried out process optimization of the present strain for γ-PGA production wherein we could obtain 1.4-fold improvement in the yield with respect to utilization of carbon source and 2.6-fold increase with respect to nitrogen source under submerged fermentation at a shake flask level. We have shown an increase in γ-PGA titer from 1.5 to 36 g/L using mannitol, monosodium glutamate, peptone, and tween 20.

  9. Self-Assembly and Responsiveness of Polypeptide-Based Star and Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Savin, Daniel

    This study involves the bottom-up design and tunability of responsive, peptide-based block polymers. The self-assembly of amphiphilic block polymers is dictated primarily by the balance between the hydrophobic core volume and the hydrophilic corona. In these studies, amphiphilic triblock and star copolymers containing poly(lysine) (PK), poly(leucine) (PL) and poly(glutamic acid) (PE) were synthesized and their solution properties studied using dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The peptide block in these structures can serve to introduce pH responsiveness (in the case of PK and PE), or can facilitate the formation of elongated or kinetically-trapped structures (in the case of PL.) This talk will present some recent studies in solution morphology transitions that occur in these materials under varying solution conditions. As the topological complexity of the polymers increases from diblock to linear triblock or star polymers, the solution morphology and response becomes much more complex. We present a systematic series of structures, with increasing complexity, that have applications as passive and active delivery vehicles, hydrogels, and responsive viscosity modifiers. NSF CHE-1539347.

  10. Formation of cage-like particles by poly(amino acid)-based block copolymers in aqueous solution.

    PubMed Central

    Cudd, A; Bhogal, M; O'Mullane, J; Goddard, P

    1991-01-01

    When dissolved in N,N-dimethylformamide and then dialyzed against phosphate-buffered saline, A-B-A block copolymers composed of poly [N5-(2-hydroxyethyl)-L-glutamine]-block-poly(gamma-benzyl-L-glutamate)- block-poly [N5-(2-hydroxyethyl)-L-glutamine] form particles. The particles are cage-like structures with average diameters of 300 nm (average polydispersity, 0.3-0.5). They are stable in aqueous solution at 4 degrees C for up to 3 weeks, at which time flocculation becomes apparent. Negative staining and freeze-fracture electron microscopy suggest that cage-like particles are formed by selective association of segregated micelle populations. A model of particle formation is presented in which B blocks form micelles in dimethylformamide. On dialysis against an aqueous solution, the extended A blocks then associate intermolecularly to form rod-shaped micelles, which connect the B block micelles. The result is a meshed cage-like particle. The implications of these observations on the aggregation behavior of polymeric surfactants in dilute solution are discussed. Images PMID:11607245

  11. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition.

    PubMed

    Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis

    2015-09-01

    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    PubMed

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  13. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids

    ERIC Educational Resources Information Center

    Ault, Addison

    2004-01-01

    Monosodium glutamate (MSG) is both the basis of a trillion dollar worldwide industry and a presence in the diet of a majority of the inhabitants of the world. Some parts of the "story" of MSG that might be of most interest to chemists, chemistry teachers and their students are presented.

  14. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  15. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    PubMed

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  16. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    PubMed

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  17. Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus)

    NASA Astrophysics Data System (ADS)

    Halimi, Nurfatin Mohd; Kasim, Zalifah Mohd; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) produced by certain swiftlet species mainly, Aerodromus fuciphagus. The objectives of this study were to determine and compare the proximate and amino acid composition of EBN obtained from two regions in Peninsular Malaysia (Pahang-A & Terengganu-B). The solubility of edible bird nest with varying pH, temperature and time was also investigated in this study. The results showed that, the EBN contained crude protein accounted to 58.55% (A) and 55.48% (B), carbohydrate at22.28% (A) & 25.79% (B), moisture content 15.90% (A) & 15.87% (B), fat, 0.67% (A) & and 0.29% (B) and ash contents 2.60% (A) & 2.57% (B) respectively. The major amino acids found in edible bird nest EBN were Glutamic acid (9.61%), Aspartic acid (6.34%), Lysine (5.44 %) and also Leucine (5.30%). The total solubility of EBN was also found to be increased when the temperature was increased increase with distilled water yielding the highest total solubility of EBN compared to others buffer (different pH) solutions.

  18. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  19. Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

    PubMed Central

    Koh, Phil-Ok

    2013-01-01

    Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830

  20. Postharvest production of ochratoxin A by Aspergillus ochraceus and Penicillium viridicatum in barley with different protein levels.

    PubMed Central

    Häggblom, P E; Ghosh, J

    1985-01-01

    The production of ochratoxin A (OA) in barley by Aspergillus ochraceus and Penicillium viridicatum was measured at 12 and 25 degrees C. The grain had been fertilized with various amounts of nitrogen fertilizer (0, 90, or 240 kg/ha) and contained (at crop maturity) 9.1, 10.4, or 12.0% protein, respectively. The production of OA by both fungi increased as the protein concentration increased. Glutamic acid and proline were enriched relative to other amino acids as the protein concentration increased. The differences in OA production could not be explained by a differential effect of protein or amino acids on fungal growth in barley. However, glutamic acid and proline enhanced OA production in liquid cultures of both A. ochraceus and P. viridicatum. PMID:4004212

  1. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    PubMed

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  2. Trophic spectra under the lens of amino acid isotopic analysis

    USDA-ARS?s Scientific Manuscript database

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  3. Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue

    PubMed Central

    Nagao, Hirofumi; Nishizawa, Hitoshi; Bamba, Takeshi; Nakayama, Yasumune; Isozumi, Noriyoshi; Nagamori, Shushi; Kanai, Yoshikatsu; Tanaka, Yoshimitsu; Kita, Shunbun; Fukuda, Shiro; Funahashi, Tohru; Maeda, Norikazu; Fukusaki, Eiichiro; Shimomura, Iichiro

    2017-01-01

    Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models. PMID:28119455

  4. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  5. Characterization and Expression of Glutamate Dehydrogenase in Response to Acute Salinity Stress in the Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Wang, Yueru; Li, Erchao; Yu, Na; Wang, Xiaodan; Cai, Chunfang; Tang, Boping; Chen, Liqiao; Van Wormhoudt, Alain

    2012-01-01

    Background Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species. Methodology/Principal Findings GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5′- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3′- untranslated region. E. sinensis GDH showed 64–90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA. Conclusions E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions. PMID:22615974

  6. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    PubMed

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an important determinant in cellular localization and regulation of GLT-1.

  7. Cloning and characterization of the glutamate dehydrogenase gene in Streptococcus bovis.

    PubMed

    Ando, Tasuke; Sugawara, Yoko; Nishio, Ryohei; Murakami, Miho; Isogai, Emiko; Yoneyama, Hiroshi

    2017-07-01

    Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P) + binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis. © 2016 Japanese Society of Animal Science.

  8. Essential Tremor with Aspartic Acidemia.

    PubMed

    Miura, Shiroh; Fujioka, Ryuta; Taniwaki, Takayuki

    2017-05-08

    We describe two cases of typical essential tremor with aspartic acidemia and mildly increased concentrations of plasma glutamic acid. Although this is a preliminary report, we emphasize the possibility of using amino acids, including aspartic acid, as biomarkers for the detection of essential tremor.

  9. Analysis of a vesicular glutamate transporter (VGLUT2) supports a cell-leakage mode in addition to vesicular packaging.

    PubMed

    Mackenzie, Bryan; Illing, Anthony C; Morris, Marie E K; Varoqui, Hélène; Erickson, Jeffrey D

    2008-02-01

    VGLUT2 is one of three vesicular glutamate transporters that play crucial roles in glutamatergic excitatory neurotransmission. We explored the functional properties of the rat VGLUT2 by heterologous expression of VGLUT2 in Xenopus oocytes. Immunocytochemical analysis indicated that most VGLUT2 protein was expressed in intracellular compartments but that some expression occurred also on the plasma membrane. Functional analysis revealed VGLUT2 to be active in two independent modes, namely, uptake into intracellular organelles and efflux at the plasma membrane. VGLUT-specific transport was identified based on the strong preference for glutamate over aspartate--in contrast to plasma-membrane or mitochondrial glutamate transporters--and sensitivity to known VGLUT blockers. VGLUT2 expression in oocytes (1) stimulated the influx of L-[(3)H]glutamate, but not D-[(3)H]aspartate, into digitonin-permeabilized oocytes and (2) stimulated efflux of L-glutamate, but not L-aspartate, from intact oocytes preinjected with (3)H-labeled amino acids. In the latter assay, cellular efflux of glutamate (which was blocked by rose bengal and trypan blue) may be analogous to vesicular packaging of glutamate. Our data are consistent with VGLUT2-mediated H(+)/L-glutamate antiport, but not antiport with chloride. Expression of mammalian VGLUT1 and VGLUT3 also stimulated L-[(3)H]glutamate efflux from Xenopus oocytes, suggesting that this phenomenon is a general feature of vesicular glutamate transporters. Our findings support the idea that vesicular glutamate transporters, when transiently expressed on the neuronal plasma membrane, may mediate Ca(2+)-independent glutamate leakage in addition to their traditional role of packaging glutamate into synaptic vesicles for Ca(2+)-dependent exocytosis.

  10. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1

    PubMed Central

    Zhang, Zhou; Tao, Zhen; Gameiro, Armanda; Barcelona, Stephanie; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2007-01-01

    Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na+ dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na+ ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na+ binding, reverse translocation, and reverse relocation of the K+-bound EAAC1. We propose a kinetic model, which is based on a “first-in-first-out” mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na+ ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions. PMID:17991780

  11. On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust.

    PubMed Central

    Morosova, K I; Aronova, G V; Katsnelson, B A; Velichkovski, B T; Genkin, A M; Elnichnykh, L N; Privalova, L I

    1982-01-01

    The cytotoxic action of quartz (DQ12) particles on cultures of rat peritoneal macrophages, as estimated by the inhibition of the TTC-reductase activity, is considerably reduced by preincubation with glutamic acid and by adding sodium glutamate (15 mg/ml) to the drinking water of the rats donating the macrophages. This increase in macrophage resistance under the influence of glutamate is the most probable cause of the delay in the development of silicotic fibrosis shown in several experiments on rats intratracheally injected with quartz and then treated by prolonged administration of glutamate. This effect is probably connected with the influence of glutamate on the stability of the macrophage membranes, which can in its turn be explained by different mechanisms, including the influence on the synthesis and phosphorylation of adenosine nucleotides. Such an influence was shown in rats receiving glutamate by the change of the ATP/ADP ratio in macrophages, but not in erythrocytes. The resistance of rat erythrocytes to the haemolytic action of quartz is also not influenced by the action of glutamate neither in vitro nor in vivo. Such differences in the influences of glutamate on two types of cells, equally susceptible to quartz cytotoxicity but considerably differing in the character of energy metabolism, is an indirect proof of the role of the latter in the realisation of the anticytotoxic, and thereby antifibrogenic, effect of glutamate. PMID:6124270

  12. Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β- and TNFα- Mediated Synaptic Plasticity Disruption in the Rat Hippocampus.

    PubMed

    Zhang, Dainan; Mably, Alexandra J; Walsh, Dominic M; Rowan, Michael J

    2017-07-01

    Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aβ-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aβ action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.

    PubMed

    Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi

    2009-12-01

    The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.

  14. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  15. Novel type of murein transglycosylase in Escherichia coli.

    PubMed Central

    Höltje, J V; Mirelman, D; Sharon, N; Schwarz, U

    1975-01-01

    The purification and properties of a novel type of murein transglycosylase from Escherichia coli are described. The purified enzyme appears as a single band on sodium dodecyl sulfate-polyacrylamide gels and has an apparent molecular weight of approximately 65,000 as estimated by gel filtration and gel electrophoresis. It degrades pure murein sacculi from E. coli almost completely into low-molecular-weight products. The two prominent muropeptide fragments in the digest are the disaccharide-tripeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid and the corresponding disaccharide-tetrapeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid-D-alanine. The unique feature of these compounds is that the disaccharide has no reducing end group and that the muramic acid residue possesses an internal 1 leads to 6 anhydro linkage. The new lytic enzyme is designated as a murein: murein transglycosylase. Its possible role in the rearrangement of murein during cell growth and division is discussed. PMID:357

  16. Evidence for an operative glutamine translocator in chloroplasts from maritime pine (Pinus pinaster Ait.) cotyledons.

    PubMed

    Claros, M G; Aguilar, M L; Cánovas, F M

    2010-09-01

    In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine-glutamate translocator. Glutamine-glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S-adenosylmethionine synthesis is guaranteed.

  17. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    PubMed

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  18. [Characteristics of the glutamate decarboxylase reaction in homogenates of various regions of the rat brain].

    PubMed

    Rozanov, V A

    1987-01-01

    The glutamate decarboxylase activity in rough homogenates of cerebellum, cortex and truncal part of the rat brain was studied under different conditions of incubation: in the presence of 25 mM glutamate sodium, 0.4 mM pyridoxal-5'-phosphate and both these components. It is found that the initial glutamate decarboxylase activity in cerebellum homogenates is approximately twice as high as in the cortex and trunk homogenates. Addition of the substrate and cofactor, especially in the combination, stimulates considerably the yield of gamma-aminobutyric acid (GABA) in the glutamate decarboxylase reaction, the most pronounced activation being observed in the truncal homogenates. The glutamate/GABA relation both initial and after the completion of the reaction is the maximal in the cortex and minimal in the truncal part of the brain. The data obtained evidence for the differences in the content of the GABA-producing enzyme rather than for the presence of the specific mechanisms of the enzyme regulation in different brain areas.

  19. Dopamine alters glutamate receptor desensitization in retinal horizontal cells of the perch (Perca fluviatilis).

    PubMed Central

    Schmidt, K F; Kruse, M; Hatt, H

    1994-01-01

    The patch-clamp technique in combination with a fast liquid filament application system was used to study the effect of dopamine on the glutamate receptor desensitization in horizontal cells of the perch (Perca fluviatilis). Kinetics of ligand-gated ion channels in fish horizontal cells are modulated by dopamine. This modulation is presumably mediated by a cAMP-dependent protein phosphorylation. Before incubation with dopamine, the glutamate receptors of horizontal cells activate and desensitize with fast time constants. In the whole-cell recording mode, fast application of the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid prior to the dopamine incubation gives rise to fast transient currents with peak values of about 200 pA that desensitize within 100 ms. Kainate as agonist produced higher steady-state currents but no transient currents. After incubation of the cells with dopamine for 3 min, the desensitization was significantly reduced and the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid induced steady-state currents with amplitudes that were similar to the previously observed transient currents. Kainate-induced currents were only slightly affected. Fast desensitizing currents upon fast application of L-glutamate were also recorded from outside-out patches that were excised from horizontal cells before incubation with dopamine. The currents from excised patches desensitized to a steady-state level of about 0.2 of the peak amplitude with time constants of less than 2 ms. When the outside-out patches were excised from cells after dopamine incubation, steady-state currents were enhanced and no transient currents were observed. The results may indicate that the dopamine-dependent modulation of glutamate-induced currents, which is presumably mediated by a protein phosphorylation, is due to an alteration of the desensitization of the glutamate receptors. PMID:7520178

  20. The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5.

    PubMed

    Gameiro, Armanda; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2011-06-08

    Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top